iRMX® System Concepts

Order Number: 618297-002

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIXO is a
registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension.
MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of
Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software,
Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of
TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of
Digital Equipment Corporation. Visual Basic and Visual C++ are trademarks of Microsoft Corporation. All
Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows,
Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of
Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a
trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.

Copyright © 1991 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Update for relese 2.2 of the Operating System 12/95

Quick Contents

Nucleus Programming Concepts
Chapter 1 - Chapter 13

IRMK Kernel Programming Concepts
Chapter 14

I/O Systems Programming Concepts
Chapter 15 - Chapter 21

Application Loader Programming Concepts
Chapter 22 - Chapter 24

Human Interface Programming Concepts
Chapter 25 - Chapter 31

OS Extension Example
Appendix A

Index

Service Information

System Concepts

Notational Conventions

Most of the references to system calls in the text and graphics use C syntax insteac
of PL/M (for example, the system caktnd_messagimstead osend$message If

you are working in C, you must use the C header fifes, c.h udi_c.hand

rmx_err.h If you are working in PL/M, you must use dollar signs ($) and use the
rmxplm.extanderror.lit header files.

This manual uses the following conventions:

[]

Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

All numbers are decimal unless otherwise stated. Hexadecimal numbers
include theH radix character (for examplef-FH). Binary numbers include the
B radix character (for exampl10110008B).

Bit O is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

Data structures and syntax strings appear in this font.
System call names and command names appear in this font.

PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

Whenever this manual describes 1/0 operations, it assumes that tasks use BIO.
calls (such asg_a_read, rq_a_write, andrq_a_specia). Although not

mentioned, tasks can also use the equivalent EIOS calls (stghsasead
rq_s_write, andrq_s_specia) or UDI calls €ig_read or dgq_write) to do the

same operations.

Note
Notes indicate important information.

CAUTION
Cautions indicate situations which may damage hardware or data.

Contents

1 Jobs

WHAL IS 8 JOD? ... 25
JOD HIBIArCNY ... 25
JOD Ty PES e e 26

What Does a JOD CONAINTcoviiiiiiiiiiiiiie e 27

Creating @ JOD ..u.uu i 28
RESOUICE Sharing ..cooooiiiiiie e s 28
SPecCifying RESOUICESoiiiiiiiiee e 29
The Parameter ObJECT........uuuiiiiiiiiieee e 29
THhe INItAI TASK....utiiiiiiiiiiiii e 30

DeletiNng @ JOD ..o 30

JOD SYSIEM CallS ...uiiiiiiiiiiiii e 31

How to Use Job System CallS.........cooeiiiiiiiiiiie e 32

2 Tasks

WHAL IS @ TASK?. .o 33
LI 3 S 7/ 01 SSRSP 34
Task AttrIDULES ..o 34

CreatiNg @ TASKiiiiiiieeiiiiiiiis e e e e ettt s s e e s e e e e e e e e e e eeeeeeearerrnnes 35

DeletiNng @ TaASK ...uuuiiiiiiii e 35

TaSK EXECULION SEALESeeiiiiiiiiiieeieiee ettt 36
Task Execution State TranSitioNS..........oooviiiiiiiiiieeee e 37
Suspending and ResSUMING TaSKSuuuuuuiiiiiiiiiiiiiineee s 38

PrIOMEZING TASKS vttt e e e e 39
TasK Priority LEVEL......ccooviiiiieiii e 39

Interrupt Task Priority Level ..., 40

Round-robin Scheduling............coooiiiiiei 40

System Concepts Contents 5

Communicating Between Tasks ... 44

Using MailboXxes and POrSuuuuuiiiiiiiiiiiiiciiiess e e e e e 44
Advantages and Disadvantages of Mailboxes..........cccccccccvvvninnnnn. 44
Advantages and Disadvantages of POrts..........ccccccvvvvvvvvvnnnn.. 45

Using Semaphores and ReQIONS...........cevvvvvrurieiiuiiiiiiiienieeeenennnennnnnnnns 4-

Task and Message QUEUEScceeeeeiiiiiiiiiieeeeeeee et 4

TaSK SYStEM CallS.....ouiiiiiiiiiiiiiie et 47

How to Use Task System CallS........uuuuuuuiiiiimiiiiiiiiiiiieeiseseeese e 48

Mailboxes

What is @ MailbDOX?cooiiiiii e 49
ODbJeCt MaAIIDOXESuiiiiiieeciicceeeee e 49
Data MailbDOXES ..o 49

Creating @ MailDOX........cooiiiiiii e 50

MailboX QUEUEScoevviiii e 50
Queues For Object MailboXes............ccovvviiiiiiiiiiiiiiiiiiieeeiiiies 50
Queues For Data MailboXes............vveeiiiiiiiiiiiiieeeeeee e, 50

Reconfiguration MailboXes............cooeeeeiiiiiiii 51

Deleting @ MailDOX........cvvuiiiiiiiiiiiie e 51
Exchanges Between Tasks inthe Same JOb ..., 5
USING SENT_MESSAGE. .. . vt eeeeeeeeiieeeiiiiiiie e e e e e et e e e e e e e 53
USING rECEIVE_MESSAGE......ceeiieiiiieieeeeeeiiiiieeirrreeenan s e s s e 53
Exchanging Data Between Tasks in Different Jobs...................o v, 54
(OIS T [o JR=1=T oo Jo F= = IR TS 55
(O] (o Lol (=Tel=TAVZ= T o I L - SN 55
MailboX SYStem CallSccoovuiiiiiieiii e 56
How to Use Mailbox System CallS.........ccoooovviiiiiiiiiiiicee e 57
Semaphores
What IS @ SEMAaPNOre?o 5
Creating @ SEMAPRNOIEcovveiiiiiie e 5
TASK QUEBUE ...cvvuiiieeiiiie et e e e e e e e e et e e e e e et 59
Deleting @ SEMAaPROrecoiiiiii i 5¢
Binary Semaphores and Mutual EXClUSIONccccoeeeiiiii, 60
Priority Bottlenecks and BIOCKINGuuuuiiiiiiiiiiiiiiiiiiiiiieceeeeeeeeeeeee 60
MUILI-UNIt SEMAPNOTES ...eviviiiiieiiiee e 62
USING SENU_UNIES....oieeiieeieeeiiiiiiie e e e e e e e e 64
USING FECEIVE_UNITS ..iiiiiieee et e e e e e e e e e e e e e e 64
Semaphore SysStem CallSuuuiiiiiiiii 6"
How to Use Semaphore System CallS...........cooooviiiiiiiiiiiiiiiiiieeeeeeeeviiiiees 6¢

Contents

Regions

What is a Region?ccouiiiiiiiiiiinnnnenn.
Deletion and Suspension Protection
Priority Adjustment..............ccoovvvvvvennns

Creating a Regionccovvvvvvvvvivnnnnnenn,
Task QUEUEuveeeeieeiieeeeeee e,

Deleting a Regioncvvvvviiiiiiiiieeeeeeieenn,

Misusing ReQIONS........cceevvvvveiiiiiiiiieiieeeenn,

Nesting REIONSuuevviiiiiieeiiiiieieiiiiieeiiinns
Prevention..........ccccoeviiiieiieeiies
Using receive_control.........................
Using accept_control.........ccccceeeeeeennnnn.

Region System Calls............cooevviviiiiiiinnnnne

How to Use Region System Calls

.. 67

Ports

What is @ POrt?.......ccoeiiiiiiiiiiiieciiiieeeeeee
Ports in Multibus Il Systems
Why Use a POrt?ooovvvviiiiiiiiieieeeeeeee,
Using Buffer Pools at Ports
Creating a Port..........ccoeevvvviiiiiiiiiinceeeeee,
Fragments in Large Data Messages
Deleting a POort........ooovvviiiiiiiiiiiiieeeeeeeeee,
Identifying a Port..........ccccceeiiiiiiiiiieeeeeen,
Sending Data MesSsages...........uvvvveeennnnnn.
UsiNg SENd.....cccooiiiiiiiiiiiiiiieeeee e
USING rECEIVE ...oooeevvvieeeeeiiiiieee e
Sending Request / Response Messages
Control and Control / Data Format
Transaction PairS.........cccceeevevvveeeeninnnns
Basic Request / Response Transactions
Fragmented Response Transactions
Fragmented Request Transactions
Using send_rsvp.....cccooeeeevvevniieennnns

Using receive_fragment

Using send_reply.......ccccoevvevvvnnnnnnn.

Using receive_reply

Using broadcast..............cccevvvennn...
Using cancel.......cc.ocovvvveiiiievennnnnnn,

System Concepts

.. 73

.. 74

.. 83

Contents 7

Setting Up SPecial POIS.......ovviiiiiiiiiiiiiiiiee i eeeaaanaeee 85
Forwarding Messages from Sink POIS............ccvvviiiiiiiiiiiieeieeeeciiins 85
Using attach_port and detach_port...........ccccvevvveiiiiiiiiiiiiiieieeeeenn 86
USING CONMNEBCE...uutiiiiiiieeee e e e e e e e e e e 86
POrt SYStEM CallS ..coviiiiiiiiiiiiiie e 87
How to Use Port System CallS............cuuuuviiiiiiiiiiiiiiiiiiiiiiiiiiimann s 89
Memory Pools, Memory Segments, and Buffer Pools
Flat Memory MOAEISoi e 91
What is @ MemMOry POOI?uueiiiiiiiiiceiceeee e 91
Creating @ Memory POOL......ccooiiiiiiiiiieeeeee s 92
AllOCAtING MEMOTY ... e e e 93
BOIrrOWING MEMOIY ... ii et e e e e e e e e e eeeeeaene 93
Using rge_get_pool_attrib.............ooovviiiiiiiiiiiiiiiiieeieivvviiiiieeens 94
What IS @ MemMOry SEQMENT?.......uuuiiiiiiiiiiieieie e 95
Creating @ SEOMENTiiiii e 95
Boundary AlIgNmEeNteeeiiiiiiiiiiiieee e 95
Deleting @ SEOMENToeeviiiiiieee e 96
Access Rights and Hardware TYPeSuvvvvvvviviviirivimiiiiiiiiiiiiinninnnnns 96
What is @ BUfEr POOI?uuiiiiiiiiiiieieee e 97
Creating and Initializing a Buffer POOIeuviviiiiiiiiinn, 98
Using Data ChaiNS..........oooiiiiiiiiiiiiiiiiiiiiiins e eemmmoees 98
Using attach_buffer_pool............ciiiiii i, 100
Using detach_buffer_pool..........ccccoooiiiiiiiiii e, 100
Using request_buffer..........ooviiiiii e 100
Using release_buffer........cccoccoiiiiiiiiii e, 101
Deleting a BUffer POOL..........ccooiiiiiiiiii e 101
Memory Management System CallScccooveviiiiiiiiiii e 102
How to Use Memory Management System Calls................coe s smmmenns 104
Object Directories
What is an ObJeCt DIir€COIY?couuuuiiieeiiiiii et 107
Creating a Job ODbjJeCt DIr€CIOIYuuuueiiiiiiiiei e 107
Deleting a Job Object DIreCtorycoooeeveeeeeeeeeeeeeeeeeee e 107
Using an ObjJECt DIr€CIOMNYiiiiiiiie ettt 108
Using catalog_ObJECL.......cccoeiiiiiiiie e 108
UsiNg 100KUP_OBJECT.....uuiiiiiiiiiieee e 108
Using uncatalog_ODJECTovvvviiiiiiiiiiiis e 108
Object Directory System CallScoooeeiiiiiiiiii e 109
How to Use Object Directory System CallS..........ccccoevvviiiiii, 110

Contents

9 Exception Handling and System Accounting

Exception HaNAliNg..........ooooiiiiiii e 111
Exception Handler ACHIONS.........oooeeiiiiiiiiieei e 112
Exception Handler MOAESooovvvviiiiiiiiiiiiiiiiiiieee e 113
Condition Code Values and MNEmMONICS.........ccuuveeieeeeiiiiiiiiiieee e 113
Handling EXCeptions INlNE ... 114
Assigning an Exception Handler...........ccccooeeeiii 115
Writing Your Own Exception Handlerccoceveiiiiiieeee 115

Handler PrototyPe.......coooiiiiiiiieeeee e 116
Handler CONtENTS........oociiiiiiiiieie it 117
Compiling Your Exception Handler..............cccceeeiiiiiiiiiiniiiiiieeeeeen, 118
Parameters Used With Hardware Trapsccccccccvvviiiiiiiiiiiiinnnnnn, 119
Exception Handler System CallS ..., 121

SYSLEM ACCOUNLING .iiieeeeeeee ettt e e e e e eeeeas 121
Enabling and Disabling CPU Trackingccccoovvviiiiiiiieee, 121
Returning Information About @ Task........ccccceeveeiiiiiiiii e 122
Returning Task Creation and Duration Statisticsc.ccceeevvvivinnnnnn. 122
System Accounting System CallSc.oooevviiiiiiiiici e, 122

10 Interrupts

How Do INterrupts WOrK?cooooiieiiiiieieei e e 125
Interrupt Controllers and Interrupt LiN€Sccovvvvvvvviiiiiiiiiiiieeeee 125
PC-compatible Mode...........cooevviiiiiiiiiiiiiiiiiiee e 126
INEEITUPE LEVEIS ...ttt a e e 127
Interrupt Descriptor Table ... 127
Assigning Interrupt Levels to External SOUrcesccccccevvvvvvnnnnnns 128
Interrupt Handlers and Interrupt TasksSccooeeveiiiiiiieiee, 129
System Calls and Interrupt Handlers............ccccooovvviiiiiiiiiieiieeeeeeeiiiies 129
Writing an Interrupt Handler ... 130
Using set_interrupt With a Handler Only..............cccooooeiii, 130
What the OS Does With a Handler Only............ccccooeiiiiiiiiiiiiinnnnnns 131
Using an Interrupt Handler and an Interrupt Task.............ccoooeeiiiiiiiine 131
Using set_interrupt With a Handler and Taskuvvvveiiveeenennnn. 132
Using rge_timed_interrupt or wait_interrupt..........ccccvveveveeeeeeeennnnn. 133
Interrupt Task Prioriti€S.......ccovvvviii i 133
Using iRMK Kernel Calls in iRMX Interrupt Handlers 135
Creating the Service TasK.......ccccooviieiiiiiii e, 135
Things to do from the Service TasK.........cccvvvviiiiieiiiciiiii e, 135
Things to do from the Handler..............coooiiiiiiiiiiiii e 135

Example Using iRMK Kernel Calls in iRMX Interrupt Handlers... 136

System Concepts Contents 9

Interrupt Servicing Patternsuvvvvvvviiiiiiiiiiiii e 137
Single Buffer EXamplecooiiiiiiiiiiiee 139
Multiple Buffer EXampleoooviiiiiiiiiiiiiiiisse e 140
Disabling INterruptscoooeeiiiiiiiee e 143
Enabling Interrupt Levels from within a Task...........ccccceccvivinnnnns 146

Handling SPUrious INEITUPLS..........cvviiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeneeeee s mmmmm s 147

Calling get_IeVELccoiiiiieee 148

Judicious Selection of Interrupt Levels..........coooovvvvviviiiiiiiiiieeiiiiiiiiinnnns 148

Examining the In-service RegiSter.......cccooviiiiiiiee, 148

INterrupt SYStEM CallS.......ovviiiiiiiiiiiii e 149

How to Use Interrupt System CallS............uuvviiiiiiiiiiiiiiiiiinneeen e 150
11 Descriptors

WHhat IS @ DESCIIPLOI? ...ttt eee e s 151

Advanced Uses for DESCIIPIOrS.......ccoiviiieee e 152

Descriptors for Undefined Memorycooooeeeiiiciiiiiiiiiiiee e 152

Descriptors With AlIaSESuueeeiiiiiiiiiiei e, 153

Using rge_create _deSCrPLOTvvvvvviviiiiiiiiiiiiiiiiiiiiieeiiineneenee s 153

Using rae_delete_deSCriPLor e et 153

Using rge_change_desSCriPtor.... ..o 153

Descriptor System CallSocooeeeiiiici e 154
12 Multibus Il Live Insertion Support and Interconnect

Space

Live INSEItION SUPPOIT....ccceeeii ettt e e e e e e e e eeees 155

WatChdog TIMET.....ccoeiiiiiee e 155

Reconfiguration MailboXes............ccooeeeiiiiiiiieeeee 156

Failure Handling..........oooevuiiiiiiiii e 156
Internal Failure RECOVETYoviiiiiiiiiee e 157
Application Failure RECOVEIYevvvvvuviiviiiiiiiiiiiiiiiiiiiiinns 157

Configuring the Watchdog Timer.........coeeeeiiiiiiiiieieeee 159

What IS INtErCONNECE SPACE?.......evviiiiiiiiiiiiiieie et e e e e e e e e e e e eeeeeeereeeaaee 16(
How the OS Uses INtErcoONNECt SPACE........evvvvvvrviiririiiiiiiiiiiiiiiinnnae s 16
How an Application Uses Interconnect SPace.............ceuvvvveveeeeeveiiieeeeeeeennnn, 160
Referencing INterconnect SPace..........cooveeeeeeiiiiiiiiiiiieeeee 161
Reading and Writing Interconnect Space.........cccccceeeeeeiiiiiii 161
Interconnect Register System Callscoooveiiiiiiiii 162

10 Contents

OS Extensions and Type Managers

System Concepts Contents 11

How Do You Add a System Call?ooiiiiiiiiiiiei e 163
Creating an OS EXIENSION........cccovviiiiiiiiiiiiiiiiiiiiiisss e 164
INterface ProCeAUIESuuiiii it e s 165
FUNCLiON ProCeduresooovvvviiiiiiiiiiiiiiieeee e e 166
ENtry ProCeAUIEScvvviiiiiiiiieeee e 166
Exception Handling for Custom System CallS.............cuvvvviiiiiiiiiiiiiinnn. 169
RQERROR and NUCERROR Procedures............ccccvvveeeeeenennnn. 169
Writing Your Own RQERROR or NUCERROR Procedure...... 171
Handling EXceptions INlNEceiiiiiiiiiiiiie i 171
Custom Condition COAEScivvviviiiiiiiiiirrr e 174
LinKiNng the ProCeAUIES.ccoiiiiiie e 174
Including OS EXtENSIONScccooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 175
System Calls for OS EXIENSIONSuuuuiiiiiiiiiiiiieeeeeeeeeeeeee e, 176
Protecting Objects From Deletionuuuiuiiiiiiiiiiiiiiiineeseee e 177
System Calls for Deletion Immunity............ccoovviiiini i, 178
Type Managers and Custom ODBJECEScieeiiiiiiiiiii e 179
Creating NeW ODjJECESovuiiiiieie e 179
Deleting Composite Objects and Extension TYPES.........ccvvvvvvvvveciieeeennn. 180
Using delete_jOD....o i 181
Using delete_eXtenSiON........ccooeeiviiiiii i 183
Deleting Nested COMPOSItES......cccvvuviiiiiieeeeeiiie e e 183
Wrting @ TYPE MaANAQJETuuuiieieeiiiiiiee e e e e et eeeeananans 184
Type Manager System CallS...........coovviiiiiiiiiii e, 185
IRMK Kernel Programming Concepts
What Does the Kernel Provide?oo i 187
Kernel Object Management............coovvviiiiiiiiiiiiiiiiiiinin e e e e e e e e e e e eeeaaeeaee e 188
Kernel SEMAaPROrescooooiiiiii s 189
Creating and Deleting SEmMaphores............ovvvvvvvvvvvvivvvviveeiieiiiiiinnnn 189
Sending and Receiving Semaphore Units...........ccccccvvviiiiiiiinnennnn. 189
Using Region SEMaphOores..........ooovvviiiiiiiiiiiiiiiiieeeeeeeeevvvvvveveieieeees 190
Priority AdJUSTMENTuvieiiiiiiiiee e e 190
Kernel Semaphore System Calls..........ccooeeeeiii 190
Y = 11 o To)t SRS 191
Creating and Deleting MailboXes.......cccooevviiiiiiiiiiiiieeee, 191
Sending and Receiving Mailbox Messagesvvvvveiiviceeennnn. 191
Handling Mailbox OVEerflow.........ccooeeeiiiiiiiiiiiieeeeee, 192
Kernel Mailbox System CallSuuuevviiiiiiiiiiiiiinnneeeneeeenn 193

Kernel Time Management.........cooviiiiriiiiiiiiiiiiiiieee e e e e e e e e eeeeeeeeeeraanee s 194
Using the Kernel Tick RAtiO...........ccovviviiiiiiiiiiiiiieie e 194
(0T Y =T 1 SRR 195
USING SIBEP 1ttt e e e e e e e et e e 196
Time Management System CallScoovvuviiiiiiiiiiiiiiiii e, 196

Kernel Task ManagemeNnt............uuuuuuiririiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeerenne 197
Controlling Task State TransitionS..........ccccceeeeeiiiiii 198
Using Task HandIersuuvuueiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeine 199

Installing and Removing Task Handlers..........cccccccvvvvvvviiiieennnnnnnn. 200
Task Management System CallSuuuiiiiiiiiiiiiiiieieeeeee e 201

iIRMX Memory Management for Kernel System Calls..........ccccccccvvvinnnnnnn. 202
Aligning Application or malloc Allocated Memoryccccvveeeen.. 202
USING MAIIOC ...t 203

Demo Files for the Kernel ... 204

Include Files for the Kernel ... 205

Kernel Memory Management.........cccouuuiieeeiiieiiiiieeeee et e e e e e e 205
Creating Memory P0ooIS and Ar€asccovvvvuiiiiieeeeeeiiiie e 206
Deleting Memory PoOIS and Ar€ascccuuueeieeeieeiiiiii e e eeeeans 206
Pool and Area Overhead..............uuvvviiiiiiiiniiiee e 207
PerformanCe ISSUEScoivvi i 207
Getting Information about @ Pool............cccooeeiiiiiiiiie e, 208
Allocating Memory in an Interrupt Handler..........cccccoeeeviieiiieiiiiiinnnn. 208
Kernel Memory Management System CallS...........cccceevvveeiiiievveeeeennnnn, 209

15 1/O System Basic Concepts

System Programming (BIOS)coouuuiiiiiiiiii e 214

Synchronous and Asynchronous Calls...............uveiiiiiiiiiieeiiceiiii, 214
Asynchronous Call Order of Operationscccccvvvvveviieeeeeeeeeeenn 215
Using Asynchronous CallS..........ccoovvveeiiiiiiiiiiiiiiiiie e 218
Condition Codes for Asynchronous Calls.............ccccoeeeiiinnnnnnn. 219
Creating 1/O BUFTEIScoiiiieiiieeeeit e 219

Device Controllers and Device UNItS..........uuuvrveriiiiiiiiiiiiiiiiiiiiiiiiieins 220
Setting Mass Storage Device Granularity..........ccccoeeeceeeeeeen 220
File Granularity EXampleooovvviiiiiiiiiiiiiiiiiineee e e 221
VOIUMEBS ..t e e e et e e e e e e e e 221

1L Y o 1= R 222

Communication Between Tasks and Device Units...........cccccoeeeiiiiininnnnnn. 223

(oo Loz L NN F= g 1= UUUUPTR 225

Path_ptr Parameters and Default Prefixes (EIOS)...............oe i, 225

/O JODS (EIOS) ... it 226

12 Contents

16 I/0 Jobs and Connections

Creating /O JODSo 227
Creating Device CONNECLIONSuuuvuviiiiiiiieiirieeiisaeeeeeeeeeaeeeeeeeereeeererrananee 228
Using BIOS System Calls...........cooovvviiiiiiiiiiiiiiiiiieeeeieeevvevvvvvvneeeeeees 228
Using EIOS System CallS.........coviiiiiiiiiiiiiiieee e 229
Using a Logical Device with BIOS System Callsccccvvvvviivinnnnnen. 229
Creating File CONNECHIONScoiiiiiii i 230
Using BIOS System Calls...........coovviiiiiiiiiiiiiiiiiiiieeeeievvevvvevvvveeeeeeees 230
Using EIOS System CallS.........coviiiiiiiiiiiiiii e 231
MoVINg File POINIEISccoo e 232

17 Named Files

Using Prefixes, Subpaths and File Paths in System Calls..................ccceeee. 234
SUBPALNS ... 234
L €= DTS Y RPSUPPPRRPIN 235
Using the Default PrefiX.........ovvveeeiiiiiiiiiiiiiieeee e s 235
Specifying Paths in System CallS.............uuvviiiiiiiiiiiiiiieeeeenn 236
USING CONNECHIONS ...uuiiiiiiieee e eemmmmmmm e 238
COoNtrolliNG FIle ACCESSoiiiiiiiiiiiiieiiiiiiiie st a e e e e e e e e e e e e e e e eeeeeeeeeeeaeeranne 239
L0 £SO TP PRSPPI 239
(7= o o [PSS SUPUPPPRSRRR 239
USEI ODJECLES....ciiiiiiieeiitiiiie sttt e s s e e e e e e e e e e eeeeeeesrnne 240
File ACCESS LiSt...ciiiiiiiiiiieee e 241
Computing Access for File ConnectionS..........cccoeveviiieeeeeeeeeen 242
File Access Rights EXample ... 244
Getting and Setting Extension Data...........cccceeeeeeeeeeeieeeie 245
Maintaining DiSK INteGIitYccovuiiiieiiie e e 246
AACH FIagsS ...coiiiiii e 246
Fnode Checksum Field ... 246
Getting and Setting the Bad Track/Block Information............ccccvvveen.. 247
Accessing REMOLE FleSccoovuiiii e 248
Systems that Include IRMX-NETocooiiiiiiiiiiie e, 248
Dynamic Logon and iIRMX-NET.........ccviiiiiiii e 250
ACCESSING NFS FIlES......u e e 251
VOIUME NBIMES. ...ttt e e e e e e 251
FIle NAMES ... 251
File OWNEISNIP ... e meemmm e 252
USer ID TransSlationcoooiiiiiiiiiiiee e 253
File and Directory Creationeeeeeiieeiiiine e eeeiis e eeeee e e e eeeaanns 253
File ACCESS RIGNIS ... e 253

System Concepts Contents 13

ACCESSING EDOS FlES.....cccvviiiiiiii it 255

DT =Tox (o] = TSRS 255
File ALHDULES .o 255
FIlE NAMES ..t e e e e e e e e 255
TIME SEAIMPS Leuiiiiiiii e e e e e e eaeaaes 255
File OWNEISHIP ..cvvviiiiiiiiiiei e reeeeenn e 255
ACCESSING DOS FIlES . ..uuuiiiieiiieeeeee e e e e e e e e eeeaanes 256
DT =Tox (o] = TS SRRPP 256
File ALHDULES oo 256
FIle NAMES ..t e e e e e e e 256
TIME SEAIMPS ceviiiiiiii e e e e e e e e e e e 256
File OWNEISHIP ...cvviiiiiiiieie e reeeeeen e 256
Using Nucleus System Calls for the Default User and Default Prefix 257
System Calls for Named FileScooouiiiiiiiiiii e, 257
BIOS and EIOS System Calls for Named Files.........cccooeoeeeiivieeeennnn. 258
Call Sequence for Named Filescoiiiiiiiiiiiii e 26E

18 Physical Files
Situations Requiring Physical Files ... 267
Maintaining Physical File INdependencecccccoevveieiiiiiieeeeeeeeee, 267
BIOS Calls for Physical FileS ..o 268
EIOS Calls for Physical Fil€S.......ccooiiiiiiiiiiiieeeeeee, 269
Call Sequence for Physical Fil@S.........uuuuiiiiiiiiiiiiiie e 272
19 Stream Files
Maintaining Stream File Independence.............cccooviiiiiiiiiiiiiiii e 273
Creating the File.........cooiiiiii e 273
BIOS Calls for Creating Stream Filescuvvviiiiiiiiiiiiiiiiiininnnn 273
EIOS Calls for Creating Stream FileS..........cccoevviiiieiiii, 274
WIHEING the FlE ..eeeei e 274
BIOS Calls for Writing Stream Files...........ccccoeevveiiiie, 274
EIOS Calls for Writing Stream FileS.............uvvviviiiiiiiiiiiiiiiiiininnnnn 275
Reading the FIlecooe i 276
BIOS Calls for Reading Stream FileS........ccccccvvvvvvviviiiiiiiiiiiiniinnnn, 276
EIOS Calls for Reading Stream FileS...........ccuvvvvvvivvviviviiiiiiiiiinnnnn. 277
Call Sequences for Stream FileSoovviiiiiiiiiiiiiiiiiieieis 27¢
20 Connections and Objects
Cataloging CONNECLIONS.iiiiiiiii et e e e e et aeeeeeans 281
Cataloging ODJECEScoiiiiiieeeiie e 282
14 Contents

21 UDI Basic Concepts and System Calls

UDI SYSIEM CallS.....uiiiiiieiiii et ee e e e e 284
UDI Memory Management System Callsccccccvvviiiiieeee, 284
Using Program Control CallS.............iiiiiiiiiiiiiiciiieieeeeeee e 285
Using Utility and Command-parsing CallSuuuvvviiiviiiiiiiiiiineniinnn. 285
Using Condition Codes and Exception-handling Calls.............cccuvvee.... 286
Overriding the <Ctrl-C> handler...............uvvviiiviiiiiiiiiiiiiiiiiiiinnns 287
Writing Portable Programs Using the UDIcvvvvviiiiiiiiiiiiiiiiiciiiieeeeee, 287
Call Sequence for File-Handling System CallS.............cuvvviviiiiiiiiiiiiieeieeenne. 288
22 Application Loader Basic Concepts
(0] o] [=Toi A 6oL [PPSR 291
Synchronous and Asynchronous System CallS...........cccovvvvvvvviiviiiinnnnn. 291
Situations Requiring an 1/O JOD.......uuuueeiiiiiiieiiee e 292
OVEIIAYS. .ttt ettt e e e e e e e e e e e a e e e e e aaeaaas 292
Device Independence and the AL ..o 293
Configuring the ALcooiiiii e 293
23 Preparing Code for Loading
Specifying Pool Sizes for /O JODS ... 295
Producing an STL ObjeCt File.......cccooviiiiiiieeeeee e e 297
Specifying Stack Requirements with SEGSIZE Controlc..ceee.... 298
Specifying Dynamic Memory Allocation with
DYNAMICMEM OPLON ..c.iiiiiiieeieiiiieeee et 298
24 Application Loader System Calls
AL System Calls Requiring an 1/O JObD ... 299
a_load Does Not Require an /O JODcoviiiiiiiiiiiieeeeeeeeeeeeeee e, 300
Synchronous System Calls ... 300
Using rge_s_load_io_job and s_load_io_job..................cc e 301
Loading Overlays with S_overlaycccccoeeiiiiiiiiiiieeeeeeeee, 301
AsynNchronous System CallS..........ccoviiieeiiiiiiiiiiiiii e 302
Asynchronous Call Order of Operationsceoeeev v vicececnnnn. 302
Response MailboX FUNCLONSccooviiiiiiiiiiiieeeeeeeeeeeeeeeeeeee, 303
System Concepts Contents 15

25

Human Interface Basic Concepts

SAMPIE COUR ... ettt
Resident HI COMMANAS...........uuuiiiiiiiiiaaeeei ittt e e
CLI: The Initial Programeeeeiseeiieee e eeeeeeeeeeeeeeeeeeeaeesveaseeeneee
Loading Other Initial Programsu e eeaeeeaeaeeaaaans

LOGaiNg Off ..
MUIIUSEE SUPPOI. .ot e e e e e e e e e e e e e e e e e eeeeeeeeenees
ReCOVEIY/RESIAENT USEI ...oeviiiiiiiiiiiiie ettt
WIlCAITS ...t r e e e e e e e s
Human Interface System CallS ...
Human Interface OperationS...........cooviviiiiiiiiiiiiiiiiiire e

26

The Command Line Interpreter

CLIFALUIES ..ieeeiiieeiee et
INItIANIZING the CLI..cciiiiiiiee e
Invoking and Executing CommMandsuuuueerriiiiiiininiiiiiinnn
Adding User Extensions to the CLI.....ccooovviiiiiiiiiii,

Creating User EXIENSIONS.uuueiiiiiiiiiiee et eeaaaes 319

Initialization ProCeAUIE..........oouuiiii e,

Processing ProCedUre...........ovvvviviiiiiiiiiiiiiiiese e e 320

(S o1 [0 o [] oo =To (1] £ RS
Error HANAIING.......oooiiiiiiieee e
Demonstration Program - User EXteNSioN ...,

Binding @ User EXIENSIONuuveiiiiiiiiiiee e e s 322

Creating a Loadable Command Interface............cccccvvvvviviiiiiiiiieiiiiiiiiiiiiiinnns

27

16

Writing and Parsing Commands

Standard Command-line SrUCIUre.............oooiiiiiiiiiiiiiiieeeeeeeeeeeeees
Command-line Structure Parameters............oooccuviiiiiiiieeeiniiiiiieeeeeeeen
Command-line Structure Parameter FOrmatscooccvviieeeeeeeennnnnnn.
Command-line Structure Special Characters............cccvvvvviiiiiiiiiiiniinnnn.

Parsing the Command LiNEuuuuiiiiiiiiiiieeeeeeeeeeeeceeeeeeeeeee s

Parsing Input and Output Pathnamesuuvuiiiiiiiiiiiiniiiiinnnenee e
File Connection Demo Programs..........ccccceeeiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeaens
Wildcard Characters In Input/Output Pathnamesccccccccvvvvvenennnn.

Contents

32€
326
328
329
331

333
333

Parsing Other Parameterscoooieeeiiiiiiiieeeeeeee e e e 334
Parsing Nonstandard Command LINES..........cviiiiiiiiiiiiiiiiieeeeeeeeeeee e 336
Variations on the Standard Command Lineccccoviiviiiiiieeniininnnnn. 336
Other Nonstandard Command LiNeS...........coooiiiiiiiiiiiiie e 337
Switching To Another Parsing BUffer.......cccoo 338
Obtaining the Command Nameouvviiiiiiiiiiiiiiiii e 340
28 Communicating with the User
Establishing Input and Output CONNECLIONScccieiiiiiiiiiieeiiiiiiiiiee e 341
Using c_get_input_CoNNECLION.........ccoeeeiieiiee e, 341
Using C_get_OUtpUt_CONNECLION.......ciiiiiiiiii e 342
Communicating With the User's Terminal..............c.oovvvvvviiiiiiiiiieiiiiiniiiiinnn. 344
c_send_co_response System Callcooovviiiiiiiiiiiiiiiieies 344
c_send_eo_response System Callcccoeevvviiiiiiiiiiii 345
Formatting Messages Based on Condition Codesccceeecvievrvnnnnnns 346
c_format_exception System Call.........ccooeeeeiiiiiiiii 346
29 Invoking HI Commands Programmatically
Creating a Command CONNECTION..........uii i 349
Sending Command Lines to the Command Connection and
Invoking the Commandoooiiiiiiiiiiii e 350
Priority ConsiderationsS............cuvvvuvuvuuuiuiiiiiiniinirnnneenenennnnnnn mmmmm 351
Deleting the Command Connection...........cccoeeeeeeeieeeeeeeeeeeeee, 351
Command Connection Calls Demo Programs....................e e, 351
30 Writing a <Ctrl-C> Handler
How the Default KCErl-C> WOTKSuuuiiiiiiiiee e 353
Providing Your Own <Ctrl-C> ... 354
UsiNg ININE ProCESSING ...vvvuriiiiiieiiii ettt aa e 354
USING @ <CH-C> TaSK ...ciiiiiiiiiiiieeeiiiiiss e 355
Returning to the Default Handler...............vvvviiiiiiiiiiiiiiiiiieeenn 356
<Ctrl-C> Task DemMO Programs.........ccceieeiieiiieeeeeeeeeeee e 356

System Concepts Contents

17

31

Creating Human Interface Commands

Elements of a Human Interface Command
Parsing the Command Line..............cvvvvvveeinnnnnnn.
System Calls and Objects to Avoid.......................
Terminating the Command.............ccccccveeieiiennnnnnn.
INClude FileS....ccooeeiiiiiiiie e,

Producing a 16-bit Executable Command...................

Producing a 32-Bit Executable Command..................

OS Extension Example

Ring Buffer Manager..........ccouuuiiiiiiiiiiiieeeeeeiien e
Initialization ...
The Interface Library.......ccccccoeeeiiiiiiiieeeiiiiiiiinn,
The Create Ring Buffer Procedure.......................
The Delete Ring Buffer Procedure.......................
The Put Byte Procedure.......cccceeeeeeiiiiiieieeeeeeeeeee,
The Get Byte Procedureuevvvvvvieeiiiinnninnnnns
EPIlOQUE....oviiiiiiii e

Index

383

Service Information

18

Contents

Inside Back Cover

359
359
360
360
361
363

368
370
375
378
379
381
382

Tables

1-1.

2-1.

3-1.

4-1.

5-1.

6-1.

8-1.

9-1.

9-2.

9-3.

10-1.
10-2.
10-3.
10-4.
10-5.
11-1.
12-1.
13-1.
13-2.
13-3.
13-4.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
17-1.
17-2.
17-3.
17-4.
17-5.
17-6.
17-7.
17-8.
17-9.

17-10.
17-11.
17-12.
17-13.
17-14.

System Concepts

JOD SYStem CallS ...
TaSK SYStEM CallS....uuuiiiiiiiiiii e
MailboX System CallScooviiiiiiiiiiiiiiiiiie e

Semaphore System CallS..........coooiiiiiiiiii e
Region System CallSccooeeiiiiiii e
POrt SYStEM CallS....cooieiiieiiii e
Object Directory System CallScooooiiiiiiiiiiiieeeeeeiees
Condition Code RANGES........cciiiiiiiiiiiiiiiiiiir e e e e e e e e e e e e e eeeeeeeeeeeanee
Exception Handler System CallSuuvvuiiiiiiiiiiiiiiiiieneeees e
Accounting System CallSooovviiiiiiiiiiiiiii e
Allocation of INnterrupt ENrieS..........vvvvviiiiiiiiiiiiiiiiiiiiiiiiiii s
Interrupt Level and Task Priority Information.............cccccoeeeeeen,

Handler and Task Interaction through Time ...,
Interrupt Levels Disabled for Running TasK..........ccccccoiviiiiiiiiiiiii,

INterrupt SYStem CallS........ouiii i
Descriptor System CallS.........oiiiiiiiiiiiie e
Interconnect Register System CallSccooooiiiiiiiiiiiii e
Comparing Techniques for Creating System Calls............cccvev i
OS Extension System CallS...........iiiiiiiiiiiiiiiine e
Deletion Immunity System CallS...........ccuviiiiiiiiiiiic e

Type Manager System CallS..........cccooiviiiiiiiiiiiicciceece e e enmoaens
Kernel Semaphore System CallS..........ccoovuiiiiiiiiiiiiiicie e
Kernel Mailbox System CallS...........ccouuiiiiiiiiiiiiiiin e
Time Management System CallS.........ccovvuiiiiiiiiiiii e
Task Management System CallS..........ccoviiiiiiiiiiiii e
Kernel INCIUAE FlESooiiiiiiiee e
Management System CallScoooeviviiiiiii e
Getting and Deleting CoNNECLIONSuuiiiiiiiiiiis e e e
Getting and Setting Default Prefixesccovvviviiiiiiii e
UL @] o 1= od £ TP PUUSPPPPPPPTTPPPIIN
USING DAL ...ttt ettt
GLHING STAIUS....oo e e e e e e e e e e e e e e et e e e e e eeeaeerabbeee
Reading DIreCtory ENTIHESoooiiiiiiiiiiiiiiiiiiit e
Deleting and Renaming Filescooiiiiiiiiiiiiiiiiiiiiiieieiiiiee e e s
ChANGING ACCESS ..ttt e e
[dentifying @ File's NAMEuuiii e
Changing Extension Data..
Detecting Changes in DeV|ce Status ..
Accessing Global Time-of-day CloCK...........cooooiiiiiii

Deleting CoNNECHIONSooiiiiieeeeeiiieeeeeeeeeeee e e e e
Using LOgical NameS......cooiiiiiiiiiiieeeeeee e s

Contents

190

196
201
205
209
258
258
259
260
261
261

262
262

263
263

17-15. Creating and Deleting /O JODS.........ccoooiiiiiiiiiiieeeee 26:

17-16. Miscellaneous FUNCHONSuuiiiiiiiiii e e 265

23-1. OS StACK SIZES ..iiii i i 29
27-1. Parsing System CallS.......cccoeeiiiiiiiiiii e 331
27-2. Parsing Buffer System CallS...........ouuvviiiiiiiiiiiiiiiiiiiiiiiiiiieienne s s 331

29-1. Command Invocation System CallS............uuuvuuviiiiiiiiiiiiiiiiiiin e 34¢
Figures

1-1. Resource Sharing in JODS.........oooiiiiii e 28

1-2. JOb SyStem Call OFUEN.......uuiiiiiiiieee e 3
2-1. Task EXECULION STAEScoviiiiiiiiiiieeeiiiiiiit e e e e e e e e e e e e e e ee e e e e eeeeeeaeees 3¢
2-2. The Round-robin Priority Threshold..............ccccoiiiiiiis 41
2-3. Round-robin and Priority-based Scheduling within the Ready Queue.......... 42
2-4., Task System Call Order.......cooiei i 4¢
3-1. Exchanging Objects Between Tasks in the Same Job....................coeeeeen, 5
3-2. Exchanges Between Tasks in Different JObS..........ccccccevviiii, 5¢
3-3. Mailbox System Call Order..........coooviviiiiiiiiiiiee v eeeeeeees 57

4-1. Mutual Exclusion Using a Binary Semaphore...........cccccceeviiiicii, 60
4-2, Priority Inversion Bottleneck with Semaphorescccccvvvvvieeieiiiiiiiiinnnnnnn. 61
4-3. Multi-unit and Binary Semaphores Allocating Bufferscccccvvvveeeennn. 63
4-4, Semaphore System Call Order.........cceeeeiiiiiiee 66

5-1. Deadlock and Nested REQIONSuuuuiiiiieiiiiiieiceee e 69

5-2. Preventing Deadlock in Nested ReQIONS...........ccvviiiiieiiiiceiiiiii e, 7
5-3. Region System Call Order..........cooieiiiiiiiiii e 72
6-1. Basic Request / Response UsiNg POrts..........cocceiiiiiiiiieeiciiiie e, 8
6-2. Fragmented Response USING POIS.......ccooiieiiiiiiiiiiiiii e 8
6-3. Fragmented Request, EXamPIecoiiiiiiiiiiiieceei e 8
6-4. Forwarding Messages UsSiNg POrS.........coooviiiiiiiiiiiii e, 85
6-5. Port System Call Ortder.......oooeveuiiii i e 8¢
7-1. Consequences of Minimum-Maximum Memory Pool Values..................... 92
7-2. Borrowing Memory From the Parent JOb.........ccccooveviiiiiiiiii e, 93
7-3. Buffer Pool with Associated BUffers.........cccccccooiii 97
7-4. Structure of @ Chain BIOCKuueiiiiiiiii 99
7-5. Relationship of Buffer Pool and POrt..............ccoeeiiiiiviiiece e 100
7-6. Segment SYStem CallS.......couiiiii i 10
7-7. Buffer PO0l System CallSoooovieiiiiiiiceeces e 105
8-1. Object Directory System CallSccoveviiiiiiiiccieecs e 110
10-1. Processor and PIC Interrupt Lines in Native Modeooccceeeeins 126

10-2. Flow Chart of Interrupt HandliNgeuvviiiiiiiiiiiiiiiiiiiiiiiiii s 138
10-3. Single-Buffer INterrupt SErviCingcccceeeeeeoiiiieeeeeeeeee 139
10-4. Multiple-Buffer INnterrupt SErviCing..........uueeeeveeiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeeeeee 141

20 Contents

10-5.
11-1.
13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
14-1.
14-2.
15-1.
15-2.
17-1.
17-2.
17-3.
17-4.
18-1.
19-1.
21-1.
21-2.
25-1.
28-1.
28-2.

A-1.

INterrupt SYStEM CallS......cooiiiiiii e 150

Descriptor and Offset Used To Access a Segment's Physical Memory......... 151
OS Extension Using Interface and Function Proceduresccccccvvvvnnns 164
OS Extensions with ENtry ProCedUIe............uuuuuuiiiiiiiiiiiiiiiiiiiiieeieerenerneenennnn 167
Summary of Duties of Procedures in OS EXtENSIONS.............evvvvevieeneeennnn. 168
Handling Exceptions with an iRMX Exception Handler................cccccooe.... 170
Control Flow for Handling Exceptions INlNEevvveiviiiiiiiiiiiiiiiiiiiininn. 172
Composite Object System Call Order............ooovvviiiiiiiiiiiiieeeeiiees 180
Type Manager Involvement in Delete_job.............covvvvvvivviiviiiiiiiiiiiiiiiiiiinnnns 182
Kernel Invoking of Task Handlers.........cccooo 199
Memory POOIS @nd AFASuiiiiiiiiiiiiiiiie e 208
Behavior of an Asynchronous System Call............ccovvvvviiiiiiiiiiiiiiiiiiiiiiinnnn, 217
Hardware and Software Layers Between Tasks and a Device...................... 223
User and User ID RelationShipuueeiiiiiieiiiee e 240
Computing the Access Mask for a File Connectionooooeeiiviceeeennn. 243
Example of Public and Private Files in an iRMX-NET System 249
Sequence of Frequently Used System Calls for Named Files...................... 266
Sequence of System Calls for Physical Filesccccoovvveiiiiiiiiiiine e, 272
Sequence of System Calls for Stream Files...........cccooeviiiiriiiiiiiii e, 279
The Application Software-Hardware Model............ccccoeeviiiiiiiiiciiin e 283
Sequence of System Calls for UDIcoooevviiiiiiiiiiecieeceie e, 288
Multiuser Support underthe Hl......cooooviiiiiiic e 312
c_get_input_connection and c_get_output_connection Example 343
USING C_SENA_CO _FESPONSE. . .uuueeieiiiieeeeetie e e e e e e s e e e e et e e e e e e e eeeaeanees 345

N 1 o = 1= 366

System Concepts Contents 21

NUCLEUS PROGRAMMING CONCEPTS

This section docu

ments the iRMXNucleus subsystem. Its functions include:

* Providing objects for communication and resource access control

e Scheduling ta

sks based on priority

« Handling interrupts based on interrupt level

The Nucleus consists of:

Kernel

Resident Nucleus

Nucleus
Communication
Subsystem (NCS)

Interface libraries

Provides low level interfaces and primitives.

Provides high level interfaces, memory protection and
validation.

Provides high level message passing. (Optional in ICU-
configurable systems)

Provide communication between OS layers.

These are the chapters in this section:

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.
Chapter 10.
Chapter 11.
Chapter 12.
Chapter 13.

Jobs

Tasks

Mailboxes

Semaphores

Regions

Ports

Memory Pools, Memory Segments, and Buffer Pools
Object Directories

Exception Handling and System Accounting
Interrupts

Descriptors

Multibus 1l Live Insertion Support and Interconnect Space

OS Extensions and Type Managers

What is a Job?

A job consists of a set of tasks and the resources they use, in a shared address
space: the job's memory pool. Tasks within a job use and share the job's resources
to do their work. A job isolates its tasks and resources from other jobs because jobs
cannot share memory pools.

When you have tasks and resources that need to be isolated, create a separate job
for them.

Job Hierarchy

Jobs are arranged in a hierarchy; the root job is always topmost; other jobs descend
from the root job. Aparentjob is a job that contains tasks that create other jobs.
The created jobs amhild jobs.

The Nucleus maintains the job hierarchy, keeping track of the relationships of
parent and child jobs.

See also: Job#ntroducing the iRMX Operating System$or basic
information on job hierarchy

System Concepts Chapter 1 25

Job Types
The iIRMX OS supports several kinds of jobs
Job Type Description

Root job Created by the Nucleus at system initialization. All jobs
in the system descend from the root job.

First level job Created by the Nucleus at system initialization. First
level jobs are child jobs of the root job. The BIOS and
EIOS, for example, are first-level jobs. In
ICU-configurable (Interactive Configuration Utility)
systems, you can specify your application as a first-level
job.

Loadable job Loadable jobs are child jobs of the HI. You can create
your applications as one or more loadable jobs. Other
loadable jobs are the shared C library, network jobs, /O
jobs, and device and file drivers.

System job System jobs include servers and networking.

In ICU-configurable systems, system jobs are first-level
jobs created by the Nucleus at system initialization.
They are child jobs of the root job. You can use the ICU
to specify which of the system jobs supplied by Intel to
include in your system.

You can load some system jobs usingltzlinfofile
rather than making them first-level jobs with the ICU.

Dependent/child job Descend from other jobs. They are created dynamically
as the system runs. Parent jobs create dependent child
jobs. Most of the jobs you create are dependent jobs.

I/O jobs Dependent jobs that provide the environment for EIOS
system calls. You create I/O jobs for tasks that use these
calls. 1/O jobs are child jobs of the EIOS and Hl.

Your application will probably contain more than one first-level or dependent job
because you will have tasks and resources that need isolation. The number of jobs
depends on the complexity of the application and the modularity of your design.

See also: I/0 jobs, in this manual,
system jobs and loadable jolSy;stem Configuration and
Administration

26 Chapter 1 Jobs

What Does a Job Contain?

A job can contain these resources:

Resource/Object
Task

Object directory

Memory pool

Memory segment

Buffer pool

Mailbox

Semaphore

Region

Port

Exception handler

Description

A thread of execution. Tasks do the work of the system.
A job may contain several tasks. One is the initial task
created by the Nucleus. The remainder are created by
the initial task. You group related tasks in the same job.

A list of object names and tokens which tasks in jobs
share with each other. You catalog objects in the object
directory.

A pool of up to 4 Gbytes that provides the memory that
tasks share and use to do their work within the job. You
specify the size of the memory pool.

A contiguous sequence of bytes that tasks use for any
purpose. You have to create and delete segments.

Dynamically allocable memory. First you create the
buffer pool and load it with segments. Then to allocate
memory you only need to specify the buffer pool's token
and how much memory you need. The Nucleus allocates
and returns memory to the buffer pool.

Passes messages or data between tasks. You can pass
messages and data between tasks in different jobs.

Synchronizes tasks. A semaphore is a counter.

A one-unit semaphore with special suspension, deletion
and priority-adjustment features. Regions provide

mutual exclusion. Only one task can access a region at a
time.

Passes messages between tasks in the same or different
jobs. Synchronizes operations between boards in a
Multibus Il system.

Specifies what to do when a hardware, programmer or
environmental error occurs.

Each object you create uses an entry in the Global Descriptor Table (GDT).

See also:

Individual objects and exception handlinigtroducing the iIRMX

Operating Systems
individual object chapters in this manual

System Concepts

Chapter 1 27

Creating a Job

When you create a job usiegeate joborrge_create_joh you specify its
resources, which is a parameter object the parent job can pass to the child, and an
initial task. These resources are taken from the parent job's memory pool.

Resource Sharing

When you create a job that will have an extensive hierarchy beneath it, be sure yot
specify enough resources (memory, object directory entries, tasks and objects) in
the new job because all of the tasks in the new job and any subsequent child jobs
will share the resources of the new job. Since a child job gets its resources from its
parent job, resources in child jobs cannot exceed those of the parent, as shown in
Figure 1-1.

Task limit

@ . Object limit
| 1

A

O
Y

L il 3 OM02859

1. The memory pools for child tasks B and C are allocated from the memory pools of their
parent jobs.

2. Any objects cataloged by child jobs in the parent job's object directory reduce the number of
entries remaining to be made in the parent job.

3. Any tasks created by the child jobs reduce the number of tasks remaining to be created in the
parent job.

4. Any objects created by the child jobs reduce the number of objects remaining to be created in
the parent job.

Figure 1-1. Resource Sharing in Jobs

28 Chapter 1 Jobs

Specifying Resources

These are the resources you specify when you create a job:

Maximum number of entries allowed in the job's object directory.
Alternatively, you can specify no object directory if tasks do not share objects.

Maximum and minimum sizes of the job's memory pool, to be shared by all
tasks in the job and any child jobs they create.

See also: Borrowing memory, in this manual

Maximum number of objects that tasks in the job can create. You can specify
that an unlimited number of objects can be created by tasks in the job.

Maximum number of tasks allowed to exist within the job at a given time.
Since the Nucleus always creates an initial task, you cannot specify 0. You
can specify that an unlimited number of tasks can be created.

Maximum (numerically lowest) task priority at which any task contained in the
job can execute. You can specify that the child job inherits the maximum task
priority of its parent. You cannot specify a maximum task priority that
exceeds the maximum task priority in the parent job.

Exception handler to use for tasks in the job and when to pass control to it.
Alternatively, you can use the default exception handler, which deletes the job.

Whether the Nucleus should validate system call parameters for calls made
within the job's tasks and in child jobs. You can enable parameter validation
in a child job even if you disabled it in the parent job.

The Parameter Object

When you create a child job, the parent job can passaaneter objecto the child

job, if needed. The parameter object can be of any object type and can be used for
any purpose. For example it can be a segment containing data, arranged in a
predefined format, which the child job needs. The child job accesses the parameter
object by getting its token with thget task tokenssystem call.

If there is no need to pass a parameter object, don't specify one.

System Concepts Chapter 1 29

The Initial Task

The Nucleus creates the initial task for the new job. This task reduces by one the
maximum number of tasks in the parent job.

You program the initial task to do initializing or housekeeping needed when the job
starts running. You can program the initial task to either delete itself or continue to
exist as a regular task, perhaps doing other housekeeping operations.

You supply the same information to the Nucleus about the initial task as you do
when you create a task yourself:

e The priority of the initial task, which must not exceed the new job’'s maximum
task priority. Alternatively, you can specify that the task use the job's
maximum task priority.

« A pointer to the initial task's start address.

« Atoken for the initial task's data segment. Or you can let the Nucleus assign
the segment.

« A pointer to the initial task's stack. Unless you have a specific reason to do so,
let the Nucleus create the stack and assign the stack pointer. Otherwise,
particularly in first-level jobs, results may be unpredictable.

» The size of the stack.
See also: Stack sizBrogramming Techniques

« Whether the initial task contains floating-point instructions.

Deleting a Job

Before you delete a job usimiglete_joh you have to delete all its child jobs and
its extension objects, if any exist.

Use therge_offspring system call to find the child jobs. Delete jobs starting from
the bottom of the job's hierarchy, beginning with childless jobs. After you have
deleted all child jobs, delete the job itself; all the job's objects are deleted too, even
if tasks in other jobs have access to them. The deleted job's memory is returned to
the parent job.

Use thedelete_extensiorsystem call to delete extension objects and their
composite objects.

30 Chapter 1 Jobs

Job System Calls
These are the system calls that relate directly to jobs:

rqe_create_job

create_job

delete_job

end_init_task (ICU-configurable systems only)
rqe_offspring

get_task_tokens

set_pool_min

rqe_set_max_priority

Table 1-1 lists common operations related to jobs and the Nucleus system calls that
do the operations.

Table 1-1. Job System Calls

Operation Description

create job Rge_create_job and create_job create a job with an initial task
and returns a token for the job.

delete job Delete_job deletes a job that has no child jobs or extension

objects.

signal Nucleus

Use end_init_task in the initial task to signal the Nucleus that
initialization is complete.

get token
for object

Get_task_tokens gets a token for a parameter object or for the
task's job, parent job or root job so you can catalog objects.

find child jobs

Rge_offspring gets tokens for all child jobs so you can delete
them. It returns the list in a structure you supply.

set minimum
size of job's
memory pool

Set_pool_min changes the minimum size of the job's memory
pool from its creation size. If the new minimum is greater,
memory will be obtained from the job's memory pool if
possible.*

set maximum
priority of
tasks in job

Rge_set_max_priority dynamically changes the maximum
priority of a task in a job. The new maximum task priority must
not be greater than (numerically less than) the job's maximum
task priority.

* The amount actually allocated depends on the current allocation, the requested minimum and
maximum, granularity of units allocated, and how memory is already allocated from the memory
pool. The minimum pool size must not exceed the maximum pool size.

See also:

System Concepts

Nucleus system callyistem Call Reference

Chapter 1

How to Use Job System Calls

Figure 1-2 shows the order in which you make job system calls and mentions calls
that tasks in jobs frequently use.

set_interrupt

rqe_create_job create_task \l'lvaelt_tilgwtg:jrui‘r)]tt;:u t
catalog_object end_init_task ge_timed_| p
reset_interrupt
delete_job

get_task_tokens
[l l U

rge_offspring
delete_task
delete_extension

set_pool_min
rqe_set_max_priority

OM02860
1. Make these calls from the task that needs to create the new job.
2. Make these calls from the initial task created by the Nucleus.
3. Make these calls from the job's interrupt tasks.

4. Make these calls from any tasks in the job. You will also use calls that:
- Create, catalog, manipulate, and delete objects
- Change a task's priority or execution state

5. Make these calls from the initial task or another housekeeping task.
6. Make this call from the task that created the job.

Figure 1-2. Job System Call Order

32 Chapter 1 Jobs

What is a Task?

A task is a thread of execution that does the work of the system. It is only active
object in the system. It runs a sequence of instructions to manipulate data and
objects. It is the active object within a job.

You will probably have several tasks in one job. One will be the initial task which
you specified in thereate_jobcall and which the Nucleus created to initialize the
job environment. You may create other tasks and group them together in one job
environment because:

- They have similar or related purposes.
« They share resources.
« They exist for similar lengths of time.

There is no hierarchy among iRMX tasks: all tasks in a job belong to the job, even
if one task has created the others. All objects in a job belong to the job, not to the
tasks that created them.

The executable part of a task is a procedure without parameters that never returns,
similar tomain() in C programs. A task makes system calls and may call other
procedures. You can write a procedure specifically for one task, or share it among
several tasks.

The Nucleus schedules tasks so that each task sees itself as having its code
executed continuously. Depending on the needs of the application, a task may
execute in these, or other, ways:

« Execute once, then delete itself

- Execute in an infinite loop, spending most of its time waiting for an event to
occur, such as a message arrival, an interrupt, or an elapsed time interval

- Execute in an infinite loop, spending most of its time performing its function

System Concepts Chapter 2 33

Task Types
These are the basic types of tasks.
Type Task Function

initial Initializes the job environment and creates one or more tasks for the
job. Itis created by the Nucleus and is the first task to run in a new job.
It may exist for the life of the job, performing housekeeping and other
functions or execute once.

ordinary Typically responds to internal events. Does work required of the
application.

interrupt Services incoming interrupts.

Task Attributes

A task inherits some attributes from its parent job, such as its exception handler anc
exception mode. It also has these attributes of its own:

« Aninstruction pointer that points to the currently executing instruction in the
task

- The task state at initialization and the current execution state
See also: Task execution states in this section

« The current suspension depth of the task
See also: Task execution states in this section

e Whether the task is an interrupt task

e The parent job

- The code, data and stack segment register context

Once you create a task, the Nucleus keeps track of these attributes.

34 Chapter 2 Tasks

Creating a Task

When you create a task usiageate_task the Nucleus takes resources that it needs
(such as memory for a stack) from the parent job. These are the resources you
specify when you create a task:

« The priority of the task, which must not exceed the job's maximum task
priority. Alternatively, you can specify that the task use the job's maximum
task priority.

« A pointer to the task's start address.

« Atoken for the task's data segment. Or you can let the Nucleus assign the
segment.

« A pointer to the task's stack. Unless you have a specific reason to do so, let the
Nucleus create the stack and assign the stack pointer. Otherwise, particularly
in first-level jobs, results may be unpredictable.

» The size of the stack.
See also: Stack sizBrogramming Techniques
« Whether the task contains floating-point instructions.

These are the system calls for creating the three types of tasks:

Task Type System Call

initial create_job

ordinary create_task

interrupt create_taskfollowed byset_interrupt called from

within the new task, which will become the interrupt task

Deleting a Task

When you delete a task usidglete_task the task is disassociated from its parent

job, and any stack segments created for it are reclaimed for allocation to new tasks.
The task's resources are returned to the parent job. These are the system calls to
delete the three kinds of tasks:

Task Type System Call
initial delete_task
ordinary delete_task
interrupt reset_interrupt; when an interrupt task is reset,

delete_taskis automatically called

If a task makes C library calls, call stopbefore callinglelete_task

System Concepts Chapter 2 35

Task Execution States

36

A task exists in one of the execution states shown in Figure 2-1.

[
Ready
Y
H
Running

[[N

<——|| Asleep/ ~
Asleep > || suspended Suspended

OMO02708-3

A task is usually created in the ready state. It is not running, asleep, and/or suspended.
Tasks created in I/O jobs can start in suspended state.

The task's instructions are being executed; only one task can execute at a time.

The task is voluntarily waiting for something to wake it up; it controls the length of time it stays
asleep. A task goes to sleep because:

- It makes a request that cannot be done at once and it will wait (forever if necessary).

- It puts itself to sleep for a specified time. The task will not specify sleep forever.

The asleep state is the most common state for tasks waiting for an event. A task may not put
another task to sleep.

The sleeping task is suspended. The suspension depth increases by one each time the task
is suspended. If the task's sleep time expires first, it enters the suspended state. If the task
is resumed first, it enters the asleep state.

The task had its execution postponed because it has suspended itself by waiting for an event
or interrupt or has been suspended by another task. The suspension depth increases by one
each time the task is suspended.

Figure 2-1. Task Execution States

Chapter 2 Tasks

Task Execution State Transitions

As an application runs, a task often transitions from one execution state to another.
A task in any state except ready cannot run, even if it has the highest priority. You
can delete a task from any state. Creating a task instantly makes it ready.

Transition Reason

Ready to running The task becomes ready, has the highest priority of all
ready tasks and one of these:
« It has a higher priority than the running task.
- The running task is suspended, put in the sleep state, or
deleted.
< The running task’s time quota has expired, and the ready
task is next in the queue.

One of these:

A higher priority task becomes ready.

« The task uses all of its time quota in round-robin
scheduling.

Running to ready

One of these:

« The task puts itself to sleep for a specified time.

« The task requests something that cannot be done
immediately and it can wait.

Running to asleep

One of these:
The sleep time expires.
The sleep time expires before a request is granted.

Asleep to ready, or
asleep-suspended to |

suspended - The request is granted because another task sends a
message and the message is received.
« The object the task is waiting at is deleted.
Running to The task suspends itself.
suspended

Ready to suspended The task is suspended by another task. The suspension
or asleep to asleep- depth increases by one each time the task is suspended.
suspended

Suspended to ready The suspension depth is one and the task is resumed by
or asleep-suspended another task.
to asleep

System Concepts Chapter 2 37

These are the system calls that cause execution state transitions:

catalog_object
create_job

create task
enable
enable_deletion
end_init_task
force_delete
lookup_object
receive
receive_control
receive_data
receive_fragment
receive_message
receive_reply
receive_signal

receive_units
receive_task
send
send_control
send_data
send_reply
send_message
send_rsvp
send_signal
send_units
sleep
suspend_task
timed_interrupt
wait_interrupt

Suspending and Resuming Tasks

You will not encounter problems when a task isespend_tasko suspend itself.
You may get unpredictable results when usingpend_tasko suspend another
task for synchronization. Whenever possible, use a semaphore or mailbox to

synchronize tasks instead.

Each time you cabuspend_taskthe suspension depth increases by one. The
Nucleus keeps track of the task's suspension depth, up to 255. The larger the
number of calls made, the greater the depth. When the suspension depth is >0, yo
must make a corresponding humberaesfume_taskcalls to bring the task out of
suspension. You cannot obtain the suspension depth of a task from the Nucleus.

You need to make multiple calls tesume_taskfrom another task to make a task
ready when the suspension depth is >1. Each time yoresalhe_task the
suspension depth decreases by orieu do not have to make thesume_task

calls from the task that suspended the task.

