M 70•104 LOADER STORAGE UNIT
 (LSU)

 USER'S MANUAL

 USER'S MANUAL}

CONSISTS OF:

Information Specification	29-306R01A12
Application Specification	$02-267 R 01 A 24$
Installation Specification	$02-267 R 01 A 20$
Maintenance Specification	$02-267 R 01 A 21$
Schematic	$02-267 R 04 D 08$

PERKIN-ELMER

Interdata Division
2 Crescent Place
Oceanport, N.J. 07757

PUBLICATION NUMBER 29-306
TITLE M70-104 Loader Storage Unit (LSU) User's Manual REVISION R06 DATE May 1978

M70-104
 LOADER STORAGE UNIT
 (LSU)
 INFORMATION SPECIFICATION

1. LOADER STORAGE UNIT DESCRIPTION

The Loader Storage Unit (LSU) is employed as an automatic initialization/restart device for remote or unattended systems. This initialization is done by a non-volatile program which is stored in the ROM (128 Byte Storage Modules) contained on the LSU. This program is written and tested by the user and performs a function which is unique to each application.

The initialization is performed by the Processor Micro-Program in which the LSU is installed when enabled by a switch option available to the user. The Micro-Program, upon power up, loads the information contained in the 128 Byte Storage Modules and, upon completion of the load sequence, transfers control to the program which was loaded.

A Watchdog Timer feature is included in the LSU which, when enabled by the program, has the capability of initializing the Processor. Under normal operating conditions, the timer is reset by a software generated Output Command prior to the preset time-out delay. If the program fails, the timer times-out and the restart sequence is initiated. The unit may also be used to restart the user program upon restoration of the power after a power failure.

Refer to the JLSU Application Specification, 02-267A24, which can be found in the LSU User's Manual, Publication Number 29-306, for information on various user oriented applications.

2. SCOPE

This specification is intended to describe the procedure for ordering 128 Byte Storage Modules programmed to the user's specifications.

3. PROCEDURE FOR ORDERING 128 BYTE STORAGE MODULES

The 128 Byte Storage Modules (PROMs) are programmed to the user's specifications. The information for 'writing' these PROMs must be sent to INTERDATA in a specially formatted paper tape. Two paper tapes and two listings for each type 128 Byte Storage Module must be forwarded with the purchase order for the Modules. These tapes are identified by a unique part number which must be assigned by INTERDATA prior to the generation of the tape.

The following summarizes the ordering procedure.

1. Obtain a part number for the program from INTERDATA. This number is a 12 character number whose last two digits define the ROM position on the LSU in which this portion of t'e program is stored, e.g., 98-XXXXXXF 05 is the sixth ROM chip in the program.
2. Using the LSU Support Program, 06-139 (16 bit series) or 06-165 (32 bit series), the user generates two paper tapes and two listings for each 128 Byte Storage Module necessary. The procedure for generating this information is found in the LSU Support Program Description, 06-139A15 or 06-165A15.
3. A Furchase Order is now sent to INTERDATA specifying the quantity of each $98-\mathrm{XXXXXXFYZ}$ (by this part number) required. Accompanying this P.O. will be the two tapes and listings for each device which was generated in Step 2.
4. One copy each of the tape and listing will be returned by INTERDATA along with the 128 Byte Storage Module which was programmed using the tape supplied by the user.

M70-104
 LOADER STORAGE UNIT
 (LSU)
 APPLICATION SPECIFICATION

1. INTRODUCTION

There are many potential applications for the Loader Storage Unit (LSU) but its primary application is the ability to automatically initialize/restart remote or unattended systems. A Loader Storage Unit is capable of housing up to 2048 bytes of Programmable Read-Only-Memory (PROM). Availability of this non-volatile storage with the capability of automatic loading on initialization or Watchdog Timer time-out makes the LSU a very powerful device.

