
.'

I

·

OVERVIEW OF THE

XENIX* 286 OVERVIEW SYSTEM

Order Number: 174385-002

*XENIX is a trademark of Microsoft Corporation.

Copyright @) 1984, 1986 Intel Corporation. All rights reserved.

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property ofIntel Corporation. Use, duplication or disclosure is
subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks ofIntel Corporation and its affiliates and may be used only to identify Intel products:

Above iCEL intel iPDS Megachassis QUEST
BITBUS iCS intelBOS iPSC MICROMAINFRAME QueX
COMMputer iDBP Intelevision iRMX MULTIBUS Ripplemode
CREDIT iDIS inteligent Identifier iSBC MULTICHANNEL RMX/80
Data Pipeline iLBX inteligent Programming iSBX MULTIMODULE RUPI
Renius im Intellec iSDM ONCE Seamless
i iMDDX Intellink iSXM OpenNET SLD
i

iMMX iOSP Library Manager
Plug-A-Bubbl~

UPI
I2rCE PROMPT
ICE

Insite MCS
Promware

VLSiCEL

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a trademark of Bell
Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a trademark of Centronics Data Computer
Corporation. Chassis Trak is a trademark of General Devices Company, Inc. VAX is a trademark of Digital Equipment
Corporation. Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc.

REV. REVISION HISTORY DATE

-001 Original issue 11/84

-002 Revision 1186

ii 7/?'r,

CONTENTS
CHAPTER 1
INTRODUCTION TO XENIX
Audience
Chapters
The Basic System and the Extended System

The Basic System
The Extended System

What Is an Operating System?
Hardware Devices
The Kernel
Utility Programs
A Command Interpreter

What Is the XENIX Operating 286 System?
The XENIX Kernel
Utility Programs
Command Interpreters

Who Uses the XENIX Operating System?
The History of XENIX

UNIX
XENIX

CHAPTER 2
FILES AND FILE SYSTEMS
Ordinary Files

The Content of an Ordinary File
The Structure of an Ordinary File
The Name of an Ordinary File
The Size of an Ordinary File

Directories
Login Directories
Subdirectories
Subtrees
The Parent Directory
The /usr Directory
Full Path Names
Relative Path Names
Moving from Directory to Directory
The Working Directory
The Root Directory

Special Files
Block Special Files
Character Special Files

TABLE OF CONTENTS

PAGE

1-1
1-1
1-2
1-2
1-3
1-4
1-4
1-5
1-6
1-6
1-7
1-7
1-8
1-8
1-9

1-10
1-10
1-12

2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-5
2-6
2-6
2-7
2-7
2-8
2-8
2-9
2-9

2-11
2-11
2-11

iii

Table of Contents

CONTENTS

File Access Permissions
Access Permissions for Ordinary Files

Read Permission for Ordinary Files
Write Permission for Ordinary Files
Execute Permission for Ordinary Files
Set UID and G ID
Representing Permissions
Default Permissions

Access Permissions for Directories
Read Permission for Directories
Write Permission for Directories
Search Permission for Directories

Access Permissions for Special Files
Read Permission for Special Files
Write Permission for Special Files

Links to Files
Working with Files
Logical Files and Physical Locations

Logical Files
Finding the Physical Location of File Data

The Structure of a File System
Cylinder Groups
File Allocation
The Root File Syste m and the Root Directory

CHAPTER 3
RUNNING PROGRAMS
Programs and Processes

Programs
Processes

What Happens During System Startup
How You Gain Access to the Syste m

The / etc/passwd File
What Happens During Login
The Login Shell

The Standard Input, Output, and Error Files
Default Variables Set by the Login Shell
The • profile Files

Executing Commands with the Shell
Executing Simple Commands'
Using Options

iv

Using Arguments
Using Metacharacters

The? Metacharacter
The * Metacharacter
The [and] Metacharacters
The - Metacharacter
The ! Metacharacter

Redirecting Input and Output
Pipes
Filters

XENIX 286 Overview

PAGE

2-12
2-12
2-12
2-12
2-12
2-12
2-13
2-15
2-15
2-15
2-16
2-16
2-17
2-17
2-17
2-18
2-19
2-20
2-20
2-21
2-23
2-25
2-25
2-25

3-1
3-1
3-1
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-9
3-9

3-10
3-10
3-11
3-11
3-11
3-11

3-11
3-12
3-13

XENIX 286 Overview

CONTENTS

XENIX Shells
Bourne Shell
Restricted Shell
Visual Shell
C Shell

CHAPTER 4
TEXT PROCESSING
Tools for Text Processing

Tools for Creating a Draft Document
Tools for Checking a Draft Document
Tools for Revising a Document
Tools for Producing the Final Version
Summary

CHAPTER 5
PROGRAMMING
C Program m ing Language
C Function Libraries
Supporting Tools
Shell Programming
Modifying and Extending XENIX

APPENDIX A
BASIC SYSTEM COMMANDS
Basic System Commands by Category
Alphabetical List of Commands

APPENDIX B
TEXT FORMATTING COMMANDS
Text Formatting Commands

APPENDIX C
PROGRAMMING TOOLS
Programming Commands
Standard C Libraries

The Standard C Library -- libc
The XENIX-Specific System Calls Library -- libx
The Standard Math Library -- libm
The Default lex Library -- libl
The Default yacc Library -- liby
The Terminal Capabilities Library -- libtermcap (libtermlib)
The Screen Manipulation Library -- libcurses
The Data Base Management Library -- libdbm

System Calls

Table of Contents

PAGE

3-15
3-15
3-15
3-15
3-15

4-1
4-1
4-3
4-3
4-3
4-4

5-2
5-4
5-5
5-6
5-6

A-I
A-2

B-1

C-l
C-2
C-3
C-5
C-5
C-6
C-6
C-6
C-6
C-6
C-7

v

Table of Contents XENIX 286 Overview

CONTENTS

APPENDIX D
RELATED PUBLICATIONS
Intel Publications

INDEX

FIGURES
FIGURE TITLE

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
4-5
4-6
4-7
A-I

vi

Hardware Devices
Sample Ordinary File
Sample Hierarchy of Login Directory without Subdirectories
Sample Contents of Login Directory without Subdirectories
Sample Hierarchy for Login Directory with Subdirectories
Sample Directory List
Sample Subtree
Sample /usr Directory with Subdirectories
Sample Path Names
Path Names with Commands
The Root Directory
Sample Device Names in the /dev Directory
Representing Permissions with Characters
Sample Permissions for Ordinary Files
Representing Permissions
Reading a Directory
Searching Directories
Links to a File
Sample File
Logical Files and Physical Locations
The Structure of a 40-Megabyte Winchester Disk
The Structure of a File System
Using exec and fork System Calls
Sample Entry in the /etc/passwd File
Sample .profile File
Shell Metacharacters
Common Filters
Sample nroff/troff Code
Sample Formatted Line
Sample Use of Macros
Sample Formatted List
Document Production Phases and Tools
Sample Document with Formatting Instructions
Sample Formatted Document
Summary of Basic System Commands by Category

PAGE

D-l

PAGE

1-4
2-1
2-4
2-4
2-5
2-5
2-6
2-7
2-8
2-9

2-10
2-11
2-13
2-13
2-14
2-16
2-17
2-18
2-20
2-22
2-23
2-24

3-2
3-5
3-7

3-10
3-14

4-2
4-2
4-3
4-2
4-4
4-5
4-6
A-I

Audience

CHAPTER 1
INTRODUCTION TO XENIX

This overview is intended for new XENIX users who want a basic knowledge of XENIX
and for experienced users who want a list of commands and programming tools. This
overview is the XENIX manual you should read first. It introduces you to the XENIX
operating syste m and to the full set of XENIX manuals. After you have read this
manual, you should understand what an operating system is, be familiar with basic
XENIX concepts and terminology, have an overall view of what is included in the
system, and understand what information is presented in each manual in the set of
XENIX manuals.

Chapters

This overview has these chapters and appendixes:

1. Introduction to XENIX -- an introduction to the Overview of the XENIX 286
Operating System. It describes the book's intended audience and chapters,
presents operating system concepts, and briefly describes the history and features
of the XENIX operating system.

2. Files and File Systems -- description of ordinary files, directories for organizing
files, special files (devices), file protections, tools for working with files, and the
new file system.

3. Running Programs -- introduction to programs and processes. This chapter
explains what happens when you run programs, from system startup to login to
executing commands.

4. Text Processing -- brief description of tools for people who prepare documents for
printing or typesetting.

5. Programming -- introduction to XENIX programming concepts, including the C
programming language, standard function libraries, system calls, supporting tools,
shell programming, and customizing XENIX.

A. Basic System Commands -- brief definitions of the commands in the Basic System.

B. Text Formatting Commands -- brief definitions of the text formatting commands
in the Extended System.

c. Programming Tools -- brief definitions of the commands, libraries, and system
calls in the Extended Syste m.

D. Related Publications -- a list of related Intel publications.

Rev. A, 8/87 1-1

Introduction to XENIX XENIX 286 Overview

The Basic System and the Extended System

Intel has divided the XENIX operating system into two different products to satisfy
different user requirements. These products are the Basic System and the Extended
System.

The Basic System

The Basic System is intended for all users. It has all of the things needed to run
application software and to administer the system. It also has general-purpose tools
such as the ed and vi text editors, electronic communications, and many commands.
These manuals accompany the Basic System:

VOLUME 1

• Overview of the XENIX 286 Operating System. This manual briefly describes
operating systems in general and XENIX in particular, briefly covering important
concepts such as files and file systems, the shell, and commands. Programming
tools and text processing features are introduced.

• XENIX 286 User's Guide. The user's guide has a brief survey of common
commands plus full chapters on the ed text editor, vi text editor, electronic mail,
Bourne shell (sh), and be calculator.

• XENIX 286 Visual Shell User's Guide. This guide explains how to use the visual
shell, which is a user interface based on menus. The menus list common functions
and application software programs that the system administrator has added.

VOLUME 2

• XENIX Installation and Configuration Guide. This manual, for the system
administrator, gives complete instructions for installing XENIX software from
streaming tape or 51-inch or 8-inch flexible disks. The section on configuration
explains how to add devices to the system and remove devices from it.

• XENIX 286 System Administrator's Guide. This manual, for the system
administrator, describes the procedures to perform on a regular basis, such as
administering users, making back-up copies of files, and monitoring system use.

• XENIX 286 Communications Guide. This manual, for the system administrator,
explains how to set up and administer a Micnet or uucp communications network.

• XENIX System Backup and Restore Operations iBR. This manual, for the system
administrator, describes in detail the backup and restore operations.

VOLUME 3

• XENIX 286 Ref erence Manual. This manual is intended for users who want
technical information about commands, files, devices, and error messages in the
Basic System. The manual also has a master index for the entire manual set (Basic
and Extended Systems).

1-2 Rev. A, 8/87

XENIX 286 Overview Introduction to XENIX

The Extended System

The Extended System is made up of software development and text formatting tools.
The software development tools include utility programs, standard C libraries, system
calls, a C compiler, an assembler, a linker, a loader, a debugger, a lexical analyzer, and
a compiler-compiler (a program that generates a compiler). The text formatting tools
include commands for improving writing, mm (memorandum) macros, and standard oroff
and troff programs. The mm macros are codes you use to prepare memos, letters,
reports, and other documents. The oroff program formats documents for a printer, and
the troff program formats documents for a phototypesetter.

These manuals are part of the Extended System:

VOLUME 4

• XENIX 286 Programmer's Guide. This manual is intended for applications
programmers. It describes these important programming tools: cc (C compiler),
lint (C program checker), make (a program maintainer), SCCS (a source code
control system), adb (a program debugger), as (an assembler), lex (a lexical
analyzer generator), yacc (a compiler-compiler), and m4 (a macro processor).
Appendixes discuss C language portability and give reference pages for
programming commands.

VOLUME 5

• XENIX 286 C Library Guide. This manual is intended for program mers. It
describes system calls and standard libraries of C subroutines. It covers standard
I/O functions, screen processing, character and string processing, process control,
pipes, signals, system resources, and error processing. Appendixes give reference
information, including reference pages for individual subroutines, system calls, and
file formats.

VOLUME 6

• XENIX 286 Device Driver Guide. This manual is intended for a programmer who
writes device drivers. Chapters cover the kernel, simple character device drivers,
terminal device drivers, block device drivers, instructions for adding drivers to the
configuration, designing and debugging hints, and drivers supplied with XENIX.
Appendixes give related reference information.

VOLUME 7

• XENIX 286 Text Formatting Guide. This manual is intended for writers who want
to prepare manuscripts for printing or phototypesetting. It gives an overview of
text processing, describes writing and editing tools, explains how to use macros,
oroff, and troff, and shows how to format tables and mathematics.

DOCUMENTATION DISK

• XENIX Macro Assembler User's Guide. This manual is intended for programmers.
It has instructions for using the macro assembler.

• XENIX Macro Assembler Reference Manual. This manual is intended for
programmers. It has reference information about the macro assembler.

1-3

Introduction to XENIX XENIX 286 Overview

What Is an Operating System?

An operating system is a set of programs that manage the resources of a computer and
provide useful services. It has three basic components: the kernel, a set of utility
programs, and a command interpreter.

When you want to work on a computer, you need to send data from one device to
another. For example, if you are writing a letter at your terminal, you need to store it
on a disk. Later, you may want to print it on a printer. To complicate matters,
someone else may want to use the printer at the same time. Clearly, the resources of
the computer system have to be shared. These are some of the reasons that the
computer has an operating system.

Hardware Devices

Since the operating system coordinates the activities of the hardware, it is useful to
identify the functions that different pieces of hardware perform.

A typical computer system has a CPU (central processing unit) plus several hardware
devices, such as terminals, disks, memory, printers, and tape drives (see Figure 1-1).

