
COMMAND SUBSTITUTION SYSTEM

(CSS)

COMMANDS

COMMAND SUBSTITUTION SYSTEM
(CSS)

' CSS IS AN EXTENSION TO THE OS/32 COMMAND LANGUAGE.

o CSS ENABLES THE USER TO ESTABLISH FILES.OF DYNAMICALLY

MODIFIABLE COMMANDS.

t A CSS CAN BE CALLED FROM THE TERMINAL OR FROM OTHER

CSS FILES.

I CSS's ARE EXECUTED IN A PREDEFINED WAY.

-1-

CSS PROVIDES:

~ THE ABILITY TO SWITCH THE COMMAND INPUT STREAM TO

A FILE OR DEVICE

1 A SET OF LOGICAL OPERATORS TO CONTROL THE PRECISE

SEQUENCE OF COMMANDS

1 PARAMETERS THAT CAN BE PASSED TO A CSS FILE SO THAT

GENERAL SEQUENCES CAN BE WRITTEN TO TAKE ON SPECIFIC

MEANING WHEN THE PARAMETERS ARE SUBSTITUTED

1 THE ABILITY FOR ONE CSS FILE TO CALL ANOTHER SO

COMPLEX COMMAND SEQUENCES CAN BE DEVELOPED.

-2-

CSS COMMANDS:

1 ALL CSS C0Mf1ANDS START WITH THE $ CHARACTER

o ALL MTM SUPPORTED COMMANDS CAN BE USED IN A CSS FILE.

A CSS FILE IS SIMPLY A SEQUENTIAL TEXT FILE. IT CAN BE A DECK OF

CARDS1 A MAGNETIC TAPE1 OR A DISK FILE.

AN EXAMPLE OF A SIMPLE CSS FILE IS:

* THIS IS A E~~f)-E OF A CSS FILE
LOAD EMPRG/G/1 5#i /lf,,.,.,,,c'/

ALLOCATE ABCEMP.DAT1C0140

ASSIGN 11INPUT.DAT

ASSIGN 21ABCEMP.DAT

ASSIGN 51CON:

ASSIGN 31PR:

START

$EXIT

THIS CSS LOADS THE PROGRAM EMPRG.TSK FROM THE GROUP ACCOUNT INTO MEMORY1

ALLOCATES ALL THE FILES AND DEVICES NECESSARY1 AND STARTS EXECUTION OF
THE PROGRAM.

NAMING CONVENTIO~S

THE FILE DESCRIPTOR FOR A CSS IS LIKE THOSE OF OTHER FILESJ EXCEPT

THAT IT MUST HAVE AN EXTENTION OF CSS.

EXAMPLE:

EOM.CSS

UPDATE.CSS
MT62:TERIL.CSS

-5-

CALLING A CSS FILE:

A CSS FILE IS CALLED AND EXECUTED FROM THE TERMINAL BY SPECIFYING

THE FILE DESCRIPTOR. IF THE LEADING CHARACTERS OF A CSS FILE

DESCRIPTOR ARE THE SAME AS A COMMAND,MTM ASSUMES THE COMMAND.

EXAMPLE:

CLO.CSS - ASSUMES THE CLOSE COMMAND

AS3. css - ASSUMES THE Ass I GN COMMAtm.

-6-

BY SPECIFYING A VOLUME NAME AND/OR EXTENSION, A CSS FILE THAT

OTHERWISE WOULD CONFLICT WITH A MTM COMMAND CAN BE CALLED.

EXAMPLE:

MT6l:CLOSE

MT6l:CLOSE.CSS

-7-

CSS FILENAMES CAN HAVE PARAMETERS

THE PARAMETERS CAN BE ENTERED AFTER THE CSS FILE DESCRIPTOR AND ARE

SEPARATED FROM IT BY ONE CHARACTER SPACE.

EXAMPLE:

EOM JANUARY

RUNJOB PR:

IF THERE IS MORE THAN ONE PARAMETER SEPARATE EACH WITH A cor1r1A.