The specific usage of the LSU depends on the customer requirements, and the program to be contained in the LSU must be generated by each user. The Loader Storage Unit Support Programs, 06-139 (16 bit series) and 06-165 (32 bit series) are provided to assist the user to generate the PROMs for his individual program, and also to help test the LSU device.
The user should read the LSU Programming Specification (02-267A22) and the LSU Support Program Description ($06-139 \mathrm{~A} 15$ or $06-165 \mathrm{~A} 15$) before writing a program to be stored in the LSU. Any parameters used by the program (in the LSU) should be available in the fixed main memory locations. The LSU does not restore the general registers from the Register Save Area (specified by the Register Save Pointer in $\mathrm{X}^{\prime} 22^{\prime}$ and $\mathrm{X}^{\prime} 23^{\prime}$), so the general registers should not be used for passing the parameters unless they are restored by the program loaded from the LSU PROMs. When the program from the PROMs is automatically loaded on initialization, the load time for the contents of 16 PROMs is less than 5 milliseconds (which is negligible compared with the System Clear Relay deactivation time).

The remaining Sections of this specification present some examples of LSU applications.

2. BOOT LOAD OF SYSTEM PROGRAMS

The initial start of a computer system usually involves loading a loader program into memory before a user program can be loaded and executed. If the user program runs in an Operating System environment, the appropriate Operating System must be loaded. One method of initial start is to prepare Boot Strap Tapes for commonly used System programs. (A boot strap tape is provided with the appropriate loader on the tape itself.) These tapes are loaded into memory using the 8 -bit loader at $X^{\prime} 50^{\prime}$ (50 sequence).

If the Processor supports a Loader Storage Unit, and a bulk storage device (Drum, Disc or Magnetic Tape) is available, an LSU can be used to load the commonly used System programs. The program for loading the commonly used System programs from a bulk storage device is stored in LSU PROMs. This program is automatically loaded into the main memory and started at the specified address on initialization (provided that the LSU is enabled by keeping the ON/OFF Switch on the LSU panel in the ON position).

The following paragraphs describe such a program which is being used at the INTERDATA Computer Center in Oceanport. See Appendix 1 for the listings of the program and ROM Chips.

This program loads the image of a system program from the bulk storage device into main memory and starts the loaded program at the appropriate start address. This program assumes that the required system program has been previously loaded and written to the disc or drum.

When the System Load Program is loaded and started (by LSU), it performs a top-of-memory search and relocates itself to the top $X^{\prime} A 44^{\prime}$ bytes of memory. The disc is used if the device number in $X^{\prime} 20^{\prime}$ is $X^{\prime} B^{\prime} 6^{\prime}$ or greater. The drum is used otherwise. The information about the Start Address on the bulk storage device is obtained from the byte at $X^{\prime} 21^{\prime}$. If the disc is used, this byte specifies the cylinder address (sector address is assumed to be zero) of the program to be loaded. If the drum is used, this byte (at $\mathrm{X}^{\prime} 21^{\prime}$) specifies the high byte (low byte is assumed to be zero) of the drum address. The System Load Program always reads into memory from location $X^{\prime} 0000^{\prime}$ to the top of memory minus $X^{\prime} A 4^{\prime}$ bytes. After the desired program has been loaded from the bulk storage device, control is transferred to the location specified by the contents of $X^{\prime} 0002^{\prime}$. (Location $X^{\prime} 0002^{\prime}$ should contain the correct start address of the system program when its image is written on the disc or drum.) If any error occurs during the load process, the program halts with the PSW set for restarting at either the disc or drum initialize routine. No retries are performed on parity failures.

The System Load Program is used to load one of the several commonly used system programs. An example of the disc setup çontaining images of some important system programs is given below:

Cylinder Number	Program
0	Real Time Operating System (RTOS)
20	Disc Operating System (DOS)
	+ OS Loader (at X'3000')
	+ OS Assembler (at X'4500')
	+ FORTRAN Compiler (at X'8000')
24	Basic Operating System (BOSS)
	+ OS Loader (at $\mathrm{X}^{\prime} 3000{ }^{\prime}$)
	+ OS Assembler (at X'4500')
	+ FORTRAN Compiler (at $\mathrm{X}^{\prime} 8000^{\prime}$)
28	General Loader (start at $\mathrm{X}^{\prime} \mathrm{BA} 00^{\prime}$)
2 C	Super Club (start at $\mathrm{X}^{\prime} \mathrm{AF} 00^{\prime}$)
30	Tape Dupe Program (start at $\mathrm{X}^{\prime} 80^{\prime}$)
34	Wire Wrap Programs (start at $\mathrm{X}^{\prime} 108^{\prime}$)

The following procedure is used to load any of the above seven programs written on the disc:

1. Turn the ON/OFF Switch on the LSU panel to ON.
2. Enter into location $X^{\prime} 20^{\prime}$ the device address of the disc and the cylinder number of the program to be loaded. For example to load DOS from C6, enter X'C620' into location X' 20^{\prime}.
3. Depress the Initialize Switch

DOS will be loaded and started by the System Load Program (loaded by LSU). (The OS loader, Assembler, and FORTRAN Compiler are also loaded with DOS.)

