

XENIX 286 Device Drivers Memory-Mapped I/O

int peekw(offset, selector)
unsigned offset; /* offset into source data segment */
unsigned selector; /* segment selector for source data segment */
/*
Reads one word (two bytes) at the specified offset in the specified
data segment. The value read is returned as an into
*/

For single bytes or words, the peekb or peekw routines should be used instead of peek.

The Poke Routines

The following poke routines are part of the XENIX 286 kernel:

poke(offset, selector, count, addr)
unsigned offset; /* offset into destination data segment */
unsigned selector; /* segment selector for destination segment */
unsigned count; /* number of bytes to transfer (0-65535) */
char *addr; /* source �a�d�d�r�~�s� in kernel data segment

(short pointer, offset only) */
/*
Copies count bytes beginning at addr in the kernel data segment, to
an area beginning at offset in the data segment specified by selector.
count can be 0, in which case no bytes are copied.
*/

pokeb(offset, selector, value)
unsigned offset; /* offset into destination data segment */
unsigned selector; /* segment selector for destination segment */
int value; /* int with low byte to be poked */
/*
Writes the low byte of value (value & Oxff) at the specified offset
in the specified data segment.
*/

pokew(offset, selector, val ue)
unsigned offset; /* offset into destination data segment */
unsigned selector; /* segment selector for destination segment */
int value; /* int (word) value to be poked */
/*
Writes the word value at the specified offset in the specified
data segment.
*/

For single bytes or words, the pokeb or pokew routines should be used instead of poke.

A-3

APPENDIX B
CONVERTING DRIVERS FROM

RELEASE 1 TO RELEASE 3 OF XENIX 286

This appendix describes how changes in the device driver interface affect the conversion
of drivers. The changes made to the device driver interface in XENIX Release 3
represent improvements over the Release 1 version. Relatively few changes are
required to convert a block driver from Release 1 to Release 3. While significant
changes have been made to character devices (particularly terminal drivers), conversion
should not require a major rewrite of the code.

The changes in character device drivers are primarily the result of the more
sophisticated controllers available on the market. New hardware and better firm ware
have reduced the workload of the machine-dependent line discipline routines. They are,
therefore, simplified under Release 3. In general, as a device increases in functionality,
the driver-device interface becomes more complex: the device requires more
information, and the driver must provide it. Consequently, the driver routines in
Release 3 are expanded, and the tty structure has been altered to hold more
information.

Block device driver changes are fairly minor and result from the fact that XENIX
Release 3 supports large model programs. The changes that are included affect the
static buffer header associated with each device (a cosmetic upgrade) and the way in
which the driver addresses memory.

Terminal Drivers

tty Structure

Significant changes have been made in this area. Many fields previously present in the
product have been eliminated or replaced; new fields have been added.

Table B-1 shows fields that have changed in the tty structure. Note that some have
been replaced by new fields in the Release 3 version, while others have been eliminated.

Table B-2 shows the Release 3 fields that did not exist in the Release 1 tty structure.
Some of these new fields contain information that was previously contained in a
different Release 1 field. Others are entirely new; they have no Release 1 counterpart
and contain no Release 1 information. The tty structure is defined in the include file
tty.h, which is listed in Appendix C of this manual.

An example of an actual Release 3 terminal driver appears in Chapter 4, "Terminal
Drivers." Studying the example code in Chapter 4 may help you to understand the points
made about converting terminal drivers in this appendix.

B-1

Converting Drivers

Release 1 Field

int (*t _ oproc)

Oint (*t iproc)O

struct chan *t chan

caddr t t addr

dey t t dey

short t 2state

char t erase

char t kill

char t _ ispeed

union t un

B-2

XENIX 286 Device Drivers

Table B-1. Changed tty Fields

Comment

Pointer routine to
start output

Pointer routine to
start input

Destination
channel for
multiplexed files

Auxiliary line
discipline pointer

Device address

Device nu m ber

octl models

Driver-specific
state

Erase character

Kill character

Input speed

Output speed

Extended ioctl
control structures

Release 3 Field Comment

int (*tJ)roc)O Pointer to new routine
that starts input and
output, and changes
the tty structure if
necessary. The driver
writer must write this
new routine.

(eliminated)

(eliminated)

short t addr

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

Multiplexed files not
supported.

No longer needed.

Device number.

t addr field used.

Replaced by several
fields.

Now bit-mapped in
char control array
field.

Now bit-mapped in
char control array
field.

Both speed fields are
replaced by a single
bit-mapped speed in
the new control mode
field.

Information encoded
in new mode fields.

XENIX 286 Device Drivers

New Field

ushort t _ illag

ushort t _ ollag

chart trow

Converting Drivers

Table B-2. New tty Fields

Comment

Input modes; values for this field are located in the new
file termio.h. Release 1 drivers were concerned with
very few input modes; most were not an option. This is
an expanded capability of Release 3.

Output modes; values for this field are also located in
the new file termio.h. In Release 1, both input and
output mode values were default (assumed) or ignored
in the line discipline routines. However, some
controllers need this information, and these fields allow
a user to set the modes.

Control modes; values for this field are also located in
the new file termio.h. This field serves the same
purpose that the tc structure together with the ttiocb
structure served in Release 1: it changes the tty
characteristics (e.g., baud rate).

Line discipline modes; new to Release 3. These modes
are used by the line discipline routines. Bits for this
field are defined in termio.h.

External protocol modes; new to Release 3. These
allow different protocols. Bits for this field are defined
in termio.h.

Current row; it may be useful to some drivers to know
which line a user is on if the last line has been reached.

