
UCRL—102665OVERCOMING UNIX KERNEL DEFICIENCIES 
IN A PORTABLE, DISTRIBUTED STORAGE SYSTEM

Mark Gary

Lawrence Livermore National Laboratory 
Livermore, California

DE90 007256

ABSTRACT

The LINGS Storage System at Lawrence 
Livermore National Laboratory was designed to 
provide an efficient, portable, distributed file 
and directory system capable of running on a 
variety of hardware platforms, consistent with 
the IEEE Mass Storage System Reference 
Model. Our intent was to meet these require
ments with a storage system running atop stan
dard, unmodified versions of the Unix 
operating system. Most of the system compo
nents run as ordinary user processes. However, 
for those components that were implemented in 
the kernel to improve performance, Unix pre
sented a number of hurdles. These included the 
lack of a lightweight tasking facility in the 
kernel; process-blocked I/O; inefficient data 
transfer; and the lack of optimized drivers for 
storage devices. How we overcame these diffi
culties is the subject of this paper. Ideally, future 
evolution of Unix by vendors will provide the 
missing facilities; until then, however, data 
centers adopting Unix operating systems for 
large-scale distributed computing will have to 
provide similar solutions.

INTRODUCTION

With the advent of the IEEE Mass Storage 
System Reference Model,1 storage systems and 
system components are being created that are 
capable of running on a variety of architectural 
platforms. One such system is the LINGS 
Storage System at Lawrence Livermore 
National Laboratory (LLNL).2-3

The LINGS Storage System was designed to pro
vide an efficient, portable, distributed file and 
directory system capable of running on a vari
ety of hardware platforms. It consists of a set of 
cooperating, distributed, multitasking servers 
(disk bitfile server, tape bitfile server, name 
server, etc.).2 These servers communicate with 
each other and application clients over separate

1

control and data associations (bidirectional 
communications links) using a common com
munication library (see Figure l).4 By allow
ing servers and clients to reside on different 
machines, this approach lets network designers 
make the best use of their machine resources.

From the standpoint of ease of development and 
portability among different machine architec
tures, we decided that Unix would be the best op
erating-system base. In addition to running on 
Unix, however, our system was required to effi
ciently manage a very large number of large 
files in a distributed environment with hetero
geneous machines and operating systems. 
Thus the LINGS Storage System was designed 
with these general requirements in mind with
out the constraint of being tied to a particular op
erating system or architecture. The result is a 
fast, scalable file and directory system capable 
of running alongside native file systems.

Our intent was to meet the design requirements 
with a storage system running atop standard, 
unmodified versions of the Unix operating sys
tem. In developing the design, however, we 
found that the Unix system-call interface and 
kernel lack many of the facilities that are criti
cal to the performance the LINGS system.

Other sites have observed some of the same prob
lems in designing Unix-based storage systems, 
but their solutions do not necessarily meet our 
needs. In common with NASA-Ames, for ex
ample, we encountered a number of limitations 
in the Unix file system itself: the amount of 
time spent during crash recovery checking pos
sibly millions of files; file size and directory 
structure organizational limitations imposed by 
the file system; a myriad of security deficien
cies;5 the lack of a large-scale, rapid-access 
archive capability; the absence of an automatic

distribution OF THIS

MASTER
DOCUMENT IS UNUMI -



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



file migration system. While NASA-Ames ad
dressed these problems by modifying the native 
file system,6 the LINGS bitfile servers manage a 
set of devices not known to the Unix file system.

