
DFS
Presentation to IBM

4/11/91

1

DFS SESSION

• DFS Overview
• Naf11e Space
• VFS+
• Volume Location Data Base
• Fileset Replication
• Fifeset Storage (Episode)
• Client Cache Server
• DFS File Server
• Token Management
• Access Control Lists
• NFS Interoperability
• Administration

DFS OVERVIEW

• Concepts
• Design Goals
• Architecture

L_

CONCEPTS

• Distributed File System
Users share information in a set of files without using same
machine
Allows processing load to be shared across a set of
machines without losing access to data

• Client-Server Model
Server machines are those that have permanent copies
of file systems
Client machines are those that request access to files in
file systems stored on server machines

WHERE DFS FITS
IN DCE ARCHITECTURE

~ Applications

Personal Computer Integration

DFS

RPC

Threads

Operating System

DESIGN GOALS

• Scalability
• Name Transparency
• Replication
• Simplicity of Administration
• Heterogeneity of Hardware and Operating Systems
• Security
• Performance
• Availability
• Flexibility
• Interoperability with other Distributed File Systems
• Diskless Operation

6

ARCHITECTURE

• Cells
• Modular Structure
• Filesets
• Cache Manager
• Consistency Mechanism
• Security
• Protection
• VFS+

7

CELLS

• Group, of one or more machines comprising an administrative
domain

• Common administration for machines
• A degree of trust between machines
• Examples:

Company
Division of Company
Department of University

DFS
File
Server

,,

,,
Episode
File
System

DFS ORGANIZATION

,,
NFS
Client

NFS
File
Server

VFS+

·----------.
UFS
File
System

System
Calls

A ,,

Client
Cache
Server

LOGICAL VIEW OF DFS ORGANIZATION

Client
Cache Server

DFS
File Server

System
Calls

VFS+

VFS+

NFS
Client

NFS
File Server

Episode UFS

~~~~~~~~~cb=F=ile=S=ys=te=m~~~=F=il=e=Sy=s=te=m~~~~~~~locuS 



FILESETS 

• Also known as volumes 
• Related to traditional UNIX file system 
• Handle to section ·of disk 

corresponds to subtree of hierarchical file system 
unit of administration 

• Global name space is a collection of filesets 
joined at mount points 

• Volume Location Data Base (VLDB) tracks filesets 

11 



• 

• 
• 

• 

CLIENT CACHE SERVER 

Also known as "client" or "client server" or "cach,-9 manager" 
Used when acce~sing volumes not on caller's machine 
Interprets path names 

finds mount points, accesses remote filesets 
parses path name until file or directory leaf if reached 

Copies all or part of desired object to caller's machine 



CONSISTENCY MECHANISM 

• DFS uses token-passing 

minimizes interaction between machines, yet maintains 
semantics of ·local file systems 

• Types of tokens 
Open 

.. . Lock 
Data 
File Synchronization 

• Client only performs operations granted by token 
• Tokens can be revoked by server or voluntarily given up by clients 



SECURITY 

• DFS uses Kerberos authentication 
• Requires Kerberos tickets to be acquired 
• Tickets presented to servers for operation 

14 



PROTECTION 

• Standard UNIX mode bits 
owner, group, other 
read, write, execute permissions 

• Also supports ACLs 
specific set of rights for a specific set of users 
much more flexible than standard UNIX modes 

• Compatibility with other ACL schemes 
POSIX ACLs 
OSF/1 ACLs 

15 



VFS+ 

• VFS is standard file system switch for today's UNIX 
• Allows multiple f,ile system types to be supported in one 

operating system 
• DFS provides extended version of VFS (called VFS+) 

adds security and synchronization to standard VFS 



• 

• 
• 
• 

Global Name Space 
Cell Name Space 
DFS Mounts 
Filesets 

NAME SPACE 

L~-~~~~~~~~~~~-.z.LocuS 
17 , 



GLOBAL NAME SPACE 

IBMAus 
Cell 

/ .. ./ IBMAus 

Global Root 

X.500 

LCCLA 
Cell 

/ .. ./LCCLA 



/ .. .! LCCLNDFS/src 

CELL NAME SPACE 

Cell Name SeNice 
(DEC Name SeNice) 

Security 
Service 



DFS NAME SPACE 

dev 

roman 



DFS MOUNTS 

• Name space created by grafting subtrees using mounts 
• Two types of mounts 

ln-memory·mounts 
traditional UNIX mount model 
private to machine 

On-disk mounts 
mount is exported to cell (and thus globally) 
special symbolic link to fileset to be mounted 

• Standard DFS on-disk mount merely has name of fileset to 
be mounted 

fileset name looked up in VLDB 
VLDB has information about where fileset is stored 

21 



FILES ET 

Disk on Machine B 



•· 
• 

VFS+ 

VFS Overview 
VFS+ Overview 
- Generalized Credentials 

Synchronization 
Operations on Filesets and Aggregates 

23 



VFS OVERVIEW 

• VFS interface proposed in 1986 
• VFS interface appears in most UNIX kernels today 
• Architecture for accommodating multiple physical file systems on 

one machine 
some file system types may be local, some may be remote 

• All accesses to file system objects made through vnodes 
• All operations on file systems done through vnode ops 
• VFS has evolved over time 

to be better isolated from the rest of the kernel 
to allow different virtual memory implementations 
to support distributed file systems better 



VFS+ OVERVIEW .. , 

• ·Improvement to general VFS interface 
• Principal improvements 

- Generalized credentials 
- Synchronization 
- Operations on filesets and aggregates 

Operations on ACLs 
• VFS+ can be added to .base kernel, or added without modifying 

kernel 
• VFS+ is part of OSF/1.1 

25 



GENERALIZED CREDENTIALS 

• Credentials extended to allow Kerberos and other authentication 
methods 

• Credential used by most VFS functions is generalized 
Addition of "magic cookie" to credential 
"Magic cookie" associated with a property list 
Property list associated with user identification info1 

NFS identity 
Kerberos identity 

• File systems that don't understand magic cookie use standard 
UNIX permissions 

26 



SYNCHRONIZATION 

• Most operations redefined to call a synchronization package 
• Protocol exporters can make guarantees to clients, and be 

notified when any changes are made to an object 

27 



OPERATIONS ON FILESETS AND AGGREGATES 

• Done through pioctl interface 
• Allows multiple implementations of filesets and aggregates 
• Operations on aggregates 

Creating new filesets 
Iterating through all filesets 
Deleting filesets 

• Operations on filesets 
Take fileset off-line 
Iterating through all files in a fileset 
Putting fileset on-line 
Dealing with fileset quotas 

28 



VOLUME LOCATION DATA BASE (VLDB) 

.; 

• VLDB Overview 
• Ubik Goals 
• Ubik Programming Model 
• Ubik Algorithm 
• Ubik Coordinator 
• Ubik Recovery 



VLDB OVERVIEW 

