
LSI-11 WRITABLE CONTROL STORE ENHANCEMENTS TO u.c.s.D. PASCAL

Gordon Smith and Roger Anderson
Lawrence Livermore Laboratory

University of California
P.O. Box 5507

Biomedical Sciences Division
Livermore, California 94550

ABSTRACT

The DEC KUVll-AA Writable Control Store was used to
implement selected portions of the U.C.S.D. Pascal P-machine
in firmware. The frequency and execution speed of P-machine
instructions were measured in a battery of test programs to
guide the selection process. A 32 to 46% reduction in
execution time has been obtained for these test programs.

INTRODUCTION

The recent release of the KUVll-AA Writable Control
Store (WCS)l has permitted user access to a level
of the LSI-11 previously restricted to a select
few. A number of interesting projects are possible
with this product such as the application described
here, the microprogramning of portions of Ken
Bowles' U.C.S.D. Pascal P-machine.2

The LSI-11 Microprocessor and Writable Control Store

The LSI-11 is a microprocessor microprogramned to
emulate the PDP-11 instruction set. The
microprocessor has 26 eight-bit registers that are
addressed by a combination of direct and indirect
means. Its instruction set is highly vertical,
i.e., it is not unlike a conventional, albeit
primitive, machine language. Control is exercised
by a Translation Array, consisting of four
programned logic arrays, that examines the fetched
PDP-11 level machine instruction and determines
where microprogram execution is to begin. The
Translation Array may continue to exert control by
generating new inputs to the location counter as a
function of the current value of the location
counter, interrupt signals, and other control
inputs.

The memory address space is 2K words. It is
divided into four 512 word pages. Half of this
address space, or two pages, is used to emulate the
PDP-11. The EIS/FIS chip is optional and adds a
third page of microcode that emulates an extended
PDP-11 instruction set. These additional
instructions include integer multiply and divide
plus a battery of floating point instructions. The
fourth page is left unused.

The WCS contains a lK, or two page, random access
memory that is primarily intended to be used as the
third and fourth page of the microprocessor
memory. Use of the WCS as the third page of memory
is restricted by the Translation Array. Normally
the EIS/FIS code resides on this page. To
facilitate its execution the Translation Array is
programned to perform various control functions
when execution reaches specific memory locations on
the page. User microprograms must avoid these

Proceedings of the Digital Equipment Computer Users Society 813

locations. Complications can be avoided entirely
by loading the EIS/FIS code into one page of the
WCS and restricting new microprograms to the other.

DEC has allocated opcodes 76700-76777 for user
microprogramning. When the Translation Array
encounters an opcode in this range, it directs
control to a single address in the fourth page of
memory. The user is then responsible for decoding
the individual opcodes. Use of the Translation
Array to facilitate execution of user microprograms
is not supported.

The U.C.S.D. Pascal P-machine

The U.C.S.D. Pascal system is a complete
stand-alone system designed to run on micro- and
minicomputers. One of its most impressive features
is its use of an underlying P-machine. The
P-machine is a stack-oriented pseudocomputer that
exists as an interpreter written in the assembly
language of the host computer. Pascal source code
is compiled to an intermediate P-code that is, in
effect, the assembly language of the P-machine.
This design makes the system highly portable. The
operating system itself is written in Pascal. Only
the relatively small native code interpreter must
be written to transfer it to a new host. To date
there have been successful implementations on the
PDP-11 series and the 8080 family of
microprocessors, including the 8080A and 8085.
Other advantages of this type of implementation
include the efficient use of small memories and
fast compilation speed.

PROJECT DEFINITION

As described above, the execution of the U.C.S.D.
Pascal P-machine is a two-level process. The
LSI-11 microprocessor emulates a PDP-11 computer,
which in turn simulates the P-machine. We are
exploring the possibility of having the LSI-11
microprocessor emulate the P-machine directly. The
primary advantage will be an increase in program
execution speed.