EXAMPLE:
RUNPROJ MT6l:JMT62:JRPR:

EOD MONDAYJMT62:0UTPUT.DAT

0

IF A PARAMETER MUST PASS A COMMA P~ACE A DOUBLE QUOTE " AROUND

THE PARAMETER.

IN OTHER WORDS - - - -

IF A PARAMETER CONTAINS THE DOUBLE QUOTE CHARACTER ALL PARAMETERS UP

TO THE NEXT DOUBLE QUOTE CHARACTER ARE PASSED AS ONE PARAMETER.

EXAMPLE:
RUNACCT "ACCOUNTING REPORT,APRIL"

PRTRPT "THIS REPORT IS FOR: MON,TUE AND WED"
ABC Pl,"P2A,P2B"

-9-

NULL PARAMETERS ARE PERMITTED.

EXAMPLE:

JUMP JJC

CALLS CSS FILE JUMP.CSS ON THE DEFAULT VOLUME WITH THE

THREE PARAMETERS:

PARAMETER ONE = NULL

PARAMETER TWO = NULL

PARAMETER THREE = C

-10-

@!-:. A):ALV

@2-:; µ'41/

~?-:- c/

REFERENCING PARAMETERS

WITHIN A CSS FILE, A PARAMETER IS REFERENCED BY THE USE OF THE

SPEC I AL S,YMBOL:

@n

WHERE n IS A DECIMAL INTEGER NAME INDICATING WHICH PARAMETER IS

BEING REFERENCED.

@l FIRST PARAMETER

@5 FIFTH PARAMETER
@O HAS SPECIAL MEANING. IT IS USED TO REFERENCE THE

NAME OF THE CSS FILE IN WHICH IT IS CONTAINED.
f< /Y ././. AJb! Y.J D7 t:'?

l> " 13 Vi e;iD t I fJ r , ' @ 0 ·.-.; flff'- If i--

1 1

A STRAIGHT FORWARD TEXT SUBSTITUTION IS EMPLOYED.

EXAMPLE:
A CSS FILE RUNPROG CONSISTS OF:

LOAD @l

ASSIGN 1)@2

ASSIGN 3)@3

START @5)@4

IT IS CALLED AS:
~l ~ ~~ @'f @If

RUNPROG TEST)CARD:)MAGl:~UPDATE)lOO

1 ')

BEFORE THE CSS IS EXECUTED IT IS PREPROCESSED AND ANY REFERENCE TO A

PARAMETER IS SUBSTITUTED WITH THE CORRESPONDING TEXT.

THE PREVIOUS EXAMPLE WOULD BE EXECUTED AS:

LOAD TEST
ASSIGN l_,CARD:

ASSIGN 3.,MAGl:

START 100.,UPDATE

-13-

6~.ft1iJL
/.H,,41 10 ,i~

1vi'(1;.,P I fr~ 0

If.
CSS's ALLOW CONCATENATION OF PARAMETERS.

ALL OF THE FOLLOWING ARE VALID REFERENCES TO PARAMETER 5.

@5 @5ABC @5, EXT

-14-

CONCATENATION REQUIRES CARE WITH NUMBERS.

123@5 REFERENCES PARAMETER 5

@5123 REFERENCES PARAMETER 5123

A REFERENCE TO A NON-EXISTENT PARAMETER IS NULL.

-15-

o THE MULTIPLE @ FACILITY ENABLES A CSS FILE TO ACCESS PARAMETERS

OF HIGHER LEVEL FILES.

o THE MAXIMUM DEPTH IS SPECIFIED AT SYSTEM GENERATION TIME.

o @@2 IN A CSS FILE REFERS TO THE SECOND PARAMETER OF THE CALLING

FILE.

WHAT DOES @@3 REFERENCE?

WHAT DOES @@@l REFERENCE?

-16-

GIVEN A CSS CALL:
YEAR ABC_,XYZ_,PDQ

WHAT IS @l? r-ic..

WHAT IS @2? 'f. i <?