• Maintains information about every fileset in cell 
• Maintains following information about filesets 

Fileset name 
Fileset ID o.f read/write replica 
Fileset ID of backup clone 
Fileset ID of read-only replicas 

• VLDB used: 
When cache manager encounters a mount point (fileset name) 
When cache manager encounters a fileset ID with no cached 
entry 
By administration commands for replication, backup/restore 
and other fileset operations 

• VLDB not used frequently, but is replicated for high availability 
• Uses Ubik as its data base and replication mechanism 

L~~~~~~~~~~-·.£locuS 
30 ,. 



UBIK.GOALS 

• Strong consistency guarantees on updates 
• Small number of write transactions 
• Higher number· of read transactions 

1 O to 100 times higher than writes 
• Handle network partitions 
• Simple programming abstr~ction 
• High read-only availability 

- High read/write availability not a goal, but came "for free", 

so was done 

31 



UBIK PROGRAMMING MODEL 

• Ubik supports the following operations: 
Begin Trans 
Read 
Write 
Setlock 
AbortTrans 
EndTrans 

L~~~~~~~~~~.~~LxuS 
32 , 



UBIK ALGORITHM 

• For data base writes, Ubik uses a quorum completion algorithm 
• Quorum of more than half replicated servers must be present to 

perform data base writes 
• Data base reads need only any single server to be present 
• Two basic algorithms 

Election of coordinator 
Performing data.base commits 

• Algorithms sensitive to clock skew · 



UBIK COORDINATOR 

• An Ubik data base has a single coordinator site · 
• Coordinator elected by majority of sites 
• Coordinator is elected for a fixed time period (called epoch) 
• Coordinator attempts to extend epoch when fixed time period 

half over 
• New coordinator makes sure all remote data bases up to date 

before allowing transactions 

34 



11=======---=-:---.;;;;.;;;;;;o;;;;;;;;;;;;;;;;;;;;;;;;=o;;-=======--===;.=;=:;;;;;.=:=;;;;;;;;-=--=-==---==-=-· 
I 

I 

UBIK WRITE TRANSACTIONS 

• Writes occur on coordinator site 
• Commit message sent to each server 
• After successful commit, unlock messages sent to all servers 
• If commit makes it to one server, transaction may survive 

(depends on new coordinator) 
• If a quorum of commits happen, transaction will survive 

L~~~~~~~~3s~~~~~~Locm 



UBIK RECOVERY 

• Recovery executed by a new coordinator, nnd also by existing 
coordinator when servers are lost 

• Several phases to recovery 
Begin new epoch 
Determine latest version of data base for all sites 
Update coordinator to latest version 
Label this version as first version of epoch 
Update all remote data bases 

• Transactions allowed when recovery is complete 

I 

L~~~~~~s~~~~~LxuS 



FILESET REPLICATION 

• Fileset Replication Overview 
• Replication Behavior 
• Policy on Updating Replicas 
• Mechanism for Updating Replicas 

37 



FILESET REPLICATION OVERVIEW 

• Replication is important part of a distributed file system 
Performance 
Availability ·_ 

• Several conceptual forms of replication 
Tight read/write replication 

All changes made immediately visible on all replicas 
Lazy read/write replication 

Changes are eventually visible on all replicas 
Read-only replication · 

Changes are not allowed 



REPLICATION OVERVIEW (CONT.) 

• DFS supports either lazy read/write replication or read-only 
replication, depending upon point of view 

Read-only r·eplication because access for writing is via a 
different name than accessing replicas 
Lazy replication because changes to read/write copy do 
make it out to replicas later 

• DFS replication at level of filesets 
No partial replication permitted 

L~~~~~~~~~~-llil-LtcuS 
39 , 



REPLICATION BEHAVIOR 

• VLDB stores: 
Information about read/write fileset 
Information about cloned (backup) fileset 
Information about all replicas of filesets 

• Mount points identify fileset 
If fileset name has ".readonly" appended to name, a replica 
is accessed rather than read/write copy 
If a replica is local, that one is used 
No clever algorithm if no local fileset is present 

• Normal reading and writing can occur on read/write fileset 

.,e-Locus 



POLICY FOR UPD.ATING REPLICAS 

• Replicas should be updated periodically 
• In AFS 3.0, updates under administrative control 

If administrator forgets, updates not done 
Requires either notification of administrator or administrative 
privileges 

• Current DFS policy is automatic periodic update 
Never know when update has/will occur 
Possible to get inconsistent update 

• May change to be determined on a per-fileset basis 

41 
~Locus 



• 

• 

• 

• 
• 

MECHANISM FOR UPDATING REPLICAS 

Clone of read/write fileset is created 
Read-only replicas marked temporarily out of date 
Fileset is copied ·from clone to replicas 
Read-only replicas marked accessible 
Clone of read/write fileset stays in existence until all read-only 
replicas updated 



FILESET STORAGE 

• Episode - DFS physical file system 
• Episode Features 
• Episode Concepts 

Aggregate 
Fileset 

- ·,Anode 
File 

• Episode logging 
• Episode Implementation . 
• Optimization 