One of our initial observations was that there is
not enough room in the WCS to implement the entire

San Francisco - November 1978

P-machine. On the average, it requires more
microcode than macrocode to implement a P-machine
instruction. One measure put the ratio at 1.7
words of microcode for every word of macrocode.
The current LSI-11 macro-level interpreter requires
2.4K words. A microprogranmed P-machine, we
estimate, will require 3 to 4K words of microcode
without the use of the Translation Array.

For this project we used one of the pages of the
WCS to implement portions of the P-machine and the
other page to contain the EIS/FIS code. Our task
was to select the best portions to microcode.

SELECTION OF PORTIONS OF THE P-MACHINE TO
MICROCODE

Control Structure

To execute a P-mach ine ins true tion, an opcode 11111st
be read from macro-level memory, control
transferred to the appropriate routine for
execution, and control returned for the next
instruction fetch. This process will be called the
interpreter fetch sequence. In the macro-level
P-machine interpreter, this takes approximately
25 µs for most instructions and 30 to 45% of the
total program execution time. This data makes the
interpreter fetch sequence an excellent candidate
for microprogramning.

The interpreter fetch sequence in our micro/macro
interpreter uses a variation of the scheme used in
the macro-level interpreter. In this scheme the
P-machine opcode is used to index a table of
macro-addresses for the respective routines. This
same table is used by the mcro/macro interpreter
with the difference that micro-addresses are also
stored in the table. The addresses are
differentiated by having the high order four bits
of the words containing the 11-bit micro-addresses
set to ones. Macro-addresses never have these bits
set because the high end of memory is normally
reserved for I/O devices.

The microcoded interpreter fetch sequence has two
entry points. First, its execution can be
initiated from macrocode by the opcode 76704.
Second, after a microcoded P-machine instruction is
executed, a jump is made directly into the
interpreter fetch routine. The direct entry from
microcode is faster than from macrocode.

The speed of the microcoded interpreter fetch
sequence averages approximately 14.5µs for most
instructions. This is somewhat disappointing, but
nevertheless is our most successful single
microcoded routine. It alone can reduce program
execution time by 12 to 19%.

The micro/macro control structure can handle
microcode instructions in addition to 76704.
Useful instructions include general purpose
instructions such as a block move. Other useful
ones are specialized instructions that execute the
frequently used parts of a P-machine instruction,
leaving the logic for handling special cases or
error conditions in macrocode. The scheme for
supporting the non-76704 instructions centers
around the use of the microstruction, Modify

814

Instruction (MI). This technique is discribed in
detail in the WCS Users Guide.I Briefly, the MI
instruction uses the fetched macro-level
instruction to index a table of jump instructions
in the microprocessor memory.

Another key element of the control structure is the
handling of interrupts. Periodically, during the
execution of long microcode routines a check is
made to see if interrupts are pending. If an
interrupt has occurred, execution is aborted and
control returns to macrocode to service the
interrupt. After the interrupt has been serviced,
the micro-routine is restarted from the beginning.
Microcoded routines that may be aborted 11111st be
careful to postpone making permanent changes until
after the last interrupt check.

P-machine Instructions

A series of tests were conducted to determine the
best P-machine instructions to microcode. For
these tests a DEC KWVll-A progranmable real-time
clock was used to maintain a running count of the
number of microseconds spent executing each
P-machine instruction. Also, each instruction was
counted as it was executed. From this data the
average execution speed, percent of program
execution time, and percent of instruction
execution frequency were calculated for each
instruction. Instructions with a high percentage
of program execution time and/or a high frequency
of execution are prime targets for
microprogranming. Frequency of execution is
important because of the faster direct entry from
microcode to the interpreter fetch sequence.

Unfortunately, there does not exist a typical
program that can be tested. Instead a battery of
test programs was assembled to gain insight into
conmonly used programs. These test programs are as
follows:

Compilations

WHETSTONE

Sorts

Six programs totalling 3341
lines of source code were
compiled. The programs were
selected at random. Two were
written by one of the authors of
this paper, one was WHETSTONE
(see below), and three (XREF,
CALC, & RTllTOEDIT) were
se lee ted from the software
distributed by U.C.S.D ••

This program is a synthetic
benchmark developed by H. Curnow
and B. Wichmann3. It
exercises a computer in a manner
considered typical of scientific
programs. Specifically, it
includes array manipulation,
conditional jumps, procedure
calls, integer arithmetic, and
trigonometric and other standard
functions using real numbers.