Pointer to multidrop channels.

B-3

Converting Drivers XENIX 286 Device Drivers

Changes to Routines

Under Release 1, the routines required to interface with the XENIX kernel included

ixxxinit
ixxxopen
ixxxclose
ixxxstart
ixxxread
ixxxwrite
ixxxintr
ixxxioctl

The ixxxstart routine is no longer a required interface routine; it is now an optional
internal routine. Replacing and expanding considerably on the function of ixxxstart is
ixxxproc~ It isa required routine, and a field in the tty structure (tp->t~roc) holds a
pointer to it. Several line discipline routines including ttyclose, ttyflush, canon, ttrstrt,
ttyread, and ttywrite call ixxxproc to effect some change on the output.

The parameters to ixxxproc include tp and cmd. tp is a pointer to the tty structure;
ixxxstart takes tp as its only parameter. Thus, with this parameter alone, ixxxproc
could accomplish what ixxxstart does. However, the expanded capability of ixxxproc is
reflected in its second argument, cmd, which dictates what action--if any--ixxxproc
should take. The commands that must be haildled and their meanings are listed in Table
B-3.

Command

T TIME

T WFLUSH

T RESUME

T OUTPUT

T SUSPEND

T BLOCK

T UNBLOCK

T RFLUSH

T BREAK

B-4

Table B-3. ixxxproc Commands

Function

Time delay for outputting a break has finished.

Flush output queue.

Output was stopped or someone is waiting for the output
queue to drain.

Start output.

Stop output on this line.

Block input.

Start input.

Someone is waiting to flush the input queue.

Send a break.

XENIX 286 Device Drivers Converting Drivers

In Release 1, these functions were handled as machine-independent features. Since they
are truly machine-dependent, they are now included as a user-written routine. In
converting a Release 1 driver to Release 3, ixxxstart may be made a routine internal to
ixxxproc, and code to handle the other commands listed in Table B-3 would have to be
written.

The new ixxxproe procedure is now called with two argu ments:

tp /* pointer to tty structure */
cmd /* user command to change output */

An example of code for an ixxxproc procedure is contained in Chapter 4, "Terminal
Drivers."

In Release 3, ixxxioetl is called by the kernel with the first two arguments swapped:

ixxxioctl(cmdarg, dev, addr, flag)

That is, in Release 1, ixxxioctl was called in this order:

ixxxioctl(dev, cmdarg, addr, flag)

Note that the cmdarg argument is a long type under Release 3. Formerly, it was an int.

In addition to the file tty.e, which under Release 1 contained all the line discipline
routines, there now exists a file ttO.c. Some of the line discipline routines are located
in tty.e, and the others are located in ttO.c. (This information is useful only to source
code customers.)

Another new Release 3 file is ttold.h. It contains all the Release 1 structure definitions
that Release 3 requires in order to maintain UNIX Version 7 compatibility. These
definitions include the ioctl user structures, so that user programs written under
Release 1 will be source-compatible under Release 3. If the ttold.h file is included in a
Release 3 driver and all other Release 3 changes have been made, then user programs
should be compatible.

B-5

Converting Drivers XENIX 286 Device Drivers

Line Discipline Routines

The line discipline routines (those accessible by the driver) in Release 1 have been
replaced by a new set of routines in Release 3, as Table 8-4 indicates. Some of the
names have remained the same, and the functionality has changed only in that the new
driver routine ixxxproc does most of the work these routines did in Release 1. These
Release 3 routines are listed in the linesw table. (Note that the arrangement of routines
in Table 8-4 does not indicate a correspondence between all pairs of routines. E.g.,
I_rend does not correspond to I_input.)

The tty.h File

Release 1

I_open

I close

I read

I write

I ioctl

I rint

I rend

I meta

I modem

Table 8-4. Line Discipline Routines

Release 3

I_open

I close

I read

I write

I ioctl

I_output

I_input

I mdmint

The most obvious change to tty.h is that much of its information has been expanded and
moved into two new files, ttold.h and termio.h. The ttold.h file contains structures as
defined under XENIX 286 Release 1; it allows compatibility with UNIX Version 7. The
termio.h file contains the bit values defined for the four new mode fields located in the
tty structure:

input modes
output modes
control modes
line disciplines

(tp->t ifiag)
(tp->t=ofiag)
(tp->t _ cfiag)
(tp->t _lflag)

Several fields contained in the tty structure under Release 1 have been eliminated and
replaced by these four mode fields. The values for the new mode fields encode much
more information than the Release 1 fields, reflecting the fact that the driver is
handling more than it did in the previous release.

The Release 1 fields that have been replaced include t_flags, t_state, t_2state, t_erase,
t_ kill, t _char, t _ ispeed, and t _ ospeed.

8-6

XENIX 286 Device Drivers Converting Drivers

A comparison between the Release 1 structure fields and the bit values for the Release
3 tty structure fields reveals that all Release 1 information is still present under
Release 3. The form has simply changed as a result of the need to keep track of more
information. The values for the new Release 3 mode fields are displayed in Tables B-5,
B-6, B-7, and B-8. These values are defined in termio.h, which is listed in Appendix D of
this manual.

Table B-5. Input Modes Describing Basic Terminal Input Control

Input Modes Octal Values Comments

IGNBRK 0000001 Ignores break condition.

BRKINT 0000002 Signals interrupt on break.

IGNPAR 0000004 Ignores characters with parity errors.

PARMRK 0000010 Marks parity errors.

INPCK 0000020 Enables input parity check.

1ST RIP 0000040 Strips characters.

INLCR 0000100 Maps newline to carriage return on input.