WHAT IS @3? 1 7«

WITHIN YEAR.CSS THERE IS A REFERENCE TO DAY

DAY MON_,TUE_,WED_,THUR

WITHIN DAY.CSS WHAT IS

@l? ,&1_Q,J

@2?
{1,!l-

@3? 11/frl?

@@l?
p(.,

@@2? ;cf*"

-17-

GIVEN THE CSS CALL:

YEAR ABCJXYZJPDQ

CALLING:

DAY MONJTUEJWEDJTHUR

AND WITHIN DAY.CSS THERE IS A REFERENCE TO MONTH:

MONTH DSCl:JPR:

WITHIN MONTH.CSS WHAT IS:
@1? 175cf

,, t-t* ~">111P-~ 1f114. 'P,
@@4? '

i ~£,Lf lli-~ 'f •ft
@@@2·?

1 0

YEAR.CSS

@l = ABC

@2 = XYZ
@3 = PDQ

DAY.CSS

@l = MON

@2 = TUE

@3 = WED

@4 = THUR

MONTH.CSS

@l = DSCl:

@2 = PR:

-19-

YEAR.CSS

' •
0

DAY MON,TUE,WED,THUR
I

' • $EXIT

.DAY.CSS
(/

0

0

~ONTH DSCl:,PR:
Q

0

0

$EXIT

MOMTH.CSS
~

c
tV

$EXIT

SEIIT

5.5.5 SEIIT Command

The SEXIT command terminates a CSS procedure. Control is
returned to the calling CSS procedure or .the terminal if the CSS
procedure vas called from the terminal. All commands on the
lines after the SEXIT command are ignored.

Format:

~~XIT

5- 11

-20-

$CLEAR

5.5.2 SCLEAR Command

The SCLEAR command terminates a CSS stream, closes all CSS files,
and deactivates CSS.

Format:

~~1EAR

Functional Details:

The SCLEAR command can be entered in command mode, task loaded
mode, and task executing mode.

5-7

-/1-

$COPY and
SMOCOPY

5.5.4 $COPY and SNOCOPY Commands

The SCOPY and SNOCOPY comm~nds control the listing of CSS
commands on the terminal or 109 device (if from batch). SCQPY
initiates the listinq and all subsequent commands are copied to
the terminal before beinq executed. The SNOCOPY command
deactivates the listing, but is itself listed. The SCOPY command
is an aid in debugqing CSS job streams.

Format:

~~Qf Y

~li.QCOPY
CI NY!- cf,}

P1J~

* !f co1'Y J4 vi

*
Ct ,.J'VY Hie.r<t

pa 7"
~

?ti ii/
s-10

·~

lJ f'tCf<
11. f1uclff

-22-

SWRIT E

5.5.15 $WRITE Command

The SWRITE command writes a message to the terminal or log device
for both interactive and batch jobs.,

Format: ·

fil!R IT E text [:]

Functional Details:

The message is output to the terminal or log device. It begins
with the first nonblank character after SWRITE and ends ~ith a
semicolon or carriage return. The semicolon is not printed.

5-22

-23-

SWAIT

5.5.14 SWAIT Command

The SWAIT command suspends execution of a CSS for a specified
period of time.

For11at:

Functional Details:

The SWAIT command vill only function from a CSS routin~.

When the SWAIT command is entered and the user does not want to
wait the specified time, a $CONTINUE command can be entered.

s-21

$PAUSE

5.5.10 $PAUSE Coamand

The SPAUSE command suspends execution of a CSS procedure.

Format:

~£AUSE

Functional Details:

When SPAUSE is entered, the CSS procedure remains suspended until
the $CONTINUE command is entered or the SCLEAR command is entered
to terminate a procedure suspended by a SPAUSE.

5-17

-2 5-

SCOKTINUE

5.5.3 $CONTINUE Command

The $CONTINUE command resumes execution of a CSS procedure
suspended by a SPAUSE or SWAIT command.

Format:

~~Q!!.TI NU E

5-9

$JOB and
STERMJOB

5.5.8 SJOB and STERHJOB Commands

The SJCB and STERHJOB commands set the boundaries of a CSS job.
The SJOB command indicates the start, and the STERMJOB command
indicates the end of ·a CSS job that contains all the user CSS
comman1s and tasks.