See also: suspend_taskexample Programming Techniques

38 Chapter 2

Tasks

Prioritizing Tasks

The Nucleus handles task scheduling, based on priority or interrupt level; what job
a task belongs to has no effect on scheduling. The Nucleus always executes the

highest priority running task until it is interrupted, is preempted by a higher priority
ready task, or it puts itself to sleep, suspends itself, or completes and relinquishes

control.

Task Priority Level

The priority level of a task determines its importance in relation to other tasks and
interrupts.
set_priority if you need to. The task’s priority may be adjusted by the OS when

You specify a task's static priority when you create it or later using

using a region (described later); this is catlgdamic priority The priority is an
integer value from 0 through 255, with 0 being the highest priority.

Range
0-16
17 - 127

128 - 130

131 - 255

System Concepts

Used For
Used by the OS for servicing hardware exceptions.
Used by the OS for servicing external interrupts.

Let the Nucleus assign these levels to handlers and interrupt tasks,
based on the order in which you attached your external interrupt
sources to the PICs.

In general, don't create tasks in this range. A task running in this range
masks everything numerically lower, meaning response time to external
interrupts is slower and interrupts may be lost.

Use for tasks that communicate with interrupt tasks. These tasks may,
for example, do some asynchronous processing that is related to, but
not required for servicing the interrupt.

Use for tasks that handle internal events, like message passing and
computation. Typically, you don't assign a task to every level in this
range.

You might put important tasks, such as mailbox managers, in the range
140 - 160. Leave some gaps if you plan to add features and tasks later
on.

You can usually start using round-robin scheduling at about 200.

See also: Round-robin Scheduling in this section

Chapter 2

Interrupt Task Priority Level

Interrupt tasks are tasks that you create, usingreregte _taskcall; assign the

default priority for the task's job. Then associate the task to an interrupt handler
using theset_interrupt call. You may use theje_set_max_priority call to adjust
the job's maximum task priority, if needed.

Typically, you create interrupt tasks in related jobs. If you are using the I/O
System, however, interrupt tasks are created within the BIOS job.

See also: Managing Interrupts in this manual for more information on interrupt
handling

Round-robin Scheduling

You can assign the same priority level to more than one task and let the tasks take
turns running. Typically you do not do this with important tasks.

Unless you use round-robin scheduling, the first task, Task A, at any given priority
level can run until interrupted or put in the ready state by a higher-priority task.
Task A will regain control after the interrupt has been serviced or the higher-
priority task completes. Other tasks assigned the same priority level can be left
waiting indefinitely unless Task A voluntarily gives up control of the CPU. This
could be disastrous in a multiuser environment.

See also: Introducing the IRMX Operating Systefos basics on round-robin
scheduling

The default round-robin level is 140. You set two parameters that affect round-
robin scheduling: the threshold priority level and the time quota each task can run
before it is preempted. In an ICU-configurable system, you can use the Nucleus
screen to set the RRP and RRT parameters; otherwise you usextiméfile to set
them.

See also: RRP and RRIGU User's Guide and Quick Reference
Loadtime parameters, RRP and RBystem Configuration and
Administration

40 Chapter 2 Tasks

Figure 2-2 illustrates round-robin scheduling and the priority threshold.

Priority O
D No Round-robin
] Priority threshold
D Round-robin
Priority 255
OM02863

1. Ator above the priority threshold, no round-robin scheduling occurs.
2. You set the priority threshold at configuration.

3. Below the priority threshold, round-robin scheduling automatically occurs between tasks of
equal priority.

Figure 2-2. The Round-robin Priority Threshold

System Concepts Chapter 2 41

Figure 2-3 shows how round-robin scheduling works with priority-based
scheduling.

Ready queue
PT

L] A |[<—Running Asleep—>| C D

B |[«— Ready

C ||[<€<—Running Asleep—>| D
PT
L] A |€<— Ready

D |[«— Running Asleep—>| C
PT

L] A [<— Ready

L] A |[<—Running Asleep—>| C D

B |<— Ready

L] B ||<— Running Asleep—>| C D

A || <— Ready

OM02867
PT = Priority Threshold

Figure 2-3. Round-robin and Priority-based Scheduling within the Ready Queue

42 Chapter 2 Tasks

The priority threshold in the figure is 200. There are tasks A, B, C, and D with
these priorities in the figure:

Priority Tasks

130
140
200

1.
2.

Task C
Task D
Tasks A and B

Task A runs for 2 clock ticks when Task C becomes ready.

Task C has higher priority than A and B, so it gains control and runs until
done. In the meantime, Task D becomes ready.

Task D has higher priority than A and B, so it gains control and runs until
done.

Task A runs again for its remaining 3 clock ticks, then relinquishes control to
Task B.

Task B runs until it has used all of its 5 clock ticks or completed. It
relinquishes control. Task A begins running for another 5 clock ticks.

System Concepts Chapter 2 43

Communicating Between Tasks

Tasks communicate with each other to exchange data and synchronize execution.
The OS provides four exchange objects used in exchanging data and synchronizing
tasks. They are:

+ Mailbox

+ Port

+ Semaphore
+ Region

See also: Chapters about each object, in this manual;
Designing an ApplicatiorRrogramming Techniques
examples inlrmx386/demo/c/intralirectory

For tasks to share the exchange objects, you must create them, then catalog them
from the creating task usirgatalog_object Then other tasks can use
lookup_objectto get the object's token so they can access the object.

Using Mailboxes and Ports

Tasks commonly use mailboxes or ports to request a service from another task.
The client task sends a message that specifies parameters for the service call; the
service task receives the message and provides the specified service. The service
task can return results of the service, if any, to the client using a mailbox or port.

See also: Mailboxes and portstroducing the iRMX Operating Systems
Chapters about mailboxes and ports, in this manual

Advantages and Disadvantages of Mailboxes

44

You use a mailbox to send variably-sized messages between tasks in the same or
different jobs on the same host processor. A mailbox is easy to use for
single-message exchanges. A data mailbox, on the other hand, requires iRMX
support at both the sending and receiving task. Additionally, a message arriving at
a mailbox where no task is waiting is copied by the OS into buffer space in the
mailbox message queue; this is the first copy. When a task arrives to receive the
message, the message is copied by the OS from the mailbox queue into the task's
message buffer; this is the second copy. There is no copying with message-type
mailboxes, which pass tokens only.

Chapter 2 Tasks

Advantages and Disadvantages of Ports

A port transmits large messages between tasks on the same processor (short-circuit
message passing) and communicates between tasks on different processors in a
Multibus Il system. A port provides access to non-iRMX applications using the
Multibus Il transport protocol.

A port provides a transaction-based protocol; request messages are tied to specific
response messages. This enables a task to send messages to many tasks and to
distinguish the replies from one another. Tying the request to the response is
handled automatically by the iRMX OS.

A port copies a message only once. If a message arrives at a port where no task is
waiting, the message is copied into buffer space (which you must allocate) in the
port's buffer pool; this is the only copy. When a task arrives to receive the
message, the OS gives the task a pointer to the message buffer. A second copy of
the message is not made.

Using Semaphores and Regions
Both semaphores and regions provide mutual exclusion to shared resources.

See also: Semaphores and regitmspducing the iRMX Operating Systems
Chapters about semaphores and regions, in this manual

You can use a semaphore with more than one unit as a general purpose counter to
synchronize the actions of multiple tasks. A semaphore with one unit can also
provide mutual exclusion of tasks, but without the dynamic priority adjustment and
deletion protection provided by regions. Semaphores do not enforce
synchronization or mutual exclusion. Semaphores provide more flexibility in
waiting for access to resources than regions; you can specify a time limit for
waiting in the task queue. A task using a region cannot set a time limit.

Tasks use regions to enforce mutual exclusion to a specific resource or data. Only
one task at a time can control a region. The task that is controlling the region
cannot be deleted or suspended. If the region has a priority-based task queue, the
task in the region will have its priority dynamically adjusted so that it is always at
least as high as the highest priority task waiting in the queue. When a task gains
control of several regions, then gives up control of the regions one at a time, the
task's dynamic priority is not readjusted to its static priority until the task gives up
control of the last region; this improves performance.

System Concepts Chapter 2 45

Task and Message Queues

46

If a task makes a request that cannot be filled immediately and the task is willing to
walit, the task stops executing, goes into a task queue and goes to sleep. More tha
one task can wait in a queue. You specify whether the OS places tasks in the quet
in either a first-in-first-out (FIFO) or a priority-based manner when you create the
exchange object.

« InaFIFO queue, tasks are queued in the order they arrive at the exchange
object.

- In a priority queue, the highest priority tasks move to the head of the queue.
Tasks of equal priority are arranged in order of arrival.

You specify the maximum length of time the task can wait in the queue when you
tell the task to receive data or a message, a signal, or semaphore units.

Besides the task queues maintained by all exchange objects, mailboxes and ports
also have message queues to hold incoming messages for tasks. Message queue:s
are always FIFO-based.

Chapter 2 Tasks

Task System Calls

These are the system calls that relate directly to tasks:

create_task
delete_task
reset_interrupt
sleep
suspend_task
resume_task
get_priority
set_priority
get_task_tokens

Table 2-1 describes common operations on tasks and the system calls that perform
the operations.

Table 2-1. Task System Calls

Operation Description

create task Create_task creates a new task and returns a token for it.

delete task Delete_task deletes the specified task. It calls reset_interrupt
for interrupt tasks.

put task to Sleep puts the calling task to sleep for a specified time. One

sleep task may not put another to sleep.

suspend Suspend_task lets tasks suspend themselves and other tasks.

task Suspend_task increases the suspension depth by one.

resume task Resume_task decreases the suspension depth by one.

modify task Get_priority checks the priority of the specified task.
priority Set_priority sets task priority to the specified level, which must
be
« Equal to or greater than the parent job's priority level
» Within the allowable range of priorities (0 to 255)
You cannot change the priority level of interrupt tasks.

obtain Get_task_tokens finds out the token for any one of these
specific objects:
token » Task's own token

e Task's job

« Parameter object of the task’s job
« Parent job of the task's job
* Root job of the system

See also: Nucleus system cafigstem Call Reference
examples in thérmx386/demo/c/intralirectory

System Concepts Chapter 2 47

How to Use Task System Calls

Figure 2-4 shows the order in which you make task system calls and mentions calls
that tasks frequently use.

create_task
catalog_object

[

get_task_tokens
lookup_object
sleep
suspend_task
resume_task

U U

get_priority
%

0 U

set_interrupt
wait_interrupt or
rge_timed interrupt
reset_interrupt

0OM02868
1. Make these calls from the task that needs to create the new task.
2. Make these calls if the new task is to be an interrupt task.

3. Make the get_task_tokens and lookup_object calls from the new task to obtain tokens for
other jobs, tasks and objects in the system. Make the sleep call if the task needs to wait.
Make the suspend_task call from a task that has completed and no longer needs to run.
Make the resume_task call from another task.

You will also use calls that create, catalog, manipulate and delete objects.
4. Make these calls from the new task to change its own or another task's priority.
5. Make this call from the task that created the task.

Figure 2-4. Task System Call Order

48 Chapter 2 Tasks

Mailboxes

What is a Mailbox?

Tasks exchange information by sending messages to and receiving messages from
mailboxes. A message may be either an object token or a stream of data.

You can create two kinds of mailboxes: object (usually for object tokens) or data.
The choice depends on the information your tasks need to exchange. An object
mailbox cannot pass data (except in segments).

Sending and receiving data uses different system calls than sending and receiving
object tokens.

See also: Nucleus system caflgstem Call Reference
examples in thémx386/demo/c/intralirectory

Object Mailboxes

You use an object mailbox to pass an object token, usually a segment token, to
another task. To use an object mailbox to send a segment, you must create the
segment, then send the segment's token to an object mailbox. An object mailbox is
also called a message mailbox.

Data Mailboxes

Use data mailboxes for passing small amounts of information. You won't have to
create and delete segments or dereference a segment token after a task receives it.

Although the amount of data per message is limited to 128 bytes, the data can be a
pointer to a larger area. Passing data instead of objects can be important in systems
where the GDT is almost full, because each object uses an entry in the GDT.

System Concepts Chapter 3 49

Creating a Mailbox

When you create a mailbox usingeate_mailbox the Nucleus takes resources that
it needs from the task's parent job. These are the parameters you specify when yo
create a mailbox:

« Whether the mailbox passes data or objects.

« For object mailboxes, the number of objects that can be in the high-
performance message queue. By default, the OS creates a high-performance
gueue of eight objects. For data mailboxes, you do not specify the size of the
queue.

« Whether the task queue is FIFO or priority based.

Mailbox Queues

Each mailbox has two queues: a task queue and a message queue. At any given
time, at least one of the queues is empty, because the Nucleus sees that waiting
tasks receive messages as soon as they are available.

See also: Task and message queues in Chapter 2

Queues For Object Mailboxes

By specifying a high-performance queue that is large enough to contain all the
objects queued during normal operations, you improve the performance of
send_messagandreceive_messagwehen these calls get or place objects in the
gueue. The Nucleus permanently allocates memory for a high-performance queue
even if no objects are stored in it, so memory does not have to be allocated
dynamically.

The Nucleus automatically handles overflow. When more objects arrive than the
high-performance queue can hold, the Nucleus creates a temporary overflow queue
that holds up to four messages. The overflow queue is not deleted until it empties.
Because the overflow queue is created once for every additional four messages,
performance is only affected whesend_messagsystem call causes the

allocation of an overflow queue. Then, extra time is required for the allocation.

Queues For Data Mailboxes

50

The default queue for data mailboxes is three messages, 128 bytes each. When
more messages arrive than the queue can hold, the Nucleus creates a temporary
overflow queue that holds up to 400 bytes. The overflow queue is not deleted until
it empties.

Chapter 3 Mailboxes

Reconfiguration Mailboxes

Multibus 1l systems that are configured with the watchdog timer to support live
insertion use reconfiguration mailboxes in the iRMX OS. The watchdog timer
sends messages to these mailboxes to indicate board failures or resets. You create
a reconfiguration mailbox by first creating a mailbox wateate_mailbox Then,

you use thedd_reconfig_mailboxsystem call to specify the mailbox as a
reconfiguration mailbox. A reconfiguration mailbox must be a data mailbox.

See also: add_reconfig_mailboxsystem callSystem Call Reference
Live Insertion, Chapter 12

Deleting a Mailbox
When you delete a mailbox usidglete _mailbox the Nucleus:
« Awakens any tasks waiting at the mailbox with an E_EXIST condition code

- Discards any messages in the queue

Exchanges Between Tasks in the Same Job

Figure 3-1 on page 52 illustrates an exchange between two tasks in a single job.
When tasks in the same job use mailboxes, they can use object mailboxes.

In this figure, Task A is an interrupt task associated with an interrupt handler; Task

B is an ordinary task. If Task A sends messages to the mailbox faster than Task B

can receive them, the messages will be queued at the mailbox until Task B can get
to them. This is a good situation to use a high-performance queue.

System Concepts Chapter 3 51

52

Interrupt

0OM02872

Interrupt Task A creates a segment to store the data it expects to receive from the interrupt
handler using create_segment .

Interrupt Task A creates an object mailbox using create_mailbox and catalogs it using
catalog_object . Task A goes to sleep by waiting for a signal from an interrupt handler, using
wait_interrupt .

Task B looks up Task A's mailbox using lookup_object . Task B goes to sleep by waiting for
a message at the mailbox, using receive_message. (If the tasks share a common data
segment, you could store the mailbox token there and avoid using lookup_object .)

When Task A receives the signal from the interrupt handler, it wakes up, places data into the
segment and sends the token to Task B using send_message .

Task A then creates a new segment for the next interrupt and waits.
Task B wakes up and receives the token in the mailbox.
Task B processes the segment, then deletes the segment.

Figure 3-1. Exchanging Objects Between Tasks in the Same Job

Chapter 3 Mailboxes

Using send_message

Send_messagsends a single object to a mailbox and enables a task to request
acknowledgment from the receiving task.

When you send a message:

- If atask is waiting, it receives the message immediately. If the receiving task
has been asleep, it moves either from asleep to ready or from asleep-suspended
to suspended.

- If no task is waiting, the message is placed at the tail of the message queue.
Message queues are processed as FIFO, so the message remains in the queue
until it moves to the head of the queue and is given to a task.

Using receive_message
When a task is waiting to receive a message:

- Ifthere is a message in the queue when a task arrives at a mailbox, the task
receives the message immediately.

- If there is no message in the queue, the task may or may not wait in a task
queue.

— Ifthereceive_messageall indicates that the task can wait, it is placed in
the task queue and goes to sleep. This is how you use mailboxes to
synchronize tasks as well as pass messages. A sleeping task wakes when a
message arrives or when a specified time limit expires.

The task receives an E_TIME condition code if the designated waiting
period elapses before the task gets a message.

— Ifthereceive_messageall specifies that the task cannot wait, the task
remains ready and immediately receives an E_TIME condition code.

If you usereceive_messagecheck to see if an acknowledgment has been
requested.

System Concepts Chapter 3 53

Exchanging Data Between Tasks in Different Jobs

Figure 3-2 shows a server task that does similar services for several client tasks in
different jobs. The server and clients have their own mailboxes. The server
should catalog its mailbox in the root job's object directory. Each client sends the
token for its mailbox to the server so the server will know where to reply.

i : ——> =Request
: < = Reply
U :

w-2836

1. The Server Task S creates a data mailbox using create_mailbox and catalogs it in the root
job's object directory using catalog_object . The Server Task puts itself to sleep using
receive_data .

2. Each Client Task creates its own mailbox. Each Client Task looks up the token for the server
task's mailbox using lookup_object .

3. When either client (Task B in this example) sends data using send_data , the client includes
the token for its mailbox in the call.

4. When a message from either client arrives, the Server Task wakes up and processes the
data. It sends a reply to the appropriate client task's mailbox (Task B in this example) using
the mailbox token included in the send_data call.

Figure 3-2. Exchanges Between Tasks in Different Jobs

54 Chapter 3 Mailboxes

Using

Using

send_data

The maximum amount of data transferred byséed_datasystem call is

128 bytes. You must create a send buffer for the data and pass a token or a pointer
to it. Pass a token if you have created a segment usingethie_segmentall or

a pointer if you have declared a data structure in a portion of the DS.

The original data area becomes available for re-uses#iter datareturns.

You cannot request acknowledgment from the receiving task when you use
send_data

If there is a task waiting at the mailbox when the message arrives, the message is
copied directly to the task's receive buffer. Otherwise the message is copied into
the Nucleus-provided message queue.

receive_data

Thereceive_datacall requests a message from a mailbox. Always specify a buffer
of at least 128 bytes in tmeceive_datasystem call. You must create a receive
buffer; you can create a segment or declare a data structure in a portion of the DS.

If the task callingeceive_datais waiting at the mailbox when the message arrives,
the message is copied directly to the waiting task's receive buffer. Otherwise the
message is copied into the Nucleus-provided message queue.

When a task is waiting to receive data:

 When a message arrives at the mailbox, the data is copied from the send buffer
into the task's receive buffer. It does not go into the message queue.

- If there is no message, the receiving task goes into the task queue. The task
goes to sleep for the specified time limit or until a message arrives, whichever
comes first. If the message arrives, it is copied from the send buffer to the
receive buffer. If no message arrives during the time limit, the task will
awaken with an E_TIME condition code.

When a message is waiting to be received:
« The receiving task receives the message without going into the task queue.
- If no task is waiting, the message goes into the message queue.

The amount of time necessary to receive a message can potentially be longer than
the specified time limit. A time-out error will not occur after the message
transmission into the receiver's segment begins. The transmission time is
significant only for very long messages.

System Concepts Chapter 3 55

Mailbox System Calls

These are the system calls that relate directly to mailboxes:

add_reconfig_mailbox
create_mailbox
delete_mailbox
send_data
receive_data
send_message
receive_message

Table 3-1 lists common operations on mailboxes and the mailbox system calls that
do the operations.

See also: Nucleus system caflgstem Call Reference

Table 3-1. Mailbox System Calls

Operation Description

create Create_mailbox creates a new mailbox and returns a token for

mailbox the mailbox.

specify Add_reconfig_mailbox specifies an existing data mailbox as a

reconfiguration reconfiguration mailbox (used with the watchdog timer).

mailbox

delete Delete_mailbox takes a token for a mailbox and deletes the

mailbox mailbox.

send data Send_data sends up to 128 bytes of data to a data mailbox.

receive data Receive_data receives up to 128 bytes of data from a data
mailbox.

send Send_message sends an object token to a mailbox.

message

receive Receive_message receives an object token from a mailbox.

message

See also: Nucleus system cafigstem Call Reference
examples in thérmx386/demo/c/intralirectory

56 Chapter 3 Mailboxes

How to Use Mailbox System Calls
These are the rules for mailboxes:
« Atask can send a message to any mailbox for which it has a token.
« A mailbox can receive a message from any task that has its token.
« The size of a data message is limited to 128 bytes.

Figure 3-3 shows the order in which you make mailbox system calls.

send_data

receive_data
lookup_object
send_message

receive_message

create_mailbox
catalog_object

uncatalog_object
delete_mailbox

[

OM02869

1. Make these calls from a task in the job that needs to receive messages from the new
mailbox.

2. Make this call from the task that needs to send information to the mailbox.

3. Make the receive_ calls from a task in the job that created the mailbox. Make the
send_ calls from any task that has the mailbox token.

4. Make these calls from the task that created the mailbox.

Figure 3-3. Mailbox System Call Order

Use thesend_dataandreceive_datasystem calls with data mailboxes. Use the
send_messagandreceive_messagwith object mailboxes. If you try to pass
information with the wrong system call, for example sending a object with
send_data the Nucleus issues an E_TYPE condition code.

System Concepts Chapter 3 57

Semaphores

What is a Semaphore?

A semaphore is a counter that takes positive integer values galted Tasks send
units to and receive units from the semaphore. A semaphore can:

« Synchronize a task's actions with other tasks
+ Provide mutual exclusion from data or a resource

See also: Semaphoréstroducing the iRMX Operating Systems
Examples in thérmx386/demo/c/intrairectory

Creating a Semaphore

These are the parameters you specify when you create a semaphore using
create_semaphore

« The initial number of units in the custody of the new semaphore.

« The maximum number of units the semaphore can have in custody at any
given time. The lower limit is automatically O.

« Whether the task queue is FIFO or priority based.

Task Queue

Use a priority-based queue so high-priority tasks do not wait behind lower-priority
tasks in the queue. Within a priority-based queue, tasks of equal priority are FIFO
queued.

See also: Priority Bottlenecks and Blocking, in this chapter
Deleting a Semaphore

When you uselelete_semaphorgethe Nucleus awakens any tasks waiting to
receive units at the semaphore with an E_EXIST condition code.

System Concepts Chapter 4 59

Binary Semaphores and Mutual Exclusion

If a task asks a binary (single-unit) semaphore for a unit to gain access to a resourc
and a unit is not available, it means some other task is using the resource. The
requesting task can't access the resource until the unit is returned.

Figure 4-1 illustrates a binary semaphore guarding a resource. Tasks queue up for
access to the resource; in general, use a priority-based queue in your applications.

[

—

OM02706

5\ A

ke

- |

Create the semaphore with one initial unit and a maximum of one unit, using create_semaphore .

1. Task A requests a unit from the semaphore using receive_units . The semaphore sends the
unit. Task B also requests a unit from the semaphore using receive_units and specifies it is
willing to wait. Task B goes to sleep by waiting in the queue until Task A has returned the
unit.

2. Task A accesses the resource. No other task can access the resource at the same time.
When Task A is done using the resource, it returns the unit to the semaphore using
send_units .

3. Now Task B will wake up and receive the unit. If Task B has a higher priority than A, it will
begin running. Otherwise it will be ready.

Figure 4-1. Mutual Exclusion Using a Binary Semaphore

Priority Bottlenecks and Blocking

You may encounter several problems when you use semaphores for mutual
exclusion of shared data. To eliminate the problems, use regions rather than
semaphores to control shared resources.

See also: Regions, in this manual

60 Chapter 4 Semaphores

The first bottleneck is a high priority ready task blocked by a lower priority running
task. This occurs if the lower-priority task obtained the required units before the
higher-priority task became ready. The running task, regardless of priority,
controls the resource until it returns the units to the semaphore.

The second bottlenecfriority inversion occurs when a low priority task obtains
the required units to access a resource, then is preempted by a medium-priority
task, which is then preempted by a high-priority task that needs to access the
resource. Figure 4-2 shows what could happen:

[]

A
0
0
e

OM02870

<
N

1. Low priority Task A is running and obtains a unit from a binary semaphore to access some
data. It starts accessing the data.

2. Task B, a medium priority task, preempts A.

3. Higher priority Task C preempts B, but cannot access the data while the low priority task
holds the unit. The low priority Task A cannot complete its operation and return the unit
because it is preempted by B.

Figure 4-2. Priority Inversion Bottleneck with Semaphores

The third bottleneck occurs when a task holding a semaphore unit and using shared
data is suspended or deleted; no other task can gain access to the shared data. Only
after the suspended task is resumed and returns the semaphore can the data be used
by the other tasks. In the case of a deleted task, the semaphore prevents any other
tasks from ever using the shared data.

System Concepts Chapter 4 61

Multi-unit Semaphores

You typically use a multi-unit semaphore as a counter, for example managing the
available space in a circular buffer. A task can request more than one unit from a
multi-unit semaphore and the semaphore tries to satisfy the request.

The semaphore either sends all the units requested or none at all. So, a multi-unit
semaphore might have tasks waiting for units and also have units that have not
been granted available, but not enough to satisfy the task at the head of the task
gueue. This is a possible scenario:

Two tasks are queued waiting for units.

Task A is first in the queue and wants three units.

Task B is second in the queue and wants one unit.

The semaphore has zero units available when the requests are made.

These are possible outcomes for a FIFO queue:

« The semaphore receives three units. Task A receives the units, awakens and
runs while B remains asleep in the queue.

- The semaphore receives two units. Both tasks remain asleep. There aren't
enough units for Task A and Task B's request cannot be satisfied, because Tas
A is still ahead of it in the queue.

« The semaphore receives four units. Both A and B receive their requested units
and are awakened. Task A runs first because it is first in the queue.

These are possible outcomes for a priority queue, with Task B having a higher
priority than A:

- The semaphore receives two or three units. Task B receives a unit, awakens
and runs while A remains asleep in the queue.

- The semaphore receives four units. Both A and B receive their requested units
and are awakened. Task B runs first because it is higher priority.

62 Chapter 4 Semaphores

Figure 4-3 shows how tasks can share a fixed-length list of buffers using two
semaphores: one binary and one multi-unit counting semaphore.

« The binary semaphore prevents two different tasks taking buffers from the list
at the same time.

« The counting semaphore prevents a task spending time searching the list for an
available buffer when there is none.

A
A T)%(- D

\/—\

;/ OMO02890

Create a binary semaphore B that provides mutually-exclusive access to the buffer list using
create_semaphore .

Create a counting semaphore C that tracks the number of available buffers, eight in this example,
using create_semaphore . Set the initial units and maximum units equal to the number of buffers:
eight.

1. Task A requests the only unit from semaphore B using receive_units . The semaphore
sends the unit. Now, only task A can request units from semaphore C.

2. Task A requests three units from semaphore C using receive_units . The semaphore sends
the units. Now task A has access to three buffers in the shared list. Task A then returns the
unit to semaphore B using send_units .

3. Task D requests the unit from semaphore B using receive_units and receives it.

4. Task D can now request four units from semaphore C. Since the semaphore has enough
remaining units to satisfy the request, Task D will receive them. If it had not, D would have
waited.

All tasks should return their units to C as soon as possible to free resources for other tasks.

Figure 4-3. Multi-unit and Binary Semaphores Allocating Buffers

System Concepts Chapter 4 63

Using send_units

A task does not have to receive a unit from a semaphore in order to send a unit to
it.

When a task sends units to a semaphore, and no task of equal or higher priority is
waiting, the task remains running. If a higher priority task is waiting for the unit, it
preempts the lower priority task.

The semaphore returns an E_LIMIT condition code when:
e You try to send zero units.

e You try to send more units than the maximum number of units the semaphore
is allowed to have. In this case, the number of units in the custody of the
semaphore remains unchanged.

Using receive_units

Usereceive_unitsto find out how many units are available by specifying 0 in the
units parameter.

You can specify how long a task usirggeive_unitswill wait for a semaphore
unit. Two factors determine whether the task receives the units and how soon:
how many units the task asks for, and where the task is in the queue.

« If the number of units requested is within the semaphore's current supply of
units and the specified maximum for that semaphore, the request is valid.

— If the task is at the front of the queue, the request is granted immediately,
and the task stays running.

— If arequest is valid but cannot be granted immediately, the task can either
wait or not.

If the receive_unitscall specifies that it can wait, the task goes into the
task queue and goes to sleep by waiting. If the time elapses before the
task gets the units it asked for, the task awakens and receives an E_TIME
condition code.

If the receive_unitscall specifies that the task cannot wait, the task
receives an E_TIME condition code.

« If the task asks for more units than the maximum number allowed for a
particular semaphore, the request is invalid and the semaphore returns an
E_LIMIT condition code.

64 Chapter 4 Semaphores

Semaphore System Calls

These are the system calls that relate directly to semaphores:

create_semaphore
delete_semaphore
send_units
receive_units

Table 4-1 lists common operations on semaphores and the semaphore system calls
that do the operations.

Table 4-1. Semaphore System Calls

Operation Description

create Create_semaphore creates a new semaphore and returns a
token for it.

delete Delete_semaphore deletes the semaphore.

send units Send_units gives a specified number of units to a semaphore.

to semaphore

receive Request units from a semaphore with the receive_units

units from system call.

semaphore

See also: Nucleus system cafigstem Call Reference

System Concepts Chapter 4 65

How to Use Semaphore System Calls

These are the rules for semaphores:

66

A task does not have to receive a unit from a semaphore in order to send a uni
to it.

A semaphore cannot receive more units than the maximum specified when it
was created.

Figure 4-4 shows the order in which you make semaphore system calls.

create_semaphore send_units uncatalog_object
catalog_object receive_units delete_semaphore
0oM02871
Make these calls from the task that has the resource that needs to be shared.
Make these calls from the tasks that need to use the resource.

Make these calls from the task that created the semaphore.

Figure 4-4. Semaphore System Call Order

Chapter 4 Semaphores

Regions

What is a Region?

A region is a binary semaphore with special suspension, deletion, and priority-
adjustment features. Regions provide mutual exclusion from resources; only one
task may control a region at a time; only the task in control of the region can access
the resource.

Deletion and Suspension Protection

Tasks that have control of a region, or are queued at a region, cannot be deleted or
suspended by other tasks until they give up control of the region.

Tasks in control of a region cannot be preempted by other tasks wanting control of
the region. A task can, however, be preempted by a higher-priority task that does
not want control of the region.

Priority Adjustment

If you use a priority-based queue, the priority of the task controlling the region will
be dynamically raised whenever the task at the head of the region's task queue has
a priority higher than that of the controlling task. The priority of the controlling

task is raised to match that of the queued task. This priority adjustment prevents
the priority inversion bottleneck that can occur when tasks use semaphores to
obtain mutual exclusion.

Once a task's priority is raised in this way, the priority is not lowered until the task
gives up control of all regions. It is not sufficient to give up control of the region
that raised the priority, if the task still controls another region.

System Concepts Chapter 5 67

Creating a Region

The only parameter you specify when you create a region as#ate_regionis
whether the task queue is FIFO or priority based.

Task Queue

Tasks of equal priority in a priority-based queue are queued in a FIFO manner.

A task in the region's task queue sleeps until the region becomes available; it can
wait indefinitely.

Deleting a Region

When you delete a region usidglete_region the Nucleus awakens any tasks
waiting for control of a region with an E_EXIST condition code.

A task cannot delete a region it controls. It must give up control of the region first.
Otherwise, an E_CONTEXT condition code returns.

Misusing Regions

68

Misuse of regions can corrupt the interaction between tasks in an application
system. Before writing a program using regions, you must have a complete
understanding of regions, the OS, and the entire application system. Avoid these
problems:

Deadlock This occurs if two tasks need control of two regions for access to the
same two resources at the same time and each task has control of one
region.

Since there is no time limit on waiting for control, deadlocked tasks
can remain so indefinitely. Any other tasks entering the region's task
gueue will also become deadlocked.

Deletion immunity
If you create and a task obtains control of the region, the task will be
immune to deletion until it gives up control of the region. If the task
never gives up control, it can never be deleted.

No time limit
If control is not immediately available, there are two options. If the
task cannot walit, it receives a condition code. If the task waits, it may
never run again. If these are not acceptable, use a semaphore instead

See also: Semaphores, in this manual

Chapter 5 Regions

Nesting Regions

A task can take control of more than one region at a time, which is calitidg

regions Regions are released in a last-obtained, first-released order. When a task
releases control of a region and has control of multiple regions, the most recently
obtained region is released first.

Deadlock occurs with multiple nested regions as shown in Figure 5-1. The
example uses theceive_controlsystem call to gain control of the regions.

Or /v
a| L]
Ren =

Y

OMO02960

1. Task A requests and obtains control of Region X. It also needs control of Region Y.

2. Task B preempts Task A. It requests and obtains control of Region Y. It also needs control
of Region X.

Neither task can run. Neither task can be deleted. If any other tasks try to obtain control of either
region, they will also become deadlocked.

Figure 5-1. Deadlock and Nested Regions

Prevention
There are two ways to prevent deadlock in nested regions:

« Use theaccept_controlsystem call. Tasks usigcept_controlcannot
deadlock at a region unless they keep trying endlessly to accept control.

- If you usereceive_contro| have all tasks request control in a consistent order;
it doesn't matter what order as long as all tasks obey it. List the names of all
regions in any order and label them in sequential order. As you program a task
that nests any of the regions, be sure the task requests control in ascending
order and releases the regions in descending order. If you follow this rule
consistently, you can safely nest regions to any depth. Figure 5-2 on page 70
shows how sequential ordering works.

System Concepts Chapter 5 69

7~ /VDD

OM02892

1. Task A, priority 140, requests and obtains control of region X. It also needs control of Region
Y.

2. Task B, priority 135, preempts Task A. It requests control of region X. Task A's priority is
raised to equal B's. Task B can't obtain control so it enters the task queue.

3 Task A requests and obtains control of region Y.

4. Task C, priority 130, preempts Task A. It requests control of region X. Task A's priority is
raised to equal C's. Task C can't obtain control so it enters the task queue.

Task A runs and then releases region Y, followed by region X. Then, its priority is adjusted to its
static level, 140. Task C will then wake up, preempt A, and obtain control of both regions.

Figure 5-2. Preventing Deadlock in Nested Regions

If a task has control of several regions, and multiple tasks with different priorities
are waiting for the regions, the priority of the controlling task may be raised more
than once. But the controlling task must surrender control of all the regions it
controls before its priority reverts to its original static value.

Using receive_control

Thereceive_controlsystem call enables a task to wait for a region to become
available. But if access never becomes available, the task never runs again. An
error occurs if a task requests control of a region it already controls.

Using accept_control

70

If control is not immediately available, the task does not wait at the region.
Instead, it receives a condition code and remains ready. To gain control, the task
must make repeated callsgocept_control

Chapter 5 Regions

Region System Calls
These are the system calls related to regions.

create_region
delete_region
receive_control
send_control
accept_control

Table 5-1 lists common operations on regions and the region system calls that do
the operations.

Table 5-1. Region System Calls

Operation Description

create region Create_region creates a new region and returns a token for it.

delete region Delete_region takes a token for a region and deletes the region.

get control Receive_control gives a task control of a region when it

of region becomes available. The task sleeps in the task queue until
control is granted.

give up Send_control informs the Nucleus that the calling task is giving

control up control of the last region it controlled. A different task can then

be given access to the shared data.

get control Accept_control allows a task to gain access to shared data when
immediately access is immediately available.

See also: Nucleus system callyistem Call Reference
examples in thémx386/demo/c/intralirectory

System Concepts Chapter 5 71

How to Use Region System Calls

These are the rules for regions:

Do not let a task suspend itself when it controls a region. Unless the task is
resumed by another task, the region may permanently exclude other tasks from
a shared resource.

In addition, the task will never run again and its memory will not be returned
to the memory pool. Tasks in the region’s task queue are also immune to
deletion and will encounter the same memaory pool problems.

Do not use regions in Human Interface applications. If a task in an HlI
application uses regions, the application cannot be stopped asynchronously
(using <Ctrl-C> entered at a terminal) while the task is accessing data guarded
by the region.

When the running task no longer needs control, it should release control of the
region, which enables a waiting task to access the resource.

A task cannot delete a region it controls without first releasing the region.

Use an arbitrary order for all tasks accessing regions when you use nested
regions and theeceive_controlsystem call.

Figure 5-3 shows the order in which you make region system calls.

create_region > receive_control 3 3 uncatalog object
[catalog_object [accept control [send control delete _region

72

[

OM02875

Make these calls from the task that has the resource that needs to be shared.

Make these calls from the tasks that need to obtain control of the region to access the
resource.

Make this call to give up control of the region.
Make these calls from the task that created the region.

Figure 5-3. Region System Call Order

Chapter 5 Regions

What is a Port?

Ports are primarily intended for Multibus 1l systems, but they can be used for short-
circuit message passing on all platforms. A port enables tasks in the same or
different jobs to pass messages. When you use ports, the sending task sends the
message through its port and the receiving task receives the message through its
port. Usually, you must create a buffer pool and attach it to the port to provide fast
storage allocation for messages received at a port.

There are several distinct message types and transfer protocols available for ports.
You can send and receive these kinds of messages at a port: data messages and
request/response messages, also cab@daction pairs Messages can be

solicited or unsolicited; unsolicited messages enable you to use a port for a signal
between hosts, similar to a binary semaphore. Unsolicited messages do not require
a buffer pool on the receiving host; solicited messages do.

Ports in Multibus Il Systems

For two tasks on different boards to exchange messages, each must have access to a
port on its own board. Each port is an access point to the message-passing protocol
of the Multibus Il Transport Protocol Specification.

If you use a port to communicate with a board that is running another OS, the other
OS must also support the Multibus Il Transport Protocol Specification.

System Concepts Chapter 6 73

Why Use a Port?

These are the advantages of using ports:

Short-circuit message passing
The message is copied directly from the sending task to the receive
buffer of the receiving task. Because the interface is the same for
communicating on the same processor or between processors,
applications that use ports can migrate from a single host to a system
with multiple hosts.

Linking request to response
A client task sending a message can specify a response buffer so the
server task can send a response tied specifically to the request. This
corresponds to the client-server model of task interactions used by the
Nucleus.

Providing current status
Each message that a task receives includes status information about
whether an exceptional condition prevented successful transmission
(for example, a Multibus Il transmission error, or insufficient buffer
space at the serverJransaction IDsind status messages to data
message transmissions.

Using Buffer Pools at Ports

Most incoming messages to a server require that you create a buffer pool and attac
it to the port. When a message arrives at a port where no task is waiting, the
message goes into the receive buffer(s) of the receiving task's buffer pool, which
the task can access.

Depending on the message size and the buffer pool, an incoming message may be
copied into a single buffer or into a series of buffers calléata chain The

Nucleus gives the receiving task a pointer either to a single buffer or to a data chair
block that holds pointers to all buffers in the chain.

A buffer pool can be attached and detached during the existence of the port.

See also: Buffer pools, in this manual

74 Chapter 6 Ports

Creating a Port
These are the parameters you specify when you useghai_port system call.
e The number of simultaneous transactions allowed at this port.
* Whether the task queue is FIFO or priority based.
e Whether fragmentation is enabled or disabled.
* Whether the protocol type is Signal or Transport Specification.

* The port's ID. Some of the port IDs are reserved by the iIRMK Kernel. The
Nucleus will assign the port ID for you if you specify O.

Fragments in Large Data Messages

When a message is delivered, the receiving port must supply storage. Whether the
data is transmitted in one piece depends on the buffering capacity of the port.

The Nucleus can break up the data portion of messages that are too large to be
delivered in one piece into smaller pieces, if you enabled fragmentation. The
Nucleus Communication Subsystem (NCS) will send the message in fragments
when the receiving buffers are too small to receive the entire message. Each of the
fragments specifies the same transaction ID.

The NCS on the server delivers a single reply to the client task. The client task
receives a condition code only if fragmentation fails.

The NCS expects that the server in a client-server transaction will control
fragmentation whether it occurred in a request from a client or a response to a
client.

If fragmentation is disabled, the sending task will receive a condition code when
there is not enough buffer space at the receiving end.

Deleting a Port

When you delete a port usinglete_port the Nucleus deletes all messages queued
at the port and cancels all outstanding transactions for the port. The Nucleus
deletes message buffers allocated from the port's buffer pool and awakens any task
waiting for a message at the port with an E_EXIST condition code. If you delete a
sink port (described later) that is attached to one or more ordinary ports, the
Nucleus detaches them.

System Concepts Chapter 6 75

Identifying a Port

In a multiprocessor system, each port must be uniquely identified. The paragraphs
below describe the ways a port is identified.

76

Identifier
Socket

Port ID

Host ID

Token

See also:

How It Is Used

A socket is a 32-bit number that combines the host ID and port ID. A
socket is not a Nucleus object; it has no token or other internal
representation. Use a socket rather than an iRMX token to specify the
receiving and sending ports; this enables message passing to and fron
boards that are not running the iRMX OS.

These lines of code define a socket:
DECLARE SOCKET STRUCTURE(

host_id WORD_16,
port_id WORD_16);

orin C,

typedef struct socket_struct {
unsigned short host_id;
unsigned short port_id;

} SOCKET_STRUCT;

The port ID identifies the port among all those on a given processor
board. In a single processor system, a port is identified by a unique po
ID. In a multiprocessor system, more than one port can have the same
port ID as long as the ports reside on separate processor boards. Any
board that supports the Multibus Il Transport Protocol will specify port
IDs for its ports, whether running the iRMX OS or another OS. This let:
boards communicate with each other regardless of the OS being used.

The host ID is a logical address for the host, a number in the range 1 t
254 that uniquely identifies the host. Itis a 16-bit value, usually equal
the slot number in a Multibus 1l backplane.

The token is specific to the IRMX OS. iIRMX tasks use the token to
catalog the port in the object directory, attach the port to a sink port, or
delete the port.

Multibus Il Transport Protocol Specification and Designer's Guide

Chapter 6 Ports

Sending Data Messages

Using

Using

These messages follow the mailbox model. The client usestideall to send
the message. The server usegdoeivecall to receive the data at its port. The
client does not expect a response; the server doesn't send one.

send

Usesendto send data from a client to a server without expecting a reply. You
must specify a valid pointer to some control information, even if your application
doesn't use the information. You can optionally provide a pointer and a length for
a data component. If you do, specify if the data component can be in a single
segment or in a data chain.

You can specify that the message transmission be synchronous or asynchronous: if
synchronoussenddoes not return until the message has been sent; if asynchronous,
the system call returns immediately, letting the task continue processing while the
message is being sent.

A message will be rejected if the port's message queue is full.

receive

Usereceivefor servers to receive messages from clieRisceiverequires that you
have created a buffer pool usiogeate_buffer_pool released buffers (segments
you have created) to it usimglease_buffer and have attached it using
attach_buffer_pool. Receiveeturns a pointer to the data component of the
message if there is a data component.

You must identify the receiving port. You must specify how long the task will wait
for the message at the port. The calling task goes to sleep by waiting for a message
at a port. If no message arrives before the specified time limit expires, the task will
awaken with an E_TIME condition code.

You must supply a pointer to a structure teaeivefills with information about
the transmission.

System Concepts Chapter 6 77

Sending Request / Response Messages

Transaction pairs provide a client-server communication model. Clients send
request messages to servers and servers send responses back. This model includ

the ability to:

« Use either a control or control/data format for messages

- ldentify message pairs as transactions

Control and Control / Data Format

The iIRMX implementation of the Multibus 1l Transport Protocol Specification
defines two kinds of message format: control and control/data.

78

Control
message

Control/data
message

A short, unsolicited message conveying control information; you do
not have to create a buffer pool in the receiving task prior to sending
a control message. The control message can contain up to 20 bytes
of application-specific control information. Control messages are
delivered faster than control/data messages because they are shortel

A message with a control portion and a data portion. Usually, you
have to create a buffer pool in the receiving task prior to sending a
control/data message (the exception is a client receiving a response
from a server). In a message with both control and data portions,
the control portion can contain up to 16 bytes of information. The
data portion can contain up to 16 Mbytes - 1 byte of data.

Chapter 6 Ports

Although control and data portions are combined when sent in a control/data
message transaction, they are stored differently at the receiving port.

- The receiving port's message queue provides storage for the control portions of
incoming messages.

« The receiving port stores data portions of a message differently depending on
whether they are part of a client request or of a server response.

— For request messages, the Nucleus allocates storage from a buffer pool you
attach to the server's receiving port. The Nucleus rejects data portions sent
to a port without a pool or with insufficient pool resources.

— For response messages from servers to clients, the data portions are
delivered to a specific response buffer supplied by the client task; the
response buffer cannot be a data chain.

|:| Note

A control request message can be lost because of remote host
addressing or queuing errors. If a transmission fails, the
Multibus Il Transport Protocol returns a transaction cancel
message. The client task will always receive either a response
message or a status message indicating transaction cancellation.

Transaction Pairs
The Nucleus usdsansaction IDnumbers to match responses to requests.

The request is delivered to the server's port, where the control portion of the
message is copied intacantrol message queuand the data is transferred into

space allocated from the buffer pool you created. The server acts on the request
and prepares a response that may include control and data information. The NCS
uses the response buffer supplied by the client as the destination for the data
portion of the response message.

The client supplies a pointer to a response buffer if it expects a data message in
response. The client task allocates response buffer space based on memory in the
client task's job; the response buffer is not allocated from the client port's buffer
pool.

System Concepts Chapter 6 79

Basic Request / Response Transactions

80

The client sends a control/data message that tells the server to perform a service o
the data (for example, write it out to disk). The data component in this example is
1 Kbyte long. All buffers in the example are 1 Kbyte. Figure 6-1 shows this
transaction.

[]

oo

1. The client Task C calls the send_rsvp system call. Then the client calls receive_reply and
goes to sleep by waiting for the response.

o1

OMO02864

The server Task S has previously called receive and is waiting for the message. The
message goes through Port C and arrives at the server's port, Port S. Because the receive
buffer in the port's buffer pool is large enough, the message is delivered. The server Task S
receives the message and begins processing the data. The server also receives a
transaction ID that the Nucleus uses to match the server's response to this request.

2. When it is done processing, Task S calls send_reply to send a reply to the client; the server
includes the transaction ID supplied in the original request. Task C receives the reply in its
response buffer and, having previously called receive_reply , wakes up; the transaction is
complete.

Figure 6-1. Basic Request / Response Using Ports

Chapter 6 Ports

Fragmented Response Transactions

Figure 6-2 shows a fragmented response. Three buffers in the example are
1 Kbyte; the request is for 3 Kbytes and the response buffer is 3 Kbytes.

A s > *><— = B

[

oMmo02877

1. The client Task A uses send_rsvp to send a request to read 3 Kbytes from a disk to the
server, Task B. Task A passes a pointer to a 3 Kbyte response buffer so it can receive the
entire response in one block. The client calls receive_reply and goes to sleep by waiting for
the response.

2. The server, Task B, receives the request message, having previously called receive , and
initiates the service.

3. This server has a 1 Kbyte buffer limit, so the server cannot send the entire 3 Kbyte response
message in one operation. The server fragments the response message, repeatedly calling
the send_reply system call with 1 Kbyte fragments until the entire message is sent.

Send_reply parameters include an EOT (end-of-transaction) indicator. As long as the server
is sending fragments, it sets the EOT field to FALSE so the transaction remains open. When
it sends the last fragment, the server sets EOT to TRUE.

4. Only the control part of the last fragment, EOT=TRUE, is sent to the receiver.

At that point, the client, Task A, will awaken from the receive_reply system call with 3 Kbytes
of data in the response buffer, and the transaction ends.

Figure 6-2. Fragmented Response Using Ports

System Concepts Chapter 6 81

Fragmented Request Transactions

In Figure 6-3, the client sends a control/data message to the server that includes
3 Kbytes of data. This server can receive data only in 1 Kbyte blocks, so the
message must be fragmented before it can be received. The client will not be
aware that this transmission was fragmented.

U

H

OM02878

1. The client, Task A, calls the send_rsvp system call. The client calls receive_reply and goes
to sleep by waiting for the response.

2. When the server, Task B, tries to receive the incoming data message using receive , it will
receive an E_NO_LOCAL_BUFFER status message. The message includes the length of
the data message.

3. Aloop in the server task calls the receive_fragment system call three times to receive the
3 Kbyte data message in 1 Kbyte fragments.

4. When the server has called receive_fragment often enough to receive the entire message, it
calls send_reply to send a response to the client. The transaction ID matches the response
to the request.

5. The client, Task A, awakens from the receive_reply system call and the transaction ends.

Figure 6-3. Fragmented Request, Example

Using send_rsvp

82

Usesend_rsvpfor a client to send a request to a server, expecting a response. You
must identify the receiving port. You must specify a valid pointer to some control
information; you can optionally provide a pointer and a length for a data
component. If you do, specify if the data component can be in a single segment or
in a data chain.

You must specify whether to use tleeeiveor receive_replysystem call for
receiving the response from the server. kdmeivewhen a client task initiates
multiple transactions from a task; you might also have a separate taskeise
to pick up the responses.

Chapter 6 Ports

Specify the size of the client's response buffer and a pointer to it. The response
buffer cannot be a data chain; it must be a contiguous block.

Specify whether to use synchronous or asynchronous transmission. If you specify
synchronous when you cakénd_rsvp the client task will wait until all the

fragments have been received. Otherwise, the client will go on with other
processing.

Using receive_fragment

Usereceive_fragmentfor servers to receive messages from clients when
insufficient buffer space is available to receive a message in one piece. If the
receivestatus code is E_NO_LOCAL_BUFFER, you need to code a loop that
makes calls toeceive_fragmentto receive fragments.

Theinfo_ptr structure of theeceivecall will contain the length of the data
message received, the transaction ID, and the sending socket. When you use
receive_fragment you specify the size of fragments according to the how the
server's buffer pool is set up. You are responsible for determining how many times
to callreceive_fragment based on the size of the message and the size of the
buffers available for receiving the fragments.

Using send_reply
Usesend_replyfor a server to send a response to a client. The message goes to the
response buffer supplied by the client, not its buffer pool.

You must supply the transaction ID; this is tles_id ~ parameter in the
send_rsvpsystem being answered.

You must identify the receiving port. You must specify a valid pointer to some
control information; you can optionally provide a pointer and a length for a data
component. If you do, specify whether the data component can be in a single
segment or in a data chain.

You must specify whether the transmission is synchronous or asynchronous. If the
reply is fragmented, you must specify whether this is the last fragment.

System Concepts Chapter 6 83

Using receive_reply

Receive_replyenables a client to wait for a response from a server. The data
component is received in the response buffer originally specified setite rsvp
call.

You must supply the sanpert_token andrsvp_trans_id parameters you

used in thesend_rsvpcall. You must also specify how long the client task will

wait for the message at the port. The client task goes to sleep by waiting for a
message at a port. If no message becomes available before the specified time limi
expires, the task will awaken with an E_TIME condition code.

Using broadcast

This call is commonly used by Multibus Il hosts to broadcast status information
system-wide to dedicated ports with the same port ID on each host in a system.
You can dedicate a task on each host to wait for messages at the agreed-upon por

You can also use this call to locate servers in the system. The clients can send a
broadcast message to the server port ID. The server sends a message back to the
sender, and the client obtains the server's host ID from the message.

Using cancel

84

You can cancedendor send_replycontrol/data messages, but not control-only
messages. You can also canceéad_rsvpmessage, which disassociates the
response buffer from the source port. You specify the transaction ID and the port
ID for the operation to be cancele@ancelis a local operation only, affecting

only the specified port. It does not notify the remote socket involved in the
transaction.

Chapter 6 Ports

Setting Up Special Ports

This section describes attaching and detaching a sink port to ordinary ports and
connecting a port to a default remote socket.

Forwarding Messages from Sink Ports

Message forwarding allows messages from several connected ports to be received
by a single task waiting at a sink port. Sink ports help avoid duplication of code in
several tasks. All messages come tosihk& port which forwards them to the
appropriate task. The sink port must be on the same host as the receiving task.

The example in Figure 6-4 is an I/O Server that receives messages at two different
sockets and accesses a single hard disk to fill the requests. The example illustrates
using only ordinary ports (on the left) and using a sink port (on the right).

© @
o

=@

-]

OM02876

1. Ports A and B receive a request and passes data to the receiving Tasks Aand B. Aand B
both write data to disk, so there is duplication of code.

2. Ports C and D are forwarded to a single sink port. The sink port determines which of the
ports forwarded the message to it (so it can send a reply) and sends the data to Task E.
Task E handles requests from both ports C and D, so there is no duplication of code.

Figure 6-4. Forwarding Messages Using Ports

System Concepts Chapter 6 85

Using attach_port and detach_port

Theattach_port system call enables you to attach ordinary ports to a sink port. An
ordinary port can be attached only to one sink port, and they must reside on the
same host.

After you attach a port to a sink port, all subsequent messages to the ordinary port
are forwarded to the sink port. Messages that were queued at the ordinary port at
the time of the attachment remain queued at the ordinary port and are not
forwarded, so you must ensure that the queue is empty before attaching the sink
port. A task that was queued to receive a message at an ordinary port with an
empty message queue will remain in the task queue until it times out or until the
sink port is detached and a message arrives at the ordinary port.

Only a single level of forwarding is supported; a sink port may not be attached to
another sink port.

When you detach a sink port usidgtach_port, subsequent messages to the
ordinary port will not be forwarded to the sink port. Messages previously
forwarded to the sink port remain queued at the sink port until they are removed
with a receive operation or the port is deleted.

Using connect

This call is commonly used on Multibus Il systems. You carcaseectto

connect a port on the host taefault remote socketvhich you specify, so that
messages sent from the host port are automatically routed to that particular socket
on the remote host. While the connection exists, the port on the client can only
receive messages from the specified socket. The connection is active when you
specify a default remote socket with tmnnectsystem call

To disconnect the default remote socket, specify a 0 for the default remote socket
with theconnectsystem call. Once disconnected, the port remains disconnected
until specifically connected again. A port can be connected to a remote socket
more than once, with the most recent connection overriding all previous
connections.

86 Chapter 6 Ports

Port System Calls

Operations on ports fall into two broad categories: setup and message passing.
These are the system calls that relate directly to ports.

Setup calls create_port
delete_port
connect
attach_port
detach_port
get_port_attributes

Message- send

passing calls send_rsvp
send_reply
receive

receive_reply
receive_fragment
broadcast

cancel

Table 6-1 describes operations on a port and what the related system calls are.

Table 6-1. Port System Calls

Operation Description

create port Create_port creates a new port and returns a token for the port.

delete port Delete_port deletes the port.

connect port Connect connects a specified port with a specified socket.

attach sink Attach_port attaches a specified port to a specified sink port.

detach sink Detach_port detaches the specified port from its sink port.

get port Get_port_attributes fills in a data structure containing the

attributes specified port's attributes. Supply a pointer to a port_attrib
structure.

send, no Send sends a message from a client to a server and returns a

reply transaction ID.

receive Receive receives a message from a client at a specified port.

receive Receive_fragment receives a fragment of a request message.

message It is typically used by a server when insufficient buffer space is

in fragments available to receive a message in one piece.

continued

System Concepts Chapter 6 87

88

Table 6-1. Port System Calls (continued)

Operation

Description

send, expect
reply

Send_rsvp sends a message from a client to a server with an
implied request for a response from the server.

send Send_reply sends a reply from a server to a client in response to
response an earlier send_rsvp message.

receive Receive_reply call receives a reply to an earlier send_rsvp
response message.

broadcast a

Broadcast sends a message from a specified port to a specified

message socket on every host processor in the system. Broadcast
ignores the host ID, so the call effectively sends a message to
the specified port ID on every host.
cancel Cancel cancels synchronous or asynchronous send_rsvp
message messages.
See also: Nucleus system cafig;stem Call Referernce

examples in thémx386/demo/c/intralirectory

Chapter 6

Ports

How to Use Port System Calls

Figure 6-5 shows the order in which you make port system calls.

receive_reply

[

send
d_rsvp
create_port attach_port send_|
catalog_object detach_port i

[

get_port_attributes
receive
receive_reply
receive_fragment
send_reply

e

uncatalog_object
delete_port

[

OM02879
1. Make these calls from the client or sending task.
2. Make this call from the client or sending task to connect to a default remote socket.

3. Make these calls to attach an ordinary port to a sink port. The sink port and ordinary ports
must reside on the same host.

4. Make these calls from the client or sending task.
5. Make these calls from the receiving or server task.
6. Make these calls from the task that created the port.

Figure 6-5. Port System Call Order

System Concepts Chapter 6

Memory Pools, Memory
Segments, and Buffer Pools

Tasks satisfy their memory needs by using Nucleus system calls to allocate and
deallocate memory. Memory includes:

« Memory pools, which control memory allocation and management in the
iIRMX OS. Memory pools are maintained by the Nucleus.

« Memory segments, which are the fundamental building blocks of the OS; they
are maintained by your application.

- Buffer pools, which provide a way to allocate a set of segments so they will be
available quickly and dependably during time-sensitive operations; after you
create them, buffer pools are maintained by the Nucleus.

Flat Memory Models

The flat memory model is a 32-bit memory model where an application runs

entirely in a single segment. Memory management differs between flat memory
model applications and 32-bit segmented memory models. This chapter focuses on
the 32-bit segmented memory model.

See also: Using the Flat Memory Modetogramming Techniqudsr
information on the flat memory model, the paging subsystem that
supports this model, and the system calls used in managing memory.

What is a Memory Pool?

The iRMX OS allocates a contiguous block of memory to a job from free space
memory; you specify the minimum and maximum size. Each job has one memory
pool, which is the source of memory for objects created within the job. When you
create the job, the Nucleus creates a minimum size memory pool by allocating
memory from the parent memory pool. There is a tree-structured hierarchy of
memory pools, identical in structure to the hierarchy of jobs.

Memory that a job subsequently borrows from its parent remains in the pool of the
parent but is temporarily allocated to the child. Until the child job releases the
borrowed memory, it is only available to tasks in the child job, not to tasks in the
parent job.

System Concepts Chapter 7 91

A memory pool for a job does not have a token. You cannot refer to a memory
pool explicitly or manipulate it like an object.

Creating a Memory Pool

You create a memory pool when you usertfee create_jobcall to create a job.

Two parameters of theje_create_jobsystem callpool_min andpool_max , set

the size range. The upper limit of baitol_min andpool_max is 4 Gbytes.

The job begins with the specified minimum amount of memory, and it can borrow
memory from the parent memory pool up to the specified maximum size. You
delete a memory pool by deleting the job.

Initially, a job's memory pool is a physically contiguous block equal to the
specified pool minimum. If the job borrows memory from its parent job, the
borrowed memory is also a contiguous memory block, but not contiguous to the
initial memory pool. The maximum amount of memory that a job may borrow is
equal topool_max - pool_min. It is possible that a memory request in a pool can
fail even if the pool has not reached its specified maximum limit.

Figure 7-1 shows two jobs that have been allocated from the same parent memory
pool.

4)
P

maximum

o minimum
minimum
[[
(N J

OM02865
P is the parent pool. Its size is 512 K.

1. Job 1 has a minimum of 200 K and a maximum of 300 K.
2. Job 2 has a minimum of 200 K and a maximum of 350 K.

Since the total minimum size for the jobs is 400 K, both jobs can be created. Since the total
maximum size is 650 K, the pools will not be able to reach their maximum sizes simultaneously.

Figure 7-1. Consequences of Minimum-Maximum Memory Pool Values

92 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Allocating Memory

Memory in a job is unallocated unless it has been requested by tasks in the job or is
on loan to a child job. A request for memory is explicit when you call the
create_segmensystem call and implicit when you create any other object.

The amount of memory actually allocated to objects is between 18 and 33 bytes
longer than the specified size. These extra bytes are for internal use by the
Nucleus. However, each returned selector points to the first address available to
the task.

Borrowing Memory

When you try to create a segment or other object, and the unallocated part of the
job's pool is too small to satisfy the request, the Nucleus tries to borrow more
memory, up to the pool's specified maximum, from the job's parent and on up the
job hierarchy if necessary. Figure 7-2 illustrates borrowing memory.

4)
P

Unallocated memory

oA

Allocated memory

J

OM02866

1. Task A creates a segment object using create_segment . The memory is available from Job
C. When Task A no longer needs this segment, it should delete it using delete_segment .
The memory returns to Job C's pool.

2. Task A creates another segment. This time, the memory is not available in Job C's pool, so it
is borrowed from the parent job's pool, P. When Task A no longer needs this segment, it
should delete it using delete_segment . The memory returns to pool P.

When Job C is deleted, the memory in its pool becomes unallocated, and it is available to the
parent job.

Figure 7-2. Borrowing Memory From the Parent Job

System Concepts Chapter 7 93

Borrowing increases the pool size of the job that is doing the borrowing and is
restricted to the job's maximum. If a job has equal pool minimum and maximum
attributes, its pool is fixed at that common value, and the job cannot borrow
memory from its parent.

Using rge_get_pool_attrib

94

You can determine the source pool for a job by getting the attributes of the job's
memory pool usingge_get_pool_attrib. Supply a pointer to thattrib_ptr

data structure when callirge_get_pool_attrib, and the system call fills in the
fields of the structure with the pool's attributes.

Pool attributes include: minimum and maximum allowable pool size, initial pool
minimum size, number of allocated paragraphs of memory, number of available
paragraphs (not including memory that could be borrowed from the parent job), the
parent job token, and the amount of memory borrowed.

Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

What is a Memory Segment?

A memory segment is a contiguous sequence of bytes, ranging in size from 1 byte
to 4 Ghytes.

There are no restrictions on what you can use memory segments for; you can create
segments to hold data of whatever size and internal structure you need. The
Nucleus itself creates segments in response to a wide range of system calls; all the
iIRMX objects are constructed from segments.

Creating a Segment

The only parameter you specify in tbeeate_segmensystem call is the size of
the new segment. If enough memory is available, the Nucleus returns a token for
the segment.

A segment's physical starting address is on a 16-byte (paragraph) boundary. The
Nucleus assigns each segment a slot in the Global Descriptor Table (GDT). That
GDT slot multiplied by 8 serves as the segment token.

You can use the segment token when yousesel_messagto send a message, for
example. You can also use the token for a segment as the selector portion of a
pointer to the segment when placing data into the segment. The SELECTOR data
type is especially useful in referring to the segment.

You can use thege_change_object_accessall to change data segments to read-
only and read/write for data segments or execute-only or execute/read. You can
useget_sizeto get a segment's size in bytes.

See also: Data types, Nucleus exampgstem Call Reference

Boundary Alignment

In a Multibus 1l system, solicited messages pass across the system bus more
efficiently if buffers are aligned on a 4 byte boundary. Both the base address of the
segment and its length are multiples of four. Treate segmensystem call
automatically creates buffers that adhere to this convention. Because of the 4 byte
boundary, Direct Memory Access (DMA) can be done in one cycle (fly-by mode),

in which the DMA controller directly transfers data between the Message Passing
Coprocessor (MPC) and memory. The Nucleus Communication Subsystem (NCS)
supports one-cycle transfers for aligned buffers.

See also: MCO, MCT, and MDC parameters on the MBII sci€ihUser's
Guide and Quick Reference

System Concepts Chapter 7 95

If the buffer is not aligned on a 4 byte boundary, each DMA operation requires two
cycles: one to place the information in the DMA controller's buffer and another to
move it to the desired destination.