IGNCR 0000200 Ignores carriage return.

ICRNL 0000400 Maps carriage return to newline on input.

IUCLC 0001000 Maps uppercase to lowercase on input.

IXON 0002000 Enables start/stop output control.

IXANY 0004000 Enables any character to restart output.

IXOFF 0010000 Enables start/stop input control.

Table B-6. Output Modes Specifying System Treatment of Output

Output Modes Octal Values Comments

OPOST 0000001 Postprocesses output.

OLCUC 0000002 Maps lowercase to uppercase on output.

ONLCR 0000004 Maps newline to carriage return-newline on output.

OCRNL 0000010 Maps carriage return to newline on output.

ONOCR 0000020 No carriage return output at column O.

ONLRHT 0000040 Newline performs carriage return function.

OFILL 0000100 Uses fill characters for delay.

OFDHL 0000200 Fill is DEL, else NUL.

NLDLY 0000400 Selects newline delays.

CRDLY 0003000 Selects carriage return delays.

TABDLY 0014000 Selects horizontal tab delays.
BSDLY 0020000 Selects backspace delays.

VTDLY 0040000 Selects vertical tab delays.

FFDLY 0100000 Selects formfeed delays.

B-7

Converting Drivers XENIX 286 Device Drivers

8-8

Table 8-7. Control Modes Describing Hardware Control of the Terminal

Control Modes Octal Values Comments

CBAUD 0000017 8aud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
EXTA 0000016 External A
EXTB 0000017 External 8

CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Sends 2 stop bits, else 1
CREAD 0000200 Enables receiver
PARENB 0000400 Parity enable
PARODD 0001000 Odd parity, else even
HUPCL 0002000 Hangs up on last close
CLOCAL 0004000 Local line, else dial-up

Table 8-8. Line Discipline Modes Used to Control Terminal Function

Line Discipline
Modes

ISIG
ICANON
XCASE
ECHO
ECHOE

ECHOK
ECHONL
NOFLSH

Octal Values

0000001
0000002
0000004
0000010
0000020

0000040
0000100
0000200

Comments

Enables signals
Canonical input (erase and kill processing)
Canonical upper/lower presentation
Enables echo
Echoes erase character as
backspace-space-backspace
Echoes newline after kill character
Echoes newline
Disables flush after interrupt or quit

XENIX 286 Device Drivers Converting Drivers

Within termio.h is one defined structure called termio. It is the ioctl control packet;
that is, it contains all information needed by the ioctl routine. That information
includes all the mode information listed in the four preceding tables plus information on
which set of line routines to use, the external protocol modes, and settings for control
characters that were located in the Release 1 tty structure (erase, kill, etc.).

Block Device Drivers

Buffer Changes

In Release 1, the buffer header was defined in the file buf.h, and all buffer headers,
including the static buffer header for each device, were of this format. The static
buffer header did not use most of the fields as defined in buf.h because most of them
dealt with I/O request information. (The static buffer header merely acts as a queue
header.)

In Release 3, defining a new format for the static buffer header distinguishes the static
buffer header from a regular buffer header used to make I/O requests. The new format
is defined in iobuf.h and has fields appropriate to a queue header. In block drivers, then,
the static buffer header is declared as iobuf rather than buf. (In Release 1, the static
buffer header was usually declared by the name bufh.) iobuf.h is listed in Appendix F of
this manual and is also described in Chapter 5, "Block Drivers."

Addressing

In Release 1, the buffer header as defined in buf.h contained several fields used to
address the device. These fields included a union of caddr t b addr and char b xmem.
In Release 3, these fields have been replaced with p addr, a single field representing a
24-bit physical address. Addressing is now much-simpler. Wherever the routine
physaddr was used in Release 1 to put together a physical address, bp->p _ addr can be
used directly.

The cmdarg argument in the ioctl routine was a short pointer in Release 1 (where short
means 16-bit offset only). Because Release 3 is large-model (and has many data
segments), this argument is now a long pointer. Recall that cmdarg is a pointer to a
structure in space. Under Release 1, the system routines fuword and fubyte were used
to access the fields in the structure. With Release 3, the system routine copyin can be
used to make a local copy of the structure, which is more efficient for accessing fields.
eopyin is described in Chapter 2, "Driver Fundamentals."

B-9

APPENDIX C
tty.h INCLUDE FILE

This appendix lists the tty.h include file used by character drivers, including terminal
drivers. Note that tty.h includes the include file termio.h, which is Appendix D of this
manual.

/*
* THIS FILE CONTAINS CODE WHICH IS DESIGNED TO BE
* PORTABLE BETWEEN DIFFERENT MACHINE ARCHITECTURES
* AND CONFIGURATIONS. IT SHOULD NOT REQUIRE ANY
* MODIFICATIONS WHEN ADAPTING XENIX TO NEW HARDWARE.
*/

#include "termio.h"

/*
* A clist structure is the head of a linked list queue of characters.
* The routines getc* and putc* manipulate these structures.
*/

struct clist {

};

/*

int
struct
struct

c cc;
cblock
cblock

/* character count */
/* poi nter to fi rst * /
/* pointer to last */

* A tty structure is needed for each UNIX character device that
* is used for normal terminal 10.
*/

struct tty {
struct clist t rawq; /* raw input queue * / -
struct clist t canq; /* canonical queue */
struct clist t outq; /* output queue */
struct cblock *1 buf; /* buffer pointer */
int (*t proc)(); /* routine for device functions */
ushort t iflag; /* input modes */
ushort t oflag; /* output modes * /
ushort t cflag; /* control modes */
ushort t Iflag; /* line discipline modes */
ushort t xflag; /* external protocol modes */
short t state; /* internal state */