1-4

~
Flexible
Diskette

I@@I
Tape

~~~v-z -d!~L" 
Printer CPU T . I ermma 

Figure 1-1. Hardware Devices 
F·032 I 



XENIX 286 Overview Introduction to XENIX 

The hardware devices serve these functions: 

• CPU. The CPU does all of the processing. It reads instructions one by one and 
executes them, performs necessary logic operations, and makes mathematical 
calculations. 

• Terminal. The terminal is the device you use to communicate with the computer. 
It has a keyboard so that you can enter information and a screen that displays 
what you type. 

• Disks. Disks store programs and data for fast and easy retrieval. 

• Memory. Memory is an area where data is stored while it is processed. 

• Printers. Printers produce a copy of data on paper. 

• Tape drives. Tape drives store copies of programs and data on tape. 

The Kernel 

The kernel is a software program that interacts directly with computer hardware. When 
the system administrator starts the computer, the kernel is loaded into memory from 
disk storage. It remains there as long as the computer is running and oversees all of the 
activities of the computer system. When you give commands or run application 
software, these programs may use system calls to ask for services from the kernel. For 
example, each time a program wants to read a file, it sends a read system call to the 
kernel. 

In a multiuser computer system, several people share memory, printers, and other 
computer resources. It is the kernel that gives each person exclusive use of a resource 
for a period of time. The kernel's function is to do this so efficiently that users are 
unaware that the resources are being shared. 

A kernel typically performs these functions: 

• Mass storage management. A computer system stores a large amount of data on 
disks. The kernel maintains some form of file system on disks to keep track of all 
this data so that it can be located and used. 

• Process management. A process is a program being executed. In a computer 
system, many processes may be running at the same time. The kernel gives each 
process a share of processing time and keeps track of each process. 

• Memory management. Any computer system has a certain amount of memory and 
that memory often has to be shared by several processes. The kernel gives each 
process an area in memory and keeps one process from, interfering with another. 
If a process needs more memory than is available, the kernel temporarily moves 
the process out of memory and onto disk. When the process is scheduled to run 
again, it is copied back into memory and allocated the space it needs. This 
technique is called swapping. 

1-5 



Introduction to XENIX XENIX 286 Overview 

• Device management. Each device in a computer system has special 
characteristics that the kernel has to understand to send information to and from 
devices. In the kernel, software programs called device drivers communicate with 
devices. When a program uses a system call, the kernel selects the appropriate 
device driver. 

• Error checking. The kernel constantly checks the operation of the system and 
displays error messages when problems occur. 

• Accounting. A multiuser operating system normally keeps some kind of records of 
how resources have been used. These records may be the basis for billing for 
computer time or for evaluating computer use. 

Utility Programs 

Some people speak of the kernel as the operating system, but the kernel is usually 
accompanied by a set of utility programs that you can run to create files, copy files, and 
perform other useful functions. Throughout this manual, these programs are considered 
part of the operating system. 

One type of program that comes with an operating system is a text editor, which is a 
tool that you use to type programs, reports, and other text. A text editor has commands 
for adding, changing, and deleting lines of text. 

Other programs that are usually available are programming tools, such as standard 
software libraries, compilers, linkers, loaders, and assemblers. Tools for checking and 
debugging code are sometimes included. 

A Command Interpreter 

You request services from the operating system by giving commands. Every operating 
system has at least one command interpreter that takes your commands so programs 
can be executed. 

1-6 



XENIX 286 Overview Introduction to XENIX 

What Is the XENIX 286 Operating System? 

XENIX 286 is Intel's value-added version of the XENIX operating system released by 
Microsoft Corporation. Microsoft's XENIX, in turn, is a value-added version of the 
System III UNIX operating system developed by Bell Laboratories at AT&T. XENIX 286 
also includes features developed by the University of California at Berkeley. XENIX 
286 supports multiple users and multiple tasks. It has all of the components of standard 
operating systems--a kernel, utility programs, and a command interpreter--with 
features that many others do not have. 

The XENIX Kernel 

The XENIX kernel performs all of the functions that a typical operating system kernel 
performs. It manages mass storage, processes, memory, and devices, and it checks for 
errors during operation. The system administrator can turn process accounting logs on 
or off and clear them as desired. 

The XENIX kernel has these important features: 

• Standard system calls. Programmers can use over 60 different system calls to 
request services from the kernel. These system calls include all those provided by 
UNIX System III. 

• Speed. The speed of the kernel is driven by the speed of the processor, and the 
XENIX 286 system runs on Intel's iAPX 286 microprocessor. 

• Small size. The XENIX kernel has only 10,000 or so lines of code. 

• High-level language. Most of the kernel is written in the C programming language 
rather than in assembly language, so the operating system can run on many 
different computers. 

• Hierarchical file system. XENIX has a hierarchical file system so you can 
organize your files of information. Intel has redesigned the file system to increase 
processing speed. Chapter 2 describes the new file system. 

• Devices treated like files. You can send data to devices and take data from them 
just as if they were ordinary files. This is called device independence. 

• Separate code and data. Program code and data are kept in separate areas of 
memory, which is efficient since several users may share one copy of the code. 

• Buffer management. Buffers are areas where data is stored when it is brought 
from a disk. With Microsoft's exported buffer management technique, the kernel 
has access to buffers that are outside its primary data segment. With Intel's 
enhancements, programs are loaded directly into memory, and buffer contents are 
left undisturbed. Programs are thus loaded faster and information in the buffers 
can continue to be used. 

• Device drivers. Intel releases XENIX 286 with device drivers for terminals, 
Winchester disks, flexible disks, and tapes, plus a guide to writing device drivers so 
you can add appropriate hardware devices to your system. 

1-7 



Introduction to XENIX XENIX 286 Overview 

Utility Programs 

Together, the Basic System and the Extended System offer over 200 utility programs. 
You can create additional functions without writing C programs if you take advantage 
of tools called pipes (they connect the output of one program with the input of another) 
or write shell programs using a shell command interpreter. 

The utility programs are all stored on a disk, and you run them by giving commands to a 
command interpreter called a shell. In many discussions of XENIX, the terms 
"command", "program", and "utility" are used interchangeably. 

The utility programs for the Basic System are listed in Appendix A, and the utility 
programs for the Extended System are listed in Appendix B and Appendix C. 

Command Interpreters 

A XENIX command interpreter is called a shell. You communicate with the operating 
system by typing commands that the shell interprets. For example, if you want the 
operating system to print a calendar, you give the cal command and the shell responds 
to it. 

In some operating systems, the command interpreter is part of the kernel and cannot be 
changed easily, but in XENIX it is a separate C program that can be modified or 
replaced by another C program. The Basic System has three different shells: the 
Bourne shell, restricted shell, and visual shell. The Extended System adds the C shell. 
These shells are discussed in Chapter 3. 

1-8 



XENIX 286 Overview Introduction to XENIX 

Who Uses the XENIX Operating System? 

Everyone on the computer uses the operating system, but people work with it in 
different ways. Users typically fall into one of these categories: users who run 
application software, the system administrator, application programmers, systems 
programmers, and writers and text processors. XENIX 286 gives each of these types of 
users tools to make their work easier and to improve their final products. 

• Users who run application software. Many users run application software, such as 
word processing or a spreadsheet program. These users may be a ware of the 
operating system only when logging on the computer (logging on is typing your 
name and giving your password). This is especially true if you use a visual shell 
that lists applications and functions on a menu. Users who run application 
software often use XENIX's office tools, such as electronic mail, personal 
calendars, and a desktop calculator. These tools are in the Basic System. 

• System administrators. The system administrator is the person responsible for 
maintaining the computer and its software. The system administrator needs to 
understand system operations very well and to know how to install XENIX, add 
devices, add users, monitor system use, make duplicate copies of data, tailor the 
environment, solve system problems, and set up communications networks. 
Administering the system has been simplified by new commands for adding users, 
removing users, making system backups, and other common tasks. Procedures for 
the system administrator are outlined in the XENIX 286 Installation and 
Configuration Guide, the XENIX 286 System Administrator's Guide, and the 
XENIX 286 Communications Guide. All of these manuals are in the Basic System. 

• Application programmers. Application programmers write software such as 
general ledgers and spreadsheets. Application programmers normally use the 
operating system's text editors and commands for working with files. To do 
programming other than shell programming they need the Extended System, which 
has commands for developing software, libraries of standard functions, system 
calls, and programming tools. Programmers who develop software on one XENIX 
system can usually put it on several machines with only minor changes. 

• Systems programmers. Systems programmers change the operating system to 
meet the requirements of a particular product. They add device drivers and add or 
change utility programs. The XENIX 286 Device Driver Guide in the Extended 
System has instructions for writing device drivers plus examples of different 
drivers. 

• Writers and text processors. Writers and text processors produce documents such 
as programs, memos, letters, and books. These users can create documents with 
the XENIX text editors. They need the Extended System to print or typeset 
documents with standard features such as centering and bolding. 

1-9 



Introduction to XENIX XENIX 286 Overview 

The History of XENIX 

XENIX has evolved over more than a decade and has been used successfully in many 
different environments. 

UNIX 

The history of XENIX begins with the development of UNIX at AT&T's Bell 
Laboratories. 

In the late 1960s, Ken Thompson and others at Bell Laboratories were participating in a 
project that involved a large, sophisticated, multiuser operating system called Multics 
on a large mainframe computer from General Electric Corporation. When Bell 
Laboratories left the project, Thompson wanted to move a particular program called 
Space Travel from the mainframe to a dedicated PDP-7 computer, so he created a new 
operating system for it. Since the new operating system was for single users, it was 
named UNIX as a play on the name Multics. 

The first version of UNIX was written in assembly language. It was a personal effort by 
a programmer who wanted a system that made it easy to write, test, and run programs. 
He also favored elegance of design, and the limited size of his development computer 
encouraged economy and elegance. By 1971, the new operating system was being used 
within Bell Laboratories on Digital Equipment Corporation's PDP-7 and PDP-9 
computers. 

The second version of UNIX included software written in a programming language called 
B. This language was used when UNIX was moved to Digital Equipment Corporation's 
PDP-11/20 family of minicomputers in 1971. The PDP-11/20 was purchased to support 
the development of a text formatting package. 

The third version of UNIX came in 1973. It was a complete rewriting of the operating 
system in C, which was a revision of B. C was a good choice for an operating system 
because it was a high-level, structured language and yet it was able to manipulate small 
units of data efficiently. This version incorporated multiprogramming, a technique that 
keeps several programs in memory at once so that the central processing unit is used to 
advantage. The system ran on several computers in the PDP-II family. 

Since C was a high-level language, UNIX could run on more than one computer. The 
fourth version of UNIX eliminated all code that was specific to the PDP-II family of 
computers. This new version was produced in 1977 and was moved onto the Interdata 
8/32, which was quite different from the PDP-lIs. 

Through the 1970s, UNIX was used mostly within Bell Laboratories, but by 1975 AT&T 
began to license it, and other research agencies began to work with it. Many colleges 
have licenses to use UNIX, and many computer scientists have become familiar with it. 

Today, several versions of UNIX are in circulation. The first UNIX system to be 
licensed commercially was Version 7, a multiuser system released in 1978. An update 
was introduced in 1981 as System III. A subsequent version, System V, was released in 
1983. There was no System IV. The name UNIX remains, even though the system now 
supports multiple users. 

1-10 



UNIX became popular at Bell Laboratories, then gained supporters in research 
centers and universities, then attracted the attention of software developers and 
computer manufacturers. It has become popular because of many valuable 
features, including 

• Portability. One feature of UNIX that truly sets it apart from traditional 
operating systems is portability. Most operating systems have been tied to a 
specific computer or family of computers because they were written in assembly 
language that only those computers could use. The UNIX operating system is 
written almost entirely in C, a high-level language that can run on many different 
computers. Application software developed on one computer can run on many 
computers. It is sometimes necessary to make minor changes to the software, but 
it is not necessary to rewrite much of it. 

• Multiuser support. UNIX is a multiuser system, which means that several users 
can work on a system at one time. 

• Multitasking system. UNIX is a multitasking system, which means that several 
users can run processes simultaneously, and that an individual user can run several 
processes in the background while working at the terminal. For example, you can 
edit a program at the terminal while you print a report on the printer. 

• UNIX tools. The UNIX philosophy is to provide many small tools that can be 
changed or combined to perform new functions. You can create new tools without 
writing C programs by writing shell scripts (files of shell commands, which can 
include statements from the shell programming language) or by using pipes. Pipes 
are tools that connect the output of one program with the input of another. 

• Office tools. Office tools such as individual calendars, user-to-user 
communications, and a desktop calculator are all part of the UNIX system. 

• Programming tools. UNIX tools have evolved over time in response to specific 
needs of programmers. As programmers have worked with the system, they have 
corrected errors, added new features, and created new utility programs. 

• Networking. Several UNIX systems can be linked together so that data, including 
electronic mail, can be sent from one system to another. 

• Access to status information. UNIX makes status information readily available so 
any user can check who is on the system, what processes are running, and what 
printers are busy. 

• Groups. When people work on the same projects, they often need to share files. 
With UNIX this is encouraged because files can be assigned to groups of users. 

o Device independence. Devices, such as printers and terminals, are accessed like 
files, so you can send data to a device just as you send it to any file. Likewise, 
you can bring data from a device. 

Rev. A, 8/87 1-11 



Introduction to XENIX XENIX 286 Overview 

XENIX 

Intel's XENIX Release 3.4 (and higher) product is an enhanced version of the XENIX 
operating system produced by Microsoft, Inc. This operating system is derived from 
UNIX System III and includes features developed by researchers at the University of 
California at Berkeley. 

Intel has entered the XENIX market as a technological leader. Intel invented the 
microprocessor and offers XENIX on systems that have microprocessors that are among 
the fastest on the market. 

Intel gives its OEMs (original equipment manufacturers) the opportunity to put their 
XENIX-based products on the best technology at every level of integration--from 
components to boards to complete systems. 

Intel's goal is to combine the latest technology, effective operating system software, a 
full reference library, networking software, and qualified application software. 

• Latest technology. Intel's strategy is to combine UNIX-based technology with the 
latest silicon technology. Its microprocessors are among the fastest 
microprocessors available and memory management has been integrated into the 
chips. 

• Effective operating system software. Intel provides a complete XENIX operating 
system, which is enhanced by a file system that reduces the amount of time spent 
searching for data (see Chapter 2). 

1-12 

The compiler is based on Microsoft's emerge technology and includes support for 
small, middle, large, and huge models of segmentation. Support for MS-DOS cross 
development is also included. 

A dynamic bad block handling scheme has been developed by Intel to deal with bad 
blocks as defective surface spots on hard disk media degrade over time. As bad 
blocks are encountered, they are recorded in an error partition. When the system 
administrator uses the fixbb command, the error partition is searched for all bad 
block entries for a specific special device file, all bad blocks are listed in 
.Badblocks, and files and directories affected by the bad blocks are removed. 

Intel has developed three new commands to simplify procedures for the system 
administrator. The instlupdate command makes it easier to install updates. A 
menu-driven, interactive system configuration program, scp, automates the 
configuration process for all supported configurations. The sysadmin command has 
been replaced by a new com mand of the same name that includes support for 
multiple disks. 

Rev. A, 8/81 



XENIX 286 Overview Introduction to XENIX 

• Full reference library. Intel recognizes that users need a basic understanding of 
XENIX plus specific information about functions they perform on their jobs. As a 
result, the manual set includes books that give the big picture as well as books 
that are oriented toward particular users. 

Three manuals have information for all XENIX users. This manual attempts to 
help you understand the operating system and learn basic concepts and 
terminology. The XENIX 286 Reference Manual has reference pages for 
commands, files, and devices. It also has a master index of reference entries for 
the entire manual set. This index lists reference entries alphabetically, identifies 
the type of entry (such as command, library function, or system call), points to the 
manuals that describe the entry, and gives a brief definition of the entry. This 
index points users to the appropriate manuals. Those manuals have detailed 
indexes that point to specific pages. The XENIX 286 User's Guide covers common 
commands and has detailed instructions for using the ed and vi editors, electronic 
mail, the Bourne shell, and the be calculator. The XENIX 286 Visual Shell User's 
Guide provides an introduction to the visual shell, a menu-based interface to 
XENIX. 

Five manuals are oriented specifically to programmers. The XENIX 286 
Programmer's Guide has instructions for the C compiler and other programming 
tools. The XENIX 286 C Library Guide describes system calls, standard libraries 
of C subroutines, file formats, standard I/O functions, screen control, pipes, 
signals, system resources, and error processing. The XENIX 286 Device Driver 
Guide gives systems programmers instructions and examples so that they can 
create their own device drivers. The XENIX Macro Assembler User's Guide and 
the XENIX Macro Assembler Reference Manual explain how to use the macro 
assembler (these two manuals are shipped on disk). 

One manual, the XENIX 286 Text Formatting Guide, has information for those who 
need to prepare manuscripts for printing or phototypesetting. 