For example, on an SBC 486/125 or 486/150 board, solicited data can be
transferred at 13.3 Mbytes per second using one-cycle transfers; using two-cycle
transfers, the rate is 4 Mbytes per second. On SBC 386/133, 486/125, or
486/133SE or MIX n86/020A, 486SX33, 486DX33, or 486DX66 boards, alignment
on a 16-byte boundary and length allows even faster DMA burst mode. For
example, on an SBC 486/125 or 486/150 board, solicited data can be transferred ai
20 Mbytes per second using burst mode. The NCS picks the fastest mode possible

Deleting a Segment

You delete a segment usidglete_segmentany task that knows the segment's
token can make the call.

Access Rights and Hardware Types

When the microprocessor is operating in protected mode, a segment's access byte
define the way the segment can be used by instructions in other segments.

When you create an object, its corresponding segment is assigned a read/write
access type. Before the OS performs any operation, the processor checks the
access type. If you have entered the wrong access type, the processor causes a
hardware exception.

You can check an object's type usimg_get_object_accessProvide a pointer to
theaccess_ptr data structure and the system call fills in the results.

You can change an object's access type for segment objects, descriptor objects, or
composite objects usimge_change_object_accessAccess rights for all other

objects cannot be changed. This system call uses the access byte format provided
by the microprocessor for both code and data segment descriptors.

See also: rge_get_object_accesandrge_change_object_accesSystem Call
Reference
the user's manual for your microprocessor

A CAUTION
Do not change bits in a token. This can cause a hardware
exception.

96 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

What is a Buffer Pool?

A buffer pool manages a preallocated set of segments that you can allocate
dynamically so they will be available quickly and dependably during time-sensitive
operations. The Nucleus maintains the buffer pool, and your application maintains
the segments that it holds. You reference a buffer pool with its token.

The pool can maintain eight different sizes of segments. The buffer pool maintains
a linked list of buffers for each size of segment; all segments in a given list have
the same size. Each linked list can contain as many segments as you need.

After you create and fill a buffer pool, you just specify a token to identify the pool
and how much memory you need. The Nucleus automatically takes care of the
rest.

Figure 7-3 shows a buffer pool and its associated buffers.

")

Y

— J
[[

OMO02880

1. This area is the linked list for each of eight segment sizes. Each linked list can have as many
buffers as you need.

2. This area holds the buffers. The individual buffers are segments with read and write access
enabled.

3. During its existence, a pool gives buffers to tasks when they call request_buffer . When the
pool delivers a buffer to a requesting task, the buffer is removed from the list of available
buffers. The task releases the buffer back to the pool using release_buffer .

Figure 7-3. Buffer Pool with Associated Buffers

System Concepts Chapter 7 97

Creating and Initializing a Buffer Pool

These are the parameters you specify when you usegate buffer_poolsystem
call to create the buffer pool.

« The maximum number of buffers that can exist at one time in the buffer pool
+ Whether data chains are supported, or only contiguous buffers

A newly created pool is an object with a set of attributes that defines its
capabilities. Buffer pools incur a certain amount of system overhead in their
creation. This formula defines the amount of resources required.

(Max Buffers * 4) + 108 bytes = memory used by a buffer pool

Buffers are not allocated for a buffer pool at creation. You must allocate a set of
segments for the buffer pool. Create the segments usimgeidiie segment

system call. You can create as many segments as you need in up to eight different
sizes.

Then, you place the segments in the buffer pool usilegse _buffer This
process is callethitializing the buffer pool Do it early in your program rather
than in the middle of real-time operation. Do not release segments created in
different jobs to the buffer pool.

Using Data Chains

98

|:| Note

You can use data chains only in the iRMX [l OS. The
configuration of iRMX for Windows and iRMX for PCs does not
allow the use of data chains.

If you enable data chaining, a message may be copied into a data chain instead of
single buffer, depending on its size. The NCS strings small buffers together to fill
a large request madetiequest_buffer. If the pool constructs a data chain, it

returns a selector to a data chain block that holds pointers to the segments that
make up the chain. The buffer pool also returns the E_DATA_CHAIN condition
code torequest_buffer so the requesting task will know it has received a chain
block.

The amount of data in the message determines the number of buffers used. When
data chain is created, the required number of buffers are removed from the buffer
pool and made into the chain. One additional buffer is taken from the buffer pool
and used as the chain block, which contains a list of all the buffers in the chain.

Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Figure 7-4 on page 99 shows the structure of a chain block.

Byte count
i Buffer
Buffer pointer > segment
Reserved byte 0
Byte count
Buffer pointer 5| Buffer
Reserved byte segment
b4 1
L]
L]
Byte count
Buffer pointer > Buffer
segment
Reserved byte n
Byte count =0

OM02886

The buffer pointer is a selector:offset pair with 16-bit offset (not 32-bit). To use as a pointer in
PL/M-386, use this: buf$p = build$ptr(chain(n).base, chain(n).off)

The byte count data type is WORD_16; each component buffer cannot exceed 64 Kbytes in
length.

Byte count = 0 is the chain terminator.

Figure 7-4. Structure of a Chain Block

The minimum buffer size for data chains is 1Kbyte in length, and you must request
at least one buffer to enable the system to build the data chain block.

« The minimum data chain block size(isax_elements*8) + 2 BYTES.

- The maximum number of elements is a configuration option. At least one
1026 byte buffer will be available in the buffer pool for chain allocation.

See also: MCE parameter on the NUC scré@b, User's Guide
and Quick Reference

|:| Note

Data chains are not supported as message passing buffers on the
SBC 486DX33 and SBC 486SX25 boards.

System Concepts Chapter 7 99

Using attach_buffer_pool

If you have created the buffer pool to use with a port, you have to attach it to the
port with theattach_buffer_poolsystem call. When the NCS delivers a message

to the port, it will automatically store data messages coming to the port in buffers
from the pool. The NCS requests buffers at the same time it receives a buffer
request. The NCS grants the request, using buffers from the attached pool. The
buffer or buffers are then passed to the task that receives the message. Even if the
buffer pool is attached to a port, you can still use the buffer pool token to perform
operations on the buffer pool.

Figure 7-5 shows the relationship of a buffer pool and an attached port. It also
shows how a pointer to a buffer is passed to a task receiving a message at the port

M
[
I oNo R R
N—

OM02881
1. Task A sends a message through port A to port B.

2. The NCS requests a buffer from the pool attached to port B and places the message directly
into the buffer. A pointer M to the message buffer is placed into the message queue of the
port.

3. Task B receives the pointer to the message buffer and accesses it. Task B should release
the buffer back to the pool when finished with the message.

Figure 7-5. Relationship of Buffer Pool and Port

Using detach_buffer_pool

This call does not delete the buffer pool, it only removes the association to the port.
If no buffer pool is attached, the E_STATE condition code returns.

Using request_buffer

100

You can useequest_buffer when you need a buffer from a pool for any purpose.
The NCS callsequest_bufferwhen it needs space to store an incoming data
message at a port.

The pool returns a pointer to the smallest buffer that fills the request; the buffer
may be equal to or larger than the requested size.

Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

If no single buffer is large enough to fill the request, and data chaining is enabled,
the NCS attempts to create a data chain and returns a pointer to the data chain
block along with the E_DATA_CHAIN condition code.

Using release_buffer

Userelease_bufferto return the buffer back to the pool when the task is done with
the information in the message. Otherwise the buffer is not available to the pool.

Release_bufferadds the segment to one of the lists of buffers in the pool. If the
size of the segment is different from any of the sizes currently maintained by the
pool, the pool creates a new list for segments of that size. Up to eight lists are
supported.

If you are releasing a chain block, a single catelease_bufferreleases all data
chain buffers to the pool, including the data chain block buffer. Usiatse
parameter to indicate whether the segment is a single buffer or a data chain block.

Deleting a Buffer Pool

You cannot delete a buffer pool usidglete buffer_poolwhile it is attached to a
port; you must first detach it usimtgtach_buffer_pool A task attempting to
delete an attached pool will receive an E_STATE condition code.

System Concepts Chapter 7 101

Memory Management System Calls

These are the system calls that relate directly to memory management.

Memory pool call rqe_get_pool_attrib

Segment calls create_segment
delete_segment
get_size

rqe_get_object_access
rqe_change_object_access
rqe_get_address

Buffer pool calls create_buffer_pool
delete_buffer_pool
request_buffer
release_buffer
attach_buffer_pool
detach_buffer_pool

These are the rules for buffer pools:
e You can attach a buffer pool to more than one port.
« You cannot attach a port to more than one buffer pool.

« A port must be in the same job as the attached buffer pool.

102 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Table 7-1 lists the operations used to manage memory segments and buffer pools

and the system calls that do the operations.

Table 7-1. Memory Management System Calls

Operation Description

get pool Rge_get_pool_attrib gets information about pool status or use of
attributes its job's memory pool or another job's memory pool.

create Create_segment creates a segment and returns a selector to a
segment new segment.

delete Delete_segment deletes a segment and returns the memory to
segment the job's memory pool from which it was allocated.

get size Get_size returns the size of a segment in bytes.

change Rge_change_object_access changes the access rights of the

access rights

segment.

check
access rights

Rge_get_object_access returns an object's access rights.

get physical Rge_get_address converts an object's logical address into its

address physical address, which may be needed for device drivers or for
creating aliases.

create Create_buffer_pool creates a buffer pool and returns a token for

buffer pool the pool.

delete Delete_buffer_pool accepts a token for a buffer pool and deletes

buffer pool the pool and any buffer segments it contains.

request Request_buffe r gets a buffer from a pool that has been created

buffer using the create_buffer_pool system call.

release Release_buffer adds a segment to one of the lists of buffers in

buffer the pool, either to initially fill the buffer pool or to return a segment

to the buffer pool.

attach buffer

Attach_buffer_pool accepts a token for a buffer pool and a token

pool to port for a port and associates the buffer pool with the port.

detach Detach_buffer_pool accepts a token for a port and detaches the
buffer pool buffer pool that is currently attached.

See also: Nucleus system cafiystem Call Reference

System Concepts

Chapter 7

103

How to Use Memory Management System Calls

Figure 7-6 shows the order in which you make memory segment system calls.

rqe_get_object_access
rge_change_object_access
rqe_get_address

U l

delete_segment

OM02883
1. Make this call from the task that needs a memory segment.

2. Make this call from any task that needs to know the size of the segment.
3. Make these calls if you need to change the segment's access rights.

4. Make this call from any task that knows the segment's token.

Figure 7-6. Segment System Calls

104 Chapter 7 Memory Pools, Memory Segments, and Buffer Pools

Figure 7-7 shows the order in which you make buffer pool system calls.

create_segment attach_buffer_pool
release_buffer

U U

create_buffer_pool

[

detach_buffer_pool
delete_buffer_pool

request_buffer
release_buffer

0 [

OM02882

1. Make this call from the task that needs a buffer pool.

2. These calls fill the buffer pool with buffers. Make these calls from the task that created the

buffer pool.

3. Make this call if the creating task has a port that needs a buffer pool.

4. Make these calls from the creating task.

5. Make this call from the task that created the buffer pool.

System Concepts

Figure 7-7. Buffer Pool System Calls

Chapter 7

105

Object Directories

What is an Object Directory?
An object directory contains a list of object names and corresponding tokens.

« The name contains from 1 to 12 characters; a character is a 1-byte value from
0 to OFFH. Some tasks may know objects only by name.

« The token is a 16-bit selector or handle for objects.

The object directory enables tasks to use symbolic names to share access to objects.

Creating a Job Object Directory

The Nucleus creates an object directory for each job as you create it, using
rqe_create_joh You specify the number of entries allowed in an object directory
in thedirectory_size parameter of thege_create_jobsystem call.

Deleting a Job Object Directory

You delete the job object directory when you dallete_job.

System Concepts Chapter 8 107

Using an Object Directory

Typically, one task creates an object and catalogs its token and name. Another tas
uses that name to look up the token for the object. Two or more tasks can share al
object that is cataloged in an object directory.

|:| Note

The object directory is case-sensitive: upper- and lower-case
alphabetic characters are interpreted differently. The Nucleus,
however, sees the name as just a string of bytes; it does not
interpret these bytes as ASCII characters.

Using catalog_object

Use thecatalog_objectsystem call to put the object into an object directory. You
specify the job in which to catalog the object, the object's token, and a name for the
object. If the object directory is full, the task receives an E_LIMIT condition code.

You can catalog the object in the task's job or in any job for which you have the
token. Each job has an object directory, including the root job. To make an object
accessible to all tasks in the system, catalog it in the rootGab.

get_task_tokensgto obtain the token of the root job.

You can use any byte values except null in the name. You can catalog the object
under several different names, all with the same token, if your application needs
this. The Nucleus will return a condition code if you try to catalog an object using
a name that is already cataloged in the directory.

Using lookup_object

Uselookup_objectto get an object's token so a task can access the object. You
specify the token of the job whose object directory you want to search, the name of
the object and the amount of time the task can wait. If the object is not cataloged,
the task goes to sleep by waiting for the specified time or until the name is
cataloged, whichever comes first.

The call returns the object's token, or an E_TIME condition code if the object is not
cataloged during the specified wait time. If the object directory is full and the task
specified no wait time, it receives an E_LIMIT condition code instead.

Using uncatalog_object

You remove entries from a directory using theeatalog_objectsystem call.

108 Chapter 8 Object Directories

Object Directory System Calls

These are the system calls that relate directly to object directories.

catalog_object
get_type
lookup_object
uncatalog_object
get_task_tokens

Table 8-1 lists common operations on objects in object directories and the system
calls that perform the operations. Tasks can use the object directory for their job or

another job.

Table 8-1. Object Directory System Calls

Operation

Description

enter object

Catalog_object catalogs the specified object in an object

in directory directory.
get type of Get_type accepts a token for an object and returns its type code.
object This enables you to use the appropriate calls for the object.

look up name

Lookup_object returns the token of the named object.

of object

remove Uncatalog_object removes the entry for the specified name.
directory The name becomes available for re-use.

entry

get token Get_task_tokens gets a token for a parameter object or for the
for object task's job, parent job or root job in order to catalog objects.
See also: Nucleus system caffg;stem Call Reference

System Concepts

Chapter 8 109

How to Use Obiject Directory System Calls

Figure 8-1 shows the order in which you make object directory system calls.

uncatalog_object
l

OM02884

lookup_object

get_type
get_task_tokens

l il

catalog_object

1. Make this call from the task that created the object.
2. Make these calls from tasks that need to access the object.
3. Make this call from the task that created the object.

Figure 8-1. Object Directory System Calls

110 Chapter 8 Object Directories

Exception Handling and
System Accounting

This chapter describes how to handle the condition codes, or exceptions, that are
returned from iRMX system calls. The primary method is to use exception
handlers, either those provided with the OS or handlers you write. After handling
an exception, you may want your application to investigate the state of the system
by using a set of calls that return system accounting information.

Exception Handling

Whenever a task makes a system call, the system retaomsldion codéo the

task to communicate the success or failure of the call. For example, a task may
request memory that is not available. Conditions that represent failure or
incomplete success are callexteptional conditions

These are sources of exceptions:

» Hardware exceptions, such as trying to execute a read/write data segment.
These occur as a result of violating a hardware protection feature.

e "Environmental errors, such as trying to write to a printer that is off-line.
These conditions arise outside the control of the calling task.

« Programmer errors, such as making a mistake in a system call. These are
conditions that the calling task can prevent.

See also: Nucleus interrupt and exception handlirigpducing the iRMX
Operating Systems
List of condition codesSystem Call Reference

You assign an exception handler for a job when you usejehereate_jobcall:

either the parent job’s current exception handler, which normally deletes the job in
which the error occurred, or a custom handler you write. You also assign the
exception mode: when to transfer control to the exception handler. If you do not
set a job's exception mode to transfer control to the job's exception handler, the
tasks in the job must deal with exceptions either by handling them inline or by
specifying their own exception handler usseg_exception_handleor
rqe_set_exception_handler In either case, you must write code to handle the
exception.

System Concepts Chapter 9 111

Exception Handler Actions

The Nucleus supports exception handlers for programmer errors in tasks. You
decide how an exception handler should deal with a condition. In general, a
handler does one of these:

« Corrects the cause of the exception and continues.
e Logs the error and continues.

* Deletes the job containing the task that erred.

* Suspends the task that erred.

« Ignores the error. (Note that hardware exceptions cannot be ignored.) If you
choose this option, the system continues as if no error had occurred. This is
generally unwise.

You can specify the System Debug Monitor (SDM) as the default exception
handler when debugging an ICU-configurable system. Then SDM takes control of
all the supported hardware exceptions except those from the Numeric Processor
Extension (NPX). When you specify SDM as the default exception handler,
hardware exceptions cause a break to SDM and send a message to the console.
This is the default for systems that are not ICU-configurable.

See also: Nucleus scred@U User's Guide and Quick Reference
sdb.job,System Configuration and Administration
Writing Exception Handlers, later in this chapter

Rather than allowing SDM to take over on a hardware exception, you can write
exception handlers that test for and handle these hardware traps. Since your
handler is also called for programmer and environmental exceptions (unless these
exceptions are handled inline), the handler must first determine the type of error
and act accordingly.

|:| Note

Because exception handlers can now process hardware traps, you
must modify existing custom exception handlers to test for and
process hardware traps.

See also: Writing Exception Handlers, later in this chapter

112 Chapter 9 Exception Handling and System Accounting

Exception Handler Modes

An exception handler normally receives control when an exceptional condition
occurs, but it may not, depending on gxeeption modeThese are the exception-
mode circumstances under which the handler gets control:

e Programmer errors only (all other errors handled inline)

« Environmental conditions only (all other errors handled inline)
e Always

* Never (all errors handled inline)

After detecting that a system call has encountered an exceptional condition, the
Nucleus compares the condition with the calling task's exception mode. The
Nucleus determines whether to pass control to the exception handler based on the
mode. The exception handler then deals with the problem and returns control to
the task, unless the exception handler deleted the job, deleted the task, or
suspended the task. When the exception handler returns, the system call's
except_ptr parameter points to the condition code. While the exception handler
is executing, the task in which the error occurred is still the running task. The
exception handler task uses the stack and environment of the task that made the
system call.

|:| Note

The only deviation from this behavior occurs for hardware traps.
When a hardware trap occurs the current assigned exception
handler is called regardless of the exception handler mode.

Condition Code Values and Mnemonics

Condition codes are numeric values that represent unique conditions. Each code
also has a mnemonic such as E_OK, which indicates successful completion or
E_MEM which indicates not enough memory.

When you write tasks, you can refer to the condition codes by their mnemonics.
The OS installs include files that contain literal declarations for iRMX condition
codes.

See also: Condition code numeric values and mnemonics for specific system
calls,System Call Reference

System Concepts Chapter 9 113

The values of condition codes fall into ranges based on the iIRMX layer that first
detects the condition and the type of exception. Table 9-1 shows the ranges based
on the type of error and the layer detecting the condition. Numeric values appear
in hexadecimal.

Table 9-1 Condition Code Ranges

Hardware Exceptions

8100H to 8111H

Numeric Processor Extension Exceptions

8007H (NPX Error)

All Other Programming and Environmental Exceptions

Environmental

Programming

Layer Conditions Errors

Nucleus OH to OFH 8000H to 800FH
I/O Systems 20H to 5FH 8020H to 805FH
Application Loader 60H to 7FH 8060H to 807FH
Human Interface 80H to AFH 8080H to 80AFH
Universal Development Interface COH to DFH 80COH to 80DFH
Comm Service EOH to EFH 80EOH to 80EFH
Reserved for Intel FOH to 2CFH 80FOH to 82CFH

iNA Networking

2DOH to 3FFH

82DO0OH to 83FFH

Reserved for Intel

400H to 3FFFH

8400H to BFFFH

Available for applications

4000H to 7FFOH

COO0OH to FFFOH

X.25 Interface

7FF1H to 7FFFH

FFF1H to FFFFH

Handling Exceptions Inline

114

You can write tasks that handle exceptions inline.

Each system call hascept_ptr as its last parameter. After a system call, the
Nucleus returns the resulting condition code to this parameter. By checking this
parameter after each system call, you can determine if the call was successful or
which exceptional condition occurred. This information can sometimes enable the
task to recover. In other cases, more information is needed.

If a system call returns an exception code to indicate an unsuccessful call, all other
output parameters of that system call are undefined.

See also: Condition codes for each system $gitem Call Reference

Chapter 9 Exception Handling and System Accounting

Assigning an Exception Handler

Use theset_exception_handlesystem call to enable a task to use its own
exception handler and exception mode. Otherwise, the task inherits the exception
handler and mode of its job.

You can also use thrge_set_exception_handlesystem call to set or modify the
exception handler or exception mode for the current task's job or for the system.

Exception handlers execute in the context of the task that caused the problem.

Writing Your Own Exception Handler

You need to consider several things when you write your own exception handler.
For example, 32-bit code requires 32-bit exception handlers, and 16-bit code
requires 16-bit exception handlers. The only time this is not true is if the exception
handler deletes the offending job, deletes the offending task, or suspends the
offending task.

Another consideration is the type of exception you are processing. As of release
2.2 of the IRMX OS, you can write exception handlers that process hardware traps.
This means that your handler can process three groups of errors:

e Hardware traps
« Numeric Processor Extension (NPX) exceptions
« All other programming and environmental conditions

Also, the exception handler executes in the context of the task that caused the
problem. Because of this, deleting the task will kill the exception handler.

Finally, if you set the system’s default exception handler in the ICU on the (NUC)
Nucleus screen by setting DSH equal to "User", your exception handler module
must have these characteristics:

e The public entry point must be namedysex
e It must be 32-bit code

e It must be compiled as Near using Intel OMF386 tools (iC-386, PL/M-386, or
ASM386)

System Concepts Chapter 9 115

Handler Prototype

You can create your exception handler to determine the type of problem and act
accordingly by creating a FAR, typed procedure that follows this prototype
definition:

UINT_8 _Fparam far my_exception_hndlIr(
(UINT_16) err_code,
(UINT_16) param_num,
(UINT_16) param_1,
(UINT_32) param_2);

Where:

err_code Indicates the type of error. Values from 8100H through 8111H
represent hardware traps. A value of 8007H represents an NPX
exception. The ranges shown in Table 9-1 on page 114 represent all
other programming errors and environmental conditions.

param_num Represents the offending parameter number of the call that caused the
problem. param_num is not valid for hardware traps or NPX
exceptions.

param_1 For hardware trapparam_1 is the selector part of the pointer to the
CPU_FRAME_STRUCT structure (see CPU_FRAME_STRUCT later
in this chapter). For all other exceptioparam_1 is meaningless.

param_2 For hardware trapparam_2 is the offset part of the pointer to the
CPU_FRAME_STRUCT structure (see CPU_FRAME_STRUCT later
in this chapter). For NPX exceptiomgram_2 is an NPX status. For
all other programming errors and environmental conditipasm_2
is meaningless.

116 Chapter 9 Exception Handling and System Accounting

Handler Contents

The first task your new handler (and all existing user-written handlers) must
perform is to examine the value@f_code . Next, the handler must perform one
of the following, based on the type of error:

e Use the BUILDPTR function to build a pointérafne_p) out ofparam_1
andparam_2 that points to the CPU_FRAME_STRUCT if the exception is a
hardware trap.

e Derive the NPX status froparam_2 if the exception is from the Numeric
Processor Extension.

e Ignoreparam_1 andparam_2 if the error is a programming error or
environmental condition.

Once your handler determines the type of exception and casts the parameters to the
right types, it must process the error. Usually this involves correcting, logging, or
reporting the condition. However, for hardware exceptions you have two choices
after processing the error:

« Return to the task that caused the exception. If you write the handler to do this
your handler must also fix the task’s problem.

» Prevent the task from running again by either deleting or suspending it.
Because the operating system already has handlers that delete tasks, delete
jobs, and suspend tasks, you can write your handler to return to the appropriate
system exception handler.

The value returned in the AX register by your typed exception handler procedure
determines which of these two options is taken. A returned value of O causes the
exception handler dispatcher to call the currently active system hardware trap
handler to deal with the offending task. Returning a value of OFFH causes the
exception handler dispatcher to return to the offending task at the code segment
(CS:EIP) present in the CPU_FRAME_STRUCT structure.

System Concepts Chapter 9 117

The following pseudo-code example shows how to handle any exceptional
condition. The first conditional handles NPX conditions. The second conditional
handles hardware traps. The default condition handles all other programming and
environmental exceptions.

if err_code is 8007H then {
derive NPX status as follows:
NPX_status = (UINT_16) param_2 ;
Correct, log, or report the condition ;
return ;
}
if err_code ranges from 8100H through 8111H then {
generate pointer using the built_in BUILDPTR as follows:
frame_p = BUILDPTR((selector)param_1),
(void near *)param_2) ;
Log or report the condition ;
If calling active system handler then {
return (0) ;
}
else if returning to the offending task then {
return (OFFH);
}
}

else exception is env/prog error, handle normally {
Correct, log, or report the condition ;
return ;

}

Compiling Your Exception Handler

If you are writing your own exception handlers, compile them as far procedures by
EXPORTING the procedure with the PUBLIC attribute.

118 Chapter 9 Exception Handling and System Accounting

Parameters Used With Hardware Traps

When the value for therr_code parameter is in the range 8100H to 8111H, a
hardware trap has occurred. As shown earlier, your handler must generate the
pointerframe_p that points to the CPU_FRAME_STRUCT structure when

processing a hardware trap. The type definition of this structure is as follows:

typedef struct{
SELECTOR running_task;
UINT_16 fillo;
UINT_32 reg_crz;
SELECTOR reg_gs;
UINT_16 fill1;
SELECTOR reg_fs;
UINT_16 fill2;
SELECTOR reg_es;
UINT_16 fill3;
SELECTOR reg_ds;
UINT_16 fill4;
SELECTOR reg_ldt;
UINT_16 fill5;
UINT_32 reg_eax;
UINT_32 reg_ecx;
UINT_32 reg_edx;
UINT_32 reg_ebx;
UINT_32 reg_esp;
UINT_32 reg_ebp;
UINT_32 reg_esi;
UINT_32 reg_edi;
UINT_32 error_code;
UINT_32 ret_eip
SELECTOR ret_cs;
UINT_16 fill6;
UINT_32 eflags;
UINT_32 ret_esp;
SELECTOR ret_ss;
UINT_16 fill7;

} CPU_FRAME_STRUCT;

System Concepts

Chapter 9

119

120

where:

fil< n>

running_task

reg_cr2

reg_gs

reg_fs
reg_es
reg_ds
reg_ldt
reg_eax
reg_ecx
reg_edx
reg_ebx
reg_esp
reg_ebp
reg_esi

reg_edi

error_code

ret_eip
ret_cs
eflags
ret_esp

ret_ss

Reserved

The token of the task whose CPU register state is being provided.

The task’s CR2 registereg_cr2 is only valid in the context of an
exception handler.

The task’s GS register.
The task’s FS register.
The task’s ES register.
The task’s DS register.
The task’s LDTR register.
The task’s EAX register.
The task’s ECX register.
The task’s EDX register.
The task’s EBX register.
The task’s ESP register.
The task’s EBP register.
The task’s ESI register.
The task’s EDI register.

The error code returned by the processsror_code is only valid
in the context of an exception handler.

The task’s EIP register.

The task’s CS register.

The task’s EFLAGS register.
The task’s ESP register.
The task’s SS register.

Chapter 9 Exception Handling and System Accounting

Exception Handler System Calls
These are the system calls that relate directly to exception handlers.

get_exception_handler
set_exception_handler
rqe_get_exception_handler
rqe_set_exception_handler

Table 9-2 lists common operations on exception handlers and the system calls that
perform the operations.

Table 9-2 Exception Handler System Calls

Operation Description

set handler Set_exception_handler sets the exception handler and
exception mode attributes of the calling task.
Rge_set_exception_handler sets or modifies the exception
handler and exception mode for any task, job, or the system.

get handler Get_exception_handler returns to the calling task the current

attributes task’s exception handler and exception mode attributes.
Rge_get_exception_handler returns to the calling task the
current exception handler and mode for any task, job, or the
system.

See also: Nucleus system cafig;stem Call Reference

System Accounting

Several system calls allow you to check on the state of tasks, the CPU, and other
high-level system information. These calls can be useful at any time but are
particularly useful after exceptions occur. The calls allow you to:

e Return information about the execution state and CPU registers of a task
« Return information about when a task was created and how long it has run

* Enable and disable tracking of CPU use by the operating system

Enabling and Disabling CPU Tracking

Use thesystem_accountingsystem call to enable or disable tracking of CPU usage
by the operating system. Accounting must be enabled to use the
get_task_accountingcall.

See also: Nucleus System Ca$igstem Call Reference

System Concepts Chapter 9 121

Returning Information About a Task

Use theget_task_infosystem call to return high-level information such as task
priority, exception handler, the containing job, and execution state. For a more
detailed look at the state of a task, usegdie task_statesystem call. This call
returns information about the state of any task in the system, including such items
as the execution state and the CPU registers for the task’s execution context.

|:| Note

CPU context is only available for tasks that are suspended by a
task other than itself.

See also: Nucleus System Caffystem Call Reference

Returning Task Creation and Duration Statistics

Use theget_task_accountingsystem call to find out when a task was created and
how long it has run. This call can be useful in debugging a system when
exceptions cause a task to be suspended.

See also: Nucleus System Cafigstem Call Reference

System Accounting System Calls
These are the system calls that relate directly to system accounting.

get_task_info
get_task_state
get_task_accounting
system_accounting

122 Chapter 9 Exception Handling and System Accounting

Table 9-3 lists the type of system accounting you can perform with these calls.

Table 9-3 Accounting System Calls

Operation Description

get high-level Get_task_info returns high-level information about the

task information target task.

get CPU Get_task_state returns some high-level information

information about the target task. This call also returns CPU register
context for suspended tasks.

get accounting Get_task_accounting returns accounting information for

information the target task.

enable or disable System_accounting enables or disables tracking of
accounting CPU use.

See also: Nucleus system cafiystem Call Reference

System Concepts Chapter 9 123

Interrupts

How Do Interrupts Work?

Many different events can cause an interrupt. An interrupt which signals the
occurrence of an external event, triggers an implicit call using an address supplied
in the IDT. This directs control to an interrupt handler.

If handling the interrupt takes little time and requires no system calls other than
certain interrupt-related system calls, the interrupt handler can process the interrupt
itself; the interrupt handler executes in the context of the task running when the
interrupt occurred. Otherwise, the handler should invoke an interrupt task to finish
processing the interrupt. Interrupt tasks have their own context and are not
dependent on the context of the task that was interrupted.

After the interrupt has been serviced by either the interrupt handler or the interrupt
task, control returns to the interrupted task.

Interrupt Controllers and Interrupt Lines

External interrupts pass through programmable interrupt controllers (PICs) such as
the 8259A PIC. The master PIC can manage interrupts from as many as eight
external sources, one being the system clock. But the iRMX OS supports a
cascaded environment in which up to seven input lines of one master PIC are
connected to slave PICs, each with eight input lines.

A cascaded environment in native mode (non-PC architecture) lets the OS manage
interrupts from up to 56 external sources as well as the system clock in native
mode. Figure 10-1 on page 126 illustrates the concept.

System Concepts Chapter 10 125

System
clock is
usually
here

104--
114-
, 124--
M . &---- -
Mg--- <E Slave 1 134-
PIC 1-
M2{- o 14
) Master ~ M3+{- e 15¢-
Microprocessor PIC Mal- o M 164--
‘ M54 o 177~
| M6+-- o o
CPU M7+-- :
traps
L 704-
, 714-
Numeric 721
coprocessor,
if present Slave 7 734-
PIC 744--
75+-
764--
774-
W-2828

1. If your system includes an Intel387" numeric processor, do not connect the NPX to a PIC.
The Intel386 processor uses CPU interrupt traps 7 and 16 to communicate directly with the
Intel387 numeric processor.

2. The interrupt lines on the master PIC are numbered MO through M7. The interrupt lines on
the slave PICs are numbered nl through n7. You can connect a master PIC input line either
to an external interrupt or to a slave PIC, but not to both.

Figure 10-1. Processor and PIC Interrupt Lines in Native Mode

PC-compatible Mode

In PC-compatible mode, attach the keyboard to M1, attach the only slave PIC to
level M2 and attach the NPX to line 5 on the slave PIC.

See also: P1ACU User's Guide and Quick Reference

126 Chapter 10 Interrupts

Interrupt Levels

The interrupt lines of the master and slave PICs are associated with interrupt levels.
An interrupt level names an interrupt line and indicates the priority of the line: the
lower the number, the higher the priority.

Lower-numbered lines like M2 (or lines from the slave PIC connected to it) have
higher priority than higher-level lines like M5 (or lines from the slave PIC
connected to it). If two interrupts occur simultaneously, the PIC informs the CPU
of the higher-priority interrupt first. The Nucleus often disables low-priority
interrupts to service high-priority interrupts.

Interrupt Descriptor Table

The processor uses the IDT entry as a pointer to the interrupt handler to execute for
the specific interrupt. Each IDT entry contains the physical address of the interrupt
handler.

The hardware assigns a number to the cause of each interrupt and gives it an entry
in the IDT. The IDT is composed of up to 256 entries, numbered 0-255. In an
ICU-configurable system, you specify the number of IDT entries your application
needs using the NIE parameter. You will probably not need more than 128 entries.
If, for example, your system has only the 8259A master PIC with no slaves, the

first 64 entries are enough. The Nucleus does not use entries 128-255. The entries
are allocated as shown in Table 10-1 on page 128.

See also: IDT, user's guidier your microprocessor;
NIE parameterlCU User's Guide and Quick Reference

System Concepts Chapter 10 127

Table 10-1. Allocation of Interrupt Entries

IDT Entry Description

0 divide by zero
1 single step (used by the SDM monitor)
2 power failure (nonmaskable interrupt, used by the SDM monitor)
3 one-byte interrupt instruction (used by the SDM monitor)
4 interrupt on overflow
5 run-time array bounds error
6 undefined opcode
7 NPX not present/NPX task switch
8 double fault
9 NPX segment overrun
10 invalid TSS
11 segment not present
12 stack exception
13 general protection

14-15 reserved
16 NPX error

17-55 reserved

56-63 8259A PIC master (external interrupts)

64-127 8259A PIC slaves (external interrupts)

128-255 unused

Assigning Interrupt Levels to External Sources

128

To assign interrupt levels to external sources, use these guidelines:

Assign the system clock to a master interrupt level, usually MO.

Assign the most critical interrupts to the lowest-numbered levels. To provide
preemptive, priority-based scheduling, the Nucleus usually disables less-
important interrupts.

You cannot attach both an interrupting device and a slave PIC to the same
master level. Suppose you physically attach a device to level M3: entry 59
decimal of the IDT contains the address of the interrupt handler for the device;
entries 88 through 95 decimal of the IDT (the slave level entries that
correspond to master level M3) will not be available.

Chapter 10 Interrupts

« You cannot connect a slave PIC to MO if an interrupting device connects
directly to any other master level. If you assign the system clock to level MO,
you can connect seven slave PICs. If you assign the system clock to another
interrupt level, you can connect at most six slave PICs to the master PIC.

- The Intel387 NPX does not require a dedicated interrupt line in native mode.
In PC-compatible mode, it uses M2, level 25.

See also: PIACU User's Guide and Quick Reference

Interrupt Handlers and Interrupt Tasks

Whether an interrupt handler services an interrupt level by itself or invokes an
interrupt task to service the interrupt depends on the system calls (these are limited)
and the amount of time needed. An interrupt signal disables all interrupts; they
remain disabled until the interrupt handler either services the interrupt and exits, or
invokes an interrupt task. Invoking an interrupt task enables higher priority
interrupts (and in some cases, the same priority interrupts) to be accepted.

See also: Random access support for interrupt-driven devices for examples of
interrupt tasksDriver Programming Concepts

System Calls and Interrupt Handlers
When writing an interrupt handler, you need to keep these points in mind:

« Interrupt handlers can make only the Nucleo&er_interrupt,
exit_interrupt, get_leve] disable andsignal_interrupt system calls. If you
need other system calls to service the interrupt, create an interrupt task.

- Interrupt handlers should not use C library calls that perform high-level I/O
operations such gsintf() . These types of C library calls may be unsafe for
use by handlers because they use signaling or blocking objects or they use
high-level I/O.

- Interrupt handlers can use system calls that signal the Kernel such as
KN_send_units However, the handler must take steps to prevent a task
switch.

See also: Using iRMX Kernel Calls in iRMX Interrupt Handlers later in
this chapter

System Concepts Chapter 10 129

Writing an Interrupt Handler

Interrupt handlers are generally written as C or PL/M interrupt procedures, but they
can be written in assembly language. If you use assembly language, you must sav
and restore all register values.

An interrupt handler uses the stack of the interrupted task.

If an interrupt handler services interrupts for a given level without invoking an
interrupt task, it must do these things:

1. Save all register contents (C and PL/M do it for you when the procedure is
given theINTERRUPTattribute).

2. If the handler can load its own DS register with the data segment selector, do
so. If the handler requires a special data segmengrdall_interrupt.

Service the interrupt.

4. Callexit_interrupt. This sends an end-of-interrupt (EOI) signal to the
hardware.

5. Restore all register contents.
6. Return using an IRETD instruction.

See also: Designing an ApplicatidProgramming Techniques
examples infrmx386/demo/c/indlirectory

Using set_interrupt With a Handler Only

130

Before an interrupt handler can service an interrupt level, a task must invoke the
set_interrupt system call to bind the handler to the interrupt legst_interrupt

places a pointer to the first instruction of the handler in the appropriate entry in the
IDT.

These are the parameters you supplsein interrupt:

« Use thenterrupt_handler parameter to specify the starting address of the
interrupt handler. When an interrupt of that level occurs, control automatically
transfers through the IDT to the handler.

« Set thenterrupt_task _flag parameter to O, to specify that there is no
interrupt task for the level.

e Set thenterrupt_handler_ds parameter to null to specify that the handler
loads its own data segment. (Interrupt handlers written in PL/M, including
COMPACT model, have their DS registers loaded automatically on
invocation.)

Chapter 10 Interrupts

What the OS Does With a Handler Only

1.

When an iRMX application system starts running, all interrupt levels are
disabled.

Whenset_interrupt binds an interrupt handler to a level, the Nucleus enables
the level immediately.

When an interrupt occurs, the processor automatically transfers control to the
handler. The handler executes in the context of the interrupted task with all
interrupts disabled.

When the handler caléxit_interrupt, this sends an end-of-interrupt (EOI)
signal to the hardware. Control returns to the interrupted task when the
handler issues an IRETD instruction.

Usereset_interrupt to cancel the assignment of a handler by clearing out the
appropriate entry in the IDT. The call also disables the specified level.

Using an Interrupt Handler and an Interrupt Task

If an interrupt handler invokes an interrupt task, it must do these things.

1.

Save all register contents (C and PL/M do it for you when the procedure is
given theINTERRUPTattribute).

If the handler needs to pass information to the interrupt task in a special data
segment, cakenter_interrupt. Usually the interrupt handler and interrupt task
are in the same system and share the same data areas.

Possibly begin servicing the interrupt.
Do one of these:

Call signal_interrupt to start the interrupt task and enable higher (and
possibly equal) priority interrupts.

or

Call exit_interrupt. This sends an end-of-interrupt (EOI) signal to the
hardware.

Restore all register contents.

Return using an IRETD instruction.

System Concepts Chapter 10 131

An interrupt task must perform these functions in the indicated order, although the
first two functions may be interchanged:

1. Do any required task initialization, such as preloading variables.
2. Callset_interrupt.
3. Enter a loop which:

a. Callsrge_timed_interrupt orwait_interrupt .

b. Services the interrupt when notified bgignal_interrupt call from the
handler.

c. Returns to step a.

An interrupt task, once initialized, is always in one of two modes: either servicing
an interrupt or waiting for notification of an interrupt. However, the Nucleus does
not enable the level or any lower levels until the task invokew/dite interrupt or
rqe_timed_interrupt system call.

The interrupt task has its own resources and runs in its own environment. The
interrupt task can use exception handlers, whereas the interrupt handler always
handles exceptions inline.

Using set_interrupt With a Handler and Task

132

These are the parameters you supplsein interrupt:

« Use thenterrupt_handler parameter to specify the starting address of the
interrupt handler.

« Set thenterrupt_task _flag parameter to not 0, to specify that there is an
interrupt task for the level and to indicate how many pending interrupts can be
gueued before E_INTERRUPT_SATURATION occurs: the interrupt limit.

e Use thenterrupt_handler_ds parameter to specify the data segment for
the interrupt task. The interrupt handler can later load this data segment into
the DS register by callingnter_interrupt. In most cases, an interrupt handler
and an interrupt task are in the same subsystem and share the same data area
(Interrupt handlers written in high-level languages that have a FAR interface,
have their DS registers loaded automatically on invocation.)

See also: EXPORT control for PL/M Compact subsystems

While the interrupt task is processing, the Nucleus disables all lower interrupt
levels. The associated interrupt level is either disabled or enabled, depending on
theinterrupt_task_flag parameter.

Chapter 10 Interrupts

If the number of pending interrupts is less than the interrupt limit specified, the
associated interrupt level is enabled. g\nal_interrupt calls that the handler
makes (up to the limit specified) are logged.

If the associated interrupt level is disabled (the number of pending interrupts is
equal to the pending interrupt limit) while the interrupt task is running, the call to
wait_interrupt enables that level.

Using rge_timed_interrupt or wait_interrupt

You should caltge_timed_interrupt orwait_interrupt from interrupt tasks
immediately after initializing and immediately after servicing interrupts. These
calls suspend the interrupt task until the interrupt handler for the same level
resumes it by invokingignal_interrupt.

If the number of pending interrupts frasignal_interrupt calls is greater than 0
when the interrupt task callge_timed_interrupt orwait_interrupt the task is
not suspended. Instead, it continues processing thesiges_interrupt request.

Interrupt Task Priorities

When a task becomes an interrupt task by cafletginterrupt, the Nucleus

assigns a priority to it according to the interrupt level to be serviced. Table 10-2 on
page 134 shows the relationship between the encoded level (the value used for the
level parameter o$et_interrupt), the Master and Slave interrupt levels, the IDT
slot and the priorities of tasks that service those levels.

|:| Note

If an interrupt task's priority exceeds the maximum priority
attribute of its job, the interrupt task fails to set up and the
Nucleus returns an exceptional condition code. Prevent this by
increasing the job's maximum task priority using
rqe_set_max_priority

System Concepts Chapter 10 133

Table 10-2. Interrupt Level and Task Priority Information

Interrupt Interrupt
iRMX PIC Level IDT Task iRMX PIC Level IDT Task
Encoding Master Slave Slot Priority | Encoding Master Slave Slot Priority
00H 00 64 4 40H 40 96 68
01H 01 65 6 41H 41 97 70
02H 02 66 8 42H 42 98 72
03H 03 67 10 43H 43 99 74
04H 04 68 12 44H 44 100 76
05H 05 69 14 45H 45 101 78
06H 06 70 16 46H 46 102 80
07H 07 71 18 47H 47 103 82
08H MO 56 18 48H M4 60 82
10H 10 72 20 50H 50 104 84
11H 11 73 22 51H 51 105 86
12H 12 74 24 52H 52 106 88
13H 13 75 26 53H 53 107 90
14H 14 76 28 54H 54 108 92
15H 15 77 30 55H 55 109 94
16H 16 78 32 56H 56 110 96
17H 17 79 34 57H 57 111 98
18H M1 57 34 58H M5 61 98
20H 20 80 36 60H 60 112 100
21H 21 81 38 61H 61 113 102
22H 22 82 40 62H 62 114 104
23H 23 83 42 63H 63 115 106
24H 24 84 44 64H 64 116 108
25H 25 85 46 65H 65 117 110
26H 26 86 48 66H 66 118 112
27H 27 87 50 67H 67 119 114
28H M2 58 50 68H M6 62 114
30H 30 88 52 70H 70 120 116
31H 31 89 54 71H 71 121 118
32H 32 90 56 72H 72 122 120
33H 33 91 58 73H 73 123 122
34H 34 92 60 74H 74 124 124
35H 35 93 62 75H 75 125 126
36H 36 94 64 76H 76 126 128
37H 37 95 66 77TH 77 127 130
38H M3 59 66 78H M7 63 130
134 Chapter 10 Interrupts

Using iIRMK Kernel Calls in iRMX Interrupt Handlers

The Nucleus assigns priorities to iRMX interrupt tasks based on the handler's
interrupt level. Less important interrupts are disabled when an interrupt task is
running and can be missed. If this is a problem for your application, you can use
iIRMK calls to signal an ordinary or non-interrupt task. This enables you to control
the task's priority. When you use iRMK Kernel calls in an iRMX interrupt handler,
you need to create the service task, cause the service task to perform specific
functions, and cause the handler to perform specific functions.

Creating the Service Task

You need to create a task to handle the interrupt. When creating the task, set the
task priority so that it will not disable lower-level interrupts.

Things to do from the Service Task

From the service task you need to do the following:

1.

UseKN_create_semaphoreor KN_create_mailboxto create a Kernel
semaphore or mailbox. Store the token in your application's global memory
referenced by the DS.

Callset_interrupt with interrupt_task_flag setto 0. This indicates
there is no associated iRMX interrupt task.

Specify ininterrupt_handler_ds whether the handler's DS is self-loaded
(null selector) or loaded usirenter_interrupt.

Enter an infinite loop in which you wait at the Kernel semaphore or mailbox
for notification of an interrupt. Process the interrupt then wait again, etc.

Things to do from the Handler

From the interrupt handler you need to do the following:

1.

Load your own DS or ussnter_interrupt to load DS from which you access
the Kernel semaphore or mailbox which will signal your service task.

Obtain a scheduling lock by usiK@N_stop_schedulingprior to signaling the

task. This prevents a task switch from immediately occurring as a result of the
signaling call. If a task is waiting, it will be made ready but will not run
immediately.

After doing the required handler-level processingkisesend_unit or
KN_send_datato signal the task that handles the interrupt.

System Concepts Chapter 10 135

4. Send an End of Interrupt (EOI) to the interrupt controller by using the
exit_interrupt call.

5. Release the scheduling lock by usiéig_start_scheduling This call resumes
normal scheduling. Under normal scheduling the highest priority ready task
runs. IfKN_start_schedulingcauses an immediate task switch, the remainder
of KN_start_schedulingand the rest of the handler code will not execute until
the originally interrupted task gets to run again. For this reason, you should
place theKN_start_schedulingcall just prior to the interrupt return (IRET).

Example Using iRMK Kernel Calls in iRMX Interrupt Handlers

136

The following code shows how you can use iRMK Kernel Calls in iRMX interrupt
handlers:

void interrupt IntHdIr(void)

{
UINT_16 local_status;

/*

* Call RQ_enter_interrupt if the handler requires access to a

* specific application Data Segment. The segment is specified in the
* call to RQ_set_interrupt, which establishes the handler.

*

/*
* perform any handler level interrupt processing here
*

/*

* The handler will now signal an ordinary iRMX task which is waiting at
* a Kernel semaphore.

* Get scheduling lock prior to making the signaling call.

*

KN_stop_scheduling();

/*

* The KN_stop_scheduling call prevents a task switch from immediately
* occurring as a result of KN_send_unit.

* If a task is waiting at knsemaphore, it will be made ready but will

* not run immediately.

*

Chapter 10 Interrupts

KN_send_unit(knsemaphore); /* signal ordinary task */

/*

* The rq_exit_interrupt call sends an End of Interrupt (EOI) to the
* interrupt controller.

*

rg_exit_interrupt(IntLevel,&local_status);

/*

* Release the scheduling lock and resume normal scheduling.

* At this point the highest priority ready task will run, possibly

* even before the return from KN_start_scheduling.

*

* If KN_start_scheduling causes an immediate task switch, the remainder
* of KN_start_scheduling and the rest of the handler code will not be
* executed until the *interrupted* task gets to run again. For this

* reason, the KN_start_scheduling call should be the very last call in
* the handler, just prior to the interrupt return (IRET).

*

KN_start_scheduling();

Interrupt Servicing Patterns

Figure 10-2 on page 138 illustrates the relationships between the servicing patterns
of interrupt handlers and interrupt tasks.

The handler performs the simple, less time-consuming functions; it signals the
interrupt task to perform more complicated functions. The handler sends
information to the task in data buffers. The number of pending interrupts
influences when and how interrupts are disabled.

An interrupt handler might call an interrupt task sometimes, but not every time.
For example, an interrupt handler may put characters entered at a terminal into a
buffer. If the character is an end-of-line character, or if the character count
maintained by the interrupt handler indicates the buffer is full, the interrupt handler
callssignal_interrupt to activate the interrupt task to process the contents of the
buffer. Otherwise, the interrupt handler caligt_interrupt and then returns

control to application tasks.

System Concepts Chapter 10 137

Save Need DS

Interrupt current anew is known
handler task DS value to handler
starts content, ? ?

Y
Call Load DS
rq_enter_interrupt from CS

Interrupt
handler
does some
interrupt
servicing

Interrupt
handler calls
rq_signal_interrupt

Interrupt
handler calls
rqe_exit_interrupt

Need
to invoke
interrupt
task
?

Interrupt task calls
rq_wait_interrupt or
rqe_timed_interrupt

Control returns to the
interrupted application tey‘

OM02964

Figure 10-2. Flow Chart of Interrupt Handling

138 Chapter 10 Interrupts

Single Buffer Example

An interrupt handler that reads data from an external device, character by
character, and places the characters into a buffer is an example of a single-buffer
interrupt handler. When the buffer fills, the handler csitjmal_interrupt to

signal an interrupt task to further process the data. There is only one buffer for the
data, so the interrupt level associated with the interrupt task must be disabled while
the task is processing.

Because the task callsdt_interrupt with max_interrupts equal to 1, the OS
automatically disables the interrupt level when the handler invokes
signal_interrupt.

This prevents the interrupt handler from destroying the contents of the buffer by
continuing to place data into an already full buffer. Figure 10-3 illustrates single
buffering.

Interrupt D D

Y

W-2824
1. The handler places data into the buffer.

2. When the buffer is full, the handler calls signal_interrupt to start the task.
3. Upon completion, the task calls wait_interrupt or rqe_timed_interrupt .

Figure 10-3. Single-Buffer Interrupt Servicing

If you require only single buffering in interrupt servicing, specify 1 for the
interrupt_task_flag parameter irset_interrupt.

System Concepts Chapter 10 139

Multiple Buffer Example

In this example, the interrupt handler and the interrupt task provide the same
functions as in the previous example, but they use multiple buffers. In this case,
the interrupt level associated with the task need not always be disabled while the
task runs. Instead, the task can process a full buffer while the handler continues to
accept interrupts. When the handler fills a buffer, it cadjeal_interrupt to start

the interrupt task, as in the first example. However, because the

interrupt_task_flag is greater than 1, the interrupt level is not disabled.
Instead, the handler continues to accept interrupts, placing the data into the next
empty buffer.

While this occurs, the interrupt task processes the full buffer. When the task
completes the processing, it callait_interrupt orrge_timed_interrupt to
indicate that it is ready to accept anotbignal_interrupt request (another full
buffer) and to indicate that the buffer it just finished processing is available for
re-use by the handler.

Because the handler and the task are running somewhat independently, the handle
may fill a buffer and calbignal_interrupt before the task has finished processing

the previous buffer. To prevent thiginal_interrupt request from becoming lost,

the OS maintains a count of pending interrupt requests. Each time the handler call
signal_interrupt, the count of pending interrupts is incremented by one. Each

time the task callsvait_interrupt orrqe_timed_interrupt, the count of pending
interrupts decrements by one. You can use the @@Bmmand to view an

interrupt task and the count of pending interrupts.

See also: vt commandSystem Debugger Reference

If the count of pending interrupts is still greater than 0 after the interrupt task calls
wait_interrupt orrge_timed_interrupt, the task does not wait for the next
signal_interrupt to occur before resuming execution. Instead, it immediately

starts processing the next full buffer. Neither the interrupt task nor the interrupt
handler has to wait for the other. The interrupt handler can continually respond to
interrupts without having the task disable the interrupt level. The interrupt task can
continually process full buffers of data without waiting for the handler to call
signal_interrupt.

140 Chapter 10 Interrupts

Figure 10-4 illustrates this multiple buffering handler.

Interrupt

U]
AN

OM02885
1. The interrupt handler starts filling the empty buffer.
2. The handler calls signal_interrupt to start the task on processing the full buffer.

3. The interrupt task processes the full buffer, then calls wait_interrupt or rge_timed_interrupt
to wait for the next full buffer.

4. The handler keeps filling buffers.
5. The task keeps processing them and calling wait_interrupt or rge_timed_interrupt .

Figure 10-4. Multiple-Buffer Interrupt Servicing

System Concepts Chapter 10 141

Table 10-3 describes the actions of the handler and the task. The table is divided
into three parts: actions of the interrupt handler, actions of the interrupt task, and
the count of pending interrupts specified in ititerrupt_task_flag parameter

of signal_interrupt. The count is set to three. The table shows the actions of both
the handler and the task through time, and the change in value of the count.

Table 10-3. Handler and Task Interaction through Time

Time Interrupt Handler Interrupt Task Count

Task A calls set_interrupt to set 0
handler and task for level, setting
interrupt_task_flag to 3.

A calls wait_interrupt to wait for 0
first request from handler.

Intrpt Handler processes interrupt, starts
filling first buffer.

Intrpt Process interrupt. Buffer is full.
Call signal_interrupt .

A starts processing 1st full buffer. 1
Intrpt Process interrupt. Start filling next
buffer.
Intrpt Process interrupt. Buffer is full. 2
Call signal_interrupt .
Intrpt Process interrupt. Start filling next 2
buffer.
Intrpt Process interrupt. Buffer is full. Call 3
signal_interrupt . Count is 3.
Interrupt level is disabled.
Call wait_interrupt . Start 2

processing next buffer.

Intrpt Process interrupt. Buffer is full. 3
Call signal_interrupt .

Call wait_interrupt . Start 2
processing next full buffer.

142 Chapter 10 Interrupts

The interrupt task, when it initially caliet_interrupt, specifies the number of
pending interrupt requests in tmgerrupt_task_flag parameter. When the
interrupt handler callsignal_interrupt, causing the number of pending interrupts
to be incremented to the maximum:

- The interrupt level is disabled; the handler won't receive further interrupts until
the interrupt task makesvaait_interrupt orrge_timed_interrupt call, which
reduces the number of pending interrupts below the maximum. The OS then
enables the level.

« The E_INTERRUPT_SATURATION condition code returns from
signal_interrupt to the handler, indicating that the number of pending
interrupts limit has been reached. The only exception to this rule is if the
set_interrupt call limit is 1; thensignal_interrupt will not return the
E_INTERRUPT_SATURATION condition code. The level is disabled until
the task callsvait_interrupt orrge_timed_interrupt and decrements the
number of pending interrupts below the limit specified in
interrupt_task_flag in set_interrupt. The interrupt level is enabled,
allowing the handler to resume accepting interrupts.

Always setinterrupt_task_flag equal to the number of buffers that the task

and handler use. If the task seterrupt_task_flag larger than the number

of buffers, the handler will accept interrupts when no buffers are available and data
will be lost. If the task setaterrupt_task flag smaller than the number of
buffers, there will always be empty buffers and space will be wasted.

For example, if you need one buffer, s¢rrupt_task_flag to one. In this

case, the Nucleus disables the interrupt level while the task is processing the buffer.
If you need two buffers, sétterrupt_task_flag to two. Then, the handler

can fill one buffer while the task is processing the other. Additional buffers require
correspondingly higher limits. However, if the task sets the limit to 0, the interrupt
handler operates without an interrupt task.

Disabling Interrupts

The Nucleus masks less important interrupts automatically while the interrupt task
is running. Occasionally you may want to prevent interrupt signals from causing

an immediate interrupt at the task's own level. For example, in a device driver
finish procedure, you may want to disable interrupts from the device before

deleting resources an interrupt handler or task would require. You can disable each
interrupt level except the system clock. You disable a level by usirdishigle

system call. Or you can set tihesrrupt_task_flag parameter in

set_interrupt to 1.

System Concepts Chapter 10 143

144

If the level is disabled, the interrupt signal is blocked until the level is enabled, at
which time the signal is recognized by the CPU. However, if the signal is no
longer emanating from its source, it is not recognized and the interrupt is not
handled.

If the associated interrupt level is disabled while the interrupt task is running and
the number of outstandirgignal_interrupt requests is less than the limit you
specified ininterrupt_task_flag , the call torqe_timed_interrupt or
wait_interrupt enables that level.

An interrupt level can be disabled in these ways:

A task can disable a specific interrupt level by calliigpble, then re-enable
the level by callingenable

The number of pending interrupts received can reach the limit you set in the
set_interrupt system call. Whenever this happens, the OS automatically
disables the interrupt level until the number of pending interrupts falls below
the maximum.

When a task calleeset_interrupt to cancel the assignment of a particular
interrupt handler to a particular interrupt level, the OS automatically disables
that interrupt level. If there is an interrupt task for the leneslet_interrupt
deletes it.Delete_taskdoes not delete interrupt tasks.

To provide preemptive priority-based scheduling, the OS can automatically
disable or re-enable some interrupt levels whenever a task begins running,
depending on the priority of the new running task and the priority of the
interrupt level. This enables high-priority tasks to run faster, without interrupts
from lower-priority external devices. Table 10-4 on page 145 shows the
correlation between the levels disabled and the priority of the running task.

Chapter 10 Interrupts

Table 10-4. Interrupt Levels Disabled for Running Task

Task Disabled Levels Task Disabled Levels
Priority Slave Master Priority Slave Master
0-2 00 -77 MO - M7 65-66 40 - 77 M4 - M7
3-4 01-77 M1 - M7 67-68 41 -77 M5 - M7
5-6 02-77 M1 - M7 69-70 42 - 77 M5 - M7
7-8 03-77 M1 - M7 71-72 43 - 77 M5 - M7
9-10 04 -77 M1 - M7 73-74 44 - 77 M5 - M7
11-12 05-77 M1 - M7 75-76 45 - 77 M5 - M7
13-14 06 - 77 M1 - M7 77-78 46 - 77 M5 - M7
15-16 07 -77 M1 - M7 79-80 47 - 77 M5 - M7
17-18 10-77 M1 - M7 81-82 50-77 M5 - M7
19-20 11-77 M2 - M7 83-84 51-77 M6 - M7
21-22 12 -77 M2 - M7 85-86 52-77 M6 - M7
23-24 13-77 M2 - M7 87-88 53-77 M6 - M7
25-26 14 -77 M2 - M7 89-90 54 -77 M6 - M7
27-28 15-77 M2 - M7 91-92 55-77 M6 - M7
29-30 16 - 77 M2 - M7 93-94 56 - 77 M6 - M7
31-32 17-77 M2 - M7 95-96 57 -77 M6 - M7
33-34 20-77 M2 - M7 97-98 60 - 77 M6 - M7
35-36 21-77 M3 - M7 99-100 61-77 M7
37-38 22-77 M3 - M7 101-102 62 -77 M7
39-40 23-77 M3 - M7 103-104 63-77 M7
41-42 24 - 77 M3 - M7 105-106 64 -77 M7
43-44 25-77 M3 - M7 107-108 65-77 M7
45-46 26-77 M3 - M7 109-110 66 - 77 M7
47-48 27-77 M3 - M7 111-112 67-77 M7
49-50 30-77 M3 - M7 113-114 70-77 M7
51-52 31-77 M4 - M7 115-116 71-77 None
53-54 32-77 M4 - M7 117-118 72-77 None
55-56 33-77 M4 - M7 119-120 73-77 None
57-58 34-77 M4 - M7 121-122 74 -77 None
59-60 35-77 M4 - M7 123-124 75-77 None
61-62 36-77 M4 - M7 125-126 76 -77 None
63-64 37-77 M4 - M7 127-128 7 None
System Concepts Chapter 10

145

Enabling Interrupt Levels from within a Task

Sometimes, an interrupt task may finish with a buffer of data before it finishes its
processing. An example of this is a task that processes a buffer and then waits at
mailbox, possibly for a message from a user terminal, before calling

wait_interrupt . If other buffers of data are available to the handler (the number of
pending interrupts has not reached the limit), this does not present a problem. The
handler can continue accepting interrupts and filling empty buffers. However, if
the interrupt task is processing the last available buffer (i.e., the limit has been
reached), the interrupt handler will not receive further interrupts because the
interrupt level is disabled. This may be an undesirable situation if the interrupt task
takes a long time before callimgpit_interrupt .

To prevent this situation, the interrupt task can ealbleimmediately after it
processes the buffer, enabling its associated interrupt level. This means that while
the task engages in its time-consuming activities, the interrupt handler can accept
further interrupts and place the data into the buffer just released by the task. You
can use this technigue whenever the limit is 1, whether or not you use a buffer.

However, if the interrupt handler fills the buffer and caitmal_interrupt before
the task callsvait_interrupt , these events occur:

- The count of outstandingignal_interrupt requests is incremented, causing it
to exceed the limit you specified.

« The condition code E_INTERRUPT_OVERFLOW is returned to the interrupt
handler to indicate this overflow.

« The interrupt level is again disabled. The interrupt task cannot explicitly
enable the level again until the count falls to or below the limit.

If the interrupt task callenablewhen the count is below the limit, nothing happens
and no exception code is returned. However, if the interrupt task tries to enable the
interrupt level when the count is greater than the limitetieblesystem call

returns the E_ CONTEXT condition code.

146 Chapter 10 Interrupts

If a task other than an interrupt task tries to enable the level, one of three events
may occur:

- Ifthe level is already enabled, teaablesystem call returns the
E_CONTEXT condition code.

- If the noninterrupt task tries to enable the level (presumably following a
disable) and the interrupt task is not running (i.e., the interrupt task has called
wait_interrupt and is waiting for a service request), the level is enabled
immediately.

- If the interrupt task is running, the enable does not take affect until the
interrupt task next invokesait_interrupt .

Handling Spurious Interrupts

When a PIC receives a signal from an interrupting device, it informs the iRMX OS
of the interrupt level. If the interrupting device sends interrupt signals of short
duration (that is, the input line is active for very short periods), the interrupt signal
might be gone when the PIC tries to determine the interrupt level. If this happens,
the PIC cannot determine the interrupt level and thus treats the interrupt as a
spurious interrupt.

Each time the PIC detects a spurious interrupt, it responds as if a level 7 interrupt
had occurred. Thus, if a master PIC detects a spurious interrupt, it responds as if
the interrupt occurred on level M7. If a slave PIC detects a spurious interrupt (for
example, a slave connected to master level M3), it responds as if the corresponding
level 7 interrupt occurred (in this case, level 37).

A spurious interrupt indicates a problem; the PIC detected an interrupt signal but
was unable to determine the level.

Your application system should provide some means of isolating spurious interrupts
to prevent further problems (such as falsely responding to a level 7 interrupt). This
involves judiciously selecting interrupt levels and adding code to all level 7

interrupt handlers (handlers that service master level M7 or slave x@yelberex

ranges from 0 through 7). Once the spurious interrupt has been isolated, the level 7
interrupt handler can either attempt to correct the problem or ignore the spurious
interrupt and resume system processing.

In either case, before the handler returns control it shouléxgliinterrupt to
clear the hardware.

These sections describe several options for isolating spurious interrupts.

System Concepts Chapter 10 147

Calling get_level

One way that a level 7 interrupt handler can check for spurious interrupts is by
invoking theget_levelsystem call as soon as the handler starts runridag. level
returns the level of the highest priority interrupt that a handler has started but not
yet finished processing. If the level returned is not the level associated with the
interrupt handler, the interrupt is spurious.