-
short t pgrp; /* process group name */
char t line; /* linediscipline */
char t delct; /* delimiter count */
char t col; /* current column */
char t row; /* cu rrent row * /

C-l

tty.h Include File

};
/*

uchar t
short
struct

t cc[NCC + 2];
t-addr;
tty *t chan;

* The structure of a clist block
*/
#define CLSIZE 24
struct cblock {

struct cblock *c next;
char c first; -

-char c last; -char (data[CLSIZE];
}; -

extern struct cblock cfree[];
extern struct cblock *getcbO;
extern struct cblock *getcfO;
extern struct clist ttnulq;

struct chead {
struct cblock *c next;
int (size;

};
extern struct chead cfreelist;

struct inter {
int cnt;

};

XENIX 286 Device Drivers

/* settable control chars */
/* v7 compatibility */
/* multi-drop channels, pointer to */

/* control characters */ /* pick up from termio.h */

/* default control chars */ /* pick up from termio.h */

#define TTIPRI 28
#defi ne TTOPRI 29

/* limits */
extern
#define
#define
#define

int
TTYHOG
TTXOLO
TTXOHI

/* input modes * /

/* output modes * /

/* control modes */

ttlowat[], tthiwat[];
256
60
180

/* line discipline 0 modes */

/* default speed */

C-2

/* pick up from termio.h */

/* pick up from termio.h */

/* pick up from termio.h */

/* pick up from termio.h */

/* pick up from termio.h */

XENIX 286 Device Drivers

/* Hardware bits */
#define DONE 0200
#define IENABLE 0100
#define OVERRUN 040000
#define FRERRO 020000
#define PERROR 010000

/* Internal state */
#define TIMEOUT 01
#define WOPEN 02
#define ISOPEN 04
#define TBLOCK 010
#define CARR ON 020 -#define BUSY 040
#define OASLP 0100
#define IASLP 0200
#define TTSTOP 0400
#define EXTPROC 01000
#define TACT 02000
#define ESC 04000
#define RTO 010000
#define TIIOW 020000
#define TTXON 040000
#define TIXOFF 0100000

/* I output status * /
#define CPRES 1

/* device commands */
#define T OUTPUT 0
#define T-TIME 1
#define T-SUSPEND 2
#define T-RESUME 3
#define T-BLOCK 4
#define T-UNBLOCK 5
#defi ne T-RFLUSH 6
#define T-WFLUSH 7
#define T-BREAK 8

tty.h Include File

/* Delay timeout in progress */
/* Waiting for open to complete */
/* Device is open */

/* Software copy of carrier-present * /
/* Output in progress */
/* Wakeup when output done */
/* Wakeup when input done */
/* Output stopped by ctl-s */
/* External processing */

/* Last char escape */

C-3

APPENDIX D
termio.h INCLUDE FILE

This appendix lists the termio.h include file used by terminal drivers. termio.h is
included by the include file tty.h, and terminal drivers can just include tty.h and will
still include all the definitions in termio.h. tty.h is listed in Appendix C of this manual.

/*
* THIS FILE CONTAINS CODE WHICH IS DESIGNED TO BE
* PORTABLE BETWEEN DIFFERENT MACHINE ARCHITECTURES
* AND CONFIGURATIONS. ITSHOULD NOT REQUIRE ANY
* MODIFICATIONS WHEN ADAPTING XENIX TO NEW HARDWARE.
*/

/*
* Modification history
* 1001 4/30/84 comment
*
*
*
*/

#define NCC

/* control characters * /
#define VINTR
#define VQUIT
#define VERASE
#define VKILL
#define VEOF
#define VEOL
#define VMIN
#define VTIME
#define VCEOF
#define VCEOL

#define CNUL
#define CDEL
/* default control chars */
#defi ne CESC
#define ClNTR
#define CQUIT
#define CERASE
#define CKILL
#define CEOF
#defi ne CST ART
#defi ne CSTOP

8

o
1
2
3
4
5
4
5
NCC

Added definitions for baud rates higher than
9600 baud. Also added definitions for extra flag
field.

(NCC + 1)
/* RESERVED true EOF char (V7 compatability) */
/* RESERVED true EOL char */

o
0377

'\\'
0177
034
'\010'
'\025'
04
021
023

/* DEL */
/* FS, cntll */
/* backsp */
/* cntl u */
/* cntl d */
/* cntl q */
/* cntl s */

D-l

termio.h Include File XENIX 286 Device Drivers

/* input modes * /
#define IGNBRK 0000001
#define BRKINT 0000002
#define IGNPAR 0000004
#define PARMRK 0000010
#define INPCK 0000020
#define ISTRIP 0000040
#define INLCR 0000100
#define IGNCR 0000200
#define ICRNL 0000400
#define IUCLC 0001000
#define IXON 0002000
#define IXANY 0004000
#define IXOFF 0010000

/* output modes * /
#define OPOST 0000001
#define OLCUC 0000002
#define ONLCR 0000004
#define OCRNL 0000010
#define ONOCR 0000020
#define ONLRET 0000040
#define OFILL 0000100
#define OFDEL 0000200
#define NLDLY 0000400
#define NLO 0
#define NL 1 0000400
#define CRDLY 0003000
#define CRO 0
#define CR1 0001000
#define CR2 0002000
#define CR3 0003000
#define TABDLY 0014000
#define TABO 0
#define TAB 1 0004000
#define TAB2 0010000
#define TAB3 0014000
#define BSDLY 0020000
#define BSO 0
#define BS1 0020000
#define VTDLY 0040000
#define VTO 0
#define VT1 0040000
#define FFDLY 0100000
#define FFO 0
#define FF1 0100000