Format:

ilOB
[~illIM E=ma xtime]

G c la ssid=iocoun t iJ k ••• ,c las sid=iocoun t 32]

•
~IERHJOB

5-14

-27-

Functional Details:

The SJOB and STERMJOB commands are not ne~essary in a CSS
procedure. However, they help prevent errors in one CSS job from
affectinQ other CSS jobs. If a CSS job contains an error, the
statements remaining in that job are skipped until a STERMJOB
command is found. The next command executed is the first command
found after a STERMJOB command. If the next command is a SJOB
command siQnifyinq the start of a new CSS job, it could be
skipped because the system is looking for a STERMJ09 that
signifies the end of the CSS job containinq the error.

The CSS job containing an error is aborted, and the end of task
code is 255. The SJOB command resets the end of task code to O
for the next CSS job.

Interactive jobs have no default limits established at sysqen
time. However, the user can specify CPU time and I/O transfer
limits for a particular job throuqh the SJOB command.

Any limits in the SJOB
ignored if limits were

command found in a batch stream are
already specified in the SIGNON =ommand.

5-15

-28-

$SKIP

S.S.13 $SKIP Command

The SSKIP command is used betveen the SJOB and STERMJOB commands.
The SSKIP comm~nd indicates that subsequent commands are to be
skipped until a STERMJOB command ls found. The end of task code
is set to 255.

Format:

~~KIP

fJ'JO~
L- D j(l

T!~7/C

f 1
f-y,f

~'I ef_j

µr-?
-(filK

!f
f (

.--IP
Hf;<tf

.Jlgft;fitt

fJf

fp ""
I {&Xrl

-29-

l/f.fJ{

ftfJt

ff f71'11-d

A,.; 7?1t-~'c
. I 1 /9 c:CT' fl,"'r 5-20

JY,tt/~Y

C1 5 f /1 'TD·

5.5.1 $BUILD and SENDB Commands

$BUILD and
SEHDB

The SBUILD command causes succeeding lines to be copied to a
specified file up to, but excluding, the corresponjin~ SENDB
command. Before each line is copied, parameter substitution is
performed.

Format:

•

SEN DB

Functional Details:

The SBUILD command must be the last command on its input line.
Any further information on the line is treated as a comment and
is not copied to the file.

The SENDB command must be the first command in the command line,
but it need not start in column 1. Other commands can follow
SENDB on the command line, but nesting of SBUILD and SENDB is not
permitted.

-30-

~
fjtl/i-9 -r~~ 7~-;r

J.-.,ofr>' {iJ I

~f.JpB

J~dlt,;'F'

t.-911'11

ti' f, pl>,

J(ft.~-(

~ c1f1/P'(!f

11-1 f. JI fr<

1-~ft'V fj. /

5-~

f?Jl?OG'

71'111 2 · 'i'/tr

f,_;JIW ~/!tJ('

SET CODE

5.5.12 SET CODE Command (tJD
The SET CODE command modifies the end of task code of the
currently selected CSS task.

Format:

~_ET £ODE n

Parameter:

n is a decimal number from 1 through 254.

5- 19

-31-

VARIABLES

THERE ARE TWO TYPES OF PSEUDO DEVICE VARIABLES:

I GLOBAL

t LOCAL

THE MAXIMUM NUMBER OF VARIABLES THAT CAN BE DEFINED IS ESTABLISHED

AT SYSTEM GENERATION TIME.

-32-

NAMING VARIABLES

A VARIABLE NAME CAN CONSIST OF:

1 ONE THROUGH EIGHT CHARACTERS: THE FIRST MUST BE ALPHABETIC

Arm ALL OTHERS ALPltANUMER I c.

1 AN @ SIGN WHICH MUST PRECEDE THE VARIABLE NAME.

EXAMPLE:

@CNT

@IDXlO
@J

GLOBAL VARIABLES

1 EXIST FROM SIGNON TO SIGNOFf.

e MAY BE FREED USING THE $FREE COMMAND.