This method is simple to implement, but it does take more handler time to execute
get_level Your handlers may have speed requirements that prohibit the use of
get_level

Judicious Selection of Interrupt Levels

Another way to isolate spurious interrupts is to avoid connecting devices to level 7
interrupts (master level M7 and slave levélswherex ranges from 0 to 7). If you
have no devices connected to these levels, and thus no handlers servicing them,
spurious interrupts will not affect system operation. Instead, each time a spurious
interrupt occurs, the PIC reacts as if a level 7 interrupt had occurred and sends
control to the appropriate interrupt table entry. Because no handler is associated
with level 7, that entry contains a pointer to the default handler, which returns
control to the interrupted task.

Examining the In-service Register

Another way that a level 7 interrupt handler can check for spurious interrupts is by
immediately reading the ISR (In-Service Register) of the corresponding PIC. If the
BYTE value obtained from that register does not have a 1 in the high-order bit, the
interrupt is spurious. To read the value, the handler must know the port address of
the ISR. In PL/M, these lines perform this check when placed at the beginning of
the interrupt handler:

if ((inbyte (port address of ISR)) & 0x80) == 0
interrupt is spurious

Only use this method of isolating spurious interrupts as a last resort. It requires the
handler to know the address of the ISR, which may vary from system to system.

148 Chapter 10 Interrupts

Interrupt System Calls

These are the system calls that relate directly to interrupts.

set_interrupt
reset_interrupt
exit_interrupt
signal_interrupt
rqe_timed_interrupt
wait_interrupt
enable

disable

get_level
enter_interrupt

Table 10-5 lists common operations for interrupts and the system calls that perform
the operations.

Table 10-5. Interrupt System Calls

Operation Description

assign handler Set_interrupt assigns an interrupt handler and, if desired, assigns an
interrupt task to an interrupt level.

remove Reset_interrupt cancels the assignment made to a level by

interrupt level set_interrupt and, if applicable, deletes the interrupt task for that level.

send EOI Exit_interrupt sends an EOI signal to the PICs. *

invoke task Signal_interrupt invokes interrupt tasks and sends an EOI signal to
PICs. *

put task to Rge_timed_interrupt puts the calling interrupt task to sleep for a

sleep specified time. The task awakens either when the specified time elapses

or signal_interrupt is called.

suspend task Wait_interrupt suspends the calling interrupt task until it is called by an
interrupt handler using signal_interrupt .

enable level Enable enables an external interrupt level.

disable level Disable disables an external interrupt level.

continued
* |f the interrupt is on a slave, this call sends the EOI to the slave and the master.

System Concepts Chapter 10 149

Table 10-5. Interrupt System Calls (continued)

Operation Description
get current Get_level returns the interrupt level of highest priority for which an
level interrupt handler has started but has not yet finished processing.

set up segment Enter_interrupt sets up a previously designated data segment base
address for the calling interrupt handler.

See also: Nucleus system cafiystem Call Reference

How to Use Interrupt System Calls

Figure 10-5 shows the order in which you make interrupt system calls.

enter_interrupt
; wait_interrupt signal_interrupt
set_interrupt rqe_timed_interrupt exit_interrupt
get_level

[[0
) disable
reset_lnterrupt enable
] U
OM02943

1. Make this call from the interrupt task.

2. Make these calls from the interrupt task.

3. Make these calls from the interrupt handler.
4. Make these calls from the interrupt task.

5. Make this call from the interrupt task.

Figure 10-5. Interrupt System Calls

150 Chapter 10 Interrupts

Descriptors

What is a Descriptor?

The Nucleus assigns each object a descriptor when it is created. Each descriptor is
an entry in the Global Descriptor Table (GDT); it contains the physical base

address, the access rights, and the segment size of a given segment. The
descriptors are managed by the OS, which uses them to address an area of memory.
Every segment must have at least one descriptor, or the segment is not addressable.
Figure 11-1 shows how the 16-bit selector indicates an entry in the Global

Descriptor Table. The descriptor contains a base address, to which the processor
adds the offset part of the logical address, forming an address in physical memory.

| Selector \ Offset |

Memory operand

Base address

Y

Segment

Descriptor Table

W-2834

Figure 11-1. Descriptor and Offset Used To Access a Segment's Physical Memory

|:| Note

The paging mechanism that you use with flat model applications
forms addresses differently than in the previous figure.

See also: Segments, in this manual

System Concepts Chapter 11 151

Advanced Uses for Descriptors

The OS enables you to access physical memory anyplace you want to.

AN CAUTION
Descriptors are very powerful. If misused, they can affect the
integrity of the entire OS and can corrupt the interaction between
tasks in an application system. Do not use descriptors unless you
are an experienced programmer with full understanding of iRMX
addressing.

You can create, change, and delete descriptors just like segments. To the OS, the
look like segments. If you callet_typeand specify a descriptor, the type code
returned is for a segment.

Advanced uses of descriptors are:

« To address areas of memory that are not defined when the system is configure
and are therefore excluded from the OS. You might do this for a VGA
controller. A device driver can access the controller using a descriptor you
create.

« To create aliases for existing segments. Aliases enable you to define a
different segment type or different access rights for the same segment. You
might have a piece of code that requires changing in the course of processing.
You could create a read/write segment that you write a change to in the course
of processing. After the change, you could use a descriptor to create an alias
for the segment so you could execute it.

Descriptors for Undefined Memory

152

When you configure the OS, you specify which areas of memory the it uses. The
memory pools for dynamic allocation to jobs comes from this memory. You can
use descriptors to address areas of memory that were not defined when the systern
was configured. These memory areas are not allocated from the Free Space
Manager (FSM), or from the job's memory pool. When you create them, they do
not reduce the size of the job's memory pool, nor do they reduce the size of free
space. When you delete them, only the GDT entry is affected; the memory that
was referenced by the descriptor remains outside of the control of the OS.

See also: Memory pools, in this manual

Chapter 11 Descriptors

Descriptors with Aliases

Using

Using

Using

You can use descriptors to alias existing segments. Aliases provide segments with
alternate names and access rights.

rqe_create_descriptor

A CAUTION
Only userge_create_descriptorwhen you need to alias memory
already allocated to a job as an object, usually a segment, or
when you need to access memory outside the FSM.

Be careful! You can create a descriptor for any physical address;
if you make an error in calculating the address, you may corrupt
system and user data and overwrite program code.

You specify the full 32-bit physical base address and the segment size in
rqe_create_descriptor The segment can lie anywhere in available memory, even
outside the range managed by the OS. The memory can overlap that contained in
other segments, if desired. The OS automatically sets up the new segment as a data
segment with read/write access.

When you create a descriptor, the Nucleus assigns a slot in the GDT with the
physical address and marks the object as a descriptor.

rqe_delete descriptor

When you caltge_delete_descriptor the Nucleus removes the association
between the GDT slot and the memory but does not delete the memory addressed
by the descriptor. The system call returns the GDT slot to the OS for re-use.

rqge_change_descriptor

This system call is intended for system programs that need to access areas of
memory in special ways. You can uge_change_descriptorto access areas of
memory that are not part of the OS and to alias segments, giving you the ability to
change segments that were originally read/write segments to execute segments.

System Concepts Chapter 11 153

Descriptor System Calls
These are the system calls that relate directly to descriptors.

rqe_create_descriptor
rqe_delete_descriptor
rqe_change_descriptor

Table 11-1 describes operations on descriptors and what the related system calls

are.
Table 11-1. Descriptor System Calls

Operation Description
return token Rge_create_descriptor places a descriptor, including the base physical
for segment address and segment size, in the GDT.
delete Rge_delete_descriptor removes the association between a GDT slot and
descriptor an area of memory and returns the slot to the OS for re-use.
change Rge_change_descriptor changes the base address contained in the GDT
address or and/or the size of the segment described.

segment size

See also: Nucleus system cafigstem Call Reference

154 Chapter 11 Descriptors

Multibus Il Live Insertion
Support and Interconnect Space

Live Insertion Support

The iIRMX OS supports the live insertion capability of Multibus Il systems. Live
insertion allows you to replace or add a Multibus Il board in a system with the
power on and with minimal disruption to the other boards.

Multibus Il live insertion requires a particular Central Services Module (CSM) and
backplane. If you are uncertain whether your hardware supports live insertion,
contact the manufacturer(s) or the Multibus Manufacturer’s Group for information.

In a Multibus Il live insertion environment, if an OS on one board depends on
another board (such as a file server) or communicates with another board, it must
know if that board fails or is reset. The iIRMX OS contains mechanisms to detect
these conditions and notify your application. Once the application is notified of
board failure or reset, it can take action based on recovery procedures specific to
your requirements.

Watchdog Timer

The watchdog timer is the main component of iRMX live insertion support. The
watchdog timer detects when another board fails or is reset and informs
applications of the event.

The watchdog timer on each board performs the following functions:

« Periodically broadcasts an existence message to inform other boards in the
system that this board exists.

e Monitors the existence messages of other boards in the system to determine
when they fail or are reset.

» After receiving an existence message from a board, sets an alarm period and
walits for the next existence message. If the board’s alarm period expires
before the expected existence message arrives, the watchdog timer assumes
that the remote board has failed and notifies applications on its own board.

System Concepts Chapter 12 155

« Examines each incoming existence message to determine the slot ID of the
sender. If the sending board has an alarm associated with it, the watchdog
timer deletes the alarm before it expires. The watchdog timer checks the
incarnation number in the existence message to determine if the remote board
has been reset. If the remote board has been reset, the watchdog timer noatifie:
applications on its own board and creates an alarm for the remote board.

Existence messages include the board ID (slot ID) and incarnation number. The
incarnation number gives the watchdog timer enough information to determine if a
remote board has been reset since the last existence message.

Reconfiguration Mailboxes

Reconfiguration mailboxes let your application receive notification of board failure
or reset in the system. You can design a recovery task in your application to act on
the type of failure.

To create a reconfiguration mailbox, first create a data mailbox with the
rq_create_mailboxsystem call. Then use thg add_reconfig_mailboxsystem
call to assign it as a reconfiguration mailbox.

See also: rg_add_reconfig_mailbox rq_create_mailbox system callsSystem
Call Reference
Reconfiguration Mailboxes; Chapter 3

Failure Handling

The watchdog timer on one board can detect that any board in the Multibus 1l
system has either failed or been reset, if those other boards have also enabled a
watchdog timer.

If the watchdog timer detects a failure, it informs all reconfiguration mailboxes on
its board with the appropriate message:

« For aremote host failure, it sends out a WD_HOST_FAILURE message to all
reconfiguration mailboxes on its own board. The WD_HOST_FAILURE
message indicates that the alarm expired without receiving an existence
message from the remote board.

156 Chapter 12 Multibus 11 Live Insertion Support and Interconnect Space

« For a remote host reset, it first sends out a WD_HOST_FAILURE message to
all reconfiguration mailboxes for all incarnations of that board starting with the
last known incarnation and up to but not including the current incarnation
number. Following this message is a WD_HOST_RESET for the current
incarnation. The WD_HOST_RESET indicates that the incarnation number in
the existence message is not the same as previously received from the remote
board.

See also: rg_add_reconfig_mailbox System Call Reference

Internal Failure Recovery

The operating system has internal procedures to handle WD_HOST_FAILURE
messages and WD_HOST_RESET messages. Currently, the ATCS 279/ARC
server and client(s) use this mechanism.

Application Failure Recovery

You can assign any data mailbox as a reconfiguration mailbox by using the
rq_add_reconfig_mailboxsystem call. Write a recovery procedure to wait at each
reconfiguration mailbox. When the watchdog timer sends a message to
reconfiguration mailboxes on a host, your recovery procedure can respond as
required.

For example, suppose you have a client weather station that receives weather data
from a number of server collection stations. You could write a procedure that
would keep your client from asking for data from a server that was not operating,
and that would begin asking for data from that server again after it came back on
line. The following pseudocode example shows how you might create a
reconfiguration mailbox and use it to begin such a recovery procedure.

System Concepts Chapter 12 157

monitor_task()

{
RQ_TOKEN mbox;
UINT_32 msg_size;

RQ_RECONFIG_MSG_STRUC message;

mbox=RQ_create_mailbox(0x20,&exception);
RQ_add_reconfig_mailbox(mbox,&exception);

[*wait for failure or reset message*/

FOR ()

{

msg_size=RQ_receive_data(mbox,&message,RQ_WAIT_FOREVER,
&exception);

/* If get failure message, perform server failure
procedure*/

IF (message.msg_type==RQ_HOST_FAILURE)
server_fail(message.host);

/* If get reset message, perform server recovery
procedure*/

ELSE IF (message.msg_type==RQ_HOST_RESET)
server_recover(message.host);

}

See also: rg_add_reconfig_mailboxsystem callSystem Call Reference
Reconfiguration Mailboxes, Chapter 3

158 Chapter 12 Multibus 11 Live Insertion Support and Interconnect Space

Configuring the Watchdog Timer

You set up the watchdog timer on the (MBII) Multibus 1l hardware screen of the
ICU. From this screen you can:

« Enable or disable the watchdog timer.

« Specify the number of reconfiguration mailboxes that can be in use
simultaneously. Allow enough for any ARC server and each ARC client on
your board in addition to the number needed by your application.

« Set the time the board waits between each broadcast of its existence message.

« Set the time the board waits for the next existence message from other boards
before notifying the reconfiguration mailboxes that the other board failed.
Broadcasts of existence messages must occur more often than wait periods. A
good ratio to use is two broadcasts for every wait period.

See also: MBII screemCU User’'s Guide and Quick Reference

System Concepts Chapter 12 159

What is Interconnect Space?

Interconnect space is a collection of 512 one-byte registers on every board in a
Multibus Il system. The registers contain information about the board: the
manufacturer, model number, memory configuration, and other board-specific
information. The first 32 interconnect registers of every board have an Intel-
specified format and are called theader record The hardware specification for
the board defines the format of the rest of the interconnect registers.

See also: Architecture of interconnect spadaltibus Il Interconnect
Interface Specificatign
the hardware reference manual for your board

How the OS Uses Interconnect Space

The OS uses interconnect space to automate board identification on the parallel
system bus (PSB) at system start-up. The interconnect registers configure a board
dynamically, replacing many functions previously handled by onboard jumpers.
The OS uses interconnect space to determine the available resources and load
system utilities as necessary. Most registers are set during system initialization anc
remain unchanged until the board is reset.

The OS also uses interconnect space when the watchdog timer has been configure
into the system. The watchdog timer detects board failures and resets by
monitoring certain interconnect space registers.

How an Application Uses Interconnect Space

A CAUTION
The interconnect registers are not intended for general run-time
communication. Using the interconnect registers during normal
system operations may have a severe impact on the system
response.

You can corrupt the operation of the board or the system by
specifying incorrect values in interconnect registers.

160 Chapter 12 Multibus 11 Live Insertion Support and Interconnect Space

You can read the interconnect registers to determine current board configuration
and set them to modify identification, configuration, and diagnostic information.
The registers are organized modularly. A group of contiguous registers, called a
record, describes a single function. To access registers at the record level, you
access each register in a record individually. The Nucleus Communication
Subsystem (NCS) provides direct read and write access to individual interconnect
registers in the system. The NCS provides mutual exclusion on the access to any
single interconnect register.

If you want to read or write a series of registers arranged as a record, you must
provide mutual exclusion by using a semaphore or region. You must access
multiple interconnect registers in a well-known record format.

Referencing Interconnect Space

You reference interconnect space for each board using the board's slot ID in the
PSB backplane; the slot number of a host is equal to its host ID. Using slot 31
specifies the host of the calling task, so a task can access registers on its board
without knowing the slot number. You also specify the register number.

Reading and Writing Interconnect Space

You can read or write interconnect space from the command line usiioy the
command. This command performs several functions, such as displaying the slot
ID and product code for each board in the system and displaying register contents.

See also: ic commandCommand Reference

System Concepts Chapter 12 161

Interconnect Register System Calls

162

These are the system calls that you use to access interconnect registers.

set_interconnect
get_interconnect

Table 12-1 lists operations on interconnect registers and what the related system
calls are.

Table 12-1. Interconnect Register System Calls

Operation Description

get settings Get_interconnect gets the value of a specified interconnect
register on a host in the specified slot number.

change Set_interconnect sets the value of a specified interconnect

settings register on a host in the specified slot number. It will not write a

read-only register, but will not return a condition code. Check the

general status register, 24, for results.

See also: Nucleus system cafiystem Call Reference

Chapter 12 Multibus 11 Live Insertion Support and Interconnect Space

OS Extensions and
Type Managers

How Do You Add a System Call?

If more than one job in your application system requires a function that is not
supplied by the OS, you can add the function in these ways:

« Write the function as a procedure and add it to the OS. Invoke the function
with a system call you write. This is called extending the OS; the procedures
you add ar@®©S extensionsThis alternative is the subject of this chapter.

« Write the function as a procedure and place it in a library, using the LIB386
librarian utility. After compiling each job that requires the function, bind the
library to the object module for the job.

« Write the function as a task and allow application tasks to invoke the function
through a mailbox interface.

Table 13-1 compares the ways of adding functions.

Table 13-1. Comparing Techniques for Creating System Calls

OS Extension Library Task
Difficulty Simple Simple Complex
Performance Fair (slow functions) Good (all functions) Poor (quick functions)
Good (slow functions) Fair (quick functions)
System calls Both asynchronous Both asynchronous and | Asynchronous only
and synchronous synchronous
Programmer System Application Application
Duplicate code | Avoided automatically | Hard to avoid Easy to avoid
Relinking Not required Required Not required
New objects Supported Not supported Not supported

System Concepts Chapter 13 163

Creating an OS Extension

Every OS extension consists of an interface and a function procedure. An entry
procedure is optional. Figure 13-1 shows the simplest arrangement of an extensior
The figure shows two OS extensions, each containing one system call. There is no
entry procedure.

DL
A A
[]
Y Y
A B |J
o e
Y z | []

OM02874
1. The application tasks are linked to the interface procedures.
2. The interface procedures are part of the application software.
3. The interface procedures pass control to the function procedures by using a call gate.
4. The function procedures are part of the system software.

Figure 13-1. OS Extension Using Interface and Function Procedures

Call gates redirect flow within a task from one code segment to another. Each
system call uses a call gate to transfer control to the requested function. This
makes it possible to go directly from the interface procedure to the function
procedure. In an ICU-configurable system, you can specify the GDT slot reserved
for call gates using the GSN parameter; in iRMX for PCs and iRMX for Windows,
use the OSX parameter in tirax.inifile. For compatibility between the OSs, use
consecutive slots starting with 440.

See also: GSN parametdCU User's Guide and Quick Reference
OSX parameterSystem Configuration and Administration

164 Chapter 13 OS Extensions and Type Managers

Interface Procedures

An interface procedure connects your application code to an OS extension call
gate. Since they are very small, you can provide an interface procedure for each
supported compilation model. The OS provides a library of interface procedures
for various compilation models of the Intel iC-386, Watcom C, Microsoft C, and
PL/M compilers.

For example, to issuereew_function system call, your task executes a statement
like
new_function (......);

This is a call to an interface procedure, named_function, which transfers
control to the OS. For each system call in your OS extension, you must write a
reentrant interface procedure.

1. The interface procedure uses a call gate to transfer control from the task that
invoked the call to a function procedure.

For example, when transferring control to a function procedure whose call gate
number is 441H, the interface procedure is bound @A file produced by
BLD386 and then calls GATE 0441, which is the PUBLIC name for this gate.
You can find a gate's PUBLIC name in the2file generated by BLD386.

2. If an entry procedure exists, the interface procedure must give a code to the
entry procedure that identifies the function procedure to call. The interface
procedure does this by loading the code into a previously designated register or
onto the stack of the calling task.

3. The entry procedure, when invoked, extracts the code from this register or the
stack.

See also: Assembly Language Reference

System Concepts Chapter 13 165

Function Procedures

The duties of the function procedure are mainly to do what the calling task asks.
One function procedure is required for each customized system call. If there is no
entry procedure, the function procedure should inform the interface procedure of
the system call's exception status by setting CX and DL. Function procedures
should be reentrant and can be written in any high-level language or in assembly
language.

These are the ways to specify a call gate:
« Using the.GATfile created by BLD386
- Using an assembly language macro
See also: Developing applications in assembly language, OS extension
example Programming Techniques
Entry Procedures

The entry procedure is associated with a call gate. Each OS extension with
multiple system calls assigned to it must include a reentrant entry procedure. Its
main purpose is to route the call from the interface procedure to the appropriate
function procedure. This procedure is optional.

Write the entry procedure in assembly language so you can directly access the
stack and the registers. This gives you access to the input parameters passed by t
calling task and the interface procedure. It also enables you to set the CX and DL
registers in the event of an exceptional condition.

The entry procedure must send a code identifying the function procedure called by
the task. The interface procedure does this by loading the code into a previously
designated register or onto the stack of the calling task.

Other possible functions of entry procedures are:
« To set up exception handling for the OS extension, if this is needed.
« To perform a routine common to all system calls in this OS extension.

- To transmit the exception incurred by the function procedure back to the
interface routine in the CX and DL registers.

166 Chapter 13 OS Extensions and Type Managers

Figure 13-2 shows a single OS extension with an entry procedure.

L]
O

A B |0
A
[]
/¥
v z |0

1. The application tasks are linked to the interface procedures.

2. The interface procedures are part of the application software.

3. The interface procedures pass control to the entry procedure by using a call gate.
4. There is one entry procedure for the OS extension.

5. The entry procedure passes control to the designated function procedure.

6. The function procedures are part of the system software.

Figure 13-2. OS Extensions with Entry Procedure

System Concepts Chapter 13 167

Figure 13-3 summarizes, in algorithmic form, what the procedures do.

Calling Do some processing
Task Call an interface procedure --- -
.--->| Do more processing ‘

B — Y

© 1> | Load into a specific pair of registers a pointer to the
parameters on the task's stack

If there is an entry procedure, then
load into a specific register a code identifying the function
being called

Interface : Call a call gate to call the entry procedure or a function

Procedure } procedure oo >

,,,,, Lo Examine the CX register

. . If the CX contains a nonzero value, then call RQERROR to Or
inform the task of the exception

Store CX register contents in a word pointed to by status p

Return (RET)----

*>| If using default RQERROR procedure and if desired, then save
task's exception handler get_exception_handler) and
set up a temporary replacement
(set_exception_handler)

If possible then

do processing common to all function procedures in this

(Optional) OS extension
Entry : Get function code stored by interface procedure
Procedure ! Call the designated function procedure - >

If exception handlers were switched earlier then restore
---->| original Get_exception_handler)
: If notified of an exception by a function procedure, then place
condition code in CX register
Place parameter number In DL register
Return (RET) _,

s ‘
Lo > Obtain input parameters
Function b Perform actions expected by calling task
Procedure Lo Return condition code and any values expected
Lo By Calling Task
b Return (RET)---
. Or;
W-2815

Figure 13-3. Summary of Duties of Procedures in OS Extensions

168 Chapter 13 OS Extensions and Type Managers

Exception Handling for Custom System Calls

Exception handling for custom calls usually results in the OS extension calling
iIRMX system calls. This section lists the appropriate calls.

The interface procedure must inform the calling task (or its exception handler) of
any exceptional conditions that occurred:

1. The function procedure places the condition code in the CX register and the
number of the parameter that caused the error in the DL register.

2. The interface procedure then checks the CX register for the condition code. If
this register contains a value other than 0 (E_OK), an exceptional condition
occurred.

3. The interface procedure calls RQERROR, NUCERROR, or a custom exception
handler you write, or it handles exceptions inline.

RQERROR and NUCERROR Procedures

RQERROR is a procedure in the iRMX OS that is called by the interface
procedures of all iRMX layers except the Nucleus. For example:

1. If atask callxreate_fileand incurs an exceptional condition, the I/O System
returns control to the I/O System interface library linked to that task.

2. The interface procedure in that library calls RQERROR to process the error.

3. RQERROR gets the condition code and parameter number from the CX and
DL registers and then makesignal_exceptiornsystem call to inform the
calling task (or its exception handler) of the exception.

4. Whensignal_exceptiorreturns to the RQERROR procedure, RQERROR
restores CX and DL with the condition code and parameter number and places
a value of OFFFFH in the AX register.

You should link RQERROR to your tasks to ensure that their exception
handlers are called when exceptional conditions occur.

NUCERROR performs the same functions for Nucleus interface procedures as
RQERROR, except it does not csilfinal_exception Instead, when a Nucleus
system call returns with an exceptional condition, the stack contains extra
UINT_16s used to process the exception. They include the exception mode and a
pointer to the exception handler. If the mode specifies calling the handler,
NUCERROR calls the exception handler directly. Figure 13-4 on page 170 shows
the flow of control from an application task to an exception handler when the task
incurs an exception.

System Concepts Chapter 13 169

170

rg_send_message

Nucleus interface library

inerface procedure 1| ______ N
H Nucleus callgate H D I:) rq_send_message =
Call NUCERROR < -.E- D I Exception occurs :
g Return |Z: ‘|
NUCERROR [;r;);e.d.u.ré P o 2 b
Save registerH

oo
EIDI

Call exception handler > Exception handler

Restore registers<€ Return

Pop bytes
Return

...................... OM02941

The task makes a call which goes through the interface procedure and call gate.

The function procedure is called.

An exception occurs and control passes to NUCERROR.

NUCERROR saves the CX and DL registers.

NUCERROR calls the exception handler to process the exception.

The exception handler returns. NUCERROR restores CX and DL and places OFFFFH in AX.
NUCERROR returns, cleaning the stack.

Figure 13-4. Handling Exceptions with an iRMX Exception Handler

Chapter 13 OS Extensions and Type Managers

Writing Your Own RQERROR or NUCERROR Procedure

If you do not want to use the default RQERROR or NUCERROR procedure
provided by the OS, you can write your own. Your procedure can do any functions
needed to inform the application task of the exceptional condition, as long as you
do this:

* Your RQERROR procedure should place OFFFFH in AX and then issue a
RETURN, returning control directly to the application task to avoid the task's
normal exception handler.

« You must always clear three stack words (12 bytes for 32-bit code and 6 bytes
for 16-bit code) on return.

« To ensure that your procedure instead of the default version is called, link it
directly to the interface procedure or include it in a library with the rest of your
interface procedures. When linking modules together, this library should
always precede the Nucleus interface library in the link sequence.

The function procedure must change the exception handler from that of the calling
task to an exception handler for the OS extension. To make this change:

1. The function procedure should first cgdlt_exception_handleror
rqe_get_exception_handleto get and save the task's exception handler
address and exception mode.

2. It should calket_exception_handleorrge_set_exception_handleto set
new values for these entities.

3. Just before returning control to the interface, the function procedure should call
set_exception_handleorrge_set_exception_handleto restore the original
values. In the case of an entry procedure, the entry procedure saves and
restores the exception handler and mode.

Handling Exceptions Inline

If you want the OS extension to handle exceptions inline, you can follow the above
steps, calling eitheset_exception_handleor rqe_set_exception_handlewvith
theexception_mode parameter set to NEVER. This is the simplest and most
straightforward method. However, it uses the three Nucleus calls listed above upon
entry and exit from the function procedure.

Another way of handling exceptions inline is to link your OS extension to your own
version of RQERROR or NUCERROR. The RQERROR procedure may simply
place OFFFFH in the AX register (so that OFFFFH is returned for system calls that
are invoked as functions) and then do a RETURN, to return control directly to the
interface library. The interface library then returns control to your OS extension,
allowing the OS extension to process the exception inline.

System Concepts Chapter 13 171

Figure 13-5 illustrates the flow of control for an OS extension that incurs an

exceptional condition, processes the exception inline, and then returns an exceptiol
to the application task that called it. Notice that both the OS extension and the
application task, although not linked together, are linked to interface libraries and
an RQERROR procedure. The RQERROR procedure linked to the OS extension

returns control to the OS extension.

®

OS Extension
Interface Library

®

Nucleus Interface Library

Nucleus

Customized system
+] call interface procedure.

:] Interface procedure |.

Nucleus system call

®

Exception
occurred

1] rq_signal_exception

> Transfer to

172

: call to% 0S extensionf— > Call to nucleus—+—=—=—>
- . . . "l
7> OS extension ’@ H call NUCERROR-}H
: if Return % @
: : > Return N - -
5 CallRQERROR — | pa— -
Return |: NUCERROR :
] : procedure
. RQERROR procedure |- @ ‘| Place OFFFFH in AX€
. . Pop bytes
Save registers €<— - l'i Return
Call to nucleus @
rq_signal_exception @
q_signal_excep E) | Exception handler <
Restore <€ Return
Return |

H exception handler

OM02942

Follow the numbered arrows. These are descriptions of some steps.

6. NUCERROR places OFFFFH in AX.

7. NUCERROR clears three stack words on return.

10. RQERROR saves the CX and DL registers.

13. RQERROR restores CX and DL places OFFFFH in AX.
Figure 13-5. Control Flow for Handling Exceptions Inline

Chapter 13

OS Extensions and Type Managers

Overriding NUCERROR

To override NUCERROR with your own procedure, return from your version of the
NUCERROR procedure by popping three stack words using RET 12 for 32-bit or
RET 6 for 16-bit code. These words were placed on the stack to use for the call to
rq_signal_exception

Even though your OS extension processes its own exceptions inline, you should
return exceptions to tasks (or other OS extensions) that invoke the custom system
calls. The function procedure of your OS extension should place the condition
code and parameter number in CX and DL, and return to the interface linked to the
application task.

Overriding RQERROR

You can provide your own RQERROR routine and bind it to your programs.

|:| Note

Your routine must contain a public procedure named RQERROR
and you must bind the routine to application code before binding
the UDI or RMX interface library.

In the BND statement, place the name of the file containing your RQERROR
routine before the name of the interface library. This causes your RQERROR
routine to be bound in place of the default routine. Your RQERROR routine must
adhere to the model of segmentation you used in the application program itself.

The source code of the default UDI RQERROR routine is available in the
/rmx386/udidirectory. You can use this source code as an example when building
your own RQERROR routine. The fildCERR.A3&pplies only to COMPACT
applications.

When the RQERROR procedure involsggnal_exception control can pass to an
exception handler. If the default exception handler is in effect, it displays the
appropriate error message at the console and can terminate the application.

Establish your own exception handler by callingset_exception_handleror
dg_trap_exception The new exception handler will be called whenever you
invokerg_signal_exception

System Concepts Chapter 13 173

After an exceptional condition occurs and before your exception handler gains
control, the iIRMX OS:

1. Pushes the condition code on the stack of the program that made the system
call generating the condition code.

2. Pushes the number of the parameter that caused the exception on the stack (1
for the first parameter, 2 for the second, etc.).

3. Pushes a UINT_16 on the stack (reserved).
4, Pushes a UINT_16 for the NPX on the stack.
5. Initiates a far call to the exception handler.

If the exceptional condition was not caused by an erroneous parameter, the
responsible parameter number is 0. If the condition code is E_NDP_ERROR, the
fourth item pushed onto the stack is the NPX status word. The NPX exceptions are
cleared.

Custom Condition Codes

When you add your own system calls, you may need to add your own exceptional
conditions and condition codes. You can use values 4000H to 7FFOH for
environmental conditions and 0CO00H to OFFFOH for programmer errors.

Linking the Procedures

174

For each OS extension, you should produce one library of interface procedures for
each segmentation model in which the calling task can be written. Within each
library, you should have one interface procedure for each custom system call. Eac
module in your system should be linked to the appropriate interface library for each
OS extension that it calls.

For each OS extension, link all the function procedures (and the entry procedures,
if any) along with any OS interface libraries that the procedures need. Do not link
them to any application code because they are connected to the application tasks
with call gates.

Any RQERROR or NUCERROR procedure that you write should be linked to the
appropriate routines:

- To inform the application task of an exception, place your RQERROR
procedure in the interface library you create.

« To process exceptions that your OS extension incurs, link your RQERROR or
NUCERROR procedure directly to the function procedures.

Chapter 13 OS Extensions and Type Managers

- Link the iRMX OS interface library, and the interface libraries for any of the
other subsystems that you use, to the application task and/or the OS extension,
whichever uses these subsystems. If you provide your own RQERROR or
NUCERROR procedure, either for your interface procedures to call or to
process exceptions in your OS extension, this procedure must precede the
iIRMX OS interface library in the link sequence.

Including OS Extensions

Before an interface procedure can successfully transfer control to an OS extension,
you must establish an entry point. You can add your OS extension to the OS at
build time using the ICU or you can add it at boot time usingystwadcommand

from the:config:loadinfofile or you can add it dynamically.

e For ICU-configurable systems:

— To only reserve the gate number when you configure the system, enter the
next available OS extension slot in the GSN parameter and leave the EPN
field blank.

— To have the OS assign your OS extension to a call gate at build time, fill
in both the GSN and EPN parameters.

e For non-ICU-configurable systems, use the OSX loadtime parameter in the
rmx.inifile to reserve your OS extension slot.

+ Use the system caifle_set_os_extensioto include extensions dynamically.
When you invoke the call, enter the gate number and the start address of the
first instruction of your entry or function procedure. You cannot use the same
call gate for more than one OS extension simultaneously.

A CAUTION
Always reset the OS extension with a null value in the
start_address parameter first. Then issue the call again with
the desiredtart_address . Otherwise, the system will not
initialize on a warm reset.

See also: GSN and EPN paramettts) User's Guide and Quick Reference
OSX loadtime parameteBystem Configuration and Administration

System Concepts Chapter 13 175

System Calls for OS Extensions
These system calls are used extensively by OS extensions:

rge_set_os_extension
signal_exception

Table 13-2 lists operations on OS extension system calls and what the related
system calls are.

Table 13-2. OS Extension System Calls

Operation Description

attach call Rge_set_os_extension attaches the entry point address of the

gate OS extension to a call gate.

signal error Signal_exception advises a task that an exceptional condition
has occurred in an OS extension.

See also: Nucleus system cafigstem Call Reference

176 Chapter 13 OS Extensions and Type Managers

Protecting Objects From Deletion

Normally, you delete an object by a call to thedete_system call corresponding to
the object's type. However, you can usedisable_deletionsystem call to make
the object immune to this kind of deletion. A subsequent calhéble_deletion
removes the immunity. You can use deletion immunity anywhere in your
application, not just in OS extensions.

An object can have its deletion disabled more than once. An olyesetiding
depthis the number of times the object has had its deletion disabled.

Each call tadisable_deletionmust be countered by a callénable_deletion
before the object can be deleted.

Usually, an object cannot be deleted until its disabling depth is 0. The only
exception is that a call force_deletedeletes objects whose disabling depth is
one. Also, callingenable_deletionfor an object whose deletion depth is O results
in the E_CONTEXT condition code.

A CAUTION
When you attempt to delete an object whose disabling depth is
too high to permit deletion, the deleting task goes to sleep. The
task remains asleep until the object's deletion depth becomes
small enough to permit deletion. At that time, the object is
deleted and the deleting task is awakened. Because these
circumstances can cause system deadlock, be careful when
deleting objects and when disabling deletion.

Never disable deletion in applications that rely on <Ctrl-C> for
program termination.

System Concepts Chapter 13 177

System Calls for Deletion Immunity
These system calls are used for deletion immunity:

force_delete
enable_deletion
disable_deletion

Table 13-3 lists deletion immunity operations and what the related system calls are

Table 13-3. Deletion Immunity System Calls

Operation Description

delete object Force_delete deletes objects whose disabling depths are 0 or 1.

increase Disable_deletion increases the deletion disabling depth of an
disabling object by one.

enable Enable_deletion removes one level of deletion disabling from an
deletion object.

178 Chapter 13 OS Extensions and Type Managers

Type Managers and Custom Objects

Some applications require both custom objects and system calls for manipulating
them. A type manager is an OS extension that provides these services. If you
require custom objects, you must write a manager for each type. The duties of type
managers are:

« Creating objects of the new type.
« Deleting objects of the new type.

« Optionally providing the system calls that your tasks can invoke to create,
manipulate, and delete objects of the new type.

This section describes creating and deleting objects of a new type.

See also: Appendix A for an example that creates and deletes objects of a new
type;
Extending iRMX,Real-Time and Systems Programming for BZs
Christopher Vickery

Creating New Obijects
Creating custom objects requires:
« Creating the type
- Creating objects of that type

In create_extensionyou specify the type code for the new object and whether you
want a deletion mailbox. If you specify a mailbdelete_extensiorand
delete_jobwill send composite objects to the mailbox for the type manager to
delete. Otherwisalelete_extensioranddelete_jobwill delete composite objects.
Thecreate_extensiorsystem call returns a token for the new type. The token
represents a license to create objects of the new type.

Thecreate_compositesystem call creates objects of the new type; it accepts the
token returned frornosreate_extensioras a parameterCreate_compositealso

accepts a list of tokens for the component objects that will compose the new object.
It returns a token for the new object, callecbanposite objectFigure 13-6 on

page 180 shows the order for creating composite objects.

System Concepts Chapter 13 179

create_extension [create_composite]

OoM02887

Figure 13-6. Composite Object System Call Order

When you create a composite object:

« Its component objects are all IRMX objects, either provided by the iRMX OS
or by other objects you have created.

« No structure is imposed on composite objects of a given extension type. Two
objects of the same extension type can be completely different in structure or
in the number of component objects they comprise. This feature allows for
maximum flexibility in the creation of new objects.

Once a type manager creates a new object type by calbate _extensionthe

type manager owns the type. Only the type manager can create composite objects
of that type. In addition, when it creates composite objects, the type manager can
request that a token for the composite object be sent back to the type manager
when the object has to be deleted.

Deleting Composite Objects and Extension Types

Delete_compositaleletes a particular composite object, but not its components.
Delete_extensiordeletes a specified extension type, and either deletes all
composites of that type or sends them to a deletion mailbox, in which case the type
manager must delete them.

Delete_joh also deletes composite objects as a part of its processing. Although
delete_jobcannot delete extension types (it returns an exception code if the job
contains any extension objects), it can delete composites or send tokens for them t
deletion mailboxes where their type managers delete them.

180 Chapter 13 OS Extensions and Type Managers

Using delete_job

When a task calldelete_joh the Nucleus normally deletes every object in the job.
However, if the job contains a composite object whose extension has a deletion
mailbox, the Nucleus sends the token for the composite object to the deletion
mailbox. The Nucleus then waits until the type manager deléte_composite
before continuing the deletion process. In that case:

1. The type manager must wait at the deletion mailbox to receive the tokens for
the objects to be deleted.

2. It must perform any special processing required to delete the composite object.
For example, it might want to wait until all tasks have stopped using the
composite.

3. It has the option of deleting those component objects not contained in the job
being deleted. It cannot, however, delete any objects contained in the job
being deleted or it will incur an exceptional condition. (This is not a problem
because the objects in the job being deleted will automatically be deleted
during thedelete_jobcall.)

4. It must calldelete_compositewhich deletes the composite object (but not the
component objects) and informs the Nucleus that the type manager has
finished the special processing that deletes the composite object. After the
type manager calldelete_compositethe Nucleus resumes ttelete_job
processing. If the type manager fails to dallete_compositethedelete_job
system call will not finish processing.

System Concepts Chapter 13 181

Figure 13-7 shows the type manager's involvement idefete_jobprocess.

[

delete_job

LD 0

—>
LD
LD A
>
_______ < [l
E : A
delete_composite
A [l

OM02888
1. The task calls delete_job .
2. The Nucleus sends the composites to the deletion mailbox.

3. The type manager waits at the mailbox. It performs any cleanup required and calls
delete_composite .

4. Control returns to delete_job .

Figure 13-7. Type Manager Involvement in Delete_job

The type manager is not required to delete all objects. The Nucleus sends the
tokens for all other composite objects to their own deletion mailboxes, where their
type managers are responsible for deletion. Therefore, all the component objects
are eventually deleted, as long as they are in the job being deleted.

In the course oflelete_joh the Nucleus deletes any Nucleus objects in the job. It
sends the tokens for any I/O System, EIOS, or Human Interface objects to their
respective deletion mailboxes, where the subsystems themselves delete the object

182 Chapter 13 OS Extensions and Type Managers

Using delete_extension

You can calldelete_extensiorio delete an extension type. Use this call when you
no longer need to create composite objects of a given extension type. When you
call delete_extensiorand the extension has a deletion mailbox, the Nucleus sends
the tokens for all composite objects of that extension type to the deletion mailbox.
Then the Nucleus waits until the type manager chdlste_compositdbefore

sending the next composite to the mailbox. The type manager has responsibilities
duringdelete_extensiorsimilar todelete_joh

1. First, it waits at the deletion mailbox for the objects' tokens.
2. Then, it handles any special processing necessary to delete the object.

3. Finally, it callsdelete_compositéo delete the composite. The type manager
must calldelete_compositdor each token it receives at the deletion mailbox.
If it does not, thalelete_extensiorsystem call will not finish processing.

However, unlikedelete_jobprocessing, the type manager has the choice during
delete_extensiorof whether or not to delete individual component objects. If it
wishes to delete the component objects, the type manager must explicitly delete
them. Delete_extensiordoes not delete any component objects.

Deleting Nested Composites

A composite object can contain objects of any type, and as a result, some of its
component objects may be composite objects themselves. This can cause problems
for type managers when they delete the composite objects if the type manager for
any of the composite objects depends on the existence of any of the other
composite objects to complete its processing.

For example, suppose objects A and B are composites in the same job. They have
different extension types, and B is a component of A. Each composite has a type
manager that performs special cleanup functions before it can delete the
corresponding composite. If neither type manager requires information contained
in the other composite to perform its special processing, the deletion process can
proceed without difficulty.

However, if the type manager for composite A requires some information

contained in composite B to complete its processing, the deletion process becomes
more complex. For this deletion scheme to work, you must guarantee that
composite A will be deleted before composite B. Thus, you must know the order

in which thedelete_jobcall deletes objects and sends composites to deletion
mailboxes, so that you can set up your composites correctly.

System Concepts Chapter 13 183

Delete_jobdeletes composite objects before it deletes non-composite objects. It
deletes composite objects on a last-in-first-out basis; that is, in the reverse order
from which they were created. Therefore, a type manager can depend on receiving
the tokens for composite objects that it creates before the Nucleus deletes the
component objects contained in them. The only exception is when a composite
(composite A) is created before another composite (composite B), and composite B
is inserted as a component into composite A ualteg_composite In this case,
composite B will be deleted first, and the type manager of composite A cannot rely
on the existence of composite B when it receives composite A’s token for deletion.

Writing a Type Manager
A type manager consists of two parts:

- The initialization part creates the type and optionally creates a deletion
mailbox to which the system can send tokens for objects when deleting either
jobs or the type itself.

- The service part provides system calls so tasks can create and manipulate
objects of the type.

Because the initialization phase must be completed before any task attempts to
obtain tokens for objects, you should execute the initialization part early in the life
of the system.

« In an ICU-configurable system, the task should be part of the initialization task
of a first-level user job to ensure early execution.

« In non-ICU-configurable systems, make the type manager part of the first
sysloaded job. Add the -w option (synchronization), tosifsdoadcommand
and implement the necessary synchronization steps in the type manager's
initialization module.

Write the service part of the type manager as an OS extension.

See also: USERJ screg@U User's Guide and Quick Reference
sysloadcommandCommand Reference

184 Chapter 13 OS Extensions and Type Managers

Type Manager System Calls

These are the system calls that you use to manipulate extensions and composite
objects:

create_extension
delete_extension
create_composite
inspect_composite
alter_composite
delete_composite

Table 13-4 lists operations on extensions and composite objects and what the
related system calls are.

Table 13-4. Type Manager System Calls

Operation Description
create Create_extension creates an extension object that you may use
extension as a license for creating composite objects.
delete Delete_extension deletes an extension object and optionally,
extension sends all composite objects of that extension type to the
associated deletion mailbox.

create Create_composite creates a composite object of a specified
composite extension type.
list Inspect_composite returns a list of the component object tokens
components contained in a composite object.
replace Alter_composite replaces a component in a composite object
component with either a null or another object.
delete Delete_composite deletes a composite object.
composite

See also: Nucleus system cafigstem Call Reference

System Concepts

Chapter 13 185

IRMK Kernel
Programming Concepts

The iIRMK Kernel is a part of the Nucleus that provides high performance task and
time management and message passing; it enhances the OS. This chapter describes
how to use the Kernel within the iRMX OS.

The Kernel does not provide the protection and validation features available in the
Nucleus:

« Kernel system calls do not validate parameters. Use Nucleus system calls
instead, if you need parameter validation.

- The Kernel assumes that all memory reference pointers it receives are valid.
- Kernel objects are not protected against unexpected deletion.

- The Kernel uses the flat, 4 Gbyte addressing capabilities of the microprocessor.
It does not use segmentation.

Use the Kernel in these situations:

e Only for very well-tested code

- For isolated parts of the application
* When performance is critical

It is a good idea to write, test, and debug your application using Nucleus system
calls. When the application is correct, substitute Kernel system calls where
appropriate.

What Does the Kernel Provide?

Object Includes creating, deleting, and manipulating object types

management defined by the Kernel. You must provide memory for Kernel
objects and may allocate memory beyond the Kernel's needs to
store application-specific state information associated with the
object.

Time Includes a real-time clock, alarms that simulate timer interrupts,
management and the ability to put tasks to sleep.

Task Includes scheduling locks that protect the currently running task

management from being preempted and task handlers, which perform
additional functions during task creation, deletion, and
transition.

Memory Implements memory pools from which it allocates memory in
management response to application requests.

Kernel Object Management

Each Kernel object type has its own set of operations and unique attributes. The
Kernel defines these object types:

e Semaphores
+ Mailboxes

+ Memory Pools

|:| Note

A Kernel object is not the same as an iRMX object. You cannot
use iIRMX calls with Kernel objects. Conversely, you cannot use
Kernel calls with iRMX objects.

You can create objects anywhere in the application's memory space. You must
provide sufficient memory to contain the data structures that define the object.
Literals declared in the Kernel's include files specify the amount of memory the
Kernel needs for each object type. You may allocate extra memory for the object,
to be used by the application.

When you create an object, the Kernel returns a 32-bit kn_token that identifies the
object. Thereafter you access the object by passing the kn_token to the appropriat
system call.

The Kernel provides system calls to delete objects that you no longer need.
Deleting an object removes the Kernel's association of state data with an object.

A CAUTION
The Kernel does not protect itself against unexpected object
deletion. Do not attempt to access objects either while they are
being deleted or after they have been deleted.

188 Chapter 14 iRMK Kernel Programming Concepts

Kernel Semaphores
The kinds of Kernel semaphores are:
« FIFO semaphores, which enable tasks to queue in First-In, First-Out order.
« Priority semaphores, which enable tasks to queue in priority order.

« Region semaphores, which are a special type of semaphore with priority
adjustment capabilities. Region semaphores are useful for mutual exclusion.

FIFO and Priority semaphores are general-purpose semaphores that can have up to
65,535 units.

See also: Semaphores, Chapter 4

Creating and Deleting Semaphores

Create semaphores with tK&l_create_semaphoresystem call and delete them
with theKN_delete_semaphoresystem call. To create a semaphore specify:

« The memory area for the semaphore object.
« The kind (priority-based or FIFO task queue, or region semaphore).

« The initial number of units in the semaphore, 0 or 1. If a region is created with
0 initial units, the creating task is the owner of the region and the region cannot
be used by other tasks until the creating task sends a unit.

To provide additional units to a semaphore after creation, usé\thseend_unit
system call once for each additional unit you need. Region semaphores cannot
accept more than one unit.

If a semaphore is deleted, all tasks in the semaphore's task queue are awakened
with an E_ NONEXIST status code.

Sending and Receiving Semaphore Units

Request a unit from a semaphore withKiNe receive_unit system call; you must
repeat the call for each unit you need. If the semaphore contains units, the count of
units decrements by one and the task proceeds. If the semaphore has no units and
the task is willing to wait, the task goes to sleep in the semaphore's task queue.
Send a unit to a semaphore with K¢ _send_unit system call. If tasks are

waiting at the semaphore, the task at the head of the queue is awakened.

System Concepts Chapter 14 189

Using Region Semaphores

A region semaphore can provide mutual exclusion and synchronization. If a task
must get a unit from a region before entering a critical section, and if it returns the
unit when leaving the area, only one task will ever execute in the critical section at
atime. Region semaphores contain a maximum of one unit and support priority
adjustment.

Kernel region semaphores are similar to iRMX regions. iRMX regions additionally
protect a task inside the region from being suspended or deleted.

See also: Regions, Chapter 5

Priority Adjustment

The same priority bottleneck and inversion problems may arise when using non-
region Kernel semaphores as Nucleus semaphores. Region semaphores, like
Nucleus regions, provide dynamic priority adjustment to avoid blocking a high
priority task.

Kernel Semaphore System Calls

These are the system calls you use to manage Kernel semaphores:

KN_create_semaphore
KN_delete_semaphore
KN_receive_unit
KN_send_unit

Table 14-1 lists operations on semaphores and what the related system calls are.

Table 14-1. Kernel Semaphore System Calls

Operation Description

create KN_create_semaphore creates a semaphore of the specified
semaphore type with 0 or 1 initial units.

delete KN_delete_semaphore deletes the specified semaphore.
semaphore

request unit KN_receive_unit requests a unit from the specified semaphore.
return unit KN_send_unit adds a unit to the specified semaphore.

190 Chapter 14 iRMK Kernel Programming Concepts

Mailboxes

When you create a Kernel mailbox, you may reserve one of the slots in the mailbox
message queue for a high priority message. This enables the mailbox to
accommodate at least one high priority message even if the queue is full.

Creating and Deleting Mailboxes

Create mailboxes with theéN_create_mailboxsystem call and delete them with
theKN_delete_mailboxsystem call. To create a mailbox specify:

« The memory area for the mailbox.

« The message size for the mailbox.

« The maximum number of messages the mailbox can hold.

« Whether the task queue will be priority based or FIFO.

« Whether the mailbox will reserve a slot for a high priority message.

If you delete a mailbox and there are tasks waiting for messages, all tasks are
awakened with an E_NONEXIST status code and all messages queued at the
mailbox are lost.

Sending and Receiving Mailbox Messages

Send ordinary messages to a mailbox withkKhie send_datasystem call. If a
task is waiting at the mailbox, it receives the message. Otherwise, the message is
gueued. If the mailbox is full, an exception returns.

Send high priority messages with #iN_send_priority_data system call. If a
task is waiting at the mailbox, it receives the message. Otherwise, the message is
placed at the head of the queue. If the mailbox is full, an exception returns.

Specify the actual message size, which must be less than or equal to the maximum
message size for the mailbox. The maximum message size is the size you specified
when creating the mailbox. TheN_send_dataandKN_send_priority _data

system calls return a status value indicating either that the message was accepted or
the mailbox was full.

Receive data from a mailbox with tK&N_receive_datasystem call. If the

mailbox contains at least one message, the message at the head of the queue is
returned to the caller. This is either the oldest message or the latest high-priority
message. You must provide a message area equal to the maximum message size of
the mailbox for the task.

System Concepts Chapter 14 191

The call returns the actual size of the received message and a status value
indicating:

« The task received a message.
« The time limit expired while the task was waiting.
« The mailbox was deleted while the task was waiting.

If no messages are available and the task is willing to wait, the task is put to sleep
in the task queue.

Handling Mailbox Overflow

192

If a mailbox contains its maximum number of messages when a message is sent,
the Kernel returns an exception stating that the mailbox limit was exceeded. The
mailbox enforces flow control by rejecting messages when the queue is full.
Depending on your application, there are several ways to handle mailbox overflow:

- Design the application so mailboxes never overflow.
« Consider mailbox overflow a fatal system error.
« Abort the activity causing the overflow.

« Send the message again, if you know that a task received a message, creating
room in the message queue.

If you reserved a slot for a high priority message, mailbox overflow may be
indicated when sending an ordinary message, even though the mailbox can still
accept a high priority message.

Chapter 14 iRMK Kernel Programming Concepts

Kernel Mailbox System Calls
These are the system calls you use to manage mailboxes:

KN_create_mailbox
KN_delete _mailbox
KN_receive data
KN_send_data
KN_send_priority_data

Table 14-2 lists operations on mailboxes and what the related system calls are.

Table 14-2. Kernel Mailbox System Calls

Operation Description
create KN_create_mailbox creates a mailbox in the specified area.
delete KN_delete_mailbox deletes the specified mailbox.

get message KN_receive_data requests a message from the specified
mailbox.

send message KN_send_data sends a message to the specified mailbox.
KN_send_priority_data sends a high priority message to the
specified mailbox.

System Concepts Chapter 14 193

Kernel Time Management

The Kernel provides time management calls that allow tasks to create alarms
(virtual timers) and to sleep for a specified amount of time. The Kernel also
provides a real-time clock.

Using the Kernel Tick Ratio

194

The Kernel uses the Nucleus to provide an external source of periodic signals to
implement its time management facilities. All time values in the Kernel are
specified in units of clock ticks. You decide the frequency of the clock ticks.

You can use the Kernel Tick Ratio (KTR) parameter to configure support for timed
events at a granularity of less than 10 milliseconds (the Nucleus clock tick
interval). To use this feature, you must adhere to these rules:

1. You must use Kernel calls when you need an event granularity of < 10 ms.
The Nucleus event granularity is still 10 ms.

2. When mixing Kernel and iRMX system calls, remember that a Nucleus tick
interval may not equal a Kernel tick interval.

3. The smaller the Kernel tick interval, the higher the system overhead for
handling clock interrupts. This does not affect average and maximum interrupt
latency.

See also: KTR paramete€U User's Guide and Quick ReferersmedSystem
Configuration and Administratign
RQSYSINFO structureSystem Call Referenc® programmatically
get the KTR value

The KTR parameter sets the ratio of the Nucleus tick interval (10 milliseconds) to
the Kernel tick interval.

KTR Kernel tick

01 10 milliseconds (default)
02 05 milliseconds

05 02 milliseconds

10 01 millisecond

20 500 microseconds

Do not change the default value of KTR unless you need a Kernel tick interval
smaller than 10 milliseconds. The KTR parameter only affects the tick interval in
Kernel system calls. The value of KTR does not affect timed wait operations using
Nucleus calls.

Chapter 14 iRMK Kernel Programming Concepts

The Kernel provides a real-time clock by counting clock ticks. Rieget_time
andKNE_get_time system calls return the current value of the counter. The value
of the real time clock is set to 0 at initialization. You may set the count to any
value by using th&N_set_timeor KNE_set_time system calls.

You can measure elapsed time by reading the real-time clock with the
KN_get_time or KNE_get_time system calls at the beginning and end of the
interval to be measured. By subtracting, you determine the elapsed time.

Using Alarms

The Kernel lets you to create alarms to simulate timer interrupts. Alarms invoke
alarm handlers that you write. Alarm handlers operate in similar fashion to iRMX
interrupt handlers. You cannot make blocking calls from them. Alarm handlers
run in the context of the timer interrupt handler. Your alarm handler should be as
short as possible since it is called with interrupts disabled and scheduling stopped.

Two kinds of alarms exist: single-shot alarms and repetitive alarms. A single-shot
alarm invokes its alarm handler once when its time interval elapses. The alarm
then becomes inactive and its memory can be re-used. A repetitive alarm invokes
its alarm handler after its time interval elapses and then resets itself for the same
time interval. It continues to invoke its handler until the alarm is explicitly deleted.

|:| Note

You cannot write alarm handlers in applications that use the flat
memory model.

Create an alarm with tH€N_create_alarm system call and delete it with the
KN_delete_alarmsystem call. To create an alarm specify:

« The memory area in which the alarm object will exist.
« Whether it is a single shot or a repetitive alarm.
« The time interval for which the alarm is set.

« A pointer to the application handler that the alarm invokes when the time
period elapses.

After a task calls th&N_delete_alarmsystem call, the handler associated with

that alarm will no longer be invoked and the memory that the alarm occupies can
be re-used. Alarms may be deleted whether or not they have invoked the
associated alarm handler. This means that deleting an alarm does not have to be
synchronized with the expiration of the alarm.

System Concepts Chapter 14 195

TheKN_reset_alarm system call resets an alarm, returning it to its initial state.
KN_reset_alarmuses the alarm's kn_token; the alarm parameters are not required.
Both single shot and repetitive alarms can be reset. Regardless of whether the
alarm's time limit has expired, resetting an alarm returns it to its creation state and
starts it running as if it were just set. Resetting a single shot alarm after it has gone
off is equivalent to setting the alarm again.

Using Sleep

The Kernel enables tasks to sleep for a specified time, usig\thgleepsystem

call. The amount of time the task will be in the asleep state can vary from no time
to forever. If the specified time is KN_DONT_WAIT, the task will not go to sleep.
A KN_DONT_WAIT time limit gives the processor to another task of equal

priority, if one exists.

KN_WAIT_FOREVER means the task will never wake up. When a task sleeps
forever, it is effectively deleted, but its memory is not released. Use the
KN_WAIT_FOREVER literal only with blocking system calls, indicating that the
task will wait until an event occurs to wake it. For example, a task might wait
forever until a message arrives at a mailbox.

Time Management System Calls
These are the system calls you use to manage time:

KN_create_alarm
KN_reset_alarm
KN_delete alarm
KN_get_time
KN_set time
KN_sleep
KNE_get_time
KNE_set time

196 Chapter 14 iRMK Kernel Programming Concepts

Table 14-3 lists operations on alarms and time and their related system calls.

Table 14-3. Time Management System Calls

Operation Description

create alarm KN_create_alarm creates and starts a virtual alarm clock.

delete alarm KN_delete_alarm deletes an existing alarm.

get elapsed KN_get_time returns the number of clock ticks that have

time occurred. KNE_get_time is an extended version that allows use
of 32-bit data types.

reset alarm KN_reset_alarm returns an existing alarm to its creation state.

reset time KN_set_time sets the counter that the Kernel uses to count the

clock ticks that have occurred. KNE_set_time is an extended
version that allows use of 32-bit data types.

put task to KN_sleep puts the calling task in the asleep state for the
sleep specified number of clock ticks.

Kernel Task Management

The Kernel uses the same scheme of preemptive, priority-based scheduling as the
Nucleus. In addition, it provides ways for controlling or monitoring task switches.

You can protect the currently running task from being preempted by performing a
scheduling lock. A scheduling lock provides protection for the running task; the
running task can make other tasks ready without losing control of the processor.
The Kernel delays a task switch to the running state until the task releases the
scheduling lock. Then the running task may be preempted.

|:| Note

Scheduling locks delay the preemptive, priority-based scheduling
of the OS. Only use them if absolutely necessary and be very
careful.

To lock scheduling, use théN_stop_schedulingsystem call. Calling
KN_stop_schedulingmultiple times causes multiple scheduling locks to be in
effect. Any scheduler task state transitions that would move a task from the
running state to the ready state are delayed until scheduling is resumed.
KN_stop_schedulingdoes not prevent a task switch if the running task becomes
blocked or calls one of the rescheduling system calls.

System Concepts Chapter 14 197

To resume scheduling, c&N_start_scheduling You must call
KN_start_schedulingonce for each lock in effect. Normal task switching resumes
after you remove all scheduling locks. Tasks signaled into operation by interrupt
handlers won't run until scheduling is resumed.

[]

Note

A scheduling lock does not prevent task switching in all cases. A
system call that causes blocking or rescheduling can initiate a
task switch even if there is a scheduling lock.

Disabling interrupts and locking scheduling can cause the system
to be less responsive.

Controlling Task State Transitions

Before making a system call, you must determine whether a task switch is
appropriate and perform a scheduling lock if necessary. Kernel system calls can be
classified into four categories, based on their ability to cause state transitions:

198

Non-scheduling system calls never cause state transitions.
KN_create_semaphoras an example of a non-scheduling system call.

Signaling system calls can put tasks into the ready queue and potentially cause
state transitionskKN_send_unitis an example of a signaling system call. If
invoking such a system call would cause a higher priority task to become
ready, the running task can use a scheduling lock to keep control of the
processor.

Blocking system calls will cause the Kernel to put the running task to sleep
(block) and thus initiate a state transitiddN_receive_unitis an example of

a blocking system call. When you UsH_receive_unit, rescheduling occurs
unless the unit is actually available. A scheduling lock does not prevent a
system call in this category from causing rescheduling.

Rescheduling system calls always cause rescheduling or will cause
rescheduling when invoked on the running task, regardless of a scheduling
lock. For exampleN_sleepalways causes rescheduling.

Chapter 14 iRMK Kernel Programming Concepts

Using Task Handlers

You may configure the Kernel to invoke application procedures, daltéd
handlers which you write to perform additional functions during these situations:

« Task creation
« Task deletion
« Task switching

Your handlers can enhance the Kernel operations. By writing these procedures,
you can add functionality and/or handle error situations. For example, if your
application requires a hierarchical structure for tasks, you can write a task handler
to implement the setup when the task is created.

These are the task handlers you can write:
« create_task_handler
« delete_task handler
« task_switch_handler

Task handlers may invoke non-blocking Kernel system calls to perform various
functions. The Kernel expects these procedures to be as correct as one of its own
internal calls.

|:| Note

Incorrect task handler code can impact performance and can
corrupt application operation. The duration of these handlers can
adversely affect system performance and interrupt latency.

The Kernel invokes task handlers when the task makes a system call such as the
Nucleus system callg|_create_taskorrg_delete_task or when a system call
causes a task switch or change in priority of a task. All handlers are invoked with
interrupts disabled and scheduling locked. Handlers cannot enable interrupts or
unlock scheduling.

System Concepts Chapter 14 199

Figure 14-1 illustrates the interrelation between the Kernel and task handlers.
application has installed task handlers. When any task creation, deletion or
switching occurs after the handlers have been installed, the Kernel calls the
appropriate handler.

\
o Task

Application } handlers

|
\L A
Nucleus
\4
Kernel

OM01095

Figure 14-1. Kernel Invoking of Task Handlers

Installing and Removing Task Handlers

200

You install task handlers dynamically with ti8l_set_handlersystem call. You
may install multiple handlers of each type. ¢ _reset_handlersystem call
dynamically removes your task handler.

|:| Note

Multiple task handlers degrade the performance of your system;
remove them usingN_reset_handlerwhen they are not needed.

This example describes Kernel operation using task creation handlers.

1. With no task creation handlers installed, the application calls the Nucleus
system caltg_create_task No handlers are invoked.

2. UsingKN_set_handler, the application installs two task creation handlers
(createA_hdlr andcreateB_hdlr)

Chapter 14 iRMK Kernel Programming Concepts

The

Then, when an application calls tlog create_tasksystem call, the Kernel
initializes the new task. Before the task is allowed to execute, the Kernel calls
createA_hdlr , thencreateB_hdIr . Finally, it enables the task to execute.

Next, the application callsN_reset_handlerto removecreateA_hdlr.
Whenrq_create_taskis next called, the Kernel initializes the new task. It
callscreateB_hdIr , then enables the task to execute.

Now the application reinstaltseateA_hdlir usingKN_set _handler. When
rq_create_taskis called, the Kernel initializes the new task, calls
createB_hdlr , thencreateA_hdir , then enables the new task to execute.

Finally, the application removes both task creation handlers using
KN_reset_handler. Whenrg_create_taskis called, the Kernel performs only
its standarareate taskfunctions.

See also: Kernel system calls and hand®ystem Call Reference

Task Management System Calls

These are the system calls you use to manage tasks:

KN_start_scheduling
KN_stop_scheduling
KN_set_handler
KN_reset_handler

Table 14-4 lists Kernel task operations and their related system calls.

Table 14-4. Task Management System Calls

Operation Description

restart KN_start_scheduling cancels one scheduling lock imposed by

scheduling KN_stop_scheduling. When it cancels the last outstanding
schedule lock, the Kernel carries out all delayed task state
transitions.

lock KN_stop_scheduling temporarily locks (or places an additional

scheduling lock on) scheduling for the running task.

install task KN_set_handler dynamically installs your task handler. You may

handler install multiple task handlers of each type by invoking
KN_set_handler multiple times.

remove task KN_reset_handler dynamically removes your task handler.

handler

System Concepts

Chapter 14 201

IRMX Memory Management for Kernel System Calls

In an iRMX system, you can obtain memory for the Kernel to use as a memory
pool in these ways:

- Callrg_create_segmentwhich returns a token for a 16-byte aligned memory
segment. This method gives the best performance since the memory specified
in the Kernekrea_ptr parameter should be aligned on a 4-byte boundary.