This paper describes how LLNL system design
ers compensated for six Unix kernel deficien
cies with respect to the requirements of the 
LINGS Storage System:

• Lack of a lightweight tasking facility in 
the kernel

• Process-blocked I/O
• Data copies between user and system space
• Lack of drivers for leading-edge devices
• Driver and kernel code not written for 

storage-system demands
• Lack of kernel facilities needed for day- 

to-day operation

The LINGS Storage System currently runs on 
Amdahl’s UTS operating system (based on 
AT&T System V), although portions were de
veloped under Berkeley 4.3 Unix and some 
servers have been ported to ULTRIXt and 
SunOSt systems. Each server is a separate 
Unix process that is multitasked using a 
lightweight tasking library.7 The tasking li
brary is a coroutine-based stack manager and 
scheduler which provides reentrant code and 
simplified memory sharing without the over
head of heavyweight process forking and con
text switching. It handles the actual scheduling 
of tasks within a process, while the Unix process 
scheduler handles the scheduling of the process 
itself.

It is important to note that, while we ran into the 
deficiencies outlined below when implementing 
the LINGS Storage System on UTS, they are not 
unique to that system. These deficiencies are 
common to most Unix systems.

UNIX KERNEL DEFICIENCIES AND 
SOLUTIONS

Lack of a Lightweight Tasking Facility in the 
Kernel

Most commercially available Unix kernels do 
not contain a lightweight tasking facility. We 
realized, as did the developers of the Mach8 and 
Tunis9 operating systems, that such a facility 
was needed to enable writers of drivers and 
kernel-resident servers to handle multiple con
current operations as many threads of execution 
rather than as one queue-driven control thread. 
Such explicit concurrency simplifies writing 
and maintaining drivers, and extends much 
more easily to kernel implementations that run 
on multiprocessors, which we expect to be com
mon in the near future.

We provided lightweight kernel tasking by im
plementing our tasking library in the kernel. 
As mentioned above, our tasking library is a 
stack manager and scheduler. It allocates 
space within which it manages task stacks. It 
uses Unix set jmp() and longjmpO calls to 
transition between tasks (see Figure 2). Besides 
providing tasking primitives, this library also 
provides primitives for timing, memory alloca
tion, and synchronization.

In a standard Unix implementation, when an 
event such as the completion of an I/O occurs, 
Unix “Vs”10 a semaphore associated with the I/O 
to return control to the kernel stack waiting for 
the operation. In our environment, when a “V” 
occurs for an event to be handled by the tasking 
library, the event is recognized and control is 
transferred from the active kernel stack to the 
appropriate task stack managed by the tasking 
library. When the task completes, the tasking 
library transitions back to the active kernel 
stack. setjmpO and longjmpO are used to 
save the current set of registers in a jump buffer 
and to resume operation with a previously saved 
register set, allowing simple transitions be
tween stacks.

Process-Blocked I/O

When a Unix process issues an I/O operation, 
the entire process blocks (suspends) until that 
I/O is complete. This is not acceptable for multi
tasked server processes, as an I/O request from

2



any task within a server causes all of that 
server’s tasks to block even though they may be 
working on widely differing operations for dif
ferent clients.

Various asynchronous I/O facilities exist in 
different Unix implementations, including 
ULTRIX “nbuf” system calls (multiple-buffered 
I/O operations). Efficiently using these meth
ods requires the select () system call. Some 
Unix systems do not support select () at all; 
other systems, including UNICOS, have other, 
nonstandard, asynchronous I/O facilities; those 
that do support select () have problems. For 
example, the number of I/O descriptors upon 
which select () can operate may be inadequate 
for large, active storage systems, and not all 
systems support select () for I/O to all devices. 
Although we are currently pursuing implemen
tations based on the select () call, we have 
developed an alternative solution which also 
provides more efficient data transfer.

To avoid blocking an entire server process with 
one task’s I/O, the tasking library queues a pro
cess’s I/O requests until all of its tasks are ei
ther waiting for I/O or are quiescent. All of the 
process’s I/O requests are then submitted using 
a pseudo-device-driver call, which only then 
blocks the process. The process is unblocked 
and allowed to run as soon as any one of the re
quested I/Os is complete. Therefore, one task’s 
I/O does not interfere with the operation of other 
tasks within the same process.