D-2

XENIX 286 Device Drivers

/* control modes * /
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CBAUD
EXBAUD
BO
B50
B75
B110
B134
B150
B200
B300
B600
81200
81800
B2400
B4800
B9600
B19200
B38400
B51800
B76800
EXTA
EXTB
CSIZE
CS5
CS6
CS7
CS8
CSTOPB
CREAD
PARENB
PARODD
HUPCL
CLOCAL

0000017
0070000
o
0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017
0010017
0020017
0000016
0000017
0000060
o
0000020
0000040
0000060
0000100
0000200
0000400
0001000
0002000
0004000

/* line discipline 0 modes */
#define ISIG 0000001
#define ICANON 0000002
#define XCASE 0000004
#define ECHO 0000010
#define ECHOE 0000020
#define ECHOK 0000040
#define ECHONL 0000100
#define NOFLSH 0000200
#define XCLUDE 0100000

termio.h Include File

/* *V7* exclusive use */

D-3

termio.h Include File

/* external protocol modes * /
#define XLSIG 0000177
#defi ne RS232 0000000
#define RS422 0000001
#defi ne RS485 0000002
#define XHDLC 0001000
#define XSDLC 0002000
#define XBISC 0004000
#define X25 0010000
#defi ne XMTDP 0020000

#define SSPEED 13

/*
* loctl control packet
*/
struct termio {

unsigned short
unsigned short
unsigned short
unsigned short
char
uchar t

};

D-4

/* type of line signaling */
/* RS 2321ine */
/* RS 422 line */
/* RS 485 line */
/* hd I c packet protocol * /
/* sdlc packet protocol */
/* bi-sync protocol * /
/* CCITT x.25 packet protocol */
/* multidrop device */

XENIX 286 Device Drivers

/* default speed: 7 = 300, 13 = 9600 baud */

c iflag;
c-oflag;
c-cflag;
c-Iflag;
c-line;
c-cc[NCC];

/* input modes */
/* output modes * /
/* control modes */
/* line discipline modes */
/* line discipline */
/* control chars */

APPENDIX E
buf.h INCLUDE FILE

This appendix lists the buf.h include file, which is included by block drivers. Chapter 5,
"Block Drivers", contains a more detailed description of the buf data structure.

/*
* THIS FILE CONTAINS CODE WHICH IS DESIGNED TO BE
* PORTABLE BETWEEN DIFFERENT MACHINE ARCHITECTURES
* AND CONFIGURATIONS. IT SHOULD NOT REQUIRE ANY
* MODIFICATIONS WHEN ADAPTING XENIX TO NEW HARDWARE.
*/

/*
* Each buffer in the pool is usually doubly linked into 2 lists:
* the device with which it is currently associated (always)
* and also on a list of blocks available for allocation
* for other use (usually).
* The latter list is kept in last-used order, and the two
* lists are doubly linked to make it easy to remove
* a buffer from one list when it was found by
* looking through the other.
* A buffer is on the available list, and is liable
* to be reassigned to another disk block, if and only
* if it is not marked BUSY. When a buffer is busy, the
* available-list pointers can be used for other purposes.
* Most drivers use the forward ptr as a link in their I/O active queue.
* A buffer header contains all the information required to perform I/O.
* Most of the routines which manipulate these things are in bio.c.
*/
struct buf
{

int
struct
struct
struct
struct
dev t
unsigned
paddr t

#define paddr(X)
daddr t
char
unsigned
*/
ushort
queue */

};

b flags;
buf*b forw;

-buf*b back;
buf*av forw; -buf*av back;
b dev; -b bcount;
b-paddr;
-

X->b paddr
-

b blkno; -b error;
intb resid;

b cylin;
-

/* see defines below */
/* headed by d _tab of conf.c */
/* " */
/* position on free list, */
/* if not BUSY* /
/* major + minor device name */
/* transfer count */
1* physical address */

/* block # on device */
/* retu rned after I/O * /
/* words not transferred after error

/* cylinder number for disk i/o

E-l

buf.h Include File

extern
extern
extern
extern
extern
extern

struct buf buf[];
struct buf bfreelist;
struct buf *Ip p;
int Ip count;
int Ip - wmark;
char sabuf[][BSIZE];

BUFMAPOUT
bigetlO;

XENIX 286 Device Drivers

/* The buffer pool itself */
/* head of available list */
/* Low priority pointer */
/* Number of low priority buffers */
/* Low priority water mark */

#ifdef
long
#else
#define
#define
#define
#define
#define
#define
#endif

bigetc(bp,cp) (*(char *) (bp->b paddr + cp»
biget(bp,cp) (*(i nt *) (bp- > b paddr + cp»
bigetl(bp,cp) (*(Iong *) (bp->b paddr + cp»
bi putc(bp,cp,c) (*(char *) (bp- > b paddr + cp) = c)
biput(bp,cp,c) (*(int *) (bp- > b paddr + cp) = c)
biputl(bp,cp,c) (*(Iong *) (bp- > b _paddr + cp) = c)

paddr _ t bufbase;

/*
* These flags are kept in b flags.
*/ -

#define B WRITE 0
#define B-READ 01
#define B-DONE 02
#define B-ERROR 04
#define B-BUSY 010

#ifdef DHISTO
/*

/* non-read pseudo-flag * /
/* read when I/O occurs * /
/* transaction finished */
/* transaction aborted */
/* not on av forw/back list */