-34-

LOCAL VARIABLES

1 CAN BE USED ONLY WITHIN THE CSS LEVELS IN WHICH THEY ARE

DEFINED.

1 ~~EN A PARTICULAR CSS LEVEL IS EXITED, ALL LOCAL VARIABLES

DEFINED WITHIN IT ARE FREED.

-35-

DEFINING VARIABLES

1 ALL VARIABLES MUST BE DEFINED BY NAME USING THE $GLOBAL AND

$LOCAL COMMANDS.

t TO SET A VARIABLE TO A SPECIFIC VALUEJ USE THE $SET C0Mf1AND.

-36-

SGLOBAL

5.5.7 SGLOBAL Coaaand

The $GLOBAL command names a global variable and specifies the
maximum length of the variable to which it can be set by the $SET
command.

For111at:

Parameters:

varname

length

Example:

SGLOBAL OIA(6)

is a 1- to a-character name (the first
character is alpabetic) preceded by the @
siqn, identifyinQ a qlobal variable.

is a decimal number from 4 through 32
specifying the length of the variable defined
by the $SET command. If this parameter is
omitted, the default is a.

5- 1 3

-37-

5.5.9 SLOCAL Coanand

The SLOCAL command names
maximum lenqth variable
command.

a local variable
to which it can

and specifies the
be set by tha SSET

Format:

Parameters:

varname

lenqth

Example:

SLOCAL iilA(U)

is a 1- to a-character name (the first
character is alphabetic) preceded by the iil
sign, identifyinq a local variable.

is a decimal number from 4 through 32
specifyinq the length of the variable defined
by the SSET command. If this par~metar is
omitted, the default is 8.

~-16

SSET

5.5.11 SSET Command

The SSET command establishes the value of a named
variable.

Pseudo device

Format:

$SET varname=e

Functional Details:

Exp~essions for this command are concatenations of variables,
parameters, and character strings. No operators are allowed in
an expression. If a character string is includad in an
expression, it must be enclosed betveen apostrophes('). If an
apostrophe is part of the character string, it must be
represented as tvo apostrophes (• •).

I The initial value of the variable is
I SIFNULL and SIF~NUlL commands to
I value.

I Examples:

SSET @A - @A 1@A2

SSET @A = @A1' .MAC'

SSET .VA = @1

SSET @A = • A 1 ' B '

-39-

blanks. This allows the
test for a null or not null

s-1s

SFREE I'

5.5.6 SFREE Command

The SFREE command frees one or more pseudo variables.

Format:

SFREE varname 1 G'···,varnamen]

Parameters:

varname

I . Example:

SFREE @A

is a 1- to 8-character name specifying the
variable whose name and value are to be freed.

s-12

RESERVED VARIABLES

1 VARIABLE NAMES STARTING WITH THE CllARACTER STRING @SYS ARE RESERVED

FOR SYSTEM USE. ~,~1
/

e A USER HAS READ AND WRITE ACCESS TO @SYS VARIABLES.

o A USER CANNOT DEFINE VARIABLES STARTING WITH @SYS.

e @SYSCODE = CONTAINS THE VALUE OF THE LAST END OF TASK CODE FOR

A PARTICULAR SESSION.

-41-

CSS ALLOWS LOGICAL IF COMMANDS.

o END OF TASK CODE TESTING

o FILE EXISTENCE TESTING

e VOLUME EXISTENCE TESTING

1 FILE EXTENSION EXISTENCE TESTING

• PARAMETER EXISTENCE TESTING

1 COMPARING TWO ARGUMENT TESTING
1

C-'}H'f~
H6-f a.v
~f\11

-LJ2-

EACH LOGICAL IF COMMAND ESTABLISl1ES A CONDITION THAT IS TESTED BY THE

CSS PROCESSOR. IF THE RESULT OF THIS TEST IS TRUE~ COMMANDS UP TO A

CORRESPONDING $ELSE OR $ENDC COMMAND ARE EXECUTED. IF THE RESULT OF

THIS TEST IS FALSE THE COMMANDS AFTER THE $ELSE ARE EXECUTED UP TO TllE

CORRESPOND I NG $ENDC~ OR THE CORRESPOND I NG $CJDC IS EXECUTED.

