iRMX®
Programming Techniques

Order Number: 469160-004

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIXO is a
registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension.
MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of
Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software,
Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of
TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of
Digital Equipment Corporation. Visual Basic and Visual C++ are trademarks of Microsoft Corporation. All
Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows,
Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of
Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a
trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.

Copyright © 1991, 1992, 1993 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Revision One 08/92
-003 Revision Two 12/93
-004 New information on flat memory model and using non-Intel C compilers. 11/95

Quick Contents

Chapter 1. iIRMX @ Application Development Environment
Chapter 2. Target Environment Development

Chapter 3. Designing an Application

Chapter 4. C Compiler-specific Information

Chapter 5. Debugging Applications

Chapter 6. Porting Applications

Chapter 7. Using Compact and Large Memory Models
Chapter 8. Using the Flat Memory Model

Chapter 9. Developing Applications for ROM

Chapter 10. Developing Applications for Multibus Il
Chapter 11. Developing Applications in Assembly Language
Chapter 12. Developing Applications in PL/M

Appendix A. Resource and Stack Size Guidelines

Index

Service Information

Programming Techniques 3

Notational Conventions

Most of the references to system calls in the text and graphics use C syntax insteac
of PL/M (for example, the system caktnd_messagimstead osend$message If

you are working in C, you must use the C header fifes, c.h udi_c.h and

rmx_err.h If you are working in PL/M, you must use dollar signs ($) and use the
rmxplm.extanderror.lit header files.

This manual uses the following conventions:

Syntax strings, data types, and data structures are provided for PL/M and C
respectively.

All numbers are decimal unless otherwise stated. Hexadecimal numbers
include theH radix character (for examplef-FH). Binary numbers include the
B radix character (for exampl#10110008B).

Bit O is the low-order bit. If a bit is set to 1, the associated description is true
unless otherwise stated.

Data structures and syntax strings appear in this font.
System call names and command names appear in this font.

PL/M data types such as BYTE and SELECTOR, and iRMX data types such as
STRING and SOCKET are capitalized. All C data types are lower case except
those that represent data structures.

The following OS layer abbreviations are used. The Nucleus layer is
unabbreviated.

AL Application Loader

BIOS Basic 1/0 System

EIOS Extended I/O System

HI Human Interface

uDI Universal Development Interface

Whenever this manual describes 1/0 operations, it assumes that tasks use BIO.
calls (such asq_a_read, rq_a_write, andrq_a_specia). Although not

mentioned, tasks can also use the equivalent EIOS calls (stghsasead
rq_s_write, andrq_s_specia) or UDI calls €g_read or dgq_write) to do the

same operations.

Contents

1 iRMX® Application Development Environment
Examples Provided with the Operating Systemccooeiiiiiiiiiiiiiiniiiinnnnn. 14
Application Development TOOIS.......ccooeeiiiiiiiiiceee e 14
ASSEMDIEIS ... 15
INtEl COMPIIEIS...cceiiiiiiiee e 15
OPtMIZING COUE ..ot 16
NoN-INtel COMPIIEIS......ovviiiiiiiiiiiie s 17
Application Building ULIITIES.uuuireiiiiiiiieiieeeiieeeeeeeeeee e 17
Debugging TOOISuuiiiiiiiiiii i 18
Application Development PrOoCESS.........cvvviviiiiiiiiiiiiiiiiiiieiieiieieeeineineeeeens 19

2 Target Environment Development
Generating Target FileS. ... e 21
Generating a Target File EXample......cccoiiiiiiiiee 21

3 Designing an Application

APPICAtION CAtEQOIIES ... ittt 26
MEASUIEIMENL. ...ttt e et e e e e e e et e e e e e eaaaees 26
Process CONMIOL.......cooviiiiiiiiie e 26
Data ACQUISITIONoiiieeeeiiiieeeeeieiei e e e e e e e e e e e 26

DTS o I @] g ToT=T o] £ SRR 27

C Multitasking Demo Program..........ccccevviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeveeeeieees 27
DEemMO Code LOCALIONiiiiieeeiiicieeeeeeiiie e 27
Running the Multitasking DemMO........cccooiiiiiiiiiii e, 29

Using the Makefilecviiiiiiii e 30
Programming CONCEPLSceeeviiiiiiiiiiieiiiiiiiiiire e e 33

Creating and Cataloging ObjJectS ... 33
Operations 0N ODJECESuuiiiiiiiiie s 34
Creating TASKS ...ciiiiee e 34

Task Creation Code EXampleooovvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 36
Creating and Cataloging Objects Code Example............cc.ceeeeveees 37

Processing Input/Output Result Segments (IORS)ccccceeevvi v vseenene. 38

Processing an IORS Code EXample.......cccoooeviiiiiiiiiii e, 39

Programming Techniques Contents 5

Using a Response Pointer During Inter-task Communication......................
Task Synchronization/Data Passing Code Exampleccevvvvvveneen.
USING BUFfEI POOIS......uiiiiiiciiieee e
Creating Buffer Pools Code EXample ...,
Using Buffer Pools Code EXampleccccoviiiiiiiiiiiiiieeeeeeeeeee,
Methods of Screen INput/OULPUL.......ccooiiiiiiiiii
Screen Input/Output Code EXample.......c.oovvvvivviiiiiiiiiiiiiiieiiiiieiienneiennnns
IN-line EXCEPLioN ProCESSINGcvvvviviiiiiiiiiiiiiiiiiiiiiiiiinnnens e mmmmmm s
Writing Your Own Exception Handler............eeiieiiiiiiniiiiiieieeeeen
Exception Handler Control FIOW ..o
Exception Processing Code Example...........ccccoovviiiiiiiiiiiiiiiiicieeiieiies
Getting and Setting Terminal Attributes ...,
Getting/Setting Terminal Attributes Code Example...............ccccoeeee.
INEEITUPL PrOCESSING....cii i i it
INterrupt HaNAIEIS........oooii e e
INTEITUPL SEIVICING...cciiiiiii e e
INEEITUPT LAENCY ..eeiieei e e

C Compiler-specific Information
Using the iC-386 Compiler to Develop iRMX Applications
Using the C Language Header Files..........ccccoeeiiiieii
Binding Your Code to Interface Libraries...........ccccvvvvviiviiiiiiiieieenennne,
Condition and Error COUESuuuiiiiiiiiiiiiiiiei i eaeaaaaaaaaaeaaens
Using Non-Intel Tools to Develop iRMX Applications............ccccvvvvvvneennen.
Using Microsoft C /C++ Development TOOIS............uuvvvviveeesimneenns
Microsoft C 8.0/C++ 1.5 Compiler Invocation.............c.eevvvveeeeene..
Microsoft C 8.0 Linker Invocation..............ccevvvvvveeiiiiiiieeeeiiiiiiiinnns
Microsoft Visual C++ 1.5 Linker Invocationcccevvvvvveeeeenne..
Microsoft Visual C++ 2.0 Compiler Invocationcccccvvvveenn..
Microsoft Visual C++ 2.0 Linker Invocationcc.eevvveveeeeeneee.
Microsoft Application NOteS...........coooviiiiiiiiiiiiieeeeeeis
Using Watcom C /C++ Development TOOIS..........cooeeeeeeieiiiiiiiee,
Supported Versions of Watcom TOOIS..........ccccccvvvvviiiiiiiiiiiiiinnnnn,
Watcom Compiler InVocation.............ocueeiiieiiiiiiiie e,
Watcom Linker INVOCAtIoNuuviiiiiiiiiiiiiiieeieeeee e
Watcom Application NOteS...........cccuviiiieiiiiiiiiii e
Using Borland Development TOOIS........cccoveeiiiiiiiiiiiieeceeeeee e,
Supported Versions of Borland TooIScccoooeevviiiiiiceeeeeee..
Borland Compiler Invocation (16-bit)..........coceevviviiiiiiiiniieienn,
Borland Linker Invocation (16-bit)cccccuvviiiiieiiiiiiiiiiiiieeeeeeenn,
Borland C Application Notes (16-bit)cccoevvviiiiiieeeireeiiiineeee,
Borland Compiler Invocation (32-bit).......cccooeeevviiiiiiiiiiiieeee,

Contents

79

Borland Compiler Notes (32-bit)ccooeeeeeiiiiii 82

Borland Linker Invocation (32-bit)ccccoeeiiiiiiiiiiiiiiieeieieeeeeeee, 82
Borland C Application Notes (32-bit)ccovvvvvvviiiiiiiiiiiiiienn, 83
USING HEAAET FlES.....eiiiiiiiiiiiee e 84
EXisting iC-386 APPlICAtIONS.........cuvvviriiiiiiiiiiiiiiiiiiiiiiieine e 84
BUIlt-in FUNCHIONS .o 85
Calling CONVENTIONSuvviiiiiiiiiieie ittt 85
Structure Data AlIGNMENT.........ooiiiiiiiii e 86
Alignment With IC-386............cooviiiiiiiiiiiiii e 87
Supported Memory MOAEISoovvvviiiiiiiiiiiiiiiiiiiieiiii s 87
Using Cstart Startup CoOecooiiiiiiiiiiiieiiiiii e 88
SEACK SIZE ..o 89
Using INterface LibrarieS. e i 89
Using the STL OMF-386 CONVEIETccovvviiiiieeeeeeeiiie s e e eeeie e e e e eaanaanas 89
INPUL FIIES .. e e e e 89
OULIPUL FIlES. .ot e e e eaes 90
[T 1Yo o= 11T] o PP PTTPPRP 90
o Y (TS 7= Vo [91
Debugging with the Soft-Scope Debugger...........cvvvviiiiiiiiiiieecie e, 91
Summary of Debug SWItChesS.........ccovviiiiiii e 91
Adding a First Level Job Using Non-Intel TOOISccoovvvvviiiiiciiiiieeeeeees 92
5 Debugging Applications
Example Application Program ... 95
INCIUAE FHlES....e e 97
Compiling and Running the Code........ccccceviiiiiiiii 97
Debugging the PrOgram..............uuuuuuiiiiiiiiiiiiiassseeeeeeeeeeeeeeeeeeeeeeeeeeeeesesnnenne 99
Debugging APProach #1..........uuuveiiiiiiiiiiieeeeeee e eeeeeee e 99
Debugging APProach #2..........uuueeeiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e eeeeeee e 104
Viewing System ODJECEScooviiiiii e 107
Alternative Debugging TEChNIQUESccooiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeieeeees 109
6 Porting Applications
Porting Code from 16-BitS t0 32-BitS..........uiiiiiiiiiiiiiieeeieeeei e 111
Using EXiStiNg 16-Bit COUE........uuuumiiiiiiiiiiieiii e, 112
Advantages of 32-Bit Application Codeuuvuueiemmiiiiiiiiiiiiiiieneenn 112
Porting Entire Applications t0 32-BitS.......cccccccviiiiiiiiiieeeeee, 113
Porting 16-Bit PL/M C0Ode t0 32 BitSuuuruiiiiiiiiiiiieieeeeeeeeeeeeeee e 114
Differences Between PL/M-386 and Previous PL/M Code.................... 115

Programming Techniques Contents

Porting 16-Bit C Code t0 32 BilS........cccvvviiiiiiiiiiiiiiiiiiiiiiieieiierneeiennennennnnnn 116
Using the rmx_c.h Header filecccoovviiiiiii, 116

Using the NATIVE_WORD Type Definition..........cccceeeeieviiis s 117
Porting 16-Bit ASM COde t0 32 BitSvuvviviiiiiiiiiiiiiiniieeese e 117
Example: Porting @ DeVICE DIVEuuuiiiiiiiiiiiiiiiieeeeeeeeee e 121

XESTANLIIE e e e e 126
Migrating Code to a PC-Bus Platformccccoooiiiiiiiiiiiiiiiiieeeeeeeeiiies 132

Using a Numeric Processor Extension (NPX)ccccceeiiiiiiiiienes 132
Segmentation Considerations ... 133
Using Compact and Large Memory Models
Choosing a Memory Model ... 135

32-Bit APPIICALIONS ..coeveiieieeeieie e 136

16-Bit APPHCALIONSoiiiiiieicec i e e 136

Porting APPlICAtIONSuvveiiiiiiie e 137

Using ROM and RAM Compiler ControlSeeeeveeeeeiriaccccenenes 137
SUBSYSIEIMS. ...t e e e e e e e e e e 137

SubSYStEM ADVANTAGES.......ccvviiiiiiiiie e e e e e 138

CloSed SUDSYSIEMIS. .. .uiiiieeiiiiiieeeie et e e e e e eeeees 138

OPEN SUDSYSIEMS.....uiiiiiiiiie et a e e e 139

Subsystem Configurationsccceeeeeeeee e 139

Creating a Closed SUDSYSIEM........coiiiiiiiii 13¢

Creating an Open SUDSYSIEMuuiiiiiiiiii e 141
Using the Flat Memory Model
Flat MOEl OVEIVIEW......cciiiiiiiiiiiiitiiiii ettt e e 143

Flat Model Advantages and Disadvantages...............uveveeeiriernniiiniiinnnn. 144
Executing Flat Model Applications on iRMX..........cccccccciiiiiiiiiiice 144

Using Flat Model With Paging SUupport........ccccccccvvvviiiiiceeee 145
Paging SUDSYSIEML.....ccoiiiiiiiiiiiiii e 146

The Paging JOD ... 14¢€

Identity MapPing ...ocoevveieiiiiiie e 147
Flat Model SUPPOrt COEccooiiiiiiiiiieii e 147

Conversion of Flat Model Pointers in System Callsccccceeeeeeenn. 147

The Flat Model JOD......coooiiiiee e 148
EXECULION MOTEI ...ccoiiiiieieiiii e 148

Contents

SYSIEM CaAllS .oeiiiiiiiiieee e e
EXisting System CallS.........ccooiiiiiiiiiiieeee e

Using the Flat Model System CallSuuuviiiiiiiiiiiiiieieiiieeeeeeee e,
YT E= LY =T 4 g To] Y2
Porting Compact/Large to Flat ...

[DI=To10T0 o [TaTe JS] U]] o o] o

9 Developing Applications for ROM

TESHNG 8 SYSIEIM ...ttt e e e e e s
Loading an Application into ROMoooviiiiiiiiiiiiiiieeceeeeeeeeeieieees

Preparing an Application to Reside in ROM...........cccuvvvviiiiiiiiiiiiiiiiiiiiiieeenn,

Methodology for Burning an Application into ROMcccvvvvvviiiiiiiinnnn..

Developing a ROM-based Application System..........ccccccvvvviiiiiiiiiiiiiiiinnnn,
Overview of the ROM-based Application Exampleccccccvvvvvvnnnnn.
Generating the ROM-based Application Examplecccccccvvveeeeeeenn.

Configuring the IRMX OS.......oooviiiiiiiiiiiiiiiiiiiiieei e 159

Setting the System Debug Values...............uevvvivviviviiiiiiiiiiiiiiiinnnnns

Setting the RAM and ROM ValUES............uuuviiiiiiiiiiiiiiiiiiiieeeeeenen
Debugging the ROM Initialization Process...........cccccieiee,
Testing the APPlICAtIONvuiiiiii e

10 Developing Applications for Multibus Il
CO0E EXAMPIES ...
Examples Using Nucleus Communication System Calls.......................oo.
Interconnect Space EXample - iSCAN.Cuuvviviiiiiiiiiiiiiiiiiiinnnee s
Creating a Port for Message Passing - tranport.Ccccceeeeeeei i
Sending Data USiNg SENA_FSVP ...cvuviiiiiiiiiiiiiiiiiinnssiiissssessssssssasaeaeaaaaaaaaeeens
Sending and ReCEIVING MESSAQESuuuuuurumiiiiiiiiiiiieeeeeeieeeeeeee e ae e e eeeaaaaaaaes
RECEIVING @ MESSAQEciiiiieiiiiiiiiiiiie ittt e e e e e e
SENAING @ MESSAGEciivieiiiiiiiiiiiie ettt e e e e
Sending a Message in FragmentS........ccoooeeeiiei
Receiving a Message in Fragment FOrmM..........cccoooeeeiii,
The Name Server EXample..........oouuuiiiiiiiii e
The General EXAmMPIESuuuiiiiiiiiie et
Example 1: Sending and Receiving Unsolicited Messages...................
Execution of Client and Server Programsccccccvvvvviiiiineeennnnnn,
RUNNING EXAMPIE L..ovvniiiiiiiieeeeee e
Example 2. Sending Asynchronous Solicited Messages............ccceeuue.
Execution of Client and Server Programsccoevvvvviiieieeeeneennns
RUNNING EXAMPIE 2..eviiiiiieeie e

Programming Techniques Contents

180
181
182
182
185
186
186

186
187

187

189

190
191
192
192
193

11 Developing Applications in Assembly Language
Invoking System Calls from Assembly Language............ccocoeeeeeeeennnnnn. 195
Interrupt Handler EXamPleoovvvviiiiiiiiiiiesieie e 199
Generating the Interrupt Handler Exampleooovvvvvviiiviiieiiiieeeiennnns 199
OS EXteNsion EXamPle........coooiiiiiiiiiie e 19¢
12 Developing Applications in PL/M
Invoking System Calls from PL/Mcooiiiiiiiiiie e 203
Including External Declaration Filescccccciiiiiiii, 204
Binding Your Code to Interface Libraries..........cccvvvvvviiiiiiiiiiiiiiiienenenenn 205
PL/M Multitasking EXamPplecoooiiiiiiiiiieeeei e a e 206
EXamMPIE OVEIVIEWceveeiiiiiiiiieei it e e e e 206
Location of Multitasking Example Code ..., 207
Compiling and Binding the Multitasking Example Code...................... 207
Running the Multitasking Example..............cooovvviiiiiiiiiiiiiiiiiiiiiiiiiiiinnnns 208
Programming Concepts lllustrated by the Multitasking Demo.................... 210
In-line EXception ProCessiNgcooovvviieiieeeeeeeeeeeeeeeeeee 211
Use Of Literal FileS.......uuuiiiiiiiiiiiiieeie e 212
A Resource and Stack Size Guidelines
ReS0UIrce REQUIFEMENTScoiiiiiii et eaaean s 21
RAM REQUIFEMENTS....iiiiiiiiiiiiiiiitiiiiiiiss s s e e e e e e e e e e s smmnnenns e e e e e e e 216
Attaching a LogiCal DEVICEuuuueiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeviiiiees 216
Creating an 1/O JOD.......ooovviiiiie e 217
OpENING @ CONNECLIONceviiiiiiiiiiiiiias e e e e e e e e e e e e e e e e e eeeeeeeeeeeereeenenne 217
Other RAM REQUITEMENTSvvuiriiiiiiiiiee e eeeeeeeeeee e 217
(0] o 1=To1 A 0] 0 o £ T UUUURT 21¢€
Stack Size LIMitationS.........oooiiiiiiiiiiiiiieee e 218
Stack Size Limitation for Interrupt Handlers...........ccccccccvvvvvviiiiiennnnnnn. 218
Stack Guidelines for Creating Tasks and JObS............cccccvvviceeeennnn. 219
Stack Guidelines for Tasks to be Loaded or Invokedccvveeeeen. 219
Arithmetic Technique for Estimating Stack Sizeccccoeeeviiiiiinennn 219
CoMPULING STACK SIZ@.....uvviiiiiiiiiiiiiiiieie e 220
Empirical TEChNIQUEcooiiiiieeiee s 221
Index 223
10 Contents

Service Information Inside Back Cover

Tables
1-1. Code Examples in this Manual ... e 14
3-1. Demo.c Functions and System CallS.......cccoooeeeiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeiiins 28
3-2. Servicing Interrupts with an Interrupt Handlerooovvvviiiiiiiiiiiiieininnnnn, 60
3-3. Servicing Interrupts with an Interrupt TasK........ococoeiiiiii e, 61
3-4. Servicing Interrupts with an Interrupt Handler, an Interrupt

Task, and Multiple BUffering ... 62
10-1. Flow of Program Execution for Example.l........ccccoiiiiiiiiiiiiniieiieeiiins 190
10-2. Flow of Program Execution for Example.2........cccccvviiiiiiiiiniiieeiiceeiiins 192
11-1. Registers Containing Returned System Call Values............cccccvvvnnnnnnn. 196
12-1. PL/M Literal Files for Use with IRMXSystem Calls.............ccccceeveieeeeeenn. 213
A-3. Stack Requirements for Interrupts and System CallS..........ccccccvvviennnenennn. 220
Figures
1-1. The 32-bit Application Development Process (Intel Taals).................... 19
1-2. The 32-bit Application Development Process (Non-Intel Toals)............ 20
6-1. Device Driver Example Using r_32 Conditional Statements...............c........ 123
6-2. Literal File Using r_32 Conditional Statements............ccccccccvvvviiiiiiiinnnnnnee. 126
7-1. Basic Large/Compact Model Program..............ccouvuvuiiiiiiiniineeeeeeeeeeeeiinnns 135
8-1. Basic Flat Model Programl...............ceiiiiee i 143
8-2. Flat Application Program on iRMX with Pagingcccccuvvvvvviiiiieieeininnnnnn. 145
8-3. Execution of a Flat Model Program on iRMX..........cooovviiiiiiiiniiiieeeeeee, 149
9-1. Example Segment Mapccoooeieiiiiiiii 163
10-1. Board Scanning AlgOrtNM..........uuuuuieiiiiiiiie e 181
10-3. Algorithm for the Client Board.............coooiiiiiiiiiiiiiiieeeeeeeeeeeeiees 184
10-4. Algorithm for the Server BOard ... 184
11-1. OS Extension Code in Assembly Language............ccoovvvvirviiiiiiininnneeeeenn 200

Programming Techniques Contents 11

iIRMX® Application
Development Environment

This manual describes techniques for developing applications on the*iRMX
Operating System (OS). You can also use this manual as a porting guide for your
iIRMX applications.

This manual assumes you are familiar with these concepts:

e Programming in the iRMX environment using either C, PL/M, or Assembler
« Using iRMX jobs, tasks, mailboxes, files, and segments

« Using object module linking

» Using object libraries

See also: iRMX objectdntroducing the iRMX Operating Systems
andSystem Concepts

Programming Techniques Chapter 1 13

Examples Provided with the Operating System

The iIRMX OS provides code examples to help you learn about the iRMX
application development environment. These examples are in various
subdirectories of themx386/demalirectory. This manual gives instructions on
compiling and running the examples, which are summarized in Table 1-1.

Table 1-1. Code Examples in this Manual

Example Description Chapter
C language: Multitasking demo, basic concepts, compiling, binding Ch.3
Debug Session (PL/M) Ch.5
Porting code: PL/M language differences Ch. 6
Porting code: assembly language differences Ch. 6
Device Driver Porting (8274) Ch. 6
Using Compact and Large Memory Models Ch.7
Using Flat Memory Model Ch. 8
C language: Multibus II, board scanning Ch. 10
C language: Multibus Il, creating a data transport protocol port Ch. 10
C language: Multibus I, send/receive RSVP Ch. 10
C language: Multibus II, send/receive a data chain message Ch. 10
C language: Multibus II, sending a message in fragments Ch. 10
C language: Multibus 11, receiving a message in fragments Ch. 10
Assembly language: Macro definitions for common source code Ch. 11
Assembly language: Invoking system calls Ch. 11
Assembly language: Interrupt handler Ch. 11
Assembly language: OS Extension Ch. 11
PL/M: External declarations, interface libraries, and binding Ch. 12
PL/M: Multitasking, basic concepts, compiling, binding Ch. 12
PL/M: <Ctrl-C> handler Ch. 12

Application Development Tools

Intel provides tools for developing iRMX applications for your system, including:
* Assemblers

e Compilers

« Application building utilities

« Debuggers

* Non-Intel tool support

See also: C Library Reference

14 Chapter 1 Application Development Environment

Assemblers

Use the ASM386 assembler to produce code for your application. ASM386
supports Intel386, Intel486”, and Pentiufhmicroprocessors.

See also: Developing Applications in Assembly Language, Chapter 11,
ASM386 Assembly Language Reference

Intel Compilers
Use these compilers to develop iRMX applications:
« iC-386
« PL/M-386
* Non-Intel C compilers

The iC-386 compiler supports the ANSI standard for the C programming language
with some extensions.

The iC-386 and PL/M-386 compilers produce 32-bit code. Depending on the
compiler, non-Intel C compilers produce either 16-bit or 32-bit code.

|:| Note

Many non-Intel compilers can produce C or C++ code. The
iIRMX OS supports only C code produced with such compilers,
not C++ code.

See also: iC-386 Compiler User's Guide
C Library Reference
PL/M-386 Programmer's Guide

Programming Techniques Chapter 1 15

Intel compilers offer these features:

Separate compilation of source code files

Libraries containing external declaration calls and literal files
Inter-language programming in C, PL/M, or Assembler
Support for ROM-based applications

Code optimization for optimizing code performance or size

In-line functions and macros to access microprocessors and numeric
Coprocessors

Run-time libraries to access floating-point support or the OS interfaces

See also: Your compiler's programmer's manual

Optimizing Code

Use these iC-386 compiler controls to optimize your code:

Thenoalign control produces compact nonaligned data structures. Data
structures used for IRMX system calls requirertbalign control. Non-Intel
C compilers provide data packing features to perform the same function.

Theoptimize control specifies the optimization level the compiler uses to
generate object code. Optimized object code is compact and runs faster but
takes longer to compile.

Thenodebug control requests that the compiler not produce debug
information. This optimizes the code the compiler generates.

The segmentation controls specify the memory model for an application.
Segmentation controls include: compact, large, and flat.

See also: C Compiler-specific Information, Chapter 4,

16

iC-386 Compiler User’'s Guide

Chapter 1 Application Development Environment

Non-Intel Compilers

This table lists the non-Intel compilers supported in the iRMX OS.

Supported Supported Supported

in Borland in Microsoft in Watcom
16-bit yes (large/ yes (large/ no
compiler compact model) compact model)
16-bit linker yes yes no
32-bit yes (flat model) yes (flat model) yes (flat/
compiler compact model)
32-bit linker yes yes yes
librarian N/A* N/A* N/A*
make utility N/A* N/A* N/A*
profiler N/A* N/A* N/A*
assembler yes yes yes
disassembler N/A* N/A* N/A*

* Not applicable because the iRMX OS does not deal with any of the end products from these tools.

Application Building Utilities

Application building utilities aid in developing iRMX applications. These utilities
include:

e The LIB386 librarian utility organizes object modules into libraries.

« The BND386 binding utility binds object modules to produce an executable
module or a module for incremental binding.

e The MAP386 map utility creates cross-reference maps of object modules.

e The BLD386 system builder utility builds a working system. You can
configure the Interactive Configuration Utility (ICU) to automatically invoke
the BLD386 when generating an application system for the iIRMX OS.

See also: Overlay§ystem Concepts
LIB386, BND386, MAP386]ntel386Family Utilities

Programming Techniques Chapter 1 17

Debugging Tools

18

You can use several tools to debug your iRMX application programs, such as:

Soft-Scope debugger
For most debugging tasks, use the Soft-Scope debugger. It provides
all the tools you need for debugging iRMX applications, including
source-level and symbolic debugging capabilities.

SDM System Debug Monitor (SDM)
A debug monitor for debugging systems, disassembling code,
executing breakpoints, displaying memory, and downloading
programs.

iIRMX System Debugger (SDB)
A symbolic debugging tool for debugging iRMX applications and
system programs. This tool extends the SDM’s disassembly functions
for interpreting iRMX calls, data structures, and stacks.

See also: Debugging an Application, Chapter 4,
Soft-Scopé Debugger User’'s Guide
System Debugger Reference

Chapter 1 Application Development Environment

Application Development Process

The iIRMX development environment provides the programming tools needed to
develop 32-bit applications. Figure 1-1 shows the development process for 32-bit
applications using Intel tools. Figure 1-2 shows the development process if you are
using non-Intel tools.

ACTIVITY PROGRAM TOOL FILE
Create
Source ‘ AEDIT ‘*ﬁ Source Files
Files
Fortran-386
ASM386
Translate PL/M-386 |€&——
Source
Object Files
LIB386
Bind Executable Load <
Object iRMX 32 Bit | < BND386 |¢ _ _
Files Program |RCONFIGURE < iRMX 32 Bit
Interface
Libraries
Application) iRMX Run-Time
IRMX iSDM 11I/SDB Libraries
Execute/Debug Development/
Application Target
Software System

iRMX is a registered trademark of Intel Corporation

W-2503

Figure 1-1. The 32-bit Application Development Process (Intel Tools)

You can use the 32-bit compiler and utilities from iIRMX using the RUN86 utility.