* We are running out of bits in the buffer flags. There is only one
* bit flag left which is 040000. Since B MAP and B PHYS are not used
* I stold them for the DHISTO program-:-B PHYS was set in mdep/physio
* but never tested. -
*/
#define
#define
#define

#else

#define
#define
#endif

E-2

B BMISS
B-USERB
DH MAX

020
040
8192

020
040

/* Signifies a buffer miss, i.e went to disk */
/* Signifies a user buffer */
/* Maximum number of dhisto device data points */

/* Physical 10 potentially using UNIBUS map */
/* This block has the UNIBUS map allocated */

XENIX 286 Device Drivers buf.h Include File

#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

B WANTED 0100
B-AGE 0200
B-ASYNC 0400
B-DELWRI 01000
B -OPE N 02000
B-STALE 04000
B-CYLIN 010000
B-LOWPRI 020000
B-UAREA 0100000

/* issue wakeup when BUSY goes off */
/* delayed write for correct aging */
/* don't wait for I/O completion */
/* don't write till block leaves available list */
/* open routine called */

/* buffer contains acyl grp header */
/* Buffer contains low priority data */
/* add u-area to a swap operation */

* Fast access to buffers in cache by hashing.
*/

#define bhash(d,b) «(struct buf *)&hbuf[((i nt)d + (i nt)b)&v. v hmask])

struct hbuf
{

int b flags;
stru ct blrl * b forw;
struct buf *b -back;

};

extern struct hbuf hbuf[];

E-3

APPENDIX F
iobuf.h INCLUDE FILE

This appendix lists the iobuf.h include file, which is included by block drivers. Chapter
5, "Block Drivers", describes the iobuf data structure in more detail.

/*
* THIS FILE CONTAINS CODE WHICH IS DESIGNED TO BE
* PORTABLE BETWEEN DIFFERENT MACHINE ARCHITECTURES
* AND CONFIGURATIONS. IT SHOULD NOT REQUIRE ANY
* MODIFICATIONS WHEN ADAPTING XENIX TO NEW HARDWARE.
*/

/*
* Each block device has a iobuf, which contains private state stuff
* and 21ist heads: the b forw/b back list, which is doubly linked
* and has all the bufferscurrently associated with that major
* device; and the d actf/d actllist, which is private to the
* device but in factTs alwayS-used for the head and tail
* of the I/O queue for the device.
* Various routines in bio.c look at b forw/b back
* (notice they are the same as in thefiuf structure)
* but the rest is private to each device driver.
*/
struct iobuf
{

};

#define
#define

#define
#define
#define

int b flags; /* see buf.h * /
struct bUf *b forw; /* first buffer for this dev */ -struct buf *b back; /* last buffer for this dev */
struct buf *b - actf; /* head of I/O queue */
struct buf *b - actl; 1* tail of I/O queue */ -dev t b dev; /* major + minor device name */
char b-active; /* busy flag * / -char b errcnt; /* error count (for recovery) */ -physadr io addr; /* csr address */ -int io s1; /* space for drivers to leave things -*/
int io s2; /* space for drivers to leave things

*/

tabinit(dv,stat) {O,O,O,O,O,makedev(dv,O),O,O,O,O,O,stat,O,O}
NDEVREG (sizeof(struct device)/sizeof(int»

B ONCE 01
B-TAPE 02
B-TIME 04

/* flag for once only driver operations */
/* this is a magtape (no bdwrite) */
/* for timeout use */

F-l

APPENDIX G
master FILE

This appendix lists an example of the master file, which you must edit to specify the
configuration of your XENIX 286 system. Note that the master file that you receive
with your XENIX system may be different. Chapter 6, "Adding Drivers to the
Configuration", contains more information about the master file.

* The following devices are those that can be specified in the system
* description file. The name specified must agree with the name shown.
*
* The first twelve entries in both the "bdevsw" and the "cdevsw" are
* reserved for use as block devices. The last four of these entries
* are reserved for additional Intel devices and customer block devices.
* All block devices have the same "bdevsw" and "cdevsw" number.
* The" cmaj" number 1 is reserved for use by the memory driver.
*
*name vsiz msk typ hndlr na bmaj cmaj # na vecl vec2 vec3 vec4
* 1 2 3 4 5 6 7 8 9 10 11 12 13 14
*---
i215 1 0137 014 i215 0 0 0 2 -1 0005 0 0 Oa
i216 1 0137 014 i216 0 2 2 2 -1 0005 0 0 Oa
i214 1 0137 014 i214 0 3 3 2 -1 0005 0 0 Oa
i208 1 0137 014 i208 0 4 4 2 -1 0003 0 0 Oa
ramd 0 0136 054 ramd 0 5 5 1 -1 0 0 0 Oa
xlog 1 0137 014 xlog 0 6 6 2 -1 0005 0 0 Oa
*
* The next twelve entries in the "cdevsw" are reserved for character
* devices. The" cmaj" number 12 is reserved for use by the tty driver.
*
Ip 0132 004 Ip 0 0 13 1 -1 0107 0 0 Oa
i74 0137 004 i74 0 0 14 1 -1 0006 0 0 Oa
i188 0137 004 i188 0 0 15 2 -1 0003 0002 0 Oa
i552 0137 004 i552 0 0 16 1 -1 0004 0 0 Oa
i278 0137 004 i278 0 0 17 1 -1 0003 0 0 Oa
i544 0137 004 i544 0 0 18 4 -1 0003 0 0 Oa
i534 0137 004 i534 0 0 19 4 -1 0003 0 0 Oa
*
* These are Intel devices that use an interrupt vector but do not
* have any "bdevsw" or "cdevsw" entry.
*
debug 0 0 dbg 0 0 0 -1 0001 0 0 Oa
slave7 0 0 sl 0 0 0 -1 0007 0 0 Oa
*
* The following devices must not be specified in the system description
* file (xenixconf). These are pseudo drivers and the clock driver.
*
memory 0 06 0324 mm 0 -1 1 0 0 0 0 Oa
tty 0 027 0324 sy 0 -1 12 0 0 0 0 Oa
clock 1 000 0321 0 -1 -1 0 0 0 0 Oa