Three programs, Quicksort
(recursive), Quicksort
(nonrecursive)-, and Heapsort,
were used to sort an identical
array of 3,000 reasonably random

Miscellaneous
exploratory
programs

integers. The algorithms used
were based on those given by N.
Wirth4.

Two programs were run in the
hopes of gaining special
insights into the behavior of
the P-machine. The first
creates a cross-reference of a
Pascal source program. This
XREF program was written at
Sperry-Univac. The second
(BTSI) builds a balanced tree in
the heap and conducts searches
of that tree. Again, the
algorithm was based on one by N.
Wirth4.

An example of these test results is presented in
Table 1.

With this test data, we are able to select portions
of the P-machine to microprogram, code those
portions, and then evaluate the resulting
performance. The ultimate basis for the evaluation
is the percent reduction in program execution time
derived per word of WCS used and the consistency of
the improvement across the spectrum of test
programs.

RESULTS

To date a page of microcode has been coded. All of
this code was written before the test series
described above was completed, although preliminary
test results were available. Tests using a line
time clock have measured a 32 to 46% reduction in
execution time for the test programs when compared
to the macro-level LSI-11 interpreter. (Note, both
interpreters use the EIS/FIS code). These results
are shown in Fig. 1. The page of microcode
contains 19 P-machine instructions and four general
purpose instructions. The speed improvements

Table 1. Execution speed, percent of execution time, and execution frequency of individual
P-machine instructions coded in LSI-11 assembler language. These results were obtained from
the compilation of 3341 lines of source code. The average execution speeds are adjusted to
eliminate the time for the interpreter fetch sequence. The percent of program execution time
includes the interpreter fetch sequence time in the calculation. The interpreter fetch
sequence and the single instruction SLDC are in microcode.

Average Percentage Percentage
execution of program of execution

Mnemonic Instruction speed in~ execution time frequency

CIP Call Intermediate Procedure 632 21.6 2.0
CSP Call Standard Procedure 1186 17.5 0.9
FJP False Jump 25 3.7 8.7
RNP Return From Non-base Procedure 75 3.1 2.5
SRO Store Global Word 31 2.5 4.7

·SLDO Short Load Global Word, total 12 2.5 12.7
INN Set Inclusion 114 2.1 1.1
SLDL Short Load Local Word, total 12 1.7 8.4
LOO Load Global Word 32 1.6 3.0
CLP Call Local Procedure 205 1.6 0.5
EQUI Integer Comparison,= 20 1.6 4.5
UJP Unconditional Jump 22 1.5 3.9
LDM Load Multiple Words 68 1.4 1.2
STL Store Local Word 31 1.3 2.5
CXP Call External Procedure 487 1.1 0.1
XJP Case Statement 63 1.1 1.0
ADI Add Integer 10 1.0 6.0
UNI Set Union 92 0.8 0.5
LOB Load Byte 21 0.8 2.3
LAO Load Global Address 31 0.7 1.4
SINO Short Index and Load Word, total 17 0.7 2.4
LLA Load Local Address 31 0.7 1.3
SLD012 Short Load Global Word, offset 12 12 0.7 3.4
SLDC Short Load Word Constant, total 3 0.6 15.3
IXA Index Array 75 0.5 0.4
SLD03 Short Load Global Word, offset 3 12 0.5 2.6

The remaining Instructions have percents of program execution time of less than 0.5% and percents of total frequency of execution
of less than 2.3%.

815

Fig. 1. Percent reductions in program execution time obtained by the micro/macro interpreter
when compared to the macro-level interpreter.