To implement this solution, we designed 
servers called bitfile movers.1*11 Movers are 
defined in the IEEE Mass Storage Systems 
Reference Model as modules that transfer data 
between two channels. The LINGS movers were 
designed to transfer data between a client and a 
device. Two movers are implemented in the 
kernel; one accesses magnetic disks, and the 
other accesses magnetic tape. Other movers, 
with lower performance requirements, are im
plemented in user space; one such mover 
maintains tape header information on disk.

LINGS movers are multitasked in both the 
kernel-space and the user-space implementa

tions. Movers receive control requests from 
LINGS servers in the form of record structures. 
These structures contain information about 
requests (volume number, data location, length) 
and the outcome of these I/O requests (success, 
failure) when returned to the server. A server’s 
request structures are queued and submitted to a 
mover using a LINGS pseudo-device-driver 
call.

Kernel-space movers translate I/O requests into 
direct driver calls (interfacing at the base of the 
block I/O layer), while user-space movers 
translate them into Unix file-system calls 
(read, write). A mover sends or receives data to 
or from an address provided in the request 
structure. Mover tasks exist for each request of 
a bitfile server task. In this way, once one I/O 
request completes, the server process can be un
blocked while a second I/O is pending, its state 
saved in a separate kernel task stack awaiting 
completion.

Using a portable tasking interface and a com
mon communications interface allows a mover 
to be ported between kernel space and user space 
with only minor modifications to the device
driver-operating-system interface. It is 
important to note that a kernel-space mover 
eliminates the problem of process-blocked I/O, 
while a user-space mover, without select (), 
does not. Because they use standard Unix 
read/write calls, user-space movers block when 
a task does file I/O. They do have the advantage 
of allowing the storage system to be written 
portably. This allows the system to run on 
machines without kernel modifications if 
process-blocked I/O is not a handicap.

Data Copies Between User and System Space

User-space bitfile servers lose efficiency if data 
is repeatedly copied between user and system 
space. For example, a bitfile server might read 
data from a device into user space and then send 
it to the requesting client. Using standard Unix 
block I/O, this involves a copy of the data from 
kernel space into the bitfile server’s user space 
(copyout ()), a copy of the data from user to 
system space (copyinO) and another copy
out () to get the data to the client (see Figure 3). 
This is true even if the client is on the same ma
chine. These copies between user and system 
space are expensive. Ideally, to achieve the

3



highest possible performance, the data should 
flow from the disk device directly onto the net
work.

The LINGS architecture eliminates extra data 
copies by separating control and data associa
tions. A mover obtains the source or destination 
address for a request from the bitfile server and 
sends data directly to, or receives data directly 
from, the client with whom the data is associ
ated. Therefore data flows directly from 
movers to clients without passing through the 
bitfile server.

This technique is particularly useful when the 
client is on a different physical machine on the 
network. In this case, the data can flow directly 
from disk (or any medium) to the remote client 
without the usual copyout (), copyin () steps 
required to get it on the network (see Figure 4). 
Likewise, in the case where the client is another 
kernel mover (i.e., file migration between disk 
mover and tape mover) the data flow is kept en
tirely within the kernel with no extra data copies 
(see Figure 5).

Lack of Drivers for Leading-Edge Devices

Large-scale storage systems have traditionally 
been developed on mainframes because these 
processors typically supported leading-edge 
storage and network devices. Leading-edge de
vices are defined here to be high-speed, large- 
capacity devices and very fast networks. Unix 
has only recently started making inroads into 
the mainframe and supercomputer markets 
from its historical position in the minicomputer 
and workstation arenas. Because of this, Unix 
systems do not yet support, or are slow in sup
porting, the leading-edge devices required by 
large storage systems.

Even though we implemented our system on a 
mainframe-based Unix product, we had to write 
drivers for IBM 3480 tapes, for the the Storage 
Technology 4400 Automated Cartridge System 
(ACS), and for the NSC HYPERchannel. We 
are currently migrating to standard vendor 
drivers for these devices as they become avail
able.