Three books give the system administrator detailed information. The XENIX 286 
Installation and Configuration Guide walks the administrator through installing the 
system and adding and removing devices such as printers, terminals, and disk 
drives. The XENIX 286 System Administrator's Guide outlines a system 
administrator's responsibilities and has how-to instructions for overseeing daily 
operations and solving system problems. The XENIX 286 Communications Guide 
explains how to set up and administer Micnet and uucp communications networks. 

• Networking products. Intel provides a Local Area Network (OpenNET) based on 
the Ethernet standard. It provides file transparency, distributed job control, and 
virtual terminal capability that greatly enhance the utility of the individual 
XENIX systems. 

1-13 



Introduction to XENIX XENIX 286 Overview 

• Application Software. Intel provides a wide spectrum of commercial and 
developmental products for the XENIX operating system. The iDIS Database 
Information System is a comprehensive software package that provides a word 
processor, spread sheet, relational database, host communication, and other 
features in an easy-to-use menu system format. Developmental tools include 
compilers and software toolboxes for both business and engineering environments. 
In addition, a growing list of independent software vendors provides general 
business products, as well as specific applications for a wide spectrum of business 
and commercial needs. 

1-14 



Ordinary Files 

CHAPTER 2 
FILES AND FILE SYSTEMS 

All of the data that you and other users produce is kept in files. Technically, an 
ordinary XENIX file is just a series of bytes stored on a mass storage device under a 
specific name. The bytes are regular ASCII text (letters, numbers, and characters such 
as punctuation marks), or they are binary codes (codes representing information in a 
form that cannot be displayed directly on a screen). 

The Content of an Ordinary File 

You create an ordinary file by using a text editor, compiling a program, or running an 
application program that creates files. It contains only what you put in it. For 
example, an ordinary file may have a source program, an executable program, a letter, 
or payroll data. XENIX does not keep record counts or use a special marker to show the 
end of a file. Figure 2-1 has an example of an ordinary file. Notice that it has nothing 
but text. 

MEMO 

TO 
FROM 
SUBJECT 

Team 
Mary 
Revised Schedules 

Please give me your revised schedules by Friday. 

Figure 2-1. Sample Ordinary File 

2-1 



Files and File Systems XENIX 286 Overview 

The Structure of an Ordinary File 

XENIX does not expect data to be stored in any particular format. It is just text. When 
you create a file, you may give it a format, then use that format when you write 
programs. For example, the /etc/passwd file has one record for each user. The record 
has seven fields of information and they are separated by colons. The sample line below 
illustrates the format of the file. (If you are curious about the meaning of the fields, 
see Chapter 3.) 

mary:j9Hz 1 FzBYSOVw:20 1 :200: M Day,Rm 21 ,x5006,273-5543 :/usr/mary:/bin/sh 

The XENIX kernel is not aware of this format, but programs that read the /etc/passwd 
file need to understand it. 

The Name of an Ordinary File 

These are the rules and conventions that apply to file names in XENIX: 

• When you want to work with a file, you identify it by name. The kernel keeps 
track of each file by assigning it a unique number, called an inode number, but it is 
not necessary for you to use the number. 

• The name of a file can have 1 to 14 characters. 

• The name can include any keyboard character except a slash (I). However, the 
recommended procedure is to avoid blanks, invisible characters such as 
BACKSP ACE, and these special characters, which have a special meaning to the 
command interpreter: 

? * 

o Both uppercase and lowercase letters can be used, and they are different 
characters. For example, "Memo. to.Jack" is not the same as "memo. to.jack". 

• If a file name begins with a dot, it will not appear on your list of files unless you 
use a special option of the command that lists files (Is -a). 

2-2 

You may use dots in file names. For example, "memo. to.jack" uses dots. To 
XENIX, these dots in a name are just characters, but some characters with dots 
are meaningful. XENIX uses several combinations of a dot and a character at the 
end of a file name to identify a particular kind of file. These combinations are 
called suffixes. For example, programmers should use a ".c" suffix for programs 
they write in the C programming language. These are some of the suffixes that 
are meaningful to XENIX: 

.a A library archive 

.c A program written in the C programming language 

.h An include file for the C programming language 

.1 Input for lex 

.0 The object code created by a compiler or assembler 

.s A program written in assembly language 

.y Input for yacc 



XENIX 286 Overview Files and File Syste ms 

• In any directory, a file name must be unique. For example, if you have a directory 
named "memos", it can have only one file named "memo.to.jack". However, you or 
someone else could have a file named "memo.to.jack" in some other directory. 
Directories will be explained in detail later in this chapter. 

The Size of an Ordinary File 

When you create a file, you cannot define its maximum size. The file can continue to 
grow up to a limit of four megabytes as long as the disk has space for more data. The 
system administrator can increase this maximum size with the ulimit command built 
into the Bourne shell, and anyone can decrease the maximum size with that command. 

Directories 

As the number of files increases, it becomes important for you to have some way of 
organizing them so that you can locate them easily. The XENIX solution is to let you 
organize your own files by creating a hierarchical structure of directories. 

A directory is just a list of files and their unique file numbers, which are called inode 
numbers. The organization of directories is discussed in this section. Inode numbers are 
explained later in the chapter. 

Login Directories 

When the system administrator adds you to the system, a login directory is created for 
you. This is the directory where you will begin each time you work on the computer. It 
is sometimes called the home directory. 

Imagine that the system administrator adds a new user named Kay, gives her the login 
name "kay", and defines "kay" as her login directory. When she logs in, she is placed in 
her "kay" directory. 

You may place files of information in your login directory, or define subdirectories so 
that you can organize your files, or both. For example, Kay expects to create few files 
so she sees no reason to use subdirectories. Since she will have few files, she will keep 
all of them in her login directory and scan the list when she wants to work with one. 
Suppose that she creates two memos, "mary.4.6" and "sue.4.8", in her login directory~ 
Figure 2-2 shows what her hierarchy would look like. Figure 2-3 shows what Kay sees 
when she uses the directory listing command (Is) to look at her login directory. The "$" 
is a standard prompt that means you can give commands. 

A hierarchy is often referred to as a tree structure because it looks like an inverted tree 
with branches. 

2-3 



Files and File Systems XENIX 286 Overview 

$15 
mary.4.6 
sue.4.8 
$ 

2-4 

mary.4.6 sue.4.8 

F·030 7 

Figure 2-2. Sample Hierarchy of Login Directory without Subdirectories 

Figure 2-3. Sample Contents of Login Directory without Subdirectories 



XENIX 286 Overview Files and File Systems 

Subdirectories 

If you have a large number of files, you may use subdirectories to group related files. A 
subdirectory is a directory within a directory. For example, imagine that Mary plans to 
create memos, letters, and programs. She can create three separate directories, 
"memos", "letters", and "programs" in her login directory, then place files in the 
appropriate subdirectory. Figure 2-4 shows her hierarchy after she has created two 
memos, two letters, and a program called "fc.c". Figure 2-5 shows what Mary actually 
sees when she uses the Is (list) command and the Ie -R command to look at her login 
directory. The Is command shows only the contents of the directory that you are in. 
The Ie -R command shows the contents of that directory plus the contents of each 
subdirectory. Notice that the shorthand name (.) is used for the working directory. 

a.jones 
k.brown 

team.S.1S 
team.S.20 

fcc 

Figure 2-4. Sample Hierarchy for Login Directory with Subdirectories 

$Is 
letters 
memos 
programs 

$Ic-R 
letters 

.Iletters: 
a.jones 

.Imemos: 
team.S.15. 

Jprograms: 
fcc 
$ 

memos programs 

k.brown 

team.S.20 

Figure 2-5. Sample Directory List 

F·0308 

2-5 



Files and File Systems XENIX 286 Overview 

Subtrees 

A subtree begins at a directory and includes all of the files and directories under it. For 
example, imagine that Jack is added to the system and that he creates directories for 
letters, memos, and newsletters. He wants to keep employee newsletters separate from 
customer newsletters, so he creates subdirectories for them under his "newsletters" 
directory. Figure 2-6 shows the "newsletters" subtree of the "jack" hierarchy. 

F·0309 

Figure 2-6. Sample Subtree 

The Parent Directory 

The directory immediately above another directory is called its parent. For example, in 
Figure 2-6, "jack" is the parent to the "newsletters" directory, and the "newsletters" 
directory is the parent to the "employee" and "customer" directories. A shorthand name 
for the parent of a directory is " •• ", which is pronounced "dot dot". 

2-6 



XENIX 286 Overview Files and File Systems 

The /usr Directory 

As you have seen, each user is allowed to organize files into meaningful hierarchies. 
These user hierarchies, in turn, are part of a bigger hierarchy that begins with the root 
directory (which is represented by /). Under root are several directories, including one 
called /usr. The /usr directory is traditionally the parent of all user directories. Figure 
2-7 shows a sample hierarchy for the /usr directory. 

mary.4.6 
sue.4.8 

Fu II Path Names 

team.5.1S fc.c 
team.S.20 

apr apr 
may may 
june june 

F·0310 

Figure 2-7. Sample /usr Directory with Subdirectories 

Each file in the system has a path name that begins at root and goes through the full 
path of directories to the file itself. For example, the full path name of Mary's letter to 
A. Jones is 

lusr/mary/letters/a.jones 

Slashes separate the directories when you give a full path name. 

Notice that both Mary and Jack have directories with the names "memos" and "letters". 
In XENIX that is acceptable because each file has a different path name. Within a 
directory, each name has to be unique. For example, Mary can have only one "a.jones" 
file in her "letters" directory. 

2-7 



Files and File Syste ms XENIX 286 Overview 

Relative Path Names 

A full path name may seem like a lot to type. Fortunately, you usually do not have to 
~ype the full path name. You can start where you are and give the remainder of the 
path, which is called the relative path name. Figure 2-8 illustrates full and relative 
path names. 

Full path name from root (I): lusr/mary/letters/a.jones 

Relative path name from I: usr/mary/I etters/a.jones 

Relative path name from /usr: mary/I etters/a.j ones 

Relative path name from lusr/mary: I etters/a.j ones 

Relative path name from /usr/mary/letters: a.jones 

Figure 2-8. Sample Path Names 

Moving from Directory to Directory 

When you log in, you begin in your login directory. If you want to work on a file, you 
have these choices: 

• Give the full path name from r.oot. 

• Give the relative path name. 

• Use the cd (change directory) command to go to the directory that has the file, 
then give the file name. 

For example, when Mary logs in, she is in her "mary" login directory. If she wants to go 
to her "letters" directory and use the ed line editor to edit the "a.jones" file, she can use 
the commands in Figure 2-9. 

2-8 



XENIX 286 Overview Files and File Systems 

$ ed lusr/mary/letters/a.jones Full path name 

$ ed letters/a.jones 

$ cd letters 
ed a.jones 

Relative path name from /usr/mary 

Change to letters directory 
Invoke ed to edit a.jones file 

Figure 2-9. Path Names with Commands 

The Working Directory 

The directory you are in is called your working directory or your current directory. For 
example, when Mary goes to her "letters" directory to write a letter, "letters" is her 
working directory. 

If you forget what directory you are in, you can use the pwd (print working directory) 
command. For example, if Mary uses the pwd command when she is in her "letters" 
directory, this results: 

$pwd 
/usr/mary/l etters 

A shorthand name for the working directory is ".", which is pronounced "dot". 

The Root Directory 

Before leaving the subject of directories, you should be aware of the root directory (/), 
which has these subdirectories and files: 

• !bin 

• !boot 

• !dev 

This directory has the XENIX commands that users execute most. 

This file has the code for a program that is needed to start the 
system. 

This directory contains special device files. 

2-9 



Files and File Syste ms 

• 

• 
• 

• 

• 
• 

• 

• 

• 

/etc 

/lib 

/lost+found 

/mnt 

/sys 

/tmp 

/usr 

/xenix 

/xenix.f 

XENIX 286 Overview 

This directory has commands that are usually reserved for the 
system administrator plus files that the system administrator 
uses. 

This directory has libraries of subroutines. 

This directory lists directories that are not linked into the file 
system because of some problem. The entries are placed in this 
directory automatically by the fsck command that the system 
administrator uses regularly to check the integrity of the file 
system. 

This directory is normally used for file systems that are mounted 
on the root file system. 

This directory has the code for the XENIX kernel. 

This directory is used for temporary files that are created by 
programs. These files may be removed during normal operations 
and they are usually removed each time the system is started. 

This directory is used for all login directories. It is the ancestor 
of all user files and directories. 

This file has executable code for the XENIX kernel for the hard 
disk system. 

This file has executable code for the XENIX kernel for the 
flexible disk syste m. 

Figure 2-10 illustrates the contents of the root directory. 

bin boot dev etc lib lost + found mnt sys tmp usr xenix xenix.f 

F-0311 

Figure 2-10. The Root Directory 

2-10 



XENIX 286 Overview Files and File Systems 

Special Files 

In a XENIX system, every hardware device is accessed using a special file. Printers, 
terminals, disks, tapes, and com munication lines are all regarded as files. The 
significance of this is that you can send data to a device or read data from a device just 
as you would read data from an ordinary file or write data to it. For program mers, this 
is one of the most important features of XENIX. 

Special files are contained in the /dev directory and only the system administrator can 
add special files. Device names are fixed by the system administrator, but they are 
treated like the names of other files. Figure 2-11 gives sample entries for the /dev 
directory. Notice that even memory is included in the list of special files, although it is 
rarely accessed as a file. 

Device Name 

Idev/console 
Idev/mem 
Idev/kmem 
Idev/null 
Idev/rwOa 
Idev/rwOb 
Idev/tty 
Idev/ttya1 
Idev/ttya2 

Description 

the system administrator's terminal 
an image of physical main memory 
an i mage of kernel data 
a dummy device; output sent to it is discarded 
a disk 
a disk 
a terminal 
a terminal 
a terminal 

Figure 2-11. Sample Device Names in the /dev Directory 

XENIX has two kinds of special files, block and character. 

Block Special Files 

Block special files work with one block of data (1,024 bytes) at a time. Examples are 
disks and tapes. A block special file may also be called a structured device. It often 
has a character special interface, called a raw interface, which is used by programs that 
perform system maintenance functions. 

Character Special Files 

A character special file is any special file that does not work with a block of data at a 
time. Examples are terminals, communication lines, printers, and main memory. A 
character special file may also be called an unstructured device. 

2-11 



Files and File Systems XENIX 286 Overview 

File Access Permissions 

In XENIX, every file belongs to an owner and a group. The owner is the person who 
creates the file, and the group is the group the owner belongs to when the file is 
created. The owner can give or deny access to anyone except the system administrator, 
who has access to all files on the system. The owner or the system administrator can 
assign a file to a new owner. 

Access Permissions for Ordinary Files 

For each file that you create, you can give or deny read, write, and execute permission 
for three different categories of users: yourself, others in your group, and all others. 

Read Permission for Ordinary Files 

Reading a file means looking at its contents. Displaying a file on the terminal, printing 
it, compiling it, and copying it are all examples of reading a file. 

Write Permission for Ordinary Files 

Writing a file means changing it in some way. Adding and changing information are 
examples of writing a file. Deleting a file is not considered writing it, so you do not 
need write permission on a file to delete it. 

Execute Permission for Ordinary Files 

Executing a file means running it as a program. Most executable files are compiled 
programs, and you need execute permission to run them. Some executable programs are 
shell scripts (programs using XENIX commands and the shell programming language). 
You need read permission to execute a shell script. If you also have execute permission, 
you can execute it with the program name. For exalJ1ple, you can run a shell script 
named "check" with this command if you have read and execute permission: 

$ check 

If you have read permission, but not execute permission, you can run a shell script with 
the sh command. For example: 

$ sh check 

Set UID and GID 

As a user, you have a user ID number (DID) and a group ID number (GID). Whenever you 
try to use a file, your IDs and permissions are checked. Occasionally you need someone 
else's ID to use a file. For example, you need root's ID to change your password in the 
/etc/passwd file, because only root can change that file. Set DID permission on the 
passwd command gives you root's ID when you use the command. Any executable file, 
except a shell script, can set the UID or the GID so that anyone who executes the file 
has the effective ID of the owner or the group owner. 

2-12 



XENIX 286 Overview Files and File Syste ms 

Representing Permissions 

For each file that you create, you can give or deny read, write, and execute permission 
for three different categories of users: yourself, other members of your group, and all 
others. These permissions may be referred to as the file mode, protection bits, or 
permission bits. 

Permissions can be represented in two different ways. One way is to show them with 
characters: r for read permission, w for write permission, x for execute permission, s 
for set UID or GID permission, and a dash (-) for permission denied. These permissions 
are shown for the owner, other members of the group, and all others. For example, 
read, write, and execute permission for the owner, other members of the group, and all 
others, are represented in Figure 2-12. Permissions are often called the file mode. 
Examples of permissions are shown in Figure 2-13. 

File Mode 

r-x--x--x 

rwxrwxr-x 

rwxr-x---

rwsr-sr-x 

r w x r w x r w x 

Owner Group Others 

Figure 2-12. Representing Permissions with Characters 

Meaning 

read and execute permission for the owner 
execute permission for the group 
execute permission for others 

read, write, and execute permission for the owner 
read, write, and execute permission for the group 
read and execute permission for others 

read, write, and execute permission for the owner 
read and execute permission for the group 
no permission for others 

read, write, and execute permission for the owner 
owner's permissions for anyone executing the file 
read permission for the group 
group's permissions for anyone executing the file 
read and execute permission for others 

Figure 2-13. Sample Permissions for Ordinary Files 

F-0312 

2-13 



Files and File Systems XENIX 286 Overview 

Permissions can also be represented with these octal numbers: 

4 = read 
2 = write 
1 = execute 
o = deny permission 

Octal numbers are part of a number system whose base is 8, just as decimal numbers are 
part of a number system whose base is 10. You add these octal numbers for permissions. 
The total is 7 for read, write, and execute permission. The total is 5 for read and 
execute permission. The owner, others in the group, and all others have separate totals. 
For example, 777 means full permissions for the owner, others in the group, and all 
others. 

If the DID or GID permission is set, a fourth digit precedes the series. It has one of 
these meanings: 

4 = set UID permission 
2 = set GID permission 
6 = set UID and GID permission 

For example, 6711 gives DID and GID permission to anyone executing the file, gives full 
permission to the owner, and denies permission to others in the group and all others. 