This is user-transparent through aliases provided by the iRMX OS.

Programming Techniques

Chapter 1

20

Intel Support

Intel
header files

independent
C library

iRMXO C++
class library

OMF-386
converter

v

iRMX
executable

!

C App
source code

Non-Intel Tools

Non-Intel
C/C++ compiler

> Non-Intel
librarian
Non-Intel < Non-Intel
linker LIB format

v

16 bit .EXE or
32 bit .EXP

OMO02627-2

Figure 1-2. The 32-bit Application Development Process (Non-Intel Tools)

Chapter 1

Application Development Environment

Target
Environment Development

This chapter describes the Multibus (MB) target file modification and generation
on a PC development environment.

Generating Target Files

The Interactive Configuration Utility (ICU) enables you to modify the definition
files (icu:*.bck) to create Multibus (MB) target files in a PC-hosted system.

See also: ICU User's Guide and Quick Reference

For example, you can generate files on a PC (using iRMX for Windows or iRMX
for PCs), and then copy these files to your target MB system.

Generating a Target File Example

You can use the ICU to generate new target files or modify existing files. In this
example, create a new target file by modifying an existing definition file for the

SBC 486133SE board. You can create the file on a PC and then copy the file to a
Multibus system.

1. Create a working directory called "icutest", attach to this directory, and then
copy the definition file to this directory.

- crdir icutest <CR>
- af :icutest: <CR>
- copy :icu:486133.bck to $ <CR>

2. Invoke the ICU under the iRMX for Windows or iRMX for PCs OS and select
the 486133 definition file.

- icu386 486133.bck <CR>
3. The ICU outputs this query. Answer witly.a

Do you want to restore from the file ? [y]/n: y <CR>

Programming Techniques Chapter 2 21

10.
11.

12.

Answer the next query withra
Do you want to overwrite input file [y]/n: n <CR>

At the next query, enter an output name different than that of the definition
file.

Enter new output file name: icutest.def <CR>
The ICU acknowledges and processes the command and outputs:

The Definition File has been restored to the file:
ICUTEST.DEF

To see the RESTORE messages, inspect the log file:
ICUTEST.LOG

Note

A message may appear that the definition file has been modified.
Ignore this message.

The ICU queries:
Continue to the ICU Main Menu? [y]/n: y <CR>
The ICU command appears with the list of available ICU commands.

For this example, we will change the target directory of the generation files.
First, view the main screen to list all changeable options in the definition file.

ENTER COMMANDSc gen <CR>
The Generation (GEN) screen appears.
To change the target directory, type:
:raf=/msa32/boot/icutest <CR>
Press <CR> twice. The GEN screen re-appears with the modified settings.
Return to commands screen by quitting the GEN screen.
:q <CR>
Save the file before generating the new files.
's <CR>

Chapter 2 Target Environment Development

13.

14.

15.

16.

17.

18.

19.

Generate the new definition file at the commands screen.

ENTER COMMANDS: g <CR>

You are queried for a prefix.

Enter a letter to be used as prefix: r <CR>
The ICU generates the files used by the definition file. When the ICU finishes,
theENTER COMMANDprompt appears. Now exit from the ICU.

ENTER COMMAND: e <CR>

On exiting, the ICU creates the definition filytest.def It also creates the
submit file,icutest.csd This file generates the target environment files. In this
example, the target environment is a Multibus system using a SBC 486133SE
board.

Run the submit file.

- submit icutest over icutest.out echo <CR>
Use AEDIT to accessutest.outo check for any generation errors. If there
are no errors, then copy the target environment file to the target system. If
there are errors, invoke the ICU usiogtest.def
- icu386 icutest.def <CR>
Correct the errors, save the changes and regenerate the target environment file.
To copy files to a target system, use either iRMX-Net or TCP/IP.
A. Use iRMX-Net by:
1) Attaching to the Multibus system:
-ad remote_system asremr <CR>
2) Copyingicutestto the Multibus system.
- copy icutest to :rem:msa32/boot <CR>

See also: iIRMX-NetNetwork User's Guide and Reference
FTP,TCP/IP and NFS for the iRMX Operating System

Programming Techniques Chapter 2 23

24

|:| Note

The boot directorymsa32/boqtis for definition files on Multibus
Il systems. For Multibus | systems, substitliieot32for
msa32/boot

B. If both the development system and the target environment system have
TCP/IP running, use FTP to upload the files.

20. Test the files on the new target system.

21. Test and re-generate the files if required.

Chapter 2 Target Environment Development

Designing an Application

This chapter presents concepts for designing and creating an iRMX application.
This includes application code demonstrating the concepts. Details about the
location and running of the example application coéeno.¢ are located at the
end of the chapter. This code is written in C using the iC-386 compiler. You
should be familiar with C syntax and structures to understand the examples.

See also: Introducing the IRMX Operating Systems
System Concepts
iC-386 Compiler User's Guide
C Library Reference
C Compiler-specific Information, Chapter 4

Programming Techniques Chapter 3 25

Application Categories

Most iRMX applications are written for one of three categories: measurement,
process control, or data acquisition. There is no distinct differentiation between
categories and an application can overlap one or more categories.

Measurement

A point of sale terminal for a gas station is an example of an iRMX application
focusing on measurement. As the fuel tank on a car fills, the application tracks the
guantity pumped by interacting with a flow meter. When the fuel tank is filled and
flow stops, the flow meter signals the application to calculate the cost based on the
amount of fuel pumped.

Process Control

An assembly line conveyor belt is an example of an iRMX application focusing on
process control. Component parts are removed from the conveyor belt by human
operators and placed in certain devices. Electronic eyes monitor the number of
component parts passing at given points. If the human operators require more time
to remove a part from the belt, an electronic eye recognizes that fewer parts are
being removed from the belt. The electronic eye then triggers the application to
slow the speed of the belt.

Data Acquisition

A telephone communications network is an example of an iRMX application
focusing on data acquisition. The network is partitioned into specific sectors. The
application monitors the amount of telephone traffic that occurs in each sector.
Subsequent analysis identifies those sectors that have large amounts of telephone
traffic. Routing schemes could then be developed to handle the large amount of
traffic. Additionally, connection times could be recorded before and after to check
the efficiency of the routing schemes.

26 Chapter 3 Designing an Application

Design Concepts
All iRMX applications, regardless of category, use some or all of these functions:

e Handling I/O

e Interprocess communication
e Intertask synchronization

* Creating and cataloging objects
* Controlling devices

* Allocating memory

* Processing exceptions

* Prioritizing tasks

* Computing

* Handling interrupts

* File sharing

C Multitasking Demo Program

The demonstration programemo.¢ presents programming concepts which use
some or all of the functions listed above. Use this program as an aid in developing
your own application code. This program is described later in greater detail.

Demo Code Location

The/rmx386/demo/c/intrdirectory contains this source code and related files. It
is easier to understand the examples if you produce hard copies of the source code
or view them from a console screen using an ASCII text editor.

make file to generate example

demo.c main program code containing the initial task

task2.c second task code

crbpool.c buffer pool code

except.c exception handler

Demo Example Generation Environment ~ Command

iC-386 demo iIRMX make

Watcom C demo DOS make -f makefile.w
Microsoft C demo DOS make -f makefile.w
Borland C demo DOS make -f makefile.w

Programming Techniques Chapter 3 27

The C versions of the demo are generated from the dame.csource. All

versions of the demo are functionally equivalent, and all run under the iRMX OS.

See also:

C Compiler-specific Information, Chapter 4

Table 3-1 lists the functions and associated system calls udedim.c

Table 3-1. Demo.c Functions and System Calls

Procedure Functions Demonstrated System Calls Used
main() IORS mailbox creation rg_create_mailbox
Getting terminal attributes rg_a_special
Receiving an IORS rg_receive_message
Deleting an IORS rg_delete_segment
Setting terminal attributes rg_s_special
Getting iRMX version dg_get_system_id
Building the job's object directory rg_create_mailbox
rg_catalog_object
rg_create_semaphore
rg_catalog_object
rg_create_buffer_pool
rg_catalog_object
rq_get_priority
rg_create_task
rg_catalog_object
Getting buffer pool memory rg_request_buffer
Using semaphores rg_send_message
rg_receive_units
Displaying data to the console rg_s_write_move
write_read Console I/10 rq_a_write
rg_wait_io
rg_wait_iors
rq_a_read
prompt_and_wait Console /10 rq_a_write
rg_wait_io
rg_wait_iors
Job termination from console rg_exit_io_job

28

Chapter 3

Designing an Application

Running the Multitasking Demo

|:| Note

Before running any C examples, load dfie.job or configure it
into the OS with the ICU. You can manually load it by entering
this command at the HI prompt:

- sysload /rmx386/jobs/clib.job
See also: clib.job, System Configuration and Administration

The makefilefile first compiles and binds the source files using iC-386 and

BND386 and then creates an executable program ndered Enter these

commands to first attach to the directory where the demo files reside and then use
themake command to run theakefile

- af /rmx386/demo/c/intro <CR>
- make <CR>

To executalemq enter:
- demo <CR>

After typing the filename, the program prompts you with this message:
iIRMX Il C Multitasking Demo, V XY

Welcome to the C Multitasking Demo!

At the prompt you will be given 60 seconds to hit any key.
If you do not hit a key the demo will continue anyway.
You may hit an "E" if you wish to exit the program.

You now have <xx> seconds left to hit a key.

After you press a key, the program clears the screen and prompts you with this
message:

Please hit a key which will be forwarded to task2 for processing.

Assuming you enter the letter X for the first keystroke, the main program,
containing the initial task, reads the X from the terminal and passes it on to Task2.
Task2 wakes up and prints out this message to the screen:

TASK2 PROCESSING X

Please hit a key which will be forwarded to task2 for

processing
1,9,9,.9,90,9,9.9,9,0.90,9,9,9.9,.9,0.9.9.0,.9.9.9,0.9.9,9.90.0.9,0.0.9,0.9.9.0.0.9.9,0.0,.0.0, QG

Programming Techniques Chapter 3 29

The X continues to appear at the rate of one per second and will repeat indefinitely
until you enter another keystroke. Also, notice that the prompt to enter another
keystroke is buried in the middle of Task2's processing message and the string of
letters that it displays.

Entering the next two keystrokes concludes the program. This output assumes you
enter the characters Y and Z:

TASK2 PROCESSING Y <CR>

Please hit a key which will be forwarded to task2 for

processing
YY ..
TASK2 PROCESSING Z <CR>

This concludes the C Demo Program.

This would be a good time to examine the program code
to see how these features work.

We will now exit by generating an error.

INTERNAL ERROR IN MODULE demo.c at line #450
STATUS = 0023: E_SUPPORT

After you enter the final keystroke, the initial task recognizes that you have entered
three characters, signaling the code to end the program. The initial task ends the
program before Task2 begins to repeatedly print the third character to the console
screen.

Using the Makefile

Each of the demonstration programs has its own unmitplesfilefor compiling and
binding the programs.

A listing of themakefilefor generatinglemofollows:

--* makefile *oxk
#
This makefile generates the iC-386 multitasking demo
for iRMX 111
#
Invocation: make
#
#it
Compile and Bind switches
#it
30 Chapter 3 Designing an Application

DEBUG

TYPE
##
##
##
LANG
CLIBDIR
RMXLIBDIR
RUNB86
##
##
##
BND3
BND
BNDFLAGS
##
##
##
CC3
CcC
CFLAGS
##
##
##
CLIB
CSTART
RMXLIB
UDILIB
##t
##
##t

.SUFFIXES: .obj .c

.c.obj:

nodb
noty

Tool and library definitions

= :lang:
= :sd:intel/lib
= :sd:rmx386/lib

= :utils:run86

Binder definitions

= :sd:intel/bin/bnd386.exe
$(RUNS6) $(BND3)
$(DEBUG) $(TYPE) rn(code to code32)

Compiler definitions

= $(LANG)ic386
= $(RUN86) $(CC3)
= cp dn(0) extend ot(3) si(:include:) nosrclines $(DEBUG)

Libraries

= $(CLIBDIR)/cifc32.lib

= $(CLIBDIR)/cstart32.0bj
= $(RMXLIBDIR)/rmxifc32.lib

= $(RMXLIBDIR)/udiifc32.lib

Implicit rules

Programming Techniques Chapter 3

31

$(CC) $*.c 0j($@) pr($*.Ist) $(CFLAGS)

##
##
##

default: demo

Targets and explicit rules

demo: crbpool.obj demo.obj except.obj task2.obj $(BND3) $(CSTART) $(CLIB) \

$(RMXLIB) $(UDILIB) makefile

$(BND) &

$(CSTART), & C startup module

demo.obj, & C Demo modules

task2.obj, &

except.obj, &

crbpool.obj, &

$(CLIB), & iIRMX Il Shared C Interface library
$(UDILIB), & iRMX Il UDI Interface library
$(RMXLIB) & iRMX Il System Call Interface library

$(DEBUG) 0j($@) pr($@.mp1) &
rn(code32 to code) ss(stack(2400H)) rc(dm(4000h,0FFFFFh))

##
##
##

CMNCINCS

crbpool.obj :

demo.obj

except.obj
task2.obj

32

Dependency information

= :include:i186.h :include:i286.h sinclude:i386.h \
:include:i86.h :include:locale.h linclude:reent.h \
:include:rmxc.h :include:rmxtypes.h :include:time.h \
:include:rmx_err.h :include:stdio.h sinclude:stdlib.h \
:include:rmx_c.h sinclude:yvals.h :include:_align.h \
:include:_noalign.h :include:_restore.h :include:udi.h \
:include:udi_c.h demo.h makefile

$(CMNCINCS) crbpool.c
$(CMNCINCS) demo.c :include:ctype.h :include:rmx_def.h \
:include:string.h
$(CMNCINCS) except.c :include:rmx_def.h
$(CMNCINCS) task2.c :include:rmx_def.h :include:string.h

Chapter 3 Designing an Application

Programming Concepts

The specific programming concepts conveyedeémo.care:

Creating objects using iRMX system calls
Cataloging objects so tasks can share them

Processing an Input/Output Result Segment (IORS) data structure to check the
status of an 1/0O operation

Using response pointers during inter-task communication
Simultaneous task processing and data sharing
Using buffer pools to create memory resources for a job

Processing in-line exceptions resulting from iRMX system calls in application
code

Getting and setting terminal attributes

Performing screen input/output to read and write data using the physical
terminal screen

Performing simultaneous input/output so tasks perform I/O operations
independent of one another

Accessing the IORS

Processing interrupt tasks

Creating and Cataloging Objects

Every iRMX object has attributes. These attributes enable you to customize the
object's use in an application. You specify these attributes when you create an
object.

Listed below are iRMX objects used in tthemo.gprogram.

Objects in demo.c Description of use

Task An initial task does input and a subtask does output

Semaphore One semaphore synchronizes the initial task and subtask

Mailbox Two local mailboxes exchange input/output and a global
mailbox transfers between the initial task and subtask

Buffer pool One buffer pool passes messages and objects between
mailboxes

Programming Techniques Chapter 3 33

Operations on Objects

The OS has an object-based architecture. There are three main advantages to
working in an object-based OS. These advantages are: design consistency, type
checking protection, and customization.

Design Consistency.The Nucleus provides objects and functionality found in
most normal OSs.

See also: Object$ntroducing the iRMX Operating Systems
Nucleus,System Concepts

Type Checking Protection. Because each object has a type attribute, the OS can
check for incorrect parameters (object token) in a system call, thereby avoiding
system call errors.

Customization. You can define additional object types and system calls (known as
operating system extensions). Use these features to customize the OS. However,
limit the OS extensions to one application for easy maintenance.

Creating Tasks

If you have tasks that need to share resources (such as data or code), consolidate
those tasks in the same job. If you have tasks that perform dissimilar functions,
separate those tasks into different jobs. This maximizes modularity and adds
protection because of separate memory spaces.

For simple applications that involve only one programmer and that have no
maintenance or expansion plans, it is simpler to put all the tasks in one job which
lets the tasks:

e Share the same processor

e Use one ready queue

« Are removed from the task queue when waiting for a resource
e Share the same memory space

« Pass data by reference

e Communicate using mailboxes and semaphores

34 Chapter 3 Designing an Application

Tasks in different jobs on the same processor can:

« Pass data by reference through global segments

e Use one ready queue

* Have different memory spaces but all in the processor's memory space

* Share the same priority scheme

Dividing an application into jobs provides:

Functional partitioning

Memory separation

Privilege

Each job is a group of tasks that perform similar
functions. This enables easier management and
understanding of large projects. Programmers only
need to understand how their code interfaces with the
code produced by other members of the project team.
As long as the interfaces between code modules are
controlled, the project itself can respond to significant
design changes without adverse schedule impact.

Each job has its own memory pool. This provides
protection from segmentation overflow. Tasks from
different jobs have a minimal impact on an application
if one becomes a runaway task.

To isolate an environment in which privileged
operations occur, group those tasks with high priorities
into one job.

See also: Job§ystem Concepts

Programming Techniques

Chapter 3 35

Task Creation Code Example

In this example, only two tasks exist: the initial task (in theddmo.¢ and the
subtask Task2 (in the filmsk2.9. Regardless of the number of tasks in your
particular job, the principles for task creation remain the same.

The following code, frondemo.¢ shows how the initial task creates, assigns a
priority to, and catalogs Task2.

priority = rq_get_priority(CALLER,&status);
Get the priority of the calling task, which is the initial
task.

task = rg_create_task (-- priority,
Create the subtask and give it a lower priority than the

initial task.

&task2,
Set the start address by pointing to the first instruction
of Task2.

_get_ds(),

Set the data segment parameter to create its own data
segment.

(UINT_16 far *) NULL,
Set the stack pointer for automatic stack allocation.

(NATIVE_WORD) 0x2400,
Set the stack size to 2400H bytes. Set stack sizes to
at least 300H bytes for Nucleus system calls and 700H
bytes for C library calls.

(UINT_16) 0,
Set task flags to zero, indicating no floating point
instructions.
&status);
A pointer to where the condition code returns.
error_check (_LINE__, FILE__, status);

Each time a system call is made, a subsequent call is
made to error_check, which checks the error of status
of the previous system call.

udistr((char *) &rmx_str,"TASK2");
Call iRMX procedure udistr to convert Task2 from a
null-terminated C string to a counted iRMX string.

rq_catalog_object(CALLER, task, &mx_str, &status);
Catalog the subtask, Task2, in the object directory of
the initial task (in demo.c).

36 Chapter 3 Designing an Application

Creating and Cataloging Objects Code Example

The following code, frondemo.¢ catalogs and creates a mailbox, a semaphore and
a buffer pool.

See also: System Conceptior information about creating these objects.

|:| Note

If debugging with Soft-Scope debugger or the iIRMX System
Debugger (SDB), catalog objects so TOKEN values correlate
with their respective names in the program. Although the $
character is valid in a variable name, it should be omitted from
variable names used as input to the debugger.

mail_box = rg_create_mailbox (FIFO_QUEUING, &status);
Create a mailbox.

error_check (__LINE__, _ FILE__, status);
udistr((char *) &mx_str, (const char *) "MBX");
Convert MBX from a C string to an iRMX string.

rg_catalog_object (CALLER,
CALLER is null so the object is cataloged in the initial
task's object directory.

mail_box,
Catalog the mailbox object.
&rmx_str,
Give the object the catalog name of MBX.
&status);
A pointer to where the condition code returns.
error_check (__LINE__, _ FILE__, status);

semaphore = rq_create_semaphore ((UINT_16) O,
Create a semaphore and set the initial number of units
to zero.

(UINT_16) 3,
Set the maximum number of units to three.

FIFO_QUEUING, &status);
Use zero to indicate a FIFO queuing scheme.

error_check (__LINE__, _ FILE__, status);
udistr((char *) &mx_str,"SEMAPHORE");
Convert the C string to an iRMX string.

Programming Techniques Chapter 3 37

rg_catalog_object (CALLER, semaphore, &mx_str, &status);
Catalog the semaphore in the initial task's job
directory.

error_check(__LINE__, _ FILE__,status);
pool_tkn = create_buf_pool((UINT_16) 18, (UINT_16) 18, (UINT_16) O,
(NATIVE_WORD) POOL_SEG_SIZE, &status);
Create a buffer pool through procedure
create_buf_pool in external file crbpool.c.

error_check (__LINE__, _ FILE__, status);
udistr((char *) &mx_str,"BUFFER");
Convert the C string to an iRMX string.

rg_catalog_object (CALLER, pool_tkn, &mx_str, &status);
Catalog the buffer pool in the initial task's job directory.

error_check(__LINE__, _ FILE__,status);

Processing Input/Output Result Segments (IORS)

IORS data structures are processed to check the status of an I/O operation. The I/
system creates an IORS when a task requests an I/O operation, such as through th
a_specialsystem call. The resulting IORS contains information about the request
and the device on which the 1/0O was performed.

The resulting IORS contains information such as error conditions, the type of
operation, the device, and pointers to where the data is stored. The status is
checked by accessing specific fields in the IORS data structure. For example,
fields, such astatus andunit_status , would contain status (including error)
codes after the I/O operation.

An IORS is also an integral part of writing a device driver. Since a device driver
interacts between the 1/0 system and the related device, an IORS provides
information about the operation performed on the device as well as about the
device itself.

See also: DUIB and IORS: Device driver Interfad@syer Programming
ConceptsandSystem Call Reference

38 Chapter 3 Designing an Application

Processing an IORS Code Example

The initial task, idemo.¢ performs the I/O operation of getting the attribute of the
input device. The iRMX OS creates the IORS and then checks it to verify that the
attributes were successfully obtained.

rq_a_special (input_conn_t, SPECIAL_GET_TERM_DATA, (void far *)
&term_atts, read_mbx, &status);
This 1/0 operation gets terminal attributes of the input
device. The IORS will be placed in the read_mbx
mailbox when it arrives.

error_check(__LINE__, FILE__,status);

The initial task then waits until the IORS arrives. This code illustrates how it
waits:

#ifdef FLAT
If flat model is used, you must use the following call to
access the IORS.

rq_wait_iors (input_conn_t,
Return the IORS specified in the previous connection.

read_mbx,
Set iors_token to receive the terminal attributes.

INFINITE_WAIT,
Wait infinitely for the terminal attributes to arrive.

&iors, &status);
Point to a buffer where the IORS is placed.

error_check (_LINE__, FILE__, status);
error_check (__LINE__, FILE__, iors.status);
#else

iors_tkn = rg_receive_message (read_mbx,
Set iors_token to receive the terminal attributes.

INFINITE_WAIT,
Wait infinitely for the terminal attributes to arrive.

(SELECTOR far *) 0, &status);
Specify the mailbox which receives a status response.

error_check(__LINE_ , _ FILE__,status);

iors = (A_IORS_STRUCTURE *) buildptr(iors_tkn, (void near *) 0);
Build a pointer to the IORS.

Programming Techniques Chapter 3 39

error_check (__LINE__, FILE__, a_iors->status);

Check the status of the IORS.

rq_delete_segment (iors_tkn, &status);

Manually delete the IORS because a_special does not
recycle it.

Using a Response Pointer During Inter-task
Communication

40

Tasks usually need to communicate with one another. Examples of this are:
« A serving task informing a requesting task that a process is done

e One task informing another that it has received some information

» Arequesting task passing information to several serving tasks

e One task passing data to another

e Two or more tasks synchronizing their processing

Mailboxes indemooutput messages, get user input, and transfer data. A
semaphore synchronizes tasks.

The application uses two local mailboxes to pass messages and capture data.
Messages to the terminal (output) are also sent to a mailbox. A task checks the
mailbox for a message and sends the message to the terminal. User response to t
message is captured in a data buffer and placed in another mailbox (in the same
task) and returned to the main program.

A mailbox is also used to pass a data buffer among tasks. The initial task places a
data buffer in the mailbox and catalogs the mailbox in its object direciewno
imposes a restriction by explicitly cataloging the subtask. The restriction means
only demoand its subtask (Task2) can access the mailbox. Depending on your
application, cataloging a subtask is optional. The subtask accesses the mailbox an
processes the data buffer it contains.

The semaphore synchronizes activities between the initial task and the subtask.
The initial task creates a semaphore which tracks units sent to it by the subtask.
The semaphore is assigned a maximum number of units which serves as a trigger.
As the subtask processes each data input from the initial task, it sends one unit to
the semaphore. The semaphore accumulates these units. The initial task stops ar
checks the semaphore to see if it contains its maximum number of units. If it does,
the initial task knows that the subtask has completed all of its processing.

Chapter 3 Designing an Application

Task Synchronization/Data Passing Code Example

The initial task synchronizes its processing with Task2, the subtask. The initial
task waits for, receives, and processes keystrokes at the same time that Task2 is
writing the previous keystroke to the terminal and waiting for the next one. This
synchronization enables input from and output to the terminal to be in separate
tasks.

After the initial task obtains user input of a keystroke, it passes the data to Task2
through a mailbox. Task2 prints the keystroke to the screen and acknowledges the
input by incrementing the count in the semaphore. It continues printing while
waiting for another input from the initial task.

These are the functions and associated system calls used in thskile(Task?2).

Task Name Functions Demonstrated System Calls Used
task2 Getting object directory elements rq_lookup_object
Character and Semaphore I/O rg_receive_message
rg_create_mailbox
rq_a_write
rg_wait_io

rq_release_buffer
rq_send_units

This code from the initial task, lemo.¢ shows data passing between tasks and
the synchronization of tasks among each other.

for (i=1;i<=3;i++)
{

Start a loop which will execute three times.

.(code)

rq_send_message (mail_box,
Send a message to the mailbox signaling Task2 to
execute.

buff_tkn,
Send the data buffer, containing the user keystroke, in
the mailbox.

semaphore, &status);
Identify the semaphore as the object notified by Task2
when it finishes a process.

Programming Techniques Chapter 3 41

.(code)

rg_receive_units (semaphore,
Monitor the semaphore to see if it has received three
units from Task2.

(UINT_16) 3,
Set the trigger number to three units.

INFINITE_WAIT, &status);
The semaphore waits infinitely to get three units. Task2
sends one unit to the local variable semaphore, which
points to and increments semaphore in the initial task.
After the initial task sends the third and final keystroke
to Task2, the initial task examines the number of units
in the object semaphore and, since it matches the
trigger number of three, continues processing.

End the loop.

The initial task and Task2 communicate and synchronize through mailboxes and
semaphores. This code listing is for Task2, located in thtaBl®.c

dummy = udistr ((char *) &mx_str,"MBX");
mail_box = rg_lookup_object (CALLER, &rmx_str, INFINITE_WAIT,

&status);
Look up MBX as the mailbox defined in the object
directory of the initial task.
error_check (__LINE__, FILE__,status);

dummy = udistr ((char *) &mx_str,"BUFFER");
pool_tkn = rg_lookup_object (CALLER, &rmx_str,INFINITE_WAIT,

&status);
Use the buffer defined in the object directory of the
initial task.
error_check (__LINE__, FILE__, status);

buff_tkn = NULL_TOKEN;
Set this buffer so Task2 does not release it back to the
buffer pool.

buff2_tkn = rq_receive_message (mail_box, INFINITE_WAIT,
(SELECTOR far *) &semaphore, &status);
Retrieve the buffer containing the keystroke from the
mailbox. If the mailbox is empty then wait until it is
filled.

42 Chapter 3 Designing an Application

write_mbx = rq_create_mailbox (FIFO_QUEUING, &status);
Create a local mailbox to output messages to the
terminal.

while (TRUE)
Start an infinite loop.

if (status == E_OK)
{
rq_a_write (output_conn_t, (UINT_8 far *) message,
(NATIVE_WORD) strlen (message), write_mbx, &status);
Output the message that Task?2 is processing.

error_check (__LINE__, FILE__,status);
#ifdef FLAT
If a flat model is used, use the following call.

rq_wait_iors (output_conn_t, write_mbx, INFINITE_WAIT, &iors,

&status);
Waits for an IORS and copies it to a user-provided
buffer.
#else
actual = rq_wait_io (output_conn_t, write_mbx, INFINITE_WAIT,
&status);
Returns the concurrent condition code for the prior call
to the calling task.
#endif
error_check (__LINE__, FILE__,status);

if (buff_tkn != (selector) NULL)
{rq_release_buffer (pool_tkn, buff_tkn, (UINT_16) O,

&status);
Release the buffer back to the buffer pool. However,
skip this the first time through since the buffer has not
been retrieved from the buff_tkn variable.
error_check (_LINE__, FILE__,status);

}
buff_tkn = buff2_tkn;
Transfer the buffer from buff2_tkn to buff_tkn. This
enables buff2_tkn to monitor the mailbox and accept a
new buffer (keystroke) when it arrives.