9 Dr"t £.
i!;J:f LC 0 N~' rt~~,'>

~ .. f
,{' (L..-ffr;,_

f~~)
if g__;/'P C--

$IF

•
•
0

< STMT1 >

< STMT2 > ,
•

< STMT n >

$ELSE

< STMT1 >

< S~MT2 >
' < STMTn >

$ENDC

THESE STATEMENTS ARE EXECUTED

ONLY IF THE CONDITION IS TRUE.

THESE STATEMENTS ARE EXECUTED

ONLY IS THE CONDITION IS FALSE.

1 THE $ENDC COMMAND DELIMITS THE RANGE OF A LOGICAL IF.

1 NESTING IS PERMITTED.

RULE: IF YOU HAVE AN $IF STATEMENT YOU MUST ALWAYS HAVE AN $ENDC

STATEMErn. THE TOTAL NUMBER OF $IF STATEMENTS Irl A css

MUST EQUAL THE TOTAL NUMBER OF ·$ENDC STATEMENTS.

-4 5-

VALID EXAMPLES OF LOGICAL IF COMMANDS:

[$IF $IF $IF - $IF $IF

$ENDC $ELSE [$IF $ELSE $IF

$ENDC -$ENDC [$IF $ELSE

[$IF $ErJDC -$ENDC

$ENDC $ENDC $ELSE

- $ENDC $ENDC

-46-

INVALID EXAMPLES OF LOGICAL IF COMMANDS:

$IF . $IF $IF $IF
• , I I
(' , • ,
0 r I ,

$IF $ELSE $IF $IF , • , , , • ' .,
I

,
I r

_ $ENDC $IF $ELSE $ELSE
I I I
I ,

I
I l I .$ENDC L. $ENDC $ELSE , , ,

$ENDC

-47-

END OF TASK CODE TESTING

THE END OF TASK CODE IS A HALFWORD QUANTITY MAINTAINED FOR EACH USER

BY THE SYSTEM.

IT IS SET OR RESET IN ANY OF THE FOLLOWING WAYS:

SET CODE n This command, which can be included in a CSS
file or entered at the terminal, sets the end
of task code to n.

' SJOB As part of its start job function, this
command resets the end of task code for the
current CSS task to O.

Command error A command error causes the CSS mechanism to
skip to STERHJOB assuminq that a SJoa·was

SS KIP

executed. {If no SJOB was executed, CSS ·
terminates.) To indicate that the skip took
place, the end of task code is set to 255.

This command has the same effect as a command
error.

EOT (SVC 3,n) When any task terminates by executing t~e end
of task program command (SVC 3,n), the end of
task cede for that task is set to n.

CANCEL When a task is cancelled, the end of task code
is set to 255.

-49-

s-23

The six comman1s available for testinQ the end of tas~ code of
the currently selected CSS task are as folloYs:

F ;J!fJ 15'

SIFE n
SIF~E n
SIFL n
SIFNL n
SIFG n
SIFNG n

In all cases, if
commands until
attempts to skip

f1 /1'1eK 4

JJ { f, ·rc~po ~

F-;£~/{~ A ~·Q"
/Lvw ;:nvw

~ -;·-----/±J!l/' c.;n.-cl(
..:jt- Dbi..f. C/(f7JJt.

• f.'ff tJ~ ~ff
11µ1<
Jt tt.Jf-

~'f/r?v:J
fo~~,Jr

Test end Of task code equal to n
Test end of task. code not equal to n
Test end of task. code less than n
Test end of task code not less than n
Test end Of task code greater than n
Test end of task code not ~reater- than n

the results of the test are "false", css skips
the co rte ~t:ondi ng SELSE or SEN DC. If a css
beyond EOF, a command error is generated.

5-23

~n.