3. DOWN LINE LOAD

In a non-switched multipoint communication system, one station, designated as the Control Station, initiates all communications with other (Tributary) Stations and performs error recovery functions. Should the program fail at one of the Tributary Stations (the program gets hung up) the Control Station will not be able to communicate with the failing Tributary Station. Normally these Tributary Stations do not have any back-up storage, so a down-line load of the system programs from the Control Station would be required to restart the operations at the failing station. A downline load cannot be performed unless the Tributary Station has some minimum capability of establishing line protocol (communication control procedure). Quite elaborate protocols are required to allow orderly data flow among the Stations. A large program must therefore, be present in the main memory before a down-line load for a restart can be performed. Normally this basic program for down-line load is loaded manually. This is undesirable for an unattended remote Tributary Station. An LSU provides non-volatile storage for the basic program required for downline load, and the Watchdog Timer of the LSU can be used to signal the initialization sequence in the event of program failure.

This section describes the use of the LSU for performing a down-line load. This system is a hierarchy which consists of four similar computers: a supervising computer in a computer room and three floor computers adjacent to the Production Machinery they monitor and control. These floor computers communicate with the central computer through Bell 201 Data Sets.

The central computer controls communications in the hierarchy: each floor computer is polled once every ten seconds. If the floor computer has data awaiting transmission to the central unit, it transmits first; then any outbound message is sent.

The central computer accumulates quality control statistics and performs all QC analysis. It provides the mass storage (disc) capabilities for the hierarchy, and holds copies of all the application programs for the three floor computers. It is capable of down-line loading the unattended floor computers. The INTERDATA Real Time Operating System (RTOS) is used at both computer levels, the core only version in the floor computer and the disc version at the supervisor.

Under normal operating conditions the Watchdog Timer at each Slave Station (floor computer) is reset by a Software generated output command prior to the preset time-out delay. Should the program at any Slave Station fail, the timer will time-out, signalling the initialization sequence. When the initialization sequence is started, a Communication Binary Loader program (for down-line load) is loaded from PROMs and started at the appropriate start address. The , Lommunication Binary Loader program when started by the LSU, first establishes the standard line protocol with the master station (supervisor computer). The Binary Loader then sends a message requesting the Master Station to send a core image of the Real Time Operating System. On recognizing the request for a down-line load of the RTOS core image, the Master Station sends the complete core image of RTOS in the form of a blocked message. When the down-line loading is complete, the Binary Loader program transfers control to the RTOS starting address ($\mathrm{X}^{\prime} 0000^{\prime}$). A detailed flow chart of the Binary Loader program is given in Figure 1.

4. AUTOMATIC INITIALIZATION AND ERROR RECOVERY

This section describes the Automatic Initialization and Recovery feature of a Message Concentrator (MC). The MC is a programmable message concentrator, which provides a communication interface between a number of medium speed Message Terminal (MT) lines and a remote host computer. The block diagram of a Standard MC is shown in Figure 2.

A Read Only Memory (ROM) is provided with the MC. This ROM is contained in three Loader Storage Units. A number of program routines required for MC initialization, error detection and recovery are stored in ROM.

The routines stored in the LSU ROM include a subset of the MC/System Command Processor which recognizes and generates certain MC/System Commands. The following commands are processed by the routines stored in ROM.

MC IDLE This command directs an MC to quiet all Software Processors and accept a down-line load initialization and/or recovery. In response to this command, an MC enters an Idle State. The routines to process Read, Write, and Start commands are brought into main memory when an MC enters the Idle State.