Figure 2-14 shows how the two different methods represent the same permissions. 

Characters Numbers 

rwxr-xr-x 755 

rwxr-x--- 750 

r-x--x--x 511 

rw-rw-rw- 666 

rwsr-x--- 4750 

2-14 

Meaning 

read, write, and execute permission for the owner 
read and execute permission for the group 
read and execute permission for others 

read, write, and execute permission for the owner 
read and execute permission for the group 
no permission for others 

read and execute permission for the owner 
execute permission for the group 
execute permission for others 

read and write permission for the owner 
read and write permission for the group 
read and write permission for others 

read, write, and execute permission for the owner 
owner's permission for anyone executing the file 
read and execute permission for the group 
no permission for others 

Figure 2-14. Representing Permissions 



XENIX 286 Overview Files and File Systems 

Default Permissions 

When you first receive your system, these permissions are de.fined for all ordinary files 
created in the /1}sr directory: 

rw-r--r---

These permissions give read and write permission to the owner, read permission to the 
group, and read permission to all others. They are called default permissions because 
they will be assigned automatically each time you create a file. 

The defaults are set with the umask command, which you use to define which 
permissions are to be removed from a base. The typical base is read and write 
permission for the owner, others in the group, and all others. This is represented in 
octal numbers as 666, and you subtract from 666 to get the appropriate defaults. For 
example, the original default removes write permission for the group and others because 
this command is in the /etc/profile file: 

$ umask 022 

The resulting octal number is 644 (666-022). It is often desirable to change the defaults. 
For example, the system administrator may change the default so files are created with 
read and write permission for the owner, read permission for others in the group, and no 
permission for others. The octal representation for these permissions is 640 and the 
default is created with this command: 

$ umask 026 

The system administrator may place the umask command in the /etc/profile file, or you 
may place it in your own .profile file. 

You can specify permissions for your existing files with the chmod (change mode) 
command. For example, when Mary creates her "a.jones" letter, it has the default 
permissions (644). If she wants to include write permission for others in her group, she 
can specify the appropriate permissions with this command: 

$ chmod 664 a.jones 

Access Permissions for Directories 

Directories can be read, written, or searched. 

Read Permission for Directories 

Reading a directory means looking at the contents of the directory file itself. Since a 
directory contains only a list of file names and their inode numbers, reading it means 
using the Is command to look at the list. Figure 2-15 shows what kind of information is 
available to you if you have read permission on a directory. The -i option of the Is 
com mand shows inode numbers and file names. 

2-15 



Files and File Systems 

$ Is -i lusr/mary 
450 letters 
460 memos 
475 programs 
$ 

Keep these rules in mind: 

XENIX 286 Overview 

Figure 2-15. Reading a Directory 

• Read permission on a directory does not give you access to the contents of the 
files in the directory. You can only read the names of the files in the directory. 

• If you know a file's name and have read permission on it, you can see its contents 
provided you have search permission on its directory. You do not need read 
permission on its directory. 

Write Permission for Directories 

Writing to a directory means creating a new file (including a sUbdirectory) in it or 
deleting a file from it. It may help to picture the actual contents of the directory file. 
Writing to a directory means adding a name to the list of files or removing a name from 
the list. 

Keep these rules in mind: 

• You do not need write permISSIon on a file to delete it. You just need write 
permission on the directory that contains the file. You will be warned if you try 
to delete a file without having write permission, but you can still delete it. 

• You can change the contents of a file if you have write permission on the file. You 
do not need write permission on the directory. 

Search Permission for Directories 

Directories have search permission instead of execute permission. It is meaningless to 
execute a directory, since it is not a program. The "x" is still used as the symbol for 
search permission. 

Searching a directory means going to the directory with the cd (change directory) 
command or searching through its list of files when a file name is given. You cannot use 
a file name successfully unless you have search permission for every directory in the 
path. Figure 2-16 shows how directories are searched when the full path name is 
"/usr/mary/memos/team.5.20". 

2-16 



XENIX 286 Overview 

Contents of 
I (Root) 

bin 
boot 
dev 
etc 
lib 

usr 
xenix 
xenix.f 

Contents of Contents of 
I usr lusr/mary 

jack letters 
kay ~memos 

mary programs 

Figure 2-16. Searching Directories 

Access Permissions for Special Files 

Files and File Systems 

Contents of 
lusr/mary/memos 

team.5.1S 
• team.S.20 

F·0313 

System owners, such as root and bin, own all of the special files. Others usually have 
write permission for terminals and printers and no permission for other devices. 

Special files for terminals are usually owned by root when they are not being used. When 
you log in, you become the owner temporarily and can set the access permissions on the 
terminal. When you log off, ownership reverts to root. 

Trying to execute a special file is meaningless. 

Read Permission for Special Files 

Reading a special file means looking at its contents. For example, if you deny others 
read permission for your terminal, they cannot read what you are typing. Read 
permission for a printer is meaningless. 

Write Permission for Special Files 

Writing a special file means sending data to it. For example, if you give others write 
permission on your terminal, they can send messages to your screen. People usually 
give others write permission on their terminals by using the mesg command to permit or 
prevent messages from reaching the terminal. The mesg y command permits others to 
send messages to your terminal and the mesg n command prevents others from sending 
messages to your terminal. 

2-17 



Files and File Syste ms XENIX 286 Overview 

Links to Files 

A file exists somewhere on a disk and you use its name to work with it. This name is for 
your convenience and it is stored in the directory, not in the file itself. XENIX knows 
each file by a unique number called an inode number. These facts make it possible for 
you to have names for a file in more than one directory and to give a file more than one 
name. This is called linking. 

Imagine that Mary and Jack are writing a joint letter to R. Smith. They both want to 
list the file in their own directories so that they can use the short, relative path names. 
They accomplish this by having Mary create the file and having Jack use the In 
command to create a link to it. He can use the same name for the file or use a 
different name. Figure 2-17 illustrates links. 

Contents of Mary's 
letters Di rectory 

530 a.jones 
546 k.brown 
575 r.smith 
y 

LThese files have the same inode 
number, which means they are 
the same file. 

Figure 2-17. Links to a File 

Contents of Jack's 
letters Directory 

575 r.smith.letter 
y 

F·0314 

A linked file is just one file (not two copies of the same file). If Jack changes 
Ifr.smith.letters", those changes are made to the file Mary calls "r.smith". 

These rules apply to links formed by In: 

• You need search permission on a directory to link to files named in it. 

• No one can link across file syste ms. 

• All directories have at least two links, because they have the shortcut name "." in 
addition to their full name. 

• If you delete a linked file from your directory, the file itself is not deleted unless 
no links remain. 

2-18 



XENIX 286 Overview Files and File Syste ms 

Working with Files 

XENIX offers many commands for working with files. For example, XENIX gives you 
commands to 

• Create and edit files (ed, ex, vi, view) 

• Compare files (bdiff, emp, diff, diff3) 

• Identify file types (file) 

• Display files (eat, more) 

• Display the first few or last few lines of a file (head, tail) 

• Divide files (split) 

• Find files (find) 

• Join files (eat) 

• Sort files (sort) 

• Copy files (copy, ep) 

• Rename files (mv) 

• Delete files (rm) 

• Count the characters, words, and lines in a file (we) 

Appendix A includes a summary of the Basic System's commands for working with files. 

2-19 



Files and File Systems XENIX 286 Overview 

Logical Files and Physical Locations 

As a user, you work only with files and directories. You do not have to be concerned 
with finding a place for them on the disk or locating them after they have been stored. 
Those are problems that the kernel solves and it solves them by implementing a file 
system. 

A disk is a mass storage device that holds millions of characters called bytes. A file 
system is a physical partition of a disk. It treats the physical area of a disk as a series 
of blocks (each block equals 1,024 bytes) and imposes a logical organization upon them. 
A file system stores data as efficiently as it can, then finds it as quickly as possible 
when you want to use it. 

Logical Files 

Logically, a file is a series of bytes, as illustrated in Figure 2-18. 

MEMO 

TO 
FROM 
DATE 
SUBJECT 

Team 
Mary 
May 15 
Revised Schedules 

Please give me your revised schedules by Friday. 

Figure 2-18. Sample File 

Notice that the file has nothing but the text of a memo. It does not even have the file 
name. You see it here as one continuous series of characters, but parts of a large file 
are in different blocks on the disk. 

It is the file system that makes the connection between the logical file that you create 
and the physical blocks that it occupies on the disk. 

2-20 



XENIX 286 Overview Files and File Systems 

Finding the Physical Location of File Data 

The file system keeps several pieces of information that the kernel needs to find a file 
on the disk: 

• The name. You identify a file by name when you want to use it. 

• The directory. When you give a file name, the kernel searches the directories 
listed in your search path until it finds the file name. Along with the file name, 
the directory has the inode number that the kernel has assigned to identify the 
file. 

• The inode list. The kernel uses the inode number in the directory to find the inode 
number in the inode list, which has all of the inode numbers in the file system. For 
each inode, an index entry gives this information about the file: 

• File type. This identifies the file as an ordinary file, a directory, a special 
file, a semaphore, or a named pipe. (Semaphores and named pipes are 
discussed in the XENIX 286 C Library Guide.) 

• Permissions. This identifies read, write, execute, and set DID and GID 
permissions. 

• Owner. This gives the UID of the owner of the file. 

• Group. This gives the GID of the group the file belongs to. 

• Number of links. This identifies the number of times the file is listed in 
directories. 

• File size in bytes. 

• Date the file was created. 

• Date the file was last read. 

• Date the file was last modified. 

• Location of the file on the disk. This entry lists up to 13 blocks. The first 
ten blocks of the file are listed here. Three additional entries give the 
addresses of the blocks that tell where the rest of the file is located. For 
example, if the file has more than ten blocks, an entry points to a block that 
lists the next 128 blocks of the file. These blocks that point to other blocks 
are called indirect blocks. 

Figure 2-19 illustrates how the kernel uses the file name, directory, and inode list to 
find file data when Mary goes into her "memos" directory and asks to print "team.5.15". 
The kernel finds the name of the file in the directory, uses the inode number to find the 
file on the inode list, then uses the location in the inode list to find the file on the disk. 

2-21 



Files and File Systems XENIX 286 Overview 

memos Directory Inode List Disk 

A 
501 team.S.1S 

520 team.S.20 

500 Block 2443 

S01 ........ Block 2446~ Block 2444 

502 ~ Block 2445 

503 Block 2446 

F·0315 

Figure 2-19. Logical Files and Physical Locations 

2-22 



XENIX 286 Overview Files and File Systems 

The Structure of a File System 

A file system is a partition of a disk. Each Winchester disk sold by Intel has one root 
file system. If it has 20 megabytes or more, it also has a separate user file system for 
all user files. Very large disks may have even more file systems. If the disk has fewer 
than 20 megabytes, there is only one file system, the root file system, and the user files 
are part of it. 

Figure 2-20 illustrates the root file system and user file system as partitions of a 
40-megabyte Winchester disk. 

Root File Swap User File 
System Area System 

L Boot 
Track 

Bad 
T k 

rac l Data 

Alternate 
Tracks 

Diagnostic J 
Track 

F-0316 

Figure 2-20. The Structure of a 40-Megabyte Winchester Disk 

Boot Track 

Root File System 

Swap Area 

User File System 

Alternate Tracks 

Bad Track Data 

Diagnostic Track 

The boot track has a program that loads the XENIX kernel into 
memory when the system administrator starts the computer. 

The root file system is the first file system on the disk. 

By convention, the swap area follows the root file system. It is 
the area where processes can be placed while they wait for their 
turn to execute. 

A disk with more than 20 megabytes has a separate user file 
system. 

If a regular disk track is bad, an alternate is assigned. 

If testing shows that a track is marginal, it is listed here as a bad 
track. During disk formatting, the bad track information is read 
and alternate tracks are assigned. 

,This is used for hardware diagnostics. 

2-23 



Files and File Systems XENIX 286 Overview 

A file system is made up of a super block and a series of cylinder groups. These cylinder 
groups are made up of a cylinder group block, inodes, and data. The number of cylinder 
groups depends on the size of the disk and the needs of the installation. You may check 
the XENIX 286 Installation and Configuration Guide for details. 

Figure 2-21 illustrates the structure of a file system. 

Super 
- Block 

Cylinder 
r- Group 

Block 

Inode 

List 
Data 

Cylinder 
~ Group 

Block 

I 

Inode 

List 
Data 

\------- ------------- ,------------- ----) 

Super Block 

Cylinder 
Group 

Cylinder Group Block 

Inode List 

Data 

2-24 

Cylinder 
Group 

More Cylinder 
Groups (optional) 

Figure 2-21. The Structure of a File System 
F-0317 

The first block of a file system is the super block. It gives the 
location of each cylinder group. 

The cylinder group block gives the location of the inode blocks 
and data blocks in the group. It includes a bit map that shows 
which data blocks have been allocated and which ones have not. 

The inode list has information for each file. 

The data area is used for files. 



XENIX 286 Overview Files and File Systems 

Cylinder Groups 

Cylinder groups have been introduced to enhance the performance of the operating 
system. How they work is not discussed in detail here because normally only the person 
who installs the system is aware of them. One of XENIX's assets is that most users do 
not have to be aware of the physical organization of data. 

What is important to most users is that the kernel spends less time looking for file data 
when the file system is divided into cylinder groups. This is because 

• The inodes are closer to the data; less disk head movement is required, so it takes 
less time to access data after the inode is located. 

• As much as possible, contiguous blocks are used for files. It is faster to access 
blocks that are together than blocks that are scattered over the disk. 

File Allocation 

Each cylinder group block has a bit map that shows whether the data blocks in the 
cylinder group have been allocated to a file. The map is a series of bits, one for each 
block. If the block has been allocated, the bit is set to o. If the block is free, the bit is 
set to 1. 

In earlier versions of the file system, a free list of blocks was used instead of a bit map. 
When a block was needed, the first block on the list was allocated. When a block was no 
longer used, it went to the top of the free list. The result was that the list of free 
blocks became random eventually. It was unlikely that files would have contiguous 
blocks because only one block was allocated at a time and the blocks were not in order 
on the free list. 

With the bit map, blocks are always listed in order and the kernel can more often find 
contiguous blocks for a file. This leads to more consistent performance over time. 

The Root File System and the Root Directory 

The root file system is not the same as the root directory. The root file system is a 
physical partition of the disk. It is created by the system administrator during 
installation, and it usually includes all of the system directories. 

The root directory is the parent of all files. This means that even files in other file 
systems have to have a path back to root to be used. For example, if you have a 40-
megabyte Winchester disk, you have two file systems, root and user, which occupy two 
separate partitions of the disk. The user file system has to be attached to some empty 
directory on root's hierarchy of directories before you can work with files in its file 
system. Attaching file systems is called mounting them and it is normally done when 
the system administrator starts the system. 

2-25 





Programs and Processes 

CHAPTER 3 
RUNNING PROGRAMS 

Programs and processes are two important concepts in XENIX. You use the computer to 
run programs, and the computer runs them by starting processes. Running a program is 
a matter of starting a process, but a process and a program are not the same. For 
example, if four users execute the Is command, only one copy of the program is used, 
but four different processes begin. 

Programs 

Programs are instructions that perform some function. They fall into several 
categories: 

• XENIX commands. Most XENIX commands are executable programs. 

• Shell programs. A shell is a XENIX command interpreter. It is also a 
programming language with variables, arguments, conditional statements, case 
statements, for statements, while statements, and comments. You may write 
shell programs that use both XENIX commands and features of the shell 
programming language. These programs are called shell scripts. 

• Source programs. A source program is a set of instructions that someone has 
written in a high-level language such as C. 

• Object programs. An object program is a source program that has been compiled 
and is ready to be executed. 

Executable programs are usually stored in the /bin directory, the /usr/bin directory, the 
tete directory, or a user's directory. Several different users may execute the same 
program at the same time. For efficiency, only one copy of the program is brought into 
memory to be executed. 

Processes 

Processes are programs being executed. Each time a program is executed, a process 
begins. It is unique and is identified by a number called a PID (process ID). Like 
directories, processes are organized into hierarchies. The first ~process (PID 1) begins 
when the system administrator starts the system, and all processes descend from 
process 1 in parent-child relationships. For example, when process 1 starts process 2, 
process 1 is the parent and process 2 is the child. 

3-1 



Running Programs XENIX 286 Overview 

A new process begins as a result of a fork syste m call, which starts a child process and 
continues to let the parent process run. The child process inherits all of the open files 
of the parent but is separate from the parent and has its own PID. The parent process 
either waits until the child process ends, or the parent continues to run while the child is 
running. 

A process can replace one running program with another and take its PID if an exec 
system call is given. An exec is used when one program is finished and will not be 
needed again. 

Figure 3-1 illustrates the hierarchical structure of processes and the difference between 
an exec and a fork. 

EXEC FORK 

PID = 150 PID = 250 
Before Parent PID = 100 Parent PID = 200 

------- -------

After 
PID = 150 
Parent PID = 100 

PID = 280 
Parent PID = 250 

PID = 250 
Parent PI D = 200 

F-0318 

Figure 3-1. Using exec and fork System Calls 

The kernel keeps track of all processes in a process table and a user table. The number 
of processes that can run at one time depends on the size of the tables, and the size is 
defined by the system administrator during configuration. 

3-2 



XENIX 286 Overview Running Programs 

What Happens During System Startup 

The system administrator starts the system by turning on the hardware and loading the 
XENIX kernel. The kernel starts a program called init, which runs as process 1. Process 
1 is at the top of the process hierarchy and it runs as long as the system is up. All 
processes are its descendants. 

The system administrator usually brings the system up in single-user mode, does system 