Driver and Kernel Code Not Written for Storage 
System Demands

Existing Unix storage and network drivers, as 
well as other kernel routines, are not always 
written for very large volumes of data through
put. In some cases, too few resources (e.g., 
buffers, data structures) are dedicated to opera
tions. In other cases, drivers (e.g., disk 
drivers) are written to write and retrieve only a 
few consecutive blocks of data. Kernel re
sources such as callout structures or open-file 
data structures can easily be exhausted by large 
data transfers, or when hundreds of jobs are 
outstanding because of inoperative network 
nodes.

It is not always possible to add more resources by 
simply changing a compile-time or run-time 
parameter. Further, increasing the size of a 
kernel resource often has wide-ranging effects 
throughout the kernel. This is particularly true 
of structures that are created for each process, 
such as the process structure itself and the user 
structure, since increases here can dramati
cally increase the size of a kernel. Time spent 
traversing larger list structures can degrade 
performance, and more memory for kernel 
structures increases paging for user processes.

We solved these problems by rewriting or modi
fying the appropriate kernel code. Determining 
which code segments require enhancement and 
which kernel resources might be strained by a 
storage system is not always simple. It was not 
until heavy load testing on LLNL’s identical 
development storage processor that some of these 
problems became obvious.

We improved data throughput from drivers by 
providing larger or variable-size data trans
fers. Some improvements were achieved 
through simple code optimization, while other 
improvements required code modification, 
mainly network drivers, to gracefully handle 
recovery from errors due to inoperative nodes in 
our distributed environment. For example, we 
modified our NSC HYPERchannel driver to 
convey error information to the data link layer 
for intelligent probing of inoperative nodes.

As we convert to industry standard protocols 
(e.g., TCP/IP), we expect to encounter problems 
with set timeouts. To handle machines with



widely differing throughput abilities in envi
ronments in which large blocks of data are 
moved, it is often necessary to increase data 
timeouts, make them flexible, or add special 
data-buffering schemes.

Lack of Kernel Facilities Needed for Day-to- 
Day Operation

Unix kernels often do not provide the kernel 
hooks needed for day-to-day storage system op
eration. This again comes from the fact that 
Unix is only now beginning to appear in large 
data center environments. Until such support is 
supplied, the only option is to add the missing 
pieces oneself.

Although present in some Unix implementa
tions, one of the most important items missing 
from our Unix systems was a facility providing 
atomic redundant writes of critical informa
tion. Safely managing tape headers on disk re
quired such a facility. To accomplish this we 
implemented shadowed atomic updates in the 
mover which handles tape headers.3

Another important facility we added was a cir
cular-buffer trace facility in the kernel. This 
trace buffer was useful when implementing 
drivers and other kernel modifications, and it 
is useful in helping diagnose network prob
lems. We use this facility to supplement the 
standard system trace routines, logging infor
mation from drivers and tracing packets flow
ing to and from the network.

Other additions and kernel modifications we 
made included installing code to force auto
matic reboot upon system crashes, modifying 
text tables for correct console printing, and ad
justing tuning parameters and algorithms to 
best meet our environment’s requirements.

CONCLUSION

The LINGS Storage System is a fast, scalable, 
distributed storage system implemented on top 
of the Unix operating system. To satisfy the per
formance requirements of a large scale storage 
system a number of kernel modifications and 
additions were made to overcome a number of 
Unix kernel deficiencies. These deficiencies 
included: the lack of a lightweight tasking fa
cility in the kernel, process-blocked I/O, ineffi

cient data copies between user and system space, 
and the lack of optimized drivers for leading- 
edge storage devices. It remains our goal, 
however, to use standard, unmodified Unix op
erating-system bases for our system. Meeting 
this goal will require that Unix system develop
ers appreciate the problems we encountered and 
offer suitable, possibly similar solutions in 
future Unix releases. In the meantime, we are 
investigating various asynchronous I/O facili
ties, including enhanced select () calls, for 
systems upon which kernel modification is not 
an option.