Write Command The host computer can load any program into the MC memory using this command.
Read Command/Read Response The Read Command and the associated Read Response are processed by a routine stored in the LSU ROM. The host computer can read any portion of an MC memory using this command.

Start Command The host computer uses this command to start the execution of any program resident in the MC memory.

When operating an MC at a remote unattended site, some ability to assess if the MC is operational from the host is essential. It is possible to determine if the MC can take a program load by paired Write and Read Commands. The host can write into any part or all of the MC memory (except ROM) by Write Commands. It can then try to read back all parts written by Read Commands. A comparison of the data received and the data sent determines whether or not the MC is operating properly. Thus the four commands described above provide the capability of remote diagnosis. This remote diagnosis capability is not affected by any software failure because the routines to process the four commands are in LSU ROM.

In addition to the above four routines, the following interrupt routines are also stored in the LSU ROM.
PFI Interrupt The Power Failure interrupt routine is stored in the ROM, permitting the State of the Machine and the Auto Restart entry point to be saved upon power failure.

Auto Restart The Auto Restart routine is stored in ROM permitting the MC error message to be generated upon power filure.

Memory Parity Interrupt The memory parity error will cause an MC Error Message to be sent to the host computer. The MC is left in the Idle State.

Watchdog Timer Time-Out If the program gets hung up and cannot issue a reset command to the LSU Watchdog Timer prior to the time-out delay, the LSU loads and starts this time-out routine. An MC error message is sent to the host computer and the MC is left in the Idle State.

Synchronous Single Line Controller (SSLC) The Selected parts of the driver for SSLC are stored in ROM.
Thus we find that an MC uses the Loader Storage Units not only for the down-line load but also for communicating different error messages, for remote diagnosis, and for certain error recovery procedures.

Figure 1. Communication Binary Loader Flow Chart (Sheet 2 of 4)

Figure 1. Communication Binary Loader Flow Chart (Sheet 3 of 4)

SUBROUTINE

Figure 1. Communication Binary Loader Flow Chart (Sheet 4 of 4)

Figure 2. Standard MC

LSU INITIALIZE PROGRAM FOR SYSTEM LOAD FROM DRUM/DISC PAGE 2

'LSU INITIALIZE PROGRAM FOR SYSTEM LOAD FROM DRUM/DISC PAGE 3

NO ERRORS	
AC1	0000
AC2	0001
BASE	0003
BEGIV	00 A 4 R
CONT	001ER
CONT 1	007 AR
CONTRL	0086
CTRL	000E
Cyladr	0006
DEV	OOOD
DISC	000D
DRMDEV	OOB5
DRUM	OOOD
END	0005
ENDADR	0102 R
ERRHLT	001 AR
ERRHT 1	0076 R
EOUND	OOC2R
INCR	008CR
INIT 1	0092 R
LAST	00A4R
LENGTH	009 C
LOAD	0008 R
LOAD1	006AK
LOOP	OOCEK
MS 8 K	2000
MSDEV	0020
PAUSE	009 CR
PAUSE 1	OOAOR
QdDISC	0098R
RDSLCH	0099R
READ	0010 R
READ1	006ER
SECTOR	0007
SEEK	009 AR
SELCH	000 F
SELNum	00FO
SERCH	OOA 8 R
Start	0004
Stat	0002
STOP	0098 E
WORK	0008
XFERAD	0002

```
98-123455F00
$000 0000 0000 0000 0000 0000 0001 0010 0100
W008 0000 0000 1000 1000 00000 0001 1000 0010
W016 0110 00010011 0011 0000 0001 000111100
W024 1100 1000 1110 0000 0000 0000 1011 0110
WO32 1101 1110 1111 0011 0000 00010001 1000
4040 0000 0111 0111 0111 1001 1101 1101 0000
W048 0010 0011 0001 0011 1100 0010 0000 0011
$056 0000 00010001 1100 1001 1010 1101 0110
N064 1101 1110 1101 0011 0000 0001 0001 1010
$072 1001 1101 1110 0000 0010 0010 0010 0001
W080 1001 1101 1101 0000 0010 0000 0111 1000
N088 0010 0000 1000 0010 1001 1000 1111 0100
W096 1001 1000 1111 0101 1001 1010 1101 0110
W104 1001 1010 1110 0111 1101 1110 1110 0011
W112000000001 0001 1011 1101 1110 1111 0011
$120 0000 0001 0001 1001 1001 1101 1111 0000
W128 0010 0000 1000 0001 1001 1001 1111 0001
W136 1101 1110 1111 0011 0000 0001 0001 1000
W144 1001 1101 1110 0000 0010 0010 0010 0001
$152 0100 0010 0001 0011 0000 0000 1031 1010
W160 1100 00110000 0000 0000 0000 0001 0000
W168 0100 00110011 00110000 0001 0001 0010
W176 0000 101110001 0100.00100110 0001 0011
W184 1100 0100 0001 0000 11111 111110000 0000
$1920000 1010 0100 0001 0010 0110 0110 0001
W200 0000 011110111 0111 0100 00111 0000 0011
W208 0000 0000 1001 1110 011000001 0011 0011
W2160000 0001 0010 0000 1101 1110 1111 0011
W2240000 0001 0001 1000 1001 1101 1101 0000
$2320010 00110001 0011 1100 0010 0000 0011
$240 0000 0001 0010 0000 1001 1000 11111 0100
W248 1001 1000 1111 0101 1101 1110 1101 0011
```