Reduction
execution

time,%

50

40

30

20

Compilations
(41.5)

Whetstone
(33.7)

Quicksort (R)
(45.1)

obtained for the P-machine instructions and the
number of words of WCS required to code them are
given in Table 2. The general purpose instruction
are:

An instruction to retrieve "BIG" operands.
These operands may be either one or two bytes
long, depending on whether the sign bit of the
first byte is set.

An instruction to traverse down the static
links of the P-machine stack n levels.

A block move instruction that increments the
source and destination addresses as each word
is moved.

A block move instruction that decrements the
source and destination addresses as each word
is moved.

The microcode produced to date and the detailed
test results and procedures are available from the
authors on request. Test were run using the
LSI-11/2 (KDll-HA) with the MSVll-DD 32K memory.

WHAT CAN BE DONE

Work is still in progress. Both the selection of
routines to microcode and the density of the

816

Quicksort (N R)
(45.6)

T

Heapsort
(43.4)

XREF
(32.2)

T

BTSI
(45.1)

microcode can be improved. The current reduction
in execution time, as previously mentioned, is 32
to 46%. We expect that this figure can be improved
by several percentage points. A final figure of
roughly 45 to 55% seems to be possible. When it is
completed, this code could be programmed into
read-only memory and made available at a price
considerably lower than the WCS board. Although
such a product may not be of widespread interest,
some installations may find it worthwhile.

An exciting possibility is the complete conversion
of the microprocessor to a P-machine. In
particular, if the Translation Array could be used
for the interpreter fetch sequence and other
control functions, speed improvements should far
outstrip anything that can be accomplished with a
single page of WCS. Space will still be a major
problem even with the Translation Array. If this
problem can be overcome speed improvements by a
factor of four or more do not seem unrealistic.

ACKNOWLEDGEMENT

Work performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore
Laboratory under contract number W-7405-ENG-48.

Table 2. Microcoded P-machine instruction execution times and the number of WCS words used. The timing
results were obtained from a test consisting of two compilations, the Whetstone and Quicksort
(nonrecursive). Execution speeds are adjusted to eliminate the time for the interpreter fetch sequence.
Similarly, microcode for the interpreter fetch sequence is not counted in the "words of WCS" figures.
The number of "Words of WCS shared" with other routines are included in the number of "Total words of
WCS".

*Figure is an estimate.

Mnemonic Instruction

AND Logical And
CHK Check Subrange Bounds
CIP Cal I Intermediate Procedure
CLP Call Local Procedure
FJP False Jump
GRTI Integer Comparison,>
LAO Load Global Address
LOCI Load Constant Word
LDM Load Multiple Word
LDO Load Global Word
LEOI Integer Comparison,.;;;
LLA Load Local Address
NEQI Integer Comparison, =F
RNP Return From Non-base Procedure
SLDC Short Load Word Constant
SRO Store Global Word
STL Store Local Word
UJP Unconditional Jump
XJP Case Statement

* Figure is an estimate.

REFERENCES

(1) LSI-11 WCS Users Guide, EK-KUVll-TM-001,
Digital Equipment Corporation, Maynard, Mass.
(1978).

(2) UCSD (Mini-Micro Computer) Pascal, Release
Version I.4, January 1978, Institute for
Information Systems, University of California
at San Diego, La Jolla, Ca., Ken Bowles
director.

(3) H.J. Curnow and B.A. Wichmann, "A Synthetic
Benchmark", The Computer Journal, Vol 19, No 1,
February 1976, pp 43-49.

(4) N. Wirth, Algorithms + Data Structures =
Programs, Prentice Hall, New Jersey, 1976.

Micro Macro Total words Words of
time, µs time, µs ofWCS WCS shared

5 17 6 0
22 26 19 0

188 542 29 0
75 189 113 0

4 24 20 13
10 23 17 9
10 38 22 13

5 22 8 0
22 56 24 0
10* 32 24 13
11 21 17 9
9* 31 22 13
8 21 12 9

24 74 49 0
3 6* 4 0

10* 31 23 13
9 31 23 13
6 24 14 13

16 63 28 0

817