ACKNOWLEDGEMENT

I would like to thank Samuel Coleman, Richard 
Watson, Richard Wolski and Gary Shaw for 
their valuable contributions to this paper. This 
work was performed by Lawrence Livermore 
National Laboratory under contract number 
W-7405-ENG-48 under auspices of the U.S. 
Department of Energy.

REFERENCES

1. Miller, Stephen W., “A Reference Model 
for Mass Storage Systems,” Advances in 
Computers. Vol. 27, 1988, pp. 157-209.

2. Hogan, Carole, L. Cassell, J. Foglesong, 
J. Kordas, M. Nemanic, and 
G. Richmond, “The Livermore 
Distributed Storage System: 
Requirements and Overview,” DIGEST 
OF PAPERS, Tenth IEEE Symposium on 
Mass Storage, May 7-10, 1990.

3. Foglesong, Joy, G. Richmond, L. Cassell, 
C. Hogan, J. Kordas, and M. Nemanic, 
“The Livermore Distributed Storage 
System: Implementation Experiences,” 
DIGEST OF PAPERS, Tenth IEEE 
Symposium on Mass Storage, May 7-10, 
1990.

4. Fletcher, John, “APST Interfaces in 
LINGS,” Lawrence Livermore National 
Laboratory (internal publication), July 23, 
1985.

5. Hogan, Carole B., “Protection Imperfect: 
The Security of Some Computing

5



Environments,” Operating Systems 
Review.Vol. 22, No. 3, July 1988, pp.7-27.

6. Richards, J., T. Kummell, and D. G. 
Zarlengo, “A UNIX-MVS Based Mass 
Storage System for Supercomputers,” 
DIGEST OF PAPERS, Ninth IEEE 
Symposium on Mass Storage, October 31- 
November 3,1988, pp 25-28.

7. Fletcher, John G., “SMILE,” Lawrence 
Livermore National Laboratory (internal 
publication), April 15,1988.

8. Rashid, Richard F., “Threads Of A New 
System,” Unix Review. August 1986, 
pp. 37-48.

9. Ewens, P.A., R.C. Holt, M.J. 
Funkenhauser, D.R. Blythe, “The Tunis 
Report: Design of a UNIX-Compatible 
Operating System,” University of Toronto 
Technical Report CSRI-176, January 1986.

10. Dijkstra, E.W., “Cooperating Sequential 
Processes,” Programming Languages, 
ed. F. Genuys, Academic Press, New 
York, 1968.

11. Kitts, David, Sam Coleman, and Bruce 
Griffing, “Bitfile Mover,” DIGEST OF 
PAPERS, Ninth IEEE Symposium on 
Mass Storage, October 31-November 3, 
1988, pp 25-28.

APST Control Association

Bitfile
Server ClientAPST Data Association

Figure 1. Separation of Control and Data

Activation
Records

Registers

Activation

Records

Registers
Task n

Activation

Task 2 
Registers

Records

setjmp()

Task 1 Stack

Task Stack Area

Task 2 Stack Task n Stack

Figure 2. Task Transitions.

Task 1's registers saved using setjmp().

Control switched to Task n using 
longjmp() andTask n's saved registers.

Figure 3. Data Flow Without A Kernel Mover

6



Machine A Machine B

copyout () I Client

_£pace
Request Kernel Kernel

Kernel
Mover

Driver

Network

Control

Data Flow

Figure 4. Data Flow With A Kernel Mover

Machine A

r Disk1 
Rltnie 

Server

Tape
Bilflle
Server

Kernel
Space

rKernel
Disk

Mover

Kernel
Tape
Mover

DriverDriver

Control

Figure 5. Data Flow, Disk To Tape 
Migration With Movers

7