98-123456E01								
\$000	0000	0001	001					
1008	1101	1110	1111	0011	0000	0001	0001	1001
\$016	1001	1101	111	0000	0010	0000	1000	0001
N024	1001	1101	1101	0000	0100	0010	0101	0011
1032	0000	0000	1111	0110	0100	1000	0100	
W040	0000	0000	0000	0010	0000	0011	0000	0100
48	0000	1000	001	000	1100	001	1100	0001
1056	1000	0000	0000	000	0000	0003	100	0000
64	1000	0000	0000	000	0000	000	111	1110
Q 072	1100	1000	001	000	0010	0000	0000	
Q080	0100	1000	0001	0011	0000	0000	0000	0000
1088	0010	0001	0011	1000	0100	0000	0011	03
$W 096$	00	00	0000	0000	0100	1000	00.0	09
d104	0000	000	000	000	0010	001	0011	0110
1112	0100	0000	0001	001	0000	0000	0000	0000
W120	1100	1010	0011	0000	0010	0000	00	
W128	0010	0000	0011	1100	1100	1000	0000	0000
W 135	00	00	1001	1100	0000	1011	0011	03
$\checkmark 1$	00	10	0001	0011	110	1000	10	0000
1152	0000	0000	1000	100	010	1000	00	0100
+150	2000	3000	0000	0000	010	000	100	0001
	0000	0000	0000	010	0010	0110	0100	
1176	0010	0110	0001	0010	0010	0111	0000	0010
N184	0010	0000	0011	0111	1100	1000	1111	0000
\$192	0000	0000	1111	0000	0000	0111	0100	01
\$200	1100	1000	0101	0011	1111	1111	1111	11
208	1100	1011	0011	0000	0000	0000	1000	000
4216	1101	0011	1101	0000	0000	0000	0010	析
+1224	1101	0011	0110	0000	0000	0000	0010	001
32	1100	0101	1101	0000	0000	0000	1011	0101
	0100	0010	0010	D011	0000	0000	1000	10
	1001		0111	01	0100	0011	0000	00

```
98-123456F02
$000 0000 0000 1110 1010 0000 0000 0000 0000
W008 0000 0000 0000 0000 0000 000000000 0000
$016 0000 00000000 0090 0000 0000 0000 0000
$0240000 0000 0000 0000 0000 0000 00100 0000
$0320000 0000 0000 0000 0000 0000 00000 0000
$040 0000 0000 0000 0000 0000 0000 0000 0000
N048 0000 0000 0000 0000 000000000 0000 0000
$056 0000 0000 0000 0000 0000 0000 0000 0000
W0640000 0000 0000 0000 0000 0000 0000 0000
W072 0000 0000 0000 0000 0000 0000 0000 0000
N080 0000 0000 0000 0000 0000 0000 0000 0000
2088 0000 00000000 0000 0000 0000 0000 0000
$096 0000 000000000 0000 0000 0000 0000 0000
$1040000 00000000 0000 0000 0000 0000 0000
$1120000 000000000 0000 0000 0000 0300 0000
$120 0000 0000 0000 0000 0000 0000 0000 0000
N128 0000 000000000 0000 0000 0000 0000 0000
W1360000 0000 0000 0000 0000 0000 0000 0000
$1440000 000000000 00000000 0000 0000 0000
$1520000 0000 0000 0000 0000 0000 0000 0000
$160 0000 00000000 0000 0000 0000 0000 0000
$168 0000 0000 0000 0000 0000 0000 0000 0000
W176 0000 0000 0000 0000 0000 0000 0000 0000
$1840000 0000 0000 0000 0000 0000 0000 0000
$1920000 00000000 0000 00000000 0000 0000
$2000000 000000000 0000 0000 0000 0000 0000
N208 0000 000000000 0000 0000 0000 0000 0000
$2150000 0000 0000 0000 0000 0000 0000 0000
$224000000000 0000 0000 000000000 0000 0000
$232}0000
$240 0000 0000 0000 0000 0000 0000 0000 0000
```