G-l

master File XENIX 286 Device Drivers

$$$
*
* The following are the line discipline table entries.
*
tty ttopen ttclose ttread ttwrite ttioctl ttin ttout nulldev

$$$$$
*
* The following entries form the alias table.
*
i215 disk
i188 serial
sm sim
$$$
*
* The following entries form the tunable parameter table.
*
buffers NBUF 0
sabufs NSABU F 20
hashbuf NHBUF 128
inodes NINODE 100
files NFllE 100
mounts NMOU NT 6
coremap CMAPSIZ (NPROC*2)
swapmap SMAPSIZ (NPROC*2)
calls NCAll 25
procs NPROC 50
texts NTEXT 40
clists NCLIST 120
locks NFlOCKS 50
maxproc MAXUPRC 1 5
timezone TIMEZONE (8*60)
pages NCOREl 0
daylight DSTFlAG 1
cmask CMASK 0
maxprocmem MAXM EM 0
shdata NSDSEGS 25
maxbuf MAXBU F 192

G-2

APPENDIX H
xenixconf FILE

This appendix lists an example of the xenixconf file, which you edit to specify the
configuration of your XENIX 286 system. Note that the xenixconf file that you receive
with your XENIX system may be different. Chapter 6, "Adding Drivers to the
Configuration", contains more information about the xenixconf file.

* THIS FILE CONTAINS CODE WHICH IS SPECIFIC TO THE
* INTEL 286/310 COMPUTER AND MAY REQUIRE MODIFICATION
* WHEN ADAPTING XENIX TO NEW HARDWARE.

*
*
*
*
i21S
iS34
iS44
i188
i74
Ip
ramd
debug
root
pipe
swap
*
*
*
timezone
daylight
cmask

Devices

1
o
o
o

i21S 1
i21S 1
i21S 2 1 4104

Local parameters

o

(8*60)
1

H-l

APPENDIX I
c.c FILE

This appendix lists an example of the c.c source file, which specifies your XENIX 286
system configuration, and which is derived from master and xenixconf by running the
program config. Note that the c.c file on your XENIX system may be different. More
information about c.c is contained in Chapter 6, "Adding Drivers to the Configuration."

/*
* Configuration information
*/

#define NBUF 0
#define NSABUF 20
#define NHBUF 128
#define NINODE 100
#define NFILE 100
#define NMOUNT 6
#define CMAPSIZ (NPROC*2)
#define SMAPSIZ (NPROC*2)
#define NCALL 25
#define NPROC 50
#define NTEXT 40
#define NCLIST 120
#define NFLOCKS 50
#define MAXUPRC 15
#define TIMEZONE (8*60)
#define NCOREL 0
#define DSTFLAG 1
#define CMASK 0
#define MAXMEM 0
#define NSDSEGS 25
#define MAXBUF 192

#include II • .lh/param.h"
#include " . .lh/conf.h"
#include II • .lh/iobuf.h II

extern nodevO, nulldevO, novecO;

int clockO;
int dbgintrO;
int i215intrO;
int i74intrO;
int IpintrO;

1-1

c.c File XENIX 286 Device Drivers

int (*veci ntsw[])O =
{

clock,
dbgintr,
novec,
novec,
novec,
i215intr,
i74intr,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,

1-2

XENIX 286 Device Drivers

};

extern
extern

extern
extern
extern
extern

extern
extern

struct
{
/* 0*/
/* 1 */
/* 2*/
/* 3*/
/* 4*/
/* 5*/
};

novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
Ipintr,
novec,

struct iobuf i215tab;
i2150penO, i215c1oseO, i215initO, i215readO, i215writeO,
i215ioctlO, i215strategyO;
i74openO, i74c1oseO, i74initO, i74readO, i74writeO, i74ioctlO;
IpopenO, IpcloseO, IpinitO, IpwriteO;
struct iobuf ramdtab;
ramdopenO, ramdcloseO, ramdinitO, ramdreadO, ramdwriteO,
ramdstrategyO;
mmreadO, mmwriteO;
syopenO, syreadO, sywriteO, syioctlO;

bdevsw bdevsw[] =

i2150pen,
nodev,
nodev,
nodev,
nodev,
ramdopen,

i215c1ose,
nodev,
nodev,
nodev,
nodev,
ramdclose,

i215strategy,
nodev,
nodev,
nodev,
nodev,
ramdstrategy,

&i215tab,
0,
0,
0,
0,
&ramdtab,

c.c File

1-3

c.c File XENIX 286 Device Drivers

struct cdevsw cdevsw[] =
{
/* 0*/
/* 1 */
/* 2*/
/* 3*/
/* 4*/
/* 5*/
/* 6*/
/* 7*/
/* 8*/
/* 9*/
/* 1 0*/
/* 11 */
/* 12*/
/* 13*/
/* 14*/
};

int
int

dey t -dey t
-dey t

daddr t
int

int
{

};

int

struct
{
/*0*/

};

int

#include

1-4

i2150pen,
nulldev,
nodev,
nodev,
nodev,
ramdopen,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
syopen,
Ipopen,
i74open,

bdevcnt =
cdevcnt =

rootdev =
pipedev =
swapdev =
swplo= 1 -,
nswap = 4104;