maintenance, then puts the system in multiuser mode. Several processes need to be 
started before users are allowed on the system. 

First, a shell script called /etc/rc is executed. This script contains commands to 

• Mount file systems on the root directory tree. 

• Clear temporary files. 

• Start daemons. (Daemons are programs that run continuously. For example, lpd is 
a daemon for the line printer. It is always ready for a print command. Another 
daemon, cron, checks the commands in the /etc/crontab file and executes them at 
the assigned time.) 

N ext, the kernel checks the /etc/ttys file. This file has a list of terminals with these 
seven characters that describe each terminal: 

• One character that tells whether the terminal is enabled (l for enabled, 0 for 
disabled). 

• One character that gives the terminal's baud rate to a program called getty. 

• Five characters that give the terminal name in the /dev directory (for example, 
ttyal, ttya2). 

A getty process is started for each enabled terminal. Once getty has initialized the 
terminal characteristics and determined the correct baud rate (the rate at which 
characters are transmitted), the getty process replaces itself with a login process. This 
is an example of an exec. The getty process is no longer needed, so it is replaced by the 
login process. This means that if the getty process had PID 5 in the process table, the 
login process takes its place and has PID 5. The result is a login process for each 
enabled terminal. When a user logs in, login execs a shell to accept commands. From 
this point on, the shell is responsible for executing commands. 

3-3 



Running Programs XENIX 286 Overview 

How You Gain Access to the System 

You cannot do anything until the system administrator has created an account for you 
on the system. The system administrator uses a command called mkuser, which prompts 
for information about the account, places information in the etc/passwd file and the 
/etc/group file, and creates a home directory and files that you will need. 

The /etc/passwd File 

The /etc/passwd file controls the login procedure that you must complete to gain access 
to the computer. The /etc/passwd file has this information: 

• A login name. This is the name that you will type when you want to log on the 
system. On many systems, it is your first name in lowercase letters. 

• Your password in encrypted form. The system administrator assigns a password 
when you are added to the system, but you may change it at any time with the 
passwd command. 

• A unique user ID number (UID). This number identifies you in the system. UIDs 
for regular users start with 200. Number 0 is reserved for root. Numbers 1-199 
are reserved for special "users" who own system files. Examples are bin and cron. 

• A group ID number (GID). If people at your installation need to share certain files, 
the system administrator may define groups. You can be a member of several 
groups, but you can work in only one group at a time. This number identifies the 
group you are in when you log on. 

• A comment that can be used for reference information. The finger command that 
displays information about users expects this field to have a user's full name, 
office, phone extension, and home phone number. It is not necessary to include all 
of these pieces of information, but if you do, separate them with commas, as 
shown in Figure 3-2. Another name for this field is GCOS. (The initials have 
historical significance only.) 

• The name of your login directory. The login directory becomes your working 
directory immediately after login. 

• Your login shell. Your login shell is the command interpreter you use. It can be 
the Bourne shell, the C shell, the restricted shell, or the visual shell. It can even 
be a specific program. For example, if you use the system only for word 
processing, the word processing program can be listed as your login shell so you 
will go into it im mediately after login. If no shell is specified, the Bourne shell is 
used. 

Each piece of information in the /etc/passwd file is separated by a colon. Figure 3-2 
shows a sample entry from the file. 

3-4 



XENIX 286 Overview Running Programs 

mary: j9Hz1 FzBYSOVw: 201: 200 : M Day, Rm 210,x5006, 273-5543: lusr/mary:/bin/sh 
'--v-' \ y .J '--y--/'--y-' \ V I'----v---' '-yJ 

~ t us:r G:OUP t t t 
Login 
Name 

Encrypted 
Password 

ID ID 
(UID) (GID) 

Comment 
(GCOS) 

Login 
Directory 

Figure 3-2. Sample Entry in the /etc/passwd File 

What Happens During Login 

Login 
Shell 

F-0319 

Logging in is the procedure that you follow to gain access to the computer. It involves 
typing a login name and giving a password. 

You can log in when you see this prompt on the screen: 

login: 

You type the login name that the system administrator has given you. The screen 
displays a prompt for the password, and you have about one minute to give your 
password. The login process checks the /etc/passwd file for your login name, encrypts 
the password you typed, and compares it to the encrypted password in the file. 

If there is mail in your mail box, you are notified that you have mail when you log in. 

The Login Shell 

If your login name and password are valid, the login process moves you to your login 
directory and uses an exec to start your login shell. Since an exec is used, the shell has 
the same PID that your login process had. 

At the same time, the name of the login directory is stored In a variable called HOME. 
Variables have values that vary from user to user. Some variable names, like HOME, 
are predefined and are always entirely in capital letters. Later in this chapter, some 
variables will be discussed in more detail. 

The login shell continues to run until you log off by pressing the CONTROL key and the 
D key at the same time. This key combination is referred to as CONTROL-D. 

The following discussion of the login shell is based upon the Bourne shell, which is 
referred to simply as the shell. The C shell, restricted shell, and visual shell differ in 
some ways and are described later in this chapter. 

3-5 



Running Programs XENIX 286 Overview 

The Standard Input, Output, and Error Files 

When the login shell is started, several things happen internally. The terminal is opened 
as the standard input file, the standard output file, and the standard error file. This 
means that all input will come from the terminal, all output will be displayed on the 
terminal, and all error messages will be displayed on the terminal unless you specifically 
open other files for them. In XENIX, each open file has a number, called a file 
descriptor, associated with it. The standard input is opened with file descriptor 0, the 
standard output is opened with file descriptor 1, and the standard error is opened with 
file descriptor 2. 

Default Variables Set by the Login Shell 

The shell is a program that you use to execute commands. It stores several pieces of 
information that it needs in variables. The HOME variable, for example is defined at 
login so that the shell will know your login directory. Other variables are given default 
values when the login shell starts. A variable is always defined by giving the name of 
the variable, an equal sign, and the value of the variable. 

The variables set by the login shell and their values are defined below: 

• PATH. When you give a command, the shell searches through the directories 
named by the PATH variable until it finds the program to be executed. You define 
a variable by giving its name, an equal sign, and its value. The default search path 
is 

PATH =/bin:/usr/bin:$HOME/bin:. 

The directories are separated by colons, so the search path is through the Ibin 
directory, then the lusrlbin directory, then the Ibin directory in your home 
directory (this Ibin directory is optional), then your working directory (.). 
Programs for commands that most users can execute are usually stored in one of 
these directories. 

Notice the $HOME/bin directory in the path. When the name of a variable begins 
with a dollar sign, it means to use the value of the variable. $HOME means to use 
the value of the HOME variable. Imagine that 

HOM E =/usr/mary 

In this case, the directory is "/usr/mary/bin". 

• PSI. PSI stands for prompt string 1, which is the main prompt that the shell 
displays when it is ready to accept commands. The default is 

3-6 

PS 1 = "$ " 

The prompt is shown in quotes here because it includes a space. When the prompt 
itself appears on the screen, it is a dollar sign followed by a blank space. If you 
want some other prompt, you redefine the variable. For example, if you want to 
be prompted with "Ready", you use this definition: 

PS 1 = "Ready" 



XENIX 286 Overview Running Programs 

• PS2. PS2 stands for prompt string 2, which is the prompt that the shell displays if 
you need to give more information. The default is 

PS2="> II 

• IFS. IFS stands for internal field separators, which the shell recognizes as 
characters that separate fields. The defaults are a space, a tab, and a newline 
character. 

You should use this variable only if you are doing shell program mingo 

The .profile Files 

After the shell has set default variables, it reads the /etc/profile file, which has 
information that applies to all users, then reads the .profile file in your login directory, 
which has information that applies only to you. The information in your .profile file is 
usually a combination of commands and definitions of variables that your login shell 
needs each time it starts. It is placed in your login directory when the system 
administrator adds you to the system, and you may change the information in the file at 
any time. Sample entries in the .profile file are show.n in Figure 3-3. 

PATH =/bin:/usr/bin:. 
TERMCAP = letc/termcap 
TERM = h8020e 
MAIL = lusrlspool/mail/' logname 
export TERMCAP TERM PATH MAIL 

Figure 3-3. Sample .profile File 

In Figure 3-3, the PATH variable is being redefined. The new value replaces the default 
value that the shell had set. 

Three other variables are usually defined in your .profile file: 

• TERMCAP identifies the file that has descriptions of terminals. The default is 
/etc/termcap, and the variable is rarely redefined. 

• TERM identifies the terminal by a short code name. For example, h8020e is the 
name for the Hazeltine Executive model 20. 

• MAIL identifies the file that keeps your mail. When' logname' is used as the last 
part of the path name, it means to use the result of the logname command. If it 
were "mary", the mail box would be the "/usr/spool/mail/mary" file. 

You use the .profile file for com mands that you want to execute at login as well as 
variables that you want to define. The most common command in this file is the export 
com mand. It is included so that the variables that are named will be defined in any new 
shells that the login shell starts. Without the export command, the variables would be 
defined only in the login shell. 

3-7 



Running Programs XENIX 286 Overview 

Executing Commands with the Shell 

When the shell is ready for com mands, the shell prompt appears on the screen. This is a 
dollar sign unless you have changed the PSI variable. When you give com mands, the 
shell interprets them and forks a new process to execute each one. The general term 
for a program that does these things is a command interpreter. Some operating systems 
have only one command interpreter because it is in the kernel. XENIX has several 
different command interpreters to provide maximum flexibility. Each one is a C 
program that can be changed or replaced with another C program. 

Executing Simple Commands 

At the shell prompt, you can type a command and press the RETURN k>ey. For example, 
if you want to see who is on the system, you can use this command: 

$who 

This sequence of events follows: 

• The shell interprets the command line. 

• The shell searches for an executable program with the same name as the 
command. It looks in each directory listed in the search path defined by the PATH 
variable. Imagine that this is the search path: 

fbi n :/usr/bi n: mary/bi n:. 

The shell searches the /bin directory for the who program and finds it there. (If 
/bin had not been in the search path, the program could not have been found with 
who alone; the full path name, /bin/who, would have been required.) 

• The shell forks a child process for the who process and waits. 

• The child attempts to exec (load) the /bin/who program. 

• The kernel finds these permissions on the /bin/who file: 

rwx--x--x 

Mary belongs to the category of others, so she has execute permission. 

• The kernel executes the /bin/who program and the output is displayed on the 
terminal. This sample display lists the users who are logged on and identifies their 
terminals and login times: 

mary 
jack 

ttya1 
ttya2 

Ju11210:15 
Ju11211:03 

• The kernel signals to the shell that the child process has finished executing the 
tbin/who program. 

• The shell wakes up and prompts for the next command. 

3-8 



XENIX 286 Overview Running Programs 

Using Options 

Many commands have options. For example, the Is command can be used with or without 
options. If you use it as a simple com mand, the contents of your working directory are 
displayed. For example, Is would produce this alphabetical list of files in Mary's 
"memos" directory: 

$Is 
team.S.1S 
team.S.20 
$ 

The Is command has several options. The -1 option, for example, gives this information 
about files: the permissions, number of links, owner, group, size in bytes, and time of 
last modification. When you use options, you give them after the command name. For 
example: 

$Is -I 
total 2 
-rw-r--r--
-rw-r--r--
$ 

mary 
mary 

200 
200 

The total refers to the number of blocks. 

S9May lS10:lSteam.S.1S 
30 May 20 10: lS team.S.20 

Another option, -s, shows the num ber of blocks for each file: 

$Is -s 
1 team.S.1S 
1 team.S.20 
$ 

When a command has several options, you can often use more than one at a time. For 
example, this command uses two options, -1 and -s: 

$Is -Is 
total 2 
1 -rw-r--r--
1 -rw-r--r--
$ 

Using Arguments 

mary 
mary 

200 
200 

S9May lS10:1Steam.S.1S 
30 May 20 10: lS team.S.20 

With some commands, you name the files or directories to be used. These files or 
directories are called arguments to the command and they appear on the command line 
after any options. 

This is an example of the Is command with the "memos" directory as an argument: 

$Is memos 
team.S.1S 
team.S.20 
$ 

3-9 



Running Programs XENIX 286 Overview 

This is an example of the Is command with an option and an argument: 

$Is -s memos 
total 2 
1 team.S.1S 
1 team.S.20 
$ 

Using Metacharacters 

Before the shell sends commands, options, and arguments to a program to be executed, 
it interprets them, paying special attention to special characters called metacharacters 
or wildcards. These characters are described in Figure 3-4. 

? Matches anyone character 

* Matches any stri ng of characters 

[ ] Defi nes a set of characters 

Defi nes a range of characters withi n a set 

Negates a set of characters 

Figure 3-4. Shell Metacharacters 

The shell interprets these characters, generates complete file names, and sorts them 
alphabetically before it sends the arguments to the program being executed. The 
significance of this is that you can give files names that will let you take advantage of 
metacharacters. . 

The ? Metacharacter 

The ? metacharacter matches anyone character. For example, suppose that you are 
writing a book with five chapters. If you follow a pattern in naming files, such as 
"chapl", "chap2", "chap3", "chap4", and "chap5", you can use the? metacharacter when 
you want to print all five chapters: 

$Iprchap? 

The shell interprets the command and generates complete file names before sending the 
arguments to the program, so the program never sees the metacharacters. It always 
receives complete arguments. In this example, the shell generates these file names and 
sends them to the Ipr program: 

chap 1 chap2 chap3 chap4 chapS 

3-10 



XENIX 286 Overview Running Programs 

The * Metacharacter 

The * metacharacter matches any string of characters. For example, this command 
displays the contents of all of the files whose names begin with "memo" and end with 
any series of characters: 

$ cat memo* 

The [ and] Metacharacters 

The [ and ] metacharacters define a set of characters. For example, this command 
prints "chap1", "chap4", and "chap5": 

$Ipr chap[145] 

The command does not print "chap2" or "chap3" because they are not identified in the 
set. 

The - Metacharacter 

The - metacharacter defines a range of characters. For example, this command prints 
"chap1", "chap2", "chap3", and "chap4": 

$ Ipr chap [1-4] 

The ! Metacharacter 

The! metacharacter defines the characters that are not included in a set. For example, 
you can use this com mand to print all chapters except 1-4: 

$ Ipr chap [! 1-4] 

Redirecting Input and Output 

All of the programs that you run assume that the input is coming from the standard 
input and that the output is going to the standard output, so they do not have to be 
concerned with input and output devices. If you want to take input from some source 
other than the terminal or send it to some other destination, you can have the shell 
redirect input or output. 

For example, if you use the Is command to print a list of files, the list appears on the 
terminal. If you want to place the list in a file, you use an output redirection symbol (» 
to have the shell redirect it. This command places the list in a file called "list": 

$Is >Iist 

If the file does not exist, it is created. If the file does exist, the new contents overwrite 
it unless you use » to add to the end of the file instead. For example, this command 
adds the output of the Is command to the end of the "list" file: 

$Is > >Iist 

3-11 



Running Programs XENIX 286 Overview 

Input can also be redirected. The shell expects input to come from the terminal, but 
you can use the input redirection symbol «) to bring input from some other source. For 
example, when you use the mail command, the input (message) normally comes from the 
terminal. If you want to send a message to Jack, for example, you use the mail 
command with Jack's login name as an argument, then begin typing the message on the 
next line. After you have completed the message, you go to a new line and press 
CONTROL-D. This is an example: 

$ mail jack 
Please send your draft proposal to Mark. 
CONTROL-O 

The mail command also takes input from a file if you use input redirection. For 
example, Jack can send his "proposal" file to Mark by giving this command: 

$ mail mark < proposal 

Pipes 

You often need to perform more than one operation on data. For example, you may 
want to get data, then sort it. You can do this most efficiently with a pipe, which is a 
tool that connects the standard output of one command to the standard input of another 
command. The symbol for a pipe is I. 

Suppose that you want an alphabetical list of users who are on the system. The who 
command supplies a list of users who are logged on, but it lists them by terminal, 
beginning with the console, which is the system administrator's terminal. For example: 

$who 
sarah 
jack 
mary 

console 
tty 1 
tty2 

June 29 09:25 
June2910:15 
June 29 11 :45 

If you use a pipe, you can write one com mand line that sends the output of the who 
command to the sort command and displays the sorted, alphabetical list on the terminal. 
For example: 

$ who I sort 
jack 
mary 
sarah 

tty 1 
tty2 
console 

June2910:15 
June 29 11 :45 
June 29 09:25 

If you want to print the alphabetical list on a printer, you can add another pipe: 

$ who I sort Ilpr 

In this case, the list does not appear on the terminal. It goes directly to the printer. 

3-12 



XENIX 286 Overview Running Programs 

With pipes, you need fewer command lines because you do not have to create temporary 
files and move data from one file to another. This series of commands illustrates the 
steps you would have to complete to print an alphabetical list of logins if you did not use 
pipes: 

$ who >Iogins 
$ sort logins >printlogins 
$Ipr printlogins 

The list of users logged on is redirected to the "logins" file, then the contents of the 
"logins" file are sorted and redirected to the "printlogins" file, then the "printlogins" file 
is printed. The sort command does not change the contents of the "logins" file itself. It 
just takes those contents and sorts them for the standard output. In this case, the 
output is redirected to another file. 

Filters 

Some commands take data from the standard input, use or change the data, and display 
the result on the standard output. These commands are called filters and they are often 
used with pipes. 

Suppose that you want to combine and sort two lists of names and phone numbers. The 
easiest way is to use pipes and filters. The first list, "listl", has these lines: 

Mary 4451 
Jack 4452 
Sharon 4563 
Mark 5441 

The second list, "list2", has these lines: 

Dan 7787 
Jan 7733 
Kent 6765 

The cat command joins files and the sort command sorts them. This command line 
combines the lines of "listl" and "list2", sorts them, and displays the output on the 
terminal: 

$ cat list1 list21 sort 
Dan 7787 
Jack 4452 
Jan 7733 
Kent 6765 
Mark 5441 
Mary 4451 
Sharon 4563 

The input files, "listl" and "list2", are unchanged. 

Figure 3-5 lists the filters used most. 

3-13 



Running Programs 

awk 

dd 

grep, egrep, fgrep 

head 

nl 

sed 

sort 

tail 

tr 

uniq 

we 

3-14 

XENIX 286 Overview 

change lines that match patterns 

convert and copy a file (to process other systems' data) 