Programming Techniques Chapter 3 43

(code)

rq_send_units (semaphore, (UINT_16) 1, &status);
Every time Task?2 receives a keystroke from the initial
task, Task2 sends a unit to the object semaphore.
Task2 knows where to send the unit because the initial
task passed the token for semaphore to the mailbox.
This token for semaphore is kept in Task2's version of
the variable semaphore (semaphore is a local variable).

error_check (_LINE__, FILE__,status);
}

rq_a_write (output_conn_t, (UINT_8 far *) dummy,
(NATIVE_WORD) 1, write_mbx, &status);
Output the buffer (keystroke) to the terminal.

error_check (__LINE__, FILE__, status);
#ifdef FLAT
rq_wait_iors (output_conn_t, write_mbx, INFINITE_WAIT,
&status);
#else
actual = rq_wait_io (output_conn_t, write_mbx, INFINITE_WAIT,
&status);
#endif
error_check (__LINE__, _FILE__, status);
buff2_tkn = rq_receive_message (mail_box, (UINT_16) 100,
(selector far *) &semaphore, &status);
Check the mailbox to see if a buffer has been sent by
the initial task. If a buffer does not arrive after one
second, return to the top of the loop and repeat
processing.
}

Using Buffer Pools

44

Buffer pools provide a shared resource of buffers, which are fixed-length segments
of memory. Any tasks can use these segments, eliminating the need to repeatedly
create or delete memory segments. Use this sequence when creating a buffer poo

1. Create the buffer pool using tbeeate_buffer_poolsystem call. One of the
pool's attributes is having its memory segments defined as contiguous or daisy-
chained. Select the contiguous attribute for applications where few data
objects are passed or few object transfers are made. Select the daisy-chain
attribute if the application transfers a large number of data objects or has a
large number of transfers.

Chapter 3 Designing an Application

2. Once the buffer pool is created, initialize the pool by allocating a set of
memory segments (buffers), for the pool. Usectieate_segmensystem call
to define segments. The size of the segment must accommodate the size of
any objects being passed. For examgdamouses one byte buffers. This size
accommodates the user-input keystroke captured in the buffer.

3. Release the buffer into the buffer pool usingriiease_buffersystem call.
This call initially populates the buffer pool, as well as recycles buffers when
they are no longer needed. The most efficient way to create buffers and
release them to the buffer pool is with a loop. Set the loop control variable to
the initial number of buffers in the pool.

See also: Buffer port§ystem Concepts

|:| Note

Create and fill buffer pools at the beginning of your job since
creating iRMX memory segments is a slow process relative to
other system calls.

Creating Buffer Pools Code Example

The initial task idemo.ccreates and catalogs a buffer pool. Once the buffer pool
has been established, the calling task must request a buffer, assign data to it, and
pass the buffer to the subtask (Task2). After receiving the buffer, the serving task
must secure the data and release the buffer back to the buffer pool for possible use
by other tasks.

The file crbpool.ccontains a procedure, called gmo.¢that creates a buffer

pool. This file also creates an initial number of memory segments, and releases
them to the buffer pool. A token for the buffer pool is returned to the caller. These
are the functions and associated system calls usgtpool.c

Procedure Functions Demonstrated System Calls Used
create_buf_pool Buffer pool creation rq_create_buffer_pool
Buffer pool initialization rgq_create_segment

rg_release_buffer

The initial task idemo.ccalls procedurereate_buf_pool (defined in
crbpool.g as follows:

pool_tkn = create_buf_pool
This call passes parameters to an external procedure in
crbpool.c, which creates the buffer pool and the buffers
used in the pool.

Programming Techniques Chapter 3 45

((UINT_16) 18,
Create a maximum of 18 buffers.

(UINT_16) 18,
Create a minimum of 18 buffers.

(UINT_16) 0,
Set the flags attribute to zero to create contiguous
buffers.

(NATIVE_WORD) POOL_SEG_SIZE, &status);
Set the size of each buffer to one byte.

error_check (__LINE__, _ FILE__, status);

udistr((char *) &mx_str,"BUFFER");

rg_catalog_object (CALLER, pool_tkn, &mx_str, &status);
Catalog the buffer pool in the object directory of the
initial task.

The following is code from proceducesate_buf_pool in crbpool.c

SELECTOR create_buf_pool (
Receive the attributes sent from the initial task.

UINT_16 max_bufs,
Parameter declaring the maximum number of buffers in
the buffer pool.

UINT_16 init_num_bufs,
Parameter declaring the initial number of buffers in the
buffer pool.

UINT_16 attrs,
Parameter declaring attributes for the buffer pool as
contiguous buffers.

NATIVE_WORD size,
Parameter declaring the size of each buffer as one
byte.

UINT_16 *status_ptr)
Exception pointer.

{

SELECTOR buf_pool;
Variable declaration for the buffer pool.

SELECTOR buf_tok;
Variable declaration for the buffer.

46 Chapter 3 Designing an Application

int i
Variable declaration for the loop control variable.

buf_pool = rq_create_buffer_pool (max_bufs, attrs, status_ptr);
Create the buffer pool.

error_check (__LINE__, FILE__ *status_ptr);

for (i = 1; i <= init_num_bufs; i++)
Set the loop counter variable to the minimum number of
buffers so the buffers are created when the loop
finishes.

{ buf_tok = rq_create_segment (size, status_ptr);
Create the buffer (memory segments).

if (*status_ptr |= E_OK)
return (NULL_TOKEN);
Check if the segments are created correctly.

rq_release_buffer (buf_pool, buf_tok, (UINT_16) 2,
status_ptr);
Make the buffer part of the buffer pool.

if (*status_ptr = E_OK)
return (NULL_TOKEN); }
return (buf_pool); }
Return the token for the complete buffer pool back to
the initial task.

Programming Techniques Chapter 3 a7

Using Buffer Pools Code Example

In order to use buffers from the buffer pool, the initial task and Task2 must request
and release buffers. Recall that when the initial task was involved in its loop to
send user-supplied keystrokes to Task2, the object being sent was a buffer. This
code, fromdemo.¢ shows how the main program requests a buffer from the buffer
pool and waits for data to come to it.
for (i=1;i<=3;i++)
Set the loop to capture three keystrokes.

{
buff_tkn = rq_request_buffer(pool_tkn, (UINT_32) 1, &status);

Request a token for a free buffer from the buffer pool.

error_check (__LINE__, FILE__, status);
#ifdef FLAT
If the flat model is used, you must use a temporary
buffer.

*tmp_buff = write_read(message_2, INFINITE_WAIT, &status)
actual = rq_move_data(_get_ss(), tmp_buff, buff_tkn,
(void *) 0, (UINT_32) POOL_SEG_SIZE, &status);

error_check (__LINE__, _FILE__, status);
#else
buffer = (UINT_8) buildptr(buff_tkn, (void near *) 0);
Build a pointer to the buffer.
*buffer = write_read (message_2, INFINITE_WAIT, &status);
The program waits indefinitely for the user to enter a
keystroke. When a key is pressed, the character goes
into a buffer, which is a pointer constructed from
buff_tkn.
error_check (_LINE__, _FILE__, status);
#endif
rq_send_message (mail_box, buff_tkn, semaphore, &status);
A semaphore is passed as the exchange to which the
response should be sent.
error_check (_LINE__, FILE__, status);

}

After Task?2 receives the buffer in a mailbox, it processes it, and then releases the
buffer to the pool for recycling. This code is fréask2.c

48 Chapter 3 Designing an Application

{
rq_a_write (output_conn_t, (UINT_8 far *) message, (NATIVE_WORD)
strlen(message), write_mbx, &status);
Output a message to the terminal that Task2 is
processing.

error_check (__LINE__, _FILE__,status);
#ifdef FLAT
If the flat model is used, use the following call.

rq_wait_iors (output_conn_t, write_mbx, INFINITE_WAIT,
&iors, &status);

#else
actual = rq_wait_io (output_conn_t, write_mbx, INFINITE_WAIT,
&status);
Retrieve the status of the a_write and delete the
resulting IORS.
#endif
error_check (_LINE__, _FILE__,status);

if (buff_tkn != (selector) NULL)

rg_release_buffer (pool_tkn, buff_tkn, (UINT_16) 0, &status);

error_check (_LINE__, _FILE__,status);

}
The first time through the loop, the variable buff_tkn is
NULL, or zero, so Task2 skips the code that releases
the buffer back to the buffer pool. The second and third
times through, Task2 releases the buffer before
capturing the currently received keystroke. The
parameter buff_tkn contains the token that indicates
which buffer to release (the same buffer requested by
the initial task for the previous loop pass).

buff_tkn = buff2_tkn;
After releasing the buffer, buff_tkn can be set equal to
buff2_tkn, the token of the buffer containing newly
arrived keystroke. The buff2_tkn token is now free to
accept the next user keystroke when it arrives at the
mailbox.

rq_send_units (semaphore, (UINT_16) 1, &status);
Task2 sends a unit to the semaphore. Task2 will send
a total of three units to the semaphore.

error_check (_LINE__, _FILE__,status);
}

Programming Techniques Chapter 3 49

Methods of Screen Input/Output

Applications can write from a task buffer to a connected physical file. A connected
physical file can be any I/O device. This example obtains physical file connections
for the keyboard (input) and console screen (output). When dealing with 1/O
connections, tokens must be used. This example shows two methods that you can
use to perform this type of I/O.

See also: a_write andwait_io system calls,
System Call Reference

Screen Input/Output Code Example

A very simple type of 1/O is used for clearing the screen. This code deomo.¢
shows the procedure:

void clear_screen
(void)
{int i
Declare the loop control variable.
for (i=1;i<=25; i++)
printf ("\n");
This loop clears the console by sending it 25 newlines.

}

The second method of 1/O first establishes the input and output devices in
procedure main idemo.c

input_conn_t = _get_rmx_conn (fileno (stdin));
Get the token for the read operation connection. The
token received is for the standard input, i.e., the
keyboard.

output_conn_t = _get_rmx_conn (fileno (stdout));
Get the token for the write connection. The token
received is for standard output, i.e., the console.

50 Chapter 3 Designing an Application

In procedurevrite_read (demo.¢§, the program sends output to and waits for

input from the 1/0O devices established above.

rq_a_write (output_conn_t,
Write a message to the console by sending it the
console token.

(UINT_8 far *) msg_3,
Sends the message addressed by msg_ptr to the
screen.

(NATIVE_WORD) strlen(msg_3),
Sends the number of bytes to be written, which is the
size of the message addressed by msg_ptr.

write_mbx, &status);
The mailbox that receives the IORS.

error_check (__LINE__, FILE__, status);
#ifdef FLAT
rq_wait_iors (output_conn_t, write_mbx, INFINITE_WAIT,
&iors, &status);
#else
actual = rq_wait_io (output_conn_t, write_mbx, INFINITE_WAIT,
&status);
Returns the actual number of bytes written in the
previous a_write call. The waiting period for wait_io to
return data is set to infinite. This tells the procedure
that no 1/0 will occur until data arrives. This call also
recycles the IORS and deletes the IORS for all other
BIOS calls. The user does not have to specifically
delete the IORS.

Programming Techniques Chapter 3

51

In-line Exception Processing

Exceptions can be processed three ways: in-line, using the default exception
handler, or by assigning your own exception handler. Each one has advantages ar
disadvantages. In-line handling is the simplest to create but you must also
explicitly pass control to your exception handler. Use one of several default
handlers to let the system handle the default. The appropriate default handler
(selected in the ICU) should be used for your application. Create your own
exception handler to have control over handling exceptions. Ensure that the
exception is genuine, for example, that the handler does not read an interrupt as ar
exception.

Writing Your Own Exception Handler

You need to consider several things when you write your own exception handler.
For example, 32-bit code requires 32-bit exception handlers, and 16-bit code
requires 16-bit exception handlers. The only time this is not true is when the
exception handler deletes the offending job, deletes the offending task, or suspend:
the offending task.

Another consideration is the type of exception you are processing. With this
release of the IRMX OS, you can write exception handlers that process hardware
traps. This means that your handler can process three groups of errors:

e Hardware traps
« Numeric Processor Extension (NPX) exceptions
e All other programming and environmental conditions

Finally, if you set the system’s default exception handler in the ICU on the (NUC)
Nucleus screen by setting DSH equal to "User", your exception handler module
must have these characteristics:

e The public entry point must be namedysex.
e It must be 32-bit code.

e It must be compiled as Near using Intel OMF386 tools (iC-386, PL/M-386, or
ASM386).

52 Chapter 3 Designing an Application

Exception Handler Control Flow
When writing a custom exception handler, follow these guidelines:

» Use thermx386/demo/c/intro/nstexhfike as a starting template for your
exception handler.

« Code the exception handler initialization at the beginning of the application.

* Pass control to the custom exception handler rather than to the system default
exception handler.

« Check for the type of exception and handle appropriately. Hardware
exceptions can now be returned to your handler. Consequently, you need to
check for these exceptions as well as programming and environment
exceptions.

See also: get_exception_handlerrge_get_exception_handler
set_exception_handlerandrge_set_exception_handlesystem
calls,System Call Reference

* You can delete the calling task that encounters the exception by using a NULL
task token when invoking thaelete_tasksystem call. The system default
exception handler does this automatically.

e Check if a task is interrupt-driven and if it is, use ib®et_interrupt system
call to delete it. If your exception handler deletes tasks usindetle¢e_task
system call, be sure that it does not attempt to delete an interrupt task. The
delete_tasksystem call cannot delete an interrupt task. Attempting to do so
causes an exception, re-triggering the exception handler to try and delete the
task again. This causes an infinite loop.

See also: delete_taskandreset_interrupt system calls,
System Call Reference

« Depending on your application requirements, your exception handler can have
full or partial control.

See also: Exception Handlin§ystem Concepts
Default Exception Handler scred@U User's Guide and Quick
Reference

Programming Techniques Chapter 3 53

Exception Processing Code Example
Democallsexcept.cwhich contains two procedures that handle exceptional

conditions. The first procedure gets the current exception handler and specifies the

level of control. The second is an in-line exception handler.

These are the functions and associated system calls useckjot.c

Procedure Functions Demonstrated System Calls Used

set_exception Get the exception handler rg_get_exception_handler
Set the exception mode rg_set_exception_handler

error_check Format the errors that occur rg_c_format_exception
during system calls rg_exit_io_job

The initial task (indemo.¢ and Task?2 (inask2.¢ call proceduraet_exception
the exception handler.

See also: get_exception_handlerand
set_exception_handlesystem callsSystem Call Reference
Managing Exceptional ConditionSystem Concepts

set_exception((int) NO_EXCEPTIONS);
Set the exception mode to zero, which tells the OS
never to pass control to default exception handler
routines. (NO_EXCEPTIONS) is defined as zero in the
header file rmx_def.h).

This code in procedurset_exception , from except.¢ccreates and invokes the
exception handler.

rq_get_exception_handler (EXCEPTIONSTRUCT far *) &except_info,

&status);
Transfer exception handler information to the data

structure addressed by except_info.

except_info.exception_mode = except_mode;
Replace the exception mode with the zero parameter
passed from the initial task. This tells the system not to
use the default exception handler.

54 Chapter 3 Designing an Application

rq_set_exception_handler (EXCEPTIONSTRUCT far *) &except_info,
&status);
Set the exception handler information with the altered
data addressed by except_info (which is zero). This
system call tells the system under what condition to
pass control to the exception handler.

This code in proceduraror_check , fromexcept.¢cformats the exception and
tells you which error has occurred and where in the application it occurred.

rq_c_format_exception ((char *) &local_string, (UINT_16)
_MAX_STRING, test_status, (BYTE) 1, &status);
Identify the type of error for the condition and place it in
local_string.

local_string.text[local_string.length] = 0;
Terminate the string with a null (0) for output purposes.

printf ("\nInternal Error in module %s at line # %d\n", module,
number);
Output where the error occurred.

printf ("Status = %s\n", &local_string.text);
Output what type of error occurred.

Programming Techniques Chapter 3 55

Getting and Setting Terminal Attributes

Before accessing the terminal for input or output, you must retrieve the current
attributes and change them as necessary. Use thedI§p8cialsystem call and
its spec_func parameter or use the EI@Sspecialcall and itsfunction

parameter.

See also: a_specialands_speciakystem callsSystem Call Reference

Getting/Setting Terminal Attributes Code Example

The initial task's code (idemo.g uses both the_specialands_specialcalls to
access terminal attributes. The two calls use different I/O Result Segments (IORS)
This code example in the initial task gets the current terminal attributes by calling
a_special
rq_a_special (input_conn_t,
Select the token on which to perform the function.

SPECIAL_GET_TERM_DATA,
Specify the parameters to request the current terminal
attributes.

(void far *) &term_atts,
Specify the pointer to the array where the attribute data
is placed.

read_mbx, &status);
Specify the mailbox which receives the IORS.

The initial task then waits until the IORS arrives. This cat#an.¢ illustrates

how it waits:
#ifdef FLAT
rq_wait_iors(input_conn_t, read_mbx, INFINITE_WAIT, &iors, &status);
error_check (__LINE__, FILE__, status);
error_check (__LINE__, _FILE__, iors.status);

#else
iors_tkn = rg_receive_message (read_mbx,
Set iors_token to receive the terminal attributes.

INFINITE_WAIT,
Wait infinitely for the terminal attributes to arrive.

(SELECTOR far *) 0, &status);
Specify the mailbox which receives the IORS token.

56 Chapter 3 Designing an Application

iors = (A_IORS_DATA_STRUCTURE *) buildptr(iors_tkn,
(void near *) 0);
Build a pointer to and check the status of the IORS.

error_check (__LINE__, _FILE__, iors->status);
#endif

#ifndef _FLAT_

rq_delete_segment (iors_tkn, &status);
Manually delete the IORS because a_special does not
recycle it.

error_check (_LINE__, _FILE__, status);
#endif

term_atts.connection_flags = ((term_atts.connection_flags
& (~CMASK_LINE_EDIT))|1) | CMASK_ECHO;

Modify two terminal attributes to cause no line editing
and no keystroke echoing to the screen. This long
assignment statement alters the least-significant three
bits of the 16-bit connection_flags element of the
term_atts data structure. The literals
C_MASK_LINE_EDIT and C_MASK_ECHO are equal
to 3 and 4, respectively. (The NOT operator is defined
in the header file not.h. The literals
C_MASK_LINE_EDIT and C_MASK_ECHO are defined
in the header file tscrn.h. These header files are in the
same directory as demo.)

rq_s_special (input_conn_t, SPECIAL_SET_TERM_DATA, (void far *)
&term_atts, (IORSSTRUCT far *) 0, &status);
Write the modified terminal attributes back to the
physical terminal connection. When using the s_special
call, you can avoid specifically deleting the IORS.

Programming Techniques Chapter 3 57

Interrupt Processing

|:| Note

Interrupt processing involves knowledge of interrupts, interrupt
controllers/lines, level of control, the Interrupt Descriptor Table
(IDT), and interrupt tasks. These concepts are described in the
Managing Interrupts chapter of tBgstem Conceptsanual.

Applications under the iRMX OS use interrupts to deal with external events.
Processing these events asynchronously enables the OS to facilitate real-time
processing.

These program examples cover interrupt handling, interrupt tasks, and interrupt
latency. These examples use this hardware setup:

e PC Bus system running the iRMX OS

« Data Translation DT2806 Multi-Function 1/0O Expansion Board jumpered as
follows:

— |/O address 370H: In - W25, W29, W30, W31, and W32; Out - W26,
W27, and W28

— Timer 0 output to IRQ3: In - W24; Out - W2

|:| Note

Since the application uses IRQ3, make sure no other card, such as
a network card, uses this interrupt. Also, since IRQ3 disables
COM2, ensure no other devices use COM2.

Interrupt Handlers

58

Use an interrupt handler to process interrupts when real-time speed and minimal
processing are required. You can use an interrupt handler to call an interrupt task,
which is slower to respond but enables more flexibility in processing. An interrupt
handler executes into the context (stack, data segments) of the task that was
interrupted. An interrupt task has its own context and runs with equal or lower
priority interrupts disabled.

There are two example applications that demonstrate interrupt handling and

interrupt tasks. The interrupt handling exampliatisand.cand the interrupt task
example isnttask.c Both of these examples are located in/thex386/demo/c/int
directory.

Chapter 3 Designing an Application

Theinthand.cexample generates an interrupt and uses an interrupt handler to
process the interrupt. The main program of the example sits idle while the

interrupt handler processes the interrupt in the background. Every time an interrupt
occurs, the interrupt handler increments a count. Finally, the main program prints
the number of interrupts processed by the interrupt handler while it was sleeping.

Theinttask.cexample processes interrupts using an interrupt task. Every time an
interrupt occurs, the interrupt task prints the message that it has processed that
interrupt. The main program sits idle until the interrupt task is finished.

A singlemakefilecompiles and binds these examples. To run the examples, attach
to the directory, rumake and then run the executable.

- af /rmx386/demo/c/int <CR>
- make <CR>

To runinthand.g type:
- inthand <CR>
To run inttask.q type:
- inttask interrupts <CR>

whereinterruptsis the number of interrupts to process. The default value is 10
(minimum) and the maximum value is 100.

Interrupt Servicing

This section illustrates how interrupts are serviced. Tables 3-2, 3-3, and 3-4 outline
a scenario where an interrupt handler is assigned to a level, an interrupt arrives at
that level and is serviced, and the assignment of an interrupt handler is canceled.
The tables show these cases:

« In Table 3-2, the interrupt handler deals with the interrupt (handler is assigned
to master level 4).

e In Table 3-3, the interrupt handler invokes an interrupt task, either
immediately or after filling a single buffer of data (handler is assigned to
master level 4).

e In Table 3-4, an interrupt handler and an interrupt task use multiple buffers to
service interrupts (handler is assigned to slave level 35).

The Interrupt Levels Necessarily Disabled column of each table indicates that the
events of the example cause certain levels to be enabled or disabled. Other events
outside the scope of the example might cause other levels to be disabled as well.

See also: Interrupt§ystem Concepts

Programming Techniques Chapter 3 59

Table 3-2. Servicing Interrupts with an Interrupt Handler

Interrupt Levels

Necessarily
Step Events Explanation Disabled
1 -- No interrupt handler assigned to level M4
M4.
2 rg_set_interrupt A task assigns an interrupt handler to None
(LEVEL_4,0,...); level M4.
3 Level 4 device An interrupt arrives at level M4. All
interrupts
4 The interrupt is serviced by the interrupt All
handler.
5 rg_exit_interrupt Interrupt hardware reset by the interrupt Al
(LEVEL_4,...); handler.
6 Interrupt handler Interrupts are re-enabled. None
returns.
7 rg_reset_interrupt A task cancels the assignment of an M4
(LEVEL_4,...); interrupt handler to level M4.
60 Chapter 3 Designing an Application

Table 3-3. Servicing Interrupts with an Interrupt Task

Interrupt Levels

Necessarily
Step Events Explanation Disabled
1 -- No interrupt handler assigned to level
M4. M4
2 rg_set_interrupt A task assigns an interrupt handler to
(LEVEL_4, 1, ...); level M4 and assigns itself to be the
interrupt task for that level. It specifies
that one signal_interrupt request can M4-M7,
be outstanding. 50-77
3 rg_wait_interrupt The interrupt task begins to wait for an
or rge_timed_- interrupt. None
interrupt
(LEVEL_4,...);
4 Level 4 device An interrupt arrives at level M4. The
interrupts interrupt handler gains control and
optionally, does some servicing. The
handler may service several interrupts by
performing steps 4 through 6 of
Table 3-2. All
5 rg_signal_interrupt ~ The interrupt handler invokes the M4-M7,
(LEVEL_4,...);t interrupt task. 50-77
6 The interrupt is serviced by the interrupt M4-M7,
task. 50-57
7 rg_wait_interrupt The interrupt task finishes and begins to
or rge_timed_- wait for another level M4 interrupt.
interrupt . Control passes back to the interrupt
(LEVEL_4,...); handler and then back to an application
task. None
8 rg_reset_interrupt A task cancels the assignment of a
(LEVEL_4,...); handler to M4. M4
Programming Techniques Chapter 3

61

Table 3-4. Servicing Interrupts with an Interrupt Handler, an Interrupt Task, and

Multiple Buffering

Interrupt Levels

Necessarily
Step Events Explanation Disabled
1 -- No interrupt handler assigned to level 35 35
2 rg_set_interrupt A task assigns an interrupt handler to
(LEVEL_35, 2, ...); level 35 and assigns itself to be the
interrupt task for that level. It specifies
two signal_interrupt requests can be M4-M7
outstanding (double buffering). 36-77
3 rq_wait_interrupt or The interrupt task begins to wait for an
rge_timed_interrupt interrupt. None
(LEVEL_35,...);
4 Level 35 device An interrupt arrives at level 35. The
interrupts interrupt handler gains control and does
some servicing. All
5 The handler services all interrupts, as
described in steps 4 through 6 of
Table 3-2, until the first buffer is full. All
6 rg_signal_interrupt The interrupt handler invokes the M4-M7,
(LEVEL_35,...); interrupt task. 36-77
7 The interrupt task processes the full
buffer. Meanwhile, the interrupt handler
services interrupts, as described in
steps 4 through 6 of Table 3-3, until the M4-M7,
next buffer is full. 36-77
8 rq_wait_interrupt or The interrupt task finishes and waits for
rge_timed_interrupt another signal from the interrupt
(LEVEL_35,...); handler. Control passes back to the
interrupt handler and then back to an
application task. None
9 rg_reset_interrupt A task cancels the assignment of an
(LEVEL_35,....); interrupt handler to level 35. 35
62 Chapter 3 Designing an Application

Interrupt Latency

Theintlat.c example, in thérmx386/demo/c/intlatlirectory, measures interrupt
latency. Interrupt latency is the delay between when a device issues an interrupt
request and when the microprocessor responds to the request.

See also: Interrupt§ystem Concepts
Theintlat.c example uses this software setup:

e An Esubmit file,measure.cscexecutedntlat a specified number of times,
saving each of the executions' data in a unique data file. See the comment
header ofneasure.csébr more information on this feature.

« A file makefile which compiles and bindstlat.c.

See also: readme.txt, measure.csd, /rmx386/demo/c/iulilactory,
Driver Programming Concepts

A singlemakefilecompiles and binds the example. To run the example, first attach
to the directory, and then run makefile to generate the proper files.

- af /rmx386/demo/c/intlat <CR>
- make <CR>

Now runmeasure.csd
- esubmit measure(executions,timings_per_execution) <CR>

whereexecutionss a number from 1 to 999 (3E7H), amdings_per_executiois
a number from 1 to 8192 (2000H).

The results are placed in the log directory in the file naimigt.xxx

|:| Note

Theintlat executable can be run alone but it requires certain
parameters. To view the parameters, enter:

- intlat -HELP <CR>

Programming Techniques Chapter 3 63

C Compiler-specific Information

This chapter provides information on:

« The iC-386 compiler

« Non-Intel tools you can use
— The iRMX-supplied elements and how to use them
— Debugging your object code

* Adding a first-level job created with non-Intel tools

Using the iC-386 Compiler to Develop IRMX
Applications
Support files supplied with the iC-386 compiler facilitate iRMX application

development. Using these files enables you to use iRMX system calls like C
procedures calls.

Using the C Language Header Files

The iIRMX directory structure includes Intel-supplied header files in the
/intel/includedirectory. These files have an extensiorhofHeader files provide
data structure definitions used by iRMX system calls and useful literal definitions
used in iC-386 code. Usénclude statements to include the header files.

These header files provided with the OS allow you to write programs with or
without underscores in system call names, structure data types, and condition code
mnemonics.

See also: Header FileSystem Call Referencier a list of header files to
include in your programs.

A CAUTION
The iRMX OS does not suppdong64 oruint_64 data types.

See also: Data typeSystem Call Reference

Programming Techniques Chapter 4 65

Binding Your Code to Interface Libraries

After you have written your programs and inserted include statements for the
necessary header files, compile the code and bind it to the appropriate iRMX
interface library.

Interface libraries supplied with the OS provide a standard interface to the system
calls. The interface libraries contain procedures that correspond to iRMX system
calls. The interface procedure performs operations needed to invoke the actual
system call, such as to call gates.