M70-104
 LOADER STORAGE UNIT
 (LSU)
 INSTALLATION SPECIFICATION

1. INTRODUCTION

This specification provides the necessary information for the installation of the 02-267 Loader Storage Unit in an INTERDATA system. The module assembly consists of one $35-440$ seven inch board, one $17-222$ Cable, and two 17-254 Cables. The 35-440 may be installed using the 16-398 Half Board Kit, either by itself, or with any other seven inch board to give it the capability to be installed in a 15 inch chassis. See Figure 1. The Loader Storage Unit may be installed in either the left or right half of any I/O slot, depending upon the system configuration.

NOTE: 35-440 ASSEMBLED WITH HALF BOARD KIT (16-398)

Figure 1. Half-Board Assembly.

2. UNPACKING

When the Loader Storage Unit is shipped with a system, it is installed at the factory. Therefore, no unpacking procedure is necessary. If the Loader Storage Unit is purchased separately, it should be inspected for damage. Also, check that all associated components are included as specified in the introduction of this specification.

3. LOCATION

The 35-440 Loader Storage Unit, once assembled using a Half Board Kit, may be installed in any available I/O slot that is on the CPU MUX BUS, or the buffered bus, but not on the Selector Channel Bus.

4. RACK/TACK

This device has no logic for interrupts, therefore, the jumper on the back panel from Pin 122 to 222 must remain intact.

5. CABLE CONNECTIONS

The 17-222 attaches to the front edge connector of the 35-440 LSU, and the switch panel end of the 17-222 can be mounted in any convenient location of the rack that the system is mounted in. See Figure 2.

Figure 2. 17-222 Cable Connection.

5.1 Model 74 and 7/16 Basic Installation Procedure.

On the Model 74 and $7 / 16$ Basic Processors, it is necessary to install a strap on the $35-440$ LSU to connect the INIT0 to Pin 224 of the back panel connector. (See Figure 3). Connect a wire from 224 (INIT0) of the connector and slot the LSU occupies to 202-0600 (PFDTO) of the CPU Chassis.

On Models $7 / 16$ HSALU and $7 / 32$ Processors it is necessary to install a strap on the $35-440$ LSU to connect the INIT0 to Pin 224 of the back panel connector (see Figure 3). Connect a wire from 224 (INIT0) of the connector and slot the LSU occupies to 202-0700 (PFDTO) of the CPU chassis.

Figure 3. Portion of $35-440$ LSU showing Wire-Wrap Stakes.
5. 2 Models 50, 70, 80, and 85 Installation Procedures.

On Model 50 and 70 Processors attach the Krimp-Snap-In connector end of 17-254 to 107-3 on the 35-390 I/O board via the Display connector. Connect the Faston end to X6 on the $35-423$ chassis terminal board. See Figure 4.

On the Model 80 and 85 Processors, attach the Krimp-Snap-In connector end of the 17-254 to Pin 107-3 on the 35-405 IOU Board via the Display connector. Connect the Faston end to X6 on the $35-423$ chassis terminal board. See Figure 4.