43 



EPISODE FEATURES 

• Multiple filesets per partition 
• Ability to move filesets from partition to partition (including 

partitions on different machines) 
• Access control lists on files and directories 
• Recovery without fsck (journalling file system) 
• Cloning filesets for backup 

'4 



EPISODE CONCEPTS 

• Aggregate 
Similar to disk partition 

- Unit of storage that knows about filesets 

• Fileset 
Administrative entity of aggregate 
Has access control and quota information 
Restricted to single aggregate 
Can be moved, and addresses are preserved · 

• Anode 
Describes a data container 
Data containers correspond to files, directories, etc. 

L~-~~~~==~~~~~~.z,LocuS 
45 , 



EPISODE CONCEPTS (CONT~) 

• Fragment 
Smallest unit of disk space 

· Usually 1 K · ·. 

• Block 
Contiguous group of fragments 
Treated as unit for efficient 1/0 



AGGREGATE 

• Unit of storage that contains an Episode File System 
• Generally corresponds to UNIX disk partition 

May correspond .to "volume" in Logical Volume Manager 
• Addressed via block number and offset 

Maximum size is 242 = 4.4 x 1O12 bytes 
Unit of allocation is still fragments 

• Aggregate has 3 "well known" containers/anodes 
Aggregate fileset list 

Information about. aggregate itself 
Array of information about filesets 

Aggregate bitmap 
Aggregate recovery log 

L~-~~~~~~~~=-=~~~#?,Loe~ 
47 , 



FILESETS 

• Fileset information stored in aggregate fileset list 
Fileset name 
Fileset ID 
Version number 
Quota 
Creation date 
Status 
Root directory 
Other stuff 

• Quotas require cooperation with aggregates 
Free pool of blocks aggregate-wide 
Quotas are on a per-fileset basis 
Fileset monitors and (possibly) denies storage requests 

8 



F·tLESETS (CONT.) 

• Filesets can be cloned 
Makes use of copy-on-write 
Simple creation of block lists would make the clone the 
read/write copy, so all anodes must be copied · 
Care must be taken deleting a clone (blocks used by 
read/write copy must not be lost) 

49 



ANODE 

• Describes data in an aggregate 
• Information for files to be implemented and for fileset operation 

• Duties of anodes 
Keep track of blocks 

Includes copy-on-write management 
Keep track of access control object 

Access control object has fileset itself 
Can be of arbitrary size 
Shared due to inheritance 



ANODES AND DATA STORAGE 

• lnline 
Less than 150 bytes stored in anode itself 
Useful for.· 

Small files 
Small access control list objects 
Symbolic links 

Fragmented 
Short files stored as continuous fragments in a block 
If file grows, next fragment in block used if available 

If not available, moved to different block . 

51 



ANODES AND DATA STORAGE (CONT.) 

• Large files 
All files greater than one block in size 
Described by tree of data blocks 
First 8 blocks described by 8 block numbers 
Next is first level indirect block number 
Then a 2nd level indirect block number 
Then a 3rd and 4th level indirect block number 
Allows 3,921,937, 758 blocks (or so) 
Possible to have sparse allocation (address Oxffffffff) 

Read of unallocated block produces 0 
Write of unallocated block causes block allocation 



LARGE EPISODE FILES 
.... c;- Data 

-- Block -...-
Direct -

?. Pointers 

Data -
Block 

Indirect 
Pointer f ... , ... - :::r 

? ... 5-~ Data 
a: Block .,.,,. 

Indirect • 
Block • 

• 
.._ 

Double ? .... ..... 
Indirect [ 5~ • l -?_ Data Pointer .. 

• Block .. 
Indirect • Double Block· • 

Indirect • 
Block • 

I 
' • 



• 

• 

• 

• 

ANODES AND COPY-ON-WRITE 

Copy-on-write block number is Oxfffffffe, indicating inheritance 
Read of such a block goes to backing anode 
Write causes block to be allocated 
lnline files are never copy-on-write 
Fragmented files can be copy .. on-write 

If write occurs, entire file is copied 



ANODES AND BLOCK ALLOCATION POLICY 

• Hints about large file creat.ion 
• Keeping "logical" neighbors close by (cylinder groups) 
• Allocation algor.ithm must be isolated and tunable 

55 



FILE 

• Container for data 
• Also has: 

UNIX features like type and mode bits 
Link count 

Used for "hard" links to objects 
DCE features like access control lists 

Actually a "pointer" to another anode 

6 



EPISODE IMPLEMENTATION 

• Episode is built in terms of layers 
• Layers are (from lowest upwards): 

Logging buffer package 
Similar.to UNIX buffer management 
Makes many documented assumptions about underlying 
OS capabilities 

First level anode layer 
Read and write blocks of anodes 

Layer for allocating and freeing anodes 
Also has routines·for allocating and freeing physical 

blocks 
Layer for dynamically growing and shrinking anodes 
Layer for maintaining directories 
Layer for manipulating filesets and files 

L~-~~~~~~~==~~~~llfl-locuS 
57 , 



EPISODE-LOGGING 

• Meta-data changes logged (changes to anodes themselves) 
Data is not logged 

• After crash, log,can be replayed to get consistent file system 
Note that actual data can be lost 

• Care must be taken to have meta-data never refer to 
unwritten blocks 

Block must be written to disk before meta-data logged 