See also: Interface LibrarieSystem Call Reference
Using the 80386 Bindeintel386 Family Utilities,
Detailed bind sequence descriptiois,386 Compiler User's Guide

|:| Note

When using header files or other external files, make sure you
specify the correct path to the file, especially when using a
makefile

Condition and Error Codes

66

The header fileemxerr.handrmx_err.hin the/intel/includedirectory define
iIRMX condition codes that may occur during system operations. The condition
codes are divided into three categories:

e Programmer errors
* Environmental conditions
e Hardware traps

A programmer error is a condition, such as a syntax error, that can be changed in
the application code. An environmental condition is an OS problem over which
you have no control. A hardware trap is when the microprocessor generates a
hardware interrupt request based on the occurrence of certain internal
microprocessor events.

The header files list the condition codes by OS layer and by ascending humeric
values. Each entry includes the condition code mnemonic, the numeric value, and
a brief description.

See also: Condition codes in individual call descriptidmaster list of
condition codes, and Header fil&ystem Call Reference

Chapter 4 C Compiler-specific Information

Using Non-Intel Tools to Develop iRMX Applications

|:| Note

C++ is not supported. Many of these tools allow you to develop
C or C++ applications. The iRMX OS supports only C
applications developed with these tools. There is no iRMX
support for C++ applications.

The iIRMX OS environment allows you to develop C applications using DOS-based
non-Intel development tools such as:

e Microsoft C/C++ version 8.0 (16-bit), Microsoft Visual C++ version 1.5
(16-bit) and version 2.0 (32-bit).

e Watcom C/C++ version 10.0, for 16-bit and 32-bit applications
« Borland C/C++ version 4.5, for 16-bit and 32-bit applications
For assembly code, you can use one of these:

* Microsoft MASM can produce 16- or 32-bit code accepted by the Microsoft,
Borland, and Watcom linkers

* Watcom WASM, shipped with Watcom C/C++ version 10.0

e Borland TASM can produce 16- or 32-bit code accepted by both Microsoft,
Borland, and Watcom linkers

The iRMX OS provides these elements:
« A set of common C header files, compatible with all supported compilers

e A custom cstart module for each supported compiler, in each supported
memory model.

e AniRMX Shared C Library that provides an iRMX/C interface and is
compatible with all supported compilers. It is compatible with existing iC-386
applications without recompiling or relinking.

* An OMF translator utility, called STL, to conveeixeand expfiles to
OMF-386 and translate debug symbols.

After compiling with a set of common header files, link the code with a cstart
module and interface libraries specific to each compiler. Then, with the STL
utility, you convert the linked output files to the OMF-386 file format necessary for
debugging and execution in the iRMX environment. You do not need to run the
STL converter for flat memory model programs since the iRMX OS provides
native loading for these programs.

Programming Techniques Chapter 4 67

Using Microsoft C /C++ Development Tools

Microsoft C/C++ tools are tailored to the DOS environment so you cannot use the
default compiler switches, libraries, and header files. Override the defaults with
options, libraries, and header files appropriate for the iRMX environment as listed
here.

This section describes only the switches known to be necessary or to cause
problems. Some switches not discussed here may be useful in your application,
however, these have not been evaluated.

|:| Note

The compiler and linker invocations in this section illustrate the
use of required switches, but this is not how the example
programs invoke these tools. Exammakefile.min the
\rmx386\demo\c\intralirectory to see the invocation used in the
examples.

Microsoft C 8.0/C++ 1.5 Compiler Invocation

cl /c IFPi87 /f- IG2 /Gs /ACw /X /I \intel\include %1.c

These compiler switches are required:

Ic Compile only, do not link.

/FPi87 Generate floating point instructions for a math coprocessor.

/f- Use the full, three-pass compiler. Generates code instead of calling
extraneous library functions.

1G2 Generate 286 instruction set to support macros for inline code.

IGs Turn off stack checking. This is not needed in the iRMX protected
mode environment.

/Gx- (Visual C++ only.) Treat uninitialized data the same as for the 8.0
compiler.

IACw Compact model. For large model, use /ALw instead. The lower-case

'w' means that the stack has its own segment (SS is not the same as
DGROUP/DS), and therefore all references to stack-based variables
must be made using the SS register. Otherwise, the compiler
incorrectly assumes that the data segment (in DS) can be used to
reference stack-based variables.

68 Chapter 4 C Compiler-specific Information

IX 1 Ignore the default header files and specify the directory lintellinclude.
If this directory is on a different drive, specify the drive letter
(d:lintellinclude). If using C++ then add the Microsoft header files to
the include path after the Intel include files. Note that the invocation
lines above specify the default directories for Microsoft header files
(lc700linclude and \msvclinclude).

%1.c Application source module (for C++, specify a .cpp extension). The
%1 is appropriate if this invocation is made from a batch file,
otherwise specify a filename.

The following compiler switches are useful but not required:
1Zi Generate Microsoft C 8.0-style CodeView debug records. This is

required for source-level debugging of your application.

/0d Disable optimization. This is required to do debugging with Soft-
Scope debugger.

/Ob0 Do not place inline functions inline. This way line numbers will be
generated for these functions and you can step through them with the
Soft-Scope debugger. You can use either this or the /Ob1 option, not
both.

/Ob1 Generate inline code for procedures labeled inline (the default for this
switch). Do not use this switch while debugging. Use /Ob0 instead.

1z7 Use C version 8.0-style CodeView records.

Do not use any of the following compiler switches:

/GEd Enables Windows procedure prologues.

/IGD Enables Windows procedure prologues and epilogues for DLL
functions.

/Ox Enables all optimization, including ones that don't work with iIRMX.

/Oi Pseudo-intrinsic functions. Generates calls to the Microsoft C library,

which may pull in modules that perform invalid operations for the
iRMX environment.

Programming Techniques Chapter 4 69

Microsoft C 8.0 Linker Invocation

link /NOD cstrtcm+%1, %1.exe, %1.map, cifcm+rmxifcm-+udiifcm+ clibc7, link.def

|:| Note

The directory paths of the libraries and the cstart module are not
shown here, but would be required in this form of invocation.

The path names are listed in the "Interface Libraries" and "Cstart"
sections of this appendix.

Microsoft Visual C++ 1.5 Linker Invocation

link /NOD /NOE /DOSS cstrtcm+%1, %1.exe, %1.map, cifcm+rmxifcm+

70

udifccm+clibc?, link.def

These linker switches and libraries are required:

/DOSS Use DOS segment ordering.

/INOD Ignore the default Microsoft libraries, use only those listed on this
line.

INOE (Required for C 8.0 /Visual C++ but optional for C 8.0.) Tells the

linker not to use extended dictionaries when linking libraries. This
eliminates errors caused by the same module being defined in
different libraries in the link sequence.

cstrtcm The Intel cstart() module, compact model.

cstrtim The Intel cstart() module, large model.

%1 Application module (.obj extension is assumed).

%1.exe Name of output linked module.

%21.map Name of the map file, which is required by the STL converter.

cifcm The iRMX Shared C Library interface, (compact model, ciflm for
large).

rmxifcm The iRMX system call interface library, (compact model, rmxiflm
for large).

udiifcm The iRMX UDI Interface library, (compact model, udiifim.lib for
large).

clibc7 Microsoft compact C library for non-emulated floating-point
functions. Specify llibc7 for large model. This must be last in the
link.

link.def Link definition file. The file must contain at least one line:

EXETYPE WINDOWS 3.0

Chapter 4 C Compiler-specific Information

These linker switches are useful but not required:

IMAP

/ICO

INOI
/ST:4096
/B

Put symbolic information in the map file, required for debugging
with the Soft-Scope debugger. If you do not specify this switch,
you must still generate a map file by indicating its name, because
the file, with or without debug symbols, is required by the STL
converter.

Passes CodeView debug records from the object module to the
executable file. This is required for debugging with the Soft-Scope
debugger.

Retain case-sensitivity of symbols, required for debugging.
Increase program stack size (the default is 4096 bytes).

Runs the linker in batch mode. The linker does not ask for paths
to object files and libraries it doesn't find. This switch also
eliminates most of the linker's output to the screen.

Microsoft Visual C++ 2.0 Compiler Invocation

cl /27 IGs /0d /X Ic N \intel\include %1.c

These compiler switches are required:

/Gs

Ic
IX

Turn off stack checking. This is not needed in the iRMX
protected mode environment.

Compile only, do not link.
Ignore default include paths.

/Mintelinclude Add lintellinclude to the include path. If this directory is on a

%1.c

different drive, specify the drive letter (d:lintellinclude). If
using C++ then add the Microsoft header files to the include
path after the Intel include files. Note that the invocation lines
above specify the default directories for Microsoft header files
(lc700linclude and \msvclinclude).

Application source module (for C++, specify a .cpp extension).
The %1 is appropriate if this invocation is made from a batch
file, otherwise specify a filename.

Programming Techniques Chapter 4 71

The following compiler switches are useful but not required:

/od Disable optimizations

1z7 Generate Microsoft C 8.0-style CodeView debug records.
This is required for source-level debugging of your application.

/0d Disable optimization. This is required to do debugging with
the Soft-Scope debugger.

/G3, /G4, /IG5 Optimize for the Intel386, Intel486, or Pentium
microprocessors.

Microsoft Visual C++ 2.0 Linker Invocation
link @myprog.Ink

wheremyproglink is a command file that contains the information needed by the
linker. The format of the linker command file is:

/SUBSYSTEM:windows
/INCREMENTAL:no
/MAP:"myprog.map”
/MACHINE:I1386
/NODEFAULTLIB
/OUT:"myprog.exe”
/DEBUG
/IDEBUGTYPE:CV
/PDB:None
/ISTACK:0x2000,0x2000
\intel\lib\cstrtf3m.obj
myprog.obj
\intel\lib\ciff3m.lib
\rmx386\lib\rmxif3m.lib
\rmx386\lib\udiiff3m.lib
\msvc20\lib\libe.lib

72 Chapter 4 C Compiler-specific Information

These linker switches and libraries are required:

/SUSBSYSTEM:windows

/INCREMENTAL:no
/MACHINE:1386
/INODEFAULTLIB
/OUT:"myprog.exe”
/STACK:0x2000,0x2000

\intel\lib\cstrtf3m.obj
myprog.obj
\intel\lib\ciff3m.lib
\rmx386\lib\rmxiff3m.lit
\rmx386\lib\udiiff3m.lit
\msvc20\lib\libc.lib

Make a Windows executable. This option controls

the name of the default start function.
Set the linker to perform a full link.

The target is an Intel platform.

Do not link in the default libraries.
Define the name of the final executable.

Reserve/commit 8 Kbytes of stack. iRMX uses
this size to determine the amount of stack for the
application.

Select the flat model Microsoft cstart module.
Select the application object

Select the iRMX Shared C Library (flat model)
Select the iRMX system call library (flat model)
Select the iRMX UDI library (flat model)

Microsoft linked C library. Must be last in the link
sequence.

These linker switches are useful but not required:

/MAP:"myprog.map”
/IDEBUG

/IDEBUGTYPE:CV

/PDB:None

Microsoft Application Notes

Task Creation

Create a map file to aid in debugging.

Generate debug records. This is required for source-
level debugging.

Produce CodeView debug records. This is required
for source-level debugging.

Do not create a separate program database file. This
is required for source-level debugging.

When creating tasks with ting_create_tasksystem call, specify the current DS
for the new tasks’ data segment. This may be obtained withgtiteds()library

call.

Programming Techniques

Chapter 4

73

Defined Floating Point Functions (Microsoft C 8.0 and C++ 1.5 only)

Functions you define that return floating point values must be declared with the
_Pascal keyword. This forces the compiler to return the floating point values on
the CPU stack, instead of in the "Floating Point Accumulator" (__fac). The
Floating Point Accumulator is a global area in the data segment, and should not be
used in a multitasking application.

Floating Point Libraries (Microsoft C 8.0 and C++ 1.5 only)

The Microsoft Visual C++ installation does not install the floating point libraries
by default. You must install these to resolve some functions not in the Intel
libraries. To install them, run the custom installation, click the "Libraries..." button
on the installation screen, and check the box marked "80x87."

74 Chapter 4 C Compiler-specific Information

Using Watcom C /C++ Development Tools

Watcom C /C++ tools are tailored to the DOS environment so you must override
the defaults with options, libraries, and header files appropriate for the iRMX
environment.

This section describes only the switches known to be necessary or to cause
problems. Some switches not discussed here may be useful in your application, but
they have not been evaluated.

|:| Note

The compiler and linker invocations in this section illustrate the
use of required switches, but this is not how the example
programs invoke these tools. Examineniakefile.win the
\rmx386\demo\c\intralirectory to see the invocation used in the
examples.

Supported Versions of Watcom Tools

You can use versions 10.0 and 9.5 of the Watcom C Compiler, with version 10.0 of
the Watcom 10.0 linker.

Watcom Compiler Invocation

wcce386 /mc /zu /3s /fpi87 /zdf /i=\intel\include /i=\watcom\h %1.c

The following compiler switches are required:

/mc Select the compact memory model.

/zu Let the stack have its own segment (SS is not the same as
DGROUP/DS).

13s Generate Intel386 instruction set with stack-based parameter
passing.

[fpi87 Generate inline floating point instructions.

[zdf Allow DS to point to segments other than DGROUP.

/i=\intelinclude Ignore the default header files, use lintellinclude. If you are

using C++, add the Watcom header files to the include path
after the Intel include files.

%1.c Application source module (for C++, specify a .cpp
extension). The %1 is appropriate if this invocation is made
from a batch file, otherwise specify a filename.

Programming Techniques Chapter 4 75

The following compiler switches are useful but not required:

lolr Optimize for loop performance and Intel486 processor pipelining.

l4s Use Intel486 processor instruction timings, stack-based
parameters.

/5s Use Pentium processor instruction timings, stack-based
parameters.

/os Space is favored over time. Generates smaller executables, but

does not generate debug records for local variables. Do not use
when debugging.

/j Signed char is the default character. Watcom’s default char is
unsigned.
/d2 Generate full debug records in the object file. This is required for

source level debugging.

Do not use any of the following compiler switches:

/ox Enables all optimization, including ones that do not work with
iRMX OS.

loi Pseudo-intrinsic functions. Calls are generated to the Watcom C
library, which is not linked to the iRMX application.

/om Pseudo-intrinsic math functions. Calls are generated to the
Watcom C library, which is not linked to the iRMX application.

/3r Register parameter passing conventions, not supported by the
iIRMX OS.

[4r Register parameter passing conventions, not supported by the
iIRMX OS.

/5r Register parameter passing conventions, not supported by the
iIRMX OS.

Watcom Linker Invocation

wlink f cstrt3cw, %1 | cifc32w, rmxifc3w, udiifc3w form phar seg op
nod, ¢, d, m stack=4096 n %1.exp

|:| Note

The directory paths of the libraries and the cstart module are not
shown here, but would be required in this form of invocation.

See also: Interface LibrarieSystem Call Reference

76 Chapter 4 C Compiler-specific Information

The following linker switches and libraries are required:

f
cstrt3cw

%1 (,%2)

\intel\lib\cif
c32w

\rmx386\lib
\rmxifc3w

\rmx386\lib
\udiifc3w

form phar
seg

op

nod

c

d

m

n %1.exp

File directive, all following files assume .obj extension.

Use the Intel xstart() module, 32-bit compact model,
located at lintelllib\cstrt3cw.

Application module(s). The %21 format is appropriate for
use in a batch file, otherwise specify a filename.

Library directive, all following files assume ./ib extension.

The iRMX Shared C Library interface (32-bit compact
model).

The iRMX system call interface library (32-bit compact
model).

The iRMX UDI library (32-bit compact model).
Format of the executable is Phar Lap segmented.

Option directive, list of options follows.

No default libraries are to be linked in.

Enable case-sensitivity (short for “case-exact”).
Use DOS segmentation model (short for “dosseg”).

Create a map file, which is required by the STL converter.

The executable's name is to be %1.exp.

The following linker switches are useful but not required:

stack=
debug all

Increase program stack size (default is 4096 bytes).

To enable source-level debugging, place this in the link
sequence before any file for which you want debug
records in the executable module. It is in effect until a
"debug" is found in the link sequence without the "all".

Programming Techniques Chapter 4

77

Watcom Application Notes

Task Creation

When creating tasks with thig_create_tasksystem call, the task must always be
declared far so that a full CS:EIP start address is properly generated for the system
call. For the data_segment parameter, specify O to indicate that the new task will
set up its own DS. Use theloadds attribute for the function to ensure that the
compiler emits code to load DS.

Link Order

78

For the Watcom initialization code to work properly, the cstart module should
appear first in the list of modules to link. The initialization code emitted by the
compiler cannot be located at location zero in the linked module, or it will not be
called. Putting the cstart module first ensures that this cannot happen.

Chapter 4 C Compiler-specific Information

Using Borland Development Tools

Borland C tools are tailored to the DOS environment so you must override the
defaults with options, libraries, and header files appropriate for the iIRMX
environment.

This section describes only the switches known to be necessary or to cause
problems. Some switches not discussed here may be useful in your application, but
they have not been evaluated.

|:| Note

The compiler and linker invocations in this section illustrate the
use of required switches, but this is not how the example program
makefileutilities invoke these tools. Examine timakefile.bin
the\rmx386\demo\c\intralirectory to see the invocation used in
the examples.

Supported Versions of Borland Tools

You can use version 4.5 of the Borland C Compiler (16-bit and 32-bit).
Borland Compiler Invocation (16-bit)

bce /ml /Fs- /r- IX [c 13 /f287 /\intel\include %1.c
The following compiler options and libraries are required:

/ml Large model, use the /mc for compact model.
[Fs- Assume that SS never equals DS.

Ir- Do not use register variables.

Ic Compile to .obj but do not link.

13 Generate 16-bit 80386 protected mode code.
1£287 Use 80287 hardware instructions for floating point
/l Use lintellincludel*.h for default header files.
%1.c Application source module.

The following compiler options are useful but not required:

IX Do not put autodependency information in the object file.

v Put debug information in the object. This is required to get
source level debugging for your application.

/0d Disable all optimizations.

Programming Techniques Chapter 4 79

The following compiler options are useful but not required:

Ir Use register variables.

10? We have not tested the use of any of the optimization
switches. Results may be unpredictable.

Borland Linker Invocation (16-bit)
tlink @tlink.rsp

wheretlink.rspis a response file that contains the information needed by the linker.
This way you are not limited by the DOS command line. The format of the linker
response file is:

/P=65535 /c /s /Twe /n /v \intel\lib\cstrtcb.obj+

%1,

%1.exe

%1.map

\intellib\cifcb.lib \rmx386\lib\rmxifcb.lib \rmx386\lib\udiifcb.lib+
\bc45\lib\mathwec.lib \bc45\lib\cwe.lib \bc45\lib\import.lib
%1.def

The following linker switches and libraries are required:

Ic Treat case as significant in symbols.

[Twe Build a Windows executable.

/n Do not use default libraries.

cstrtcb The Intel Cstart() module, compact model (use cstrtlb
for large model).

%1 Application module (.obj extension is assumed).

%1.exe Name of output linked module.

%21.map Name of map file. The map file is required by the STL

\intel\lib\cifcb.lib

\rmx386\lib\rmxifcb.lib

\rmx386\lib\udiifcb.lib

converter.

The iRMX Shared C Library interface (compact model,
use ciflb for large model).

The iRMX system call interface library (compact
model, use rmxiflb for large model).

The iRMX UDI library (compact model, use udiiflb for
large model).

mathwec.lib Borland compact floating point library (compact model,
use mathwl.lib for large model).
cwec.lib Borland compact C library (must be last in the link, use
cwl.lib for large model).
80 Chapter 4 C Compiler-specific Information

import.lib Borland import library (all models).

%1.def Link definition file. The file must contain at least one
line: EXETYPE WINDOWS

The stack size can also be specified in this file with the
following line:

STACKSIZE 4096
where 4096 is the default number of bytes.

The following linker switches are useful but not required:

Is Create a detailed map file.

v Include full symbolic debug information.

/P=65535 Pack as many code segments as possible into a segment of this
size.

The default size for packing code segments is 8 Kbits.

Borland C Application Notes (16-bit)

This section contains notes for using the Borland compiler and linker to generate
iIRMX applications.

Task Creation

When creating tasks with tleeeate_tasksystem call, always declare the task as
far, so that a full CS:IP start address is properly generated for the system call. For
the data_segment parameter:

- Ifthe new task will share the data segment, specify the current DS.

— If the new task will set up its own DS, specify O for the data_segment
parameter, and use theloadds keyword along with the far keyword to
declare the task. This causes the Borland compiler to emit code which
sets up DS in the procedure that implements the new task.

XMS Memory

When compiling and linking with the Borland tools in a DOS window under
Windows, set the XMS parameter in ttiesprmt.pifiile to at least 2048. The
linker (tlink) runs out of memory when less than this amount available.

Programming Techniques Chapter 4 81

Borland Compiler Invocation (32-bit)

bce32 /r- v IX [c 13 [f ITml /I \intelinclude

The following compiler options and libraries are required:

Ir- Disable use of register variables.
Ic Compile to .obj but do not link.
If Allow floating point operations.

/Mintelinclude Add lintellincludel to the search path for include files.

The following compiler options are useful but not required:

IX Do not put autodependency information in the object file.
13, 14, /5 Optimize for the Intel386, Intel486, or Pentium microprocessor.
/Tml Pass the “ml” (case-sensitive symbols) switch to the assembler.

Borland Compiler Notes (32-bit)

The Borland 32-bit compiler does not have a built-in assembler as the Borland
16-bit compiler does (BASM). An assembler must be available when doing inline
assembly programming. Use the bcc32 compiler to generate an assembly sourc
file and then have it call the assembler.

Borland Linker Invocation (32-bit)
tlink32 @tlink.rsp

wheretlink.rspis a response file that contains the information needed by the linker.

This way you are not limited by the DOS command line. The format of the linker
response file is as follows:

Is [c [Tpe /nlaa v

\intellib\cstrtf3b.obj myprog.obj

myprog.exe

myprog.map

\intellib\ciff3b.lib \rmx386\lib\rmxiff3b.lib \rmx386\lib\udiff3b.lib+
\bc45\lib\import32.lib \bc45\lib\cw32.lib

82 Chapter 4 C Compiler-specific Information

The following options and libraries are required:

Ic Treat case as significant in symbols.

[Tpe Output is a Microsoft PE format executable.

/n Do not use default libraries.

laa Uses the windowing API.

\intel\lib\cstrtf3b.obj Borland flat cstart model.

\intel\lib\cstrtf3b.lib The iRMX Shared C Library interface (flat model).
\rmx386\lib\rmxiff3b.lib The iRMX system call interface library (flat model).
\rmx386\lib\udiiff3b.lib The iRMX UDI library (flat model).

\rmx386\lib\import32.lib Borland flat model import library. You must load this
library after the iRMX libraries.

\bc45\lib\cw32.lib Borland 32-bit Windows library. You must load this
library after the iRMX libraries.

The following options are useful but not required:

Is Create a detailed map file.
v Include full symbolic debug information.

Borland C Application Notes (32-bit)

This section contains notes for using the Borland compiler and linker to generate
iIRMX applications.

Task Creation
When creating tasks with thig_create_tasksystem call, specify the current DS
for the new task’s data segment. Obtain this by usingdke ds()C library call
XMS Memory

When compiling and linking with the Borland tools in a DOS window under
Windows, set the XMS parameter in ttiesprmt.pifiile to at least 2048. The
linker (tlink) runs out of memory when less than this amount available.

Programming Techniques Chapter 4 83

Using Header Files

The iIRMX OS provides a set of common C headgrclude) files that work with

all supported compilers. The header files support all compiler-specific C data types
and compiler-specific aliases. One fiy@als.h contains all compiler-specific
declarations, macros, and built-ins. It determines which compiler you are using
and automatically makes the necessary adjustments.

These are a few of the header files designed to use with non-Intel development
tools, with definitions and suggestions:

<_align.h> Starts 2-byte/4-byte alignment (16-bit/32-bit compilers).
This header file (witkx_noalign.h>) is required to support
multiple compilers.

<_noalign.h> Ends multiple-byte alignment (sealign.habove); provides
compiler-independent byte alignment. You can include this
header file before structures to be affected, and then change
back to_align.h

<_restore.h> Returns structure alignment to the compiler default (as
specified on the command line).

<rmxtypes.h> Defines iIRMX kernel data types (UINT_8, etc.) to make
them available to C programmers.

<yvals.h> Contains standard C values, macros, built-in functions, and
support definitions for all supported compilers.

See also: Header file€, Library Referencefor C functions,
iIRMX header filesSystem Call Referender iIRMX OS definitions

Existing iC-386 Applications

84

You must use iC-386 version V4.7 or later with the common header files, because
the headers use global align/noalign pragmas instead of individual alignment
pragmas for each structure. The global pragmas do not work correctly with earlier
versions of iC-386, and unexpected results may occur. The individual alignment
pragmas for each structure declaration have been removed from the header files
since they are non-standard.

See also: Structure Data Alignment, in this chapter

Chapter 4 C Compiler-specific Information

Built-in functions

Theyvals.hheader file provides compiler-independent versions of the common
built-in functions. ANSI C built-in functions are provided for new code, and the
iC-386 built-in function names are provided for all compilers to simplify porting an
existing iC-386 application to other compilers.

Listed below are the generic built-in functions provided for all compilers. An
application that uses these built-in functions instead of the compiler-specific
built-ins will remain portable across all supported compilers. Refer t€t386
Compiler User's Guidéor more information on the use of these functions.

Function Name Action

buildptr Construct a pointer from a selector and offset
causeinterrupt Generate a software interrupt

inbyte Input a byte from an I/O port

inword Input a word from an I/O port

outbyte Output a byte to an 1/O port

outword Output a word to an 1/O port

byte_rol Rotate a byte left

byte_ror Rotate a byte right

hword_rol Rotate a 16-bit word left

hword_ror Rotate a 16-bit word right

blockinbyte Input a sequence of bytes from an 1/O port
blockinword Input a sequence of 16-bit words from an 1/O port
blockoutbyte Output a sequence of bytes to an I/O port
blockoutword Output a sequence of 16-bit words to an I/O port
selector 16-bit selector data type

disable Disable interrupts

enable Enable interrupts

Calling Conventions

The iIRMX system calls and Shared C Library functions require different calling
conventions. These conventions are supported by each compiler in different ways.
To achieve uniform function declarations, all functions and system call prototypes
are declared in the header files with one of the following modifier macros:

_Cdecl Declares the VPL (Variable Parameter List) calling convention, used
by some Shared C Library functions.

_Pascal Declares functions that use the FPL (Fixed Parameter List) calling
convention, including most Shared C Library functions. It also
indicates that the function preserves the (E)DI and (E)SI registers.
The compiler does not need to save these registers.

Programming Techniques Chapter 4 85

_Fparam Used for FPL functions that do not preserve (E)DI and (E)SI. This
includes all iRMX system calls. The compiler will produce code
surrounding the call to save and restore these registers, if necessary.

These macros are resolvedyials.h) where they are mapped into the correct
keyword for each supported compiler. Not all compilers support all of the calling
conventions. For example, the Intel iC-386 compiler does not fully support the
_Pascal convention (it does not preserve EDI/ESI). To resolve this, _Pascal is
mapped to _Fparam in the iC-386 sectiogwls.h

|:| Note

The Microsoft 32-bit compiler does not support the _Pascal
calling convention so _Pascal is mapped to _Cdecl for flat model
applications.

Structure Data Alignment

86

There are two types of data alignment required in the header files:

 The iRMX Shared C Library accepts and returns structures that are 32-bit
aligned. This means that members of the structure are arranged so that they d
not cross a 32-bit boundary. The compiler adds bytes of 0 between elements a
necessary. The structures are aligned the same for both 16- and 32-bit
applications.

e The iRMX system calls accept and return structures that are byte-aligned (also
known as non-aligned).

To support both types of alignment on all supported compilers, the header files
change the setting of the compiler's global alignment switch during compilation.
Your application should therefore make no assumptions about structure alignment.
Instead, the application should include one of these header files before structure
declarations that require alignment or non-alignment:

< align.k» Enables structure alignment
< noalign.l> Disables structure alignment

< restore.k Restores compiler default alignment (as specified on the
command line)

|:| Note

Do not use thé&pragma noalign declaration in any application
that includes the new common header files, including iC-386
applications.

Chapter 4 C Compiler-specific Information

Alignment with iC-386

The iC-386 compiler does not provide a way to return to the default alignment, nor
does it provide a way to determine the default alignment at compile time. This is
not consistent with the common header files, which no longer use individual
#pragmas around every structure. To avoid this problem, set this macro on the
command line for compiler invocation:

__NOALIGN__

The<_restore.h>header file examines this macro when attempting to restore the
default alignment for iC-386. If NOALIGN__is defined<_restore.h>sets the
alignment tanoalign . If the macro is not defined, restore.h>sets the

alignment taalign since this is the iC-386 default.