5.6.2 File Existence TestinQ Commands

There are two commands dealinq with flle existence:

SIFX f1 Test fd for existence

~Ifl!X fd Test fd for nonexistence

If the result o~ the test is false, CSS skips to the
corresponding $ELSE or SENCC command. If a CSS attempts to skip
beyond EOF, an error is Qenerated.

/ff :r f ;J ';l C-(,/\/ '(? y;, p _k<i

/tt. ~c I ;.JP 7- Pr'i-

f f-.p;Vc-

~

~~f- x tv'Y'f v,-1----r
0/ '

'Jlft f-'((£11 ~ff

fl. t-trf L
c/ t ft/Pf. 'P #-1

5-21.t

A- C--

If tJi!f' L-

SIFVOLUME

5.9 SIFVOLUME COMKAKD

The SIFVOLUME command tests for the existence of a volume n~me in
an fd. If a volume exists, subsequent commands are executed up
to the next SELSE or SENCC command.· If the volume is omitted in
the fd, subsequent commands are skipped up to the next SELSE or
SENDC command.

Format:

i.lIYOLUliE fd

Parameter:

f d

!J $r=:V @/
tt--"µ 6J I

fftt..<?t-
A,, <(7;L_· @/ £ f)"!'J)? / 7 -

ff ,f,-f/P C-

is the file descriptor tested to determine if
a volume na~e is included.

5-30

-S?-

I SIFEXTENSION

s.e SIFEXTEKSIOH COHHAND

The SIFEXTENSION command is used to test for the existence of an
extension for a given fd. If the extension exists, subsequent
commands are executed up to the next SELSE or SEHDC command. If
an extension does not exist, subsequent commands are skipped up
to the next SELSE or SENDC command.

Format:

~l.[EXTENSION fd

Parameter:

f d

Functional Details:

is the file descriptor to be tested
determine if an extension is included.

SIFEX (with no fd) is always considered false.
SIFNEX (with no fd) is always considered true.

to

5- 29

5.6.3 Parameter Existence Testin9 Commands

There are two commands dealinq with the existence of parameters:

~l.Eli!l L J. cil n

~IIl!l!Y.LL .iln

Test ciln null

Test @n not null

If the result of the test is false, CSS skips to the
corresponding SELSE or SENtC command. If such skipping attempts
to skip beyond EOF, a command error is given.

The use of the multiple @ notation to test for the existence of
high~r level parameters is permitted. In addition, a combination
of parameters can be tested simultaneously.

Exa111ple:

In effect, this tests the lo~ical OR of @1, @2, and cil3 for
nullity. If any of the three is present, the test result is
false.

- SL1-

5- 25

s.10 LOGICAL .ll: \...UUllnn ---··----

The following logical IF co~mands are used to compare two
arguments. They differ from the other logical IF commands in
that they do not test specific built-in conditions but, rather,
test conditions provided by the user. These commands are
available only with MTH.

{7 @/-:- @:J-
) SIF ••• EQUAL

<:.: SIF ••• NEQUAL
) $IF ••• GREATER UIF ••• NGREATFR

IF ••• LESS
IF ••• NLESS

For each of the logical
according to the mode.

• Chacacter

• Lecimal

• Hexadecimal

commands, two arguments are
There are three valid modes:

compared

5-30

For character mode, the comparison is lef t-to-riqht and is
terminated on the first pair of characters that are not the same.
If one string is exhausted befor.e the other, the short string is
less than the long string. Lf both strinQs are exhausted at the
same time, they are equal. For character mode, the arQuments can
be enclosed in double quotes if they contain blanks. rhe quotes
are not included in the compare.

For decimal and hexadecimal mode, the comparison is performed by
comparinQ the binary value of the numbers.

lf after comparing the arguments for each of the commands, the
condition is determined to be true, subs~quent commands are
executed up to the corresponding $ELSE and SENDC. If the
condition is false, commands are skipped up to the corresponding
SELSE or SENDC.

'/fflt:.-' -=-~t1
(fr~v/.;_ @.~

, Cf-f ?- 5- 31

5.10.1 SIF ••• EQUAL, SIF ••• HEQUAL Commands

The SIF ••• EQUAL command is used to determine if two arquments are
equal, vhile the SIF ••• NEQUAL is used to determine if tvo
arquments are not equal.