On the Models 50, 60, 70, 80, 85, and 8/32 Processors connect the Krimp-Snap-In connector of the 17-254 to Pin 124 of the front connector on the 35-440 Loader Storage Unit. Connect the Faston connector of the 17-254 to X6 on the Models 50, 70, 80, 85. On the Model 8/32, connect the Faston connector of the 17-254 to Xl on the Processor chassis. X6 is located on the $35-423$ terminal board, which is mounted on the chassis. See Figure 4.

Figure 4. MODEL 50, 60, 70, 80 and 85 CPU Chassis

NOTE

The Loader Storage Unit can only be used on the machines of the following revision levels or higher. When the LSU board is installed, the cable must be connected with the switches in the off position. Failure to do so can result in core locations being modified when the INIT switch of the Processor is depressed.

Model	Board (ROM)	Board (I/O)
74	Any	Any
70	35-388M03R00	35-390M02R08
80	35-404R07	$35-405 \mathrm{M} 01$ or $35-405 \mathrm{M} 00 \mathrm{R} 10$
7/16	All	All
7/16 HSALU	All	All
7/32	All	All
8/32	All	All
60	$\begin{aligned} & 35-404 \mathrm{~F} 01 \\ & 35-404 \mathrm{~F} 01 \mathrm{M} 01 \end{aligned}$	$\begin{aligned} & 35-405 \mathrm{~F} 03 \\ & 35-405 \mathrm{~F} 02 \end{aligned}$

M70-104

LOADER STORAGE UNIT (LSU)

MAINTENANCE SPECIFICATION

1. INTRODUCTION

The 02-267 Loader Storage Unit (LSU) is an automatic initialization/restart device for remote or unattended systems. The LSU provides up to 2,048 bytes of non-volatile user program storage. When enabled, the program contained in the LSU is loaded by the micro-program of the Processor in which it is installed, upon initialziation or power up.

The Watchdog Timer feature of the LSU provides a means of initializing the system. Under normal operating conditions the timer is reset by a software generated Output Command prior to the preset time-out delay. Should the program fail, the timer will time-out and a system initialization will occur.

2. SCOPE

This specification describes the functional operations of the Loader Storage Unit. This specification contains a block diagram analysis, a functional diagram analysis, and a mnemonic list for the LSU. Refer to Figure 1 and the LSU functional schematic 02-267D08.

Figure 1. LSU Block Diagram

3. BLOCK DIAGRAM ANALYSIS

The Loader Storage Unit is divided into two sections; the Data Storage Section and the Watchdog Timer Section. In the Data Storage portion, non-volatile data stored in the ROM Array is selected by the Address Converter, assembled with the aid of the four-bit Latch, and is finally gated to the Processor Multiplexor Bus by Data Request.

The Watchdog Timer is used to initialize the Processor by the setting of the Initialize flip-flop. This flip-flop becomes set in the event that the counter times-out. This time-out occurs, if the running program fails to reset the counter before a preset time-out interval is reached.

4. FUNCTIONAL DESCRIPTION OF DATA STORAGE

The data storage portion of the LSU is composed of 1 to 16 PROM storage units. Each unit has the capability of 128bytes of non-volatile memory. The Address Register is a 12-bit incrementing register which is toggled twice for each Data Request (DR). This register is cleared by SCLR0 or by an Output Command with Bit 10 of the Command Byte set. The outputs from the Address Register are used to enable one of the sixteen possible ROMs and select one of the possible 256 words in that ROM. The ROMs (128 Byte Storage Modules) used on the LSU are 256 words by 4 -bit devices. In order to assemble a byte (8 bits) to present to the Processor on a Data Request, the LSU loads the first four bits of the byte in a four bit latch (2 N 6), increments the Address Register to select the next sequential word in the ROM chip, and gates the entire byte to the Processor (D080-150). The Address Register is incremented first by the output from a one shot (2G6) which was triggered by the leading edge of Data Request and then again by a one shot (2G8) triggered by the trailing edge of Data Request. The return of SYN0 to the Processor in response to the Data Request is delayed by a one-shot (2G9) until the entire byte is assembled. See Figure 2, Timing Diagram.