To use the macro, define it in conjunction with the iC-B&ALIGNpragma and/or
command line switches. For example:

ic386 hello.c noalign define(__NOALIGN__) /* command line example */
#pragma noalign [* program example */
#define __NOALIGN___

Supported Memory Models
The iIRMX OS and the C header files support these memory models:

e 16-bit large model

e 16-bit compact model
e 32-bit compact model
« 32-bit flat model

If you attempt to compile a program in any other memory model, the header files
return an error message. This prevents you from using an incorrect model that
would not run correctly but would compile and link without errors. The error
message is:

#error: Invalid memory model

This feature is not available on iC-386, since the compiler does not always set the
flags that determine the memory model (for example, subsystems do not cause the
compiler to set any of memory model flags).

Programming Techniques Chapter 4 87

Using Cstart Startup Code

88

The provided cstart modules initialize processes and call main(). Link to the
proper cstart module for your compiler and memory model. The files are in the
\intel\lib directory.

Cstart Module Compiler

cstartli.obj Intel 16-bit large
cstartci.obj Intel 16-bit compact
cstart32.0obj Intel 32-bit compact
cstrtcm.obj Microsoft 16-bit compact
cstrtim.obj Microsoft 16-bit large
cstrtf3m.ob)j Microsoft 32-bit flat
cstrtc3w.obj Watcom 32-bit compact
cstrich.obj Borland 16-bit compact
cstrtlb.obj Borland 16-bit large
cstrtf3b.obj Borland 16-bit flat

Cstart provides the starting address for the program. The generic cstart algorithm
is:

Set up stack and DS register.

Initialize any compiler-specific data.

Call any compiler-specific initialization routines.

Call get_arguments to obtain the command line arguments.
Call main().

Call any compiler-specific cleanup routines.

Call exit(0).

NoagakwbdE

]

Note

Upon returning from main(), the program calls exit() with a
status of zero (E_OK). Status from main() is ignored. Since
most programs do not return a value from main(), it is left
undefined. Calling exit() with an E_OK status also prevents
random error messages from appearing on the terminal at
program termination.

Chapter 4 C Compiler-specific Information

Stack Size

The default stack size provided in the cstart modules is 4 Kbytes. You can override
this size in the link step.

Stack usage for a 16-bit application is actually greater than for an equivalent 32-bit
application, because the OS converts the 16-bit parameters to 32-bits by expanding
them and pushing an entire copy of the parameter frame on the stack before entry
to an OS primitive.

Using Interface Libraries

There are a variety of interface libraries supplied with the OS for the interface to C
library functions and iRMX system calls. For different Intel and non-Intel tools
you must bind (link) to different libraries.

See also: Interface LibrarieSystem Call Referenci®r a complete list of
library files

Using the STL OMF-386 Converter

Use the STL convertor to change your final object module (Windexefarmat

for Microsoft, or expformat for Watcom) to OMF-386 format. The converter
produces a single-task locatable (STL) module that can execute on the iRMX OS.
If you include debug symbols in the compilation, linking, and STL conversion, you
can debug the module at the source level with the Soft-Scope debugger (for non-
flat model applications only).

STL cannot run in a DOS/IRMX for Windows environment because it uses DOS
protected-mode support internally. STL may display this error when you invoke it:

DOS/16M error: [17] system software does not follow VCPI
or DPMI specifications

If this appears, then reboot the machine without starting iRMX for Windows and
invoke STL from DOS.

Input Files

STL requires the executable file and map file generated by your linker.

Programming Techniques Chapter 4 89

Output Files

The output is an STL format file and a conversion map listing file. The STL file
has no filename extension. The conversion map listing file has extension.

The .cmfile contains information to help you find and evaluate conversion errors,
as well as a listing of any errors and warnings generated during conversion.
Information is presented in the following order:

1. Header, containing time, date, STL Converter version number and copyright
information

2. List of input files
3. List of selected controls
4. Segment map
5. Symbols, including line offsets and separate lists of public symbols for each
module
6. Translated application specifications
7. Errors and warnings
Invocation

90

Invoke the STL converter from the DOS command line with the following syntax:
st input_file [controls]

Whereinput_fileis the name of your executable file ayahtrolsare:

-min n Minimum dynamic memory.
-max n Maximum dynamic memory.
-debug Produces debug information in the output file, which is taken from the

debug information generated by your compiler and linker. This
switch is required for debugging with the Soft-Scope debugger.

-print Prints a complete list of symbols to the conversion map file. Static
symbols show the segment they are located in.

-stl output_file
Specifies an output filename other than the name already used by the
.exeor expfile.

If you invoke STL with no command parameters, it displays this list of invocation
options. Do not use thaim option displayed by STL because this option produces
invalid output for this release of the IRMX OS.

Chapter 4 C Compiler-specific Information

Error Messages

You can use the error or warning messages generated by the STL converter to help
debug your application.

Debugging with the Soft-Scope Debugger

The Soft-Scope debugger is provided with the iRMX OS. You must convert your
final object module to OMF-386 format before you can debug it with Soft-Scope.
Use the standard Soft-Scope procedures for debugging. If you are using Microsoft
C or Watcom C compilers, you can also do remote debugging with Soft-Scope for
Windows. The debugging tools supplied with non-Intel compilers are not suitable
for on-target iRMX application debugging.

See also: Soft-Scope Debugger User Guide

Summary of Debug Switches

Use the command-line switches shown below to produce debug symbols for the
Soft-Scope debugger. To eliminate debug symbols from your final code, do not
use these switches when compiling, linking, and invoking STL.

Tool Debug Switch
Microsoft C Compiler /Zi 10d
Linker /CO /MAP /NOI
Microsoft C 32-bit Compiler 127 /0Od
Linker /DEBUG /DEBUGTYPE:CV /PDB:None
Watcom 10.0 Compiler /d2
Linker debug all
Borland 4.5 Compiler v
Linker v
STL -debug

Programming Techniques Chapter 4 91

Adding a First Level Job Using Non-Intel Tools

92

You can use non-Intel tools to create an application which is part of an iRMX
application system boot image. Use only segmented tools for this purpose, flat
model tools are not supported. Instead, create flat model applications as loadable
jobs.

You can configure a first level system job, the Application Starter Job, into your
application system with the ICU. This job looks in memory at an ICU-specified
address for a valid application and, if one is found, starts it by creating a task
whose start address is specified in the application image. A user job, such as your
application job, generated with non-Intel tools assumes the environment of the
Application Starter Job. You can define this environment using the “Third Party
Tools-Generated User Job” (TPUJ) screen in the ICU.

Follow these steps for creating your application:
1. Application development (on a DOS/Windows system).

Use one of the supported non-Intel segmented tools (compiler, linker, etc.) to
develop and generate your application. You must use the prescribed header
files, interface libraries, and invocation switches required for iRMX

application development using these tools. If possible, develop the application
first as a loadable job and test it using Soft-Scope in a download environment.

2. Memory and GDT slot allocation (on an iRMX system).

Create an ICU definition file in which you configure the Application Starter
Job on the TPUJ screen. Reserve the number of static GDT slots and static
memory your application requires. Refer to timapfile generated by the link
process used by your selected tools. Generate this iRMX application system.

3. Location/Format Conversion (on a DOS/Windows system).
Invoke the DOS utilitymxloc.exewith the following input parameters:
rmxloc def_file_name .icu input_file -binary
Where:

def_file_name .icu is thermxlocdirective file generated by the ICU in
Step 2.

input_file is the exeor expfile generated by the link portion of your tools.

-binary specifies tamxloc.exehat a binary format output file is required.
This file will have the same name as theut file except it will have a
.bin extension.

Chapter 4 C Compiler-specific Information

4. OMF Conversion (on an iRMX system).

Invoke the iRMX utilitylocdatawith the following input parameters:

locdata input_file to output_file address= BAA value
Where:
input_file is the full pathname to thein file generated by themxloc.exe

utility in Step 3.

output_file is the full pathname of the located data file (LDF) to be
generated by thiecdatacommand.

BAA_value is the physical base address for the application that you specify in
the BAA field of the TPUJ screen in the ICU.

5. Adding the job to the iIRMX application system boot image (on an iRMX
system).

Invoke the iRMX utilityaddlocwith the following input parameters:

addloc < input LDF file >, < systemfile >to< output file >
Where:
input_file is the full pathname of the located data file produced by the

locdatacommand in Step 4.

system_file is the full pathname of the iRMX application system boot
image generated in Step 2.

output_file is the full pathname of the final iIRMX application system boot
image which will contain the non-Intel tools-generated first-level job.

6. Use the output file from Step 5 as your bootable image; it contains both the OS
and your application job.

See also: TPUJ scred@U User’'s Guide and Quick Reference,
rmxloc.exe, locdatandaddloc.exautilities, Command Reference

Programming Techniques Chapter 4 93

Debugging Applications

This chapter contains a sample PL/M program demonstrating task communication.
A description of the program is included. The program compiles without errors,
however, it does not run due to an error. The error exists to show the debug
process. A debugged version of this program is also provided.

This chapter outlines a step-by-step process using the SDM monitor (SDM) and
System Debugger (SDB) commands to locate the error, fix it, and then test the
corrected code. Additional debugging techniques and commands are also provided
in addition to instruction on running the example.

Example Application Program
This program includes three tasks:
* An initialization task, called Init, that creates a mailbox and the two other tasks
« Atask called Alphonse that exchanges messages using mailboxes

« Atask called Gaston which exchanges messages using mailboxes like
Alphonse

The debug (error) version of the source code is listed in this chapter. These files
are located in:

/rmx386/demo/plm/sdb/alphonse.plm
/rmx386/demo/plm/sdb/gaston.plm
/rmx386/demo/plm/sdb/init.plm

The version of this program which does not contain an error is in:

/rmx386/demo/plm/intro/alphonse.plm
/rmx386/demo/plm/intro/gaston.pim
/rmx386/demo/plm/intro/init.plm

Programming Techniques Chapter 5 95

96

Note

To run the errorless program in thiex386/demo/plm/intro
directory, first attach to the directory, then compile the program
by enteringnake. Finally, run the program by entering
tskcom32 .

This makefilecreates the PL/M multitasking demo and the
tskcom32rogram described below.

See also: Designing an Application, Chapter 3, for more
information on the PL/M multitasking demo.

This is how the corrected progratsKcom32 works:

1.

The application code runs as a Human Interface (HI) program. Enter the name
of the program at the HI prompt.

The task called Init runs first. This task creates a master mailbox and catalogs
it in the root directory under the name Master. It creates the tasks Alphonse
and Gaston then suspends itself.

When Gaston receives control, it:

Gets the token for the mailbox created by Init. Gaston looks up the name
Master in the root job's object directory.

Creates a segment in which it will place a message and a response mailbo
to which Alphonse will send a reply.

Loops and places a message in the segment after displaying it on the
screen, sends the segment to the master mailbox, then waits at the
response mailbox for a reply.

When Alphonse receives control, it:

Gets the token for the mailbox created by Init by looking up the name in
the root job's object directory.

Loops and waits at the mailbox for a message and checks to see if the
token it received is a segment. If so, Alphonse places its own message in
the segment (after displaying it on the screen), then sends the segment to
the response mailbox. If it is not a segment, Alphonse exits the loop and
deletes itself.

The two tasks, Alphonse and Gaston, synchronize by using the two mailboxes.
Gaston sends a message to the first mailbox and waits at the second one before
continuing. Alphonse waits at the first mailbox. When it receives a message, it
sends a reply to the second mailbox and waits at the first for another message. Thi
cycle continues for six messages.

Chapter 5 Debugging Applications

After sending its sixth message, Gaston exits the loop. Instead of sending a
segment to the master mailbox, Gaston displays a final message to the screen then
sends the task token (the token for the Init task) to the mailbox. When Alphonse
receives this token and finds it is not a segment, Alphonse exits its loop and deletes
itself.

To finish the processing, Gaston causes the Init task to resume processing since Init
suspended itself earlier. When Init takes over, it deletes both offspring tasks and
returns control to the Human Interface level.

Include Files

Theinit.plm file uses both Nucleus and EIOS calls so it includes the external files
for both these layers. Tladphonse.plnandgaston.plnfiles use Nucleus and Hi
system calls so they include the external files for those two layers.

Each task must contain its own set of include files because each is a separately
compiled module. If the tasks were all contained in the same program module,
only one set o$include statements would be needed.

Compiling and Running the Code

The example code contains an error to invoke SDBnakefilecompiles and
binds the example codit.plm, alphonse.plmandgaston.pln.

The PL/M compiler commands makefiledo not include controls for selecting the
model of segmentation (small, compact, medium, or large) becausenthgact
control was already included in the source files.

The compiler produces three files of object code. If the PL/M compiler command
did not specify names for the object code files, the files would be given the names
init.obj, alphonse.ohjandgaston.obpy default.

Programming Techniques Chapter 5 97

After compiling, you must bind the object files with the iRMX interface libraries.
The section fronmakefileshows the bind command lines:

sdblll:alphonse.obj gaston.obj init.obj

$(BND)

init.obyj, &
alphonse.obj, &
gaston.obj, &
$(PLMLIB), &
$(RMXLIB), &
pr($@.mp1) &
0j($@) &

renameseg(code32 to code) &
segsize(stack(+2400)) &
rc(dm(5000, OfffffH))

Bind the three object filesit.ob3, gaston.ob3andalphonse.ob3together with
the two librarieplm386.libandrmxifc32.lib The$(PLMLIB) alias is for the
/intel/lib/plm386.liblibrary. This library is the standard PL/M library distributed
with the compiler. Th&(RMXLIB) alias is for the/rmx386/lib/rmxifc32.lib
library. This is the 32-bit compact version of the iRMX interface library.

Theobject control specifies the name of the executable file generated by
BND386. In this case, the file is calledbiii.

The SEGSIZE(STACK(+2400)) control reserves 2400 bytes of stack in addition to
the amount required by the program. This amount represents the amount required
by iRMX applications that include the Human Interface.

See also: Resource and Stack Size Guidelines, Appendix A

Therc(dm(5000,0fffffH)) control directs BIND386 to produce an STL
(single-task loadable) module and to assign a minimum of 5000H bytes of dynamic
memory to the module.

98 Chapter 5 Debugging Applications

Debugging the Program

The sample program does not include error checking even though it contains an
error. This is to demonstrate more features of the System Debugger (SDB). This
section describes two approaches for using SDB to find the error and correct it.

The addresses and token values in these examples have been assigned by the
system in this debugging session. Most of these values will change from session to
session. In a debugging session, it is helpful to record the various addresses and
tokens.

Invoking SDM freezes both the application code and the operating system code.
However, you can disassemble and execute the application instructions by using
SDM and SDB commands.

See also: System Debugger Reference

To compile the program, first attach to the directory, then invoke the makefile by
entering:

- af /rmx386/demo/plm/sdb <CR>
- make <CR>

This command produces an executable file caltidii. To runsdbiii, type this at
the Human Interface prompt.

- sdbiii <CR>

Debugging Approach #1
When the sample program runs, the system displays this message:

Interrupt 13 at c4f0:00000399 General Protection ECODE =00000000

The value4f0:00000399 are where the Code Segment and Instruction Pointer
Registers (CS:EIP) were pointing when the program halted. (The CS value of
c4f0 varies with each invocation of the application.) The promp} (ndicates

that SDM is active. However, since the program has been executed, you must re-
enter SDM to re-execute the code. Use the CLI-restart feature to return to the
Command Line Interpreter (CLI). This command works only if the existing
CS:EIP is GDT-based protected mode code.

To restart the CLI, enter:
..g 284:1c <CR>

Programming Techniques Chapter 5 99

The system responds with the Human Interface prompt (-). Next, enter:
- debug sdbiii <CR>

The system responds with:
SEGMENT MAP FOR JOB: 84A8

NAME BASE NAME BASE NAME BASE NAME BASE
LDT(2) C998 LDT(3) C9A0 LDT(4) C9A8

Break At ¢998:00000000

Use SDM'gy (go) command to set a breakpoint at the instruction where the

program halted (remember the CS:EIP value is given in the interrupt message
displayed when the program halts). The code segment (CS) value will change eacl
time you re-enter SDM, but the instruction pointer (EIP) will remain the same.
Enter:

..9,399 <CR>
Break At ¢998:00000399

To find out where you are in the code, use SDdMdisplay) command to display a
disassembled block of code. Enter:

.10 dx, <CR>

The system displays this code:

€998:00000399H F366A5 rep movsw
€998:0000039CH 1E push ds
€998:0000039DH 07 pop es
€c998:0000039EH B800000000 mov eax,0
c998:000003A3H 8BDO mov edx,eax
€998:000003A5H 52 push edx
€998:000003A6H 50 push eax

€c998:000003A7H 6800000000 push 0
€998:000003ACH 668B057A000000 mov ax,word ptr 07a
€998:000003B3H BF00000000 mov edi,0h O

100 Chapter 5 Debugging Applications

The instruction at addres998:00000399 is a move string word instruction. The
only move word instruction in the sample program is the Pu/\eall when
Gaston enters the loop after creating the segment.

response$mbox = RQ$CREATESMAILBOX ([* Create response mailbox */
fifo,
@status);

seg$token = RQ$CREATE$SSEGMENT(/* Create message segment */
seg3size,
@status);

DO WHILE count < final$count;
message.count = 23;

CALL MOVW (@main$message, @message.text, SIZE(main$message));

CALL RQCSENDCOSSRESPONSE (/* Send message to screen */
NIL,
0,
@message.count,
@status);

If displaying the instruction does not provide enough information about why the
program halted, look at the surrounding code by displaying forward or backward
from the CS:EIP. Because you specified a comma in the previous DX command,
you can display forward another 10 instructions from the current CS:EIP by
entering only a comma). However, since the instruction where the exception
occurred is traceable to the sample code, you know where the program fails. Refer
to Debugging Approach #2 for displaying backward from the CS:EIP.

To examine what happens when the system tries to move the message, return to the
protected-mode prompt (by entering@R>) and examine register contents before
and afteMOVSWs executed. Enter this command:

.X<CR>
The system displays this:

EAX=07e4ca88 CS=c998 EIP=00000399 EFL=00013297 LDTR=02a0
EBX=00000072 SS=ca70 ESP=000007fc EBP=000007fc TR =0278
ECX=00000017 DS=c9a0 ESI=0000007c FS =ca88 MSW =fffb
EDX=0000ca88 ES=ca88 EDI=00000001 GS =0034

GDTR .BASE=00110000 .LIMIT=0f9ff

IDTR .BASE=0011fa00 .LIMIT=007ff

Programming Techniques Chapter 5 101

102

To execute th&1OvVSvnstruction, enter:
..n, <CR>
The system displays:
€998:00000399H F366A5 rep movsw -
Enter a comma:
, <CR>
The system responds with:

Interrupt 13 at ¢998:00000399 General Protection ECODE =00000000

To see how executing this instruction changed register contents, enter:
.X<CR>
The system displays:

EAX=07e4ca88 CS=c998 EIP=00000399 EFL=00003297 LDTR=02a0
EBX=00000072 SS=ca70 ESP=000007fc EBP=000007fc TR =0278
ECX=00000008 DS=c9a0 ESI=0000009a FS =ca88 MSW =fffb
EDX=0000ca88 ES=ca88 EDI=0000001f GS =0034

GDTR .BASE=00110000 .LIMIT=0f9ff

IDTR .BASE=0011fa00 .LIMIT=007ff

In the assembly languaggOVSwhstruction, DS:ESI represents the source from
which the data is moving; ES:EDI is the destination and ECX is the count.

See also: MOVSWASM386 Macro Assembler Operating Instructions/ASM386
Assembly Language Reference

Chapter 5 Debugging Applications

To check the limit of the ES register, enter:
..ddt(es) <CR>
The system displays:

GDT(6481T) DSEG32 BASE=002ecce0 LIMIT=0001f P=1 DPL=0 ED=0 W=1 A=1 G=0

TheLIMIT parameter shows that the segment limit is 1FH (31 decimal). Since the
system counts from zero, the segment size is 32 decimal, which is the value
assigned taeg$size in Gaston. The EDI register tries to move the word into
memory at ES:1FH and 20H when the error occurred. The system was trying to
write past the segment limit of 1FH into 20H when the program halted. This
suggests the PL/MiOVVinstruction should be changed tM@VvEnstruction. At

this point, you could exit SDM, change the PL/M code, then recompile and run it.

However, you can use SDMqexamine/modify) command to change a register
value and thg command to execute the program. Making changes witk &imel

s (substitute) commands enables you to test code without having to recompile and
bind it.

The ECX register contains the count of bytes or words moved. If you decrease the
count in the ECX register from 17 to 15 before you execut&eSwnstruction,

you should be able to move all the data. Exit and re-enter SDM and set a
breakpoint at th&OvSwnstruction by entering:

..g 284:1c <CR>
-debug sdbiii <CR>
..9,399 <CR>

Set the ECX register to 15. Enter:
..x ecx=f <CR>

Now, execute the rest of the program by entering:
..g <CR>

The system responds with:
After you, Alphonse

After you, Gaston
Interrupt 13 at cec8:00000399 General Protection ECODE =00000000

Since the change was valid for one pass through the code, the first pass through the
Gaston loop worked. The next pass failed.

Programming Techniques Chapter 5 103

To return to the CLI, enter:
..g 284:1c <CR>

This partially successful run shows that if you reduce the number of words moved,
the program works. Therefore, to make a permanent fix, you should change the
PL/M MmOVweall toMOVEN the sample code, then recompile and bind it.

Debugging Approach #2

You can also make changes in the disassembled code. Suppose you have run the
program for the first time, and the system displayed this message:

Interrupt 13 at 6368:00000399 General Protection ECODE =00000000

Restart the system using the CLI-restart feature as you did in Debugging Approach
#1, then re-enter SDM by entering:

-debug sdbiii <CR>

Set a breakpoint at the instruction that was executing when the program failed and
display a block of disassembled code by entering:

..0,399 <CR>
.5 dx <CR>

The system displays:

8340:00000399H F366A5 rep movsw
8340:0000039CH 1E push ds
8340:0000039DH 07 pop es
8340:0000039EH B800000000 mov eax,0
8340:000003A3H 8BDO mov edx,eax

104 Chapter 5 Debugging Applications

To look at the instructions precedingpvSyenter:
..14 dx cs:eip - 25 <CR>

The system displays this code:

8340:00000374H 7A00 jle $+02 ;a=00000376
8340:00000376H 0000 add byte ptr [eax],al
8340:00000378H 64C6050000000017 mov byte ptr fs:0,17
8340:00000380H BE7C000000 mov esi,7c
8340:00000385H 668B057A000000 mov ax,word ptr 7a
8340:00000391H B917000000 mov ecx,17
8340:00000396H 8ECO mov es,ax
8340:00000398H FC cld

8340:00000399H F366A5 rep movsw
8340:0000039CH 1E push ds

8340:0000039DH 07 pop es

8340:0000039EH B800000000 mov eax,0
8340:000003A3H 8BDO mov edx,eax

MOVSM$ a repetitive move from DS:ESI to ES:EDI. Looking at the preceding
instructions, you see the instruction at add&3g9:00000391 moves 017H into
ECX. Remember that ECX is the count of bytes or words moved. To display the
ES register contents, use this command line:

ddt(es) <CR>
The screen displays:

GDT(6481T) DSEG32 BASE=002ecce0 LIMIT=0001f P=1 DPL=0 ED=0 W=1 A=1

Programming Techniques Chapter 5 105

106

As in the last example, you can check the limit. Since the segment size is 32
(decimal) and the system is trying to write 17H words, the system fails when it tries
to write past the segment limit. To reduce this count you must move the data.
Re-enter SDM and, using the SDMommand, change the code at

8340:00000391 by entering the following instructions outlined in bold:

Screen Input/Output Comments

..g 284:1c <CR>

-debug sdbiii <CR>

..5 €s:391 <CR> Enter SDM to
substitute memory at
EIP=00000391.

€110:00000391 b9 - , Enter comma to step the
count.

€110:00000392 17 - f <CR> Enter the new count.

..g <CR> Re-start code execution.

The system responds with six iterations of this:

After you, Alphonse

After you, Gaston

After six iterations of the previous screen, the monitor displays:

If you insist, Alphonse

Chapter 5 Debugging Applications

Viewing System Objects

Consider that a problem you are experiencing could be deadlock. By looking at
system objects at various stages of execution, you can observe how synchronization
(or lack of it) is occurring. To do this you use SDM commands

You can view any object in a job using tree(view job object) command

(specifying the job's token) to provide the broad picture of the system state, then
thevt (view token, or display iRMX object) command to focus on individual

elements. Suppose, you want to view the state of the objects before entering the
loop in which Gaston and Alphonse exchange messages. Assume you have stepped
through the code, verifying system calls until you located the CS:EIP for the
Nucleuscreate_segmensystem call in Gaston. Re-enter SDM and set a

breakpoint at this CS:EIP by entering:

-debug sdbiii <CR>
..9,352 <CR>

To get the job token, enter:
..Vj <CR>

The system displays this screen output. The values in the output may differ from
yours. Comments have been added to the output.

Job Token (iRMX Job Tree) Comments
0258 Root Job
11b8 Human Interface
4138 Command Line Interpreter
b7e0 Application Job
3f70 EIOS
3968 iIRMX NET
3238 BIOS

Programming Techniques Chapter 5 107

The token for the application job in this outpubie0
job, enter:

..vo b7e0 <CR>

The system displays:

. To view objects for this

Child Jobs:

Tasks: c250 c¢l1l70 c108

Mailboxes: c238t c098

Semaphores:

Regions:

Segments: c2a0 c¢3cO ¢418 c100 c8a8 ¢850
c700 c¢740 clf0 c120

Extensions:

Composites: bcl0 c7a0

Buffer Pools:

At this stage of program execution, two mailboxes exist. t Tlidlowing mailbox

€238 means one or more tasks are waiting at this mailbox (Alphonse was created
first and is waiting for a message from Gaston). Examine mailtgs by

entering:

..vt 238 <CR>
The system responds with:

Object type = 3 Mailbox

Mailbox type

Queue discipline
Containing job

Object Task queue head ¢170
FIFO Object queue head 0000
b7e0 Object cache depth 08

Task queue c170

Use SDB’su (display system calls in a task's stack) command to view the waiting
task's stack. To unwind the stack, enter:

..vu c170 <CR>

Chapter 5 Debugging Applications

The system displays:
gate #0430

Return cs:eip - ¢850:0000020f
¢1f0:000007e4 00000040 8075c700 0000003e 0000c700 0000ffff 0000c238
¢1f0:000007fc 00000000

(Nucleus) receive message
|.....excep$p.....|...responsedp....|..time..|..mbox..|
You can continue to examine objects or set a breakpoint at the return CS:EIP.
Set the CS:EIP by entering:
..g, 20f <CR>
This causes SDM to display:
Interrupt 13 at ¢850:00000399 General Protection ECODE =00000000

This message indicates that the program halts in Gaston arg3b0&0000399
is the last instruction executing.

Alternative Debugging Techniques

This chapter has shown two ways to find an error and two ways to make temporary
fixes from the SDM/SDB. The message displayed when the program halts contains
theCS:EIP of the last instruction executing. If setting b&:EIP at this

instruction and displaying the surrounding code does not help you locate this point
in your application code, there is another method.

Use combinations of thg, vo, vt, vu, andvs commands to locate the running task.
Then set the breakpoint at tas:EIP of the last executing instruction and display
code, objects, and registers to determine how the system is executing that
instruction.

Programming Techniques Chapter 5 109

Porting Applications

This chapter discusses porting existing 16-bit iRMX Il code to the 32-bit iRMX I,
iIRMX for Windows, or iRMX for PCs OS. The topics covered are:

Three different approaches to porting iRMX code
The compiler switches used to port code
Language differences for PL/M, C, and ASM

An example of porting a device driver

Porting code to PC-bus systems

Before porting code, learn the data types recognized by iRMX OSs. Mismatching
data types when porting code cause program errors.

See also: Data TypeSystem Call Reference

Porting Code from 16-Bits to 32-Bits

Migrating from 16-bit iRMX ll-based applications to 32-bit iRMX IlI-based
applications increases performance if large data manipulations or numerics are
involved. It also makes code easier to maintain. Use one of these porting
strategies to port your code:

Use the existing 16-bit object files without any changes.
Port only the code that gains in performance due to the change to 32 bits.

Port the entire application to 32 bits.