Even more care must be taken for fragmented files 

• Theoretically, logging causes better performance than standard 
U FS file system 

This is because UFS has numerous forced writes to ensure 
system is recoverable after a system crash 



I 

OPTIMIZATION 

• File that is written, referenced, deleted may never be written 
to disk 

Must be enough buffer space for file 
Queued 1/0 can simply be deleted 

• Eliminating logged changes to meta-data is much harder, and 
not done 

L~~~~~~s9~~~~~liJcuS 



• 
• 

• 

Overview 
Architecture 

CLIENT CACHE SERVER 

Operating System Independent Layer 
Resource Layer 
Caching Layer 
Directory Package 
Token Management Layer 
VFS/Vnode Module 

Performance 



CLIENT CACHE SERVER OVERVIEW 

• Sits physically below VFS layer (type of file system) 
• Logically, sits between remote file server and rest of machine 
• Client caches fHes from remote file servers 

Also exports pioctl interface to allow local manipulations 
of access control lists and quotas 

• Cache manager is what gives DFS its performance 
Most accesses are from local cache 
Very few writebacks from cache 
Reason that DFS scales much better than NFS 



[ 

[ 

l 

CLIENT CACHE SERVER 
ARCHITECTURE. 

Kernel Calls and System Calls 

i 
VFS+ Interface 

,, , 
' Vnode module Prioctl module 

Token Management 

Caching Layer Directoiy Packa_g_e 
Buffer Package 

Reso~rce Layer 

Operating System Independent Layer 

,~ 

Kernel Services J 



OPERATING SYSTEM INDEPENDENT LAYER 

• Known as OSI layer 
• Actually is one layer that is dependent on underlying UNIX 

operating system · 
• Responsibility of this layer to isolate rest of cache manager from 

underlying operating system 
• Deals with 

1/0 to disk 
network 
file system 
virtual memory 

63 



RESOURCE LAYER 

• User Authentication Cache Module 
Per-user Kerberos tickets 
Per-user credentials 
.Mechanism for associating these credentials with VFS+ · 
credential extension 

• Server Module 
Tracks recently contacted file servers 
Status of servers - running or not, etc. 
Maintains cache of RPC connections to servers 



RESOURCE LAYER (CONT.) 

• Fileset Module 
List of accessed filesets 
Mounted pos.ition 
Physical locations 
Basically a cache of VLDB information 

• Cell Module 
List of cells accessed by cache manager 

L~-~~~====~~~~~~~~LocuS 
65 , 



CACHING LAYER 

• Information about files, not directories 
• NOT just in-memory cache, also uses local disk 
• State kept across reboots 
• Two types of information 

Status of vnode 
Data itself for vnode 

• Data dealt with in terms of chunks 
Current chunk size 64K 

• This layer used to fetch and store data 
• Uses LRU algorithm on cached data 
• Currently uses UFS for storing cached data on disk 

".'.6 



DIRECTOR.Y PACKAGE 

• Same directory operations as on server allowed 
• Keeps cached directories synchronized with file server directories 
• Separate package so that cached directories can be updated 

without fetching whole directory 
• Uses special buffer package to interface to underlying operating 

system for caching pages of directories 



TOKEN MANAGEMENT LAYER 

• Determines what operations can be performed on qached files 
and when 

• Deals with server token revocation requests 
• Handles token probes 
• Token management covered elsewhere 



'i 
' I 

VFS/VNODE MODULE 

• Deals with all lower levels 
- Makes them look like a true file system 

• Vnode module deals with standard VFS calls 
• Pioctl module deals with pioctl extension to VFS 

Mostly, requests are passed on to file server 
Deals with: · 

Cache configuration 
.. Access control list operations 

Kerberos managem~nt 
Mount point maintenance 

- Cell operations 
• Vnode layer checks if fileset is local 

If so request directly passed to local file server 

69 



PERFORMANCE .... 

• Key to client cache server, is performance 
• Extensively uses local memory and disk as cache 
• Minimizes netwprk traffic and delays 

Minimizes communication between caching machine and 
file server 

• Resides in kernel 
• Designed to deal with thousands of clients 

- High client/server ratio 

70 



DFS FILE SERVER 

• DFS File Server Overview. 
• Host Module 
• Fileset Registry Module 
• Token Manager Module 

71 



DFS FILE SERVER OVERVIEW. 

• Also known as "DFS protocol exporter" 
• Resides on site where fileset (file system) is stored 
• Responsible for interaction between remote cache client servers 

and actual physical file systems 
Physical file systems may be Episode filesets, UFS file 
systems, or other local physical file systems · 

• For each client cache request file server executes .the following: 
Obtain the principal structure (from the host module) for 
the request " " 

- Perform all token management operations (using the TKM), 
including revocations from other remote clients 
Using fileset registry, convert file identifiers to vnodes 
Perform function using vnode layer 
Release everything and return to caller 

72 



HOST MODULE 

• Maintained on all machines that are DFS file servers 