« Exclude the memory from free space memory using the ICU anthéni file
and then create a descriptor for the excluded memory.

In either case, supply a pointer to the memtaken:0 , and use this pointer in
Kernel object creation system calls, which requirar@a_ptr parameter. If you
use the iRMX OS to manage memory, specify:

area_ptr = token:0
or
area_ptr = malloc (size)

If you use your application to manage memory, specify:

mem_array [n] UINT_8
area_ptr = &mem_array

Aligning Application or malloc Allocated Memory

If you provide memory directly from your application's data segment or using
malloc, you may need additional steps to align the memory, for these reasons:

- The size literals supplied by the Kernel in the literal declarations files are
specified in units of bytes, causing the areas to be declared as byte arrays.

- Compilers do not necessarily align byte arrays that appear in the data segment

To force the compiler to align arrays on 4-byte boundaries, declare memory
allocations as integer arrays. An integer is 4 bytes, so you should declare one-
fourth the number of array elements. For example, when declaring memory to be
used by an alarm object for tK&l_create_alarm call, you might use these
statements in C:

int alarm_area [KN_ALARM_SIZE/4];
KN_create_alarm (alarm_area,...)

202 Chapter 14 iRMK Kernel Programming Concepts

To align an 80-byte array that you need to access in byte values rather than in
integer values, you might use these statements:

int y[20];
char *x;
X=Y;

This guideline of using an integer declaration works for all compilers. There are
other methods, such as declaring the array at the beginning of a structure, or testing
the alignment of the pointer and adjusting it. If you already use another technique
to align memory, make sure it still works if you change compilers.

Using malloc

If you usemalloc, you will need to test the alignment of the pointer and adjust it
yourself. To do so, request a size 3 bytes larger than you need for a particular
area_ptr . Then adjust therea_ptr to be 4-byte aligned using code similar to

this:

char *array;
UINT_32 align_factor;
UINT_32 kn_sema_t;

array = malloc (KN_SEMAPHORE_SIZE + 3);
align_factor = ((long)(near *) array) & 3;
kn_sema_t = KN_create_semaphore(

UINT_32 *) &array[align_factor], [* area_ptr */
(KN_FIFO_QUEUEING | KN_ZERO_UNITS)); /*flags */

System Concepts Chapter 14 203

Demo Files for the Kernel

There are two files installed with the OS that create a demo program for the
Kernel:

« A makefile to use with thenake command to generate the demo.
e sr.c the C language demo source code.

Make requires that you loaclib.job. If it is not already loaded (for example, by
your :config:loadinfofile), enter this command:

sysload /rmx386/jobs/clib.job <CR>
To generate the demo enter:

cd /rmx386/demo/c/rmk/src <CR>
make <CR>

These commands generate the executablsrfil&@hesr program performs a
send/receive semaphore test, first using the Nucleus and then using the Kernel. Us
this syntax to run the demo:

sr< priority > < iteration_count > [K]
where:
<priority> is the priority of tasks in the demo

<iteration_count
is the count of iterations of sends and receives.

K] indicates that both the iRMX and iRMK semaphore functions are
used. If you don't specify that both types of functions are used, only
iIRMX semaphore functions will be used by the demonstration
program.

For example, to run the demo, enter:
- sr 128 100000 K <CR>

204 Chapter 14 iRMK Kernel Programming Concepts

Include Files for the Kernel

The files in this table are for compatibility with existing code that makes Kernel
calls. For example, if your C code already includes the files listed umédnin
Table 14-5, you need not include fitak.h (it includes the other files itself).
Compilers automatically include only the code needed from include files.

Table 14-5. Kernel Include Files

PL/M C Assembler
rmk.h

rmk_type.lit rmk_type.l rmk_type.equ

rmk_ex.lit rmk_ex.equ

rmk_base.lit rmk_base.| rmk_base.equ

rmk_base.ext | rmk_base.h rmk_base.edf

For C applications, also includmk_ex.lfor definitions of exception codes.

Kernel Memory Management

This section is provided for compatibility with existing Kernel applications. It is
not necessary that you create Kernel pools and areas to use the Kernel system calls
for object, time, and task management.

The Kernel Memory Manager defines and implements memory pools, providing
Kernel applications with a physical memory management facility.

A CAUTION
The Kernel Memory Manager does not protect memory areas
from unauthorized access. Any task could ignore the rules and

access memory given to another task, sometimes with disastrous
results.

System Concepts Chapter 14 205

Creating Memory Pools and Areas

Use theKN_create poolsystem call to create a memory pool in a specific range
of memory. Specify where in memory to create the memory pool object and the
size of the pool, including overhead.

To use the memory in a memory pool, invokeKihe create_areasystem call.

Specify the memory pool's kn_token and the size of the requested area, including
area overhead. If the requested space is available in the pool, the Kernel Memory
Manager returns a pointer to the area. Use this pointer to access the area, to creat
a segment descriptor to the area, or to create a memory sub-pool from the area. If
the request cannot be filleldN_create_areareturns a null pointer.

|:| Note

If a memory pool is created on a 4-byte boundary, all areas
created from that pool will be on a 4-byte boundary. To align the
memory, the pool can be the start of a Builder-defined segment or
a large array of integers defined statically in your application.

Deleting Memory Pools and Areas

When the application is through using an area,kKddlldelete area specifying

the area to be released and the pool from which the area came. The
KN_delete_areasystem call returns the memory to the memory pool, making it
available for re-use.

When an application no longer needs a memory pool, calithelelete_pool

system call. Th&N_delete_poolcall does not require all of the areas to be
returned in order to delete a pool. However, if an area is still in use when the pool
is deleted, there is a chance that the same memory could be used simultaneously
for two purposes, with undefined results.

|:| Note

When using memory pools, do not access memory within the pool
except for areas allocated by tiN_create_areasystem call.

Do not invoke memory pool system calls on a memory pool after
invoking theKN_delete_poolsystem call on it.

206 Chapter 14 iRMK Kernel Programming Concepts

Pool and Area Overhead

A memory pool occupies exactly the size specified when it is created. There is a
minimum size that can be requested, represented by the literal
KN_MINIMUM_POOL_SIZE. This size is the minimum number of bytes that the
Kernel requires for a memory pool. Itincludes overhead data structures whose
memory cannot be allocated from the pool. The usable space for a pool is actually
the requested size minus the pool overhead. The literal KN_POOL_OVERHEAD
defines the number of bytes in the overhead. To create a pool of ieetotal

number of bytes required would he- KN_POOL_OVERHEAD.

The literal KN_MINIMUM_AREA_SIZE designates the smallest area that can be
allocated from a memory pool. If an application requests an area smaller than the
minimum size, the memory manager rounds the requested size up to the minimum
size. There is also an overhead associated with each area created from a memory
pool. The literal KN_AREA_OVERHEAD defines this amount. Thus, if an area

of sizenis desiredn + KN_AREA_OVERHEAD bytes are required.

Performance Issues

You gain the highest level of performance from a memory pool if you allocate
memory areas of the same size. In addition to minimizing wasted space, the times
to allocate and deallocate fixed-size areas are less.

Allocating memory areas on 4-byte boundaries enables Kernel system calls to
execute faster because the objects created in the areas are also aligned on 4-byte
boundaries. Memory pool properties provide that, if a memory pool is created
aligned on a 4-byte boundary, all areas allocated from within that pool are also
aligned on 4-byte boundaries.

To create a pool that can allocate exaothreas all of sizen, the area required is
as follows:

n* (m + KN_AREA_OVERHEAD) + KN_POOL_OVERHEAD

If mis less than KN_MINIMUM_AREA_SIZE, replage with
KN_MINIMUM_AREA_SIZE in the expression.

System Concepts Chapter 14 207

Figure 14-2 shows the relationship between a memory pool and memory areas.
Although areas may be different sizes, access to the areas is more efficient if all
areas in a pool are the same size.

Memory Pool

4 Pool overhead B

. J

OM02862

Figure 14-2. Memory Pools and Areas

Getting Information about a Pool

Using theKN_get_pool_attributes system call, you can get this information about
a specific memory pool:

e The size of the pool
- The total available space in the pool

« The largest contiguous available area in the pool

Allocating Memory in an Interrupt Handler

208

In general, managing memory from within an interrupt handler is unwise because it
impacts performance. TH&N_create_areaandKN_delete_areasystem calls use

an internal semaphore for mutual exclusion and may cause tasks to go to sleep.
Interrupt handlers may safely use these system calls on a pool only if you perform
all operations on the memory pool (by either the interrupt handler or any other
procedure) with interrupts disabled. This ensures that the memory pool will always
be accessible when the interrupt handler invokes a system call on it.

Chapter 14 iRMK Kernel Programming Concepts

Kernel Memory Management System Calls

These are the system calls you use to manage memory:

KN_create _area
KN_delete area
KN_create_pool
KN_delete_pool
KN_get_pool_attributes

Table 14-6 lists operations on memory and the related system calls.

Table 14-6. Management System Calls

Operation

Description

create area

KN_create_area allocates an area of memory of specified size
from a specified memory pool.

space

create pool KN_create_pool creates a memory pool in a specified range of
memory.

delete area KN_delete_area returns an area to the memory pool it was
allocated from.

delete pool KN_delete_pool deletes a memory pool.

get available KN_get_pool_attributes returns the size of the pool, the total

size in the pool, and the largest contiguous available area in the
pool.

System Concepts

Chapter 14

209

/O Systems
Programming Concepts

This section describes the Basic 1/0 System, the Extended 1/O System, and the
Universal Development Interface.

See also:

Chapter 15.
Chapter 16.
Chapter 17.
Chapter 18.
Chapter 19.
Chapter 20.
Chapter 21.

System call descriptioBystem Call Reference
I/O System, and UDI overviewb)jtroducing the iRMX Operating
Systems

I/O System Basic Concepts
I/O Jobs and Connections
Named Files

Physical Files

Stream Files

Connections and Objects

UDI Basic Concepts and System Calls

I/O System
Basic Concepts

This chapter introduces concepts which apply to both the Basic I/O System (BIOS)
and the EIOS (EIOS), as well as those that apply only to the BIOS or the EIOS.

See also: BIOS and EIOBitroducing the iRM>Operating Systems

The concepts presented in this chapter are:

System programming (BIOS only)

Synchronous and asynchronous calls

Device controllers and device units

Volumes

Files

Communication between tasks and device units
Logical Names

Path_ptr parameters and default prefixes (EIOS only)
I/0 Jobs (EIOS only)

System Concepts Chapter 15 213

System Programming (BIOS)

There are two programming roles associated with the iIRMX @Bplication
programmingandsystem programming

System programming affects the performance and security of the entire system;

application programming has a more limited effect because it involves individual
jobs. Although the roles have different names, separate people are not required.
One individual can perform both roles.

The BIOS system call descriptions include notes for system calls that, if misused,
can have serious consequences for an application system. These system calls
should be used by the designated system programmer.

Synchronous and Asynchronous Calls

The 1/0O System providesynchronousndasynchronousystem calls. Both the
BIOS and the EIOS provide synchronous calls; only the BIOS provides
asynchronous calls.

Synchronous calls begin running as soon as the application invokes them and
continue running until they detect an error or complete. While a synchronous
system call is running, the calling task cannot run. It resumes running only after
the synchronous call has either failed or succeeded. Synchronous calls act like
subroutines.

Asynchronous calls complete their operation by using tasks that run concurrently
with the application. The application can accomplish some work while the BIOS
accesses disk drives or tape drives, for example.

Each asynchronous system call has two parts:segeentiabind oneconcurrent

« The sequential part behaves in much the same way that synchronous system
calls do. It verifies parameters, checks conditions, and prepares the concurren
part of the system call. If any problem is detected during the sequential part,
an exception code returns to the caller and the concurrent part does not start. |
no error is detected, an E_OK condition code returns to the caller and the
concurrent part starts.

« The concurrent part runs as an iRMX task. This task is readied by the
sequential part of the call and runs only when the priority-based scheduling of
the OS gives it the processor. The concurrent part also returns a condition
code as part of a0 Request/Result Segmél@RS) sent to the response
mailbox specified in the asynchronous call.

See also: BIOS and EIOS Layer Specific Informat®ystem Call Reference

214 Chapter 15 I/0 System Basic Concepts

Asynchronous Call Order of Operations

This example shows how an application can use an asynchronous call to retrieve
some information stored on disk. Figure 15-1 on page 217 illustrates how the
sequential and concurrent parts of the call relate.

1.

The application issues read and specifies a response mailbox for
communicating with the concurrent part of the system call.

The sequential part af readbegins to run. This part checks the parameters
for validity. These operations execute in context of the application code.
Figure 15-1 on page 217 labels this area as “sync”.

The sequential part returns a condition code. If itis E_OK, the BIOS readies
the concurrent part of the call to perform the read; otherwise, it does not.

The application receives control and tests the sequential condition code. Ifitis
E_OK, the application continues running until it needs the information from
disk. Now, the application can take advantage of the asynchronous and
concurrent behavior of the BIOS to perform other tasks. Figure 15-1 on page
217 labels the asynchronous area as “async”.

For example, the application can implement multiple buffering by issuing
othera_readcalls while waiting for the first call to complete. Alternatively,
the application can use this overlapping processing to perform computations.

For the balance of this example, assume that the sequential part of the system
call returned E_OK. (If the sequential condition code is not E_OK, the
application must respond appropriately.)

Before taking the information from the buffer, the application verifies that the
concurrent part od_readran successfully. There are three ways the task can
do this.

One way is to issueraceive_messageall to check the response mailbox
specified ina_read In this case, the application obtains an IORS that contains
a condition code for the concurrent part of the system call. Ifitis E_OK, the
application can get the data from the buffer. Otherwise, the application should
analyze the code to determine why the read was not successful.

See also: IORSSystem Call Reference
Accessing the IORSrogramming Techniques

System Concepts Chapter 15 215

Another way, which can be used only afteread, a_write, ora_seekis to
issuewait_io, which passes a token for the response mailbox to the
application. In this way, the application can receive the condition code
directly for the concurrent part of the system call. In addition, if the
concurrent condition code is E_OK, the application also receives the number
of bytes successfully read. Otherwise, the number of bytes returned has no
significance.

The final way is used for flat applications. This way caist_iors. You
could use either of the previous methods with a flat application but you can’t
do anything practical with the returned IORS structure.

See also: wait_iors call, System Call Reference

216 Chapter 15 I/0 System Basic Concepts

Application Code

I/0 System Code

From Response Mailbox

Examine Status

No Do Error
Processing

Yes

Get Data

Send Message To
Response Mailbox

Y

Await Next I/0 Request
For This Connection

|
Invoke ‘ Test For
a_read ‘ Validity
| v
| Yes Make 1/O
‘ Task Ready
‘ No
|
| Return With
‘ Exception Code
\ Sync
\7 |
Examine | Return With
Exception Code ‘ E OK
v] I
No Do Error ‘ v
Processing ‘
Yes | 1/0 Task
‘ Performs 1/0O
Do ‘ ¢
Concurrent Processing
| Put Status of
‘ Operation in Message
Y
Receives Message \ Async
|
|
|
|
|
|
|
|
|
|
|

From Buffer

W-2795

Figure 15-1. Behavior of an Asynchronous System Call

System Concepts

Chapter 15

217

Using Asynchronous Calls

218

These explanations apply to all asynchronous calls.

All of the asynchronous system calls consist of two parts: one sequential and
one concurrent. The BIOS activates the concurrent part only if the sequential
part runs successfully and returns E_OK.

Every asynchronous system call requires a response mailbox for
communication with the concurrent part of the system call. Use the
create_mailboxsystem call to create a message mailbox.

Whenever the sequential part of an asynchronous system call returns a
condition code other than E_OK, the application should not attempt to receive
a message from the response mailbox nor should ivedllio. Doing so can
cause the application to wait indefinitely. The BIOS cannot run the concurrent
part of the system call.

Whenever the sequential part of an asynchronous system call returns E_OK,
the BIOS runs the concurrent part of the system call. The application can take
advantage of the concurrency by doing some processing before receiving the
message at the response mailbox or calliad_io.

After the concurrent part of a system call runs, the BIOS signals its completion
by sending an object to the response mailbox. The precise nature of the object
depends upon which system call the application invoked. Use
receive_messagt receive the message. The application can determine the
returned object type by callirget_type

The application, with one exception, must delete the IORS when it is no longer
needed. The BIOS uses memory for such segments so if the application fails
to delete the IORS, it might run short of memory. dekete_segmento

delete the IORS.

The exception is when the application callt_io. The application does not
have access to the IORS and cannot delete it. This enables the BIOS to
maintain a supply of IORSs that it can use repeatedly. Because most I/O-
related operations are reads, writes, or seeks, this means a significant
performance enhancement for the application.

Chapter 15 I/0 System Basic Concepts

Condition Codes for Asynchronous Calls

For those system calls that require a response mailbox parameter, the BIOS returns
a condition code for the sequential portion of the call to the word pointed to by the
except_ptr parameter and a condition code for the concurrent portion of the call

to thestatus field of the IORS.

See also: IORSSystem Call Reference
Accessing the IORRrogramming Techniques

Some calls can return a connection instead of an IORS. If a sequential exceptional
condition occurs, the BIOS either returns control to the calling task or passes
control to an exception handler. It does not process the asynchronous portion of the
call. If a concurrent exceptional condition occurs, the calling task must signal the
exception handler or process the exceptional condition inline.

If the application handles the exception inline, use the Nugeugypesystem
call to obtain the type of object returned, for example an IORS.

See also: get_type System Call Reference
exception handling, in this manual

Creating I/O Buffers

A_read, s_read_movea_write, ands_write_moveeach require a buffer to read
from or write to while performing I1/0. When you create these buffers, these
restrictions apply:

« The memory segments used for the 1/0O buffers must have the appropriate
access rights: be readable for read operations or writable for write operations.

« Once the I/O operation has been invoked, the application tasks should not
change the contents of the buffer until the BIOS finishes the operation.

« Do not delete an iRMX segment used as a buffer while an 1/0O operation is in
progress.

Using segments from one job as buffers for I1/0O operations in a different job
can cause unintentional deletion. If Job A owns an iRMX segment, that
segment is automatically deleted when the job is deleted. If Job B uses this
segment as a buffer for I/O, the buffer will be deleted even if Job B has 1/O in
progress.

System Concepts Chapter 15 219

Device Controllers and Device Units

The iRMX OS distinguishes betwednvice unitsanddevice controllers

A device unit is a hardware entity that tasks use to read or write information, or
both. Device units include diskette drives, hard disk drives, tape drives, printers,
and terminals.

A device controller is a hardware entity that talks directly with iRMX software and
controls device units. Typically, a device controller enables iRMX applications to
communicate with several device units. For example, a 2215 SCSI Disk Controller
acts as an interface between an application program and several disk drives (devic
units).

Setting Mass Storage Device Granularity

220

When information is stored on a mass storage device, space is alloogitaauies

and the block size is calleganularity. If your device supports multiple device
granularities, selecting the larger value usually gives higher performance, but you
may waste storage space due to large granules containing only a few bytes of data

See also: Granularityntroducing the iRMX Operating Systems
Use these guidelines when setting granularity:

- For diskettes, always set the volume granularity equal to the device
granularity, unless you plan to store many large files on the volume. Don't
select a volume granularity larger than 1 Kbyte.

« For hard disks, set the volume granularity equal to the device granularity,
unless the device granularity is less than 1 Kbyte. Then set the volume
granularity to 1 Kbyte.

- For sequential file access, larger granularity sizes generally improve access
time. Each access can handle more data.

- For random file access, smaller granularity sizes generally improve access
time. Each access handles only that data that is needed, thereby spending les
time transferring needless data.

+ When creating a large file, assign a large file granularity to minimize the
number of noncontiguous blocks that make up the file. This decreases the
fragmentation of the volume.

« For smaller files, set the file granularity equal to the volume granularity to
minimize wasted space on the volume.

Chapter 15 I/0 System Basic Concepts

File Granularity Example

This example uses only one small mass storage unit containing a file of 20,010
bytes. It illustrates how performance interacts with use of space. Performance may
not be critical if you do not use the device often enough for the data transfer rate to
have much impact.

1. If the granularity is 10,000 bytes, the file occupies three granules. The first
two granules are full and the third contains only 10 useful bytes.

Although this file wastes 9,990 bytes of storage space, the data transfer rate is
quicker than with a similar file of smaller granularity.

2. If the file granularity is 200 bytes, the file occupies 101 granules. Each of the
first 100 granules is full, while the last granule contains only 10 useful bytes.

The file now wastes only 190 bytes of storage space, but the data transfer rate
is slower than with a granularity of 10,000 bytes.

If the application system has many mass storage units and space is readily
available, a large file granularity will give faster average transfer rates and shorter
access times, at the expense of device space.

Volumes

A volumeis the medium used to store the information on a device unit. For
example, if the device unit is a diskette drive, the volume is a diskette; if the device
unit is a multi-platter hard disk drive, the volume is the disk pack; if the device unit
is a tape drive, the volume is the cartridge tape.

System Concepts Chapter 15 221

File Types

The 1/0O System defines a file to be information, not a device. The BIOS and EIOS
provide these types of files:

Named files allow random access, hierarchical file structure, and access
control.

EDOS (Encapsulated DOS) and DOS files are DOS files accessible to iRMX
for Windows and iRMX for PCs applications using EIOS and BIOS system
calls.

Note

The EDOS and DOS file drivers are mutually exclusive. iRMX
for Windows provides the EDOS file driver. iRMX for Pcs and
the iRMX 1ll OS provide the DOS file driver.

Remote files are named files that exist on another system and are accessed or
an iNA 960/iRMX-NET network.

Network File System (NFS) files are files that exist on another system and are
accessed on a TCP/IP network using NFS. NFS files are accessible between
systems using different operating systems.

Physical files allow more direct hardware control over a device.

Stream files allow one task to write to a file while another reads it.

Each kind of file has characteristics that make it unique. Regardless of the kind of
file, the BIOS and EIOS provide information to applications as a string of bytes,
rather than as a collection of records.

See also: Named Files, Physical Files, and Stream Files chapters in this section

222

for more information on files;
remote filesNetwork User's Guide and Reference
NFS chaptersTCP/IP and NFS for the iRMX Operating System

Chapter 15 I/0 System Basic Concepts

Communication Between Tasks and Device Units

Several layers of software and hardware must be bound together before
communication between application tasks and device units can occur. Figure 15-2
shows these layers.

Application Software

Tasks Tasks Tasks

File Driver Software

Device Driver

Device Controller

> Hardware

Device Unit

W-2796

Figure 15-2. Hardware and Software Layers Between Tasks and a Device

There are several kinds of bonds:

The bond between the application tasks and the file driver is supplied during
the linking or binding process. A file driver provides the interface between the
BIOS and a device driver. The information needed to perform the binding
process is specified at configuration time. Loadable file drivers provide almost
the same function as using the ICU.

The bond between a device driver and a device controller is data residing in a
data structure called a Device Unit Information Block (DUIB). Data for

DUIBs is specified at configuration time. Critical data involves the DUIB
parametersipdate_timeout andfixed_update. Loadable device drivers
provide almost the same function as using the ICU.

System Concepts Chapter 15 223

- The bond between the device controller and the device units is a physical
bond, typically wires or cables.

See also: Loadable file and device drivé&@gstem Configuration and
Administration
File and device drivers and DUIB data structure definitiniver
Programming Concepts

The tasks access files and devices through connections. Two kinds of system calls
produce connections: one kind produceleace connectioand the other

produces dile connection Before a task can use a file, it must invoke both of

these kinds of calls.

See also: 1/0 Jobs and Connections, in this section

Device connections are like conduits (pipes); file connections like wires through
the conduits. These descriptions apply to device and file connections.

« Device connections extend from the application software to the individual
device units and each passes through only one file driver.

- There is only one device connection to each connected device. However,
multiple file connections can share the same device connection.

« There is only one device connection through the stream file driver, because
one logical device contains all stream files.

« Unconnected device units are not connected to the application software.

- Different device units with the same controller can be connected by different
file drivers.

- Tasks can share access to the same device unit through the physical file driver
and they can share access to the same files on the same device unit through tf
named file driver.

An application task must attach a device before accessing the files on that device
and must establish a connection to the file before accessing the data in that file.

224 Chapter 15 I/0 System Basic Concepts

Logical Names

You can use logical names to identify file connections or device connections. A
logical name is an iRMX STRING of 12 or fewer characters with a unique syntax.

Every /O job has three distinct object directories in which objects can be
cataloged. When looking up a logical name, the EIOS searches these directories in
this order and stops when it finds the name.

« The object directory of thiecal job
« The object directory of thglobal jobfor a user session
« The object directory of theot job

See also: Logical nameSpmmand Reference
Connections and Objects in this section

Path_ptr Parameters and Default Prefixes (EIOS)

Some EIOS calls refer to files rather than to connections. All such calls require a
path_ptr parameter to identify the file to be attached, created, or otherwise used.

One aspect of theath_ptr parameter applies to all kinds of files. If the
parameter is set to null, or if it points to a null String (an IRMX STRING
containing O characters), the EIOS selects the file based defidt prefixof the
calling task's job.

The default prefix is an attribute of an 1/O job and it is a logical name for a device
or a file connection. It is cataloged under the n&nreeither the local or the

global object directory for the job. Whenever a task invokes a system call but does
not specify a logical name, the EIOS looks up the default prefix and uses the
associated connection.

The complete interpretation of theth_ptr parameter depends upon the kind of
file being accessed.

See also: Named Files, paths, prefixes and subpaths in this section

System Concepts Chapter 15 225

I/0O Jobs (EIOS)

226

Any job using EIOS calls must be an I/O job. The advantage of using EIOS calls is
that they perform many functions automatically, making them simpler to use than
BIOS calls.

I/O jobs can be created when programs are running and, for ICU-configurable
systems, when the system is initialized. An I/O job must have:

A global job A token for the user session’s global job must be cataloged in
the 1/0 job's object directory under the namglobal.

A default prefix The default prefix is a connection cataloged under the name
$in either the local job object directory or the global job
object directory.

A default user object This user object is required to access named files using EIOS
calls and must be cataloged in the I/O job's object directory
under the name.

See also: Named Files, default prefix, default user object in this section

For ICU-configurable systems, specify the characteristics of I/O jobs that are
created when the system is initialized.

Chapter 15 I/0 System Basic Concepts

/O Jobs and Connections

Creating I/O Jobs

I/0O jobs differ from other jobs in these ways.

+ Many of the parameters required by the Nucleresite_jobsystem call are
not required by the EIOS job creation system calls. Instead, some of these
values are specified at system configuration time. These parameters include:

directory_size
param_object
max_objects
max_tasks
max_priority

- The EIOS calls automatically initialize the new job with a default user object,
global job for that user session, and default prefix, inherited from the parent
job.

« The EIOS system calls allow the new job to send a termination message to the
parent job.

« Therqge_create_io_jobsystem call creates I/O jobs while the system is
running and reserves memory for the job's memory pool.

See also: EIOS callSystem Call Reference

Any task that invokes this system call must be running within an 1/0 job. For
ICU-configurable systems, you can create the initial 1/0 job during system
configuration. For iRMX for PCs and iRMX for Windows systems, the initial
I/O job is already configured into the system.

System Concepts Chapter 16 227

Creating Device Connections
These system calls apply to device connections:
a_physical_attach_devicgBIOS) logical_attach_deviceEIOS)
a_physical_detach_devicéBIOS) logical_detach_devicEIOS)

The device connection is the application's only pathway to the device. There can
be only one device connection between a device unit and all of the application
tasks that need to use that device.

See also: Named Files, Physical Files, Stream Files, and call sequences in this
section

Using BIOS System Calls
To attach a device for BIOS calls, usephysical_attach_devicewhich:
- Creates a device connection that represents the device.

- ldentifies the owner of the device connection, to prevent other users from
detaching devices that they do not own.

Use this call only once for each device because devices cannot be attached multipl
times. Only one or a few selected tasks shouldacadhysical_attach_device
These tasks can be in one these forms:

- Aninitialization task can create all of the device connections and catalog them
in the root object directory. Then all required device connections are available
to all application tasks that need them.

- Several tasks can make the device connection available to selected applicatior
tasks by sending the connection to certain mailboxes or by cataloging it in
certain object directories.

Usea_physical_detach_devicéo delete the device connection when the device is
no longer needed by the application.

The OS keeps track of the number of tasks using the device. It does not detach the
device until it is no longer being used by any task.

228 Chapter 16 I/0O Jobs and Connections

Using EIOS System Calls
To attach a device for EIOS calls, usgical_attach_device This system call
- Creates a device connection that represents the device.

- Catalogs a token for the connection under the specified logical name, which
the EIOS uses to access the device.

- ldentifies the owner of the device connection, to prevent other users from
detaching devices that they do not own.

Use this call only once for each device because devices cannot be attached multiple
times.

Logical_attach_devicecallsa_physical_attach_devicebut may not do so
immediately. Instead, physical attachment occurs transparently during processing
of any system call that references the logical device object. This timing can be an
issue when BIOS system calls use logical device objects, as described in the next
section.

When the device is no longer needed by the applicatiorpgeml_detach_device
to delete the device connection.

The OS keeps track of the number of tasks using the device. It does not detach the
device until it is no longer being used by any task.

Using a Logical Device with BIOS System Calls

You can assign a logical name to any device Vaifical_attach_device

Typically, you use these logical device objects with EIOS calls. However, BIOS
calls also permit thprefix ~parameter to be a logical device object; it is a
shorthand way to traverse the directory structure.

When you use a logical device object in BIOS calls, the BIOS examines the logical
device object to determine the device connection. In such cases, you could receive
the E_DEV_OFF_LINE condition code. If the device is online, the device has not
yet been physically attached wih physical_attach_device

You can correct this situation by invoking at least one EIOS system call that refers
to the logical device by its logical name. The calling task must reside in an I/O Job
before it can invoke EIOS system calls.

System Concepts Chapter 16 229

Creating File Connections

When an application task is ready to use a file, it establishes a connection to that
file. These system calls apply to file connections:

a_attach_file (BIOS) s_attach_file(EIOS)
a_create_file(BIOS) s_create_file(EIOS)
a_open(BIOS) s_open(EIOS)
a_seek(BIOS) s_seekEIOS)

Unlike device connections, there can be multiple file connections to a single file.
This allows different tasks, if necessary, to have different kinds of access to the
same file at the same time.

Using BIOS System Calls
Usea_create_fileto obtain a file connection:
« When the task does not know if the file already exists.
« When the task knows that the file does not yet exist.
If the file already exists, use attach_file

In either case, the 1/0O System returns a connection to the physical file.

A CAUTION
It is possible to usa_create_fileto obtain a file connection for a
file that already exists, however the file will be truncated to 0
length in the process. Other tasks having other connections to
that file will lose access to data because the end-of-file marker
will have moved to the beginning of the file.

The distinction between the file creation and the file attachment system calls
enables the application to work with named files as well as physical files.

After receiving a file connection, use opento open the connection. Use the

mode parameter to specify if the connection is open for reading only, for writing
only, or for both reading and writing. Use #tare parameter to specify if other
connections to the file can be opened for reading only, for writing only, or for both
reading and writing.

230 Chapter 16 I/0O Jobs and Connections

Using EIOS System Calls
Uses_create_fileto obtain a file connection:
« When the task does not know if the file already exists.
« When the task knows that the file does not yet exist.
If the file already exists, use attach_file

In either case, the 1/O System returns a connection to the physical file.

A CAUTION
It is possible to use_create_fileto obtain a file connection for a
file that already exists, however the file will be truncated to 0
length in the process. Other tasks having other connections to
that file will lose access to data because the end-of-file marker
will have moved to the beginning of the file.

The distinction between the file creation and the file attachment system calls
enables the application to work with named files as well as physical files.

After receiving a file connection, useopento open the connection. Use the
mode parameter to specify if the connection is open for reading only, for writing
only, or for both reading and writing. Also specify if other connections to the file
can be opened for reading only, for writing only, or for both reading and writing.

|:| Note

If a task in one job obtains a file connection that was created in a
different job, the task cannot successfully use the connection to
perform I/O operations. However, the task can catalog the
connection under a logical name and use the logical name in
s_attach_fileto obtain a second connection that can be used
without restriction.

A connection can bepen such as during read or write operations;losed such

as during renaming or file status operations. Connections created by one 1/O
system can be used by the other as long as the connection is closed. For example,
you can use an EIOS call to create a file and obtain a connection with the BIOS
calls that rename a file or get a file's status. However, the connection cannot be
used with a BIOS read, write, or truncate call, which require an open connection.

The same restriction applies if the BIOS creates the connection. The EIOS can use
the connection as long as the system call does not require an open connection.

System Concepts Chapter 16 231

Moving File Pointers

232

The BIOS and EIOS maintain a file pointer for each open file connection to a
random-access device unit. This file pointer tells the I/O System the logical
address of the byte where the next I/0O operation on the file is to begin. The logical
addresses of the bytes in a file begin with 0 and increase sequentially through the
entire file.

Normally the pointer for a file connection points to the next logical byte after the
one most recently read or written. However, a task can modify the file pointer by
invoking the EIOS_seekor BIOSa_seeksystem call. This is useful when
performing random-access operations on a file.

Chapter 16 I/0O Jobs and Connections

Named Files

Named files are used with random-access, secondary storage devices such as disks
and diskettes. Named files provide several features that are not provided by
physical or stream files. These features include:

- Multiple files on a single device or volume
e Hierarchical file names

« Access control

« Extension data

- Disk integrity

Named files are useful in systems that support more than one application and in
applications that require more than one file.

iIRMX named files can also reside on remote systems. You access remote named
files in the same way as local named files, using iNA 960 and/or iRMX-NET.

Named files can also reside on the DOS partition of iIRMX for Windows systems
and iRMX for PC systems. You access DOS files using the Encapsulated DOS
(EDOS) file driver if you are using iRMX for Windows. You can access DOS files
using the DOS file driver if you are running the iRMX OS on a PC that does not
run DOS.

See also: Accessing EDOS Files, in this chapter;
Accessing DOS Files, in this chapter;
Remote FilesNetwork User's Guide and Reference
EDOS,Programming Concepts for DOS and Windows

System Concepts Chapter 17 233

Using Prefixes, Subpaths and File Paths in System

Calls

You designate named files in system calls by specifying their path. There are two
components to a path: tpeefixandsubpath A prefix is a logical name for a

device or the name of a directory file or data file. A subpath is a data-file name or
a sequence of directory names optionally followed by a data filename.

You can represent the character string that designates a path for a named file with
an iRMX string. To represent a stringro€haracters, you must useril+

consecutive bytes. The first byte contains the character count. Thebyas

contain the ASCII codes for the characters, in the same order as the string. This
string is a pathname.

Use a pointer to this pathname asdhiepath parameter in the system call and
use the file or device connection as phefix parameter in the system call.

Subpaths

234

The subpath ASCII string is a list of filenames separated by slashes, terminating
with the desired file. A file name can be 1-14 ASCII characters, including any
printable ASCII character except the / (slashjup-arrow) or ~ (circumflex).

These special characters are reserved for use in designating directory levels or
dividing components in a pathname. The subpath can also be null or can point to a
null string, in which case the prefix indicates the desired connection.

This subpath is an example of the most common form:

A/B/C/D
Where:
AB,C Are the names of directory files.
D Is the name of either a directory or data file.

This example causes the 1/0O System to start at the default directory and descend tc
directoriesA, B, andC in order. Then it acts on file.

An example of a less common form of subpath is:

1 A/B/C/D
Where:
tor” Tells the I/O System to ascend one level in the hierarchy of files; then

descend to directorigs B, andC in order; then act on filB.

Chapter 17 Named Files

The I/O System also accepts consecutive up-arrows. For example:
11A/B/C

This construction causes the I/O System to start with the directory indicated by the
default prefix and ascend two levels before interpreting the remainder of the
subpath.

A subpath can begin with a / (slash). For example:
IA/B/C

Whenever the /O System detects a slash at the beginning of a subpath, the I1/O
System starts interpreting the remainder of the subpath at the root directory of the
device indicated by the prefix.

Prefixes

A prefix is a logical name for a connection to either a device, a named directory
file, or a named data file. The device may be either a local or remote device. The
files may also be either local or remote files. The prefix is the only component that
distinguishes a local connection from a remote connection. The prefix tells the 1/O
System where to begin interpreting the subpath:

« If the prefix is a connection to a local device, the I/O System begins scanning
the subpath at the root directory of the device.

- If the prefix is a connection to a remote device, the /0O System begins
scanning the subpath at the virtual root directory of the device.

- If the prefix is a connection to a local or remote named directory file, the 1/0O
System begins scanning the subpath at the specified directory.

« If the prefix is a connection to a local or remote named data file, the 1/0
System checks to see if the subpath is null. If it is, the I/O System uses the file
indicated by the prefix. If the subpath is not null, the /O System returns a
condition code indicating that the application program is attempting to use a
data file as though it were a directory file.

All other syntax applies to both local and remote files.
Using the Default Prefix

Within one iIRMX job, most references to a named file tree are generally confined
to one branch of the tree.

System Concepts Chapter 17 235

For a file, adefault prefixis a connection to a directory at the head of the most
commonly used branch in the named file tree. To use the default prefix, set the
prefix parameter to null. The I/O System keeps track of a job's default prefix by
using the job's object directory.

You can specify one default prefix for each iRMX job. A default prefix provides a
job with two advantages. First, it enables the application to use subpath names
instead of pathnames. If your tree is several levels deep, this can save
programming time during development. Second, a default prefix provides a means
of writing generalized application code that can work at any of several locations
within a tree.

For example, suppose that an assembler (implemented as an iRMX job) uses a
default prefix to find a location in a named file tree. The assembler could then use
a subpath name ¢émpto find or create a temporary work file. Before an
application invokes the assembler, it sets the default prefix of the assembler job to
a directory in the application's named file tree. This enables more than one job to
invoke the assembler concurrently without the risk of sharing temporary files.

Specifying Paths in System Calls

236

System calls referring to named files need a path (prefix and subpath) to locate the
file. If you specify a null prefix, the default is used. Specify a token to override
the default.

You can specify paths in these forms:

Prefix Subpath Designated Connection
null pointer to a Connection is the default prefix.
null string
null pointer to an ASCII string defines a path from the
ASCII string default prefix to the target connection.
token pointer to a Prefix parameter contains a token for a
null string connection and overrides the default prefix.

Since the subpath is null, acts on the
directory or file specified in the prefix.

token pointer to an Prefix parameter contains a token for a
ASCII string connection and overrides the default prefix.
The ASCII string defines a path from that
connection to the target connection.

Chapter 17 Named Files

If the ASCII string begins with a slash, the prefix merely designates the tree and the
subpath is assumed to start at the root directory of the tree associated with the
prefix.

Named files can also be addressed relative to other files in the tree; sing

arrow) or " (circumflex) as a path component. These two symbols have the same
meaning. (Some terminals do not have the up-arrow key.)t The* refers to the
parent directory of the current file in the path scan.

Those system calls that require paths hapatta ptr parameter. You can use
thispath_ptr parameter, along with the default prefix, to specify the file to be
used. This parameter is a pointer to an iRMX STRING that must be in one of these
forms:

Null string If the STRING is 0 characters long, the I/O System will act on the file
indicated by the default prefix of the calling task's job.

Logical name only
If the STRING consists only of a logical name enclosed in colons
(such asg: for theDeptldirectory) the I/O System will look up the
logical name and obtain the associated connection. Then, because the
subpath is empty, the I1/O System will act on the data file or directory
file indicated by the connection.

Subpath only
The STRING can consist of a subpath without a prefix. The 1/O
System interprets such subpaths by starting at the directory indicated
by the default prefix of the calling task's job. Then the I/O System
follows the subpath from directory to directory until it reaches the
final component of the subpath. This final component is the file on
which the I/O System acts.
Whenever the STRING contains a subpath without a logical name, the
default prefix must be a logical name for a connection to a device or
to a named directory file. If the default prefix represents a connection
to a named data file, the 1/0 System returns a condition code
indicating that your task is attempting to use a data file as a directory.

System Concepts Chapter 17 237

Logical name and subpath
The application code can use a STRING with a logical name in colons
followed immediately by a subpath. For example:
:g:tom/test_data/batch_1

The I/O System interprets this example as follows. First, it looks up
the logical nameg: in the object directory of the local job, or if
necessary, the global or root job. Then it follows the subpath from the
directory associated with the connection. So in the example, the 1/0
System would find the directory associated with :g: and it would step
through directories tom and test_data. Finally, the /O System would
act on file batch_1.

Using Connections

238

Once you have a connection to a particular file, you can use it peefixe
parameter of any system call by settingghiepath parameter to null. The I/O
System will ignore the subpath and use only the prefix to find that particular file.

Suppose the application has a connection to diredepyl/tom Use the
connection to directorgieptl/tomas the prefix, and use a pointer to a filename as
the subpath. For example, if the subpath nanesis data/batch_,Ithe specified

file is dept/tom/test_data/batch, 1

A file connection obtained in one job cannot be used as a connection by another
job. However, a file connection can be used as a prefix by other jobs in any call
requiringprefix —andsubpath parameters. The only exceptions to this rule are
that the other jobs cannot use the connection as a prefix while specifying a null
subpath in calls ta_change_access_change_access_delete_file or

a_delete_file This means that a file connection can be passed to another job and
the other job can obtain its own connection to the same file by calling
a_attach_file with the passed file connection being used agifex parameter

in the call.

However, if the connection was created by a task in a different job, your task
should not use the connection in any of these system calls. Rather, your task
should first obtain a new connection to the same file by performing these steps:

1. Catalog the current connection in the object directory of your task's job. This
establishes a logical name for the current connection.

2. Using the newly-defined logical name, invakettach_fileto obtain another
connection to the same file.

If your task does attempt to use a connection created in another job, the I/O Systen
will return a condition code rather than performing the requested function.

Chapter 17 Named Files

Controlling File Access

In environments where files are shared among multiple users and operating
systems, you may need to control user access and the level of user access to files.
The iRMX OS provides this control by identifying users with user IDs and
embedding access rights for these IDs into the files. This section describes the user
ID and file access along with the mapping process used for NFS files.

Users

The iIRMX OS defines all entities, such as people or iRMX jobs, that use named
files in your system assers If you want all of these entities to be able to access
any file, consider them as a single user. However, if different entities require
different accesses, you must divide the entities into subsets, each of which is a
separate user.

Alternatively, if the application does not interact with people (or enables only one
person to interact), you might consider each iRMX job as a user. This setup would
enable the application to control the files that each job can access.

User Ids

A user ID is a 16-bit number that represents any individual or collection of
individuals requiring a separate identity for the purpose of gaining access to files.

Two user IDs have special meaning. One is the number 8y#tem manager

Super user). The other is the number OFFFFHWbdd user). If specified during
system configuration, user ID 0 represents the system manager. When the system
manager creates or attaches files, the resulting file connection automatically has
read access to data files and list access to directory files, even if a file's access list
does not contain ID 0. The system manager can also change any file's access list.

The user ID OFFFFH represents World (all users in the system). Placing the ID for
World in the list of user IDs for every user object enables the application to set
aside certain files as public files, giving everyone limited access to a series of
utilities, such as compilers. The HI follows this convention by ensuring that all
users who log on dynamically have the World ID in their user object.

|:| Note

Including the World ID in every user object, lets anyone modify
the access list of a file whose owner ID is OFFFFH (World).

See also: permit commandCommand Reference
Accessing NFS Files, later in this chapter

System Concepts Chapter 17 239

Figure 17-1 shows the relationship between a user and the user ID.

User
Operator

iRMx" 0s Job

l

16-bit Identifier:

0 = System Manager
OFFFFH = World User

User ID

OM02123

Figure 17-1. User and User ID Relationship

User Objects

240

The I/O System usesuser objecivhen determining access rights to files. A user
object contains a list of one or more user IDs. When a task attempts to use a file, it
must supply the token for a user object. To determine access, the OS compares th
IDs in the supplied user object with information contained in the file itself.

Most I/O operations performed within a particular iRMX job are performed on
behalf of one user object. The I/O System enables the application to designate a
default user object for each job, which defines the access rights for all tasks in that
job.

The I/O System uses the job's object directory to keep track of the job's default use
object, which is namexPiouser Consider?iouserto be a reserved name and do
not use it.

Whenever the application invokes a BIOS call on behalf of the default user object,
the application can use a null selector as the token farsthe parameter. Use a
null selector to designate the default user in BIOS system calls.

For ICU-configurable systems, you set up the default user objects for your initial
EIOS 1/0O jobs (which start running immediately upon system initialization). Later,
when a task creates an 1/O job, the new I/O job inherits the default user object of its
parent /O job. The EIOS automatically catalogs the parent job's user object in the
new I/O job's object directory under the nardieuser.

Chapter 17 Named Files

File Access List

For each named file (data or directory), the I/O System maintains an access list
which defines the users who have access and their access rights. Each access list is
a collection of up to three ordered pairs with each pair having the form:

ID, ACCESS MASK

The ID portion is a user ID. The list of user IDs defines the users who can access
the file. For systems that use NFS, the three iRMX user IDs map to NFS user IDs
as described earlier.

The access mask portion defines the kind of file access that the corresponding user
has. An access mask is a byte in which individual bits represent the various kinds
of access permitted or denied that user. When a bit is set to 1, it signifies that the
associated kind of access is permitted. When set to 0, the bit signifies that the
associated kind of access is denied.

iIRMX-NET uses a slightly different access maskriemotefiles than is used for
local files. A file is local if it resides in the same physical system to which the
terminal is connected. A file is remote if it resides on another system accessible
through a network.

See also: Remote fileBletwork User's Guide and Reference
File access attributes in this chapter for DOS and EDOS;
permit commandCommand Reference

|:| Note

NFS file access is mapped to the iRMX OS file access scheme.
For information on this mapping see Accessing NFS Files, in this
chapter.

The association between the bits of the access mask and the kinds of access they
control are as follows:

Bit Data Files Directory Files
3 Update Change Entry
2 Append Add Entry

1 Read List

0 Delete Delete

The remaining bits in the access mask have no significance.
For example, an access list for a data file might look like this:

5B31 00001110
9F2C 00000010

System Concepts Chapter 17 241

The ID numbers (left column) are in hexadecimal and the access masks (right
column) are in binary. This means that the ID number 5B31 has update, append,
and read access rights, while the ID number 9F2C has the read access right.

The first entry in the file's access list is placed there automatically by the 1/0
System when it creates the file. The ID portion of that entry is the first ID number
in the user object specified in the call that creates the file. The first ID is the owner
ID for the file. The access rights portion is supplied as a parameter in the same
call. The owner ID has full (unlimited) access to the file.

The system calls to add or delete ID-access pairs, or change the access rights of IC
already in the access list arechange_accessr s_change_access

|:| Note

Only the system manager and the file's owner can change the
file's access list without being granted explicit permission to do
So.

Computing Access for File Connections

242

Whenever a task creates a directory or creates or attaches a file, the 1/0O System
constructs an access mask and binds it to the file connection object returned by the
call. This access mask is constant for the life of the connection, even if the access
list for the file is subsequently altered. When the connection is used to manipulate
the file, the access mask for the connection determines how the file can be
accessed. For example, if the computed access rights for a connection to a data fil
do not include appending or updating, that connection cannot be used for writing.

When a task uses BIOS calls to create a directory or file, the access mask for the
connection is the same as the access mask that the task suppliextreshe

parameter of the system call. When a task uses EIOS calls to create a directory or
file, the EIOS supplies an access mask that grants full access to the connection.

However, when a task attaches a file, the 1/O System compares the user object
specified in thauser parameter with the file's access list and computes an
aggregate mask.

Figure 17-2 on page 243 illustrates the algorithm that the 1/0O System uses during a
call to attach a file. As the figure shows, the OS compares the IDs in the default
user object with the IDs in the file's access list. The access masks corresponding t
matching IDs are logically ORed, forming an aggregate mask.

Chapter 17 Named Files

User Object For
Calling Task's Job

UserID 1 Access List for
Target File

ID 2 / ID Access Access

Mask for
(Matches) or >
ID 3 ID Access J Connection
D4 ID Access

ID5

W-2800

Figure 17-2. Computing the Access Mask for a File Connection

Normally, the I/O System uses the aggregate access mask embedded in the
connection to determine a task's ability to access a file. However, there are two
circumstances in which the 1/0 System computes access again: during
a_change_accessrs_change_accesand duringa_delete_fileors_delete_file

When a task invokes one of these system calls, the I/O System computes the access
to the target file (or to the data file or directory specified ipteéix ~ parameter,

if the subpath portion is null). If the user object specified in the system call does

not have appropriate access rights, the 1/0 System denies the task the ability to
delete the file or change the access.

|:| Note

When computing access, the I/O System checks the access only

to the last file in the specified subpath and to the parent directory

of the last file. It does not check the access to any other directory
files specified in the path. If the subpath is null, the BIOS checks

the access to the file indicated by thefix parameter.

System Concepts Chapter 17 243

File Access Rights Example

This example illustrates using IDs, access masks, access lists, and user objects to
permit each user in a system to have exactly the kinds of access that you want that
user to have.

This example shows that one ID number can give certain access rights to an
individual and that another ID number can give different access rights to a
collection of individuals. Here are the individuals and their access rights:

« Tom is to have full access to the filatch_1

- Billis to have read and append access only

« Members of Department 2 are to have read access only

Tom (or whoever creatdmtch_J can arrange for these kinds of access by doing:

1. Create a number of user objects, one for Tom, one for Bill, and one for each of
the members of Department 2 (George, Harry, and Sam). When creating the
user objects, assign unique owner IDs for each user: 4000H for Tom and
8000H for Bill. Assign unique owner IDs for each of the members of
Department 2, but also include a common user ID, FOOOH, as an additional ID
in each of their user objects.

2. Usea_create_fileto create the filbatch_1 Use the token for the user object
containing the 4000H ID number and specify the access mask 00001111B.
This call returns a file connection that gives Tom full accedstoh_1 The
access list fobatch_1has just one ID-access mask pair.

3. Usea_change_acces® add an ID-access mask pair to the access list of
batch_1 ID 8000H and access mask 00000110B. This gives Bill read and
append access tiatch_1 Now the access list has two ID-access mask pairs.

4. Usea_change_acced® add a third pair to the access lisbafch_1 ID
FOOOH and access mask 00000010B. This gives the people in Department 2
read access foatch_1

244 Chapter 17 Named Files

Bill can read the contents batch_land append new information to it, if he knows
the prefix and subpath that are needed to atiatdh_land he creates a user
object with the ID 8000H. He specifies that user object when attabhto_1

The members of Department 2 can read the contemistoli_1 if they know the
prefix and subpath that are needed to attexdbh_1and they create a user object
with the ID FOOOH. They specify that user object when attadbanch_1

When Bill attachesatch 1 he receives a file connection that he can use to read
the file. He also can write, provided that the file pointer for that connection is at
the end of the file.

When a member of Department 2 attadb&sh_1 he receives a file connection
that he can use in calls to read the file.

Getting and Setting Extension Data

For each named file on a random access volume, the BIOS creates and maintains a
file descriptor on the same volume. The first portion of the descriptor contains
information for the BIOS. The last portion, called extension data, is available to
your OS extension. You specify the number (from 0 to 255, inclusive) of bytes of
extension data for each named file on the volume, when formatting the volume

with theformat command.

See also: format commandCommand Reference

The BIOS system calls that enable you to record special information in the trailing
portion of the file's descriptor and to access this data when it is needed later are
a_get_extension_datanda_set_extension_data

System Concepts Chapter 17 245

Maintaining Disk Integrity

The BIOS has several features that enable programs to maintain disk integrity and
determine whether files or volumes have been corrupted. The next sections outline
these features.

Attach Flags

The BIOS maintains flags that can indicate the integrity of named volumes and
named files. When you attach a named volume, the BIOS sets a flag in the volume
label to indicate that the volume is attached. When you attach a named file, the
BIOS sets a flag in thmode(file descriptor node) file to indicate that the file is
attached. When you detach a volume or file, the BIOS clears the associated flag,
indicating that the file or volume was successfully detached.

You can check the condition of a volume by invokingyet_file _statusor
s_get file_status You can write your own programs to check the file flag, or you
can use the Disk Verification Utility to examine the fnode file.

The Disk Verification Utility (DVU) enables you to inspect, verify, and correct the
data structures of named or physical volumes. You can use the DVU to reconstruct
the fnode file, the volume label, the fnode map, the volume free space map, and th
bad blocks map of the volume.

See also: Disk Verification UtilityCommand Reference

Fnode Checksum Field

246

The BIOS uses the fnode file to keep track of every named file on a volume. The
fnode file lists such information as the file name, the creation and last modification
dates, and the location of every disk sector that makes up the file. When you
access a file, the BIOS uses the fnode file to determine the file's location on the
volume. When you create, modify, or delete a file, the BIOS modifies the fnode
file to match the changes you made.

When the last connection to the file is deleted, the BIOS writes to the fnode file,
and calculates a checksum and writes that value in one of the fields of the fnode
file. This checksum can be used to determine whether any data errors occurred
when the BIOS wrote the fnode file. Your programs can use the checksum field to
determine whether the fnode file has become corrupted. Usisguldown

command helps prevent fnode corruption; usedtbleverify command to repair
damaged files.

Chapter 17 Named Files

Getting and Setting the Bad Track/Block Information

It is not uncommon for a hard disk to have a few sectors or tracks that cannot
reliably store information. Many of these disks have a record of these bad tracks
written on the second-highest cylinder of the disk. When the BIOS formats a disk,

it uses this bad track/sector information to assign alternate tracks or sectors for the
bad tracks/sectors listed. Taespecialsystem call also has the ability to retrieve

and set the bad track/sector information on a volume. One subfunction enables you
to retrieve the current list of defective tracks or sectors. Another subfunction
enables you to set up a new bad track/sector list.

Bad tracks and bad blocks are different. Bad tracks are handled by the device
drivers in conjunctions with the hardware, whereas bad blocks are handled by the
Basic I/O System. The Disk Verification Utility mainly deals with bad blocks. It
can view bad track information witfetbadtrackinfo but theformat command

must be used to change it.

|:| Note
Use the iRMX ability to read and set bad track and block
information only with ST506 drives. Drive electronics on newer

SCSI and IDE drives handle this mapping.

System Concepts Chapter 17 247

Accessing Remote Files

The 1/O System supports the iRMX-NET local area network (LAN) by providing
the Remote File Driver (RFD) and tkacrypt system call. Remote (public) files
are accessed by the RFD, which is similar to the Named File Driver.

Theencrypt call encrypts passwords. You can use this system call to enable
remote file access through iIRMX-NET or in any application that needs to perform
password encryption. No password decryption or data decryption facilities are
provided in the iIRMX OSs.

Systems that Include iIRMX-NET

248

iIRMX systems can be networked together using iRMX-NET. iRMX-NET gives
you access to the files on hard disks of other systems on your network. The root
directory of a remote device is referred to armal root. The remote system
selects the directories and files to be made accessible by usoifietheommand.

Not all files and directories on a remote system are automatically accessible.

A file owner specifies what kind of access will be given to other users using the
permit command. IniRMX-NET, giving or denying network file access is called
making filespublic or private Use theoffer command to make files public. Files
retain the same file permissions even when they are made public. Making
directories public has the effect of making all files below that directory public.

Chapter 17 Named Files

Figure 17-3 illustrates public and private files on two networked systems. User
Bob, working on the system shown on the right of the figure, is able to access the
public data files osysteml Bob's files are not accessible fregstemlbecause

none of his files are public.

See also: offer commangd Command Reference

Local CPU

Remote
CPU Board)
Client Board :SD:

Server | for Systeml

S

< Multibus >
Directory Directory
Structure System1l sb Structure
Work User User
Public Files | | Bob
|l
Legend

|:I = Private Directory
\Zl = Public Directory

A = Public Data File
A = Private Data File

W-2802

Figure 17-3. Example of Public and Private Files in an iRMX-NET System

System Concepts Chapter 17 249

Dynamic Logon and iRMX-NET

250

In a system that supports the dynamic logon facilities of the Human Interface or
iIRMX-NET, aUser Definition File(UDF) lists the user name, password (in

encrypted form), user ID, and other information about everyone who is allowed to
log on to the IRMX system. The EIOS providgs user_idsso that you can look

up the permitted user ID of any user whose user name you know. This system call
is useful for tasks that need to set up user objects based on the information listed ir
the UDF.

The EIOS also helps control remote file access thraegify user. This system

call validates user names and passwords to ensure file security. As a result, the
EIOS enables users to access remote files when logged on to dynamic terminals
controlled by the Human Interface.

Access rights to remote files are slightly different than for named files.

See also: permit, Command Reference

Chapter 17 Named Files

Accessing NFS Files

On a TCP/IP network you can use NFS for transparent file access between systems.
The NFS file driver enables application programs and users to access files on an
NFS-shared resource. Before using NFS from a client system, you must define the
files as NFS-shared on the server system. This section describes how file
characteristics are mapped between operating systems when you use NFS. The
NFS client or server software running on a non-iRMX OS (DOS or UNIX) is
responsible for mapping file characteristics to or from files on the non-iRMX

system during NFS file operations.

See also: attachdeviceandpermit, Command Reference
Using NFS.TCP/IP and NFS for the iRMX Operating System

Volume Names

The volume name for NFS files is the hostname. The number of free files is not
returned to the iRMX OS when you access files using NFS.

File Names

NFS filenames cannot be longer than 14 characters. If you try to access a file
whose name exceeds 14 characters, the system displays a truncated version of the
name and marks it as “file not found”.

Non-iRMX hosts can further restrict filename lengths. For example, DOS
machines limit filenames to eight characters followed by a three-character suffix.

NFS supports case-sensitive filenames. For hosts whose filenames are case-
insensitive, the filename is converted to comply with the host. For example, if you
use NFS to copy the filely_Stuff.txto a DOS machine, it is saved as the DOS file
MY_STUFF.TXT Copying the same file to a UNIX host results in the file
My_Stuff.txt You need to reference files using the same case as they appear in the
directory.

System Concepts Chapter 17 251

File Ownership

File ownership mapping occurs between iRMX, DOS, and UNIX files when using
NFS. The following list describes the mapping:

* When you use NFS between two iRMX systems, file owners are maintained on
a one-to-one basis.

* When you use NFS between an iRMX system and a UNIX system, the
following mapping occurs regardless of which OS is the NFS client:

iIRMX UNIX
First owner in access list “owner”
Second owner in access list ~ “group”
Third owner in access list (ignored)
World Owner is user ID 60000 and
Group is user ID 1 (other)
Super Owner and group user IDs are 0 (root)

|:| Note

You can modify iRMX to UNIX file ownership mapping values
for the World user by setting parameters in/gte/stune.infile.

See also: Tunable Parametar€P/IP and NFS for the iRMX Operating
System

e When you are the Super user on an iRMX client and you copy files to an
NFS-shared file system on a UNIX host and the host does not allow root
access, the files get an owner ID of 60001 (nobody) and a group ID 1 (other).

e When you use NFS between an iRMX system and a DOS system, file
ownership mapping does not apply. This is because DOS has no concept of
file owners. The NFS package you use on a DOS system may make certain
assumptions. For example, a DOS-based NFS product might translate a file
owned by user ID 0 (Super) as read-only from the DOS side. See the
documentation for your non-iRMX NFS product for such details.

252 Chapter 17 Named Files

User ID Translation

User IDs map one-to-one across NFS except as noted for the Super and World users
between iRMX and UNIX systems described in the previous section.

When you use NFS between two machines that happen to have different user
accounts with the same user ID, the file's ownership is determined by the client’s
account. For example, assume that a file on an NFS server is owned by Sam with a
user ID of 33. User Sarah on an NFS client also has a user ID of 33. If Sarah
accesses the file on the NFS server through NFS, the user IDs map one-to-one.
However, Sarah’s access rights to the file will be whatever rights Sam has for the
file on the server machine. Also, if Sarah lists the directory that contains the file,
the owner will appear as Sarah, not Sam.

This user ID mechanism works similarly between iRMX systems or between iRMX
and UNIX systems.

File and Directory Creation

When an iRMX user creates a file or directory across NFS, the default access rights
are as follows:

UNIX Access Rights DOS Access Rights
“owner” = “rwx " read/write

“group” = “--- 7 (not applicable)
“other” = “--- " (not applicable)

Your NFS software on the non-iRMX host can further define these default access
rights.

File Access Rights

When you change file access permissions programmatically or wigiethet
command from an iIRMX client, the access rights are mapped through NFS as

follows:
Setting any of these bits | Results in all of these bits being set on
on an iRMX Client iRMX, UNIX, and DOS Servers
iIRMX iIRMX UNIX DOS
Files D-AU D-AU -w- read/write
-R-- -R-- r-x read-only
Directories D-AC D-AC -w- read/write
-L-- -L-- r-x read-only

System Concepts Chapter 17 253

254

For example, if you set only the Delete (D) bit from an iRMX client system, this is
translated across NFS to meaAU access on an iRMX servew- (write) access
on a UNIX server, and read/write access on a DOS server.

When you change access permissions from another OS through NFS, the access
permissions on an iRMX server are set as follows:

Setting any of these bits on UNIX and Results in all of these
DOS Clients bits being set on an
iIRMX Server
UNIX DOS iIRMX
Files -W- read/write D-AU
r-x read-only -R--
Directories -w- read/write D-AC
r-x read-only -L--

For example, if you set the read pit or the executex{ bit from UNIX, it results
in a file with the “R-- " access on the iRMX server.

Chapter 17 Named Files

Accessing EDOS Files

The EDOS file driver enables application programs to access files on a DOS
partition and uses DOS as a file server. Before using any DOS partition or diskette,
attach the drive or the diskette usmttachdevice

See also: attachdevice Command Reference

Directories

Users cannot rename a DOS directory or file to another subdirectory (such as
renamingdirl to dir3/dirl). DOS directory files can only be read a multiple of 16
bytes at a time on 16-byte boundaries.

File Attributes

DOS file access attributes include read-only and read/write permission; iRMX
access attributes include read, change-entry, delete, update, add-entry, and append.
An iIRMX user that has any of delete, change, update, add, or append permission
has write permission for DOS files.

The DOS user always has read (list) access to DOS files and directories; write
(delete, append, update, add-entry, and change-entry) access is optional. The DOS
user must have write access to the file to rename it or to delete a connection to it.
DOS and the iRMX OS have different ways for handling invisible files.

See also: Invisible fileSRMX Programming Concepts for DOS and Windows

File Names

DOS filenames must be eight characters or less in length, with a three character (or
less) extension. DOS truncates iRMX filenames, which may be up to 14 characters
and may contain one or more . (period). Any DOS filename is a valid iIRMX
filename, but the converse is not true.

Time Stamps

Thecreate_time , access_time , and modify_time elements are not valid for
DOS files. The only time stamp for DOS files is creation time or last-modified
time.

File Ownership

Owner_access does not apply to DOS files because DOS does not support
multiple file owners. EDOS files have only one user, which is World.

System Concepts Chapter 17 255

Accessing DOS Files

The DOS file driver enables application programs to access files on a DOS
partition and uses DOS as a file server. Before using any DOS partition or diskette
attach the drive or the diskette usmttachdevice

See also: attachdevice Command Reference

Directories

DOS directory files can only be read a multiple of 16 bytes at a time on 16-byte
boundaries.

File Attributes

DOS file access attributes include read-only and read/write permission; iRMX
access attributes include read, change-entry, delete, update, add-entry and appenc
An iIRMX user that has any of delete, change, update, add, or append permission
has write permission for DOS files.

The DOS user always has read (list) access to DOS files and directories; write
(delete, append, update, add-entry and change-entry) access is optional. The DOS
user must have write access to the file to rename it or to delete a connection to it.
DOS and the iRMX OS have different ways for handling invisible files.