In the following situations, however, you should not port to 32 bits:

If the platform on which the application will run uses an Intel 80286
microprocessor and there is no performance reason or other need to move to an
Intel386 or higher microprocessor. The iRMX IIl OS requires an Intel386 or
higher microprocessor.

If all computations only involve integers smaller than 64 Kbytes (65,536 bytes)
and there is no present or foreseeable need to use contiguous memory areas
larger than 64 Kbytes.

Programming Techniques Chapter 6 111

* Because the Intel386 microprocessor object module format (OMF386) does not
support memory overlays, iRMX Ill cannot support overlay loading in 32-bit
applications. iIRMX Il applications that use overlays can still execute in 16-bit
compatibility mode.

« Applications written in 16-bit require more code and data space (an average of
30%) when ported to 32 bits. Additional space is required for the OS itself. If
there are severe constraints on memory in the system, you should not port to 3.
bits.

« In certain cases, the application may be written using a 16-bit compiler for
which no 32-bit compiler is available.

Using Existing 16-Bit Code

Most 16-bit iRMX Il executable code does not need to be recompiled for 32-bit
iIRMX systems. These 16-bit applications run together with 32-bit applications
without change. For example, the iRMXdif command can be used on an
iIRMX Il system without changes.

iIRMX Il applications (either run-time loadable or configured as first-level jobs)

will run under iIRMX Il without modification as long as they do not include 16-bit
interrupt-handlers, device-drivers, and OS extensions. Such applications execute i
16-bit compatibility mode.

16-bit C (compiled with iC-286 V4.1 or later) and 16-bit PL/M programs are also
fully binary compatible with iRMX 11l provided no 16-bit device drivers, interrupt
handlers or OS extensions are used. However, C applications may be more stack-
intensive than PL/M applications. They may run out of stack space under iRMX I
unless they are allocated additional stack size using the SEGSIZE control in
BND286.

Advantages of 32-Bit Application Code

112

This list describes situations in which it is an advantage to port from 16 bits to
32-bit code.

« Applications containing intensive computations with unsigned integers larger
than 64 Kbytes (65,536) or signed integers larger than 32 Kbytes (32,768) will
run faster.

« Intel386, Intel486, and Pentium microprocessors offer several bit and bit-string
manipulation instructions. Applications that do bit-field manipulation in
software could improve their performance. Applications that previously used
bytes to store binary flags could be rewritten much more compactly.

Chapter 6 Porting Applications

« Applications where the processor might access memory across a 32-bit bus,
like Multibus 11, will access it faster.

* When there is a 32-bit interface between the microprocessor, the numeric
processor, and memory; floating-point applications will see a moderate
performance boost because operands are transferred in 32-bit blocks to and
from the processor.

When manipulating large data arrays, you can use fewer segments because you
are not constrained to the 64 Kbyte size limitation. Data is now accessed in a
single, large (up to 4 Gbytes) segment, which saves the overhead of multiple
segment manipulation. Reading and writing this segment from and to mass
storage is also faster because a single 1/O call is used instead of multiple
64 Kbyte-constrained 1/O calls.

Porting Entire Applications to 32-Bits

You must recompile and rebind all the code when porting your entire application
system. Although it requires greater effort, this method provides the best overall
performance.

This list describes important considerations when re-generating 16-bit code into
32-bit code.

* The logical pathnamerfnx:) points to thérmx386directory instead of
/rmx286 The directoryrmx:inc contains files with EXTERNAL declarations
for the iRMX and UDI calls in the PL/M source.

* You must bind the 32-bit iRMX Il code with the 32-bit iIRMX and UDI
interface librariesrfnxifc32.lib udiifc32.lib, in this example).

* When binding compact model object files, a RENAMESEG control must be
used to rename the code segment (output by PL/M-386) from CODE to
CODES32. The code segments of thifc andudiifc libraries are already
named CODE32. In the compact model, only one code segment is allowed
and BND386 can only combine segments that have the same name.

» Use 32-bit word sizes if the 16-bit application being ported has:

— Any arithmetic operation involving DWORDs (in PL/M-286) or
long/double declarations in C-286.

— String searching/copying operations (CMPB/ CMPW/MOVB/MOVW in
PL/M) are limited to 64 Kbyte segments with a 16-bit OS. All physical
memory can be covered by one 32-bit operation.

Programming Techniques Chapter 6 113

— Certain variable declarations at the start of each source module and
procedure/function, especially at the size of arrays. Any arrays of close to
64 Kbyte size, or 32 Kbyte 16-bit WORD size, may benefit from being
extended.

— 80286 code which performs bit manipulation routines. Performance may
be increased by re-coding with 32-bit microprocessor-based functions.
These functions may have to call assembler routines to access these bit
manipulation functions.

Porting 16-Bit PL/M Code to 32 Bits

114

Once you decide how much application code needs to be ported, you must choose
between two porting processes. The only difference between the two methods is
the invocation switches on the compiler:

WORD16 switch This is typically the easiest method to use when porting code.
This switch causes all WORD values to remain 16-bits and
all DWORD values to remain 32-bits. First, edit your source
file to change the data types of variables that can be larger.
For example, variables containing the offset of indirect near
calls and those that indicate the size of data transfers should
be changed to a DWORD value. Then compile your source
code using the WORD16 switch.

No switches Compile the code you select for porting using the PL/M-386
compiler and no switches. This forces a default value of 16
bits for each HWORD value, 32 bits for each WORD value
and a 64-bit value for each DWORD value. Because 64-bit
arithmetic is much slower than 32-bit arithmetic, you should
carefully review the existing DWORD variables. Those
variables that need to be only 32-bit values should be
changed to WORD variables.

When converting 16-bit PL/M code to 32 bits, you must:
» Change the WORD data type to WORD_16

e Change the DWORD data type to WORD_32

e Use the WORD16 compiler switch

Chapter 6 Porting Applications

Differences Between PL/M-386 and Previous PL/M Code

This section describes differences between code that was compiled using versions
of the PL/M compiler other than PL/M-386. If you are using binary compatibility
and not recompiling your code, you do not need to make changes. Some of these
differences are changes to the iRMX OS, others are changes to the compiler. Each
difference is explained along with any changes you need to make are:

e OFFSET is a reserved word in PL/M-386. If you are porting code to 32 bits
and your code contains variables named OFFSET, change these variable
names. For example, change:

DECLARE OFFSET WORD;
To:
DECLARE OFF SET WORD_32;

e The limits of the PL/M built-in string functions, such as CMPB, FINDB,
SKIPB, SETB, MOVB, CMPW, SETW, and so on, have increased from
OFFFFH to OFFFFFFFFH. This enables searches of buffers that are greater
than 64 Kbytes in length. You can force the buffer length to remain 64 Kbytes
by means of truncation. That is, you place the result of the CMPB and FINDB
functions into WORD_16 variables and truncate the upper 16 bits. Be sure
your code does not attempt to search past the end of your forced 64 Kbyte
segment.

e Change all WORD_16 variables that contain the offset of a POINTER to
WORD_32 variables. For example, change:

DECLARE
PTR$OVERLAY LITERALLY 'STRUCTURE(offset WORD, base
TOKEN);

To:

DECLARE
PTR$OVERLAY LITERALLY 'STRUCTURE(off_set WORD_32,
base TOKEN)’;

Programming Techniques Chapter 6 115

« Change all variables that reference data transfer counts from WORD_16 values
to WORD_32 values. For example, change:

DECLARE
save$count WORD,

save$count = iors.count;
To:

DECLARE
save$count WORD_32,

save$count = iors.count;
/* iors.count is now a 32-bit value /*

Porting 16-Bit C Code to 32 Bits

These sections describe the main concerns when creating or modifying 16-bit code
which will be ported to 32 bits. The two main concerns are:

e Including thermx_c.hfile and using its types

e Using the NATIVE_WORD type for variables which will expand from 16 bits
to 32 bits when porting your application

Using the rmx_c.h Header file

The/intel/include/rmx_c.Hile provides definitions for system calls, structures and
other items needed for IRMX application development. Including this file and
using its definitions throughout your application enables much easier conversion of
that code from 16-bit to 32-bit source.

See also: Header FileSystem Calls

116 Chapter 6 Porting Applications

Using the NATIVE_WORD Type Definition

Type definitions of variables which expand from 16 bits to 32 bits when porting to
32-bit code should use the NATIVE_WORD type definition. Examples of these
variables are:

I/O counts
Memory pool sizes
Stack sizes
Segment sizes

Application-specific variables which must expand to 32 bits

This example uses NATIVE_WORD and includes a pointer overlay:

typedef struct exception_struct {

NATIVE_WORD offset;
SELECTOR base;
BYTE exception mode;

The 1/O count in this iIRMX system call uses NATIVE_WORD:

rgawrite (output$conn$t, (BYTE *) message,

(NATIVE_WORD) strlen(message), write$mbx,
&status;

Porting 16-Bit ASM Code to 32 Bits

If you use ASM386, you must use registers differently. These sections describe the
differences.

Properly clear all registers used as index or scratch locations to check for zero.
If they are not properly cleared, bits left in the extended (upper 16 bits) of the
register may interfere with the intended operation. To properly clear registers
change:

mov ax, word ptr ds:8
or ax, ax
jz

To:

movzx eax, word ptr ds:8
or eax, eax
jz

Programming Techniques Chapter 6 117

118

Use twoshl (shift left) statements before a jump in the index to a case
statement. To properly increment an index, change:

xor bh, bh

mov bl, cdate.interrupt_type

and bl, ts_more_ints

shl bl, 1 ; Make bx a pointer to a
: 16-bit word to index
; into case_table

jmp cs:case_table[bx]

To:

xor ebx, ebx

mov bl, cdata.interrupt_type

and bl, ts_more_ints

shl ebx, 2 ; Make bx a pointer to a
: 32bit word to index
; into case_table]

jmp cs:case_table[ebx]

PL/M-like procedures that return pointers now place the POINTER in
DX:EAX instead of ES:BX. For example, change:

mov es, ptr_base
mov bx, ptr_offset
ret

To:

mov dx, ptr_base
mov eax, ptr_offset
re

Change interrupt handlers written in assembly language to run in the 32-bit
environment. This example shows an interrupt handler for the 16-bit system:

int_handler proc near
public cominthandler

pusha ; save the processor state
push ds

push es

push cX : make room for status

mov bp, sp ; ss:bpis status$p

Chapter 6 Porting Applications

push
push
call

push

push
push
call

pop
pop
pop
popa

iret

ss
bp

rqgetlevel
ax : returned leve

ss ; ax = rqgetlevel(status$p)
bp

rgsignalinterrupt

cX

es
ds

; return from interrupt

int_handler endp

code
end

ends

This is an interrupt handler ported to a 32-bit system. Note the IF-ELSE statement
that is added to this example. This IF block enables using the same code on 16-bit
and 32-bit systems, depending on which assembler is used and how it is invoked.

%IF (%r_32) THEN (%' ; macro definitions which
%define (ax) (eax) ; allow code to go both ways
%define (bx) (ebx)

%define (cx) (ecx)
%define (dx) (edx)
%define (si) (esi)
%define (di) (edi)
%define (bp) (ebp)
%define (sp) (esp)
%define (mov16) (movzx)
%define (pusha) (pushad)
%define (popa) (popad)
%define (pushf) (pushfd)
%define (popf) (popfd)
%define (iret) (iretd)
%define (dw) (dd)
%define (dd) (dp)

) ELSE (%'

Programming Techniques Chapter 6 119

%define (ax) (ax)
%define (bx) (bx)
%define (cx) (cx)
%define (dx) (dx)
%define (si) (si)
%define (di) (di)
%define (bp) (bp)
%define (sp) (sp)
%define (mov16) (mov)
%define (pusha) (pusha)
%define (popa) (popa)
%define (pushf) (pushf)
%define (popf) (popf)
%define (iret) (iret)
%define (dw) (dw)
%define (dd) (dd)

)FI%'

int_handler proc near
public cominthandler

%pusha

push ds

push es
%IF (%r_32) THEN(push

push gs) FI

push %cx

; save the processor state

fs

; make room for status

mov %bp, %sp ; ss:bp is status$p

push ss
push %bp
call rqgetlevel

push %ax ; CALL rg$signal$interrupt(ax, status$p)

push ss
push %bp

; ax = rqgetlevel(status$p)

call rgsignalinterrupt

pop %cx

; pop status

; restore processor state

120 Chapter 6

Porting Applications

%IF (%r_32) THEN(pop gs
pop fs) FI
pop es
pop ds
%popa
%iret ; return from interrupt
int_handler endp

code ends

end

To assemble this example, select one of these statements:
ASM286 inthand.asm object(inthand.ob2) pr(inthand.Is2) %SET(r_32,0)

ASM386 inthand.asm object(inthand.ob3) pr(inthand.Is3) %SET(r_32,1)

Example: Porting a Device Driver

This section contains a portion of an example device driver (8274 Terminal Driver)
ported to the iIRMX OS. Though changes to the driver are minimal, you must also
port the include files and libraries. In this code, the PL/M compiler's and
Assembler's SET controls, a PL/M identifier, permits IF-ELSE branches while
compiling the code.

PLM386 :F1:x8274.P28 SET(r_32)word16 ; for 32 bits
PLM286 :F1:x8274.P28 RESET (r_32) ; for 16 bits
PLM86 :F1:x8274.P28 SET(tsc) RESET(r_32)

Programming Techniques Chapter 6 121

Two identifiers are usedsc andr_32 . Ther_32 identifier is used to port the

code to the iRMX OS. IF-ELSE decision blocks were added so the same code can
be compiled into a driver for both the 32-bit and 16-bit versions of the OS. The
LIB statements for the 8274 Driver are:

LIB386 :F1:xcmdrv.lib nobu ; for 32-bit systems
delete x8274
add :F1:x8274.0bj
compress
quit
exit
LIB286 :F1:xcmdrv.lib nb ; for 16-bit systems
delete x8274
add :F1:x8274.0bj
compress
quit
exit
LIB86
delete :F1:xcmdrv.lib(x8274)
add :F1:x8274.0bj to :F1:xcmdrv.lib
exit

122 Chapter 6 Porting Applications

Figure 6-1 is a device driver example which uses_ tB2 porting identifier.

$title('x8274: 8274 terminal device driver’)
/*
* Allow iRMX I/l common source
*/
$IF tsc
$OPTIMIZE(3)
$COMPACT(tsc -CONST IN CODE- HAS x8274)
$large (other_libs
$EXPORTS RQ$GetTaskTokens;
$EXPORTS RQ$LookupObject;
$EXPORTS RQ$CreateSegment;
$EXPORTS RQ$DeleteSegment)
$ELSE
$COMPACT
$ROM
$OPTIMIZE(3)
$ENDIF

$subtitle('Module Header")
/*

*

: TITLE: x8274

* ABSTRACT: This module is the interface between the iRMX286
: Terminal Support, and the 8274 MPSC.

x8274:
DO;

$include(:f1:xcomon.lit)
$include(:f1:xnutyp.lit)
$include(:f1:xiotyp.lit)
$include(:f1:xexcep.lit)
$include(:f1:xtsdtn.lit)
$include(:f1:xtssow.ext)
$include(:f1:xgdlay.ext)
$include(:f1:xncall.ext)

Figure 6-1. Device Driver Example Using r_32 Conditional Statements

Programming Techniques

Chapter 6

123

$subtitle('Data structures and literals')
/*

* 8274 register values

*

DECLARE
WRO LITERALLY '00H',
WR1 LITERALLY '01H',

/*

* 8274 Device information Structure

*/

DECLARE

i8274$CONTROLLERSINFO LITERALLY 'STRUCTURE(

i8274$INFO$1,
i8274$INFO$2,
i8274$INFO$3,
i8274$INFO$4,
i8274$INFO$5,
i8274$INFO$6,
i8274$INFO$7)";

DECLARE

$IFr_32

i8274$INFO$1 LITERALLY ‘filler(22) WORD!,

$ELSE

i8274$INFO$1 LITERALLY ‘filler(13) WORD',

$ENDIF

i8274$INFO$2 LITERALLY ‘ch_a_data_port WORD,
ch_a_status_port WORD,
ch_b_data_port WORD,
ch_b_status_port WORD',

i8274$INFO$3 LITERALLY ‘'ch_a_in_rate_port WORD,
ch_a_in_rate_cmd_port WORD,
ch_a_in_rate_counter BYTE,
ch_a_in_rate_freq DWORD',

Figure 6-1. Device Driver Example Using r_32 Conditional Statements (continued)

124 Chapter 6 Porting Applications

$IFr_32
DECLARE
SIZEOFOFFSET LITERALLY 'DWORD'; /* Support for larger segments*/
$ELSE
/* Note that either type of segmentation is supported */

DECLARE
SIZEOFOFFSET LITERALLY 'WORD';
$ENDIF
DECLARE
BOOLEAN LITERALLY 'BYTE',
TRUE LITERALLY 'OFFH',
FALSE LITERALLY '000H",

FOREVER LITERALLY 'WHILE TRUE',

PTR$OVERLAY LITERALLY 'STRUCTURE(off_set SIZEOFOFFSET,

base TOKEN)',

P$OVERLAY LITERALLY 'STRUCTURE(off_set SIZEOFOFFSET,
base WORD)',

STRING LITERALLY 'STRUCTURE(length BYTE, char(1) BYTE)',

NOSTIMESLIMIT LITERALLY 'OFFFFH',

Figure 6-1. Device Driver Example Using r_32 Conditional Statements (continued)

Programming Techniques

Chapter 6

125

Figure 6-2 is a literal file which uses the r_32 porting identifier.

xtstdn.lit

/*

* xtsdtn.lit

*

* Terminal Support cdata, udata, and bddata structures as

* available to the user for the purpose of writing a terminal

* driver which is compatible with the Terminal Support Code.

* This file has the same structure as xtsdat.lit but only

* defines that portion of the structure which is visible to the

* user.

*

* Defines RECVSINFO$STRUCT for MBII drivers

*

* Defines a substructure TS$BDDATA4 which is the same as

* TS$BDDATAS3 minus driver$user$only. This enables drivers to
* overlay a different structure over TSSUDATA (TS$UDATAL +

* TS$SUDATA2 + TS$SBDDATAL + TS$BDDATA2 + TS$BDDATA4 + a driver
* specific structure)

* Adds 32 bit conditional support.
*/
DECLARE
TS$CDATA LITERALLY 'STRUCTURE(
ios$data$segment SEGMENT,
status WORD_186,
interrupt$type BYTE,
interrupting$unit BYTE,
dinfo$p POINTER,
driver$cdata$p POINTER,
$IFr_32
reserved(46) BYTE,
$ELSE
reserved(34) BYTE,
$ENDIF
udata(l) BYTE)';

Figure 6-2. Literal File Using r_32 Conditional Statements

126 Chapter 6 Porting Applications

* CDATA STRUCTURE duplicated here for use with UDATA members
* for single structure overlay
*/

DECLARE
TSSCDATASINC LITERALLY
'ios$data$segment SEGMENT,
status WORD_16,
interrupt$type BYTE,
interrupting$unit BYTE,
dinfo$p POINTER,
driver$cdata$p POINTER,
$IFr_32
reservedl1(46) BYTE
$ELSE
reservedl1(34) BYTE'
$ENDIF
DECLARE
TS$SUDATA LITERALLY 'STRUCTURE(
TSSUDATAL,
TSSUDATAZ2,
TS$BDDATAL,
TS$BDDATAZ2,
TS$BDDATA3)';
DECLARE
TS$SUDATAL LITERALLY
‘uinfo$p POINTER,
term$flags WORD_16,
$IFr_32
in$rate WORD_32,
out$rate WORD_32,
$ELSE
in$rate WORD_16,
out$rate WORD_16,

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

Programming Techniques Chapter 6 127

$ENDIF

$IFr_32
$ELSE

$ENDIF

$IFr_32
$ELSE

$ENDIF

128

TSSUDATA2

TS$BDDATA1

TS$SBDDATA2

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

Chapter 6

scroll$number
xysize
xyoffset
LITERALLY
raw$size
raw$data$p
raws$in
raw$out
output$scroll$count
unitSnumber

reserved(1099)

reserved(890)

LITERALLY
'buffered$device
buff$input$state
buff$output$state
select(2)
lineSram$p
function$id

inScount
inScount
out$count

LITERALLY
'units$available
output$buffer$size
user$buffer$p
echo$count
echo$buffer$p
received$special

WORD_ 16,
WORD_16,
WORD_16',

WORD_16,
POINTER,
WORD_16,
WORD_16,

WORD_16,
BYTE,

BYTE',

BYTE',

BYTE,
WORD_ 16,
WORD_16,
BYTE,
POINTER,
BYTE,

WORD_ 16,
BYTE,

WORD_16',

WORD_ 16,
WORD_16,
POINTER,
BYTE,
POINTER,
WORD_16,

Porting Applications

special$modes WORD_16,
high$water$mark WORD_16',

TS$BDDATA3 LITERALLY

'low$water$mark WORD_186,
fconchar WORD_16,
fcoffchar WORD_16,
link$parameter WORD_16,
spc$hiSwaterSmark WORD_16,

special$char(4) BYTE,

$IFr_32

bd$reserved(41) BYTE,

driveruseonly(48) BYTE'

$ELSE

bd$reserved(25) BYTE,

driveruseonly(32) BYTE'

$ENDIF

/* Note! TS$BDDATA4 must be same as TS$BDDATAS minus
driveruseonly */

DECLARE
TS$BDDATA4 LITERALLY
'low$water$mark WORD_16,
fconchar WORD_186,
fc$offSchar WORD_16,
link$parameter WORD_16,
spc$hiswater$mark WORD_16,
special$char(4) BYTE,
$IFr_32
bd$reserved(41) BYTE';
$ELSE
bd$reserved(25) BYTE';
$ENDIF

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

Programming Techniques Chapter 6 129

DECLARE
$IFr 32
TS$UDATA$SIZE
TS$CDATA$SIZE
$ELSE
TS$UDATA$SIZE
TS$CDATA$SIZE
TS$UDATA$FACTOR
$ENDIF

DECLARE
INPUT$ONLINE
INPUT$CMDS$PENDING
INPUT$FULL
RAWS$BUFF$FULL

DECLARE
OUTPUT$SEMAPHORE
OUTPUT$STOPPED
OUTPUT$SCROLL
OUTPUT$CONTROL

DECLARE
FLOWS$CONTROL
SPECIAL$CHAR$MODE

DECLARE

NONBUFDEV$RAWSSIZE

LITERALLY
LITERALLY

LITERALLY
LITERALLY
LITERALLY

LITERALLY
LITERALLY

LITERALLY
LITERALLY

LITERALLY
LITERALLY
LITERALLY
LITERALLY

LITERALLY
LITERALLY

LITERALLY

[* Structure for passing MBIl messages to term$check */

1280/,
'40H";

1024/,
'30H',
104

'‘0001H",

'‘0002H',

'‘0008H",

'‘0010H"

‘001H',
'002H',
'004H',
'‘008H";

‘001H',
'‘002H";

'"100H";

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

130 Chapter 6

Porting Applications

DECLARE
RECVS$INFO$STRUCT LITERALLY

'STRUCTURE(
data$p POINTER
flags WORD_16,
status WORD_186,
trans$id WORD_16,
data$length WORD_32,
forwarding$port TOKEN,
remote$socket WORD_32,
control$msg(20) BYTE,
reserved(4) BYTE);

[* Structure for passing Mailbox messages to term$check */

DECLARE
MBOX$RECVS$INFO$SSTRUCT LITERALLY
'STRUCTURE(
object$t TOKEN,
resp$mbox$t TOKEN)';

Figure 6-2. Literal File Using r_32 Conditional Statements (continued)

Programming Techniques

Chapter 6

131

Migrating Code to a PC-Bus Platform

This section discusses the differences between the way a PC-bus system and othe
systems handle numeric processors. Be aware of these differences when porting
code to a PC-bus system from a different system.

Using a Numeric Processor Extension (NPX)

You can increase the performance of math-intensive tasks by using a Numeric
Processor Extension (NPX) or math coprocessor to perform the math functions. In
systems that use a math coprocessor, the processor and the microprocessor are
synchronized by a busy signal from the numeric processor. In a PC-bus system,
this numeric error signal is routed through the programmable interrupt controllers
(PICs). The numeric error signal is connected to the slave PIC interrupt 5, which is
connected to the master PIC interrupt 2.

The OS, through task prioritization, automatically disables certain interrupt levels
when a task runs. The levels disabled depend on the priorities of the current and
previous tasks. If a task can create a physical interrupt, make sure that the task's
priority does not mask the interrupt level that it uses. Failure to coordinate the
task's priority with the physical interrupts it uses can cause a system deadlock
situation.

See also: Disabled interrupt leveBystem Concepts

|:| Note

If a task's code includes instructions that execute on a NPX, the
task should not have a priority high enough to disable the
interrupt level of the NPX. The highest task priority for tasks
using NPX instructions is 45. Code written on a PC-bus system
can be ported to a Multibus system without change. Code written
on a Multibus system can be moved to a PC-bus system if the
tasks that execute on a NPX have a priority of 46 or numerically
higher.

132 Chapter 6 Porting Applications

Segmentation Considerations

The 32-bit interface libraries for the iRMX OS support only the compact
segmentation model. This requires 32-bit application code to reside in the same
code segment as the interface libraries. The best way to implement this is to
structure your application as one or more compact subsystems. When porting an
existing 16-bit large memory model application to a 32-bit compact memory model
application, consider this:

e Compact model code runs faster than large model code. It takes 26 clocks for
each segment register load. Near calls used in a compact segmentation model
require no segment register loads; far calls in a large segmentation model
require at least 4 register loads per call. Register loading impacts application
performance quickly, especially if nested calls are made. A simple large
model, 16-bit test program making recursive calls to just four system calls had
a 6 percent performance boost when changed to compact.

* When moving from large to compact, insure that a valid DS value is available
to jobs and tasks created by tireate_joh rge_create_joh create_io_joh
rqe_create_io_joh load_io_job, rqe_load_io_job andcreate_tasksystem
calls.

See also: Using Compact and Large Memory Models, Chapter 7,
Using the Flat Memory Model, Chapter 8

The second option follows. The EXPORTS directive causes the compiler to
provide a FAR interface for the procedure task_1. This interface includes setting
up DS upon procedure entry.

$COMPACT(my_code -CONST IN CODE- HAS my_proc;

$ EXPORTS task$1)

my_proc:
DO;

task$1l: PROCEDURE PUBLIC;

END task$1;
END my_proc;

Programming Techniques Chapter 6 133

Using Compact and
Large Memory Models

This chapter provides information on using the compact and large memory models
to build iRMX applications. These guidelines apply only if you use a compiler that
supports segmentation, like the Intel compilers. Understanding the following

concepts will help you better understand the information presented in this chapter:

e Segmentation models
e Subsystems
e iIRMX jobs, tasks, and segments

See also: Segmentation models and subsystems,
iC-386 Compiler User's Guide
PL/M-386 Programmer's Guide

Choosing a Memory Model

When compiling your application source code, use compiler controls to specify the
memory model for the application.

Memory Segments

< Initial CS:EIP
CS—> Code
DS
(ES)% Data
SS—> Stack
<—SS:ESP

0OM04190

Figure 7-1. Basic Large/Compact Model Program

Programming Techniques Chapter 7 135

32-Bit Applications

For 32-bit applications, use the compact model by specifyingothpact
compiler control. If you need the efficiency and protection of multiple segments,
divide your code into subsystems.

The compiler places code sections from all linked modules in the same code
segment, which are addressed by the CS register. Data sections are placed into a
single data segment and addressed by the DS register. Stack sections are placed
into a stack segment and addressed by the SS register.

For 32-bit programming, only the compact model is allowed and there is no
segment size limitation.

16-Bit Applications

136

For 16-bit applications, follow these guidelines when choosing a segmentation
model:

* Use the compact model if your code and data can each fit into a 64 Kbyte
segment.

* Use the large model if you cannot use the compact model. There are fewer
size and iRMX restrictions with large, but this model results in the largest
number of segment register switches.

Compile and bind your application under the compact model to determine if it fits
into the compact model. If it is too large for the compact model, BND386 returns
an error message. If an error message occurs, use the large segmentation model ¢
compact subsystem.

|:| Note

When using the Soft-Scope debugger on 16-bit, multiple stack
applications, you must set teegsize(stack()) parameter to be
greater than or equal to 1024 bytes when binding the application.
This is because the iIRMX OS assumes stack segments which are
at least 1024 bytes in length.