• Maintains state of all clients using file server 
• Executed early so authentication expiration can be checked, 

spotting of down client cache managers can occur, etc. 
• Executed early so authentication expiration can be checked, 

spotting of down client cache managers can occur, etc. 
• Two structures returned for every call • host structure and 

principal structure 
• Host structure 

State of client cache manager making request 
Includes whether all token revocations have been delivered 

• Principal structure 
Kerberos identity of individual making call 
Also per-user cached 'information 

73 



FILESET REGl-STRY MODULE · 

• Maintained on all machines that are DFS file servers 
• Keeps list of all filesets on local file server 

Translates DFS file IDs to pointer to fileset structure 
along with pointer to vnode structure 

74 



TOKEN MANAGER MODULE (TKM) 

• TKM maintains guarantees about operations that can be performed 
by clients 

• TKM discussed:elsewhere 

75 



TOKEN MANAGEMENT 

• Token Management Overview 
• Token Types 

Open Tokens 
Lock Tokens 
Synchronization Tokens 
Data Tokens 

• Failure Cases 

76 



' 

TOKEN MANAGEMENT OVERVIEW 

• Key concept of DFS is "dat~ consistency" 
Also known as "Single System Image" 

• Ability to access files from multiple sites as if all accesses 

from one site 
Contrast with NFS and RFS 

• Tokens used by file servers and client cache managers 
Tokens exist on a per-file basis 

• Requests intercepted, and interaction occurs with 
Token Manager (TKM) 

TKM is background daemon 
TKM for a file is on machine where file resides 

. . ·I -A11A. L~~~~~~~~~~~~~~~~M!!lll~ 
77 Lll(;W-



TOKEN MANAGEMENT OVERVIEW (CONT.) 

• Tokens are guarantees that client can perform certain actions 
without permission of server 

Key to high performance of DFS 
Key to "statefulness" of DFS 

• Tokens naturally expire 
Must be renewed prior to expiration 

• When token needed, requested from TKM 
TKM responsible for revoking conflicting tokens from other 
clients 
Revocation can be refused 

78 



OPEN TOKENS 

• Open tokens represent right to open a file 
• Several types of open tokens: 

Read (TKM~OPEN_READ) 
Write (TKM_OPEN_WRITE) 
Exclusive (TKM_ OPEN_EXCLUSIVE) 
Shared (TKM_OPEN_SHARED) 

• Attempts to get open. token can fail: 
·Exclusive if any other open outstanding 
Shared if write or exclusive open outstanding 
Read if exclusive open outstanding 
Write if shared or exclusive open outstanding 

• Exclusive token implies write lock on whole file 
• Shared token implies read ·lock on whole file 

79 



LOCK TOKENS 

• Lock tokens represent right to lock a file 
Used for System V style record and file locking 

' 
• Can lock subrange of file 

Subrange can be whole file 
• Normally, initial request is to lock whole file 

If revocation request occurs while lock is outstanding, 
whole file lock revoked and new lock tokens for subranges 
are granted 

Can result in proliferation of lock tokens 
• Two types of lock tokens 

Read lock on subrange of file (TKM_LOCK_READ) 
Write lock on subrange of file (TKM_LOCK_WRITE) 

0 



·.FILE STAT.US TOKENS 

• File status token represents right to access status of file 
• Status includes: 

Size of file · . 
Last modification time 
Access control lists 

• Two types of file status tokens: 
Read status (TKM_STATUS_READ) 

• Write status (TKM_STATUS_WRITE) 
• Needed by most operations, in addition to other tokens 

To write file, need TKM_STATUS_WRITE (to update 
modification time) in addition to TKM_DATA_WRITE 
(to actually modify data) 

81 



DATA TOKENS 

• Data tokens represent right to read or write byte range in a file 
• Can read or write subrange of file 

Subrange can be whol.e file 
• Normally, initial request is for lock of whole file 

Subranges "Used if conflicts occur 
• Two types of data tokens: 

Read (TKM_DA TA_ READ) 
Write (TKM_DATA_WRITE) 

• Write token implies data in subrange may not hav.e. been written 
back to server 

Revocation of write token means data must be written back 
first 
File's version number not incremented until actual data 
makes it back (TKM_STATUS_WRITE token does not give right 
to change version number) 

2 



FAILUR.E CASES 

• Of great interest is behavior of system when network partitions 
occur 

• Current design unspecified to a large extent 



ACCESS CONTROL LISTS 

• Access Control Overview , 
• DFS Access Control Lists Overview 
• ACL Rights 
• ACL Commands 
• ACL System Calls 
• Summary 

4 



ACCESS CONT.AOL OVERVIEW 

• Access Control is the principle of security 
• Two types of policies 

Discretionary 
Access rights can be transferred to other users 
Access authorized on user or group IDs 

'Mandatory 
Access rights cannot be transferred 

- · Access is based on subject and object labels 
• DFS uses discretionary policy 
• Standard POSIX permissions not enough 

Read, write execute permissions 
Single owner, multiple groups, everyone else 
Distributed environment means more flexible access needed 



ACCESS CONTROL OVERVIEW (CONT.) 

• Access Control Lists are ~ general extension 