select lines that match or reject patterns 

print the first few lines of a file 

add line numbers to a file 

edit a file according to a script of commands 

sort a file 

print the last part of a file 

copy and translate characters 

remove repeated lines from a file 

count the lines, words, and characters in a file 

Figure 3-5. Common Filters 



XENIX 286 Overview Running Programs 

XENIX Shells 

This chapter has explained how the standard Bourne shell interprets your com mands and 
passes information to the programs you want to execute. The Bourne shell is powerful 
and works well for many users. The Bourne shell is supplemented by the restricted shell, 
visual shell, and C shell for this release so you can choose the command interpreter that 
works best for you. Additional shells are available from other sources. 

Bourne Shell 

The shell that has been discussed in this chapter is the standard Bourne shell (named 
after its creator, S. R. Bourne). Its program name is sh and its standard prompt is a 
dollar sign ($). The Bourne shell is able to redirect input and output, interpret 
metacharacters, use pipes with filters, use variables, and serve as a programming 
language. 

Restricted Shell 

The restricted shell is a subset of the Bourne shell. Its program name is rsh. If your use 
of the system is limited, the system administrator may give you this shell and define the 
commands you can execute. The restricted shell has the features of the Bourne shell, 
but it does not allow you to change directories with the cd command, define your own 
search path, use any command names that have slashes (typically commands in the tetc 
directory, which are reserved for the system administrator), or redirect output. 

Visual Shell 

The visual shell is a menu that lists the most common commands plus the application 
programs your installation uses. Its program name is vsh and it is similar to the user 
interface for Microsoft's Multiplan software. The system administrator may give you a 
visual shell if you spend most of your time running application software. 

C Shell 

The C shell is a variation of the Bourne shell developed at the University of California 
at Berkeley. Its program name is csh and its standard prompt is a percent sign (%). The 
name is C shell because it has features in common with the C programming language. 
Like the Bourne shell, the C shell is able to redirect input and output, interpret 
metacharacters, use pipes with filters, and use variables. It also has these features: 

• A history function that keeps a list of commands you have used recently (you 
define the number to be kept) so that you can reuse them without retyping them 

• Ability to process arrays 

• An alias function that you can use to change command names and create new 
commands 

3-15 





Tools for Text Processing 

CHAPTER 4 
TEXT PROCESSING 

XENIX has a full set of tools for working with text files. This is partly because 
document production programs were among the first tools developed for the UNIX 
system and partly because programmers and writers use many of the same tools. XENIX 
offers assistance at each of these stages of a typical writing project: create a draft, 
check it, revise it, and produce a final version. You need the Extended System to check 
a document and format it with standard options such as centering and bolding. 

Tools for Creating a Draft Document 

First you type a draft document with a text editor. The vi editor is a popular choice 
because you can work with an entire screen of material at a time when you use it, but 
you can also use the ed or ex line editor and work with one line or a series of lines at a 
time. 

The text you type is a series of lines without paragraph divisions, centering, or other 
features of a finished document. As you type the lines, or at some time before 
producing the final version, you put formatting instructions in the document. These 
instructions are codes that tell how to treat text. For example, there are codes for 
centering, for starting paragraphs, for bolding words, and for creating lists. 

The different code types are 

• nroff/troff codes. The term nroff stands for new runoff, which refers to printing 
on a printer, and troff stands for typeset runoff. Each nroff/troff code 
accomplishes one specific thing, such as justifying a line, printing a page header, 
printing multiple columns, numbering columns, setting the line length, or indenting 
a line. The nroff codes format text for a printer and the troff codes format text 
for a phototypesetter. The basic nroff and troff codes are the same, but troff has 
some extra options, such as proportional spacing, different fonts (including roman, 
italic, and bold), Greek and mathematical characters, and different type sizes. 

Each nroff/troff code begins with a dot and has lowercase letters. It goes on the 
line above the text to be formatted. 

• mm macros. A macro represents a series of nroff or troff instructions that 
accomplishes some routine function such as starting a paragraph or creating a list. 
With the mm macros in the Extended System you can prepare letters, memos, and 
other office documents. You can also create your own macros. 

4-1 



Text Processing XENIX 286 Overview 

• eqn/neqn codes. You use eqn/neqn codes for mathematical equations. The eqn 
program interprets the codes for a phototypesetter and the neqn program 
interprets them for a printer. 

• tbl codes. You use tbl codes for tables. 

The following figures illustrate nroff/troff codes and mm macros. Figure 4-1 illustrates 
an nroff/troff code and Figure 4-2 illustrates the formatted line. Figure 4-3 illustrates 
how mm macros can be used to produce a list with bullets and Figure 4-4 shows the 
resulting list. Notice that the macros begin with a dot and are capitalized. The .BL 
macro stands for bullets, the .LI macro marks each list item, and the .LE macro marks 
the end of the list • 

. ce 
This sentence will be centered. 

4-2 

.BL 

.LI 
This is the first item . 
. LI 
This is the second item . 
. LE 

Figure 4-1. Sample nroff/troff Code 

This sentence will be centered. 

Figure 4-2. Sample Formatted Line 

Figure 4-3. Sample Use of Macros 

• This is the first item. 

• This is the second item. 

Figure 4-4. Sample Formatted List 



XENIX 286 Overview Text Processing 

Tools for Checking a Draft Docu ment 

After you have created a document, you can check it with several different XENIX 
commands. The spell command, for example, checks a document for spelling errors, 
the diction command checks language usage, and the explain command recommends 
alternate phrasing to improve your style. 

Tools for Revising a Document 

Since your document is stored on a disk, you can use a text editor such as vi to bring it 
into a work area, called a buffer, and change it. For example, you may add words, 
delete words, change words, or move text from one place to another. When you are 
finished, you save the document on the disk again. 

Other commands, such as cut and paste, are useful if you want to move columns of text 
and the awk command is nice if you want to replace one word or phrase with another. 
The awk command is one whose name gives no clue to its function. It was named after 
the programmers who created it. Their last initials were a, w, and k. 

In some cases, you may decide to use the sed stream editor to run an entire series of 
commands on a document. 

Tools for Producing the Final Version 

In this step, the instructions in the text are used to format a document. When you are 
ready to print a document on a printer, you use the mm command (or the nroff -mm 
com mand) and redirect the output to another file or pipe it directly to a printer. The 
mm command automatically executes the nroff command. For example, either of these 
command lines causes the "a.jones" file to be formatted and printed on the line printer: 

$ mm a.jones Ilpr 
$ nroff -mm a.jones Ilpr 

When you are ready to print a document on a phototypesetter, you use the mmt 
command (or the troff -mm command). For example, either of these command lines 
causes the "a.jones" file to be formatted and printed on a phototypesetter: 

$ mmt a.jones 
$ troff -mm a.jones 

If you have used tbl, neqn, or eqn codes in a docu ment, you include tbl, neqn, and eqn 
commands in the command line. The tbl command formats tables, and the eqn command 
formats mathematical equations with special symbols for a phototypesetter. The neqn 
command formats mathematical equations for a printer. These commands are often 
called preprocessors because you format tables and equations before formatting the rest 
of the document. This sample command line formats a report with tables and equations 
and prints the report on a printer: 

$ tbl mathreport I neqn I nroff II pr 

4-3 



Text Processing XENIX 286 Overview 

Summary 

Figure 4-5 summarizes the phases of a document production project and shows some of 
the tools you can use. 

Phase 

First draft 

Checking 

Revisions 

Final version 

4-4 

Tools 

ed, ex, vi 

diction 
eqncheck 
explain 
hyphen 
mmcheck 
spell 
style 
we 

ed, ex, vi 
awk 
sed 
cut 
paste 

eqn 
mm 
neqn 
nroff 
troff 
tbl 
Ipr 
mmt 

Purpose 

Type a document 

Check language usage 
Check instructions for equations 
Provide alternative phrasing 
Fi nd hyphenated words 
Check use of mm macros 
Check spelling 
Analyze style 
Cou nt characters, words, lines 

Edit a document 
Search for patterns and replace them 
Run a batch of editing commands 
Cut out selected fields of each line 
Merge lines of file5 

Format mathematical text for phototypesetter 
Convert format instructions for printer 
Format mathematical text for printer 
Format document for printer 
Format document and print on phototypesetter 
Format tables 
Print document 
Print mm documents on phototypesetter 

Figure 4-5. Document Production Phases and Tools 



XENIX 286 Overview 

Figure 4-6 gives a sample document with formatting instructions . 

. ce 

.B MEMO 

.sp 2 

.P 

Text Processing 

Please plan to attend a team meeting on Friday, October 19. The agenda includes these 
items: 
.AL 1 
.LI 
Introduction of new members 
.LI 
Schedules 
.LI 
New equipment 
.LI 
Open items 
.LE 
.P 
The meeting will begin at 9 A.M. and will last approximately one hour. 

Figure 4-6. Sample Document with Formatting Instructions 

The document has two Droff/troff codes: 

• .ce Center the following text. 

• .sp 2 Space down two lines. 

The remaining codes are mm macros: 

• • B Print the following text in boldface . 

• . P Begin a new paragraph • 

• .AL 1 Turn the following lines into a numbered list. 

• • LI Treat as a list item • 

• • LE End a list . 

4-5 



Text Processing XENIX 286 Overview 

Figure 4-7 shows a document formatted according to the instructions in Figure 4-6. The 
com mand used to format the sample document (named "memo.s") and place it in a file 
called "memo.mm" is 

$ nroff -mm memo.s > memo.mm 

MEMO 

Please plan to attend a team meeting on Friday, October 19. 
The agenda includes these items: 

1. Introduction of new members 

2. Schedules 

3. New equipment 

4. Open items 

The meeting will begin at 9 A. M. and will last 
approximately one hour. 

Figure 4-7. Sample Formatted Document 

4-6 



CHAPTER 5 
PROGRAMMING 

This chapter describes how XENIX supports users writing programs. The XENIX 
features described are included in the XENIX 286 Extended System (except for the shell 
sh) and are not provided with the XENIX 286 Basic System. The shell sh is part of the 
Basic System. The XENIX programming environment includes 

• The C programming language, a simple, flexible, efficient, and powerful tool for 
writing portable programs. 

• Standard function libraries that provide standard ways for C programs to handle a 
variety of tasks, from I/O to complex computations. 

• Supporting tools, a complete programming environment that includes a program 
checker, and a debugger, and also tools for automated translation, version control, 
and building new languages. 

• XENIX shells that provide a structured programming language that can use all the 
shell's special capabilities for controlling files and processes. 

• XENIX features that allow users to modify or extend XENIX to meet their special 
requirements. 

More information on these topics is contained in the following pUblications: 

• The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie 
describes C. 

• XENIX 286 C Library Guide describes the standard function libraries, including all 
kernel syste m calls. 

• XENIX 286 Programmer's Guide describes the supporting tools for programmers 
and the csh shell program. 

• XENIX 286 User's Guide and XENIX 286 Reference Manual describe the sh shell 
program. 

• XENIX 286 Installation and Configuration Guide and XENIX 286 Device Driver 
Guide describe how users can modify and extend XENIX. 

Appendix D gives ordering information for all these publications. 

5-1 



Programming XENIX 286 Overview 

C Programming Language 

This section describes the C programming language, a simple, flexible, efficient, and 
powerful tool for writing portable programs. C and the UNIX operating system were 
designed together; almost all of XENIX (and UNIX) is written in C. Before UNIX, most 
operating systems were written in machine-dependent assembly language. Some widely­
used systems, such as CP/M-80, still are. C is a major reason for the relatively high 
quality of the XENIX and UNIX operating systems, and for the availability of XENIX or 
UNIX on so many different processors. 

A C program is largely made up of a number of functions. A function takes zero or 
more parameters and may return a result to its caller. Parameters or results can be 
either values or addresses of variables in memory. For example, a function to compute 
square roots would take a single value parameter and return the square root as a 
resulting value. A function to search a string for an occurrence of a substring would 
take two address parameters, the addresses of the string to be searched and the string 
to be searched for; this function would return the address of the first occurrence of the 
substring in the string being searched, or return a special NULL value if no occurrence 
was found. A function can also have a variable number of parameters. For example, a 
function that writes formatted output can accept as parameters any number of values to 
be formatted. 

A very powerful but simple feature of C is that it allows variables and parameters to 
hold function addresses and to be used to call functions. For example, a plotting 
function can be defined that draws a graph of some other arbitrary function, e.g., any 
function with a single real argument and a single real result. The address of the 
function to be plotted can be passed as a parameter to the plotting function. 

C provides a range of data types including char (a single byte, often used to hold a 
character), signed and unsigned integers of various lengths, single-precision and double­
precision floating-point numbers, and pointers to any other data type. A value that is a 
pointer to another type either contains the address of a value of the other type or has 
the special value NULL. 

C data structures are constructed using pointers, arrays, unions, and structures. A 
structure is a record containing a number of fields. Each field has a distinct name and 
its own type. For example, a structure defining a data type "date" could include fields 
named "year", "month", and "day", with types int, char, and char respectively. (The char 
data type is used because only a byte of storage is needed for each of "month" and 
"day".) A union can contain values of different types at different times. For example, a 
union can be defined that will contain either an integer or a floating-point value, but not 
both at the same time. 

An array in C contains a number of elements of the same data type. All arrays are 
indexed from 0 to (N-l), where N is the number of elements. An array reference in C 
consists of the address of the beginning of the array; because of this, C functions 
naturally can handle dynamic arrays (in which the number of elements is not known until 
run-time) as well as static arrays (in which the number of elements is known at compile­
time). However, C programmers should take care to check array operations to prevent 
array addressing errors, as the C compiler does not generate such checking for you. 
Array operations in C are very simple and efficient because of the explicit use of 
pointers to implement arrays. For example, accessing all elements of an array in turn 
can be done by simply incrementing a pointer that initially references the first element 
of the array. 

5-2 



XENIX 286 Overview Program m ing 

C's control structures include if and switch conditional statements (switch is similar to 
the "case" statement of some other languages), loops with tests at top or bottom of the 
loop, and a for looping statement for more complex loops, such as those with index 
variables. These structures provide complete support for "structured programming" 
methods. C also provides statements for exiting or continuing a loop from within a 
nested statement. The goto statement is also provided. 

C provides many operators for forming expressions, one source of its power. Operators 
include arithmetic, relational, and logical operators. Also provided are bit-wise Boolean 
operators, left and right shift operators, and increment and decrement operators. 
Assignment is treated as an operator, allowing assignments to be embedded in 
expressions. A conditional operator evaluates one of two expressions based on the value 
of a third, eliminating the need for many conditional statements and often generating 
more efficient and more readable code. 

Several capabilities are added to C by the C preprocessor, the first pass of a C 
compiler, which allows the user to define symbolic constants and macros and to include 
separate files of declarations or procedures. A macro can be used like a function but 
generates faster (but potentially space-consuming) "in-line" code rather than a 
subroutine call when it is invoked. 

Despite all these features, C is simpler than many other high-level languages. A 
comparison to one competing language, Pascal, may be of interest. C does not provide 
the set structures, file structures, or variant records of Pascal, though equivalent 
constructs can be created in C. C also does not provide built-in functions for 
input/output, which are provided by Pascal. However, C does have several advantages. 
C supports dynamic arrays. C supports independent compilation, not originally part of 
Pascal. C I/O, via library functions, is more flexible than Pascal's built-in I/O functions. 
C supports system programming with more flexible type conversions, low- level 
operators, and more flexible manipulation of pointers. Finally, many aspects of C's 
design enable C programs to be very efficient, including increment, decrement, and 
assignment operators; conditional expressions; and the use of pointers for array 
operations. On the plus side for Pascal, its type checking is stricter, array operations 
can be safer (if the compiler generates subscript-checking code), and it has a richer set 
of data structures. 

One goal of C is to support the writing of portable, machine-independent programs. 
However, some C features do behave differently on different machines. A style of C 
programming has evolved that imposes a few restrictions in order to make C programs 
much more portable. These restrictions are described in "c Language Portability" in the 
XENIX 286 Programmer's Guide. 

C does not provide any built-in statements for input/output, dynamic storage allocation, 
string manipulation, concurrency, or exception handling. However, all these capabilities 
are provided by the XENIX libraries, described in the next section. 

5-3 



Programming XENIX 286 Overview 

C Function Libraries 

The machine-independence provided by the C language would do little good if different 
systems provided different functions for basic tasks such as input/output. In addition to 
the definition of the C language, there is a standard I/O library that is provided as part 
of almost every C language system. XENIX and UNIX provide these standard I/O 
functions that support opening, reading, writing, closing, and random access for files and 
devices; formatted I/O; and stream I/O that provides a level of buffer'ing between the 
program and the operating system. 

Additional standard functions have been defined over a period of several years for UNIX 
systems and are provided with XENIX as well. Some of these functions correspond to 
system calls, functions implemented by calling the XENIX kernel. The system call 
interface makes the transition between user code and privileged kernel code, for 
sensitive operations that involve processes, files, devices, or other objects managed by 
the kernel. The details of the system call interface are not visible to the library user, 
who uses a system call like any other C library function. Facilities other than I/O 
provided by the function libraries include 

• Process control operations 

• File system operations 

• Interprocess com.munication 

• Exception-handling and error-handling operations 

• Character and string functions 

• Dynamic memory allocation 

• Computation and numeric formatting 

• Screen operations, including window operations 

• Data base record retrieval 

• Searching and sorting 

All these functions are described in the XENIX 286 C Library Guide. 

5-4 



XENIX 286 Overview Programming 

Supporting Tools 