Figure 2. LSU Tìming Diagram 2 Byte Transfer

5. FUNCTIONAL DESCRIPTION OF WATCHDOG TIMER

The Watchdog Timer is used to initialize the system unless the user's running program periodically issues an Output Command Reset, which resets the timer before it times-out. The basic Oscillator is factory set at one millisecond. The counter that the Oscillator drives counts how many one millisecond intervals have occured. The counter is preset at the factory to time-out in 96 milliseconds. This can be changed with strap options for any interval from 16 milliseconds to 256 milliseconds in 16 millisecond increments. If the Watchdog Timer times-out, INITO becomes active and the system is initialized. This forces the data stored in the storage portion of the LSU to be loaded into Main Memory. The Switch Panel functions are related to both the data storage and the Watchdog Timer. The Switch Panel consists of three switches mounted on a panel with a 36 inch cable (INTERDATA P/N 17-222), which attaches to the front connector of the LSU.

ON/OFF SWITCH

With this switch in the OFF position, the signal XOFF0 is active and the LSU is totally disabled; it cannot be addressed. In this mode, the LSU does not exist as far as the CPU is concerned. See Figure 3.

INIT SWI'TCH

When installed as specified by the 02-267A20 LSU Installation Specification, this switch initializes the system in the ON or UP position. This is done by activating the signal INIT0.

ENAB SWITCH

When the ENAB switch is in the UP or ON position, the Watchdog Timer is enabled. When enabled, if the Watchdog Timer is not reset via an Output Command before the time-out occurs, the system will be initialized (INIT0 active).

Figure 3. LSU Switch Panel Part of 17-222 Cable

6. ADJUSTMENTS

The $02-26$ '7 LSU is considered functional when it has run the test portion of the 06-139 Loader Storage Unit Support Program. The Watchdog Timer must be set for 96 milliseconds. This can be done by setting the Oscillator at one millisecond. Place the ENAB Switch in the down position, the INIT Switch in the down position, and the ON/OFF Switch in the ON or UP position. Give the LSU an OC with a $X^{\prime} 40^{\prime}$ command byte. This starts the Oscillator. Moniter Pin 1 of IC 47 with an Oscillator and adjust the Oscillator (R) to one millisecond.

7. MNEMONICS

The following is a list of the mnemonics contained in the LSU. The meaning and 02-267D08 location of each signal are priovded.

MNEMONIC	MEANING	LOCATION
A001-A071	Address counter outputs used to select PROM words (4 bits).	3D2-3D5
ADRS1	Inversion of ADRS0 CPU control line.	2F3
BDA080A-BDA110A	Latch outputs first half byte.	2H4-2R4
CNTO	When active increments the PROM Address Counter by one.	2 J 9
CMDG0	CPU Control Line CMD0 gated by LSUs Address flip-flop.	2D4
D080-D150	CPU I/O Data Line Bits 8-15.	2H1-2R1
DA121-DA151	PROM outputs form this Bus.	2L6
DRG0	CPU Control Line DR0 gated by LSU's Address flip-flop.	2 F 4
ENABL1	This flip-flop set starts the Watchdog Timer and Enables Time flipflop to be set when the Watchdog Timer times-out.	2B2
EN000-EN070	Selects which PROM to interrogate for Data.	3E8-3E9
INIT0	When Active initializes the CPU.	2C8
LD0	Active on OC Reset. Sets all counters to the desired values. Effects the Watchdog Timer's counters and the PROM Address Counter.	2B7
RA0, RA1	Used to select which PROM is to be used.	3D6
SGND0	Signal ground used for the Switches on the 17-222 cable.	2A9
SYN0	Control line sent back to CPU by the LSU.	2D8
SCLROA	System clear. Resets everything to the initial states desired.	2D3
XENA0	Activated by ENAB Switch on the 17-222 cable and allows the Watchdog Timer to initialize the system when it times-out.	2A8
XINIT0	When activated, unconditionally initializes the system.	2A9
XOFF0	When activated, disables the Loader Storage Unit.	2 H 2
XRP1	Pull up resister to +5VDC.	2F9

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning this publication.

From \qquad Date \qquad
Title \qquad Publication Title \qquad
Company \qquad Publication Number \qquad
Address \qquad

FOLD

Check the appropriate item.Error Page No. \qquadAddition Page No. \qquad Drawing No. \qquad
\qquad
Explanation:

FOLD

Fold and Staple