Format:

SIF

SIF

5-32

::>. llJ·~ ::>.Lt ••• 1:11:tt..l\Tt.1:t, :;ilt ••• ttl2H~ATt.H Com11ands

The SIF ••• GREATER command is used to determine if ar~1 is qreater
than ar72. The SIF ••• ~GREATER command is used to determine if
arg1 is not greater than arg2.

Format:

~li.ARACTER

SIF l OErnAL ~ arQ1 1ftEATER arg 2

HEXADECIMAL

kliARACTER

SIF ~ omm ~ arg1 ~GREATER arq 2

fiEXADECIMAL

5-32

-S7-

5.10.3 SIF ••• LESS, SIF ••• NLESS Commands

The SIF ••• LESS command is used to detecmine if arQ1 is less than
arg2. The SIF ••• NLESS command is used to determine if acg1 is
not less than acg2.

Format:

~l!ARACTER

SIF l DECIMAL ~ arg 1 LESS arq 2

liEXADECIMAL

f!!ARACTER

$IF l DECIMAL ! arg 1 N q;s S arq 2

liEXADECIMAL

5-33

ro

ef' ~~-ul. '#;rP g/f 5. 7 $GOTO AND $LAB EL COIUU N DS M rA :1·• Go pDjl'(/W"' ..
' · / ,,ut7> /'Al :r-r 5-r,,Plt:/~v~

The SGOTO command is used to skip forward within a CSS procedure.
The SLABEL is used to define the object of a SGOTO.

Foraat:

1g0To label

~.LABEL label

Parameters a

Label

Functional Details:

is from one to eight alphanumeric characters,
the first of which must be alphabetic.

The $GOTO command causes all subsequent commands to be ignored
until a SLABEL command with the same label as the SGOTO command
is encountered. At that point, command execution resumes.

The SGOTO cannot branch into a logical IF comm~nd range but can
braoch cut from one.

5-27

-59-

THE FOLLOWING IS A VALID EXAMPLE OF $GOTO AND $LABEL:

$IF <CONDITION>

$GOTO OUT IF
' •
' $ENDC

$IF < CONDITION >
I ,
' $ENDC

$LABEL OUT IF

-61-

THE FOLLOWING IS AN INVALID EXAMPLE OF $GOTO AND $LABEL:

$IF <CONDITION>

$GOTO OUT IF
I

• ,
$ENDC

$IF

$LABEL

<CONDITION >

OUT IF

THE $LABEL OCCURS WITHIN AN ·IF BLOCK (THE SECOND IF CONDITION) THAT WAS

NOT ACTIVE WHEN $GOTO WAS EXECUTED.

-G2-

HOW TO CREATE AND RUN A CSS FILE

WRITE A CSS THAT EXECUTES HIE FOLLOWING STEPS:

1. DI SPLAY ALL USERS CURRENTLY SIGNED ON TO THE SYSTEM. VA <{

2. DISPLAY THE CURRENT TIME OF DAY. JlA/

3. CREATE A FILE NAMED TMP.DAT THAT CONTAINS THREE RECORDS

OF TEXT USING THE $BUILD .. I • $ENDE COMMANDS.

111 <" l'1 L c .ll-'7

;)/;- ?tC,,/~rl

-* f_'Vt ~

71rt

-G)-

iTD IT CR

OS/32 EDIT

>AP

1 D U <CR>

2 D T (CR>

HOW TO CREATE AND RUN A CSS FILE

ANSWERS

3 $BUILD TMP.DAT <CR>

4 THE SKY IS BLUE. <CR)

5 THIS IS RECORD TWO. <CR).

6 ISN'T THIS FUN! <CR>

7 $ENDB '{CR >

8 $EXIT <CR>

9 <CR > - i 7J ~t'~

) SA TEST I css <CR>

) END <CR>

*

TO ENVOKE THE CSS TYPE:.

i~ TEST CR