A programming language, compiler, and function libraries are only some of the useful 
programming tools provided by XENIX. Other tools of interest are 

lint 

adb 

make 

sees 

lex, yacc 

a e program checker. lint examines e source files and warns of 
constructs that can cause run-time errors in C programs. Such 
constructs include unknown values in variables, unreachable 
statements, infinite loops, inconsistent types, and several others. 

a simple machine-level debugger. You can use breakpoints or single 
stepping to interrupt your program and read and write memory when 
your program is stopped. 

automates program creation (compiling, assembling, linking) using 
"makefiles" that you create. A makefile lists the output files to be 
created, the commands that create them, and the input files from 
which to create them. make can use such a makefile to update an 
entire programming project with a single command. make checks file 
dates and only updates those files that must be changed. 

Source Code Control System. Controls multiple versions of programs 
or other documents. Multiple versions can be stored in a single file, 
with SCCS able to recreate any version on command. 

tools for building language translators. lex builds a lexical analyzer 
from user-supplied rules. yacc (yet another compiler-compiler) takes 
as input a set of syntactic rules along with semantic actions to be 
performed on recognizing the associated syntactic construct. yacc 
generates a parser to recognize the syntactic productions and perform 
the appropriate semantic actions. This yacc output is itself a language 
compiler. A compiler- compiler is thus a program that generates a 
compiler from a set of rules describing the language to be compiled. 

All of these tools and the C compiler cc are described in the XENIX 286 Programmer's 
Guide. 

5-5 



Programming XENIX 286 Overview 

Shell Programming 

XENIX provides two shell programs that incorporate programming capabilities, sh 
(Bourne shell) and csh (C shell). These shells give you a high-level procedural language 
in which to communicate with XENIX, allowing you to easily perform tasks that are 
difficult in many operating systems. With the shell programming capabilities, 
commands can be 

• Combined to form new commands 

• Passed parameters 

• Added or renamed by the user 

• Arranged in series, in conditional control structures, or in looping control 
structures 

The shells provide special support for pattern matching in file names (recognizing 
patterns such as "*.C"), for process control, and for I/O control. Commands can redirect 
input and output to and from files, terminals, other devices, or other commands. These 
special shell capabilities often make it easier for you to write a command as a shell 
procedure instead of as a C program. 

sh is described in the XENIX 286 User's Guide and the XENIX 286 Reference Manual. 
csh is described in the XENIX 286 Programmer's Guide. 

Modifying and Extending XENIX 

XENIX is designed as an "open system," one that allows users to include and exclude 
modules and features with great flexibility. The only part of the system that cannot be 
easily changed by a user is the XENIX kernel, which implements a standard set of 
system calls that perform operating system tasks. System administrators can delete, 
replace, or add command programs on their systems. New command programs can be 
written using a shell, C, or some other programming language. Even the shell program 
that communicates with users can be replaced, and XENIX users can choose between 
different shells. 

Though the kernel should not be changed directly, many aspects of the kernel are 
configurable, as described in the XENIX 286 Installation and Configuration Guide. For 
example, a new kernel can be created that allows for a lesser or greater number of 
various types of kernel objects, such as processes and locks, or that allows for a lesser 
or greater number of disk buffers in main memory. 

Customers interfacing new hardware to XENIX systems can add device drivers, as 
described in the XENIX 286 Device Driver Guide. XENIX defines a standard and 
relatively simple functional interface for device drivers. As much of the work as 
possible is done by the kernel, with the driver supplying the device-dependent functions 
for initialization, opening, reading, writing, closing, and interrupt-handling for the 
device. The kernel also provides several utility routines that help the device driver 
perform common tasks, such as buffering characters or sorting disk requests to 
minimize access time. 

5-6 



APPENDIX A 
BASIC SYSTEM COMMANDS 

Basic System Commands by Category 

The Basic System has many commands. These are organized by category in Figure A-l 
and defined in the following pages. 

SYSTEM SYSTEM SYSTEM FILE FILE MS·DOSFILE OFFICE 

ADMINISTRATION STATUS COMMUNICATION DISPLAY MANAGEMENT MANAGEMENT TOOLS 

acctcom atq cu banner cd doscat bc 
accton date netutil cat chgrp doscp cal 
asktime finger rcp hd chmod dosdir calendar 
blogin gs remote head chown dosls dc 
cfgi188 ps uuclean look cleave dosmkdir mail 
cfgi21 5 pstat uuep more copy dosrm random 
cfgi226 setclock uulog nl ep dosrmdir units 
cfgiS34 uname uuname od cpio write 
cfgiS44 who uupiek pcat dd 
cfglp whodo uustat pr dirname USER 

chroot uusub tail file PROGRAM 
ACCESS 

config DEVICES uuto find EXECUTION 

dump uux FILE iepio 
at 

id 
dumpdir assign MANIPULATION I 

atrm 
login 

fixperm deassign FILE Ie logname 
fsck devnm COMPARISON awk If cron newgrp 
grpeheek df basename In echo passwd 
haltsys disable bdiff bfs Is env 

ibr dtype emp esplit make expr 

icp du comm ed mkdir false 

instlupdate enable diff ex mv getopt 
kill kdevs format diff3 join pack 
line kparams Ipdrestart dircmp red pwd 
nice kvectors Ipq egrep sed rm 
nohup mkbf Ipr fgrep sort rmdir rsh mkfs Iprm grep split settime 
sh mknod mesg sdiff tr touch 
sleep mkuser mount uniq vi umask 

ncheek setmnt what view unpack tee 
test pwadmin stty we 
true pwcheck tar vsh quot tset 
wait restor tty xargs rmuser umount 

scp yes 

sddate 
shutdown 
su 
sum 
sync 
sysadmin 
uueonfig 
wall 

F-0320 

Figure A-l. Summary of Basic System Commands by Category 

Rev. A, 8/87 A-I 



Basic System Commands XENIX 286 Overview 

Alphabetical List of Commands 

The commands in the Basic System are listed below in alphabetical order. 

acctcom 
accton 
aliashash 
asktime 
assign 
at 
atq 
atrm 
awk 
banner 
basename 
be 
bdiff 
blogin 
bfs 
cal 
calendar 
cat 
cd 
cfgi188 
cfgi215 
cfgi226 
cfgi534 
cfgi544 
cfglp 
chgrp 
chmod 
chown 
chroot 
cleave 
cmp 
comm 
config 
copy 
cp 
cpio 
cron 
csplit 
Cll 

date 
dc 
dd 
deassign 
devnm 
df 
diff 
diff3 
dircmp 
dirname 
disable 

A-2 

search and print accounting files 
turn system accounting on and off 
Micnet alias hash table generator 
set system date and time 
assign a device to a user 
execute commands at a later time 
examine the "at" job queue 
remove a job from the "at" job queue 
pattern scanning and processing language 
print large letters 
strip file name affixes 
arbitrary-precision arithmetic language 
compare very large files 
system backup/restore 
scan big files 
print calendar 
invoke a reminder service 
concatenate and print files 
change working directory 
configure the 188/48 terminal device driver 
configure the 215/214 disk device driver 
configure the 226 disk device driver 
configure the 534 terminal device driver 
configure the 544 terminal device driver 
configure for line printer(s) 
change group 
change mode (change access permissions) 
change file owner 
change the process root directory 
arranges input file list into smaller collections 
compare two files (any type) 
select or reject lines common to two sorted files 
configures a XENIX system. 
copy groups of files 
copy 
copy file archives in and out 
execute commands at specified times 
split files according to context 
call the XENIX system 
print and set the date 
desk calculator 
convert and copy a file 
deassign a device 
identify device name 
report the nu m ber of free disk blocks 
compare two text files 
compare three text files 
compare directories 
deliver the directory part of a path name 
turn terminal use of 

Rev. A, 8/87 



XENIX 286 Overview Basic System Commands 

doscat 
doscp 
dosdir 
dosls 
dosmkdir 
dosrm 
dosrmdir 
dtype 
du 
dump 
dumpdir 
echo 
ed 
edit 
egrep 
enable 
env 
ex 
expr 
false 
fgrep 
file 
find 
finger 
fixbb 
fixperm 
format 
fsck 
getopt 
grep 
gs 
grpcheck 
haltsys 
hd 
head 
ibr 
icp 
icpio 
id 
instlupdate 
join 
kdevs 
kill 
kparams 
kvectors 
I 
Ie 
If 

line 
In 
login 
logname 
look 
lpdrestart 
lpq 
Ipr 

Rev. A, 8/87 

concatenate a file on an MS-DOS flexible disk 
copy files to or from MS-DOS flexible disks 
list the files of an MS-DOS flexible disk 
list the directory of an MS-DOS flexible disk 
create an MS-DOS directory on an MS-DOS flexible disk 
delete an MS-DOS file 
delete an MS-DOS directory 
print disk type (such as xenix, msdos, tar) 
summarize disk use 
perform incremental file system backup 
print the names of files on a dump tape 
echo arguments 
invoke text editor (line editor) 
invoke a text editor 
search a file for a pattern 
turn terminal use on 
set or print the environment for command execution 
text editor (line editor) 
evaluate arguments as an expression 
provide truth value by returning with a nonzero exit code 
search a file for a pattern 
determine file type 
find files 
find information about users 
fix bad blocks 
set file permissions 
format a disk 
check file system for consistency and repair if necessary 
parse command options 
search a file for a pattern 
get and display system information 
check group file 
shut system down 
give hex dump of a file 
give first few lines of a file 
Intel system backup/restore facility 
interactive configuration program 
copies file archives in and out 
print user and group ID and name 
install XENIX updates 
join two relations 
edit device configurations 
terminate a process 
edit kernel configuration 
assign interrupt vectors 
list directory contents in long form (equivalent to Is -1) 
list directory contents in columns 
list directory contents in columns indicating executable files with "*" 
and directories with It/It 
read one line 
make a link to a file 
give access to the system 
get login name 
find files in a sorted list 
restart the line printer daemon 
examine the print queue 
send files to the line printer queue for printing 

A-3 



Basic System Commands XENIX 286 Overview 

lprm 
Is 
mail 
make 
mesg 
mkbf 
mkdir 
mkfs 
mknod 
mkuser 
more 
mount 
mv 
ncheck 
netutil 
newgrp 
nice 
nl 
nohup 
od 
pack 
passwd 
peat 
pr 
printenv 
ps 
pst at 
pwadmin 
pwcheck 
pwd 
quot 
random 
rcp 
red 
remote 
ret ens ion 
restor 
rm 
rmdir 
rmuser 
rsh 
scp 
sddate 
sdiff 
sed 
set clock 
setmnt 
settime 
sh 
shutdown 
sleep 
sort 
split 
stty 
su 
sum 

A-4 

remove jobs from the print queue 
list the contents of a directory 
send, receive, or dispose of mail 
maintain, update, and regenerate groups of programs 
permit or deny messages sent to a terminal 
make a set of boot diskettes 
make a directory 
make a file system 
make a special file 
add a new user account 
display a file one screen at a time 
attach a file system to a directory on the root subtree 
move or rename files and directories 
generate path names from inode numbers 
administer a Micnet network 
log into a new group 
run a command at a different priority 
add line numbers to a file 
run background process after user logs off 
display files in octal format 
co m press files 
change login password 
look at packed files 
print a file 
display environment variables 
report process status 
print system information 
administer aging of passwords 
check the password file 
print the name of the working directory 
summarize file system ownership 
generate a random number 
copy files between machines 
invoke a restricted version of ed 
execute commands on a Micnet network 
retension a i-inch tape cartridge 
invoke incremental file system restorer 
re move a file 
remove a directory 
remove a user 
invoke a restricted shell 
system configuration program 
print and set backup dates 
compare two files side by side 
invoke stream editor 
print and set the date in the iSBC 546 board 
establish a mount table </etc/mnttab) 
change file access and modification dates 
invoke the Bourne shell 
brings the syste m down gracefully 
suspend execution for an interval 
sort or merge files 
split a file into pieces 
set terminal options 
make the user root or another user temporarily 
calculate checksum and count blocks in a file 

Rev. A, 8/87 



XENIX 286 Overview Basic System Commands 

sync 
sysadmin 
tail 
tar 
tee 
test 
touch 
tr 
true 
tset 
tty 
umask 
umount 
uname 
uniq 
units 
unpack 
update 
uuclean 
uucp 
uulog 
uuname 
uustat 
uusub 
uuto 
uux 
vi 
view 
vsh 
wait 
wall 
wc 
what 
who 
whodo 
write 
xargs 
yes 

Rev. A, 8/87 

update the super block 
perform file system backup and restore 
deli "e~ last part of a file 
archive files 
create a tee in a pipe to save intermediate output 
test conditions 
update file access and modification times 
translate characters 
return with a zero exit value 
set terminal type 
get terminal name 
set default file creation mask 
detach a file system from the root directory 
print the current XENIX name 
report repeated lines in a file 
convert units 
unpack packed files 
update the super block periodically 
clean up uucp spool directory 
copy files from XENIX to XENIX 
maintains a summary log of uucp and uux transactions 
list uucp names of known systems 
provide uucp status inquiries and control 
monitor uucp network 
copy files between XENIX systems 
execute commands on remote XENIX 
invoke a screen-display editor based on ex 
invoke vi with the read-only option set 
invoke the visual shell 
wait for background jobs to finish 
write to all users 
count lines, words, and characters 
identify files 
list users currently logged on 
show who is doing what 
send a message to a user's terminal 
construct argument lists and execute commands 
print string repeatedly 

A-5 



/ 



APPENDIX B 
TEXT FORMATTING COMMANDS 

Text Formatting Commands 

This section has an alphabetical list of the commands that are part of the Text 
Formatting package included in the Extended System. 

col 
cut 
cw 
cwcheck 
deroff 
diction 
diffmk 
eqn 
eqncheck 
hyphen 
mm 
mmcheck 
mmt 
neqn 
nroff 
paste 
prep 
ptx 
soelim 
spell 
style 
tbl 
troff 

approximate vertical motions 
cut out selected fields of each line 
prepare constant-width text for troff 
check cw macro text 
remove nroff, troff, tbl, and eqn constructs 
comment on writing style 
mark differences between two versions of a file 
format mathematical text for nroff or troff 
check mathematical text for nroff or troff 
find hyphenated words 
print documents formatted with the mm macros 
check use of mm macros 
typeset documents for troff 
format mathematical text for nroff or troff 
format text for a line printer or daisy wheel printer 
merge lines of files 
prepare text for statistical processing 
generate a permuted index 
expands nroff .so statements 
find spelling errors 
comment on writing style 
format tables for nroff or troff 
print document on a phototypesetter 

8-1 





APPENDIX C 
PROGRAMMING TOOLS 

Programming Commands 

This section has an alphabetical list of the commands that are part of the Software 
Development package included in the Extended System. 

adb 
admin 
ar 
as 
cb 
cc 
cdc 
comb 
cref 
csh 
ctags 
delta 
dmesg 
dosld 
get 
gets 
hdr 
help 
Id 
lex 
lint 
lorder 
m4 
masm 
mkstr 
nm 
prof 
prs 
ranlib 
ratfor 
regcmp 
rmdel 
sact 
sccsdiff 
size 
spline 

invoke a general-purpose debugger 
create and administer sees files 
maintain archives and libraries 
invoke the XENIX assembler 
beautify e programs 
invoke the e compiler 
change the delta commentary of an sees delta 
combine sees deltas 
make a cross-reference list 
invoke the e shell (a command interpreter with e-like syntax) 
create a tags file 
make a delta (change) to an sees file 
collect system diagnostic messages to form error log 
cross-link XENIX to MS-DOS 
get a version of an sees file 
get a string from the standard input 
display selected parts of object files 
ask for help about sees commands 
invoke the link editor 
generate programs for lexical analysis 
check e language usage and syntax 
find ordering relation for an object library 
invoke a macro processor 
XENIX macro assembler 
create an error message file from e source 
print a name list 
display profile data 
print an sees file 
convert archives to random libraries 
convert rational FORTRAN into standard FORTRAN 
compile regular expressions 
remove a delta from an sees file 
print current sees file editing activity 
compare two versions of an sees file 
print the size of an object file 
interpolate a smooth curve 

e-l 



Programming Tools XENIX 286 Overview 

stackuse 
strings 
strip 
time 
tsort 
unget 
val 
xref 
xstr 
yacc 

determine stack requirements for e programs 
find the printable strings in a binary file 
remove symbols and relocation bits from an object file 
time a command 
sort a file topologically 
undo a previous get of an sees file 
validate an sees file 
cross-reference e programs 
extract strings from e programs 
invoke a compiler-compiler (yet another compiler-compiler) 

Standard C Libraries 

The following libraries are provided with the Extended System. In some cases, versions 
for small, middle, and large model programs are included, and in other cases only the 
version for the small model is provided. These are the standard libraries: 

libc 

libx 

libm 

libl 

liby 

libtermcap 

libtermlib 

libcurses 

libdbm 

libcfp 

This is the standard library that contains all standard system call 
interfaces, standard I/O routines, and other general purpose services. 
Versions for small, middle, and large models are provided. 

This library contains interfaces for all XENIX-specific system calls. 
Versions for small, middle and large models are provided. 

This is the standard math library. Versions for small, middle, and large 
models are provided. 

This library is for use with programs produced by lex. A version for the 
s mall model is provided. 

This library is for use with programs produced by yacc. A version for 
the small model is provided. 

This library has routines for accessing the termcap data base of 
terminal characteristics. Versions for small, middle, and large models 
are provided. 

This library is the same as libtermcap. Both libtermcap and libtermlib 
link to the same file. Both names are kept for historical reasons. 
Versions for small, middle, and large models are provided. 

This library has routines for manipulating the screen and cursor. 
Versions for small, middle, and large models are provided. 

This library has data base management routines. Versions for small, 
middle, and large models are provided. 

This library has floating point routines that are used by other library 
routines. Versions for small, middle, and large models are provided 
(Slibcfp.a, Mlibcfp.a, Llibcfp.a). 

The functions provided with the standard e libraries are listed below. 

e-2 



XENIX 286 Overview Programming Tools 

The Standard C Library -- libc 

This library also includes all standard system functions (see "System Calls" at the end of 
this appendix). 

a641 
abort 
abs 
asctime 
assert 
atof 
atoi 
atol 
bsearch 
calloc 
clearerr 
crypt 
ctermid 
ctime 
cuserid 
defopen 
defread 
ecvt 
encrypt 
endgrent 
endpwent 
fclose 
fcvt 
fdopen 
feof 
ferror 
fflush 
fgetc 
fgets 
fHeno 
fopen 
fprintf 
fputc 
fputs 
fread 
free 
freopen 
frexp 
fscanf 
fseek 
ftell 
fwrite 
fxlist 
gcvt 
getc 

convert base-64 ASCII to long integer 
generate an lOT fault 
integer absolute value 
convert time data to ASCII 
program verification 
convert ASCII string to floating number (in libcfp) 
convert ASCII string to integer 
convert ASCII string to long integer 
binary search 
allocate memory 
clear error 
DES (Data Encryption Standard) encryption 
generate file name for terminal 
convert time to ASCII string 
character login name of user 
open default parameter file 
read default parameters 
format conversion 
DES (Data Encryption Standard) encryption 
close group file 
close password file 
close a stream 
format conversion 
reopen a stream 
test for end of file 
test for error 
flush a stream 
get character from a stream 
get a string from a stream 
convert a stream number to a file descriptor 
open a stream 
formatted output routine 
write a character to a stream 
write a string to a stream 
buffered input 
free memory 
reopen a stream 
return mantissa 
formatted input conversion 
seek within a stream 
obtain file pointer position 
buttered output 
get name list entries from a file 
format conversion 
get a character from a stream 

C-3 



Programming Tools 

get char 
getcwd 
getenv 
getgrent 
getgrgid 
getgrnam 
getlogin 
getopt 
getpass 
getpw 
getpwent 
getpwnam 
getpwuid 
gets 
getw 
gmtime 
gsignal 
isalnum 
isalpha 
isascii 
isatty 
iscntrl 
isdigit 
isgraph 
islower 
isprint 
ispunct 
isspace 
isupper 
isxdigit 
13tol 
164a 
ldexp 
localtime 
logname 
longjmp 
lsearch 
Itol3 
malloc 
mktemp 
modf 
monitor 
nlist 
pclose 
perror 
popen 
printf 
putc 
put char 
putpwent 
puts 
putw 
qsort 
rand 

C-4 

get a character from a stream 
get path name of current working directory 
get a value for an environment variable 
get group file entry 
get group file entry 
get group file entry 
get login name 
parse com mand line options 
read a password 
get a name from the user ID 
get a password file entry 
get a password file entry 
get a password file entry 
get a string from a stream 
get a word from a stream . 