See also: Invisible fileRRrogramming Concepts for DOS and Windows

File Names

DOS filenames must be eight characters or less in length, with a three character (o
less) extension. DOS truncates longer iRMX filenames, which may be up to 14
characters and may contain one or more . (period). Any DOS filename is a valid
iRMX filename, but the converse is not true.

Time Stamps

Thecreate_time , access_time , and modify_time elements are not valid for
DOS files. The only time stamp for DOS files is creation time or last-modified
time.

File Ownership

Owner_access does not apply to DOS files because DOS does not support
multiple file owners. DOS files have only one user, which is World.

256 Chapter 17 Named Files

Using Nucleus System Calls for the Default User
and Default Prefix

Several system calls provided by the Nucleus allow you to specifically manipulate
user objects and prefix objects.

- catalog_object
e uncatalog_object
« lookup_object

The default user and default prefix for each 1/0O job are cataloged in the job's object
directory.

System Calls for Named Files

Some system calls are useful for both data and directory files, some for only one
kind of file, and some (such aseate_usej do not relate directly to either kind of
file. Generally, system calls that relate to named files also relate to remote files
and DOS files.

The brief descriptions in Tables 17-1 through 17-16 on pages 258 through 265 are
grouped by function, not alphabetically. Where a prefix is not usedal, prefix is
required for BIOS system calls andsarprefix for EIOS system calls. For

example, the full syntax for the BIOS system calld@ate_fileis

rq_a create_file

System Concepts Chapter 17 257

BIOS and EIOS System Calls for Named Files

Table 17-1. Getting and Deleting Connections

Call Target Used To

create_file data Create a new data file and automatically add
an entry in the parent directory. Obtain a
connection to an existing data file.

create_directory directory Create a new directory file and automatically
add an entry in the parent directory.

attach_file data and Obtain a connection to an existing data or
directory directory file.

delete_connection data and Delete a file connection, not a device
directory connection.

*a_physical_attach_device device Obtain a connection to a device.

a_physical_detach_device device Delete a connection to a device.

*s_logical_attach_device device Obtain a connection to a device and catalog

the logical name for the device in the object
directory of the root job.

s_logical_detach_device device Delete a connection to a device and remove
the logical name of the device from the
object directory of the root job.

hybrid_detach_device device Delete a connection to a device. Does not
remove the device's logical name from the
object directory of the root job. Use to
temporarily attach a device in a different
manner.

* For a_physical_attach_device and s_logical_attach_device , the device connection can be used as the
prefix for the root directory of the device.

Table 17-2. Getting and Setting Default Prefixes

Call Target Used To

‘set_default_prefix job Set the default prefix for any iRMX job and
catalog the connection under the name $in
the job's object directory.

‘get_default_prefix job Determine the default prefix for any
iRMX job.
* These system calls do not require a prefix ofa_ors_.

258 Chapter 17 Named Files

Table 17-3. User Objects

Call

Target Used To

‘create_user

user object Create a user object and return a token to
the calling task.

‘delete_user

user object Delete an existing user object.

‘inspect_user

user object Return the ID list in an existing user object
token to the calling task.

*set_default_user

user object Establish a default user for any existing
iRMX job.

‘get_default_user

user object Determine or change the default user for
any existing iRMX job.

* These system calls do not require a prefix ofa_ors_.

System Concepts

Chapter 17

259

Table 17-4. Using Data

Call

Target

Used To

open

data and
directory

Open a connection to the file.

close

data and
directory

Close the file connection.

seek

data

Position the file pointer of the file
connection. Tells the BIOS the location in
the file where the read, write or truncate
operation is to take place. Requires that
the file connection be open.

a_read
s_read_move

data and
directory

Read file data from the location indicated by
the file pointer and place the data in a
memory buffer. Use the seek system call
to position the file pointer. Requires that
the file connection be open. Requires that
the segment to which you copy the data be
writable.

a_write
S_write_move

data

Copy information from a memory buffer and
place it in the file at the position indicated
by the file pointer. Use seek to position the
file pointer. Requires that the file
connection be open. Requires that the
segment from which you copy the data be
readable.

a_truncate
s_truncate_file

data
data

Drop information from the end of the file.
Use a_seek to position the file pointer at
the first byte to be dropped. Requires that
the file connection be open.

‘wait_io

file

Receive the concurrent condition code of
the prior system call and the number of
bytes read or written. Use after a_read,
a_write , or a_seek.

‘a_update

BIOS

Transfer data remaining in internal buffers
immediately to the files on a device. Use to
ensure that all files on removable volumes
(such as diskettes) are updated before
removal.

* These system calls do not require a prefix ofa_ors_.

260 Chapter 17

Named Files

For close the application can elect to leave the file open, letting the BIOS close it
when the connection is deleted, but when a connection is shared between two or
more applications, some of the applications can place restrictions on the manner of
sharing. For instance, an application can specify sharing with writers only. By
closing connections, the application can improve the likelihood that the
connections can be used by other applications. A connection is not closed until all
pending I/O requests have been handled.

Each entry in a directory consists of 16 bytes. The first two bytes contain a 16-bit
file descriptor number corresponding to the file descriptor number associated with
get_file_status The remaining 14 bytes are the ASCII characters making up the
name of the file to which the directory entry points. A file's name is the last
component of a pathname. Usimggd to read a directory lets the application

obtain several entries with one operation.

Table 17-5. Getting Status

Call Target Used To
get_file_status data and Get file status.
directory
get_connection_status data and Get connection status.
directory
*get_logical_device_status device Retrieve information about devices.

* This system call does not require a prefix ofa_ors_.

Table 17-6. Reading Directory Entries

Call Target Used To

a_read directory Get contents of the directory.

a_get_directory_entry directory Read directory entries; can be used without
opening a connection.

Note: These system calls are for the BIOS only.

System Concepts Chapter 17 261

Table 17-7. Deleting and Renaming Files

Call Target Used To
delete_file data and Delete files or empty directories.
directory
rename_file data and Rename files or directories. Add entries to
directory directories.
Deleting a file involves two steps. First, calldelete file This marks the file for
deletion. The second step, actual deletion, is performed by the BIOS. The BIOS
deletes marked files only after all connections to the file have been deleted.
For rename_filg the application can move the file to any directory in the same
named file tree. For example, you can ren&ti/Cto beA/X/C. This example
moves fileC from directoryB to directoryX. This means that the application can
change every component of a file's pathname except the root directory.
See also: Accessing DOS and EDOS Files, in this chapter;
rename_file system callSystem Call Reference
Table 17-8. Changing Access
Call Target Used To
change_access data and Change the file's access list, or change
directory access rights of files in a directory, when
used by only the owner of a file or a user
with change entry access to the directory
containing the file.
Table 17-9. ldentifying a File's Name
Call Target Used To
a_get_path_component data and Find out the last component of a file's
directory pathname. Use repeatedly to obtain the
entire pathname for a file.

Note: This system call is for the BIOS only.

262

Chapter 17 Named Files

Table 17-10. Changing Extension Data

Call Target Used To

a_set_extension_data data and Writes extension data. Use even if the file
directory connection is not open.

a_get_extension_data data and

Reads extension data. Use even if the file
directory connection is not open.
Note: These system calls are for the BIOS only.

When you format a volume to accommodate named files, you have the option of
allowing each file to include extension data.

Table 17-11. Detecting Changes in Device Status

Call Target Used To

a_special device Perform functions that are device

dependent, such as formatting a disk or
setting terminal characteristics.

Note: This system call is for the BIOS only.

Table 17-12. Accessing Global Time-of-day Clock

Call Target Used To
‘get_global_time system clock

Returns the date and time value stored in

the battery-powered global time-of-day
clock.

*set_global_time system clock Sets the global date and time values in the

global time-of-day clock.

* This system call does not require a prefix ofa_ors_.

Table 17-13. Deleting Connections

Call Target Used To
s_delete_connection data and

Delete a file connection, not a device
directory connection.
Note: This system call is for the EIOS only.

System Concepts Chapter 17 263

Table 17-14. Using Logical Names

Call Target Used To

s_catalog_connection object Create a logical name by cataloging a
directory connection in the object directory of a job.

s_lookup_connection object Accept a logical name from an application
directory task, look up the name in the object

directories of the local, global, and root jobs
(in that sequence), and return a token for the
first connection found.

s_uncatalog_connection object Delete a logical name from the object
directory directory of a job.

Note: These system calls are for the EIOS only.

Table 17-15. Creating and Deleting I/O Jobs

Call Target Used To

‘create_io_job I/O job Create an I/O job while the system is
running. Available for compatibility with the
iRMX | OS. The memory pools associated
with those I/O jobs cannot exceed 1 Mbyte.
Specify if you want the initial task to start
running automatically, or wait until
start_io_job .

‘rge_create_io_job I/O job Create an I/O job while the system is
running. The memory pools can be up to
4 Gbytes for iRMX Il systems. Use this
system call (instead of create_io_job) for
all new applications, because it takes full
advantage of iRMX features.

“start_io_job I/O job Start the initial task in an I/O job.

“exit_io_job I/O job Terminate an I/O job and inform the parent
job of the termination.

Note: These system calls are for the EIOS only and do not require a prefix of a_ors_.

264 Chapter 17 Named Files

These EIOS system calls perform operations that do not fit into any other category.

Table 17-16. Miscellaneous Functions

Call Target Used To

s_special file Perform functions that are device
connection dependent, such as formatting a disk or
setting terminal characteristics.

s_get_directory_entry filename Look up the name of any file in a directory.

s_get_path_component filename Look up the name of a file as it is known in
the file's parent directory.

Note: These system calls are for the EIOS only.

See also: BIOS and EIOS cal&ystem Call Reference

Call Sequence for Named Files

System calls for named files cannot be used in arbitrary order. The following
figure shows the sequence for the most frequently used I/O System calls. Start with
the leftmost box and follow the arrows. Any path that you can trace is a legitimate

sequence of system calls. Figure 17-4 on page 266 is not a complete list of all
sequences.

System Concepts Chapter 17 265

Create |__
File
Read >
2 write Delete Delete
Open Ny, N,
> P ~ Sifk —>| Close [> File ““|Connection
? Truncate
Attach [
> File
Y
— Data Files
Attach -] Detach
Device Directories Device
A
Ly.| Create LS Seek > |
Directoryi Open or Close
Read
5| Delete Delete | |
File Connection
Get
> AETCh] Directory
e Entry

W-2801

Figure 17-4. Sequence of Frequently Used System Calls for Named Files

266 Chapter 17 Named Files

Physical Files

Physical files enable applications to read or write strings of bytes from or to a
device. A physical file occupies an entire device or the device's entire volume; the
I/O System provides applications with the ability to access the device driver
directly.

Although there is a one-to-one correspondence between the bytes on a device and
the bytes of a physical file, the device connection is different from the file
connection.

Situations Requiring Physical Files

Physical files are useful when the application system uses sequential devices, such
as line printers, display tubes, plotters, and magnetic tape units.

Physical files are also useful to communicate with random access devices, such as
disk drives and diskette drives, in these situations:

« When formatting volumes, the task accesses every byte on the volume. Only
physical files provide this kind of access.

« When using volumes in formats other than the iRMX format, you must use
physical files. Tasks will have to interpret information such as labels and file
structures, but a physical file can provide tasks with access to the raw
information.

« When implementing your own file format, such as a structure different from
iIRMX named files, you can build a custom file structure using a physical file
as a foundation.

Maintaining Physical File Independence

To allow application tasks to use stream or named files in addition to physical files,
create two tasks: one to obtain a connection to the file and one to use the
connection to perform 1/0. By maintaining this separation, the second task can
work with any kind of file.

To use this two-task approach, be sure that both tasks are in the same job. This
avoids passing a file connection from one job to another.

System Concepts Chapter 18 267

BIOS Calls for Physical Files

1.

268

Obtain a device connection to tell the I/O System that the file is a physical file
and which device contains the file using

a_physical_attach_device
Obtain a file connection using
a_create_fileora_attach_file

« Fora_create_file use the device connection token aspiiedix
parameter to tell the BIOS which device you want as the physical file.

« Fora_attach_file use the device connection for the device, or use an
existing file connection to the file as theefix parameter in the system
call.

Open the file connection using
a_open

Use the file. There are four system calls that can read, write, or otherwise use
the physical file.

These system calls read and write information from or to the physical file:
a_readanda_write

This call moves the file connection's file pointer if the device is a random
access device such as a disk or diskette.

a_seek
This call requests device dependent functions from the device driver.
a_special

Tasks can use this call to format a disk for use with the iRMX OS. The kinds
and number of functions supported depends upon the device and device driver.
Using special functions generally prevents a task from being device
independent.

Chapter 18 Physical Files

5. Close the file connection using
a_close

This is important if the connection share mode restricts the use of the file
through other connections. The application can repeat steps 2, 3, 4, and 5 any
number of times.

6. Delete the connection using
a_delete_connection

This is only necessary if the tasks of the application are completely finished
using the file.

7. Detach the device when the task no longer needs the device using
a_physical_detach_device

See also: BIOS call§ystem Call Reference

EIOS Calls for Physical Files

1. Obtain a device connection to tell the I/O System that the file is a physical file
and which device contains the file using

logical_attach_device

The application program must use the device name that was assigned to the
device during system configuration. This system call obtains a device
connection and catalogs the connection under the specified logical name.
Other tasks wishing to use the device connection can look up the connection by
using the logical name.

See also: attachdevice Command Reference
for ICU-configurable system$CU User's Guide and Quick
Reference

System Concepts Chapter 18 269

2. Obtain a file connection using
s_create_fileors_attach_file

« Fors_create_file use thepath_ptr parameter to point to an iRMX
STRING containing the device's logical name enclosed in colons, as in
:FO:. This tells the EIOS which device you want as the physical file.

« Fors_attach_file use thepath_ptr parameter of the call to point to an
iIRMX STRING containing the device's logical name enclosed in colons,
as in:FO:, or use theath_ptr parameter of the call to point to an iRMX
STRING containing the connection's logical name enclosed in colons, as
in :database:

3. Open the file connection using
s_open

The task must also specify how many buffers the EIOS can use when reading
from or writing to the file.

4. Use the file. There are four system calls that can read, write, or otherwise
manipulate the physical file.

These system calls read and write information from or to the physical file:
Ss_read_moveors_write_move

This call moves the file connection's file pointer if the device is a random
access device such as a disk or diskette.

s_seek

If you are writing a device driver for a magnetic tape unit, you can design it to
supports_seek

This system call requests device dependent functions from the device driver.
s_special

Tasks can use these calls to format a disk for use with the iRMX OS. The
kinds of and number of functions supported depends upon the device and
device driver. Using special functions generally prevents a task from being
device independent.

270 Chapter 18 Physical Files

5. Close the file connection using
s_close

This is important if the connection share mode restricts the use of the file
through other connections. The application can repeat steps 2, 3, 4, and 5 any
number of times.

6. Delete the connection using
s_delete_connection

This is only necessary if the tasks of the application are completely finished
using the file.

7. Detach the device when the task no longer needs the device using
logical_detach_device

See also: EIOS call§ystem Call Reference

System Concepts Chapter 18 271

Call Sequence for Physical Files

You can use several system calls with physical files. Figure 18-1 shows the systerr
call sequence for physical files. To use the figure, start with the leftmost box and
follow the arrows. Any path that you can trace is a legitimate sequence of system
calls. The steps on the next pages provide a brief description of how an applicatior
can use a physical file.

3 Read |

Data

Write
> -

Data

Attach N Obtain 3 Open | Close N Delete N Detach
Device Connection File File Connection Device

vy

> Seek

Pointer

Perform
L—> Special [—

Functions

W-3252

Figure 18-1. Sequence of System Calls for Physical Files

272 Chapter 18 Physical Files

Stream Files

Stream files enable one task to send large amounts of information to a second task,
even when the two tasks are in different jobs. The first task communicates with the
second task as though the second task were a device. This extends device
independence to include tasks.

Stream files are only one of several techniques for job-to-job communication.

Maintaining Stream File Independence

Two tasks, the reading task and the writing task, are always involved in using a
stream file. To allow your reading and writing tasks to use named files or physical
files in addition to stream files, add a third task to the application: creating the file.
This enables both the reading and writing tasks to be independent of the kind of file
being used.

Creating the File

The creating task obtains a device connection to the stream file device and creates
the stream file. It also catalogs the file connection under a logical name so the
reading and writing tasks can attach the file. This task is not device independent; it
works only for stream files.

BIOS Calls for Creating Stream Files
1. Obtain a connection to the stream file device using
a_physical_attach_device

Use the configured stream file name, typicaliyeam for thedev_name_ptr
parameter. For stream files, there is only one device.

2. Create the stream file and obtain a token for a file connection using
a_create_file

Use the token for the device connection aspthix parameter, to tell the
BIOS to create a stream file.

A_create_fileexamines the device connection to determine what kind of file
to create.

System Concepts Chapter 19 273

3.

Pass the file connection to the reading task.

There are several ways of doing this, including using object directories and

mailboxes.

EIOS Calls for Creating Stream Files

1.

Create a stream file using
s_create_file
Use apath_ptr parameter pointing to an iRMX STRING of this form:
:stream_filename:
Where:
stream_filenamas the logical name for the stream file device connection.
S_create_filereturns a connection to the newly created stream file.

The logical name for the stream file device is a configuration parameter.
During system initialization, the EIOS attaches the stream file device and
catalogs the device connection under that logical name. Your tasks can use th
logical name to obtain the device connection.

Catalog the file connection under a unique logical name for each specific
stream file using

s_catalog_connection

The reading and writing tasks can then use the logical name to attach the file.

Writing the File

The writing task obtains a device connection to the stream file device and opens th
file for writing. It also closes and removes the connection. Figure 19-1 on page
279 illustrates the file writing process.

BIOS Calls for Writing Stream Files

1.

274

Open the file for writing using
a_open

Use the token for the file connection as thenection parameter. Set the
mode parameter for writing; set ttehare parameter for sharing only with
readers.

Chapter 19 Stream Files

2. Write information to the stream file using
a_write

Use the token for the file connection as thenection parameter. Use
multiple invocations o&_write if necessary. In this case, the BIOS uses the
concurrent part of the call to synchronize the writing and reading tasks. The
BIOS sends a response to each invocatian wirite only after the reading

task has finished.

3. Close the connection using
a_close
The writing task can repeat steps 1, 2, and 3 as many times as needed.
4. Delete the connection using

a_delete_connection

EIOS Calls for Writing Stream Files
1 Obtain a connection to the stream file using
s_attach_file

Set thepath_ptr parameter of the system call to point to an iRMX STRING
containing the file connection's logical name, enclosed in colons:sf2&

2. Open the file connection for writing using
s_open

Use the token of the file connection for tlemnection parameter and set the
mode parameter to write.

3. Write information to the stream file using
S_write_move
Use the token for the file connection as thenection parameter.
4. Close the connection when finished writing to the stream file using
s_close
The writing task can repeat steps 2, 3, and 4 any number of times.
5. Delete the connection using

s_delete_connection

System Concepts Chapter 19 275

Reading the File

The reading task obtains a device connection to the stream file device and opens
the file for reading. It also closes and removes the connection. Figure 19-1 on
page 279 illustrates the file reading process.

BIOS Calls for Reading Stream Files

The reading task performs these steps to successfully read the information written
by the writing task:

276

1.

The reading task must have a different file pointer than the writing task.
Create a file connection for the stream file using

a_attach file
Set theprefix ~ parameter to the token for the original file connection.

The reading task can also usecreate_fileto obtain the new connection to the
same stream file. If the specifiptkfix parameter is a device connection,

the BIOS will create a new file and return a connection for it. If the specified
parameter is a file connection, the BIOS will just create another connection to
the same file.

Open the file connection for reading using
a_open

Use the token of the file connection for tlemnection parameter. Set the
mode andshare parameters to read and sharing with all connections to the
file.

Read information from the stream file using
a_read

Read the file until reading is no longer necessary or until an end-of-file
condition is detected. Use the token for the file connection as the
connection parameter.

Close the connection when finished reading from the stream file using
a_close
The reading task can repeat steps 2, 3, and 4 any number of times.
Delete the connection using
a_delete_connection

The writing task deletes the old connection, and, as soon as both connections
have been deleted, the BIOS deletes the stream file.

Chapter 19 Stream Files

EIOS Calls for Reading Stream Files

The reading task performs these steps to successfully read the information written
by the writing task:

1. The reading task must have a different file pointer than the writing task.
Create a file connection for the stream file using

s_attach_file
Set thepath_ptr parameter to point to an iRMX STRING containing the file
connection's logical name enclosed in colons, asf23..

The reading task can also usereate_fileto obtain the new connection to the
same stream file. If the specifipcefix ~parameter is a device connection,

the EIOS will create a new file and return a connection for it. If the specified
parameter is a file connection, the EIOS will just create another connection to
the same file.

2. Open the file connection for reading using
s_open
Use the token of the file connection for tlemnection parameter. Set the

mode andshare parameters to read and sharing with all connections to the
file.

3. Read information from the stream file using
s_read_move

Read the file until reading is no longer necessary or until an end-of-file
condition is detected. Use the token for the file connection as the
connection parameter.

4. Close the connection when finished reading from the stream file using
s_close
The reading task can repeat steps 2, 3, and 4 any number of times.
5. Delete the connection using
s_delete_connection
6. Delete the file's logical name created by the creating task using
S_uncatalog_connection
Do not delete the logical name for the stream file device.
7. Delete the file connection created by the creating task using
s_delete_connection

The reading task deletes the file connection that the creating task obtained.
Once this connection is deleted, the EIOS automatically deletes the stream file.

See also: BIOS and EIOS cal&ystem Call Reference

System Concepts Chapter 19 277

Call Sequences for Stream Files

278

Figure 19-1 on page 279 illustrates three tasks: one each for creating, writing, and
reading the file. The writing task can create the file before it performs the write,
but this forces the writing task to use only stream files.

This figure shows the system call sequence for stream files. To use the figure, star
with the leftmost box and follow the arrows. Any path that you can trace is a
legitimate sequence of system calls. The sequences of steps on the next pages
work even if the three tasks are in different jobs. They also work regardless of the
order in which they are executed.

Chapter 19 Stream Files

Task 1: Creating the File

Pass
Connection
Obtain to Reading
) Task
Connection BIOS
(BIOS) (BIOS)
Create | —
File Catalog
Connection
S Under
Logical
Name
(EIOS)
Task 2: Writing to the File
Open File .
> Write > Close 3 Delete
fp.r Data Connection Connection
Writing
Obtain
Connection
(EIOS)
Task 3: Reading the File
Open File
Create > > Read > Close 3 Delete
Connection for . Data Connection Connection Delete
Reaching) Delete
Logical -
Name Connection
> Created
Cataloged
by Task 1
by Task 1 (EI0S)
(EIOS)
W-3251

Figure 19-1. Sequence of System Calls for Stream Files

System Concepts Chapter 19 279

Connections and Objects

Cataloging Connections

Uses_catalog_connectiorto control which directory the connection is cataloged
in, depending on the specified job token.

- To share a connection with tasks in the same job, but not other jobs, catalog
the token for the connection under a logical name in the local object directory.

- To share connections among tasks in several jobs, designate one global job for
a user session. Then catalog tokens for shared connections in the global job
object directory.

- To share certain connections with all tasks in the system, catalog tokens for the
connections in the root job's directory.

|:| Note

Before an I/O job exits, it must uncatalog any tokens it cataloged
in other directories (global or root). If it does not and the logical
name and token remain even though the connection is deleted,
other tasks referring to the logical name or attempting to use the
connection will receive an error.

System Concepts Chapter 20 281

Cataloging Objects

The EIOS catalogs entries in the object directory of the system's root job and each
I/O job. This is a list of the names that the EIOS uses.

rqglobal The EIOS uses this name to identify the user session’s global
job for each I/O job. Whenever you create an /O job, the
EIOS automatically catalogs the token for the global job in
the object directory of the I/O job. You may redefine this
name, but doing so may alter the interpretation of any logical
names that are cataloged in the object directory of your job's
global job.

r?iojob Whenever you create an 1/O job, the EIOS catalogs an object
under this name in the object directory of the I/O job.
Do not redefine this name!

r?message Whenever you create an 1/O job, the EIOS catalogs an object
under this name in the object directory of the I/O job.
Do not redefine this name!

r?iouser Whenever you create an 1/O job, the EIOS catalogs an object
under this name in the object directory of the I/O job.
Do not redefine this name!

$ The EIOS uses this name to catalog the default prefix for
each 1/O job. If you modify the definition associated with
this name by invokingatalog_object you change the job's
default prefix. If you catalog an object other than a device
connection or a file connection under this name, the EIOS
generates a condition code whenever you attempt to use the
default prefix.

With the exception ofgglobal and$, do not useatalog_objectto modify any of
the definitions described here. If you do, the results will be unpredictable.

The EIOS uses object directories for two other purposes:

« Whenever you useatalog_connectiorto define a logical name for a
connection, the EIOS catalogs the connection in the object directory of the job
that you specify.

Whenever you uslegical_attach_devicethe EIOS catalogs the device
connection in the object directory of the system's root job.

282 Chapter 20 Connections and Objects

UDI Basic Concepts
and System Calls

The Universal Development Interface (UDI) is a set of system calls compatible

with multiple OSs. If an application program makes only UDI system calls, it can
be transported between OSs. You can use the UDI as an alternative to the iRMX

I/O Systems; if you do so, you should only use UDI calls for I/O operations.

Figure 21-1 illustrates the relationship between application code, processing

hardware, and layers of software. The downward arrows represent command flow
and data flow from the application code to the hardware. All interaction between

the application code and the OS is through the UDI software.

\Z
Run-time libraries for
non-mathematical features

Application code in application language(s)

%

v

uDlI Ii‘braries ‘ Intel387 0

support

\ \7 library

Operating system interface libraries
\ \
Operating system
| |
Intel387

Intel386 1, Intel4860, or Pentium processor

math coprocessor

W-2570

Figure 21-1. The Application Software-Hardware Model

System Concepts

Chapter 21

283

To make an application transportable between OSs, you need a UDI library for
each OS. All libraries present the same interface to applications. UDI OS
interfaces, however, are designed for specific operating systems, including the
iRMX, iINDX, UNIX, and XENIX OSs.

The UDI system calls, while presenting a standard interface to user programs,
behave somewhat differently when used in different OS environments. This is
because different OSs have unique characteristics.

UDI System Calls

The calls are divided into functional groups.

UDI Memory Management System Calls

When iRMX OSs load and run a program, the program is allocated memory. The
portion of memory not occupied by code and data, the free space pool, is available
dynamically while the program runs. The OS manages this memory as segments
that programs can obtain, use, and return.

Programs can use the UDI system cdfjsallocateanddg_mallocateto get
memory segments from the pool. They can use the systendgaftee and
dg_mfree to return segments to the pool. Programs can alsdaadiet_sizeand
dg_get_msizeto receive information about allocated memory segments.

You can reserve memory for the /O System by using the system call
dg_reserve_io_memory This ensures that the OS allocates memory to
accommodate the buffers needed to open files.

Dg_reserve_io_memoryis particularly useful to an application that has used all of
its allocated memory and must open a temporary file to store data. The system cal
reserves additional memory for this purpose. If an application program has not
invokeddq_reserve_io_memoryand is out of memory, the OS returns an E_MEM
condition code when the application tries to create a temporary file.

A program obtains a connection by callihg_attach (if the file already exists) or
dg_create(to create a new file)Dq_detachdeletes the connection. To delete
both the connection and the file, g delete

284 Chapter 21 UDI Basic Concepts and System Calls

Once a program has a connection, it cddjsopento prepare the connection for
I/O operations. The program performs input or output operations dgingad
anddg_write. It can move the file pointer associated with the connection by
callingdq_seek It can truncate the file by callirdg_truncate.

When the program finishes input and output to the file, it closes the connection by
callingdg_close The program closes the connection, not the file. Unless the
program deletes the connection, by calliltg detach it can continue to open and
close the connection as necessary.

If a program callglq_deleteto delete a file, the file cannot be deleted while other
connections and I/O requests exist. In that case, the file is marked for deletion but
is not actually deleted until the last of the connections is deleted. During the time
that the file is marked for deletion, no new connections or I/O requests to the file
may be issued.

Using Program Control Calls
UDI provides two system calls for program contrdf_exit anddq_overlay.

Dq_exit terminates a program, closing all open files and freeing allocated
resources. You should always include this system call as the last statement in your
program.

Dqg_overlay lets you take advantage of the overlay support provided by the OS.
This system call loads an overlay into memory.

|:| Note
Prepare the overlay with the BND binder and the OVL286
overlay generator.

Using Utility and Command-parsing Calls

UDI provides system calls for command parsing, date stamping, time stamping,
and system identification. The system callsdifeget_time dg_decode_time
dg_get_system_iddg_get_argument anddg_switch_buffer.

Dg_get_timeanddq_decode_timereturn the date and time information
maintained by the OS. Both calls provide the same kind of information, but
dg_get_timeis provided for compatibility with previous releases. Use
dg_decode_timeinstead oflg_get_timewhen possible.

Dg_get_system_ideturns a string that identifies the name of the OS. This system
call is useful for programs that need to perform operating-system-specific
functions.

System Concepts Chapter 21 285

Dg_get_argumentanddq_switch_buffer enable programs to retrieve parameters
from the command line (or from any other program buffégy. switch_buffer
switches to a new buffer so that the next time youdzplget_argument you will
retrieve a parameter from the new buffer.

Dg_get_argumentparses the command line, returning the next parameter in the
sequence. The parameters are separated by delimiters, which include the space,
<CR>, ASCII character values ranging from 1 through 20H and 7FH through
OFFH, and these:

D) (=#T% +-&;<>[]V"]~

Using Condition Codes and Exception-handling Calls

Every UDI call (exceptlg_exit) returns a numeric condition code specifying the
result of the call. Each condition code is equated with a label. For example, the
code 0 has the name E_OK. E_OK indicates that a call has been successful.
Conditions may also indicate a problem or require a response (exceptional
conditions). Thelg_decode_exceptiometurns the mnemonic description of any
condition code generated by a UDI system call.

See also: Condition codeSystem Call Reference

A routine in the UDI interface library called_error handles UDI exceptional
conditions. This routine is called whenever a condition code is generated by a UDI
system call.Rq_error performs these operations:

- If an environmental condition occurs (device error, incorrect file reference,
insufficient memory, etc.), the condition code is returned to the calling
program. The calling program handles the exceptional condition inline.

- If a programmer error occung|_error invokes the Nucleus system call
signal_exception The action thagignal_exceptiontakes depends on the
Nucleus exception mode. If the exception modei®r (the default) or
environ , signal_exceptionpasses control back to the calling program so that
it can process the exceptional condition inline. If the exception matle isr
program , signal_exceptionpasses control to the exception handler that is in
effect at the time the exception occurs.

See also: signal_exception Nucleus callsSystem Call Reference

286 Chapter 21 UDI Basic Concepts and System Calls

Overriding the <Ctrl-C> handler

UDI provides a method for a program to handle <Ctrl-C> characters entered while
the program is running. The system default <Ctrl-C> handler terminates any
program that is active when <Ctrl-C> is entered. However, a program can override
the default handler for the duration of its execution by calliqpgtrap_cc and

supplying a long pointer to a new <Ctrl-C> handler. The OS will call this new
<Ctrl-C> handler whenever a <Ctrl-C> is typed at the terminal. The new handler
remains in effect until the program cadlg_exit, or until it establishes another

handler by callinglg_trap_cc again.

Writing Portable Programs Using the UDI

Not all programs making UDI calls are portable across all UDI-supported OSs.
Employ these techniques to ensure that the programs you write are as portable as
possible:

« Never examine filenames (and pathnames) in your program. The rules for
forming pathnames are OS dependent.

- Modify filename strings only by calling the UDI procedure
dg_change_extension

« Work only with pathnames supplied by the user, pathnames created by calling
dg_change_extensionor predefined filenames.

« Always check the condition code to see if a call failed.

« When handling condition codes, create the necessary file connections in the
initial part of programs or makeda)_reserve_io_memorycall before making
any other UDI system call.

System Concepts Chapter 21 287

Call Sequence for File-Handling System Calls

Figure 21-2 shows how file-handling calls are related. A program needing to
access a file obtains a token for a connection to the file. It then uses the connectiol
to perform operations. Other programs can simultaneously have connections to the
same file. Each program having a connection to a file uses its connection as if it

had exclusive access.

ATTACH

N

CREATE

OPEN

READ
WRITE

CLOSE

DELETE

DETACH

i)

288

Chapter 21

SEEK
TRUNCATE

Figure 21-2. Sequence of System Calls for UDI

Uou

=

W- 2574

UDI Basic Concepts and System Calls

Application Loader
Programming Concepts

This section describes the Application Loader subsystem. The AL loads programs
from secondary storage into memory under the control of iRMX tasks or tasks that
are part of application programs. The AL enables:

« Programs to run in systems with insufficient memory to accommodate all
programs at one time.

« Seldom used programs to reside on secondary storage rather than in memory.
These are the chapters in this section:

Chapter 22. Application Loader Basic Concepts

Chapter 23. Preparing Code for Loading

Chapter 24. Application Loader System Calls

Application Loader
Basic Concepts

This chapter defines terms used in Application Loader (AL) system calls and the
AL concepts described in this section.

These terms are used in the AL concepts and system call descriptions:
« Object code, object module, and object file

« Synchronous and asynchronous system calls

+ 1/Ojob

« Overlay, root module, and overlay module

« Device independence

« Configurability

Object Code

Objectcodemay be:
« Output of a translator (for example, PL/M and ASM).
e Output of the BIND command.

An object filecontains object code. Asbject modulas the output of a single
compilation, a single assembly, or a single invocation of the BIND command.

Synchronous and Asynchronous System Calls

The AL provides both synchronous and asynchronous system calls. While a
synchronousystem call is running, the calling task cannot run. The calling task
resumes running only after the loading operation has either failed or succeeded.

While anasynchronousystem call is running, the calling task runs concurrently.

To explicitly overlap processing with loading operations, use asynchronous system
calls.

See also: Asynchronous and synchronous calls, in this manual

System Concepts Chapter 22 291

Situations Requiring an 1/0 Job

Some of the system calls provided by the AL use the EIOS. These system calls
must be part of an I/O job: if a task is not in an /O job, it cannot successfully use
system calls that require the EIOS. The AL creates the 1/O job when one is
required.

See also: I/O jobs, in this manual

Overlays

Overlaysare logically independent subsections of a program which need not all be
present in memory at the same time during program execution. Using overlays car
reduce the memory space required for a program to execute, as these designs of a
data processor illustrate.

« If the data processor is structured as a monolithic program that resides on
secondary storage, the entire collection of object code will be loaded into
RAM when needed.

- If the data processor is an overlaid program, pieces (overlays) of the data
processor reside on secondary storage; individual overlays are loaded as
needed. In this way, the data processor can run in a much smaller area of
memory because different overlays are alternately loaded into the same
memory space. The data processor might be slower if it uses overlays,
depending on how it uses the time when the overlays are being loaded.

To implement an overlaid program using the AL, create a program vaibt a
moduleand one or moreverlay modules A root module is an object module that
controls the loading of overlays. When you invoke an overlaid program, the
application system loads the root module. The root module then loads overlay
modules as needed.

Overlays are supported in OMF86 and OMF286 programs; they are not supported
in OMF386 programs.

See also: Overlays, root modules, and overlay moduled386Family
Utilities User's Guide

292 Chapter 22 Application Loader Basic Concepts

Device Independence and the AL

The AL can load object code from any mass storage device supported by the BIOS.

Configuring the AL

For ICU-configurable systems, you can configure the kind of load function required
by your system. Your system may be configured for:

« Load job, which includes all the AL system calls.
« Load, which includes onlg_load

If you choose all AL system calls, the ICU will incorporate the EIOS into your
system.

You can configure the read buffer size to optimize loading time: a smaller buffer
size may cause a longer load time.

You can configure the memory pool minimum size used by the AL to create an 1/O
job for newly loaded programs. If you specify 0 in the pool minimum parameter,
the Application Loader computes the required size.

See also: ICU User's Guide and Quick Reference

System Concepts Chapter 22 293

Preparing Code for Loading

To process your code so that the AL can load it:

« Use an Intel386 translator or assembler (PL/M-386, ASM386, or iC-386) to
produce object modules that you can bind. COMPACT is the only supported
compilation model for Intel386 translators. Then use BND386 to produce a
load file. Use the RCONFIGURE control. The load file must be an OMF-286
Single Task Loadable (STL) object file with LODFIX records.

STL format is the only supported object code format. LODFIX records enable
the AL to replace each selector in the object file, with the new GDT selector
assigned at random by the iRMX OS, at load time. Usdebagcommand

to determine which GDT slots were allocated for your program.

e Use a non-Intel compiler to produce your application. Some of these third-
party tools produce flat model (non-segmented) _ applications. The AL
recognizes and can load a flat model application.

See also: debug Command Reference
porting codeProgramming Techniques
Third-party Compilers, Flat ModeRrogramming Techniques

Specifying Pool Sizes for I/O Jobs

There are two ways to specify memory requirements for the 1/0 job's memory pool.
Both involve setting the BND386 RCONFIGURE control when you create the
object file. You can:

« Letthe AL decide how large a memory pool to allocate to the new I/O job.

« Manually set the pool size.

System Concepts Chapter 23 295

296

The AL determines the size of the 1/0 job's memory pool using this information:
+ Thepool_min parameter, as a number of 16-byte paragraphs.
 Thepool_max parameter, as a number of 16-byte paragraphs.

- The DMP ICU configuration parameter specifying the default dynamic
memory requirements.

« Memory requirements specified in the target file with the RCONFIGURE
parameter.

If the AL allocates the memory pool, it uses the requirements of the target file and
the configured DMP parameter to make this decision. Unless you have unusual
requirements, choose this option. Make sure the values specified by the
RCONFIGURE parameters provide more than enough memory for the program.

If you override the AL's decision on pool size, the AL usegptioé min

parameter opool_max parameter specified in the system call to decide how large
a memory pool to allocate. If the value you entgraol_min is less than what is
required to load the file, the AL ignores your input and pets min to the

minimum amount of memory required by your file. If yougedl_max to
max_pool_size , the created I/O job can borrow unlimited memory from its
parent.

The pool size parameters in AL system calls are specified in 16-byte paragraphs.
However, the pool parameters in the RCONFIGURE control of BND386 are
entered in BYTES.

See also: Pool sizes for I/O jobs in this manual

Chapter 23 Preparing Code for Loading

Producing an STL Object File

This example illustrates how to produce an STL object file. The directory attached
as:lang: contains the PL/M runtime libraries. The source code for the program is
located in a PL/M file namenhy_prog.plm This source is common to both the 16-
and 32-bit OSs. The program uses COMPACT model. The 16-bit version is linked
to the compatibility interface librarymxifc.lib. The 32-bit version is linked to the
COMPACT library,rmxifc32.lih Use this sequence to produce an object module
from my_prog.plm The SEGSIZE control and DYNAMICMEM option of the
RCONFIGURE control are described after the example.

The 16-bit version runs on 16-bit systems.

PLM286 MY_PROG.PLM COMPACT

BND286 &
MY_PROG.OBJ, &
:LANG:PLM286.LIB, &
IRMX386/LIB/RMXIFC.LIB &
OBJECT(MY_PROG_16) SEGSIZE(STACK(+500H)) &
RCONFIGURE(DYNAMICMEM(5000H, 10000H))

The 32-bit version is:

PLM386 MY_PROG.PLM COMPACT WORD16

BND386 &
MY_PROG.OBJ, &
:LANG:PLM386.LIB, &
/RMX386/LIB/RMXIFC32.LIB &
OBJECT(MY_PROG_32) SEGSIZE(STACK(+500H)) &
RCONFIGURE(DYNAMICMEM(5000H, 10000H))

Binary compatibility support enables the 16-bit version to run on a 16- or 32-bit
system. The WORD16 compiler control tells the compiler that a WORD is a 16-bit
guantity in the source; this enables the source modules to be truly common.

Upon completion, the object modutey_prog_16or my_prog_3ds ready for
loading.

System Concepts Chapter 23 297

Specifying Stack Requirements with SEGSIZE Control

The SEGSIZE control specifies the stack requirements for your program and the
stack requirements for the highest iRMX layer used. Table 23-1 lists the stack
requirements for each layer. The value given as the minimum stack size for an
individual layer includes the requirements of all lower layers. For example, if you
use the Nucleus, BIOS and EIOS, add 550 bytes to the stack. Then add your
program's stack requirements.

Table 23-1. OS Stack Sizes

OS Layer Minimum Stack Size
Nucleus 250 bytes

BIOS 350 bytes

EIOS 550 bytes
Application Loader 700 bytes

Human Interface 1500 bytes

uDI 1750 bytes

When any task is created in the iRMX OS, the Nucleus ensures that it has at least
1 Kbyte stack unless you have specified a size with the SEGSIZE control. Sixteen

bit tasks need appropriate stack padding so they run properly with the IRMX OS. If
you use the SEGSIZE control, make sure to specify at least a 1 Kbyte stack.

Specifying Dynamic Memory Allocation with DYNAMICMEM
Option

BND386 enables you to specify the amount of memory your program will allocate
dynamically, so that your program has enough dynamic memory once it is loaded
and running. The value specified fyol_min is always available for your

program, while the value specified pyol_max enables your program to borrow

from its parent.Pool_min andpool_max apply only for programs that are loaded
as I/O jobs.

298 Chapter 23 Preparing Code for Loading

Application Loader
System Calls

The AL system calls divide into two categories:
e 1/O job and non-1/O job system calls
e Synchronous and asynchronous system calls

AL System Calls Requiring an I/O Job

The AL creates an 1/O job and loads a program within it when one of these system
calls is issued:

a_load_io_job
rqe_a_load_io_job
s_load_io_job
rqe_s_load_io_job

The AL task which loads the job is a task in the new job. Once the code is loaded,
the AL task terminates itself, unless the new program contains overlays. If so, the
AL task waits for requests to load new overlays.

Specify the pool size parameters in AL system calls in 16-byte paragraphs; enter
the pool parameters in the RCONFIGURE control of BND386 in BYTES.

System Concepts Chapter 24 299

a_load Does Not Require an 1/0O Job

A_load is the only system call that does not create an I/O job. Instead, the AL task
that loads the program runs in the context of the caller's job.

The AL places the loaded code in memory; it does not create a task for it. If you
want this code to run, explicitly create a task for it using the Loader Result
Segment (LRS) that the caller receives on completion of loading. Because no I/O
job is created, you can uaeloadin systems configured without the EIOS layer.

The LRS contains two fieldspde_seg_base andstack_seg_base , that list the
tokens of the segments (up to 255) created by loading a file. These fields let you
call a_loadwhile loading OMF286 programs that use MEDIUM and LARGE
models. Only COMPACT model OMF386 programs are supported for calls to
a_load

|:| Note

The system call a_load is not supported in flat-model
applications.

See also: LRSSystem Call Reference

Synchronous System Calls

300

The synchronous system calls are:
rqe_s_load_io_job
s_load_io_job
s_overlay
If the system call returns to the calling routine after the service has completely

finished, an E_OK condition code returns, using the specified exception pointer. |If
the system call terminates due to an error, an exception condition code is returned.

Chapter 24 Application Loader System Calls

Using rge_s load _io_job and s_load_io_job

These two system calls load the specified file and create an 1/O job as the
environment for the loaded code.

Either call can immediately start or delay execution of the loaded code, depending
on thetask_flags parameter. If you specify delayed execution, call

start_io_job after the AL has successfully returned and you are ready to start the
program.

Theresp_mbox parameter specifies the exit mailbox for the newly created I/O
job. The EIOS sends an exit message to this mailbox when the loaded program,
contained within the newly created 1/O job, terminates uskilg io_job.

See also: create_io_joh start_io_job, andexit_io_job, System Call Reference

Loading Overlays with s_overlay

To create OMF286 overlaid programs on an Intel system, use OVL286 to produce
the object files. The AL assumes that you adhered to these rules when writing the
overlaid program.

« The root is always present in memory.

« No overlay, except the root, is present in memory unless its parent is also
present.

« The only possible request from any given overlay is to load a descendent
overlay.

« Any previously loaded sibling is no longer accessible once an overlay has been
loaded.

« No assumptions are made about the preservation of data across multiple
requests to load the same overlay.

Uses_overlaywhenever the loaded program requires that a new overlay be present
in memory. This call can be used only by an overlaid program. It can be issued by
any overlay (including the root) to load any of its descendants.

Althoughs_overlayis synchronous, it can be used in conjunction with the
asynchronous AL system calls. When you invoke an overlaid program, use
a_load_io_jobors_load_io_jobto load the root module. The root module then
usess_overlayto load overlay modules as needed.

System Concepts Chapter 24 301

Asynchronous System Calls

The asynchronous system calls are:

rqe_a load_io_job
a_load_io_job
a_load

The concurrent part of the call runs as an IRMX task. The task is readied by the
sequential part of the call and runs only when the priority-based scheduling of the
OS gives it control of the processor. The concurrent part also returns a condition
code as part of an LRS sent to the response mailbox specified in the asynchronous
AL call.

See also: Synchronous and asynchronous calls, in this manual

Asynchronous Call Order of Operations

This example shows how an application can load a program stored on disk. The
application issuea_loadto have the AL load the program into memory.

1 The application issues loadand specifies a response mailbox for
communication with the concurrent part of the system call.

2. The sequential part af loadbegins to run and checks for valid parameters.

3. The iRMX OS returns a sequential condition code. It then returns control to
the application. If the condition code is E_OK, the AL readies the AL task;
otherwise, it does not ready the AL task.

4. The application receives control and tests the sequential condition code. If the
code is E_OK, the application continues running. At this point, the application
can take advantage of the asynchronous and concurrent behavior of the AL to
perform computations.

If the sequential condition code is not E_OK, the AL did not ready a task to
perform the function and the application must respond appropriately.

For the balance of this example, assume that the sequential part of the system
call returned an E_OK sequential condition code.

5. Before using the loaded program, the application verifies that the concurrent
part ofa_loadran successfully. The application issuesa@ive_message
system call to check the response mailbox specified limad

302 Chapter 24 Application Loader System Calls

6. After receiving the LRS indicating successful loading, the application uses
rq_create_task(using the entry point, data segment, and stack segment
specified in the LRS) to activate the loaded program.

7. When the loaded program is no longer required, the application can delete all
the segments that the AL created for this program by using the segment list in
the end of the LRS. The LRS itself can then be deleted.

See also: Asynchronous and synchronous calls in this manual;
Application Loader callsSystem Call Reference

Response Mailbox Functions

All AL system calls excepbverlay have a response mailbox parameter. The
response mailbox has two different functions, depending on the system call used.

When you invoke an asynchronous system call, this mailbox enables the AL to
notify the caller that the concurrent part of the system call is finished. The AL
sends an LRS to this mailbox on completion of the loading process.

In general, the LRS indicates the result of the loading operation. The format of an
LRS depends upon which system call was invoked.

See also: LRSSystem Call Reference

Fors_load_io_jobandrge_s_load_io_job this mailbox also receives the exit
message from the loaded I/O job. The EIOS sends the exit message when the
loaded program terminates usiegjt_io_job.

Therefore, you can wait at the same mailbox two times: first for the LRS and then
for the exit message, in this order.

Avoid using the same response mailbox for more than one concurrent invocation of
asynchronous system calls because the AL may return LRSs in an order different
from the order of invocation. However, it is safe to use the same mailbox for
multiple invocations of asynchronous system calls if these conditions are met:

« One task invokes the calls.

« The task always obtains the result of one calfeteive_messagbefore
making the next call.

System Concepts Chapter 24 303

Human Interface
Programming Concepts

This section documents the Human Interface (HI) layer of the iRMX OSs. This
section is intended for the programmers who write application programs that can be
loaded and executed using keyboard commands. It is also for system
administrators who use the HI command lines to configure the system.

This documentation assumes that you are familiar with the C or PL/M
programming language.

See also: iC-386 Compiler User's Guide
PL/M-386 Programmer's Guide

These are the chapters in this section.

Chapter 25. Human Interface Basic Concepts
Chapter 26. The Command Line Interpreter

Chapter 27. Writing and Parsing Commands

Chapter 28. Communicating with the User

Chapter 29. Invoking HI Commands Programmatically
Chapter 30. Writing a <Ctrl-C> Handler

Chapter 31. Creating Human Interface Commands

Human Interface
Basic Concepts

The HI provides features to aid both console operators and programmers. These
features include:

A set of HI commands, such as general utilities and file, volume, and device
management commands.

An initial program, the Command Line Interpreter (CLI), with its own set of
commands.

A logon facility to validate users and set up their environment.
Multiuser support.

A recovery/resident user for ICU-configurable systems that enables access to
the system if it does not initialize properly.

Wildcard pathname support.

A group of system calls to aid programmers in writing application-specific
commands.

Sample Code

Code fragments illustrating HI concepts are included irdémeodirectory.
Filenames for the programs are listed in the respective chapters.

Resident HI Commands

You can use resident HI commands with any application system that includes the

HI.

Here are some of the commands:
File management commands suclt@gy, delete andbackup.

Device and volume management commands suekt@shdevice format,
anddiskverify.

General utility commands such @sbuganddate.

See also: HI command€ommand Reference

System Concepts Chapter 25 307

CLI:

The Initial Program

The initial program is the first program to run when a user logs on. An initial
program typically reads commands from the terminal and executes the commands
based on that terminal input. The iRMX-supplied initial program is called the HI
CLI. The CLI reads input from the terminal, enables the user to edit that input if
necessary, and executes commands (either CLI or HI) based on the input. Some
CLI commands aralias, history, andsubmit.

The CLI provides a number of additional features such as aliasing, background
processing, and recalling of previously entered command lines.

Loading Other Initial Programs

308

The initial program does not have to be the HI CLI; it can be almost anything from
an editor, to a BASIC interpreter, to a loadable command interface that you write.
The system manager determines which initial program runs when a user logs on
when he adds new users to the system. There can be a separate initial program fo
each user.

A CAUTION
Unloading jobs that contain interrupt handlers usiygjoad -uor
<Ctrl-C> will cause unpredictable results.

See also: path commandCommand Reference

Chapter 25 Human Interface Basic Concepts

Logon

Logon validates terminal users and sets up their environment.

Validation

On some terminals, typically those used by a single user, the logon and validation
process is invisible. On other terminals, typically those used by several users,
logon and validation requires entering a name and password. The kinds of
terminals are:

- Static terminals
« Dynamic terminals

Static terminals are configured to service a specific user. The static terminal's
attributes are usually taken from the user configuration files during logon. The
logon process is automatic and invisible to the user. When the HI starts running, it
has information about the user such as user ID, the amount of memory available to
this user, and the user's priority. The only way to change the HI's assumptions
about static terminals is to change the OS's user configuration files and restart the
0s.

See also: Configuration fileSystem Configuration and Administration

Dynamic terminals are configured to service many different users on a request-by-
request basis. The HI requests a logon name and a password before allowing the
user to access the system. The HlI verifies that the information entered is valid by
checking user configuration files set up by the system manager. Then it sets up the
terminal based on the information listed in those files.

Unlike static terminals, dynamic terminals have dynamic memory partitions. That
is, the HI does not assign any memory to the terminal at system startup. Instead, it
assigns the memory when a user logs on. When the user logs off a dynamic
terminal, the memory goes back into the general free space memory pool. If there
is no free memory left in the system, a user will be notified of this condition and

will not be able to log on.

The amount of memory assigned varies depending on the user's requirements, as
listed in the user configuration files. The advantage of dynamic terminals is that
the memory available to users varies depending on the needs of the user.

See also: Dynamic terminals, Static termin8lgstem Configuration and
Administration

System Concepts Chapter 25 309

Environments

The HI creates a job for each user that logs on. This job furnishes the application
environment by assigning:

« Memory for the user to use for running commands.
e The initial program for the user.

Any commands that the user invokes use the assigned area of memory. If there is
not enough memory in the system to initialize a user, the system assigns whatever
memory is available at the time and issues a warning message to the terminal.

Users can use CLI commanasids, background, etc.) which are executed in the
interactive job or HI commandsdpy, format, etc.) which run as child jobs of the
user's interactive job.

This table shows the process of entering CLI and HI commands. Either of these
commands can be entered with optional parameters.

CLI HI

Invoke by command name Invoke by pathname/command name

Interpret command CLI loads command into main memory from
secondary storage

Execute command Create a child job of the interactive job for the

command Execute command

Some commands are available from both the HI and the CLI. In this case, CLI
commands are executed before HI commands. For example, if youseoat,
the CLI version of theubmit command is executed, not the HI version.

Network Access

310

If the system is set up as a workstation on an iRMX-NET communications network,
any user who logs onto the system on a dynamic terminal automatically becomes a
verified user of the network and can access remote files using the IRMX-NET
network.

See also: iIRMX-NET environmenietwork User's Guide and Reference

If the system has NFS enabled and has files or directories defined as NFS-shared,
users can access these files and directories using Human Interface commands as i
the files and directories were local.

See also: Using NFS.CP/IP and NFS for the iRMX Operating System

Chapter 25 Human Interface Basic Concepts

Logging Off

When users of dynamic terminals finish accessing the OS, they should use the
logoff command to terminate their sessions. Other users can then log onto the
same terminals.

Multiuser Support

Multiuser support enables multiple users to communicate with the OS. The BIOS
supports multiple terminals by providing device drivers that communicate with
multiple-terminal hardware. The HI supports multiple users by providing
identification and protection of users based on logon names and user IDs. The
multiuser HI also enables a programmer in the development environment to
execute commands, run development programs (editors, compilers, etc.), and run
other application programs.

The system manager must first set up the proper directory structure and provide
several files containing information about the users that can access the system.
However, you can still tailor your system to meet your individual needs by
selecting, for each user, the initial program that runs when that user accesses the
HI. The user configuration files maintained by the system manager identify this
choice to the HI.

Figure 25-1 on page 312 shows how the HI handles multiple users.

System Concepts Chapter 25 311

System Manager establishes the user environment by:
e Creating a directory structure

e Providing file containing access rights for users

e Creating initialization program(s) for users

User Human Interface

Y

User logs in .
9 HI assigns a user ID

v

User sends command to HI identifies the user ID
create a file and/or as the command owner
attach a device \L

HI checks access rights
for the user

v

HI completes command
depending on access rights

OM02104

Figure 25-1. Multiuser Support under the Hi

Recovery/Resident User

The recovery/resident user is available in ICU-configurable systems only. The
recovery/resident user only gains control if an initialization error occurs in the
configuration files and the system cannot initialize. The recovery/resident user
(and the associated terminal) is defined during ICU configuration.

User attributes are defined in HI memory during the configuration process and are
loaded with the system. A resident user does not use any of the system
configuration files and is not presented with a logon prompt. Because this user is
only active if an initialization error occurs, the user is typically configured as the
system manager (user ID 0).

312 Chapter 25 Human Interface Basic Concepts

Wildcards

The HI supports using wildcard characters in flenames. This provides a shorthand
method of specifying several files in a single reference. The wildcard characters
supported by the Hl are:

? Matches any single character
* Matches any sequence of characters (including no characters)
See also: Wildcard characte@ommand Reference

Programmers who write their own HI commands do not have to provide special
code to support wildcard pathnames as long as they use the HI system calls
c_get_input_pathnameandc_get output_pathnameto obtain the file names

from the command line.

See also: Writing and Parsing Commands, in this manual

System Concepts Chapter 25 313

Human Interface System Calls

The HI provides a set of system calls that you can use in writing custom commands
for applications. These categories of HI system calls are available:

Command parsing system calls

These calls provide the ability to parse the command line, enabling you to
isolate and identify the parameters in a command line. They also enable you
to determine the command name and parse other buffers of text.

See also: Writing and Parsing Commands, in this manual
I/0 and message processing system calls

These calls enable you to establish connections to input and output files,
communicate with the terminal, and format condition codes into a ready-to-
display form.

See also: Communicating with the Operator, in this manual

Command processing system calls

These calls enable you to invoke interactive Hl commands programmatically.
See also: Invoking HI Commands Programmatically, in this manual
Program control system call

This call enables you to override the default <Ctrl-C> handler task provided by
the HI.

See also: Writing a <Ctrl-C> Handler, in this manual

Human Interface Operations
When the HI begins running, it:

314

1.
2,
3.

Initiates a logon process that validates users.

Displays an initialization error on the terminal if an initialization error occurs.
Creates an iRMX job for each user logged into the HI.

a. Assigns an area of memory for the user to use for running commands.

b. Starts an initial program which is the user's interface to the OS.

Chapter 25 Human Interface Basic Concepts

The Command Line Interpreter

The HI Command Line Interpreter (CLI) is invoked by the HI when the user logs
on. The CLI provides the user with:

Line-editing

Alias facilities
Background processing
Session history
Terminal definition

Execution of its own set of commands

For ICU-configurable systems, the HI can also operate with a user extension, which
enables you to add customized features to the CLI.

You can also write a loadable command interface to use as an initial program
instead of the CLI. This chapter lists the rules for writing a loadable command
interface.

See also: passwordcommandCommand Reference

User definition files, Terminal configuration fileSystem
Configuration and Administration

System Concepts Chapter 26 315

CLI Features

The CLI provides a number of features that make it a useful tool in a development
environment:

Line-editing enables the user to re-edit input.

Aliasing enables the user to abbreviate commonly used commands and
assign parameters to them.
CLI commandsalias, dealias logoff

Background enables the user to run jobs in a background environment
processing while continuing to invoke commands at the terminal. The
user is notified when a background job starts and finishes.
It is possible to request a list of the active background jobs
or cancel a background job.
CLI commandsbackground, jobs, kill, logoff

Session history Displays the last 40 commands and enables the user to selec
lines for re-editing.
CLI commandhistory

I/O redirection enables standard input and output to be directed somewhere
other than the user's terminal.
CLI commandsubmit

CLI environment enables the user to perform online changes to certain CLI
attributes, such as the prompt and the background memory
pool size.

CLI commandsset, super

|:| Note

CLI commands such adias, submit, andsuper do not recognize
continuation characters.

If the CLI satisfies the needs of your application, you can assign it to each user as
an initial program.

See also: CLI command€ommand Reference

316 Chapter 26 The Command Line Interpreter

Initializing the CLI

The CLI can be invoked during either static or dynamic logon. During
initialization, the CLI performs these operations:

Initializes the CLI environment
Calls CLI extensions, if necessary
Displays a sign-on message

Creates a command connection object where it places information received
from the terminal

See also: Invoking HI Commands Programmatically, in this manual
Attaches the user's directory

Submits the file for processing (if it exists)

After this initial processing, the CLI displays the - (HI default) prompt and reads
input from the terminal. Input from the terminal can be a CLI command, an Hl
command, or a user application program that is to be executed.

System Concepts Chapter 26 317

Invoking and Executing Commands

The CLI begins executing a command after a user enters a <CR> or an <Esc>.
However, before execution, the CLI enables the user to edit the input line or recall
previously entered lines. When input stops, the CLI performs these operations:

1. Reads the command line from the terminal into a CLI buffer.
Determines if the command is a CLI or an HI command
Expands all aliases.

Handles any 1/O redirection that may be necessary.

o~ N

Passes control to the user extension procetlugeiser$process |, if
applicable.

See also: User Extensions, in this manual

6. Searches for CLI or HI commands.
If the CLI encounters a CLI command, it executes the action requested.
If the CLI encounters an HI command or any user application progtam, it
a. Loads the file containing the command
b. Passes the parameters to the command

For long commands, it may be necessary to continue an HI command. The CLI
recognizes the & (ampersand) mark at the end of a command line as a continuatior
character, and displays a ** (double asterisk) on the continuation line.

The user can recall either the complete continuation line or only part of it. A
double asterisk on the screen indicates that a continuation line is being recalled.
The user can then edit the relevant section of the line. However, after the section
has been edited, the entire command line is executed if the user presses <Esc> to
terminate input.

The CLI displays error messages for each command if the user does not invoke the
command properly or if the CLI cannot execute the command as requested.

See also: Continuation character, and specific CLI command error messages,
Command Reference

318 Chapter 26 The Command Line Interpreter

Adding User Extensions to the CLI

Only ICU-configurable versions of the OS enable the CLI to be extended to include
customized functions.

With this feature, you can create an initial program that takes advantage of the CLI
features, such as line-editing and aliasing, and still meets your precise needs. This
section explains how to extend the CLI to include user extensions that parse
commands differently or implement your own commands using CLI user
extensions.

Creating User Extensions

The CLI is a 16-bit application that uses 16-bit user extensions. Creating an
extension involves writing three procedures:

e Aninitialization procedure
e A processing procedure
« An epilog procedure

You can combine these procedures, described in the next sections, into one module.
An empty default PL/M module called (located in) provides you with null instances
of the three procedures. The CLI has three entry points to the user extensions, one
before each procedure. You can make a local copy of the example module to
develop your CLI extension.

Initialization Procedure

When the CLlI is initialized, it first defines its own alias tables (the memory area
where user-defined aliases are stored) and data structures. It then calls your user-
supplied initialization procedure one time only. If you have tables or data
structures to add during initialization, they should be part of the initialization
procedure. The CLI enters the user extension by calling:

CALL CLISUSERSINIT (except_ptr);

You can bind this procedure to the CLI library supplied with the HI. Examples of
how to do this are given later in this section.

System Concepts Chapter 26 319

Processing Procedure

After each command line (entered either from a terminal or in a submit file), the
CLI translates all aliases, and checks again for user extensions. At this point, you
can change a command, perform additional functions before execution, or process
the command. To access your user extension, the CLI calls:

cont_flag = CLISUSER$PROCESS(command_ptr, except_ptr);

Where:

command ptr A pointer to a STRING containing the expanded command
ready for execution.

cont _flag A BYTE indicating whether the CLI should continue

executing the command line modified by the user extension,
or ignore it and continue to the user extension epilog
procedure.

Epilog Procedure

After the CLI executes an HI, CLI, or user-supplied command, it calls the epilog
procedure. This procedure handles error conditions or performs any other function:
that cannot be performed until the command has been executed. The epilog
procedure is called by:

CALL CLISUSERSEPILOG(except_ptr);

Bind this procedure to the CLI library as shown in the example given later in this
section.

Error Handling

Each of the three user extension procedures returns a condition code in the
exception pointerexcept_ptr . If the procedure returns anything other than
E_OK, the CLI outputs an error message in addition to the message issued by
¢_send_commanar the CLI command.

The CLI catalogs the condition code generated by the last command under the
namer?error in the global directory before executing the epilog procedure. You
can access this value and use it in your application. However, any changes to
r?error are not recognized by the CLI.

320 Chapter 26 The Command Line Interpreter

This PL/M code enables you to access the valu@drror.

DECLARE error_t TOKEN,
error BASED error_t WORD,
except WORD;
error_t = RQ$LOOKUP$OBJECT (SELECTORS$OF(NIL),
@(7,'R?ERROR"),0,@except);

After execution of this system call, theror field will contain the condition code
that the last command sentrerror.

This C code also enables you to access the valteiror.

main ()

{

selector error_t;
unsigned short excep;

error_t = rq_lookup_object ((selector)
NULL, "07R?ERROR", 0, &excep);
print_error (5);

Demonstration Program - User Extension

A PL/M example, which is installed with the iRMX OS, shows how to create a user
extension using the CLlI initialization, process, and epilog procedures described
above. This user extension enables you to measure the time required to execute a
CLI command, an HI command, or any application program. The PL/M code
shown is a straightforward example. Many special cases have been omitted.

System Concepts Chapter 26 321

Binding a User Extension

The CLI is a 16-bit PL/M application. Use BND286 to bind the user extension to
the CLI library. This section provides an example of the bind process.

You can combine the three user extension procedures into one module, but this is
not necessary.