Code and data sections from each object module have their own code and data
segments. The total size of code and data can be more than 64 Kbytes. Stack
sections have a single stack segment and are addressed by the SS register. Code
and data segments are paired. During program execution, both the CS and DS
registers are updated whenever a public or external procedure is activated.

Chapter 7 Using Compact and Large Memory Models

Porting Applications

When porting iRMX source code from a 16-bit application to 32-bit application,
you must change the segmentation model if the code is not already compact. Use
the compact segmentation model because the iIRMX OS supports only this model
for 32-bit applications.

If you use exception handlers with the compact model, usexpogts subsystem
control to export the exception handler procedures. This enables other segments to
access the handler with a far call.

See also: Porting Applications, Chapter 6

If you are porting from a large/compact application to a flat application, you must
use unigue system calls and data types.

See also: Porting Large/Compact to Flat, Chapter 8

Using ROM and RAM Compiler Controls

If your application will be loaded into RAM, you can use the ROM or RAM

controls to adjust segment sizes so that your application fits into the compact
model. Specifying the ROM or RAM compiler controls determines whether the
constants defined in your programs are placed in the code or the data areas. This
provides additional control on the size of those segments.

For example, if your application's data is slightly larger than 64 Kbytes, specifying
the ROM control (which places the constants in the code segment) might allow the
remaining data to fit in a 64 Kbyte segment. This could make your code eligible
for the compact model.

See also: Developing Applications for ROM, Chapter 9

Subsystems

Subsystems are very efficient for applications with multiple program modules that
need to share data and communicate efficiently. You must use the compact or

large models when using subsystems. A subsystem is a collection of program
modules that have the same segmentation model and share the same code and data
segments. For large applications, set up your application to use multiple compact
subsystems.

See also: Subsysteni€-386 Compiler User's Guide
or thePL/M-386 Programmer's Guide

Programming Techniques Chapter 7 137

Subsystem Advantages
Subsystems are efficient for these reasons:
« Code and data can be partitioned for easier maintenance.

* Segment registers are changed only when an application calls procedures or
accesses data in another subsystem.

e Calls made only within a subsystem are near calls.

» Pointers referenced only within a subsystem are near pointers.
» Data is protected from being overwritten by other subsystems.
* Subsystems are useful for building loadable device drivers.

See also: Making a Driver Loadabl@siver Programming Concepts

Closed Subsystems
Closed subsystems have these attributes:
e The subsystem is named.
* A module list is needed.

* Theexports control lists the functions and variables of a subsystem
accessible by outside subsystems.

e Only the listed modules are combined in a closed subsystem.

* You can add or delete modules from the subsystem by changing the list of
modules and regenerating the system.

The code and data segment names for a closed subsystem have the subsystem na
as a prefix. For example, a 32-bit closed subsystem nsubegsteml uses
subsystem1_code32 for the code segment andbsystem1_data for the data
segment. The stack segment is nastack . In a closed subsystem, the

execution stack is shared with other subsystems.

See also: Prefixe§ystem Concepts

138 Chapter 7 Using Compact and Large Memory Models

Open Subsystems
Open subsystems have these attributes:
e The subsystem is unnamed.
e A module list is not needed.
* Segmentation controls are the only subsystem-specific compiler controls used.
* All modules using the same segmentation model are automatically combined.
e Modules can be freely added or deleted.

The code segment for an open subsystem is naoded2 for 32-bit applications.
The data segment for an open subsystem is ndmadfor 32-bit applications.
The stack subsystem is namstack .

Subsystem Configurations

There can be only one open subsystem in a program, but there can be multiple
closed subsystems. Every module in a program is either part of a closed subsystem
or by default, part of an open subsystem. A program can consist of one of these
subsystem configurations:

e Only the open subsystem, which is the default configuration
e One or more closed subsystems
* One or more closed subsystems and the open subsystem

You create a subsystem configuration when you compile and bind your application
program. You specify a subsystem as closed by declaring a name for it.

See also: Subsystem€-386 Compiler User's Guide
or thePL/M-386 Programmer's Guide

Creating a Closed Subsystem

To create a closed subsystem, create a subsystem declaration at the beginning of
your source code. Specify this information:

e Thecompact compiler control (to use the compact subsystem model)
* Name of the closed subsystem

* Segment in which to place constants

* Modules that belong in the subsystem usinght®e control

* Functions that are accessible outside the subsystem usiexpthes control

Programming Techniques Chapter 7 139

The PL/M applicatiomamdrv.p38 in the/rmx386/demo/plm/Iddirectory, contains
this closed compact subsystem declaration:

$compact(ramdrv -CONST IN CODE- HAS
ramdrv,
xram;
EXPORTS
ram$init$io,
ram$finish$io,
ram$queuesio,
ram$cancel$io)

R R R A e R]

This declaration defines a closed compact subsystem nameéd . It contains

the modulesamdrv andxram. The declaration exports the four procedures:
ram_init_io , ram_finish_io ,ram_queue_io , andram_cancel_io . The

export declaration forces the interface to these calls to be far calls. This enables
other subsystems to access these procedures. This same subsystem declaration
must be added to each module of the subsystem.

To generate this subsystem, userttekefileto compile your source code modules
and bind the resulting object modules to the system. First attach to the directory
where the demo resides then invokerttakefile

- af /rmx386/demo/pim/ldd <CR>
- make <CR>

This section fronmakefilein the/rmx386/demo/plm/Iddirectory binds the closed
subsystem:

ramdrv:ramdrv.obj $(LIBS) $(BND3)
$(BND) ramdrv.obj,$(LIBLIST) &
0j($@) pr($@.mpl) $(BNDFLAGS) &
rn(code to $@_code32)

This instructs the binder to:
* Bind the RAM disk driver object module

* Bind the libraries including the loadable device driver library, the iC-386
library, the UDI interface library, and the iRMX interface library

e Use theenameseg instruction to remap the code segment into the
ramdrv_code32 code subsystem

e Use therc instruction to allocate dynamic memory with an initial size of
5 Kbytes and a maximum size of 1 Mbyte

140 Chapter 7 Using Compact and Large Memory Models

Creating an Open Subsystem

To create an open subsystem, create a subsystem declaration at the beginning of
your source code. Specify this information:

e Thecompact compiler control (to use the compact subsystem model)
¢ Name of the compilation module
* Segment in which to place constants

You can optionally specify the functions that are accessible outside the subsystem
using theexports control. Do not specify a name for the subsystem as this
creates a closed subsystem.

An example of an open subsystem is not included with the iIRMX OS. However,
you can generate an open subsystem by modifgngirv.p38 described in the
previous section. First make a copyraindrv.p38calledramdrv.org This will be
the original backup copy. Modify the existirggmdrv.p38to match this:

$compact(-CONST IN CODE- HAS
$ ramdrv,

$ xram;

$ EXPORTS

$ ram$init$io,

$ ram$finish$io,

$ ram$queues$io,

$ ram$cancel$io)

This open subsystem declaration is the same as the closed compact subsystem
except the subsystem is unnamed.

To compile the modifiedamdrv.p38file, first make a copy ahakefilecall
makefile.org This will be the original backup copy. Modify the existingkefile
to match this:

ramdrv:ramdrv.obj $(LIBS) $(BND3)
$(BND) ramdrv.obj,$(LIBLIST) &
0j($@) pr($@.mp1) $(BNDFLAGS)

Programming Techniques Chapter 7 141

This instructs the binder to:
« Bind the RAM disk driver object module

e Bind the libraries including the loadable device driver library, the iC-386
library, the UDI interface library, and the iRMX interface library

e Use thec instruction to allocate dynamic memory with an initial size of
5 Kbytes and a maximum size of 1 Mbyte

For an open subsystem, do not user¢hameseg instruction to remap the code
into the code subsystem.

142 Chapter 7 Using Compact and Large Memory Models

Using the
Flat Memory Model

This chapter provides information on using the flat memory model with
applications for the iIRMX OS. Only a small number of DOS-based compilers
generate code for 32-bit segmented memory models, such as compact. Most
DOS/Windows-based 32-bit compilers produce flat-model applications. The iRMX
OS supports these compilers; follow the guidelines in this chapter.

See also: Memory model80386 Programmer’s Reference Manual

Flat Model Overview

The flat model is a 32-bit memory model where an application runs entirely in a
single segment. All segment registers point to this segment. The application does

not modify the segment registers. The only pointers available to the application are
near (offset-only).

Memory Segment
Offset Zero > < Initial CS:EIP

Code

CS, SS, DS, ES point
to the same segment Data

Stack

< Initial SS:ESP

0OM04189

Figure 8-1. Basic Flat Model Program

Programming Techniques Chapter 8 143

Developing 32-bit flat model applications with third party tools is similar to
development using the segmented third party compilers/tools (both 16- and 32-bit).
The resulting flat model Microsoft Portable Executable (MPE) object model is
loadable by the Application Loader. This record format is recognizable by the Soft
Scope Debugger.

See also: C Compiler-specific Information, Chapter 4

Flat Model Advantages and Disadvantages

These are the advantages of using a flat model from an application point of view:

e It uses fewer iRMX objects and GDT slots since fewer segment objects are
created.

* There is no need to load segment registers to de-reference pointers since all
pointers are near, resulting in some performance enhancement.

e It can use common off-the-shelf 32-bit compilers.

These are the disadvantages of using a flat model from an application point of
view:

* Memory allocation is less efficient since each distinct area of the application
0 code, data, and statk must be a minimum of 4 Kbytes, and must be a
multiple of 4 Kbytes.

« Enabling paging in the microprocessor degrades system-wide performance by
approximately 4%.

e There is less protection between the code, data and stack areas of an
application.

Executing Flat Model Applications on IRMX

144

You can load and run a flat model application on the iRMX OS through the
services of the paging subsystem, flat model support code, and the Application
Loader. Flat model applications run in protection ring three of the microprocessor.

The paging subsystem provides an environment in which a flat model application
can dynamically add physical memory to or free physical memory from its own
address space.

The Application Loader recognizes a flat model application in MPE format, creates
a flat model environment for it, and loads the application into this environment.
Once loaded, control is passed to the flat model application.

Chapter 8 Using the Flat Memory Model

Using Flat Model With Paging Support

Paging support for flat model in iRMX means turning on the paging mode of the
processor but not implementing demand paging. Demand paging can interfere with
the running of a real-time OS because it swaps pages from memory to disk and
back. The IRMX OS uses paging for virtual address translation only. When a flat
model application is running, a page fault is equivalent to a general protection

fault. This provides the processor-based protection that you would normally lose
by not using segmentation.

With paging support, the flat model application resides in an iRMX "virtual
segment," which resides in part of a virtual memory space of 4 Gbhytes. Physical
memory is only assigned to areas of the virtual segment that require it, such as the
code, data, stack, and any dynamic storage requested while the application is
running:

iRMX Virtual Segment

Offset Zero > < Initial CS:EIP
Code
Data
CS, SS, DS, ES point Stack
to the same iRMX segment Initial SS:ESP
Malloc
Area
€<—— Non-allocated areas
Task2 code,
data, & stack
, Virtual segment limit

(GP fault if crossed)

OMO04411

Figure 8-2. Flat Application Program on iRMX with Paging

Programming Techniques Chapter 8 145

Paging Subsystem

The paging subsystem is an extension of the iRMX Nucleus and provides the
necessary paging support for flat model applications. It is available as a first-level
or a loadable job.

You can configure the paging subsystem into the OS with the ICU, or load it with
thesysloadcommand. This subsystem is small, using less than 14 Kbytes of code
and data.

The Paging Job

146

You can load the paging jopaging.joh at any time iRMX is running. This job
contains the entire paging subsystem. Once loaded, the OS part of memory is
identity-mapped, paging is enabled, andripe_ system calls become available.
To load the job, type:

- sysload /rmx386/jobs/paging.job [block1, block2,...block8 |
where:
blockn consists ofnemory _start , memory_end

Theblock parameter defines a block of physical memory that is outside the range
of physical memory managed by the Nucleus Free Space Manager (FSM). The
paging subsystem identity maps all physical memory known to the FSM. If there
are blocks of memory that are not known to the FSM, you should specify these so
that they can be identity-mapped as well. You can define up to eight memory
blocks, however, these memory blocks should not overlap. A memory block that
overlaps with a previously-defined block is ignored.

The memory_start and thememory_end parameters represent the start and the
end addresses of the physical memory block, respectively. The start address is
rounded up to the next 4 Kbyte boundary. The end address is rounded up to the
next 4 Kbyte boundary minus one. These addresses must be hexadecimal and do
not need the “H” (hexadecimal) suffix.

|:| Note

Any physical memory that is not known to either the Free Space
Manager (from the ICU configuration) or the paging subsystem is
not accessible from your application once paging is enabled.

Errors and initialization messages are reported tocthEfig:paging.lodfile.
Initialization messages include the identity memory map created by the paging
subsystem. Check the log file to verify that the actual physical memory has been
identity-mapped correctly.

Chapter 8 Using the Flat Memory Model

Identity Mapping

The paging subsystem identity-maps all physical memory known to the Free Space
Manager. This includes memory which is configured in the ICU as a first-level job
or which is added from using tlsgsloadcommand. Identity mapping helps

protect dedicated memory, such as that found on dual port memory for a custom
device driver, from being over-written.

See also: MEMF, PIMM Command£U User's Guide and Quick Reference

Flat Model Support Code

The flat model support code provides the flat-to-segmented pointer conversion
libraries required to allow flat applications to make iIRMX system calls and C
library calls.

The flat model support code is a configurable part of the operating system. This
code may be loaded via tBgsloadcommand. This subsystem consists of
approximately 20 Kbytes of code and data.

Conversion of Flat Model Pointers in System Calls

In a flat model application, all pointers are near (offset-only) pointers. The iRMX
OS requires all pointer parameters in system calls to be far pointers. Therefore, all
near flat model pointers must be converted to far pointers before entering the OS
itself. Theflat.job automatically performs the conversion for each system call

made by your application.

This job contains the entire flat model support code and requires the paging
subsystem. Flat model applications can make iRMX system calls and C library
calls oncdlat.jobis loaded. To load the job, type:

- sysload /rmx386/jobs/flat.job <CR>

Errors and initialization messages are reported tocthrefig:flat.log file.

Programming Techniques Chapter 8 147

The Flat Model Job

You can load the flat model joBat.job, at any time the iRMX OS is running.
There are no command line options fiat.job.

|:| Note

You cannot use the ICU to configure the flat memory model as a
first-level flat job.

You cannot configure flat model applications as first-level jobs
but you can configure them as loadable jobs.

Execution Model

148

The Application Loader recognizes a flat model MPE program and creates a flat
environment for the program using the paging subsystem (it must be loaded or
configured into the system). After the program is loaded into the flat environment,
a job gets created for the loaded code the same as it does for segmented programs

Figure 8-3 shows the loading and execution flow of a flat model program.

Chapter 8 Using the Flat Memory Model

iRMX Flat
Executable

User Job

Note:
At run-time, CS is different because
it must be an executable selector. l- - - - _ _ _

(GP fault if crossed)

‘ iRMX Virtual Segment) |
Application | N < CS, DS, SS, ES point |
Loader ‘ i Cod "~ to the virtual segment ‘
| ode Initial EIP |
v |
\
Paging ‘ Data ‘
Subsystem | |
\
v |
‘ Stack ‘
Nucleus | < Initial ESP |
\
\
| Malloc ‘
‘ Area ‘
|
| <—— Non-allocated areas |
| Task2 code, |
| data, & stack \
\ P Virtual segment limit }
\
\

0OM04412

Figure 8-3. Execution of a Flat Model Program on iRMX

Programming Techniques Chapter 8 149

System Calls

The following is a list of new system calls required to manage virtual segments and
provide other flat model support.

Since most flat model compilers do not support far pointers (or support “based”
variables), they cannot access normal iRMX segments. Instead, several system
calls are provided to either access iRMX segments, or eliminate the need for them
entirely.

See also: System Call Reference

Virtual Memory Nucleus Basic I/0 System
rqv_create_segment rq_move_data rg_wait_iors
rqv_allocate rq_get_buffer_limit

rqv_allocate_at rg_validate_buffer

rqv_free

rqv_change_access

rqv_map_physical

Existing System Calls

These existing calls have been changed slightly for paging support. In all cases,
the changes add functionality to work with the new virtual segments. You can
continue to use these calls from segmented applications.

e rq_delete_segment
e rge_get_address

* rg_get_size

Using the Flat Model System Calls

When developing a flat model application, be aware of these unique issues, which
are not a concern if you are developing a segmented application:

« Virtual memory and the corresponding allocation and de-allocation of physical
memory

* Use of iRMX segments by a flat model application

150 Chapter 8 Using the Flat Memory Model

Virtual Memory

New system calls provide two levels of access to the paging mechanism. The
rqv_allocate_atsystem call provides low-level access. The Application Loader, as
well as other system utilities, use this system call to gain direct access to a virtual
segment. Using this call enables an application to place the code, data, stack, and
other segments into a unique location in the virtual segment specified by the object
module being loaded.

Thergv_allocate_atsystem call provides high-level access. This allocation

system call provides management of the virtual address space within a virtual
segment. The call is meant to be used by applications and any other free space
manager, such asalloc andsbrk. It allocates physical memory, places it within

an available area of the virtual segment, and then returns a near pointer to the
allocated memory. For the flat model application, this system call is preferred over
rq_create_segmentsince the latter returns a token which is not accessible using
the flat memory model.

The memory required for page tables is charged to the calling job's memory pool.
The first allocation to a virtual segment will incur a 4 Kbyte overhead for a page
table. You should compute job memory pools with this page table overhead in
mind.

Porting Compact/Large to Flat
If you need to access iRMX segments, use one of these mechanisms:

e Therqv_allocate system call replaces tihg create_segmentall in flat
model applications. It allocates physical memory to the application's virtual
segment with no additional objects or slots being consumed.

To share this memory with another task, pass a near pointer through a data
mailbox if the other task is in the same virtual segment (job). Another method

is to create a descriptor around the allocated memory and pass the token for the
descriptor passed through a normal mailbox.

« Therqg_wait_iors BIOS system call replaces eittrgr receive_messager
rq_wait_io after an I/O call This call returns the asynchronous IORS into a
buffer in the caller's address space, instead of in an iRMX segment.

Programming Techniques Chapter 8 151

Debugging Support

The System Debugger (SDB) understands and displays flat model versions of the
iIRMX system calls. The debugging procedures are similar to those used for
compact and large model applications. However, with flat model applications, the
stack parameters are reversed. Take this into account when viewing the stack usin
thevs orvu SDB commands.

See also: vs, vu commandsSystem Debugger Reference

152 Chapter 8 Using the Flat Memory Model

Developing Applications
for ROM

Using the iRMX Il OS, you can create ROM-based iRMX applications.

Configuring a ROM-based system has several benefits. You can write-protect your
stable code, load your system quicker than a RAM-based system, and incur lower
costs than with a RAM-based system.

|:| Note

You can only create ROM-based applications under the iRMX IlI
OS. You cannot use the iRMX for Windows or iRMX for PCs
OsS.

This chapter contains information on:

e Testing your application from RAM

e Calculating size and location parameters

e Programming your application into ROM

* Creating an example ROM application

You may need to refer to one or more of these manuals:

* ASMS386 Macro Assembler Operating Instructions/ASM386 Assembly
Language Reference

e iC-386 Compiler User's Guide

e C Library Reference

e ICU User's Guide and Quick Reference
* Intel386Family Utilities

e PL/M-386 Programmer's Guide

e System Debugger Reference

Programming Techniques Chapter 9 153

Testing a System

The normal development cycle is to load your system using the bootstrap loader,
test it, correct any errors, and then reassemble or recompile any appropriate
program code. Next, you must regenerate your system and load the system again.
Continue this procedure until you have created a functional target system.

Once you have created your final system, fine-tune the memory allocated for the
system by editing the MEMS and MEMF screens in the Interactive Configuration
Utility (ICU). If your target system will reside in ROM, enable the ROM feature
by entering “Yes” to the “System in ROM"” entry on the ROM screen of the ICU.
You must also make any necessary changes to the ROM screen.

See also: Setting the Memory Address and Size Values, in this chapter

Loading an Application into ROM

When you place an iRMX application system in EPROM/FLASH, a number of
hardware assumptions are made by the iRMX initialization code regarding memory
layout. These assumptions are:

e The entire iRMX application system image (minus the ROM Initialization
Code) is in a contiguous section of memory described by a single entry on the
MEMS screen of the ICU definition file.

e The ROM Initialization Code must reside within 64 Kbytes of the top of
ROM/FLASH memory and on a 4 Kbyte boundary.

* Volatile System Memory (system RAM) must reside within the first megabyte
of memory, below and directly adjacent to Free Space Memory.

e The first section of the Free Space Manager, defined on the MEMF screen of
the ICU, must be large enough to contain those parts of the application system
that are copied from ROM to RAM.

Preparing an Application to Reside in ROM

154

You can configure a ROM-based iRMX application as a first-level job. This job
often contains a single initialization task that creates or starts the creation of all
other objects required by the first-level job.

The root task creates the first-level jobs. Each time the root task creates a
first-level job, the root task suspends itself to allow the new job's initialization task
to perform synchronous initialization.

Chapter 9 Developing Applications for ROM

The root task creates first-level jobs using this programming loop:

Repeat for each first-level job
Create first-level job
Suspend root task (until resumed by a
first-level job finishing its initialization)
Until finished
End

Synchronous initialization consists of functions that must be performed before
some other first-level job is created. Typically, this requires creating objects or
making resources available that subsequent tasks will use. For example, the
initialization task in the EIOS job must ensure that the EIOS is ready before it can
allow the root task to create other first-level jobs that would use EIOS functions.

When the initialization task finishes its synchronous initialization, it must inform

the root task that it is finished so the task can resume execution and create another
first-level job. The initialization task must always inform the root task that it has
completed its synchronous initialization process by callingghend_init_task

system call. This call requires no parameters and causes the root task to resume
execution and create the next first-level job.

|:| Note

You must include theq_end_init_task system call in the
initialization task of each of your first-level jobs even if they do
not require synchronous initialization; otherwise the root task
remains suspended.

The amount of synchronous initialization depends on your job structure. You must
determine how the pieces of your system interact and how they must synchronize.

Programming Techniques Chapter 9 155

156

Another important factor in initialization is the order in which the root job creates
first-level jobs. Shown below is an example order. The order the root task uses to
create first-level jobs depends on where the jobs are started in relation certain OS
layers. This ordering depends what parameters you specify with the ICU, not on
the priority of the tasks.

Order Root Job First-Level Job 1/0 User Job
1 Root Job
2 System Debugger
3 Basic /0 System
4 Extended 1/O System
5 I/O User Jobs
6 User Jobs
7 Human Interface
8 Shared C Library

See also: Help message for the (SEQ) and (TPUJ) ICU screens, Interactive
Configuration Utility

Chapter 9 Developing Applications for ROM

Methodology for Burning an Application into ROM

When burning an application into ROM, your ROM/Flash programmer should be
capable of handling OMF386 or Intel hex format code. The procedure is:

1. Identify which format your ROM/Flash programmer takes.

2. The builder generates the OMF386 output file. This file is specified in the
ROF entry of the ICU GEN screen. Load the code directly into the
ROM/Flash programmer, splitting the code between multiple devices if
necessary.

3. If your ROM/Flash programmer requires hexadecimal format, use the OH386
utility to convert the OMF386 code to OH386 code.

Both OMF386 and hex format contain both code and data. The presence of data in
the input file to the ROM/Flash programmer may cause a warning, which you can
ignore.

Use your Flash/ROM programmer to extract code only within the address range
that will be placed in ROM.

Developing a ROM-based Application System

When developing a ROM-based application, you should develop as much of the
application as possible to be a program loadable under the Human Interface CLI.
Remove all the bugs possible in the loadable version of the job. Use the Soft-
Scope debugger and other iRMX tools to help debug your system.

In case the target hardware does not support a full-featured IRMX environment
with a Human Interface, you can write intelligent stubs that simulate the target
hardware. Then run both the application and its hardware-simulating stubs in a
loadable iRMX environment. This allows you to complete as much of the
debugging as possible with a loadable job instead of a ROM-based job.

Once your application is ready for ROM/FLASH on the target hardware, you must
use the ICU to configure the iRMX application system containing your application.

Start with the Intel-provided ICU definition file that most closely fits your target
hardware. These files are located in/ilnex386/icudirectory.

If you do not find the appropriate file, you can specify a new definition file using
the ICU. Once in the ICU, you must make modifications to the various
layer/hardware screens until your target hardware and software environment are
fully described.

See also: Example ICU Sessi¢@U User's Guide and Quick Reference

Programming Techniques Chapter 9 157

Overview of the ROM-based Application Example

The following example illustrates how a ROM-based application system is
generated. The example describes the instructions for generating the example
MIX486 ROM application located in themx386/demo/rom/mix4dendirectory.
The application system defined by this example has these attributes:

* Runs on a MIX486 board (MIX486DX33, MIX486DX66, or MIX486SX33) in
a Multibus Il backplane

+ Loads out of FLASH into RAM and executes out of RAM

« Contains a simple Multibus Il message passing program that waits at a specific
port for Multibus 1l messages and replies to them

First, develop the application as an Human Interface-loaded program. This
program receive.¢ does the message passing. After you make any changes to
receive.cand it is fully debugged, the following procedure converts it to a first-
level job:

1. Add a call taq_end_init_task to the program's initial task after completing
any required synchronous initialization. You can leavedhend_init_task
call in even if you run the demo application from the Human Interface.

2. Convert the program's initial task to a public procedure (already seimgiras
in C programs).

3. Modify the bind process to produce a linkable version of the program instead
of the Single Task Loadable (STL) version.

4. Modify the bind process to suppress all Public symbols except the name of the
program's initial task and the name of one of the program's public variables.

Once the application program is ready as a first-level job, the next step is to
configure the iIRMX OS to run on the target hardware.

Generating the ROM-based Application Example

158

The files used to generate the example ROM application are in the
/rmx386/demo/rom/mix4dendirectory. These files are:

receive.c Receives a message framndmb2nd returns a new message
sendmb2.c Sends a message to a port on a MB |l agent rumeicgjve

makefile File used to generate the example

Chapter 9 Developing Applications for ROM

To generate the example:
1. Change the directory tanx386/demo/rom/mix4demo
2. Atthe iRMX prompt, typemake <CR>

This creates the Human Interface prograetgiveandsendmb2and the user job
module,receive.Ink

Configuring the iRMX OS

You must configure the iRMX OS through the ICU to recognize that the target
hardware is a MIX486 board.

|:| Note

In the following ICU screens, enter the values listellaial .
These values are specific to the example application and should
not be changed.

Setting the Hardware Values

In the following HARD screen, the hardware addresses are specific to the MIX486
board. Because the application does not need a finer time granularity than 10
milliseconds, set the KTR entry to 1. Specify “Yes” for the EMU entry so the
system includes an NPX Emulator. This Emulator is dormant if a math
coprocessor is present (MIX486DX33 or MIX486DX66 board) but provides
numeric support when no math coprocessor is present (MIX486SX33 board).

(HARD) Hardware

(BUS) System Bus Type [1=MBI/2=MBII / 3=AT] 2
(TP) 8254 Timer Port [0-OFFFFH] ODOH

(CIL) Clock Interrupt Level [0-7] 0

(CN) Timer Counter Number [0,1,2] 0

(CIN) Clock Interval [0-65535 msec] 10

(KTR) Kernel Tick Ratio [1-65535] 1

(CF) Clock Frequency [0-65535 khz] 1250

(TPS) Timer Port Separation [0-OFFH] 02H

(EMU) Emulate Numeric Processor [Yes/No] YES
(IF) Initialize On-board Functions [0=No / 1-0FFH] 08H
(BIP) Board Initialization Procedure [1-45 Chars]

Programming Techniques Chapter 9 159

Setting the Multibus Il Addresses and Port Separation Values

In the following Multibus 1l screen, the Multibus Il hardware addresses and port
separations are specific to MIX486 boards. The application uses only aligned
buffers so no message passing transfer/alignment buffers are included.