obtain Greenwich Mean Time information 
raise a software signal 
test for alphanumeric 
test for alphabetic character 
test for ASCII character 
check for terminal 
test for control character 
test for digit 
test for printing character 
test for lowercase 
test for printing character 
test for punctuation 
test for space 
test for uppercase 
test for hex digit 
convert 3-byte integer to long 
convert a long integer to base-64 ASCII 
load exponent of floating point number 
obtain local time information 
get login name of a user 
nonlocal goto 
linear search and update 
convert long to 3-byte integer 
allocate memory 
make a temporary file 
return a fractional part 
prepare an execution profile 
get entries from the name list 
close pipe to process 
print system error messages 
initiate I/O to or from a process 
formatted output routine 
write a character to a stream 
write a character to a stream 
write a password file entry 
write a string to a stream 
write a word to a stream 
quick sort routine 
random number generator 

XENIX 286 Overview 



XENIX 286 Overview 

realloc 
regcmp 
regex 
rewind 
scanf 
setbuf 
setgrent 
setjmp 
setpwent 
sleep 
sprintf 
srand 
sscanf 
ssignal 
stdio 
strcat 
strchr 
strcmp 
strcpy 
strcspn 
strlen 
strncat 
strncmp 
strncpy 
strpbrk 
strrchr 
strspn 
strtok 
swab 
system 
tmpfile 
tmpnam 
toascii 
tolower 
toupper 
ttyname 
tzset 
ungetc 
xlist 

reallocate memory 
regular expression compile 
regular expression execute 
seek to the beginning.of a file 
formatted input conversion 
assign buffering to a stream 
rewind a group file pointer 
nonlocal goto 
rewind password file pointer 
suspend execution for an interval 
formatted output routine 
seed random number generator 
formatted input conversion 
software signal 
process standarg buffered input and output 
concatenate strings 
find a character in a string 
compare strings 
copy strings 
find the length of a substring 
get string length 
concatenate strings 
compare strings 
copy strings 
find a string in a string 
find a character in a string 
find the length of a substring 
find a token within a string 
swap bytes 
execute a shell command 
create a temporary file 
create a temporary file name 
convert to ASCII 
convert to lowercase 
convert to uppercase 
find the name· of a terminal 
set external time variables 
push a character back onto a stream 
get name list entries from a file 

The XENIX-Specific System Calls Library -- libx 

Programming Tools 

Functions for this library are listed under "System Calls" at the end of this chapter. 

The Standard Math Library -- libm 

acos 
asin 
atan 
atan2 
cabs 
ceil 

arc cosine function 
arc sine function 
arc tangent function 
arc tangent function 
Euclidean distance 
ceiling value 

C-5 



Program m ing Tools 

cosine function 
hyperbolic cosine 
exponentiation 
returns Ixl 

XENIX 286 Overview 

cos 
cosh 
exp 
fabs 
floor 
fmod 
gamma 
hypot 
jO 

whole number at or immediately below its argument 
remainder function 

jl 
jn 
log 
loglO 
pow 
sin 
sinh 
sqrt 
tan 
tanh 
yO 
yl 
yn 

log gamma function 
sqrt(x*x + y*y) 
Bessel function 
Bessel function 
Bessel function 
natural logari th m 
log base 10 
power function 
sine function 
hyperbolic sine 
square root function 
tangent function 
hyperbolic tangent 
Bessel function 
Bessel function 
Bessel function 

The Default lex Library --libl (small model only) 

main 
yyless 
yywrap 

lex program entry 
lex routine to "unget" source characters 
lex end of file routine 

The Default yacc Library --liby (small model only) 

main 
yyerror 

yacc program entry 
yacc error handler 

The Terminal Capabilities Library --libtermcap (Iibtermlib) 

tgetent 
tgetflag 
tgetnum 
tgetstr 
tgoto 
tputs 

get terminal capability entry 
test for presence of capability 
get nu meric value of capability 
get string value of capability 
get cursor addressing string 
decode padding information 

The Screen Manipulation Library -- libcurses 

The library has many screen and cursor manipulation routines. 

C-6 



XENIX 286 Overview Programming Tools 

The Data Base Management Library -- libdbm 

dbminit 
delete 
fetch 
first key 
next key 
store 

System Calls 

open data base 
delete key in data base 
access key in data base 
get first key in data base 
get next key in data base 
store key in data base 

The Software Development package includes the following system calls. The system 
calls marked with an asterisk (*) reside in the libx library (Slibx.a, Mlibx.a, and Llibs.a). 
The other system calls reside in libc. 

access 
acct 
alarm 
brk 
brkctl 
chdir 

, chmod 
chown 
chroot 
chsize* 
close 
creat 
creatsem* 
dup 
dup2* 
execl 
execle 
execlp 
execv 
execve 
execvp 
exit 
fcnt! 
fork 
fstat 
ftime* 
getegid 
geteuid 
getgid 
getpgrp 
getpid 
getppid 
getuid 
ioctl 
kill 
link 

determine accessibility of a file 
enable or disable process accounting 
set a process's alarm clock 
change data segment space allocation 
expand current data segment or allocate new data segment 
change working directory 
change mode of a file 
change the owner and group of a file 
change the root directory 
change the size of a file 
close a file descriptor 
create a new file or rewrite an existing one 
create an instance of a binary semaphore 
duplicate an open file descriptor 
duplicate an open file descriptor 
execute a file 
execute a file 
execute a file 
execute a file 
execute a file 
execute a file 
terminate a process 
file control 
create a new process 
get file status 
get system time 
get effective group ID 
get effective user ID 
get group ID 
get process group 
get process ID 
get parent process ID 
get real user ID 
control character device 
send a signal to a process or a group of processes 
link to a file 

C-7 



Programming Tools XENIX 286 Overview 

lock* 
locking* 
lseek 
mknod 
mount 
nap* 
nbwaitsem 
nice 
open 
opensem* 
pause 
pipe 
profil 
ptrace 
rdchk* 
read 
sbrk 
sdenter* 
sdfree* 
sdget* 
sdgetv* 
sdleave* 
sdwaitv* 
setgid 
setpgrp 
setuid 
shutdn 
signal 
sigsem 
stat 
stime 
sync 
time 
times 
ulimit 
umask 
umount 
uname 
unlink 
ustat 
utime 
wait 
waitsem* 
write 

C-8 

lock a process in memory 
lock or unlock a file region for reading or writing 
move a read/write file pointer 
make a directory, or a special or ordinary file 
mount a file system 
sleep for a short time 
non-blocking wait for a semaphore 
change the priority of a process 
open a file for reading or writing 
open a se maphore 
suspend process until signal 
create an interprocess channel 
execution time profile 
trace a process 
check if there is data to be read 
read fro m a file 
change data segment space allocation 
enter a shared data region 
release a shared data region 
attach a shared data segment to the data space of the current process 
synchronize the use of shared data 
leave a shared data region 
synchronize use of shared data 
set group ID 
set process group ID 
set user ID 
flush block I/O and halt system 
specify what to do on receipt of a signal 
signal a process waiting on a semaphore 
get file status 
set time 
update the super block 
get time 
get process and child process times 
get and set user limits 
get and set file creation mask 
unmount a file system 
get name of current XENIX system 
remove a directory entry 
get file system statistics 
set file access and modification times 
wait for a child process to stop or terminate 
wait for a semaphore 
write on a file 



Intel Publications 

APPENDIX D 
RELATED PUBLICATIONS 

Copies of the following publications can be ordered from 

Literature Department 
Intel Corporation 
3065 Bowers A venue 
Santa Clara, CA 95051 

XENIX R. 3.4 Reference Library: Basic System 

Overview of the XENIX 286 Operating System, Order Number 174385 -- XENIX history, 
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals. 

XENIX 286 User's Guide, Order Number 174387 -- a brief survey of common commands 
plus full chapters on the ed text editor, the vi text editor, electronic mail, the Bourne 
shell (sh), and the be calculator. 

XENIX 286 Visual Shell U serfs Guide, Order Number 174388 -- a XENIX com mand 
interface ("shell") that replaces the standard command syntax with a menu-driven 
com mand interpreter. 

XENIX 286 Installation and Configuration Guide, Order Number 174386 -- how to install 
XENIX.,on your hardware and tailor the XENIX configuration to your needs. 

XENIX 286 System Administrator's Guide, Order Number 174389 -- how to perform 
system administrator chores such as adding and removing users, backing up file systems, 
and troubleshooting system problems. 

XENIX 286 Communications Guide, Order Number 174461 -- installing, using, and 
administering XENIX networking software. 

XENIX 286 Reference Manual, Order Number 174390 -- all commands in the XENIX 286 
Basic System, with a master index to the XENIX Basic System and Extended System. 

D-1 



Related Publications XENIX 286 Overview 

XENIX R. 3.4 Reference Library: Extended System 

XENIX 286 Programmer's Guide, Order Number 174391 -- XENIX 286 Extended System 
commands used for developing and maintaining programs. 

XENIX 286 C Library Guide, Order Number 174542 -- standard subroutines used in 
programming with XENIX 286, including all system calls. 

XENIX 286 Device Driver Guide, Order Number 174393 -- how to write device drivers 
for XENIX 286 and add them to your system. 

XENIX 286 Text Formatting Guide, Order Number 174541 -- XENIX 286 Extended 
System commands used for text formatting. 

Other XENIX Publications 

XENIX Networking Software Installation and Configuration Guide, Order Number 
135146 -- installing, configuring, and administering the XENIX OpenNETTM network. 

XENIX Networking Software User's Guide, Order Number 135147 -- user's and 
program mer's reference to the XENIX OpenNETTM network. 

D-2 



INDEX 

Note: For a master index to the XENIX reference library, see the XENIX 286 
Reference Manual. 

Accounting, 1-6, 1-7 
adb, 5-5 
.AL, 4-5 
Aliases, 3-15 
Alternate tracks, 2-23 
Application, 

programmer, 1-9 
software, 1-9, 1-11, 3-15 

Argument, 3-9 thru 3-10 
Array, 3-15, 5-2, 5-3 
ASCII, 2-1 
Assembly language, 1-11, 2-2, 5-2 
Audience, 1-1 
awk, 3-14, 4-3 thru 4-4 

B programming language, 1-10 
.B, 4-5 
Background processing, 1-11 
Bad tracks, 2-23 
Basic System, 1-2, 1-8 thru 1-9, 2-19 

commands, A-I thru A-4 
publications, 1-2 

Baud rate, 3-3 
bc, 1-2 
Bell Laboratories, 1-7, 1-10 thru 1-11 
Berkeley features, 1-7, 3-15 
bin, 2-17, 3-4 
Ibin, 2-9, 3-1, 3-6 
Ibin/who, see who 
Bit map, 2-24 thru 2-25 
.BL, 4-2 
Block(s), 1-12,2-20 thru 2-21 

contiguous, 2-25 
cylinder group, 2-24 
indirect, 2-21 
size, 2-20 
special file, 2-11 
super, 2-24 

lboot, 2-9 
Boot track, 2-23 
Bourne shell, see shell 

Buffer management, 1-7, 4-3, 5-6 
Byte, 2-1 

C, 
compiler, 1-3, 5-2, 5-5 
library, 1-3, C-2 thru C-6 
preprocessor, 5-3 
programming, 1-7, 1-10 thru 1-11, 

2-2, 3-15, 5-1, 5-2, 5-5 
shell, see shell 

Calculator, 1-2, 1-11 
Calendar, 1-11 
cat, 3-13 
cc, 5-5 
cd, 2-8, 2-16, 3-15 
.ce, 4-5 
char, 5-2 
Character special file, 2-11 
Child process, 3-1 thru 3-2, 3-8 
chmod, 2-15 
Command(s), 

adding, 5-6 
argument, 3-9 thru 3-10 
Basic Syste m, A-I thru A-4 
execution, 3-8, 3-15 
interpreter, 1-6, 1-8, 3-4, 3-8 
option, 3-9 thru 3-10 
programming, C-l thru C-2 
text formatting, B-1 

Com ment field, 3-4 
Com munication, 

line, 2-11 
network, 1-2 
user-to-user, 1-11 

Compiler, 1-3 
Compiler-compiler, 1-3, 5-5 
Configuration, 1-2, 3-2, 5-6 
Console, 2-11, 3-12 
Control structure, 5-3 
CONTROL-D, 3-5, 3-12 

Index-l 



Index 

CPU, 1-4 thru 1-5 
cron, 3-3 thru 3-4 
csh, 3-15,5-1,5-6 
cut, 4-3 thru 4-4 
Cylinder group, 2-24 thru 2-25 

Daemon, 3-3 
Data, 

structure, 5-2 
type, 5-2 

dd, 3-14 
Debugger, 5-1 
/dev, 2-9, 2-11, 3-3 
Device, 

driver, 1-3, 1-7, 1-9, 5-6 
dummy, 2-11 
file, 2-9 
hardware, 1-4, 1-5, 2-11 
independence, 1-7, 1-11 
management, 1-6 
null, 2-11 
special file, 2-9, 2-11, 2-17 
structured, 2-11 
unstructured, 2-11 

Diagnostic track, 2-23 
diction, 4-3, 4-4 
Directory, 2-3, 2-21, 3-8 

/bin, 2-9, 3-1, 3-6, 3-8 
changing, 2-8, 2-16, 3-15 
current, 2-9 
home, 2-3 
links, 2-18 
login, 2-3 thru 2-5, 2-8, 2-10, 3-4 

3-7 
parent, 2-6 
root, 2-7, 2-9, 2-10, 2-25, 3-3 
/usr, 2-7 
working, 2-5, 2-9, 3-6 

Disk, 1-4, 1-5,2-10 thru 2-11,2-20, 
2-23, 2-25 

Disk documentation, 1-3 
Dot (.), 2-2, 2-6, 2-9, 2-18, 3-6 
Dot dot ( .• ), 2-6 

ed, 1-2, 2-8 thru 2-9, 4-4 
Editor, see text editor 
egrep, 3-14 
Electronic mail, see mail 
encryption, 5-4 
eqn, 4-2 thru 4-4 
eqncheck, 4-4 

Index-2 

XENIX 286 Overview 

Equation formatting, 4-2 thru 4-4 
Error, 

checking, 1-6 
handling, 5-4 

/etc, 2-10, 3-1, 3-15 
/etc/crontab, 3-3 
/etc/passwd, 2-2, 3-4 thru 3-5 
/etc/profile, 2-15, 3-7 
/etc/rc, 3-3 
/etc/termcap, 3-7 
/etc/ttys, 3-3 
ex, 4-1, 4-4 
exec, 3-2, 3-3 
Execute permission, 2-12 thru 2-14, 

3-8 
explain, 4-3, 4-4 
export, 3-7 
Extended System, 1-2 thru 1-3, 1-8 thru 

1-9,4-1,5-1 
commands, B-1, C-l thru C-2 
publications, 1-3 
standard C libraries, C-2 thru C-6 
system calls, C-8 

fgrep, 3-14 
Field separators, internal, 3-7 
File(s), 2-1 

access permissions, 2-12 thru 2-17 
allocation, 2-25 
block special, 2-11 
character special, 2-11 
com mands for, 2-19, A-I 
date created, 2-21 
date last modified, 2-21, 3-9 
date last read, 2-21 
delete, 2-18 
descriptor, 3-6 
format, 2-2 
link, 2-18, 3-9 
location, 2-20 thru 2-22 
logical, 2-20, 2-22 
mode, 2-13 
name, 2-2, 2-11, 2-18, 2-20 thru 

2-21,3-10,5-6 
open, 3-2, 3-6 
ordinary, 2-1, 2-2, 2-3, 2-12, 2-13 
owner, 2-12, 2-17, 2-21, 3-9 
size, 2-3, 2-21, 3-9 
sorting, 3-13 
special, 2-9, 2-11, 2-17 
structure, 2-2 



XENIX 286 Overview 

system, 1-5, 1-7,2-10,2-18,2-20 
thru 2-25, 3-3, 5-4 

temporary, 2-10, 3-3, 3-13 
text, 2-1, 4-1 
type, 2-21 

Filter, 3-13 thru 3-14 
finger, 3-4 

number, 5-2 
fixbb, 1-12 
for, 5-3 
fork, 3-2, 3-8 
Free list, 2-25 
fsck, 2-10 
Function, 5-2 

GCOS, 3-4 
getty, 3-3 
GID, 2-12 thru 2-14 
goto, 5-3 
grep, 3-14 
Group, 1-11,2-12 thru 2-15,2-21,3-4, 

3-9 

Hardware, 
device, 1-4 thru 1-5 
diagnostics, 2-23 

head, 3-14 
Hierarchy, 

directory, 2-3, 2-5, 2-7 
process, 3-1, 3-3 

History function, 3-15 
$HOME, 3-6 
HOME, 3-5 thru 3-7 
hyphen, 4-4 

iAPX 286, 1-7 
icp, 1-12 
if, 5-3 
IFS, 3-7 
Inode 

list, 2-21, 2-24 
number, 2-2 thru 2-3, 2-15, 2-21, 

2-24 thru 2-25 
instl, 1-12 
Installation, 1-2 
int, 5-2 
Internal field separators, 3-7 
Interprocess communication, 5-4 
I/O, 5-1, 5-3 thru 5-4, 5-6 

Index 

Kernel, 1-3, 1-5 thru 1-8, 2-2, 2-10, 
2-20 thru 2-21, 2-25, 3-2 thru 3-3, 

3-8, 5-4, 5-6 

.LI, 4-2, 4-5 
/lib, 2-10 
lc, 2-5 
.LE, 4-2, 4-5 
lex, 2-2, 5-5 
Lexical analyzer, 5-5 
Library, 1-3, 1-6, 2-2, 2-10, 5-1, 

5-3 thru 5-5, C-2 thru C-6 
Link to a file, 2-18, 2-21, 3-9 
lint, 5-5 
In, 2-18 
Log off, 3-5 
Log on, 1-9, 3-4 thru 3-5, 3-8, 3-12 
Login, 

directory, 2-3 thru 2-5, 2-8, 2-10, 
3-4 thru 3-5, 3-7 

name, 3-4 thru 3-5, 3-12 
process, 3-3, 3-5 
shell, 3-4 thru 3-6 
time, 3-8 

logname, 3-7 
Loop, 5-3 
/lost+found, 2-10 
lpd, 3-3 
lpr, 3-10 thru 3-13, 4-3 thru 4-4 
Is, 2-5, 2-15 thru 2-16, 3-9, 3-11 

Macro, 4-1 thru 4-4, 5-3 
MAIL, 3-7 
Mail, 1-11,3-12 
mail, 3-12 
make, 5-5 
Makefile, 5-5 
Mass storage, 

device, 2-1, 2-20 
management, 1-5 

Memory, 1-4 thru 1-5, 2-11 
allocation, 5-4 
management, 1-5 

mesg, 2-17 
Metacharacter, 3-10 thru 3-11,3-15 
Micnet, 1-2, 1-15 
Microsoft Corporation, 1-7 
mkuser, 3-4 
mm, 1-3, 4-1 thru 4-5 

Index-3 



Index 

m mcheck, 4-4 
mmt, 4-3 thru 4-4 
/mnt, 2-10 
Mounting file system, 2-25, 3-3 
Multics, 1-10 
Multiprogramming, 1-10 
Multitasking system, 1-11 
Multiuser system, 1-10 thru 1-11 

neqn, 4-2 thru 4-4 
Network, 1-11 
nl, 3-14 
nroff, 1-3, 4-1 thru 4-5 
NULL, 5-2 

Octal representation of permissions, 
2-14 thru 2-15 

Office tools, 1-11 
Operating system, 1-4 
Operators, 5-3 
Option, com mand, 3-:-9 thru 3-10 
Overview of the XENIX 286 Operating 

System, 1-2, D-l 

.P, 4-5 
Parent, 

directory, 2-6 thru 2-7 
process, 3-1 thru 3-2 

Pascal, 5-3 
passwd, 3-4 
Password, 

changing, 3-4 
encrypted, 3-5 
entry, 3-5 
file, see /etc/passwd 

paste, 4-3 thru 4-4 
PATH, 3-6 
Path, 

name, full, 2-7 thru 2-8 
name, relative, 2-8, 2-18 
search, 3-6, 3-15 

Permissions, 2-12 thru 2-18, 2-21, 
3-8 

Phototypesetter/phototypesetting, 1-3, 
4-1 thru 4-4 

PID, 3-1, 3-2 

Index-4 

XENIX 286 Overview 

Pipe, 1-8, 1-11,3-12 thru 3-13 
named, 2-21 

Pointer, 5-2 thru 5-3 
Portability, 1-11, 1-14,5-3 
Printer, 1-4,1-5,1-11,2-11,2-17,4-3 

thru 4-4 
Process, 1-5, 1-11,3-1 thru 3-3, 

3-5, 3-8, 5-4, 5-6 
.profile, 2-15, 3-7 
Program, 

executable, 2-12, 3-1, 3-8 
shell, see shell script 
source, 3-1 

Programmer, 1-3, 1-9 
Programming shell, see shell script 
PSt, 3-6, 3-8 
PS2, 3-7 
Publications, 

Basic System, 1-2 
Extended Syste m, 1-3 
Related, D-l 

pwd, 2-9 

Raw interface, 2-11 
Read permission, 2-12 thru 2-13, 2-15 

thru 2-17 
Redirection, 

input, 3-11 thru 3-12,3-15 
output, 3-11, 3-15, 4-3 

Relative path name, 2-18 
Restricted shell, see shell 
Root, 

as owner, 2-17, 3-4 
directory, 2-7,2-9 thru 2-10,2-25 

3-3 
file system, 2-23, 2-25 

rsh, 3-15 

sees, 5-5 
Search, 

path, 2-21, 3-6, 3-15 
permission, 2-16 

sed, 3-14, 4-3 thru 4-4 
Semaphore, 2-21 
Set GID, 2-12 thru 2-13 
Set DID, 2-12 thru 2-13 
sh, 1-2, 2-12, 3-15, 5-1, 5-5 thru 5-6 



XENIX 286 Overview 

Shell, 
Bourne, 1-2, 1-8, 3-4 thru 3-5, 3-15 

5-1, 5-6 
C, 1-8, 3-4, 3-5, 3-15, 5-6 
com mand interpreter, 1-8, 3-4, 3-8 
login, 3-4 thru 3-7 
metacharacters, 3-10 thru 3-11 
programming, see shell script 
prompt, 3-6, 3-8 
restricted, 1-8, 3-4 thru 3-5, 3-15 
script, 1-11,2-12,3-1,3-3,3-6 
visual, 1-2, 1-8, 1-12,3-4 thru 3-5 

5-6, D-l 
sort, 3-12 thru 3-14 
.sp, 4-5 
Special files, 2-9, 2-11, 2-17 
spell, 4-3 thru 4-4 
Standard, 

error, 3-6 
input, 3-6, 3-11 thru 3-12,3-13 
libraries, 1-3, 5-1, C-2 thru C-6 
output, 3-6, 3-11 thru 3-13 
prompt, 2-3, 3-15 

Strings, 5-4 
style, 4-4 
Subdirectory, 2-3 thru 2-5 
Subtree, 2-5 thru 2-6 
Suffix, 2-2 
Swap, 

area, 2-23 
process, 1-5 

switch, 5-3 
/sys, 2-10 
sysadmin, 1-12 
System, 

administrator, 1-2, 1-9, 2-3, 2-10 
thru 2-12, 2-25, 3-2 thru 3-4, 3-7, 
3-12, 3-15, 5-6 

call, 1-5, 1-7, 5-4, 5-6 

Table formatting, 4-2 thru 4-4 
tail, 3-14 
Tape drive, 1-4 thru 1-5, 2-11 
tbl, 4-2 thru 4-4 
TERM, 3-7 
TERMCAP, 3-7 
Terminal, 1-4 thru 1-5, 1-11,2-11, 

2-17, 3-3, 3-6, 3-8, 3-12 

Text, 
editor, 1-6, 4-1 
file, 2-1, 4-1 
formatting, 1-3, 1-10, 4-1 
processing, 4-1 
processor, 1-9 

/tmp, 2-10 
tr, 3-14 
Tracks, 2-23 
Tree structure, 2-3 
troff, 1-3, 4-1 thru 4-5 

UID, 2-12 thru 2-14, 3-4 
umask, 2-15 
Union, 5-2 
uniq, 3-14 
UNIX, 1-7, 1-10,4-1,5-2 
User, 

file system, 2-23 
table, 3-2 
UID, 2-12 thru 2-14,3-4 
XENIX, 1-9 

/usr, 2-10, 2-15 
/usr/bin, 3-1, 3-6 
Utility programs, 1-6, 1-8 
uucp, 1-2, 1-13 

Variable, 
function, 5-2, 5-5 
shell, 3-5 thru 3-6, 3-8, 3-15, 

4-1, 4-3 thru 4-4 
vi, 1-2 
Visual shell, see shell 
vsh, 3-5, 3-15 

wc, 3-14, 4-4 
who, 3-8,3-12 thru 3-13 
Wildcard, 3-10 
Window operations, 5-4 
Working directory, 2-5, 2-9, 3-6 

Index 

Write permission, 2-12 thru 2-13,2-16 

/xenix, 1-12 thru 1-13, 2-10 
XENIX Macro Assembler Reference 

Manual, 1-3, 1-13 

Index-5 



Index 

XENIX Macro Assembler User's Guide 
1-3, 1-13 

XENIX 286 C Library Guide, 1-3, 5-1, 
5-4, D-1 

XENIX 286 Communications Guide, 1-2, 
1-9, 1-13, D-1 

XENIX 286 Device Driver Guide, 1-3, 
1-9,1-13, 5-6, D-1 

XENIX 286 Installation and 
Configuration Guide, 1-2, 1-9, 

1-13, 5-1, 5-6, D-1 
XENIX 286 Programmer's Guide, 1-3, 

1-13, 5-1, 5-3, 5-5 thru 5-6, D-1 
XENIX 286 Reference Manual, 1-2, 

1-13,5-1, D-1 
XENIX 286 System Administrator's 

Guide, 1-2, 1-9, 1-13, D-1 
XENIX 286 Text Formatting Guide, 1-3, 

1-13, D-1 
XENIX 286 User's Guide, 1-2, 1-13, 5-1, 

5-6, D-1 
XENIX 286 Visual Shell User's Guide, 

1-2, 1-13, D-1 
/xenix.f, 2-10 

yacc, 2-2, 5-5 

Index-6 

XENIX 286 Overview 



I 
I 
I 
I 
I 
I 
I 
I 

~~ 

Overvi ew of the 
XENIX 286 Operating System 

174385-002 

REQUEST FOR READER'S COMMENTS 

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all 
Intel product users. This form lets you participate directly in the publication process. Your comments 
will help us correct and improve our publications. Please take a few minutes to respond. 

Please restrict your comments to the usability, accuracy, organization, and completeness of this 
publication. If you have any comments on the product that this publication describes, please contact 
your Intel representative. If you wish to order publications, contact the Literature Department. 

1. Please describe any errors you found in this publication (include page number). 

2. Does this publication cover the information you expected or required? Please make suggestions 
for improvement. 

3. Is this the right type of publication for your needs? Is it at the right level? What other types of 
publications are needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). 

NAME _______________________________________________________ DATE 

TITLE 
COMPANY NAM8DEPARTMENT _________________________________________________ ~ 

ADDRESS ---------------------------------------------------------------------
CITY STATE ZIP CODE ------------------------ --------------------

(COUNTRY) 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing Intel products. Your comments on the back of this form will 
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All 
comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
OMS Technical Publications, MS: HF2-52 
5200 N.E. Elam Young Parkway 
Hillsboro, Oregon 97124-9987 

11.111111.111.11 •• 1.1.11111.1 •• 1.1 •• 1 •• 1.1 ••• 1.1 •• 11 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 
I 
I 
I 
I 
I 
I 
I 

F 



;. 