Binding your extensions as shown below creates a CLI with your user extension.
You can add this newly created CLI to the application boot file using the ICU.
Then this new CLI will be called by its pathnamgcli, as a nonresident CLI

during the logon process.

If you want the default resident CLI to include user extensions, specify the
pathname of the user extension module during configuration.

See also: For ICU-configurable systen@l) User's Guide and Quick
Reference

If you have named your user extension moayext.p28you can use this
example exactly as it is written. Otherwise, replagext.objith the name of the
object module you wish to bind.

:LANG:BND286 &

MYEXT.OBJ, &

:RMX:HI/HCLI.LIB(HCLI), &

‘RMX:HI/HCLILIB, &

:RMX:HI/HI.LIB, &

‘RMX:LIB/RMXIFC.LIB, &

RMX:HI/HUTIL.LIB, &

.LANG:PLM286.LIB &

RENAMESEG(CODE TO CLI_CODE,DATA TO HI_DATA, &
HI_CODE TO CLI_CODE,HI_DATA TO CLI_DATA) &
OBJECT(MYCLI) NOLOAD NODEBUG SEGSIZE(STACK(2400H)) &
RC(DM(1000H,0FFFFH))

Where:

MYCLI s the name you use to invoke this CLI.

322 Chapter 26 The Command Line Interpreter

Creating a Loadable Command Interface

If the CLI, with or without a user extension, does not meet your needs, you can
provide your own loadable command interface. Your loadable command interface
may be a completely different kind of program from the CLI. For example, you
could write a loadable command interface that enables access to files in selected
directories only. This would prevent a user from accidentally modifying other
files.

Use the selections of static or dynamic terminal type, password or no password
required, and a loadable command interface, to create the user environment needed
for your application. For example, you can define a static terminal using the file.
Then, use thpasswordcommand to assign your application program as the initial
program. By deleting all other users except Super (again, usipasbeord

command), you would have created a system running only your application (with

or without a password requirement, depending on your needs).

If you provide your own loadable command interface, the program must obey these
rules:

« It must select the initial program for each user, and specify the selection in the
user configuration files maintained by the system manager.

« It must initialize its own data segment. The HI does not set the DS register for
the CLI.

« It must perform input and output using logical naneg&s(console input) and
:co: (console output).

- Ifit requires the ability to run HI commands, it must create a command
connection object using the create_command_connectiosystem call.

If the loadable command interface does not create a command connection, it
(and any other application tasks) cannot use these HI system calls:

c_get_input_pathname
c_get_output_pathname
C_get_input_connection
C_get_output_connection
c_send_co_response
c_send_eo_response
¢_send_command

c_set control_c
c_delete_command_connection

System Concepts Chapter 26 323

324

- Ifit does not create a command connection, it must first invoke the
c_set_parse_buffersystem call before using the HI system calls
c_get_parameterc_get_char andc_backup_char

e It must invoke the EIOS cadixit_io_job to terminate processing. It must not
use the PL/M or ASMRETURNstatement for this purpose.

See also: HI system calls aagit_io_job, System Call Reference
path commandCommand Reference

Alternatively, if you want a particular user to use only BASIC-language programs,
a BASIC interpreter might be the initial program for that user.

A CAUTION
Unloading jobs that contain interrupt handlers usiygjoad -uor
<Ctrl-C> will cause unpredictable results.

Chapter 26 The Command Line Interpreter

Writing and
Parsing Commands

This chapter deals only with HI command parsing. HI commands are handled
differently than CLI commands.

When the user invokes a command, the OS places the command's parameters into a
parsing buffer. One of the first things that the invoked command must do is read

the parsing buffer, identify the individual parameters, and determine the correct
action to take, based on the number and meaning of the parameters.

See also: The Command Line Interpreter, in this manual;
CLI commandsCommand Reference

The HI provides several system calls to parse command lines that follow a standard
structure. It also provides other system calls to process nonstandard formats. This
chapter:

« Defines the standard structure of command lines.

« Describes the system calls used to parse standard commands.

« Discusses how to switch from one parsing buffer to another parsing buffer.
- Discusses wildcards used in input and output pathnames.

» Describes system calls used to parse nonstandard commands.

» Describes the_get_command_nameaystem call used to obtain the command
name the user used when invoking a command.

System Concepts Chapter 27 325

Standard Command-line Structure

The standard structure of an HI command line consists of elements separated by
spaces. Your commands should follow this structure to enable parsing by the Hl
system calls.

See also:

For different command structures,
Parsing Nonstandard Command Lines in this chapter

Command-line Structure Parameters

In this example, square brackets [] indicate optional portions of the standard

structure.

command [inpath-list [preposition outpath-list]] [params] <CR>

Where:

command

inpath-list

Pathname of the file containing the command's executable object
code. The pathname may include a prefix and a subpath. A prefix is
a logical name of a directory and is unique if it is not duplicated in

one of the directories in the command search sequence defined during
configuration.

See also: Pathnames, logical nantsnmand Reference

One or more pathnames of files, separated by commas, that the HlI
reads as input during command execution. Individual pathnames can
contain wildcard characters to signify multiple files. Use the
c_get_input_pathnamesystem call to process this inpath-list.

See also: Wildcard characte@ymmand Reference

326 Chapter 27 Writing and Parsing Commands

preposition
Tells the HI how to handle the output. The standard structure
supports these prepositions. Usedhget_output_pathnamesystem
call to process the preposition.

to The HI writes the output to a new file indicated by the output
pathname. If the file already exists, the HI asks if you want to
overwrite the file.

Answering with a Y (uppercase or lowercase) causes the HI to
overwrite the existing file with the new output. An R tells the

HI to continue overwriting existing files without prompting for
permission. An R causes the HI to proceed with the next pair of
input and output files.

over The HI writes the output to the file indicated by the output
pathname. It overwrites any information that currently exists in
the file.

after The HI appends the output to the end of the file indicated by the
output pathname.

outpath-list
One or more pathnames of files, separated by commas, that receive
the output. The total number of pathnames in this list and the number
of wildcards used depends on the inpath-list. Use the
c_get_output_pathnamesystem call to process the outpath-list.

See also: Pathnamé&ommand Reference

params Parameters that cause the command to perform additional or extended
services during command execution.

See also: Command-line Structure Parameter Formats

<CR>and<LF>
Line terminator characters. The <CR> and the <LF> are both line
terminators.

These examples show how to enter an HI command using the command structure
described above.

- copy :home:filel to /tmp/file2 <CR>
- format :f: files=300 interleave=1 bs <CR>

See also: HI command€ommand Reference

System Concepts Chapter 27 327

Command-line Structure Parameter Formats

328

The standard structure supports parameters with these formats:

value-list

keyword

keyword =
value-list
or
keyword
(value-
list)

One or more groups of characters (called values) separated by
commas. Whenmalue-list is present, the command performs the
service indicated by the values.

See also:permit command, access valudpmmand Reference
Predefined keyword functions without added user values.
See also:format commandforce parameterCommand Reference

A keyword with an associated value or value-list. The keyword
portion identifies the kind of service to perform, and each value
supplies further information about the service request.

See also: format command, FILES=nundiskverify, kill
commandsCommand Reference

keyword value-list

See also:

A keyword with an associated value or value-list. The keyword
portion identifies the kind of service to perform and each value

portion provides more information about the service. However, the
keyword must be identified to the command as a preposition. Use the
c_get_parametersystem call to process the parameter.

See also: HI calt_get parameter System Call Reference

Parsing Other Parameters in this manual

Chapter 27 Writing and Parsing Commands

Command-line Structure Special Characters

The HI supports these special characters:

& (continuation
character)

; (comment
character)

System Concepts

Continuation characters are recognized by all HI commands
found in. When using an & (ampersand) in the command line
as the last character before the line terminator, the HI
assumes that the command continues on the next line. If the
CLI (or any loadable command interface that uses
¢_send_commando invoke commands) processes the user's
command entry, the & and the line terminator that follows

are edited out of the parsing buffer. Then the continuation
line is read and appended to the parsing buffer.

This process continues until the user enters a line terminated
by a <CR> without a continuation character. Therefore,
when the command receives control, its parsing buffer
contains a single command invocation, without intermediate
continuation characters or line terminators.

The HI considers this character and all text that follows it on
a line to be a non-executable comment.

If the CLI (or any loadable command interface that uses
¢_send_commando invoke commands) processes the user's
command entry, all comments are edited out of the parsing
buffer. Therefore, individual commands do not have to
search for and discard comments.

Chapter 27 329

330

"and " or
"and ' (quoting
characters)

Chapter 27

Two ' (single-quote) or " (double-quote) characters remove
the semantics of special characters they surround. Use the
same character for both the beginning and ending quote.

If a command line contains quoted characters, HI system calls
that invoke the command and parse the command line do not
perform any special functions associated with the surrounded
characters. For example, the "&" (ampersand surrounded by
double quotes) is interpreted as a single ampersand and not a
continuation character.

The quotes do not remove the semantics of characters that are
special to other layers of the OS, such as :, /, and *, which are
special to the 1/0 System.

To include the quoting character in the quoted string, the user
must specify the quoting character twice or use the other
guoting character. For example:

‘cant'
is read in the command line as

can't

Writing and Parsing Commands

Parsing the Command Line

The HI maintains a pointer for a parsing buffer, which initially points to the first
parameter used when invoking a command. Table 27-1 lists system calls used in
parsing command lines and their functions.

Table 27-1. Parsing System Calls

Call Name Function

c_get_input_pathname gets input pathname
c_get_output_pathname gets output pathname

c_get_parameter parses command line by parameter

¢_backup_char traverses backward by character in a command line
c_get_char traverses forward by character in a command line
c_set_parse_buffer changes parsing buffer from the HI to the one in the

command line
c_get_command_name obtains command pathname

Use any of the HI system calls in Table 27-2 to read the parameters from the
parsing buffer.

Table 27-2. Parsing Buffer System Calls

Understands
Call Name Reads Quotes Moves Pointer
c_get_input_pathname parameter yes to next parameter
c_get_output_pathname parameter yes to next parameter
c_get_parameter parameter yes to next parameter
¢_backup_char character no back one character
c_get_char character no to next character

Note: System calls c_get_input_pathname , c_get output_pathname , and c_get_parameter
remove the special meaning from quoted characters and discard the quote characters.

A CAUTION
Because_backup_charandc_get_charmove the pointer
character by character, not parameter by parameter, ensure that
they leave the pointer pointing at the beginning of a parameter (or
at blank characters which immediately precede the parameter)
before invoking any of the other system calls.

System Concepts Chapter 27 331

Parsing Input and Output Pathnames

332

Use the system calts get_input_pathnameandc_get_output_pathnameto

identify the input and output pathnames in the command line. For command lines
that contain multiple pathnames, invoke these system calls several times to obtain
all the pathnames. These caltsurn the pathnames in the form of IRMX

STRINGs. Ifc_get_input_pathnamereturns a O-length string (that is, the first

byte is 0), there are no more pathnames to obtain.

The first call toc_get_input_pathname

1. Reads the entire inpath-list (the list of pathnames separated by commas) into a
buffer.

2. Moves the parsing pointer to the next parameter.

3. Returns the first input pathname to the command.

The first call toc_get_output_pathname

1. Identifies the prepositiond, over , orafter).

2. Reads the entire outpath-list into a buffer.

3. Moves the parsing pointer to the parameter after the outpath-list.
4. Returns the first output pathname to the command.

Succeeding_get_input_pathnameandc_get_output_pathnamecalls return
additional pathnames from the buffers created previously, but they do not move the
parsing pointer to the next parameter.

This example illustrates parsing the buffer. The parsing buffer contains:
ABtoCD
The call sequence to this buffer and the associated results are listed below:

Call Sequence Result

c_get_input_pathname Obtains input pathnames (A and B)
Returns A to the caller
Positions the pointer at the preposition "to"

c_get_output_pathname Obtains output pathnames (C and D)
Returns C to the caller

c_get_input_pathname Returns B to the caller

c_get_output_pathname Returns D to the caller

Chapter 27 Writing and Parsing Commands

|:| Note

Use the system calts get_input_connectionand
C_get_output_connectiorto obtain input and output file
connections so the necessary I/O operations can be performed.

See also: c_get_input_connectionandc_get_output_connectiorsystem calls,
Communicating with the user, in this manual

File Connection Demo Programs

There are two demo programs (one written in C, the other in PL/M) installed with
the OS that use_get_input_pathnameandc_get_output_pathnamein their
command-line parsing; they also wseet_input_connectiorand
C_get_output_connectiorto obtain connections to the files. These programs are a
partial example of aopy command that you could implement.

Wildcard Characters In Input/Output Pathnames

Thec_get_input_pathnameandc_get_output_pathnamesystem calls
automatically handle pathnames that contain wildcard characters. They treat a
wildcarded pathname as a list of pathnames.

See also: Wildcard characte@pmmand Reference

C_get_input_pathnamematches wildcards. When called, it compares the
wildcarded component with the files in the specified directory and returns the
pathname of a file that matches.

C_get_output_pathnamegenerates wildcards. Each time you call it, it compares
the wildcarded output pathname with the wildcarded input pathname and with the
most recent pathname returneddoget_input_pathname Then it generates a
corresponding output pathname based on that information. The output pathname
could refer to an existing file or to a file that does not yet exist. A query is issued
when an existing file will be overwritten.

When bothc_get_input_pathnameandc_get_output_pathnameuse wildcard
characters, obey these rules:

1. Callc_get_input_pathnameéfirst to obtain the input pathname and then call
c_get_output_pathnameso there is a corresponding output pathname. The
identity of the output pathname depends on the identity of the input pathname.

2. Always alternate multiple calls t get_input_pathnameand
c_get_output_pathname This is necessary to handle wildcard characters and
lists of pathnames.

System Concepts Chapter 27 333

If you invoke two calls t@_get_input_pathnamewithout an intermediate call
to c_get_output_pathnameyou will not be able to obtain the first output
pathname.

If you invoke two calls t@_get_output_pathnamewithout an intermediate
call toc_get_input_pathname the second call returns invalid information.

Parsing Other Parameters

You can also use the get_parametersystem for parsing standard command lines
in these instances:

- To parse parameters which appear after the input and output pathnames.
- To parse all parameters, if the command does not use input and output files.

« To parse the input and output pathnames, if the command requires a
preposition other thato , over , orafter

|:| Note

If you usec_get_parameterto parse input and output pathnames,
you must provide additional code to handle wildcard characters
that may appear in the command line. This call does not wildcard
characters automatically.

For example, a command line contains the pathrfdefe If you
usec_get_parameterto parse this parameter, the system call
returns the value literally dte*

It does not know that the characters represent a pathname, nor
does it know that the asterisk represents a wildcard.

When called¢c_get_parameterparses a single parameter and moves the pointer of
the parsing buffer to the next parameter. The parameter returned as a result of this
call is one of these:

value- One or more groups of values separated by commas. The system cal
list entire list in the form of a string table. It places each of the values in t
list in a separate string.

See also: String table and striiBystem Call Reference

334 Chapter 27 Writing and Parsing Commands

keyword = A keyword indicating the kind of parameter, followed by a value or group
value-list values, separated by commas. An equal sign or parentheses lets the sy
or recognize keyword parameters without foreknowledge of the keywords.
keyword informs the system call that the characters after the equal sign or parent
(value- represent a value-list and not a single parameter. The system call returt
list) keyword in a string and the value-list in a string table.

keyword A keyword indicating the kind of parameter, followed by a value or group
value-list values, separated by commas. In this case, since the keyword and valu

separated by spaces instead of by an equal sign or parentheses, the ke)
referred to as a preposition. In order for the system call to recognize the
structure is a keyword/value-list instead of two separate parameters, suy
input to the system call, a string table containing all the possible preposi
that could occur. The system call checks this list to determine whether ¢
of characters separated by spaces is a preposition keyword or a separat
parameter.

Individual parameters are separated by spaces.

C_get_parameterreturns each listed value as a string in a string table. However,
an individual value can itself consist of a value-list. If a group of values separated
by commas is enclosed in parentheseget parametertreats the values as a

single value, returning them in a single string. For example, consider this value-
list:

A,(B,C,D),E
C_get_parameterrecognizes three valueg, the grouB,C,D, andE.
See also: Command-line Structure Parameter Formats in this manual

There are two demo programs (one written in C, the other in PL/M) installed with
the OS that use_get_parameterin their command-line parsing.

See also: Examples irmx386/demo/c/hilirectory

System Concepts Chapter 27 335

Parsing Nonstandard Command Lines

The next sections discuss two kinds of nonstandard command lines: one that is
similar to the standard and one that is completely different.

Variations on the Standard Command Line

If you want to structure your commands so that other parameters appear before the
input and output pathnames, you can still uisget_input_pathnameand
c_get_output_pathnameo parse the input and output pathnames. However,
ensure that your command knows which of the parameters contain the input and
output pathnames. Two ways to do this are:

- Enforce a rigid structure on the command line. For example, suppose you
want two parameters to appear before the input and output pathnames, such a:

command pl p2 input-pathname prep output-pathname

These commands can parse the command line:

Command Parameter
Cc_get_parameter p1, p2
c_get_input_pathname input-pathname

c_get_output_pathname output-pathname

If you do this,pl andp2 are position-dependent parameters which must be
included whenever the command is invoked.

« Use a separate parameter as a switch to inform the command that the
parameters that follow are input and output pathnames. This method requires
more code to implement but it can enable you to make all your parameters
(including the input and output pathnames) position-independent.

This command line example shows how users can specify what they want to
retrieve before they specify where to get the information. The example uses a
hypothetical command callgdtrieve (which retrieves information from

various data bases) and a parameter c&liRiv

retrieve names addresses phones from filel to file2

The parameteFROMsignals that the next parameters are input and output
pathnames. An example of how to process this command line follows:

while not end-of-command line
call c_get_parameter
if parameter = FROM then
call c_get_input_pathname
call c_get_output_pathname
end

336 Chapter 27 Writing and Parsing Commands

Other Nonstandard Command Lines

In some instances, you might want your command line to look completely different
from that described earlier in this chapter. For example, suppose you require a
syntax in which these rules apply:

- Spaces have no significance and can be omitted between parameters.

- A prefix character must be before each parameter ($ indicates an input file, @
indicates an output file, and - indicates all other parameters).

With this kind of syntax, a user could invoke a command (in this exanefitee)
as follows:

refine $infile-medium@outfile <CR>

Where:
infile The file from which to read information.
outfile The file in whichrefine should place its output.

medium A parameter that further directs the processing.

If you require any nonstandard syntax, you must use_thackup_charand the
c_get_charsystem calls to parse the command line. Using calls requires you to
provide the parsing algorithm in your own program, because they make no
assumptions about the structure or order of parameters. However, by using these
system calls, you can enforce any command syntax you choose.

|:| Note

You cannot use_get_input_pathname
c_get_output_pathnameandc_get_parameterto parse the
individual parameters. Any of these system calls would return
the entire parameter list as a single parameter.

System Concepts Chapter 27 337

Switching To Another Parsing Buffer

Some commands might require the ability to parse additional lines of text after the
original command invocation, for example, an editor needs to parse individual
editor commands. A command such as this cannot use the HI-provided parsing
buffer because it has no way of placing information in the buffer, and because it
cannot reset the parsing pointer to the beginning of the buffer.

Using the system catl_set_parse_bufferchanges the parsing buffer from the one
the HI provides to one that the command provides. This call also sets the parsing
pointer to the beginning of the buffer.

Resetting the parsing pointer to the beginning of the buffer enables you to use one
buffer for parsing many lines of text. For example, suppose your command has
several sub-commands. Each time the user enters a sub-command, your comman:
reads the sub-command into a buffer, callset_parse_buffetto reset the parsing
pointer, and parses the sub-command.

Thebuff_p parameter (in the_set_parse_buffeisystem call) is a pointer to a
buffer containing the text to be parsed. This buffer can contain text read from the
terminal, text read from a file, or even text that you hard code into the command.
After the call toc_set_parse_bufferthese command parsing system calls obtain
information from the new parsing buffer:

c_get_parameter
c_get _char
¢_backup_char

The other command parsing calts get_input_pathnameand
c_get_output_pathnamé are not affected by calls to set_parse_buffer These
calls always obtain pathnames from the command line parsing buffer.

338 Chapter 27 Writing and Parsing Commands

The program flow for an operation like this could be:

1. Read the information from the terminal into a buffer (use
c_send_co_response_send_eo_responser an EIOS call).

2. Callc_set_parse_bufferto set the parsing buffer to the buffer containing the
sub-command. This sets the parsing pointer to the beginning of the buffer.

3. Parse the sub-command ustmgyet_parameter c_backup_charor
c_get_charsystem calls.

4. Perform the operations requested by the sub-command.

Go back to step 1. Continue this loop until the user exits from the command.

|:| Note

If you specify null or a 0 value for theiff p parameter, the
parsing buffer switches back to the original command line buffer
which remains pointing at the next parameter in the command
line. This enables you to parse part of the command line, switch
buffers and parse a portion of another buffer, and switch back to
the command line.

Every time you calt_set_parse_bufferthe parsing pointer moves to the start of
the new buffer. Howevec,_set_parse_buffereturns, in itoffset parameter,

the previous position of the pointer in the new buffer. If you switch back to that
buffer by again calling_set_parse_bufferyou can use this value to move the
pointer to its previous position in two ways:

+ Use thec_get_charsystem call to move the parsing pointer back to its
previous position in the new buffer. Callget_charthe number of times
specified in theffset parameter of the first_set_parse_buffercall. This
positions the pointer to its previous location. You can then continue parsing
parameters from the point at which you left off.

« Treat your parsing buffer as an array of characters (cald for example).
When you calk_set_parse_buffetthe first time, specify theuff_p
parameter to point to the first element of the array. Then, when you switch
parsing buffersg_set_parse_bufferreturns, in theffset parameter, the
number of bytes already parsed. When you switch back to the new parsing
buffer, you can use this offset value as an index into the array.

System Concepts Chapter 27 339

Obtaining the Command Name

340

The HI places the invoked command name in a buffer. The
c_get_command_nam@ebtains the command's pathname.

C_get_command_nameloes not operate on the parsing buffer, nor is it affected
by thec_set_parse_buffeisystem call. It can be called multiple times; each time
it returns the same command name.

If the user enters the complete pathname of the command (including the logical
name), the command-name buffer contains exactly what the user entered.
However, if the user enters a command name without a logical name, the HI
automatically searches a number of directories for the command. In this case, the
command-name buffer contains not only the name the user entered, but also the
directory containing the command (suchsstem; :prog:, or:$:).

Therefore, a command can use the value returneddpst_command_namend

the circumflex () pathname separator to access the directory in which it resides.
For example, itommand-name is the name received from
¢_get_command_namea command could access its directory by using the
pathname:

command-name”
It could access another file in the directory by specifying the pathname:

command-name”file

Chapter 27 Writing and Parsing Commands

Communicating with the User

This chapter discusses the HI system calls that:
- Establish connections to input and output files.
+ Communicate with the user's terminal.

- Format condition codes into messages that can be sent to the user.

Establishing Input and Output Connections

The HI provides two system calls for establishing connections to input and output
files: ¢_get_input_connectiorandc_get_output_connection These system calls
are structured so that you can use the output from other system calls as input to
these system calls.

Using ¢ _get_input _connection
Use thec_get_input_connectiorsystem call for establishing file connections:

1. Get the pathname for the file which will be connected (either through the
c_get_input_pathnamefunction or by directly specifying the pathname).

2. Use the pathname as one of the parameters far thet_input_connection
system call.

3. Callc_get_input_connectionto establish the connection to the file.

If c_get_input_connectioncannot obtain a connection to the specified file, it
returns a condition code and writes an error message:ttormally, the user's
terminal). For example, if the specified input file does not exist,
c_get_input_connectiondisplays this message:

<pathname>, file not found

See also: c_get_input_connectiorHI system callSystem Call Reference

System Concepts Chapter 28 341

Because_get_input_connectiorreturns messages to the user in the event of an
exceptional condition, your command does not have to return additional messages
unless you require them. The command must decide only whether to abort or to
continue processing.

Using ¢ _get_output _connection
Use thec_get_output_connectiorsystem call for establishing file connections:

1. Get the pathname for the file which will be connected (either through the
c_get_output_pathnamefunction or by directly specifying the pathname).

2. Use the pathname as one of the parameters far thet_output_connection
system call.

3. Callc_get_output_connectiorto establish the connection to the file.

A second parameter m get_output_connectiorspecifies the preposition used
when writing to the output filed , over , orafter). This preposition governs
how the output file is processed.

to C_get_output_connectiorprompts the user for permission to delete
the existing file. This prompt appears as:

<pathname>, already exists, OVERWRITE?

A user'sy ory response (yes), causes the system call to obtain the
connection to the existing file.

A Rorr response (repeat), causes the establishes the connection to
that existing file, and obtains any additional output connections,
without prompting for permission to delete other existing files.

Any other response causes the system call to return a condition code
without obtaining a connection to the file.

over If you specify theover prepositionc_get_output_connection
obtains the connection without prompting the user for permission.

after If you specify theafter prepositionc_get_output_connection
obtains the connection without prompting the user for permission. It
also sets the file pointer to the EOF before returning control. Thus,
new information does not overwrite existing information.

This is unliketo andover which caus&_get_output_connectiorto
leave the file pointer at the beginning of the file.

342 Chapter 28 Communicating with the User

If the user does not have the proper access rights to the file, or if
C_get_output_connectiorcannot obtain a connection to the file, the system call
returns a condition code and displays a message at the user's terminal.

See also: c¢_get_output_connectiorH| system callSystem Call Reference

A normal scenario for using_get_input_connectiorand
C_get_output_connectioris shown in Figure 28-1.

DO WHILE more input and output files
Obtain input pathname from command line with
c_get_input_pathname
Obtain output pathname from command line with
c_get_output_pathname
Obtain connection to input file with
C_get_input_connection
Obtain connection to output file with
c_get_output_connection
Read information from input file
Perform command operations on information
Write information to output file
Delete connections to input and output files
END

Figure 28-1. c_get_input_connection and c_get_output_connection Example

System Concepts Chapter 28 343

Communicating With the User's Terminal

The HI provides two system calls that communicate with the user's terminal. They
arec_send_co_responsandc_send_eo_responseEach of these system calls
combines into a single system call several operations that you would normally
perform when communicating with the terminal.

c_send_co_response System Call

344

In its general form¢_send_co_responsattaches and opens connectionsinand
:co:. Depending on the values you choose as parameters for this system call you
can:

+ Send a message and receive a message (wrde:tand read fromci:).
« Send a message without waiting to receive a message (reactifrpm
+ Receive a message without sending a message (wrde:}o

C_send_co_responsdeals specifically with the logical names and:co:.

Therefore, its input and output can be redirected to files by changing the pathname
represented by these logical names. For example, when a user places a commanc
in a submit file submit assumes thati: is the submit file and thato: is the

output file specified in theubmit command. Figure 28-2 on page 345 shows how

to usec_send_co_response

See also: c¢_send_co_responsil system call, System Call Reference

Chapter 28 Communicating with the User

Parameters:
Message to be sent
Size of message to be received
Buffer to receive message

Input

\4

| call c_send_co_response

\L \4

Write to :co: | Write to :co: I | Read from :ci:I
and
Read from :ci:

OMO02105

Figure 28-2. Using c_send_co_response

c_send_eo_response System Call

C_send_eo_responsealthough it performs the same operations as
c_send_co_respons®nly reads information from and writes information to the
user's terminal. Input and output cannot be redirected. This system call is useful if
you have multiple tasks communicating with a single terminal.

For example, if a task uses either of these system calls and requests a response from
the terminal, no other output is displayed at the terminal until the user enters a
response to the first system call. After the user responds, tasks can send further
information to the terminal.

When used by all the tasks which communicate with the terminal, this prevents the
user from receiving several requests for information before being able to respond to
the first one.

See also: c¢_send_eo_respongdl system callSystem Call Reference

System Concepts Chapter 28 345

Formatting Messages Based on Condition Codes

Whenever you include OS calls in the code of a command that you write, it is
possible for those system calls to encounter exceptional conditions, such as:

« Programming errors
« Environmental conditions

Even the most thoroughly debugged commands can encounter exceptional
conditions. The exceptional conditions can arise from invalid user entries, lack of
secondary storage space, media errors, and other problems over which the
command has no control.

The HI provides a default exception handler to handle exceptional conditions in
commands that you write. This exception handler receives control on all
occurrences of exceptional conditions. It displays the condition code value and
mnemonic at the user's terminal and aborts the command.

You can use the Nucleus system cgl$ exception_handlerrqe_get_exception
handler, set_exception_handlerandrge_set_exception_handleto provide your

own exception handling, either to pass additional information to the user or to
enable the user another chance to enter correct information. You can also use the:
calls to cancel the effect of the default exception handler on some or all exceptions
that occur in your command.

See also: get_exception_handlerset_exception_handler
rqe_get_exception_handlerandrge_set_exception_handler
System Call Reference

c_format_exception System Call

346

When you perform your own exception handling, you can create messages that
return to the user under specific exceptional conditions so they can correct the
problem. The_format_exceptionsystem call accepts a condition code value as
input and returns a string whose contents describe the exceptional condition. You
can use this string as input to a system call suchsend_co_respons@ write

the information to the user's terminal.

By usingc_format_exception you can return a message to the user for all
exceptional conditions, but you do not have to enlarge your program by including
the text of these messages in the code of your command.

Chapter 28 Communicating with the User

The text portion of the string produced dyformat_exceptionconsists of the
condition code value and mnemonic in this format:

value : mnemonic

You can display this string as is, or you can place additional explanatory text in the
string before displaying it.

This PL/M example shows you how to usdormat_exceptionto write an error
message to the screen every time a procedure naoszinething encounters an
exception. You can declare a message as follows:

DECLARE
error_msg STRUCTURE(
length BYTE,
char(80) BYTE),
failed(*) BYTE DATA(33,'DoSomething procedure failed ***
Y,
excep WORD,
local_excep WORD;

Now, whenevebDoSomething encounters an exception during execution, you can
call c_format_exception as shown below, to create the default message for the
exception contained in thexcep variable and concatenate it to the failed message
you declared in the variabtailed

CALL MOVB(@failed, @error_msg, SIZE(failed));

CALL rg$Csformat$exception(@error_msg, SIZE(error_msg),

excep, 1, @local_excep);
You can write theerror_msg string to the screen. For example, if #xeep
variable contains 05H, the string containeénor_msg would be:
'DoSomething procedure failed *** 0005: E_CONTEXT"

See also: Examples Irmx386/demo/c/hiirectory;
c_format_exception System Call Reference

System Concepts Chapter 28 347

Invoking HI Commands
Programmatically

When you write your own command, you might want to perform an operation that
is already provided in another command (such as copying one file to another,
displaying a directory, etc.). Instead of duplicating the code for this operation in
your command, you can invoke HI system calls to issue the commands themselves.
The effect of making these system calls is the same as that produced by a user
entering an HI command at the terminal. The HI provides the three system calls in
Table 29-1 to help process command invocations:

Table 29-1. Command Invocation System Calls

Call Name Function

c_create_command_connection Creates a command connection object to
store the command invocation lines

¢_send_command Sends the command line to the command
connection and invokes the command

c_delete_command_connection Deletes the command connection

This chapter discusses these operations and provides an example of how the system
calls appear in a program.

Creating a Command Connection

Thec_create_command_connectiosystem call creates the object and returns a
token for it. The token can be used in calls teend_commandto send

command lines to the object) and in callg tolelete_command_connectiofto
delete the object after using it).

When you calk_create_command_connectigryou also specify tokens for the
connections that serve as command input and command output for the invoked
command. This enables you to redirect input and output for the invoked command
to secondary storage files. Or you can specifyand:co..

System Concepts Chapter 29 349

The command connection supports processing multiple-line commands without
interference from other tasks. Without the command connections, the OS would be
unable to determine which continuation line went with which command when

many tasks were sending command lines to be processed. The command
connection provides a place to store command lines until the command is
complete.

Sending Command Lines to the Command
Connection and Invoking the Command

350

Thec_send_commandystem call sends command lines to a command connection
and, when the invocation is complete, invokes the command. The format of the
command line is the same as entering the command line at a terminal. The
command can be any HI command or any command that you write. However, it
cannot be a CLI command and it cannot use the alias feature of the CLI.

See also: HI command€ommand Reference

If the string specified as a parametect@end_commandontains a complete
command invocation then this takes place:

1. C_send_commandlaces the command line in the command connection.
2. C_send_commandnvokes the command.

However, if the string does not contain the entire command invocation (that is, it
contains the & as a continuation character), then this takes place:

1. C_send_commandlaces the command line in the command connection
without invoking the command.

2. C_send_commandeturns a condition code, E_ CONTINUED, to inform the
calling program that the command is continued.

3. The programmer calls_send_commando combine continuation lines in the
command connection with the command lines already there.

4. Repeat Step 3 until_send_commandncounters the end of the command
invocation (a line without a continuation character).

5. C_send_commandoads the command from secondary storage.
6. C_send_commandnvokes the command.

Thec_send_commandall that invokes the command does not return control until
the invoked command finishes processing. Once the command finishes processing
you can use the command connection for invoking other commands.

Chapter 29 Invoking HI Commands Programmatically

Thec_send_commandystem call contains two pointers to WORDSs or unsigned
shorts that receive condition codes. One of these points to a location that receives
the status of the_send_commandystem call. The other points to a location that
receives the status of the invoked command.

Priority Considerations

Every command has a priority (usually based on the priority of the user who
invoked the command) that determines when the command will be able to runin
relation to the other tasks in the system. When commands are invoked using
command connections, their priorities are lowered (numerically increased) by one.
This ensures that the calling task (the one that created the command connection)
retains control over the commands it invokes.

As a result, a command invoked directly at the terminal will have a higher priority
(and possibly complete sooner) than the same command invoked using a command
connection.

See also: rge_set_max_priority commandSystem Call Reference

Deleting the Command Connection

After you have finished invoking commands programmatically, delete the
command connection. Thee delete_command_connectioaystem call performs
this operation. You do not need to delete the command connection after each
command invocation, because the command connection is reusable. However,
delete the command connection after performing alend_commandperations.
This frees the memory used by the data structures of the command connection.

Command Connection Calls Demo Programs

There are two demo programs (one written in C, the other in PL/M) installed with
the OS that use_create_command_connectigrc_send_commangdand
c_delete_command_connectionThese programs invoke the étipy command
programmatically.

See also: Examples irmx386/demo/c/hilirectory

System Concepts Chapter 29 351

Writing a <Ctrl-C> Handler

Normally, when an HI command is executing, a user cannot communicate with the
system until the command requests input from the user. This can present problems
if a user enters the wrong command or needs to access the system. However, there
are a number of ways the user can abort command execution.

- If the command is executing interactively, the user can enter a <Ctrl-C>
character to abort a command.

- If the command is running in the background environment, the user can enter
the CLI commandgbs andkill to abort a job.

This chapter explains how to override the default <Ctrl-C> action by providing
your own code to process a <Ctrl-C> character.

See also: Aborting background jol@&gmmand Reference

How the Default <Ctrl-C> Works

When the user enters a <Ctrl-C>, the OS sends a unit to a semaphore. In the
default case, this is a semaphore established by the HI. An HI task waits at that
semaphore to receive the unit. When it receives the unit, it aborts the command
that is currently executing and returns control to the user. The HI task then waits at
the semaphore for another unit.

This <Ctrl-C> facility enables users to cancel commands while the commands are
executing. It can be used with your commands without requiring special
implementation code.

System Concepts Chapter 30 353

Providing Your Own <Ctrl-C>

With some commands that you write, you might want to override the default
<Ctrl-C> handling. For example, suppose you write a text editor. A user invokes
the editor with an HI command and then specifies edit commands to enter text into
a buffer and modify that text.

While using the editor, the user does not want a <Ctrl-C> character to abort the
entire editing session, destroying text in the editing buffer that could have taken
hours to create. Instead, the user might want a <Ctrl-C> to abort a single editor
command only. In order to provide this facility, your HI command (the editor)
must override the default <Ctrl-C> handling and provide its own code to handle
<Ctrl-C> entries.

By changing the semaphore to one that you create, you can circumvent the default
<Ctrl-C> task of the HI. You can use the HI system cadlet_control_cto

replace the <Ctrl-C> semaphore. This system call changes the calling job's
<Ctrl-C> semaphore to the semaphore you specify. There is only one parameter in
this system callcontrol_c_semaphore which is a token for your new <Ctrl-C>
semaphore. A single unit is sent to the new semaphore each time a <Ctrl-C> is
entered from the terminal.

See also: HI system call set_control_¢ System Call Reference

If you create an HI command that does not use the default <Ctrl-C> semaphore,
that command must service the new <Ctrl-C> semaphore. It can do this by:

« Using inline code that periodically checks the semaphore for a unit.
« Creating a task that waits continually at your <Ctrl-C> semaphore for a unit.

In either case, when a unit is sent to the semaphore, the command (or the task)
must perform the necessary <Ctrl-C> operation.

A CAUTION

If you also include the UDI in your application, the <Ctrl-C>
handler will revert to the UDI default handler unless you establish
the new <Ctrl-C> handler in the UDI with tidg_trap_cc call.

Using Inline Processing
The program flow of such a command using inline processing would be:

1. Callcreate_semaphordo create the <Ctrl-C> semaphore.

354 Chapter 30 Writing a <Ctrl-C> Handler

Call c_set_control_cto switch the <Ctrl-C> semaphore to the one just created.
Use the token for the semaphore you created in Step 1 as input.

Continue with command processing. Periodically check the semaphore (by
calling receive_unitswith thetime_limit parameter set to 0) to determine if

it contains any units. If you obtain any units from the semaphore, perform the
necessary <Ctrl-C> processing.

If your command services the <Ctrl-C> semaphore with inline code, you can
perform any operation you want. You can branch to various locations, you can
start new tasks running, you can abort the command, or you can perform any other
function that you wish.

However, in order to service the <Ctrl-C> semaphore with inline code, check the
semaphore periodically, to see if it contains a unit. When doing this, ensure that
you place the checks inside all program loops that perform operations a user might
want to abort. Also, because you can check the semaphore only periodically, you
cannot always guarantee a quick response to the <Ctrl-C>.

Using a <Ctrl-C> Task

The program flow of such a command using a task would be:

1.
2.

5.

Call create_semaphoreo create the <Ctrl-C> semaphore.

Call catalog_objectto catalog the token for the semaphore in an object
directory.

Call create_taskto start the <Ctrl-C> task.

Call c_set_control_cto switch the <Ctrl-C> semaphore to the one just created.
Use the token for the semaphore you created in Step 1 as input.

Continue with command processing.

The program flow of the <Ctrl-C> task could be:

1.
2.

Call lookup_objectto obtain the token for the semaphore.
Do forever:

a. Callreceive_unitswith thetime_limit parameter set to OFFFFH to
obtain a unit from the semaphore.

b. Perform the operation that must occur when the user enters a <Ctrl-C>.

System Concepts Chapter 30 355

If you use a <Ctrl-C> task, you can guarantee quick service because the task is
always waiting at the semaphore. However, because a separate task services the
<Ctrl-C>, you can perform only a limited number of operations in response to the
<Ctrl-C>.

« The task can send a message to the command, but then the command would
have to periodically check a mailbox. This has the same disadvantages as
inline servicing with none of the advantages.

« The task can delete or suspend the command. However, the task has no way «
knowing what operations the command was performing when the user entered
the <Ctrl-C>. If the command was updating an internal table, deleting the
command could corrupt your entire system. Suspending the command could
enable the <Ctrl-C> task to interrogate the command's state. The <Ctrl-C>
task could delete the command if appropriate, or it could enable the command
to run until it was safe to be deleted.

Returning to the Default Handler

Once your command assigns a new <Ctrl-C> semaphore, that assignment remains
until either:

+ Your command invokes the Kl send_commandystem call. Invoking this
system call automatically reverts back to the default <Ctrl-C>. To continue
using your own <Ctrl-C>, invoke_set_control_c(to switch back to your
<Ctrl-C> semaphore) immediately after invokingsend_command

« Your command is deleted. When this happens, the HI automatically
reactivates its default <Ctrl-C> semaphore. For example, once the example
text editor described earlier in this chapter terminates, the HI resets the
semaphore so that <Ctrl-C> again becomes active.

<Ctrl-C> Task Demo Programs

356

There are two demo programs (one written in C, the other in PL/M) installed with
the OS that are examples of a user-supplied <Ctrl-C>.

See also: Examples irmx386/demo/c/hilirectory

Chapter 30 Writing a <Ctrl-C> Handler

Creating Human
Interface Commands

This chapter discusses the steps that you must perform to create your own Hl
commands. It discusses the necessary elements of a command as well as how to
compile (or assemble) and bind your code.

You can make your application into an HI command and run it on an iRMX for
Windows system. This requires these steps.

1.

2
3.
4

o

Program your application.
Give the application a command name and specify parameters, if any.
Provide for the command to parse its command line parameters, if any.

Provide for the command to terminate itself when finished. If you plan to use
sysloadto load it, use thdelete_jobsystem call. Otherwise, useit_io_job.

Compile the command using the appropriate compiler.

Bind the command to the appropriate libraries to make a Single Task Loadable
(STL) file. TheRCONFIGUREONtrol makes the command loadable.

Load the command manually ih these examples), using one of these
methods.

- sysload x parameter 1 parameter n <CR>
The job will continue to be available.

- background x parameter 1 parameter n <CR>
The command runs in the background. Redimctand:co: to log files.

- SS x parameter 1 parameter n <CR>
The command runs in the foreground; debug it using Soft-Scope.

- debug x parameter 1 parameter n <CR>
The command runs in the foreground and you can debug it.

If you usesysloadto load your application, that job will continue to be
available.

System Concepts Chapter 31 357

Detailed instructions for steps 3, 4, 5, and 7 are described in sections which follow.

To perform the operations described in this chapter, you must have a system that
includes the HI commands. The system must have an editor, the necessary
compiler or assembler, and the appropriate binder, such as BND286 for 16-bit HI
commands and BND386 for 32-bit HI commands.

Elements of a Human Interface Command

358

This section discusses the rules that every user-written command must obey. It
also suggests some programming practices to make coding and using your
commands easier.

|:| Note

When coding your commands, avoid duplicating CLI command
names such aalias andsubmit. If you do name a new

command with the same name as a CLI command, execute it with
the full pathname, for examplaitils:alias. Otherwise, the CLI
command will be executed instead of your command.

Chapter 31 Creating Human Interface Commands

Parsing the Command Line

If you are going to enable the user to enter parameters when invoking the
command, the first thing your command should do is parse the command line. To
support lists of pathnames and wildcarded pathnames, the flow of a program that
uses input and output files should be:

1. Callc_get_input_pathnameto obtain the entire list of input pathnames.

2. Callc_get_output_pathnameto obtain the preposition and the entire list of
output pathnames.

3. Callc_get_parameteras many times as necessary to get all the parameters.
4. Do until no more input pathnames remain:

a. Callc_get_input_connectiornto obtain a connection to the input file.

b. Callc_get output_connectiorto obtain a connection to the output file.

c. Read the information from the input file, perform the command operations
based on that input, and write the information to the output file.

d. Callthe EIOS delete connectiorall to delete the connections to the
input and output files.

e. Callc_get input_pathnameandc_get output pathnameto obtain the
next input and output pathnames.

System Calls and Objects to Avoid

Although you can use any of the OS calls you require, some system calls are
intended primarily for use in system-level jobs (those jobs that you configure into
the OS rather than invoking as HI commands). The command descriptions for
those calls describe when the calls should be avoided.

In particular, avoid objects (and their associated system calls) that, by their use,
make your command immune to deletion. Regions and extension objects are
examples of such objects. If your command becomes immune to deletion, a
<Ctrl-C> that a user enters to cancel the command will have no effect; the user's
terminal may also lock when the command finishes processing.

See also: Regions, extension objects, in this manual

System Concepts Chapter 31 359

Terminating the Command

When the user invokes a command, the OS loads the command into memory and
creates an I/O job as the environment in which the command runs. The user can
use the CLbackground command to process commands in background mode, and
at the same time continue processing another command in the foreground. In orde
to finish processing a foreground command correctly, any task in the command tha
exits must do so by callingxit_io_job. This system call causes the OS to delete

the 1/0 job containing the command, therefore returning control to the user.

See also: I/O jobs, in this manual;
EIOS system cakbxit_io_job, System Call Reference

If the command running in the foreground omits the cadixit io_job, the user

might not be able to enter further commands. To terminate a command before it
reaches its normal completion, the user should enter <Ctrl-C> to abort a command
running in the foreground or the Ckill command to abort a command running in
the background environment.

Include Files

360

When writing the code for your commands, declare each OS call as an external
procedure. Instead of writing these declarations yourself, you can useldkde
statement. Usingiclude statements makes it possible to include code from an
external file into your program. This information may be innatude file:

- External declarations of system calls
« Literal definitions of condition codes
- Common literal definitions that you declare

See also: Header fileSystem Call Reference

Chapter 31 Creating Human Interface Commands

Producing a 16-bit Executable Command

After you have written the source code for your command, produce object code that
can be executed in a 16-bit environment. Follow these steps:

|:| Note

This section applies to object code developed using Intel tools
only.

See also: C Compiler-specific Information for information
on building executable code with non-Intel tools,
Programming Techniques

1. Compile (or assemble) the command using the appropriate translators. When
you do this, ensure that the names you specifyclnde statements specify
the correct devices and directories.

2. Using BND286, bind the code to the interface libraries (and any other libraries
that you require) and produce a relocatable object module that the OS can load
anywhere in memory. The format of the BND286 command is:

BND286 &
command-name, &
‘RMX:LIB/RMXIF*.LIB &
:dir:other.lib, &
RCONFIGURE (DYNAMICMEM(min,max)) &
OBJECT (output-pathname) &
SEGSIZE(STACK(stacksize))
Where:
command-name The complete pathname of the file containing your compiled
(or assembled) command. You can bind in several files or
libraries at this point, if necessary.
dir: A generic logical name you create for directories containing
miscellaneous libraries.
other.lib Any other files or libraries that you need to bind with your
command, for exampl@/m286.lib
* Replace this character withif you are using COMPACT.

output-pathname Complete pathname of the file in which BND286 places the
command after binding.

System Concepts Chapter 31 361

stacksize Size, in bytes, of the stack needed by the command and any
system calls that the command makes. The HI uses this
value when it creates a job for the command. Be sure the
stack is large enough to handle both user and system
requirements.

See also: Stack requirements,
Programming Techniques

min,max Minimum and maximum amount of dynamic memory, in
bytes, required by the command.

The command uses this memory when it creates iRMX
objects. The AL uses thein andmax values when it loads a
job for the command. Be sure that these values are large
enough to satisfy the needs of your command and small
enough to enable the command to be loaded into the user's
memory partition.

For example, suppose a sort command requires at least

64 Kbytes of dynamic memory but can use any additional
dynamic memory for buffers to increase performance. If you
do not define a maximum memory parameter, all of your
dynamic memory will be allocated to the sort command,
preventing you from executing other commands at the same
time. Therefore, assume that you want to limitrtfze value

to 1 Mbyte. Specify:

RCONFIGURE(DYNAMICMEM(10000H,100000H))

Consider these factors when calculating the valuesiifor
andmax.

- The value you give for thain field plus the memory
required by the HI program must fit into
contiguous memory. If there is not enough contiguous
memory for them, you may not be able to load your
command.

« The value for thenax field should be large enough to
ensure enough memory for commands that request
memory dynamically.

The command is now ready for execution. A user can invoke the command by
entering the pathname of the file containing the commandytpet-pathname
in the BND286 command).

362 Chapter 31 Creating Human Interface Commands

Producing a 32-Bit Executable Command

After you have written the source code for your command, produce the object code.
To generate a 32-bit command, use these steps. (16-bit commands can run on
iIRMX Il and iRMX for Windows also.)

|:| Note

This section applies to object code developed using Intel tools
only.

See also: C Compiler-specific Information for information
on building executable code with non-Intel tools,
Programming Techniques

1. Compile (or assemble) the command using the appropriate translators. When
you do this, ensure that the names you specifyclnde statements specify
the correct devices and directories.

2. Using BND386, bind the code to the OS interface libraries (and any other
libraries that you require) and produce a relocatable object module that the OS
can load anywhere in memory. The format of the BND386 command is:

BND386 &

command-name, &

:RMX:LIB/RMXIFC32.LIB &

:dir:other.lib, &
RCONFIGURE (DYNAMICMEM(min,max)) &
OBJECT (output-pathname) &
SEGSIZE(STACK(stacksize)) &
RENAMESEG (CODE to CODE32, DATA to DATA32)

Where:

command-name The complete pathname of the file containing your compiled
(or assembled) command. You can bind in several files or
libraries at this point, if necessary.

dir: A generic logical name you create for directories containing
miscellaneous libraries.

other.lib Any other files or libraries that you need to bind with your

command, for exampl@/m386.lib

output-pathname Complete pathname of the file in which BND386 places the
command after binding.

System Concepts Chapter 31 363

stacksize Stack size, in bytes, needed by the command and any system
calls that the command makes. The HI uses this value when
it creates a job for the command. Be sure the stack is large
enough to handle both user and system requirements. The
OS supports compact interface procedures.

See also: Stack requiremerspgramming Techniques

min,max Minimum and maximum amount of dynamic memory, in
bytes, required by the command.

The command uses this memory when it creates objects. The
Application Loader (AL) uses thain andmax values when

it loads a job for the command. Be sure that these values are
large enough to satisfy the needs of your command and small
enough to enable the command to be loaded into the user's
memory partition.

For example, suppose a sort command requires at least

64 Kbytes of dynamic memory but can use any additional
dynamic memory for buffers to increase performance. If you
do not define a maximum memory parameter, all of your
dynamic memory will be allocated to the sort command,
preventing you from executing other commands at the same
time. Therefore, assume that you want to limitrtfze value

to 1 Mbyte. Specify:

RCONFIGURE(DYNAMICMEM(10000H,100000H))

Consider these factors when calculating the valuesiifor
andmax.

« The value you give fomin and the memory required by
the HI program must fit into contiguous memory. If
there is not enough contiguous memory for them, you
may not be able to load your command.

« Themaxvalue should be large enough to ensure memory
for commands that request memory dynamically.

The command is now ready for execution. A user can invoke the command by
entering the pathname of the file containing the commandytpet-pathname
in the BND386 command).

364 Chapter 31 Creating Human Interface Commands

OS Extension Example

Ring Buffer Manager

This example (in PL/M) illustrates portions of a ring buffer manager and various
parts of an OS extension. Be advised, however, that the example is incomplete and
should be imitated with discretion. In particular, the example has these
shortcomings:

- The issue of exception handling is not addressed. Clearly the code supporting
a system call should examine each invocation for validity, but, for brevity, the
ring buffer example does not do this.

- There are no safeguards against partial creation of an object. When creating a
composite object, a type manager must first create the components of the
object. Occasionally, after creating some of the components, the manager
might be unable to create the others. A type manager should be able to recover
from this situation, usually by deleting the components already created and
returning an exception code to the caller. The example, again for brevity, does
not do this.

« The entry routine does not check the entry code for validity.

« The potential for problems with deletion is ignored. For this reason, you
should imagine that the environment of the example is constrained in at least
two ways. First, only one task will ever try to delete a ring buffer and, when it
does try, no other task will be using that buffer. Second, when a job containing
a task that created a ring buffer is deleted, no tasks in other jobs are using that
ring buffer.

- The example has been desk-checked, but the example has not actually been
tested.

« The example ring buffer is limited to a maximum of 64 Kbytes in length.

« The example assumes use of version V3.1 or later of the desired PL/M
compiler, i.e. PL/M-286 or PL/M-386.

System Concepts Appendix A 365

A ring bufferis a block of memory in which bytes of data are placed at

successively higher addresses. Byte removals are interspersed with byte insertions
with the restriction that the byte being removed must always be the byte that has
been in the buffer for the longest time. Thus, data enters and leaves a ring buffer it
a FIFO manner. Ring buffers are so named because the lowest address logically
follows the highest address. That is, if the last byte placed in (or retrieved from)
the buffer is at its highest address, then the next byte to be placed in it (or retrieved
from it) is at the lowest address. As data enters and leaves the buffer, the portion
containing data runs around the ring, with the pointer to the last byte out chasing
the pointer to the last byte in. Figure A-1 illustrates these characteristics.

Last byte
out pointer

Low Oldest
address data

Newest
address data

\ Last byte

in pointer

OM02889

Figure A-1. A Ring Buffer

The main (service) part of the example consists of four procedures:
CREATE_RING_BUFFER, DELETE_RING_BUFFER, PUT_BYTE, and
GET_BYTE. The last two procedures are for placing a character in a ring buffer
and for retrieving a character, respectively.

|:| Note

The text description and the figures in this appendix use
C-language syntax. However, these procedure examples are in
PL/M-language syntax.

366 Appendix A OS Extension Example

* NOTE: The common literal file (COMMON.LIT) is included *
* in each of the PL/M portions of the example. This include file *
* uses conditional compilation. The compilation switch 'R_32' be *

* used when compiling with PL/M-386. *
xxxxxxxxxxxxxxxxxxxxxxxx /

$IF word16

DECLARE WORD_32 LITERALLY 'DWORD";

DECLARE WORD_16 LITERALLY 'WORD';
$ELSE

DECLARE WORD_32 LITERALLY 'WORD";

DECLARE WORD_16 LITERALLY 'HWORD';
$ENDIF

DECLARE TOKEN LITERALLY 'SELECTOR';
$IFr_32

DECLARE SIZESOFOFFSET LITERALLY 'WORD_32'
$ELSE

DECLARE SIZESOFOFFSET LITERALLY 'WORD_16",
$ENDIF

DECLARE forever LITERALLY 'WHILE 1%

DECLARE indefinitely LITERALLY 'OFFFFH’;

DECLARE ASTR$STRUC LITERALLY 'STRUCTURE(
num$slots WORD,
num$components WORD,
seg TOKEN,
empty$ct TOKEN,
fullet TOKEN)';

DECLARE POINTER$STRUC LITERALLY 'STRUCTURE(
off_set SIZEOFOFFSET,
selector SELECTORY)';

DECLARE SEGMENT$STRUC LITERALLY 'STRUCTURE(
size WORD,
head WORD,
tail WORD,

buffer(l) BYTE);

System Concepts Appendix A 367

Initialization

368

The initialization task creates a region to protect data in ring buffers from being
manipulated by more than one task at a time. This part of the OS extension also
creates the required extension type and creates a deletion mailbox. In an ICU-
configurable system, the OS extension call-gates are established during
configuration. For this example, they are GDT slots 440H, 441H, 442H, and 443H.
Finally, this part of the OS extension waits at the deletion mailbox. Code for the
initialization task includes this:

$IFr 32
$COMPACT(-CONST IN CODE- has example)
$LARGE(other_libs EXPORTS ring$buffer$manager)
$ENDIF

example:

DO;

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals
*/

$INCLUDE(:RMX:INC/NUCLUS.EXT)

RING$BUFFER$MANAGER: PROCEDURE EXTERNAL;
END RING$BUFFER$MANAGER;

DECLARE ring$buffer$type TOKEN PUBLIC;
DECLARE ring$buffer$regionTOKEN PUBLIC;

RING_BUFFER_INIT: PROCEDURE;

DECLARE delete$object TOKEN;

DECLARE exception WORD;

DECLARE fifo LITERALLY 'O
DECLARE rb$code LITERALLY '8000H";
DECLARE deletion$mbox TOKEN;

DECLARE response$mbox TOKEN;

ring$buffer$region = RQ$CREATE$REGION (
fifo,
@exception);

deletion$mbox = RQ$CREATE$MAILBOX (

fifo,
@exception);

Appendix A OS Extension Example

ring$buffer$type=R$SCREATESEXTENSION (
rb$code,
deletion$mbox,
@exception);

$IF rmx86
CALL RQSETSOSSEXTENSION(
224,
@ring$buffer$manager,
@exception);
$ENDIF

CALL RQ$ENDSINIT$TASK;

DO FOREVER;
delete$object = RQSRECEIVE$SMESSAGE (
deletion$mbox,
indefinitely,
@response$mbox
@exception);

/ *hkkhkhkhkkhkhkhhkhkhrhkhrkk *kk

* |f desired, delete the components of the composite object. They *

* are not automatically deleted when DELETE$SEXTENSION is called. *

* See the DELETESRING$BUFFER procedure, shown later, for the code *
* that does this. *

/

CALL RQ$DELETE$COMPOSITE (
delete$object,
@exception);
END; /* FOREVER */
END RING_BUFFER_INIT;
END example;

System Concepts Appendix A

369

The Interface Library

The user interface library consists of four small procedures, one for each of the
system calls provided by the OS extension. The library supports application code
written in the PL/M COMPACT model. If a different model had been used for
compiling the application code, these interface procedures would be slightly
different, reflecting the fact that, when making procedure calls in other models, the
stack is used differently than in the COMPACT model.

See also: Interface librarigBrogramming Techniques
Interface librariesSystem Call Reference

The interface procedures are as follows:

: define macro to allow
: both 16 and 32 bit
; usage

$IF (%r_32) THEN(%'
; 32 bit registers/data types

%define(ax) (eax)

%define(bx) (ebx)

%define(cx) (ecx)

%define(dx) (edx)

%define(si) (esi)

%define(di) (edi)

%define(bp) (ebp)

%define(sp) (esp)

%define(mov16) (movzx)

%define(pusha) (pushad)

%define(popa) (popad)

%define(pushf) (pushfd)

%define(popf) (popfd)

%define(iret) (iretd)

%define(dw) (dd)

%define(dd) (dp)

) ELSE (%'

370 Appendix A OS Extension Example

; 16 bit registers/data types
%define(ax) (ax)
%define(bx) (bx)
%define(cx) (cx)
%define(dx) (dx)
%define(si) (si)
%define(di) (di)
%define(bp) (bp)
%define(sp) (sp)
%define(mov16) (mov)
%define(pusha) (pusha)
%define(popa) (popa)
%define(pushf) (pushf)
%define(popf) (popf)
%define(iret) (iret)
%define(dw) (dw)
%define(dd) (dd)
YFI%'

CREATERB PROC NEAR
PUBLIC CREATERB
%IF (NOT(%rmx86)) THEN (
EXTRN GATE 440: FAR
)FI

PUSH %BP
MOV %BP, %SP
%IF (%rmx86) THEN (

LEA %Sl, SS:%BP+4 ; SS:Sl contains
location of first
parameter
MOV BX, 0 ; code for
CREATE_RING_BUFFER
INT 224 ; call the

OS-extension via a
software interrupt

) ELSE (
PUSH SS:%BP+4 ; parameter--the size
of the ring buffer
CALL GATE 440 ; call the
OS-extension via a
call-gate

System Concepts Appendix A 371

FI

POP %BP

RET 2
CREATERB ENDP
DELETERB PROC NEAR

PUBLIC DELETERB
%IF (NOT(%rmx86)) THEN (

EXTRN GATE 441: FAR
)FI

PUSH %BP
MOV %BP, %SP

%IF (%rmx86) THEN (
LEA %SI, SS:%BP+4
MOV BX, 1

INT 224

) ELSE (
PUSH SS:%BP+4
CALL GATE 441
)FI
POP %BP
RET 2

DELETERB ENDP
GETRBYTE PROC NEAR
PUBLIC GETRBYTE
%IF (NOT(%rmx86)) THEN (

EXTRN GATE 442: FAR
)FI

PUSH %BP

372 Appendix A

: restore BP value
; return clearing
passed parameter

; SS:Sl contains
location of first
parameter
; code for
DELETE_RING_BUFFER
; call the
OS-extension via a
software interrupt

; parameter--target
ring buffer

; call the
OS-extension via a
call-gate

: restore BP value

; return clearing
passed parameter

OS Extension Example

%IF (%rmx86) THEN (

) ELSE (

)FI

MOV %BP, %SP

LEA %SI, SS:%BP+4

MOV BX, 2
INT 224

PUSH SS:%BP+4

CALL GATE 442

POP %BP
RET 2

GETRBYTE ENDP

PUTRBYTE

PROC NEAR
PUBLIC PUTRBYTE

%IF (NOT(%rmx86)) THEN (

)FI

%IF (%rmx86) THEN (

System Concepts

EXTRN GATE 443: FAR

PUSH %BP

MOV %BP, %SP

LEA %SI, SS:%BP+4

MOV BX, 3
INT 224

; SS:SI contains
location of first
parameter

; code for GET_BYTE

; call the
OS-extension via a
software interrupt

; parameter--target
ring buffer

; call the
OS-extension via a
call-gate

; restore BP value
; return clearing
passed parameter

; SS:SI contains
location of first
parameter

; code for PUT_BYTE

; call the
OS-extension via a
software interrupt

Appendix A

373

) ELSE (

)FI

374

Appendix A

PUSH SS:%BP+6

PUSH SS:%BP+4

CALL GATE 443

POP %BP
RET 4

PUTRBYTE ENDP

CREATERB: PROCEDURE(size)
DECLARE size
END CREATERSB;

DELETERB: PROCEDURE(ring$buffer$token)
DECLARE ring$buffer$token
END DELETERSB;

GETRBBYTE: PROCEDURE(ring$buffer$token)

END PUTRBBYTE;

; parameter--character
to write
; parameter--target
ring buffer
: call the
OS-extension via a
call-gate

: restore BP value
; return clearing
passed parameters

These interface procedures correspond to a set of external procedure declarations
the application PL/M code:

TOKEN EXTERNAL;
WORD;

EXTERNAL,;
TOKEN;

BYTE EXTERNAL,

DECLARE ring$buffer$token TOKEN;

END GETRBBYTE;

PUTRBBYTE: PROCEDURE(char, ring$buffer$token) EXTERNAL;
DECLARE char BYTE;
DECLARE ring$buffer$token TOKEN;

OS Extension Example

The Create Ring Buffer Procedure

The sole function of the CREATE_RING_BUFFER procedure is to create a ring
buffer for the calling task and to return to the task a token for the composite ring
buffer object.

Each ring buffer consists of three objects: a segment and two semaphores. The
supporting data structure, required by the iIRMX OS for cakksd¢ate _composite
andinspect_compositehas five fields:

The number of slots available for tokens in this list of component object
tokens. Because ring buffers are composed of three objects and no
components will be added, the number of slots is set to three.

The number of component objects actually in the composite object. In this
case, the number of components is three.

A token for a segment. The segment contains the ring buffer. The first
WORD in the segment contains the size of the actual ring buffer. The second
WORD of the segment is a POINTER to the most recently entered byte in the
buffer. The third WORD points to the oldest byte in the buffer. The rest of the
segment is used as the buffer itself. In the program, a structure reflecting the
intended breakdown of the segment is superimposed on the segment.

A token for a semaphore. This semaphore is used to keep track of the number
of vacancies in the ring buffer. Thus, it is initialized to the size of the buffer.

A token for a semaphore. This semaphore is used to keep track of the number
of occupied bytes in the ring buffer. Thus, it is initialized to O.

System Concepts Appendix A 375

The CREATE_RING_BUFFER routine creates the components of the composite
ring buffer object, initializes the appropriate fields, then creates the composite
object, as follows:

$INCLUDE(:RMX:INC/COMMONL.LIT) /* Declares common literals
*

$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE ring$buffer$type TOKEN EXTERNAL;

CREATE_RING_BUFFER: PROCEDURE (size) TOKEN PUBLIC REENTRANT;

DECLARE size WORD;

DECLARE seg$ptr POINTER;

DECLARE ptr$struc POINTER$STRUC AT (@seg$ptr);
DECLARE astr ASTR$STRUC;

DECLARE segment SEGMENT$STRUC BASED seg$ptr;
DECLARE exception WORD;

DECLARE ring$buffer TOKEN,;

DECLARE priority LITERALLY 1"

astr.num$slots = 3;
astr.num$components = 3;
astr.seg = RQSCREATE$SEGMENT (
size+6,
@exception);
astr.empty$ct = RQ$CREATE$SEMAPHORE (
size,
size,
priority,
@exception);
astr.fullsct = RQ$CREATESSEMAPHORE (
0,
size,
priority,
@exception);

ptr$struc.base = astr.seg;
ptr$struc.off_set = 0;
segment.size = size;
segment.head = -1,
segment.tail = 0;

376 Appendix A OS Extension Example

ring$buffer = RQSCREATE$SCOMPOSITE (
ring$buffer$type,
@astr,
@exception);
RETURN ring$buffer;
END CREATE_RING_BUFFER;

Thesegment.head variable is set to -1 because the PUT_BYTE procedure
(shown later) advances this pointer before placing a character in the buffer.