Several definitions 

POSIX·. 
OSF/1 Security 
AIXv3 
UNIX International 
DFS 

Currently all subtly different 
All iterating towards POSIX (hopefully) 

86 



DFS ACCESS CONTROL LISTS OVE.RVIEW 

• DFS p~ovides Access Control Lists 
Provided for Episode files only 
Both permissive and restrictive ACLs provided· 

• ACLs map users. (OR groups of users) to rights 
• Work in addition to POSIX mode bits 
• Decision of what to do with mode bits 

POSIX bits could be ignored 
Permissions can be AND'ed together 
Permissions can be OR'ed together . 
DFS chooses to AND permissions of ACL and POSIX bits 

• Directory has ACL and "default ACL" 
"Default ACL" is ACL used for any created nondirectory 
object in a directory 
New directories inherit parent's ACL and default ACL 

87 



ACL RIGHTS 

• Read right 
For files, ability to read and/or stat files 
For directories, ability to read names and IDs of files 
in directory, ability to stat directory 

• Write right 
For files, ability to write to a file 
For directories, ignored 

• Execute/Search right 
For files, ability to execute a program 
For directories, ability to examine individual entries 

Unlike read, requires string name of entry to be 
presented 



ACL RIGHTS (CONT.) 

• Insert right 
For files, ignored 
For directories, ability to add entries to directo.ry 

Ability.t.o perform renames within directory 
If target to rename exists, must have delete 
right also ., 

• Delete right 
For files, ignored 
For directories, ability to remove entries from directory 

Includes ability to rename to different directory 
Ability to rename "on top of" another entry 

• Owner right 
Ability to execute chmod and utimes on object 
Ability to change ACL list for object 



ACL COMMANDS 

• ls 
Also displays information about ACLs 

• acledit 
Change an object's ACL 

• aclget 
Read an object's ACL 

• aclput 
Set an object's ACL 

90 



ACL SYST,EM CALLS 

• access,faccess 
Extended versions to query rights 

• chacl, fchacl 
New call to set an object's ACL 

• statacl, fstatacl 
Return an object's ACL information 

91 



SUMMARY 

• ACL's subject to change . 
• All ACLs should iterate to POSIX functionality 



NFS INTEROPERABILITY 

• NFS Interoperability Overv:iew 
• Implementation 
• Performance 

93 



NFS INTEROPERABILITY OVERVIEW 

• Also known as "NFS proto.col exporter" 
• Allows any DFS machine to act as NFS server 
• Machine accepts standard NFS protocol 

includes full support of Sun RPC and XOR 
• Has extensions to NFS protocol (optional) 

pioctl interface for dealling with quotas and ACL's 
Allows support of fs command on NFS clients 



IMPLEMENTATION 

• Kernel implementation of ,NFS server 
• Based on Sun NFS reference port 

requires Sun NFS license 
• No assumptions about underlying file system made 

all operations based on VFS layer functions 



PERFORMANCE 

• Performance should be at least as good as native NFS server 
Typical NFS client accesses file cached on server 
With NFS p·rotocol, NFS client typically accesses DFS cache 

• If DFS cache miss occurs 
Data copied from DFS server to NFS protocol exporter 
Data copied from NFS protocol exporter to NFS client 
Standard DFS client behavior is to make data available before 
whole chunk arrives over network 
This allows better than might be expected performance 

96 



ADMINISTRATION 

• Basic Overseer Server (BOS) 
BOS Overview 
BOS Command 

• Fileset Server 
Fileset Server Overview 
Vos Command 

• Backup System 
Backup System Goals 
Backup System Components 
Backup Operation 
Backup Commands 

97 



BASIC OVERSEER SERVER (BOS) OVERVIEW 

• Oversees DFS as a whole , 
• Shortens length of DFS outages 
• Automates man'y administrative functions 

• Main functions: 
Monitor other servers 

Restarts servers automatically 
Also has administrative interface for manual 
monitoring and restarting 

Interface for changing· server encryption keys 
Interface for managing configuration interface 
Interface for managing list of administrators 

• User interface through bos command 



BOS CONFIGURATION MANAGEMENT 

• bos addhost 
.. Add host to cell data base 

• bos removehos.t 
Remove host from cell data base 

• bos listhosts 
List the current cell host llist 

• bos setcellname 
Set the cell's name 

• bos create 
Create a new server instance 

• bos delete 
Delete a server instance 



BOS PROCESS MONITORING 

• bos rebos 
Restart all servers on a machine, including BOS server 

• bos restart 
Restart all servers on a machine. Also reboot kernel if 
in-kernel server is restarted 

• bos shutdown 
Shutdown all server processes on a machine 

• bos setrestart 
Set a time for an automatic restart of all servers on 

a machine 
• bos getrestart 

Get the automatic restart time 



BOS PROCESS MO.NITORING (CONT.) 

• bos startup 
Start all con.figured servers on a machine 

• bos start 
Start an individual server on a machine 

• bos stop 
Stop a server on a machine 

• bos status 
Show status of one or ~ore server processes on a 
machine 

1 (11 



BOS ADMINISTRATOR MANAGEMENT 

• bos users 
List server administrators 