(*dinitsw[])O =

i215init,
i74init,
Ipinit,
ramdinit,
(i nt (*)0)0

i215c1ose, i215read,
nulldev, mmread,
nodev, nodev,
nodev, nodev,
nodev, nodev,
ramdclose, ramdread,
nodev, nodev,
nodev, nodev,
nodev, nodev,
nodev, nodev,
nodev, nodev,
nodev, nodev,
nulldev, syread,
Ipclose, nodev,
i74c1ose, i74read,

6-,
15;

makedev(O, 1);
makedev(O,1) ;
makedev(O,2);

i215write,
mmwrite,
nodev,
nodev,
nodev,
ramdwrite,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
sywrite,
Ipwrite,
i74write,

ttopenO, ttcloseO, ttreadO, ttwriteO, ttioctlO, ttinO,
ttoutO;

linesw linesw[] =

ttopen, ttclose, ttread, ttwrite, ttioctl, ttin, ttout, nulldev,
o

linecnt = 1;

" _ .Ih/space. h"

i215ioctl,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
syioctl,
nodev,
i74ioctl,

APPENDIX J
RELATED PUBLICATIONS

Copies of the following publications can be ordered from

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Guide to Using the iSBC 286/10 Single Board Computer, Order Number 146271 -- board
options for interrupt and I/O configuration.

Overview of the XENIX 286 Operating System, Order Number 174385 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

XENIX 286 Installation and Configuration Guide, Order Number 174386 -- how to install
XENIX on your hardware and tailor the XENIX configuration to your needs.

XENIX 286 User's Guide, Order Number 174387 -- a tutorial on the most-used parts of
XENIX, including terminal conventions, the file system, the screen editor, and the shell.

XENIX 286 Visual Shell User's Guide, Order Number 174388 -- a XENIX command
interface ("shell") that replaces the standard command syntax with a menu-driven
command interpreter.

XENIX 286 System Administrator's Guide, Order Number 174389 -- how to perform
system administrator tasks such as adding and removing users, backing up file systems,
and troubleshooting system problems.

XENIX 286 Communications Guide, Order Number 174461 -- installing, using, and
administering XENIX networking software.

XENIX 286 Reference Manual, Order Number 174390 -- all commands in the XENIX 286
Basic System.

XENIX 286 Programmer's Guide, Order Number 174391 -- XENIX 286 Extended System
commands used for developing and maintaining programs.

XENIX 286 C Library Guide, Order Number 174542 -- standard subroutines used in
programming with XENIX 286, including all system calls.

XENIX 286 Device Driver Guide, Order Number 174393 -- (this manual) how to write
device drivers for XENIX 286 and add them to your system.

XENIX 286 Text Formatting Guide, Order Number 174541 -- XENIX 286 Extended
System commands used for text processing and formatting.

C is described in The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie. One copy is supplied with Intel's XENIX product. Additional copies can be
ordered from the publisher, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.

J-1

INDEX I intel@ II
~--~

bdevsw, 2-11, 1-3
buf structure, 5-2, E-l

cblock, 3-1
cdevsw, 2-11, 1-4
clist, 3-1
copyin, 2-14
copyout, 2-14

device number, 2-10
dinitsw, 2-11

getc, 3-2

in, 2-13
inb, 2-13
interrupt handling, 2-7
iobuf structure, 5-5, F-l
iSBC 534 driver, 4-12
ixxxclose, 2-11, 3-5, 4-8, 5-13
ixxxinit, 2-11, 3-6, 4-7, 5-11
ixxxintr, 2-11, 3-9, 4-9, 5-16
ixxxioctl, 2-12, 4-11, 5-18
ixxxopen, 2-11, 3-5, 4-8, 5-12
ixxxparam, 4-7
ixxxproc, 4-10
ixxxread, 2-11, 3-6, 4-9, 5-17
ixxxstart, 3-8, 4-11, 5-15
ixxxstrategy, 2-12, 5-14
ixxxwrite, 2-12, 3-7, 4-9, 5-17

line discipline routines, 4-2

major macro, 2-10
makefiles, 6-7
master, 6-2, G-l
memory-mapped 110, A-I
minor macro, 2-10 .

out, 2-13
outb, 2-13

peek routines, A-2
poke routines, A-3
proc table entry, 2-5
putc, 3-2
sleep, 2-6
spl routines, 2-8

ttclose, 4-4
ttin, 4-5
ttinit, 4-3
ttiocom, 4-5
ttioctl, 4-5
ttopen, 4-4
ttout, 4-6
ttread, 4-4
ttwrite, 4-4
tty structure, 4-2, B-1, C-l

u structure, 2-5, 2-14

vecintsw, 2-11, 1-2

wakeup, 2-6

xenixconf, 6-6, H-l

Index-l

REQUEST FOR READER'S COMMENTS

XENIX 286
Device Driver Guide

174393-001

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME __ ___ DATE

TITLE

COMPANY NAME/DEPARTMENT ---
ADDRESS --
CITY STATE ZIP CODE -------------------------- ---------------------

(COUNTRY)

Please check here if you require a wr,tten reply D

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible person.
All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAil
FI RST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Parkway
Hillsboro, Oregon 97123

ISO-N TECHNICAL PUBLICATIONS HF2-1-830

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.s.A.

SOFTWARE

04 71/7K/0685/WCPI AD