System Concepts Appendix A 377

The Delete Ring Buffer Procedure
DELETE_RING_BUFFER, which can be called by any task, deletes a ring buffer.

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals
*/
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE ring$buffer$type TOKEN EXTERNAL;

DELETE_RING_BUFFER: PROCEDURE(ring$buffer$token)
REENTRANT PUBLIC;
DECLARE ring$buffer$token BASED TOKEN;
DECLARE astr ASTR$STRUC;
DECLARE exception WORD;

astr.num$slots = 3;

CALL RQS$INSPECT$COMPOSITE (
ring$buffer$type,
ring$buffer$token,

@astr, @exception);

CALL RQ$DELETE$COMPOSITE (
ring$buffer$type,
ring$buffer$token,
@exception);

CALL RQ$DELETE$SEGMENT (
astr.seg,

@exception);

CALL RQ$DELETE$SEMAPHORE (
astr.empty$ct,
@exception);

CALL RQ$DELETE$SEMAPHORE (
astr.full$ct,

@exception);
END DELETE_RING_BUFFER,;

378 Appendix A OS Extension Example

The Put Byte Procedure

PUT_BYTE places a character in the buffer by advancing the pointer to the front of
the buffer then placing the character in the byte being pointed to.

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals
*/
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE ring$bufferstype TOKEN EXTERNAL;
DECLARE ring$buffer$regionTOKEN EXTERNAL;

PUT_BYTE: PROCEDURE(char, ring$buffer$token)
REENTRANT PUBLIC;
DECLARE ring$buffer$token TOKEN;
DECLARE char BYTE;
DECLARE size WORD;
DECLARE seg$ptr POINTER;
DECLARE ptr$struc ~ POINTER$STRUC AT (@seg$ptr);
DECLARE astr ASTR$STRUC;
DECLARE segment SEGMENT$STRUC BASED seg$ptr;
DECLARE exception WORD;
DECLARE units$left WORD;

astr.num$slots = 3;

CALL RQS$INSPECT$COMPOSITE (
ring$buffer$type,
params.ring$buffer$token,

@astr,
@exception);

units$left = RQSRECEIVE$SUNITS (
astr.empty$ct,
1,
indefinitely,
@exception);

CALL RQ$RECEIVE$CONTROL (
ring$buffer$region,
@exception);

ptr$struc.base = astr.seg;

ptr$struc.off_set = 0;

segment.head = ((segment.head + 1) MOD

segment.size);
segment.buffer(segment.head) = params.char;

System Concepts Appendix A 379

CALL RQ$SEND$CONTROL (
@exception);
CALL RQ$SENDSUNITS (
astr.full$ct,
1,
@exception);
END PUT_BYTE;

This procedure enters a region after obtaining the desired unit. To reverse these
steps would create a deadlock situation, particularly if the same reversal occurs in
the GET_BYTE routine.

380 Appendix A OS Extension Example

The Get Byte Procedure

GET_BYTE removes the oldest byte in the buffer, then advances the
segment.tail pointer.

$INCLUDE(:RMX:INC/COMMON.LIT) /* Declares common literals
*/
$INCLUDE(:RMX:INC/NUCLUS.EXT)

DECLARE ring$bufferstype TOKEN EXTERNAL;
DECLARE ring$buffer$regionTOKEN EXTERNAL;

GET_BYTE: PROCEDURE(ring$buffer$token) BYTE PUBLIC REENTRANT;
DECLARE ring$buffer$token TOKEN;
DECLARE size WORD;
DECLARE seg$ptr POINTER,;
DECLARE ptr$struc ~ POINTER$STRUC AT (@seg$ptr);
DECLARE astr ASTR$STRUC;
DECLARE segment SEGMENT$STRUC BASED seg$ptr;
DECLARE exception WORD;
DECLARE char BYTE;
DECLARE units$left WORD;

astr.num$slots = 3;

CALL RQ$INSPECT$COMPOSITE (
ring$buffer$type,
ring$buffer$token,

@astr
@exception);

units$left = RQSRECEIVE$SUNITS (
astr.full$ct,

1,
indefinitely,
@exception);

CALL RQ$RECEIVE$CONTROL (
ring$buffer$region,
@exception);

ptr$struc.base = astr.seg;

ptr$struc.off_set = 0;

char = segment.buffer(segment.tail);

segment.tail = ((segment.tail + 1) MOD segment.size);

System Concepts Appendix A

381

CALL RQ$SEND$CONTROL (
@exception);

CALL RQ$SENDSUNITS (
astr.e,pty$ct,
1,
@exception);

RETURN char;

END GET_BYTE;

Epilogue

382

Any task in any job linked to these procedures may call any one of the procedures.
The procedure names to be used in such callSREATE_RBDELETE_RB
GET_RB_BYTEandPUT_RB_BYTE Application programs cannot manipulate

either ring buffers or their component objects, except through these system calls.
In fact, application programmers need not be aware that ring buffers are composed
of several other objects. To them, ring buffers appear (except for the absence of
"RQ" in the procedure names) to be standard iRMX objects.

Appendix A OS Extension Example

Index

- (HI default prompt), 317

A (circumflex) character, 234
$, default prefix, 225, 282

1 (up-arrow) character, 234
/ (slash) character, 234

A

a_attach_file, 258

a_attach_file call, 230, 238, 276
a_change_access call, 238, 242, 243
a_close call, 260, 269, 275, 276
a_create_directory call, 258
a_create_file call, 230, 258, 268, 273
a_delete_connection, 258
a_delete_connection call, 269, 275, 276
a_delete_file call, 238, 243, 262
a_get_connection_status call, 261
a_get_directory_entry call, 261
a_get_extension_data call, 245, 263
a_get_file_status call, 261
a_get_path_component call, 262
a_load call, 300

a_load_io_job call, 299

a_open call, 230, 260, 268, 276
a_physical_attach_device, 273
a_physical_attach_device call, 228, 258, 268

a_physical_detach_device call, 228, 258, 269

a_read call, 260, 261, 268, 276
a_rename_file call, 262

a_seek call, 232, 260, 268
a_set_extension_data call, 245, 263
a_special call, 247, 263, 268
a_truncate call, 260

a_update call, 260

a_write call, 260, 268

aborting, command, <Ctrl-C>, 353

System Concepts

accept_control call, 70, 71
access byte, description, 96
access list
changing, 242
example, 241
access mask, 241, 242
aggregate, 242
access rights, 242, 243
changing, 238, 242, 262
denying, 241
example, 244
file, 230
limitations, 96
shared files, 239
accessingseealso attaching
device driver, 267
device unit, 224
DOS diskettes, 255, 256
DOS files, 233
file, 224
files, example, 343
memory segments, 95
network, 310
NFS files, 251
remote files, 233, 310
shared objects, 107
add_reconfig_mailbox system call, 156
adding, functions to OS, 163
addressing, memory, 151
aggregate mask, 242
AL (Application Loader), 291
alarm task, watchdog timer, 156
alarms
creating, Kernel, 195
deleting, Kernel, 195

aliases, 316
memory segments, 153
aligning
4-byte for Kernel, 202
buffers, 95

Index 383

allocating, memory, 93, 284, 299
alter_composite call, 185
appending, output, 327
application programming, definition, 214
application recover, watchdog timer, 157
assigning, device logical name, 229
asynchronous call, 302
attach flags, disk integrity, 246
attach_buffer_pool call, 100, 103
attach_port call, 86, 87
attachdevice command, 251, 255, 256
attaching

buffer pool to port, 100

connection, 284

devices, 228, 229, 251, 255, 256, 268, 273

DOS diskettes, 255, 256
logical device, 269
named files, 238

NFS files, 251

physical files, 268, 270
ports, 86

stream files, 276

B

background processing, 316, 353
bad tracks and sectors, 247
binary compatibility support, 297
binding

example, 361, 363

user extension, 322
BIOS (Basic I/O System), 213
BND286

example, 361

user extension, 322
BND386, 295

dynamicmem option, 298

example, 363

segsize control, 298
borrowing, memory, 93, 296, 298
broadcast call, 84, 88
broadcasting system-wide, 84
buffer pools

attaching to port, 100

configuring, 99

creating, 98

data chains, 98

384 Index

deleting, 101
description, 97
detaching from port, 100
filling, 98
initializing, 98
releasing buffers to, 101
requesting, 100
resources required, 98
tokens, 97
buffers
access control, semaphore, 63
aligning, 95
deletion, avoiding in /0, 219
parsing, 325
switching example, 339
bytes read, number of, 216

C
¢_backup_char call, 331, 337

c_create_command_connection call, 323, 349

c_delete_command_connection call, 349
c_format_exception call, 346

c_get_char call, 331, 337
c_get_command_name call, 340
c_get_input_connection call, 333, 341, 359
c_get_input_pathname, 331

c_get_input_pathname call, 313, 326, 332, 333,

336, 337, 359

c_get_output_connection call, 333, 342, 359

c_get_output_pathname call, 313, 327, 331,
332, 336, 337, 359
c_get_parameter call, 328, 331, 334, 335,
337, 359
c_send_co_response call, 344
c_send_command call, 329, 349, 350
c_set_control_c call, 355
c_set_parse_buffer call, 324, 338
call gates, 164
cancel call, 84, 88
cancelling
command, 353
message, 84
case sensitivity, object directory, 108
catalog_connection call, 282
catalog_object call, 44, 108, 109, 282, 355

cataloging
connections, 229, 274, 281
logical name, 225

object, 108
change_access call, 262
character

continuation, 350

special, 329

checksum, 246
child job, definition, 25
ci device, connection, 344
circumflex (*) character, 234, 340
CLI (Command Line Interpreter), 308, 315
client-server model, 79
closing
connection, 261, 285
named files, 260
physical files, 269, 271
stream files, 275, 276
co device, connection, 344
command interface, loadable, 308, 315
Command Line InterpreteiseeCLI
command usage
aborting, 353
background, 360
cancelling, 353
CLI and HI, 310
comment character, 329
connections, 349, 351
continuation character, 329
creating, 357
directory access, 340
entering, examples, 327
executing, 318
invoking programmatically, 349
multiple lines, 350
nonstandard, 336
obtaining name, 340
parameters, 285
format, 328
syntax, 326
parsing, 314, 325, 359
parsing nonstandard, 336, 337
priority, 351
quoting character, 330
sending, 350
standard structure, 326

System Concepts

status, 351
terminating, 360
wildcards, 313
writing, 349

communicating, between tasks, 44

composite objects

creating, 179

deleting, 180

deleting nested, 183
condition codes, 286

asynchronous, 215

concurrent, 216

custom system calls, 174

description, 111

/0, 219

mnemonic, 113

ranges, 114

sequential, 302

synchronous, 219, 300
:config:terminals 323
configuring

AL, 293

buffer pools, 99

custom CLI, 322

watchdog timer, 159
connect call, 87
connections, 284

BIOS and EIOS, 231

cataloging, 281

closing, 261

created by another job, 238

creating, 285, 341

deleting, 263, 271, 285

device, 228, 273

device and file, 224

file, 231

logical name, 238, 264

named files, 258

opening, 342

returned, 219

sharing, 261

stream files, 274, 277

used by another job, 238

using pathname, 341
console input/output, 341, 344

continuation character, 316, 318, 329

continuing command lines, 350

Index

385

copy command, 262

corrupt volume or file, 246

<CR> line terminator character, 327
create_buffer_pool call, 98, 103
create_composite call, 179, 185
create_extension call, 179, 185
create_io_job call, 264
create_mailbox call, 50, 56
create_mailbox system call, 156
create_port call, 75, 87
create_region call, 68, 71
create_segment call, 93, 95, 98, 103

create_semaphore call, 59, 65, 354, 355

create_task call, 35, 47, 303, 355
create_user call, 259
creating
alarms, Kernel, 195
buffer pools, 98
command connections, 349
commands, 357, 360
commands, caution, 358, 359
composite objects, 179
connections, 224, 258, 284, 341
custom objects, 179
descriptor, 153
device connections, 228, 229
file connections, 230, 231
1/0 buffers, 219
I/O jobs, 227, 264, 299
jobs, 28
mailboxes, 50
mailboxes, Kernel, 191
memory pools, Kernel, 206
memory segments, 95
object directory, 107
objects, Kernel, 188
OS extensions, 164
physical files, 268, 270
ports, 75
regions, 68
semaphores, 59
semaphores, Kernel, 189
stream files, 273, 274
task to load program, 303
tasks, 35
user messages, 346

386 Index

<Ctrl-C>, 287, 353

D

caution, UDI reset, 354
default handler, 353, 356
program flow, 354, 355
task, example, 356
writing handler, 353

data

blocking access, semaphore, 61
caution with regions, 68
mailbox type, 49

data chain, 74, 98
date, 285
deadlock

avoiding when deleting objects, 177
caution with regions, 68
preventing in regions, 70

debug command, 295
default exception handler, 346
default prefix, 258, 282

cataloged in object directory, 225
definition, 225
using, 236

default user object, 226, 240
delaying, job execution, 301
delete_buffer_pool call, 101, 103
delete_composite call, 180
delete_extension call, 180, 185
delete_job call, 30, 31, 180
delete_mailbox call, 51, 56
delete_port call, 75, 87
delete_region call, 71
delete_segment call, 96, 103
delete_semaphore call, 60, 65
delete_task call, 35, 47
delete_user call, 259

deleting

alarms, Kernel, 195

buffer pools, 101

caution with tasks and regions, 68
caution, Kernel objects, 188
command connections, 351
composite objects, 180

connections, 229, 263, 269, 271, 275,
276, 284
device connections, 228
extensions, 183
files, 243, 285
I/O buffer, avoiding, 219
I/O jobs, 227, 264
IORS, 218
jobs, 30
mailboxes, 51
mailboxes, Kernel, 191
memory pools, Kernel, 206
memory segments, 96
named files, 238, 262
nested composite objects, 183
objects, immunity, 177
ports, 75
regions, 68
semaphores, 60
semaphores, Kernel, 189
tasks, 35
delimiters, 286
dependent jobs, definition, 26
descriptors
alias for memory segment, 153
cautions, 152, 153
changing physical address, 153
changing segment size, 153
creating, 153
defining memory, 152
description, 151
type code, 152
detach_buffer_pool call, 100, 103
detach_port call, 86, 87
detaching
buffer pools, 100
connections, 284
devices, 228, 229, 269
logical devices, 271
ports, 86
detecting device status change, 263
device connections, 258, 267, 268, 269,
273, 282
creating and deleting, 228
named files, 234
owner, 228, 229
device controller, definition, 220

System Concepts

device granularity, setting, 220
device independence, 273
device unit, definition, 220
Device Unit Information BlockseeDUIB
devices

detaching, 269

status change, 263
Direct Memory AccessseeDMA
directories

/rmx386/demo/c/rmk, 204

/rmx386/jobs, 204

/RMX386/UDI, 173

:$:, 340

prog:, 340

:rmx:hi, 319

:system:, 340

:utils:alias, 358
directory

access, 340

entry, 261, 265

object, 225, 282

remote device, 248
disable call, 143, 149
disable_deletion call, 177, 178
disabling, interrupt levels, 143, 144
disk integrity, 246

fnode checksum, 246
diskverify command, 246
DMA, 95
DOS files

access attributes, 255, 256

definition, 222

name components, 255

names, 256

renaming, 255, 256

user, 255, 256
dg_allocate call, 284
dg_attach call, 284
dg_close call, 285
dg_create call, 284
dg_decode_exception call, 286
dg_decode_time call, 285
dg_delete call, 284
dg_detach call, 284
dg_exit call, 285, 286, 287
dg_free call, 284
dg_get_argument call, 285

Index 387

dg_get_size call, 284

dg_get_system_id call, 285

dg_get_time call, 285

dg_mallocate call, 284

dg_open call, 285

dg_overlay call, 285

dg_read call, 285

dg_reserve_io_memory call, 284, 287

dg_seek call, 285

dg_switch_buffer call, 285

dg_trap_cc call, 354

dq_trap_exception call, 173

dg_truncate call, 285

dg_write call, 285

DUIB (Device Unit Information Block)
definition, 223

dynamic logon, remote system, 250

dynamic memory, requirements, 362, 364

dynamic terminals, 309

dynamicmem option, borrowed memory, 298

E

EDOS files, definition, 222
EIOS (Extended I/O System), 213
elapsed time, measuring, 195
enable call, 149
enable_deletion call, 177, 178
encrypt call, 248
end_init_task call, 31
enter_interrupt call, 130, 132, 150
epilog procedure, 320
error handling, CLI, 320
examining in-service register, 148
examples
access list, 241
access rights, 244
accessing files, 343
asynchronous call, 215, 302
BIND, 297
BND286, 361
BND386, 363
buffer pool and port, 100
command connection, 351
entering commands, 327
file granularity, 1/0, 221
logical name and subpath, 238

388 Index

mailbox, different job, 54
mailbox, same job, 51
memory, borrowing, 93
multiple-buffer interrupt, 140
OS extension, 365
overlay modules, 292
parsing buffers, 339
parsing commands, 333
ports, fragmented request, 80, 81, 82
ports, fragmented response, 81
ports, request-response, 80
quoting characters in commands, 330
r?error, 321
reading file, 215
region, 69
ring buffer, 365
round-robin scheduling, 42
semaphore, bottleneck, 60
semaphore, multi-unit, 63
semaphore, mutual exclusion, 60
Single Task Loadable (STL) file, 297
single-buffer interrupt, 139
subpath, 234
task handler, Kernel, 200
user extension, 321
watchdog timer failure recovery, 158
wildcards, 333
writing message to screen, 347
exception handlers
32-bit and 16-bit, 115
assigning, 111
custom, 173
default, 115
inline, 114
mode, 113
System Debugger, 112
types, 112
writing custom, 171
exception handling
/0, 219
UDI, 286
exception mode, 113
exceptional conditions
description, 111
handling in commands, 346
exit_interrupt call, 149
exit_io_job call, 264, 301, 303, 324, 360

exiting program, 285, 303
extension data, 263
changing, 245, 263
named files, 263
extensions, see OS extensions

F

failure handling, watchdog timer, 156
file connections
access rights, 242
creating, 230
deleting, 230
getting, 231
file drivers, 223, 224, 248, 251, 255, 256
file format, implementing your own, 267
file independence, 273
maintaining, 267
file pointers
modifying, 232
moving, 268, 270
seeking, 285
files, 205
access rights to, 230
list of, 241
controlling access to, 239
corrupt, 246
definition, 222
deleting, 285
descriptor, 245
EDOS, seeEDOS files
granularity of, /0, 221
loading with AL, 301
location on volume, 246
name components, 234
name length of, 234
not found message, 341
opening, 342
physical, seephysical files
remote seeremote files
status of, 261
stream, seestream files
temporary, 284
truncation of, 230, 231
first level job, definition, 26

System Concepts

flat memory models
allocating memory, 91
execution model, 91
memory management, 91
system calls for memory management, 91
fly-by mode, 95
force_delete call, 177
format command, 245
format \t, 267
formatting, volumes using physical files, 267
forwarding
message to sink port, 86
message using remote socket, 86
fragmentation
file, reducing, 220
port, 75
fragments
large messages broken up, 75
receiving, 83
request message, 80, 81
response message, 81
free space memory, 284
functions
adding to OS, 163
malloc for Kernel, 203

G

.GAT file, 165

get_address call, 103
get_default_prefix call, 258
get_default_user call, 259
get_exception_handler call, 121, 171
get_global_time call, 263
get_interconnect call, 162

get_level call, 148, 150
get_logical_device_status call, 261
get_port_attributes call, 87
get_priority call, 47, 190

get_size call, 95, 103
get_task_accounting, 122
get_task_accounting call, 123
get_task_info, 122

get_task_info call, 123
get_task_state, 122

get_task_state call, 123
get_task_tokens call, 31, 47, 108, 109

Index 389

get_type call, 109 input, redirecting, 344, 349

get_user_ids call, 250 in-service register, examining, 148
global clock, accessing and setting, 263 inspect_composite call, 185
granularity, device, setting, 220 inspect_user call, 259

instruction pointer, for task, 34
H interactive jobs, 310

interconnect space

handlers, task, Kernel, 199
handling
exceptional conditions, 346
exceptions, custom, 173

caution, 160
description, 160
getting register value, 160

spurious interrupts, 147 setting register value, 160
hardware exceptions, 111 utility to read or write to, 161
tokens, 96 interface library, 370
hclusr.p28 file 319 internal recovery, watchdog timer, 157
HI (Human Interface), 307 interrupt descriptor tablesee
caution with regions, 72 interrupt handlers
history command, 316 description, 129

iRMK calls in, 135
I memory pools, Kernel, 208
writing, 130

I/O, redirecting, 316, 344, 349 interrupt levels, 127

I/O buffers, creating 1/0, 219

/O jobs, 226 assigning to external sources, 128
and AL, 292 disabling, 143, 144
cataloging, 226 in standard definition filessee
creating, 264, 299 Installation and Startup
creating and deleting, 227 interrupt lines, 125
definition, 26 interrupt task, priority, 133
deleting, 264 interrupts
differences, 227 enabling, 146
exiting, 301 example, multiple-buffers, 140
naming, 282 example, single-buffer, 139

parameters, 227 servicing patterns of tasks and
I/0 Request/Result SegmerdeelORS handlers. 137

IDT (interrupt descriptor table), 127
initial program, 314

definition, 308
initial task, 30

signaling end of, 31
initialization, 314

spurious, detecting, 148
spurious, handling, 147
invoking
commands, 318, 350
commands programmatically, 349

CLI, 317 IORS (I/O Request/Result Segment), 214, 215
custom, 319 deleting, 218
errors, recovery, 312 iIRMX string, definition, 234
initializing, buffer pools, 98 iIRMX-NET, 310
inpath-list, 326 access remote file, 248
reading, 332 I/0, 250

390 Index

J

job command, 353

jobs
changing task priority, 31
creating, 28
deleting, 30
global, naming, 282
hierarchy, 25
limitations, 28
resources provided by, 27
specifying resources, 29
tokens, getting, 47
user, 310

K

Kernel

description, 187

examples, task handler, 200

literals, 188

mailboxes, 191

memory management, 205

objects, 188

overhead in memory pools, 207

real-time clock, 195

task management, 197

tick ratio, 194

time management, 194
keyword, 328, 335
kill command, 353
KN_create_alarm call, 195, 197
KN_create_area call, 206, 209
KN_create_mailbox call, 191, 193
KN_create_pool call, 206, 209
KN_create_semaphore call, 189, 190
KN_delete_alarm call, 195, 197
KN_delete_area call, 206, 209
KN_delete_mailbox call, 191, 193
KN_delete_pool call, 206, 209
KN_delete_semaphore call, 189, 190
KN_get_pool_attributes call, 208, 209
KN_get_time call, 195, 197
KN_receive_data call, 192, 193
KN_receive_unit call, 189, 190
KN_reset_alarm call, 196, 197
KN_reset_handler call, 200, 201

System Concepts

KN_send_data call, 191, 193
KN_send_priority_data call, 191, 193
KN_send_unit call, 189, 190
KN_set_handler call, 200, 201
KN_set_time call, 195, 197
KN_sleep call, 196, 197
KN_start_scheduling call, 198, 201
KN_stop_scheduling call, 198, 201
KNE_get_time call, 197
KNE_set_time call, 197

L

LAN, 310
<LF> line terminator, 327
libraries
rmxifc.lib, 297
rmxifc32.lib, 297
line terminator characters, 327
line-editing mode, 316
live insertion, 51, 155
load_io_job call, 301
loadable command interface, 315, 323
loadable jobs
clib.job, 204
definition, 26
Loader Result Segmenseel RS
loading
files, 301
overlay modules, 301
programs, 299, 357
Local Area Network (LAN), 248
locking, scheduling, 197
LODFIX record, 295
logging off, 311
logging on, 309
logical device
attaching, 229, 269
detaching, 271
logical names, 264
assigning to device, 229
connections, 238
defining, 282
definition, 225
named files, 234
prefix, 235
subpaths, example, 238

Index

391

logical_attach_device call, 229, 269, 282
logical_detach_device call, 229, 271
logoff command, 311

logon, definition, 309

lookup_object call, 44, 108, 109, 355
LRS (Loader Result Segment), 300

M

mailboxes
advantages and disadvantages, 44
between different jobs, 54
creating, 50
creating Kernel, 191
data type, 49
deleting, 51
deleting Kernel, 191
description, 49
example, different job, 54
example, same job, 51
Kernel high priority, 191
message or object type, 49
queues, 50
queues, Kernel, 192
reconfiguration, 51, 56, 156, 157
response, 214, 302, 303
maintaining, file independence, 267, 273
measuring elapsed time, 195
memory
addressing with descriptors, 151
allocating, 93, 284, 299
borrowing, 93, 296, 298
buffer pools, 97
buffers, aligning, 95
data chains, 74, 98
dynamic partitions, 309
flat models, 91
Kernel aligning, allocating, 202, 205
Kernel alignment, 206
management, 284
overlay modules, 292
pool attributes, 94
releasing, 284
reserving, 284
size, 284
tasks using, 91
memory buffer pools, 74

392 Index

memory pools
attributes, Kernel, 208
creating, 92
creating, Kernel, 206
definition, 91
deleting, 92
deleting, Kernel, 206
interrupt handlers, Kernel, 208
overhead, Kernel, 207
reserving, 227
size, 92, 295
specifying, 299
memory segments
allocating, 284
creating, 95
definition, 95
deleting, 96
selector, 95
token, 95
messages
control, description, 78
control/data, description, 78
design, 346
error, 318
exit, 301
file not found, 341

forwarding from remote socket, 86

forwarding to sink port, 85

fragmented request, 80, 81, 82

fragmented response, 81

fragments, 75

interprocessor, 73

mailboxes, 44, 49

overwrite, 327, 342

ports, 45, 78,79

priority, Kernel, 191

queues, 46

receiving, 302

sending, 44

sending to user, 344, 346

short-circuit, 74

stream files, 273

transaction pair, 79

transfer protocol, 73

writing to screen, 347
moving, file pointer, 268, 270, 285
mp2 file, 165

Multibus 1l default prefix, 225

ports, 73 description, 107
slot number, 161 looking up object, 108
Transport Protocol, 73 number of entries, 107
multiuser support, 311 removing object, 108
mutual exclusion object files, definition, 291
interconnect registers, 161 object module, definition, 291
Kernel, 190 objects
regions, 67 cataloging, 108
semaphores, 59, 60 creating custom, 179
getting address, 103
N getting token, 108
immune from deleting, 177
named files Kernel, 188
definition, 222 naming, 282
extension data, 263 Nucleus calls, 257
features, 233 shared access, 107
getting name, 262 user, definition, 240
opening, closing, reading and writing, 260 offer command, 248
path, 234, 236 off-line device, 229
system call order, 265 offspring job, seechild job
naming OMF-286, 295
global job, 282 opening
objects, 282 files, 230, 231, 260, 268, 270, 274, 275,
networking, to remote files, 248 276, 277, 285
NFS files, example, 343
access rights mapping., 239 OS extensions
file names, 251 creating, 164
name components, 251 custom condition codes, 174
user id mapping, 239 deleting, 183
nonstandard commands, 336 description, 163
NUCERROR, 169 entry point, 166
overriding, 173 function procedures, 166
Nucleus including in system, 175
communication subsystem, functions, 23 interface procedures, 165
interface libraries, functions, 23 linking procedures, 174
resident, functions, 23 OSs, porting code between, 284
outpath-list, reading, 332
@) outpath-list, 327
output, redirecting, 344, 349
object code overlapping, processing, 291
definition, 291 overlay modules, 285, 292, 301
producing, 363 example, 292
object directory, 225, 226 overriding
case-sensitive, 108 NUCERROR, 173
cataloging object, 108 RQERROR, 173
creating, 107 overwrite message, 327, 342

System Concepts Index 393

OVL286 (80286 overlay generator), 285, 301
owner ID, 242
owner, device connection, 229

P

parameter
formats supported, 328
position-independent, 336
parameter object
definition, 29
token, 29
parameters
buff_p, 338
code_seg_base, 300
connection, 274
dev_name_ptr, 273
DMP, 296
GSN, 164
KTR, 194
MCE, 99
MCO, 95
MCT, 95
MDC, 95
mode, 230, 231
NIE, 127
offset, 339
OSX, 164
path_ptr, 225, 237, 270, 274, 275, 277
pool_max, 296
pool_min, 296
prefix, 229, 234, 238, 268, 273, 276
resp_mbox, 301
share, 230, 274
stack_seg_base, 300
task_flag, 301
to, over, and after, 327
parent job, definition, 25
parsing
buffers, 331, 339
buffers, example, 339
buffers, switching, 338
commands, 359
commands, example, 333

394 Index

nonstandard command, 336
pathnames, 332
pointer, 338
value-list, 334
passwords, 309
encrypting, 248
path, named files, 234, 236, 265
pathnames
components, 326
using for file connection, 341
wildcards, 313
permit command, 239, 248
physical files, 267
attaching, 268
closing, 269, 271
creating, 268, 270
definition, 222
deleting connections, 269
detaching devices, 269
detaching logical device, 271
opening, 268, 270
reading, 268, 270
special functions on, 268, 271
system call order, 272
writing, 268, 270
physical files call, 272
plm286.lib file, 361
pIm386.lib file, 363
pointer, parsing, setting, 338
porting, code, 284, 287
ports
advantages and disadvantages, 45
attaching, 86
attaching buffer pools, 100
attributes, getting, 87
broadcasting message, 84
buffer pool, 74, 79
cancelling message, 84
creating, 75
deleting, 75
description, 73
detaching, 86
detaching from buffer pool, 100
example, request-response, 80
forwarding from remote socket, 86
fragmentation, 75
identifying, 76

large data transfers, 74 Q
linking response/request, 74

message types, 78 queues
on same host, 74 control message, 79

rotocol type, 75 FIFO, 46
P yPe, high-performance, 50
queues, 75,79 mailbox, 50
receiving message, 77 mailbox, Kernel, 192
receiving message fragment, 83 overflow, 50
receiving reply, 84 port, 75
sending message, 77 priority, 46

region, 68

sending request, 83
sending response, 83
sink, 85

semaphore, 59

status, 74 R
storing data, 100 r?error
prefix accessing values in, 320
default, 235, 258 example, 321
/0, 235 r?iojob I/O job object, 282

r?iouseruser object, 226, 240, 282
r?messagebject, 282
random access

pathname, 326
subpath, 238

priority extension data, 245
adjustment by regions, 45, 67 files, 232
bottleneck, regions, 67 RCONFIGURE control, 295, 357, 362, 364
bottleneck, semaphores, 60 reading

byte string, 267

commands, 351)
directory entry, 261

dynamic, Kernel, 190

))) files, 285

inversion, regions, 68 inpath-list, 332
inversion, semaphores, 61 outpath-list, 332
messages, Kernel, 191 physical files, 268, 270
round-robin threshold, 40 stream files, 276
tasks, 39 receive call, 77, 87

receive_control call, 70, 71
receive_data call, 55, 56
receive_fragment call, 83, 87

private files, definition, 248
:prog: directory, 317

:prog:r?logon, 317 receive_message call, 50, 53, 56, 302
programmable interrupt controller, see PIC receive_reply call, 84, 88
programmatic command invocation, 349 receive_units call, 65, 355

programs, loading, 357 receiving

message at port, 77

- . message fragment at port, 83

pub:fc ?;rectory, definition, 248 reply from port, 84

public lles, 239 semaphore units, 64
definition, 248 reconfiguration mailbox, 51, 56

protocol, port, 75

System Concepts Index 395

reconfiguration mailboxes, 156, 157
recovery/resident user, 312
redirecting, /0, 344, 349
regions
advantages and disadvantages, 45
caution, 68, 72
caution, human interface, 72
creating, 68
deadlock, 69
deadlock, preventing, 68, 70
deleting, caution, 68
deletion/suspension immunity, 67
description, 67
dynamic priority adjustment, 45
example, nesting, 69
Kernel, 189
mutual exclusion, 45, 67
nesting, 69
priority adjustment, 70
priority inversion, 67
queues, 68
releasing control, 71
releasing nested, 70
releasing, symmetry, 69
semaphore, dynamic priority, 190
release_buffer call, 98, 101, 103
releasing
buffer pools, 101
memory, 284
remote files
definition, 222
prefix, 235
remote socket, 86
removing, object from directory, 108
rename_file call, 262
repetitive alarms, 195
request, linking to response, 74
request_buffer call, 98, 100, 103
request-response transaction, 80
reserving, memory pools, 227
reset_interrupt call, 35, 131, 149
response, linking to request, 74
resume_task call, 47
limitations of, 38
ring buffer example, 365
rmk.h file, 205
rmk_base.edf file, 205

396 Index

rmk_base.equ file, 205
rmk_base.ext file, 205
rmk_base.h file, 205
rmk_base.l file, 205
rmk_base.lit file, 205
rmk_ex.equ file, 205
rmk_ex.l file, 205
rmk_ex.lit file, 205
rmk_type.equ file, 205
rmk_type.| file, 205
rmk_type.lit file, 205
root job, definition, 26
root module, 292
round-robin scheduling, 40

description, 40

example, 42
rq_a_attach_file, 258
rq_a_attach_file call, 230, 238, 276
rq_a_change_access call, 238, 242, 243
rq_a_close call, 260, 269, 275, 276
rq_a_create_directory call, 258
rq_a_create_file call, 230, 258, 268, 273
rq_a_delete_connection, 258
rq_a_delete_connection call, 269, 275, 276
rq_a_delete_file call, 238, 243, 262
rq_a_get_connection_status call, 261
rq_a_get_directory_entry call, 261
rq_a_get_extension_data call, 245, 263
rq_a_get_file_status call, 261
rq_a_get_path_component call, 262
rq_a_load call, 300
rg_a_load_io_job call, 299
rq_a_open call, 230, 260, 268, 276
rq_a_physical_attach_device, 273
rq_a_physical_attach_device call, 228,

258, 268
rq_a_physical_detach_device call, 228,
258, 269

rq_a_read call, 260, 261, 268, 276
rq_a_rename_file call, 262
rq_a_seek call, 232, 260, 268
rq_a_set_extension_data call, 245, 263
rq_a_special call, 247, 263, 268
rq_a_truncate call, 260
rq_a_update call, 260
rq_a_write call, 260, 268
rq_accept_control call, 70, 71

rq_alter_composite call, 185
rq_asynchronous call, 302
rq_attach_buffer_pool call, 100, 103
RQ_attach_port call, 86, 87
rq_broadcast call, 84, 88
rq_c_backup_char call, 331, 337
rq_c_create_command_connection
call, 323, 349
rq_c_delete_command_connection
call, 349, 351
rg_c_format_exception call, 346
rg_c_get_char call, 331, 337
rq_c_get_command_name call, 340

rq_c_get_input_connection call, 333, 341, 359

rq_c_get_input_pathname, 331

rq_c_get_input_pathname call, 313, 326, 332,

333, 336, 337, 359
rq_c_get_output_connection call, 333,
342, 359

rq_c_get_output_pathname call, 313, 327, 331,

332, 333, 336, 337, 359
rq_c_get_parameter call, 328, 331, 334, 335,
337, 359
rq_c_send_co_response call, 344
rq_c_send_command call, 329, 349, 350
rq_c_set_control_c call, 355
rq_c_set_parse_buffer call, 324, 338
rq_cancel call, 84, 88
rq_catalog_connection call, 282

rq_catalog_object call, 44, 108, 109, 282, 355

rq_change_access call, 262
rq_connect call, 87
rq_create_buffer_pool call, 98, 103
rq_create_composite call, 179, 185
rq_create_extension call, 179, 185
rq_create_io_job call, 264
rq_create_mailbox call, 50, 56
rq_create_port call, 75, 87
rq_create_region call, 68, 71
rq_create_segment call, 93, 95, 98, 103
rq_create_semaphore call, 59, 65, 354, 355
rq_create_task call, 35, 47, 303, 355
rq_create_user call, 259
rq_delete_buffer_pool call, 103
rq_delete_composite call, 180, 185
rq_delete_extension call, 180, 185
rq_delete_job call, 30, 31, 180

System Concepts

rq_delete_mailbox call, 56
rq_delete_port call, 75, 87
rq_delete_region call, 71
rq_delete_segment call, 96, 103
rq_delete_semaphore call, 60, 65
rq_delete_task call, 35, 47
rq_delete_user call, 259
rq_detach_buffer_pool call, 100, 103
rq_detach_port call, 86, 87

rq_disable call, 143, 149
rq_disable_deletion call, 177, 178
rq_enable call, 149

rq_enable_deletion call, 177, 178
rq_encrypt call, 248

rq_end_init_task call, 31
rq_enter_interrupt call, 130, 132, 150
rq_error routine, 286
rq_ete_buffer_pool call, 101
rq_exit_interrupt call, 149
rq_exit_io_job call, 264, 301, 303, 324, 360
rq_force_delete call, 177
rq_get_address call, 103
rq_get_default_prefix call, 258
rq_get_default_user call, 259
rq_get_exception_handler call, 121, 171
rq_get_global_time call, 263
rq_get_interconnect call, 162
rq_get_level call, 148, 150
rq_get_logical_device_status call, 261
rq_get_port_attributes call, 87
rq_get_priority call, 47,190

rg_get_size call, 95, 103
rq_get_task_accounting, 122
rq_get_task_accounting call, 123
rq_get_task_info, 122

rq_get_task_info call, 123
rq_get_task_state, 122, 123
rq_get_task_tokens call, 31, 47, 108, 109
rq_get_type call, 109

rq_get_user_ids call, 250
rq_inspect_composite call, 185
rq_inspect_user call, 259
rq_load_io_job call, 301
rq_logical_attach_device call, 229, 269, 282
rq_logical_detach_device call, 229, 271
rq_lookup_object call, 44, 108, 109, 355
rq_physical files call, 272

Index 397

rq_receive call, 77, 87
rq_receive_control call, 70, 71
rq_receive_data call, 55, 56
rq_receive_fragment call, 83, 87
rq_receive_message call, 50, 53, 56, 302
rq_receive_reply call, 84, 88
rq_receive_units call, 65, 355
rq_release_buffer call, 98, 101, 103
rq_rename_file call, 262
rq_request_buffer call, 98, 100, 103
rq_reset_interrupt call, 35, 131, 149
rq_resume_task call, 47
limitations of, 38
rq_s_attach_file call, 231, 270, 275, 277
rg_s_catalog_connection call, 264, 274, 281
rq_s_change_access call, 238, 242, 243
rq_s_close call, 271, 275, 277
rq_s_create_file call, 231, 270, 274
rq_s_delete_connection call, 263, 271,
277, 359
rq_s_delete_file call, 238, 243
rq_s_get_directory_entry call, 265
rq_s_get_path_component call, 265
rq_s_load_io_job call, 299
rq_s_logical_attach_device call, 258
rq_s_lookup_connection call, 264
rq_s_open call, 231, 270, 275, 277
rq_s_overlay call, 301
rq_s_read_move call, 260, 270, 277
rq_s_seek call, 232, 270
rq_s_special call, 265, 271
rq_s_truncate_file call, 260
rq_s_uncatalog_connection call, 264, 277
rq_s_write_move call, 260, 270, 275
rq_send call, 77, 87
rq_send_control call, 71
rq_send_data call, 55, 56
rq_send_message call, 50, 53, 56
rq_send_reply call, 83, 88
rq_send_rsvp call, 83, 88
rq_send_units call, 65
rq_set_default_prefix call, 258
rq_set_default_user call, 259
rq_set_exception_handler call, 115, 121,
171, 173
rq_set_global_time call, 263
rq_set_interconnect call, 162

398 Index

rq_set_interrupt call, 130, 132, 149
rq_set_pool_min call, 31
rq_set_priority call, 39, 47
rq_signal_exception call, 169, 176, 286
rq_signal_interrupt call, 133, 149
rq_sleep call, 47
rq_start_io_job call, 264, 301
rq_suspend_task call, 47

limitations of, 38
rg_system_accounting, 121
rq_system_accounting call, 123
rq_uncatalog_object call, 108, 109
rq_verify_user call, 250
rq_wait_interrupt call, 140, 149
rq_wait_io call, 216, 260
rqe_change_descriptor call, 153, 154
rge_change_object_access call, 95, 96
rqe_create_descriptor call, 153, 154
rqe_create_io_job call, 227, 264
rqe_create_job call, 28, 31, 92, 107
rqe_delete_descriptor call, 153, 154
rqe_get_object_access call, 96, 103
rqe_get_pool_attrib call, 94, 103
rgqe_load_io_job call, 301
rqe_offspring call, 30, 31
rqe_set_exception_handler call, 115
rqe_set_max_priority call, 31
rqe_set_os_extension call, 175, 176
rge_timed_interrupt call, 140, 144, 149
RQERROR, 169

overriding, 173
rqglobal global job token, 282

S

s_attach_file call, 231, 270, 275, 277
s_catalog_connection call, 264, 274, 281
s_change_access call, 238, 242, 243
s_close call, 271, 275, 277

s_create_file call, 231, 270, 274
s_delete_connection call, 263, 271, 277, 359
s_delete_file call, 238, 243
s_get_directory_entry call, 265
s_get_path_component call, 265
s_load_io_job call, 299
s_logical_attach_device call, 258
s_lookup_connection call, 264

s_open call, 231, 270, 275, 277
s_overlay call, 301
s_read_move call, 260, 270, 277
s_seek call, 232, 270
s_special call, 265, 271
s_truncate_file call, 260
s_uncatalog_connection call, 264, 277
s_write_move call, 260, 270, 275
scheduling

lock, 197

tasks, 39
search order, 264

object directory, 225

subpath, 235
seeking, file pointer, 270

segment, memory See memory segments :, 27

segments, memoryseememory segments
segsize control, 298
selectors, memory segments, 95
semaphores
advantages and disadvantages, 45
binary, 60
blocking, 60
bottleneck, 60
controlling access, 63
creating, 59
creating Kernel, 189
deleting, 60
deleting Kernel, 189
description, 59
example, multi-unit, 63
example, mutual exclusion, 60
Kernel, 189
multi-unit, 62
mutual exclusion, 60
receiving units, 64
sending units, 64
synchronizing tasks, 45
task queue, 59, 64
send call, 77, 87
send_control call, 71
send_data call, 55, 56
send_message call, 50, 53, 56
send_reply call, 83, 88
send_rsvp call, 83, 88
send_units call, 65

System Concepts

sending

command lines, 350

messages between tasks, 44

messages to mailbox, 49

messages to user, 344

request to port, 82

response from port, 83

units to semaphore, 64
sequential devices, for physical file, 267
servers, locating in system, 84, 88
service information, inside back cover
set_default_prefix call, 258
set_default_user call, 259

set_exception_handler call, 115, 121, 171, 173

set_global_time call, 263
set_interconnect call, 162
set_interrupt call, 130, 132, 149
set_pool_min call, 31
set_priority call, 39, 47
setting
extension data, 245
global clock, 263
interconnect register, 160
sharing, connection, 261
shutdown command, 246
signal_exception call, 169, 176, 286
signal_interrupt call, 133, 149
single-shot alarms, 195
sink port, 86
slash (/) character, 234
sleep call, 47
socket, forwarding from remote, 86
Soft-Scope, 357
special characters, 329
specifying
memory pools, 295
stack size, 298
sr.c file, 204
stack requirements, 362, 364
stack size, specifying, 298
start_io_job call, 264, 301
static terminals, 309
status
invoked commands, 351
port, 74
STL (Single Task LoadableseeSTL
STL format, 295

Index

399

stream files, 273
attaching, 273, 276
closing, 276
closing connections, 275
connections, 274, 277
creating, 273, 274
definition, 222

deleting connections, 275, 276

naming, 273
opening, 274,276
path_ptr parameter, 277
prefix parameter, 276
reading, 276
synchronizing tasks, 275
system call order, 278
writing, 274
string, ASCII codes in, 234
subpath
definition, 234
examples, 234
110, 237
named files, 238
null, 234, 235
pathname, 326
search, 235
suspend_task call, 47
limitations of, 38

suspending, caution, tasks and regions, 72
suspension depth, of task, 34, 38

switching, parsing buffers, 338
synchronizing

tasks, 59

tasks, stream file, 275

sysload command, caution, 308, 324

system; 329
system calls

asynchronous, 215, 218, 291

command parsing, 314
invoking commands, 349
Kernel scheduling, 198

processing commands, 314

program control, 314
state transitions, 38
synchronous, 214, 291

System Debugger, as exception handler, 112

system ID, 285
system jobs, definition, 26

400 Index

system manager, 242

user ID, 239
system programming, definition, 214
system_accounting, 121
system_accounting call, 123

T

tasks
<Ctrl-C>, 355
asleep state, 36
asleep-suspended state, 36
attributes, 34
caution, deletion immunity, 68
deleting, 35
execution types, 33
grouping in job, 33
handlers, Kernel, 199
initial, 30, 228
instruction pointer, 34
mailboxes with, 54
memory for, 91
messages, passing, 44
multiple, to single terminal, 345
mutual exclusion, 45
physical files, 267
priority, 39
queues, 46, 50, 68
ready state, 36
regions and deadlock, 70
running state, 36
scheduling, 39
semaphores with, 59
sleep state, Kernel, 196
states and transitions, 36
stream files, 273
suspended state, 36
suspending, 34
switching, Kernel, 197
synchronizing, 45, 59
types of, 34

terminals
dynamic, 309
error messages, 341
input, 317, 344

messages, 346

multiple tasks, 345

static, 309
terminating, commands, 360
testing, sequential condition codes, 215
tokens

buffer pools, 97

caution, changing bits, 96

getting, 47

mailboxes, passing, 49

memory segments, 95

object directory, 107

type codes, 109
transaction

ID, 79

pairs, definition, 79

request-response, 79
transferring, large amount of data, 74
traps, hardware, 111
truncating file, 230, 231, 285
type manager

deleting nested composites, 183

description, 179

writing, 184

U

ucerr.a38 file, 173
UDF (User Definition File)
definition, 250
UDI (Universal Development Interface), 283
uncatalog_object call, 108, 109
unloading jobs, caution, 308, 324
up-arrow () character, 234
user
console, 344
file access, 239
messages, 346
multiple, 311
recovery/resident, 312
system manager, 239
terminal, 344
validation, 309
World, 239
user configuration files, 309, 323
multiuser systems, 311
User Definition File,seeUDF

System Concepts

user extension, 319
binding, 322
example, 321

user ID, 241, 311
access mask, 241
definition, 239
example, 244

user jobs, 310

user object
definition, 240
operations on, 259

Vv

validating, users, 309
value-list, 328

parsing, 334
verify_user call, 250
virtual root, definition, 248
volumes

corrupt, 246

definition, 221

w

wait_interrupt call, 140, 149
wait_io call, 216, 260
wait_iors call, 216
watchdog timer
alarm task, 156
application failure recovery, 157
configuration, 159
failure handling, 156
failure recovery example, 158
internal recovery procedure, 157
overview, 155
WD_HOST_FAILURE message, 156
WD_HOST_RESET message, 157
wildcards
commands, 313
examples, 333
pathnames, 313
World user, user ID, 239
write error, 246

Index

401

writing

402

<Ctrl-C> handler, 353
buffers to disk, 260

byte string, 267

commands, 349

error message, example, 347
files, 285

interrupt handler, 130

Index

named files, 260

new file, 327

output, 327

physical files, 268, 270
stream files, 274

type manager, 184
user messages, 346

iIRMX® System Concepts

618297-002

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

»« Manual organization O O O O

» Technical accuracy 0 O O O

» Completeness 0 O O O

» Clarity of concepts and wording O O O O

» Quality of examples and illustrations O O O O

» Overall ease of use O O O O

Comments:

Please list any errors you found (include page number):

Name

Company Name

Address

May we contact you? Phone

Thank you for taking the time to fill out this form.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

OPD Technical Publications, HF2-72
Intel Corporation

5200 NE Elam Y oung Parkway
Hillsboro, OR 97124-9978

Please fold here and close the card with tape. Do not staple.

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

International Sales Offices

AUSTRALIA

Intel Australia Pty. Ltd.

Unit 1A

2 Aquatic Drive

Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street

1st Floor

East Kw. Vic., 3102
Melbourne

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA

Intel Semiconductor of Canada, Ltd.
999 Canada Place

Suite 404, #11

Vancouver V6C 3E2

British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive

Suite 250

Ottawa K2B 8H6

Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MOW 6H8

Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday

Suite 115

Tour East

Pt. Claire H9R 5N3

Quebec

CHINA/HONG KONG

Intel PRC Corporation

China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004

Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway

Central

Hong Kong

FINLAND

Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison-BP 303

78054 St. Quentin-en-Yvelines
Cedex

GERMANY

Intel GmbH

Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza

St. Mark's Road
Bangalore 560001

ISRAEL

Intel Semiconductor Ltd.

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation Italia S.p.A.
Milanofiori Palazzo E

20094 Assago

Milano

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.

Bldg. Kumagaya

2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.

2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA

Intel Korea, Ltd.

16th Floor, Life Bldg.

61 Yoido-dong, Youngdeungpo-
Ku

Seoul 150-010

MEXICO

Intel Technologica de Mexico
S.A.de C.V.

Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS

Intel Semiconductor B.V.
Postbus 84130

3009 CC Rotterdam

RUSSIA

Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square

Singapore 1130

SPAIN

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvagen 24

171 36 Solna

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office

8th Floor, No. 205

Bank Tower Bldg.

Tung Hua N. Road

Taipei

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support

Contacting us is easy. Be sure that you have the following information available:

or software config

Your phone and FAX numbers ready
Complete description of your hardware o

Your

uration(s) Com

product’s product code

Current version of all software you use

plete problem description

Type of Service

How to contact us

FaxBACK*

Using any touch-tone phone,

U.S. and Canada: (800) 628-2283

fax-on-demand system have technical documents sentfto (916) 356-3105
your fax machine. Know your

24 hrs a day, 7 days a wee¢kax number before calling. Europe: +44-1793-496644

Intel PC and LAN Information on products, U.S and Canada: (503) 264-7999

Enhancement Support documentation, software driversEurope: +44-1793-432954

BBS

24 hrs a day, 7 days a wet

firmware upgrades, tools,
presentations, troubleshooting.
2k

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a wet

Worldwide customer support:
information and technical
support for designers, engineer
and users of 32-bit iRMX OS
cland Multibus product families.

Worldwide Locations:

(check your local listing)
Sl
Type: GO INTELC once online.

Customer Support

Intel Multibus Support engineer
offering technical advice and
troubleshooting information on
the latest Multibus products.

sU.S. and Canada: (800) 257-5404
(503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Europe: +44-1793-641464
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT

Hardware Repair

Multibus board and system
repair.

U.S. and Canada: (800) 628-8686
(602) 554-4904
FAX: (602) 554-6653
Hrs: M-F; 7-5 PST
Europe: +44-1793-40352(
FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering | Worldwide: Contact your local Intel
information on the latest iRMX office or distributor
and Multibus products and theif U.S. and Canada: (800) 438-4769
availability. (503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Correspondence Worldwide: Europe:

Mail letters to:

Intel Customer Support
Mailstop HF3-55

5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way

Swindon, Wiltshire

England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	iRMX ® System Concepts
	Quick Contents
	Contents
	1. Jobs
	What is a Job?
	Job Hierarchy
	Job Types

	What Does a Job Contain?
	Creating a Job
	Resource Sharing
	Specifying Resources
	The Parameter Object
	The Initial Task

	Deleting a Job
	Job System Calls
	How to Use Job System Calls

	2. Tasks
	What is a Task?
	Task Types
	Task Attributes

	Creating a Task
	Deleting a Task
	Task Execution States
	Task Execution State Transitions
	Suspending and Resuming Tasks

	Prioritizing Tasks
	Task Priority Level
	Round-robin Scheduling
	Communicating Between Tasks
	Using Mailboxes and Ports
	Using Semaphores and Regions
	Task and Message Queues

	Task System Calls
	How to Use Task System Calls

	3. Mailboxes
	What is a Mailbox?
	Object Mailboxes
	Data Mailboxes

	Creating a Mailbox
	Mailbox Queues
	Reconfiguration Mailboxes

	Deleting a Mailbox
	Exchanges Between Tasks in the Same Job
	Using send_message
	Using receive_message

	Exchanging Data Between Tasks in Different Jobs
	Using send_data
	Using receive_data

	Mailbox System Calls
	How to Use Mailbox System Calls

	4. Semaphores
	What is a Semaphore?
	Creating a Semaphore
	Task Queue

	Deleting a Semaphore
	Binary Semaphores and Mutual Exclusion
	Priority Bottlenecks and Blocking

	Multi-unit Semaphores
	Using send_units
	Using receive_units

	Semaphore System Calls
	How to Use Semaphore System Calls

	5. Regions
	What is a Region?
	Deletion and Suspension Protection
	Priority Adjustment

	Creating a Region
	Task Queue

	Deleting a Region
	Misusing Regions
	Nesting Regions
	Prevention
	Using receive_control
	Using accept_control

	Region System Calls
	How to Use Region System Calls

	6. Ports
	What is a Port?
	Ports in Multibus II Systems

	Why Use a Port?
	Using Buffer Pools at Ports

	Creating a Port
	Fragments in Large Data Messages

	Deleting a Port
	Identifying a Port
	Sending Data Messages
	Using send
	Using receive

	Sending Request / Response Messages
	Control and Control / Data Format
	Transaction Pairs
	Basic Request / Response Transactions
	Fragmented Response Transactions
	Fragmented Request Transactions

	Setting Up Special Ports
	Forwarding Messages from Sink Ports

	Port System Calls
	How to Use Port System Calls

	7. Memory Pools, Memory Segments, and Buffer Pools
	Flat Memory Models
	What is a Memory Pool?
	Creating a Memory Pool
	Allocating Memory
	Borrowing Memory

	What is a Memory Segment?
	Creating a Segment
	Deleting a Segment
	Access Rights and Hardware Types

	What is a Buffer Pool?
	Creating and Initializing a Buffer Pool
	Deleting a Buffer Pool

	Memory Management System Calls
	How to Use Memory Management System Calls

	8. Object Directories
	What is an Object Directory?
	Creating a Job Object Directory
	Deleting a Job Object Directory
	Using an Object Directory
	Using catalog_object
	Using lookup_object
	Using uncatalog_object

	Object Directory System Calls
	How to Use Object Directory System Calls

	9. Exception Handling and System Accounting
	Exception Handling
	Exception Handler Actions
	Exception Handler Modes
	Condition Code Values and Mnemonics
	Handling Exceptions Inline
	Assigning an Exception Handler
	Writing Your Own Exception Handler
	Exception Handler System Calls

	System Accounting
	Enabling and Disabling CPU Tracking
	Returning Information About a Task
	Returning Task Creation and Duration Statistics
	System Accounting System Calls

	10. Interrupts
	How Do Interrupts Work?
	Interrupt Controllers and Interrupt Lines
	Interrupt Levels
	Interrupt Descriptor Table
	Assigning Interrupt Levels to External Sources

	Interrupt Handlers and Interrupt Tasks
	System Calls and Interrupt Handlers
	Writing an Interrupt Handler
	Using set_interrupt With a Handler Only
	Using an Interrupt Handler and an Interrupt Task
	Using iRMK Kernel Calls in iRMX Interrupt Handlers
	Interrupt Servicing Patterns

	Handling Spurious Interrupts
	Calling get_level
	Judicious Selection of Interrupt Levels
	Examining the In-service Register

	Interrupt System Calls
	How to Use Interrupt System Calls

	11. Descriptors
	What is a Descriptor?
	Advanced Uses for Descriptors
	Descriptors for Undefined Memory
	Descriptors with Aliases
	Using rqe_create_descriptor
	Using rqe_delete_descriptor
	Using rqe_change_descriptor

	Descriptor System Calls

	12. Multibus II Live Insertion Support and Interconnect Space
	Live Insertion Support
	Watchdog Timer
	Reconfiguration Mailboxes
	Failure Handling
	Configuring the Watchdog Timer

	What is Interconnect Space?
	How the OS Uses Interconnect Space
	How an Application Uses Interconnect Space
	Referencing Interconnect Space
	Reading and Writing Interconnect Space

	Interconnect Register System Calls

	13. OS Extensions and Type Managers
	How Do You Add a System Call?
	Creating an OS Extension
	Exception Handling for Custom System Calls
	Linking the Procedures
	Including OS Extensions
	System Calls for OS Extensions

	Protecting Objects From Deletion
	System Calls for Deletion Immunity

	Type Managers and Custom Objects
	Creating New Objects
	Deleting Composite Objects and Extension Types
	Writing a Type Manager
	Type Manager System Calls

	14. iRMK Kernel Programming Concepts
	What Does the Kernel Provide?
	Kernel Object Management
	Kernel Semaphores
	Mailboxes

	Kernel Time Management
	Using the Kernel Tick Ratio
	Using Alarms
	Using Sleep
	Time Management System Calls

	Kernel Task Management
	Controlling Task State Transitions
	Using Task Handlers
	Task Management System Calls

	iRMX Memory Management for Kernel System Calls
	Aligning Application or malloc Allocated Memory
	Using malloc

	Demo Files for the Kernel
	Include Files for the Kernel
	Kernel Memory Management
	Creating Memory Pools and Areas
	Deleting Memory Pools and Areas
	Pool and Area Overhead
	Performance Issues
	Getting Information about a Pool
	Allocating Memory in an Interrupt Handler
	Kernel Memory Management System Calls

	15. I/O System Basic Concepts
	System Programming (BIOS)
	Synchronous and Asynchronous Calls
	Asynchronous Call Order of Operations
	Using Asynchronous Calls
	Condition Codes for Asynchronous Calls
	Creating I/O Buffers

	Device Controllers and Device Units
	Setting Mass Storage Device Granularity
	File Granularity Example
	Volumes

	File Types
	Communication Between Tasks and Device Units
	Logical Names
	Path_ptr Parameters and Default Prefixes (EIOS)
	I/O Jobs (EIOS)

	16. I/O Jobs and Connections
	Creating I/O Jobs
	Creating Device Connections
	Using BIOS System Calls
	Using EIOS System Calls
	Using a Logical Device with BIOS System Calls

	Creating File Connections
	Using BIOS System Calls
	Using EIOS System Calls
	Moving File Pointers

	17. Named Files
	Using Prefixes, Subpaths and File Paths in System Calls
	Subpaths
	Prefixes
	Using the Default Prefix
	Specifying Paths in System Calls
	Using Connections

	Controlling File Access
	Users
	User Objects
	File Access List
	Computing Access for File Connections
	File Access Rights Example

	Getting and Setting Extension Data
	Maintaining Disk Integrity
	Attach Flags
	Fnode Checksum Field
	Getting and Setting the Bad Track/Block Information

	Accessing Remote Files
	Systems that Include iRMX-NET
	Dynamic Logon and iRMX-NET

	Accessing NFS Files
	Volume Names
	File Names
	File Ownership
	User ID Translation
	File and Directory Creation
	File Access Rights

	Accessing EDOS Files
	Directories
	File Attributes
	File Names
	Time Stamps
	File Ownership

	Accessing DOS Files
	Directories
	File Attributes
	File Names
	Time Stamps
	File Ownership

	Using Nucleus System Calls for the Default User and Default Prefix
	System Calls for Named Files
	BIOS and EIOS System Calls for Named Files

	Call Sequence for Named Files

	18. Physical Files
	Situations Requiring Physical Files
	Maintaining Physical File Independence
	BIOS Calls for Physical Files
	EIOS Calls for Physical Files

	Call Sequence for Physical Files

	19. Stream Files
	Maintaining Stream File Independence
	Creating the File
	Writing the File
	Reading the File

	Call Sequences for Stream Files

	20. Connections and Objects
	Cataloging Connections
	Cataloging Objects

	21. UDI Basic Concepts and System Calls
	UDI System Calls
	UDI Memory Management System Calls
	Using Program Control Calls
	Using Utility and Command-parsing Calls
	Using Condition Codes and Exception-handling Calls

	Writing Portable Programs Using the UDI
	Call Sequence for File-Handling System Calls

	22. Application Loader Basic Concepts
	Object Code
	Synchronous and Asynchronous System Calls
	Situations Requiring an I/O Job
	Overlays
	Device Independence and the AL
	Configuring the AL

	23. Preparing Code for Loading
	Specifying Pool Sizes for I/O Jobs
	Producing an STL Object File
	Specifying Stack Requirements with SEGSIZE Control
	Specifying Dynamic Memory Allocation with DYNAMICMEM Option

	24. Application Loader System Calls
	AL System Calls Requiring an I/O Job
	a_load Does Not Require an I/O Job
	Synchronous System Calls
	Using rqe_s_load_io_job and s_load_io_job
	Loading Overlays with s_overlay

	Asynchronous System Calls
	Asynchronous Call Order of Operations
	Response Mailbox Functions

	25. Human Interface Basic Concepts
	Sample Code
	Resident HI Commands
	CLI: The Initial Program
	Loading Other Initial Programs
	Logon
	Validation
	Environments
	Network Access
	Logging Off

	Multiuser Support
	Recovery/Resident User
	Wildcards
	Human Interface System Calls
	Human Interface Operations

	26. The Command Line Interpreter
	CLI Features
	Initializing the CLI
	Invoking and Executing Commands
	Adding User Extensions to the CLI
	Creating User Extensions
	Demonstration Program - User Extension
	Binding a User Extension

	Creating a Loadable Command Interface

	27. Writing and Parsing Commands
	Standard Command-line Structure
	Command-line Structure Parameters
	Command-line Structure Parameter Formats
	Command-line Structure Special Characters

	Parsing the Command Line
	Parsing Input and Output Pathnames
	File Connection Demo Programs
	Wildcard Characters In Input/Output Pathnames

	Parsing Other Parameters
	Parsing Nonstandard Command Lines
	Variations on the Standard Command Line
	Other Nonstandard Command Lines

	Switching To Another Parsing Buffer
	Obtaining the Command Name

	28. Communicating with the User
	Establishing Input and Output Connections
	Using c_get_input_connection
	Using c_get_output_connection

	Communicating With the User's Terminal
	c_send_co_response System Call
	c_send_eo_response System Call

	Formatting Messages Based on Condition Codes
	c_format_exception System Call

	29. Invoking HI Commands Programmatically
	Creating a Command Connection
	Sending Command Lines to the Command Connection and Invoking the Command
	Priority Considerations
	Deleting the Command Connection
	Command Connection Calls Demo Programs

	30. Writing a <Ctrl-C> Handler
	How the Default <Ctrl-C> Works
	Providing Your Own <Ctrl-C>
	Using Inline Processing
	Using a <Ctrl-C> Task
	Returning to the Default Handler

	<Ctrl-C> Task Demo Programs

	31. Creating Human Interface Commands
	Elements of a Human Interface Command
	Parsing the Command Line
	System Calls and Objects to Avoid
	Terminating the Command
	Include Files

	Producing a 16-bit Executable Command
	Producing a 32-Bit Executable Command

	A. OS Extension Example
	Ring Buffer Manager
	Initialization
	The Interface Library
	The Create Ring Buffer Procedure
	The Delete Ring Buffer Procedure
	The Put Byte Procedure
	The Get Byte Procedure
	Epilogue

	Index
	Service Information