• bos addusers 
Add users as server administrators 

• bos removeuser 
Remove users from server administrator list 

2 ~Lo 'S 



BOS SERVER ENCRYPTION KEY MANAGEMENT 

• bos addkey 
Add keys to key data base 

• bos listkeys 
List server keys in key data base 

• bos removekey 
Remove key from key data base 

103 



FILESET SERVER 

• Interface for operators to manipulate filesets 
Can create, .delete, move, replicate filesets 

• Creating and deleting done for adding and deleting users 
• Moving filesets is done for load balancing 
• Replication done for placement on multiple file servers 
• Volume server updates the VLDB 
• All done through vos command 

)4 



VOS COMMAND 

• vos cr~ate 
Creates a n~w fileset in an aggregate 

• vos backup 
Creates a clone of a fileset, adds .backup as extension 
to name of fileset 

• vos backupsys 
Performs vos backup on a set of filesets 
All filesets in aggregate, all filesets on server, or 
all filesets with name matching pattern 

• vos addsite 
Prepare fileset for replica 

105 



VOS COMMAND (CONT.) 

• vos remove 
Remove fileset 
If fileset is Read/Write copy, backup is also removed 

Replicas stay 
If no replicas, VLDB entry removed 

If replica is specified, replica is removed 
Backup copy may be removed 

• vos remsite 
Remove replica site for fileset 

• vos move 
Move fileset from one aggregate to another 

• vos rename 
Rename a fileset 
Clones renamed as well 



VOS COMMAND (CONT.) 

• VOS dump 
Convert a fileset to ASCII and put into a fUe catted dump 
If read-only or backup desired, must be specif~ed 
Possible to do incremental dump 

Only dump changes from a certain time .. 

• vos restore 
Convert a previous dump file back to a fileset 
May over-write existing fileset, or create new o.ne 

• VOS listvldb 
' 

List information about filesets 
All filesets in aggregate, all filesets on server, 
all filesets matching pattern 

107 



VOS COMMAND (CONT.) 

• vos listpart 
List aggregates on server 
Does not consult with VLDB 

• vos partinfo 
List information about aggregates 
Particular aggregates or all aggregates on server 
Gives free space and total space in aggregate 

• Other vos commands more useful for debugging 

08 



BACKUP SYSTEM GOALS 

• Must be more flexible than standard UNIX 
• Standard UNIX deals with partitions 
• DFS deals with filesets, which move from one aggregate/ 

partition to another 
• Backup operations deal with filesets 
• Restore operations normally deal with logical tree location 

Operator must translate to fileset to be restored 
• Restores must avoid searc~ing large number of tapes to 

determine relevant fileset 



BACKUP SYSTEM COMPONENTS 

• Backup data base 
Data base records information about filesets, tapes, and 
dumps of filesets 
There so restore requests can be traced to tape or set 

of tapes 
• Tape coordinator 

Accepts requests to dump/restore to/from tape 

• Backup coordinator 
Process that accepts commands 
Interacts with backup data base and tape coordinator 
Optimizes save and restore 
Can work on several backup operations in parallel 



',,. 

BACKUP COORDINATOR 

• Backup coordinator performs 3 types of requests: 
Saving filesets 
Restoring filesets by date 
Restoring aggregates or servers 

• Saving filesets can be performed on a "schedule" 
Filesets to be dumped, and days when dumps are done 
Further automation of backups 



SAVING FILESETS 

• Receives request for filesets to be saved 
• Filesets sorted by server and aggregate 
• Tape coordinators are started 

May start several in parallel 
• Backup data base informed continuously about progress 
• Tape coordinator uses fileset server to perform appropriate 

operations 



RESTORING FIL.ESETS BY DATE 

• Backup coordinator determines where latest fileset dump is 
(from backup data base) 

• Full dump history obtained 
• History examined and sequence of dumps that need to be 

restored is determined 
• Sequence of tape operations is created that do restore most 

efficiently 
• Tape controller is request~d to perform restored in specific 

sequence 
Tape controller uses fileset server as necessary 

1 1 i 



, 

RESTORING AGGREGATES OR SERVER 

• Restore server or partition as of current time 
• VLDB queried for set of volumes 
• Backup coordinator proceeds as before 



BACKUP COMMANDS 

• backup adddump 
Add a list of filesets to dump schedule 

• backup addhost 
.. Add a tape coordinator host to a configuration 

• backup addvolentry 
Add a new fileset to a fileset set 
Fileset sets are for convenience of backup 

• backup addvolset 
Create a new fileset set 

• backup deletedump 
Delete a list of filesets from dump schedule 

~~~~~~~~~~~~~~!J_, __ 11~ 
115 ~UA;U}-

...

BACKUP COMMANDS (CONT.)

• backup deletehost
Delete a tape coordinator host from configuration

• backup deletevoientry
Delete a fileset from a fileset set

• backup dump
Start a dump to tape

• backup fullrestore
Restore an aggregate

• backup initcmd
Initialize the backup coordinator

• backup listdumps
List the dump schedules (when filesets are
scheduled to be dumped)