(MBII) Multibus 1l Hardware

(MDP) Message Device Base Port Address [0-OFFFFH] OH

(MDS) Message Device Port Separation [0-OFFH] 04H

(MDL) Message Interrupt Level [Encoded Level] 04H

(MCO) Message Device Duty Cycle for One Cycle DMA [0-OFFH] 052H
(MCT) Message Device Duty Cycle for Two Cycle DMA [0-OFFH] 097H
(MDC) Message Device Duty Cycle for Burst DMA [0-OFFH] 04AH
(DDP) Message Device ADMA Data Port [0-OFFFFH] OH

(GBR) ADMA Burst Register [0-OFFFFH] OH

(GDR) ADMA Delay Register [0-OFFFFH] OH

(AIB) ADMA Base Port Address [0-OFFFFH] 0200H

(ACIl) ADMA Channel for Input [0-OFFFFH] 02H

(ACO) ADMA Channel for Output [0-OFFFFH] 03H

(DIB) DMA Input Buffer Size [0-OFFFFFFFFH] OH

(DOB) DMA Output Buffer Size [0-OFFFFFFFFH] OH

(DDA) DAG Device Used [Yes/No] YES

(DBA) DAG Base Port [0-OFFFFH] 0300H

(WDP) Watchdog Present [Yes/No] NO

(WDM) Watchdog Mboxes [0-OFFH] 03H

(WDI) Watchdog Transmission Interval [1-OFFFFFFFFH] 03E8H
(WDT) Watchdog Timeout [1-OFFFFFFFFH] 03E8H

Setting the Master and Slave Interrupt Values

In the following INT and SLAVE screens, the Master and Slave Interrupt layout is
specific to the MIX486 board.

(INT) Interrupts

(MP) 8259A Master Port [0-OFFFFH] 0COH
(MPS) Master PIC Port Separation [0-OFFH] 02H
(IS) Interrupt Slaves [Yes/No] YES

(SLAVE) Slave Interrupt Levels
Slave = Slave_number, Level_Sensitive, Port, Separation
[0-7] [Yes/No] [0-OFFFFH] [0-OFFH]
[1] Slave = 7, NO, 0C4H , 02H
[2] Slave =

160 Chapter 9 Developing Applications for ROM

Setting the Subsystem Values

In the following SUB screen, include the System Debug Monitor and System
Debugger subsystems only as an aid to debugging. Remove these when
configuring the production system.

The application does not require the services of other subsystems because those
provided by the Kernel, Nucleus, and Message Passing subsystem meet the
application’s needs.

(SUB) Subsystems

(UDI) Universal Development Interface [Yes/No] NO
(CLB) Shared C Library [Yes/No] NO

(HI) Human Interface [Yes/No] NO

(AL) Application Loader [Yes/No] NO
(NET) Networking [Yes/No] NO

(EIO) Extended I/O System [Yes/No] NO
(BIO) Basic I/O System [Yes/No] NO
(PGS) Paging Subsystem [Yes/No] NO
(VMD) VM86 Dispatcher [Yes/No] NO

(SDM) System Debug Monitor [Yes/No] REQ
(SDB) System Debugger [Yes/No] YES

(OE) OS Extension [Yes/No] NO

Setting the Memory Address and Size Values

In the following MEMS and MEMF screens, change the memory parameters to
reflect a ROM-based application.

(MEMS) Memory for System

SYS = low [0-OFFFFFFFFH], high [0-OFFFFFFFFH]
[1] sYys= OFFF80000H, OFFFFFFEFH
[2] sys=

(MEMF) Memory for Free Space Manager
FSM = low [0-OFFFFFFFFH], high [0-OFFFFFFFFH]

[1] FSM = 020000H 09FFFFH
[2] FSM = 0COO000H | 07FFFFFH
[3] FSM =

In a ROM/FLASH-based system, the MEMS entry reflects the physical address of
the ROM/FLASH devices once the system is switched to Protected Virtual Address
Mode. Itis assumed to be contiguous, in other words, it is all defined in a single
SYS entry.

Programming Techniques Chapter 9 161

162

On some boards, the ROM/FLASH is at a different address on reset and then is
switched to its final location through I/O output operations. On the MIX486 board,
this address range is fixed and encompasses the two 2 Mbit FLASH sites on the
board.

|:| Note
If you adjust the physical address of ROM/FLASH during the
system initialization process, you must do it in-line in the
custom_initial_hw_setupsubroutine. No jumps or calls are
allowed.

See also: Debugging the ROM Initialization Process, in
this chapter

The FSM sections of the MEMF screen describe the RAM Memory available to the
Free Space Manager. The space in memory between 9FFFFH and OCOOOOH is
required by the MIX486 board due to its use of a PC chipset. In a ROM/FLASH-
based system, the first FSM section must provide enough RAM storage for system
objects copied from ROM/FLASH to RAM during the system initialization process.
Items that are copied from ROM to RAM are the system GDT, LDT, IDT and four
TSSs. Calculate the minimum size for the first FSM section of memory as:

Size(FSM(0)0 = ((Final GDT size * 8) * 2) +
Final IDT size * 8) + 200H

In cases where the application system executes out of RAM, the first FSM memory
section must be large enough to contain the minimum FSM size, calculated above,
in addition to the memory required to hold all code segments that make up the
application system. Refer to the Segment Map (Figure 9-1) portion ohg2dile
generated by BLD386 for the application system and add up the segment sizes for
all “ER” type segments listed there.

The final sum of the equation above plus the application code segments is the final
minimum size of the FSM(0) section of memory.

When the system initializes (during the ROM Initialization Code and the early
stages of Nucleus initialization), it removes memory from the FSM(0) memory
section (beginning at the lowest specified memory address) as needed to handle th
items copied from ROM to RAM. FSM(0)'s final low address is adjusted upwards
accordingly.

Figure 9-1 lists the Segment Map from thix4dxro.mpile.

Chapter 9 Developing Applications for ROM

SEGMENT MAP
TABLE BIT DPL ACCESS USE BASE LIMIT SEGMENT NAME

GDT
1 1 0 RW 16 FFF80000H 00000DBFH GDT:
2 1 0 RW 16 FFF80DCOH 0000008FH IDT:

33
34
35
44
45
46
47
48
49
60
80
85

P PP PP PP R PR PR

1

3001
3021
308 1
3091
3101
3201
3431
3441
4001
4011
4021
4031
404 1
426 1

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

RW 16 0000FAA8H 00000003H ?DUMMY_MODULE.SDM3_ALIAS_SEGMENT3
ER 16 FFFA8754H 0000296EH SDM_DASM.DASM_CODE

RW 16 FFFAOBBOH 000013E5H SDM_DASM.DASM_DATA

ER 16 FFFABOC4H 00000015H SDM_DASM.CODE

ER 32 FFFB1AD8H 0000BFC7H M3.SDMIII_CODE32

RW 32 0000A3C4H 00000860H M3.SDMIII_DATA

RW 16 0000FAAQOH 00000003H ?DUMMY_MODULE.SDM3_ALIAS_SEGMENT
RW 16 0000FAA4H 00000003H ?DUMMY_MODULE.SDM3_ALIAS_SEGMENT2
RW 16 FFFAOAE2H 000000CCH SDM_DASM.SDM_DASM_DATA

RW 32 00000000H 000060CAH NUCDAT.DATA

ER 32 FFF80E50H 0001FC90H NUCDAT.CODE

RW 32 00006464H 000003FFH NUCDAT.STACK

RW 16 0000FA18H 00000087H ?DUMMY_MODULE.SHADOW_IDT_SEG

RW 32 0000FB8CH 00000007H ?DUMMY_MODULE.CC_120_SEG_5

ER 32 FFFCOA24H 00015AE5H SDBCNF.CODE

RW 32 0000B958H 00001064H SDBCNF.DATA

RW 32 0000B2FCH 00000659H SDBCNF.NEWSTACK

ER 32 FFFA3560H 00000139H NTRSTK.STK_OVFW

ER 32 FFFBEAC8H 00001F5AH M3.CC_CODE32

RW 32 0000AC28H 000006D3H M3.CC_DATA

RW 16 0000FA10H 00000003H ?DUMMY_MODULE.MI_ALIAS_SEGMENT
RW 16 0000FA14H 00000003H ?DUMMY_MODULE.MI_ALIAS_SEGMENT2
ER 32 FFFABODCH 000069FBH M3.MIlI_CODE32

RW 32 00007270H 00001152H M3.MIII_DATA

RW 16 000083C4H 00001FFFH M3.STACK

ER 16 FFFA85B2H 000001A1H SDM_DASM.SDM_DASM_CODE

LDT.1 (LDT1)

1 1 0 RW 16 FFFA1F96H 00000DBFH LDT1:

72 1 0 ER 32 FFFA369CH 00004F15H E80387.A?MED
73 1 0 RW 32 00006C84H 000001DAH E80387.A?MSR
74 1 0 RW 32 00006E60H 0000028FH E80387.STACK
75 1 0 RW 32 000060CCH 00000394H NUCDAT.JOBDAT

Figure 9-1. Example Segment Map

Programming Techniques Chapter 9 163

79 RW 32 00006864H 0000001DH NUCDAT.ESCAPE_SS

96
97

ER 32 FFFD650CH 0000050FH START.CODE

RW 32 0000C9COH 0000004CH START.DATA

98 RWD 32 0000FA10H FFFFCFFFH START.STACK

99 1 0 RW 32 0000FAACH 0000007FH ?DUMMY_MODULE.CC_120_SEG_1
1001 0 RW 32 0000FB2CH 0000001FH ?DUMMY_MODULE.CC_120_SEG_2
1011 0 RW 32 0000FB4CH 0000001FH ?DUMMY_MODULE.CC_120_SEG_3
1021 0 RW 32 0000FB6CH 0000001FH ?DUMMY_MODULE.CC_120_SEG_4

10
80 1 0 ER 32 FFFA3538H 00000026H NUCDAT.ENTRY_CODE
90 1 0 ER 16 FFFFFFFOH 00000003H NUCDAT.RESTART_CODE_ROM
91 1 0 ER 16 FFFFFOOOH 00000DCEH NUCDAT.CODE_ROM
92 1 0 RW 32 00006884H 000003FFH NTRSTK.SE_STACK
93 1 0 RWD 16 FFFF7198H 0000FF57H SDM_DASM.STACK
94 1 0 RW 32 00007198H 000000D4H M3.DATA
95 1 0 ER 16 FFFBDAAOH 00001024H M3.SDMIII_NPX_CODE

10

10

10

=

Figure 9-1. Example Segment Map (continued)

Setting the System Debug Values

164

In the following SDB screen, the System Debugger is entered through a Non-
Maskable Interrupt (NMI) generated across the interconnect space. Set the SLV
entry to OFFH and set the NMI entry on the NUC screen to allow an NMI to trigger
the SDB.

(SDB) System Debugger
(SLV) SDB Interrupt Level [Encoded Level/NONE = OFFH] OFFH
(ESC) Enable Screen Scrolling Control [Yes/No] YES

Since the MIX486 board has no on-board serial devices, set the RCI entry to
Primary in the SDM screen so the Remote Console Interface Driver is the
SDM/SDB's I/O device.

(SDM) System Debug Console MultiBus Drivers

(D51) 8251 Console Controller Driver [Primary/Secondary/No] NO

(A54) 354 Port A Console Controller Driver [Primary/Secondary/No] NO
(B54) 354 Port B Console Controller Driver [Primary/Secondary/No] NO
(A74) 8274 Port A Console Controller Driver [Primary/Secondary/No] NO
(B74) 8274 Port B Console Controller Driver [Primary/Secondary/No] NO
(G79) SBX 279 Console Controller Driver [Primary/Secondary/No] NO

(A30) 82530 Port A Console Controller Driver [Primary/Secondary/No] NO
(B30) 82530 Port B Console Controller Driver [Primary/Secondary/No] NO
(RCI) Remote Console Interface Driver [Primary/Secondary/No] PRIMARY

Chapter 9 Developing Applications for ROM

PC Drivers

(SR1) Serial Port One [Primary/Secondary/No] NO
(BP1) Serial Port One Base Address [0-OFFFFH] 03F8H
(SR2) Serial Port Two [Primary/Secondary/No] NO
(BP2) Serial Port Two Base Address [0-OFFFFH] 02F8H
(CON) Console Port [Primary/Secondary/No] NO

With the SDM/SDB present in the configuration, set the Default Hardware
Exception Handler and NMI Exception Mode entries in the NUC screen to enable
an NMI signal to break to the monitor.

(NUC) Nucleus

(NGE) Number Of GDT Entries [440-8190] 500

(NIE) Number Of IDT Entries [0-256] 256

(PV) Parameter Validation [Yes/No] YES

(ROD) Root Object Directory Size [0-3840] 50

(DSH) Default Software Exception Handler [Job/Task/STask/User] JOB
(EM) Exception Mode [Never/Program/Environ/All] NEVER

(NEH) Name of Ex Handler Object Module [1-55 Chars]

(DHH) Default Hrdwr Exception Handler [Job/Task/STask/Monitor] MONITOR
(NMI) NMI Exception Mode [Ignore/Process] PROCESS

(NEB) NMI Enable Byte [0-255] 04H

(LSE) Low GDT/LDT Slot Excluded from FSM [440-8189/NONE=0] 0

(HSE) High GDT/LDT Slot Excluded from FSM [440-8189/NONE=0] 0

(RRP) Round Robin Priority Threshold [0-255] 140

(RRT) Round Robin Time Quota [0-255] 5

(RIE) Report Initialization Errors [Yes/No] YES

(MCE) Maximum Data Chain Elements [0-OFFFFH] 080H

(CS) Nucleus Communication Service [Yes/No] YES

Setting the Nucleus Communications Values

In the NCOM screen, set the Nucleus Communications Services entries to standard
values.

(NCOM) Nucleus Communication Service

(PMT) Message Task Priority [0-255] 128

(PDT) Deletion Task Priority [0-255] 128

(DPT) Default Number of Port Transactions [0-255] 16
(DHI) Default Host ID [0=None/1-254] 0

(VBP) Validate Buffer Parameters [Yes/No] YES

(MST) Max No. of Simultaneous Transactions [0-OFFFFH] 040H
(MSM) Max No. of Simultaneous Messages [0-OFFFFH] 080H
(RFT) Receive Fragment Failsafe Timeout [0-OFFFFH] 0400H
(NTM) Number of Trace Messages [0-255] 255

Programming Techniques Chapter 9 165

Setting the System Job Values

In the SYSJ screen, no system jobs are required in this application system so set a
entries to “No.”

(SYSJ) System Jobs

(PCI) PCI Server Job [Yes/No] NO

(DL) MBIl Downloader Job [Yes/No] NO
(ATC) ATCS/279/ARC Server Job [Yes/No] NO
(A50) ATCS/450 Server Job [Yes/No] NO

(BS) MSA BootServer Job [Yes/No] NO

(FPI) FPI Server Job [Yes/No] NO

(SSK) SoftScope Kernel Job [Yes/No] NO

Setting the User Job Values

166

Set the TP entry in the USERJ screen so the priority of the first-levekjxdiye

starts at 155. Even though the job starts after the EIOS, it has no effect since there
is no BIOS or EIOS in the system. Therefore, the job starts immediately after the
SDB initialization job.

Since the job is written in C, the initial task's public nanmeasn Because it is
coded as a far procedure, no Public Variable Name is required for the VAR entry of
the USERJ screen. The initial task sets up its own data segment.

(USERJ) User Jobs

(NAM) Job Name [0-14 Chars] RECEIVE

(SEQ) Job Sequence [Before/After] AFTER
(ODS) Object Directory Size [0-3840] 10
(PMI) Pool Minimum [20H-OFFFFFFFH] 010000H
(PMA) Pool Maximum [20H-OFFFFFFFH] OFFFFFH
(MOB) Maximum Objects [1-OFFFFH] OFFFFH
(MTK) Maximum Tasks [1-OFFFFH] OFFFFH
(MPR) Maximum Priority [0-255] 129

(EHS) Exception Handler Entry Point [1-31 Chars]

(EM) Exception Mode [Never/Prog/Environ/All] NEVER
(PV) Parameter Validation [Yes/No] YES

(TP) Task Priority [0-255] 155

(TSA) Task Entry Point [1-31 Chars] MAIN

(VAR) Public Variable Name [0-31 Chars]

(SSA) Stack Segment Address [SS:SP] 0000:0000H
(SSl) Stack Size [0-OFFFFH] 0500H
(NPX) Numeric Processor Ext. Used [Yes/No] NO

Chapter 9 Developing Applications for ROM

In the USERM screen, the builder looks for the first-level job link fdegive.Ink
in the local directory.

(USERM) User Modules
Module = 1-55 characters

[1] Module = RECEIVE.LNK

[2] Module =

Setting the RAM and ROM Values

(ROM) ROM Code

(SYR) System In ROM [Yes/No] YES

(CPI) Copy ROM Initialization Code to RAM [Yes/No] NO

(EOR) Execute System Out of Rom/Flash Yes/No] NO

(VSS) Volatile System Memory Starting Address [0-OFFFFFFFFH] OH
(VSE) Volatile System Memory Ending Address [0-OFFFFFFFFH] 01FFFFH
(RBA) Base Address of ROM Init code at reset [0-OFFFFFFFFH] OFFFFFOOOH
(RDA) RAM Destination Address of ROM Init code [0-OFFFFFFFFH] OH
(SRC) Size of ROM Initialization Code [0-OFFFFFFFFH] OH

(CRS) Custom ROM Initialization Source File [1-45 Chars] MIXINIT.INC
(CRO) Custom ROM Initialization Object File [1-45 Chars] MIX4IN.LNK

In this application system, the ROM Initialization Code mode of operation is
RAM-less (CPI=NO). In the RAM-less mode, the ROM Initialization Code
expects to be entered using a near jump placed at the Reset Vector (at
FFFFFFFOH). In this case, the ROM Initialization Code immediately sets up its
initial GDT/IDT in nonvolatile memory before switching the microprocessor into
protected mode.

Setting the ROM Initialization Code mode of operation to RAM-full (CPI=YES)
means that the ROM Initialization Code expects to be entered using a far jump
from some non-iRMX initial program, such as a Flash utility. In this case, the
ROM Initialization Code copies itself from nonvolatile memory into RAM and sets
up its initial GDT/IDT in RAM before switching the microprocessor into protected
mode. This mode allows nonvolatile memory to be remapped to a new physical
address. The RAM destination address of the ROM Initialization Code (RDA)
must be within the first megabyte.

See also: Calculating Volatile Memory Size, in this chapter

The system copies the OS and its associated application from ROM to RAM as part
of the initialization process (EOR=NO). It defines system RAM memory excluded
from the Free Space Manager in the address space from 0 to 1FFFFH. The system
uses this memory as Volatile System Memory, which is static memory used for
stack and data by the OS layers and application program.

Programming Techniques Chapter 9 167

This Volatile System memory must be below and contiguous to the first FSM
section for Free Space Memory. It must be at least 300H bytes in length since the
ROM Initialization Code uses 300H bytes of memory just below the start of the
first FSM section for its own stack and data area. The OS and/or application can
also use this memory since the ROM Initialization Code will already have
completed its work by the time the OS begins.

Calculating Volatile Memory Size

168

In configuring your application system to be ROM\Flash-based, you must reserve a
certain portion of Volatile System Memory as static data and stack. To identify the
minimum memory requirements for your specific application, you can calculate the
memory requirements based on information in.thg2file generated for your
application. The demonstration application generatemtké86dx.mpZ2ile

(Figure 9-1).

As shown in Figure 9-1, the Segment Map ofrap2file lists the base address and
limit of each segment defined in the application system. Using the information in
both the GDT and LDT sections of the Segment Map, you can calculate the amoun
of code (MEMS) and data (VSS and VSE) needed by your application system, as
follows.

1. Find the highest code physical address in non-volatile ROM. These addresses
start with “FFF”. Inmix486dx.mp2the highest code address is LDT Slot 96
listed in this line:

961 0 ER 32FFFD650CH 0000050FH START.CODE

2. Add the base address (FFF0650H) and the limit for the code address (50FH) to
obtain their sum (FFFO6A1BH).

3. Obtain the high address in the MEMS screen, which is FFFFFFEFH in the
example.

4. The sum of the base address and limit (FFFO6A1BH) must be less than or

equal to the MEMS high address (OFFFFFFEFH), as is the case in the example
Now calculate the memory requirements for RAM:

1. Find the highest data physical address in RAM. These addresses start with
“0000". As seen in Figure 9-1, the highest data address is listed is GDT Slot
302:

3021 0 RW 32 0000FB8CH 00000007H ?DUMMY_MODULE.CC_120_SEG_5

2. Add the base address (OFB8CH) and the limit for the data address (7H) to

obtain their sum (FB93H).

Chapter 9 Developing Applications for ROM

3. The sum of the base address and limit must be less than or equal to the VSE
high address (1FFFFH). Finally, adjust the VSE parameter to be equal to the
low address of the MEMF entry minus one.

|:| Note

If you do not allocate enough Volatile System Memory, you will
see the following error message when you generate the system. If
thesegment_namis a data segment, check the VSS and VSE
entries. If thesegment_namis a code segment, check the

MEMS entries.

** WARNING 177: SEGMENT ALLOCATED OUTSIDE SPECIFIED RANGE
SEGMENT: segment _name

Set the base address of the ROM Initialization Code to OFFFFFOOOH using the
RBA entry in the ROM screen. This address must be on a 4 Kbyte boundary and
be within 64 Kbytes of the system restart vector, which resides at OFFFFFFFOH.
The restart vector does a near jump to this address.

|:| Note
Accessing an address of OFFFFFOO0H while in Real Mode is
based on a feature of all Intel Architecture microprocessors. At
reset, all address lines are driven high by the microprocessor and
stay that way until the first far jump is made. The ROM
Initialization Code makes sure the hardware descriptor tables
(GDT and IDT) refer to this high memory address area by the
time the first far jump is made (immediately after switching to
PVAM).

You can verify the size of the ROM Initialization Code by looking at the Segment
Map in the mp2file generated by the BLD386 utility. Refer to Figure 9-1, LDT
Slot 91.

The size of the ROM Initialization Code varies based on the amount of code your
application requires to properly configure your system hardware. In the MIX486
example, the code is approximately 3500 bytes in length.

Since the RAM-less mode of ROM Initialization is used, this example sets the
RDA and SRC entries to OH.

Programming Techniques Chapter 9 169

170

When the ICU generates the configuration files for a ROM-based system, it creates
a ROM Custom Initialization include file whose name is
definition_file_base_name.ifigc. The ICU places into it a set of empty ASM386
macros as well as a small amount of assembler code. In the MIX486 example, the
ICU definition file ismix486dx.bckso the ROM Custom Initialization include file

is created amix486dx.inc See the comments in thec file for areas where you

can customize the initialization code.

When developing a ROM-based iRMX system, modify this ROM Custom
Initialization include file to use your custom code. Copy the file to a different file
whose pathname you list in the CRS entry. The System Generation submit file
copies the CRS-specified file over the ROM Custom Initialization include file. It
uses this file when generating the ROM Initialization Code object files. By giving
it a different name, you insure your modifications to the ROM Custom
Initialization include file will not be destroyed the next time you run the ICU.

As part of the modifications made nuix486dx.indo yield mixinit.inc, calls are
made to two near proceduresix4_init andinit_486 . Specify the link file
containing these two proceduresnaig4in.Inkin the CRO entry of the ROM
screen. These calls are specific to the MIX486 board. Thenfibetin.Ink
mix486dx.bckandmixinit.inc are located in thEmx386/demo/rom/mix486
directory.

|:| Note

If you are programming ROM on different target hardware, you
can create your own external procedures. This means you must:

* Use 16-bit code

* Name the Code Segment as “code_rom”
* Not use a data segment

* Modify the.incfile to call your procedure
* Modify the CRO entry of the ROM screen

(INCL) Includes and Libraries [1-30 Characters]

(UDF) UDI Includes and Libs /RMX386/UDI/

(HIF) Human Interface Includes and Libs /IRMX386/HI/

(EIF) Extended 1/0O System Includes and Libs /RMX386/E10S/
(ALF) Application Loader Includes and Libs /RMX386/LOADER/
(BIF) Basic 1/0 System Includes and Libs /IRMX386/10S/

(MNF) Intel Monitor Includes and Libs IRMX386/SDM/

(SDF) System Debugger Includes and Libs /RMX386/SDB/

Chapter 9 Developing Applications for ROM

(NUF) Nucleus Includes and Libs /RMX386/NUCLEUS/

(ILF) Interface Libraries /RMX386/LIB /

(DTF) Development Tools Path Name :LANG:

(VMF) Virtual 8086 Mode includes and libs /RMX386/VM86/
(NET) iRMX-NET Files /IRMX386/RMXNET/

(CLF) Shared C Libraries /RMX386/CLIB/

(ISL) Intel Support Libraries /INTEL/

(SJIM) System Jobs Object Modules /RMX386/JOBS/

Use the standard iRMX generation screen and directory structure to generate the
application system.

(GEN) Generate File Names

(RMB) Remote Boot Translation [Yes/No] NO

(RBF) Remote Boot File Name [1-55 Chars] /RBOOT32/RMX386.386
(ROF) ROM Code File Name [1-55 Chars] MIX486DX.ROM

(RAF) RAM Code File Name [1-55 Chars] MIX486DX.RAM

The file you specify in the ROF parameter is the OMF386 output of the builder.
This output is your iRMX application system which you can program into
ROM/FLASH.

The comment record allows you to tag your definition file, specifying its contents.
This record is placed in the Nucleus code segment and is available through a
pointer to it in the RQSYSINFO segment cataloged in the root job.

(COMNT) Comments for Build file each line = 1-55 characters - IN QUOTES

[1] = 'IRMX 11l Release 2.2 Operating System

[2] = ‘for MIX486DX33 and MIX486DX66

[3] = '‘Nucleus/SDM/SDB in ROM using 28f020 flash devices '
[4] = 'RAM-LESS ROM Init Version

[5] =

Programming Techniques Chapter 9 171

Debugging the ROM Initialization Process

172

To help debug the ROM Initialization process, there are debug write calls at
strategic points in the ROM Initialization Code path. The purpose is to send an
output character through an 1/O port so you can track the progress of ROM
Initialization Code as it executes on your board.

|:| Note

BX register—Your code must preserve the contents of the BX
register at the beginning of thestom_init_real_mode

macro and restore this value to the BX register before leaving the
custom_init_real_mode macro.

When developing your own "DebugOp" code, be aware that the
character to be output is passed tollhbugOp macro using the
AL register.

The file mixinit.inc, derived frommix4dxro.ingis listed below. This file identifies
those sections of the code you must change to support your MIX486 board.

If you wish to have debug characters sent to your output device, you must initialize
and activate your device by placing the appropriate codekbngOp and
custom_initial_hw_setup macros.

%*define(DebugOp(val)) (%'

; Place any debug output/notification instructions here for aid in

; debugging the rom initialization code. Only I/O instructions are

; recommended since the same routine will operate in both real and
; protected mode

; Code which prints debug information to COM1

mov dx, 03F8H

mov al, Y%val

out dx, al
; mov dx, 03FDH
;do_input:

in al, dx

and al, 40H

jz do_input

;purge do_input

nop
)%’

Chapter 9 Developing Applications for ROM

%*define(custom_extrn_1) (%'

i

; Place any external procedure declaration here which will be jumped TO
; from custom_initial_hw_setup. Since the stack is NOT set up at this

; time, only a jump instruction is allowed if an external procedure is

; to be activated. In this case, a label must be placed after the jump

; instruction in custom_initial_hw_setup so that the execution flow can

; return there via a jump in the external procedure.

;EXTRN my_initial_hw_setup_proc
%'

%*define(custom_extrn_2) (%'

i

; Place any external procedure declaration here which will be CALLED or
; JUMPED TO from custom_init_real_mode and/or
; custom_init_protected_mode. In the case of RAM-LESS rom
; initialization, the stack is NOT set up until just before the call to
; custom_init_protected_mode; therefore, only a JMP instruction is
; allowed in custom_init_real_mode if an external procedure is to be
; activated. In this case, a label must be placed after the IMP
; instruction in custom_init_real_mode so that the execution flow
; can return there via a JMP instruction in the external procedure.
; In the case of RAM-FULL rom initialization, the stack will be set up
; before custom_init_real_mode is called. Thus, a CALL instruction is
; allowed in the custom_init_protected_mode subroutine in both RAM-LESS
; and RAM-FULL modes of rom initialization but is only allowed in
; custom_init_real_mode in the RAM-FULL mode of rom_initialization.

;EXTRN my_custom_init_real_mode_proc
;EXTRN my_custom_init_protected_mode_proc

EXTRN mix4_init: near
EXTRN init_486: near
)%’

%*define(custom_initial_hw_setup) (%'

; Place any board initialization code here which must be done when the

; system resets, i.e. before the ROM Initialization code starts to run
mov cr2, edx

%'

Programming Techniques Chapter 9 173

%*define(custom_init_real_mode) (%'
; Place any board initialization code here which must be done
; while the system is still running in Real Mode, i.e. before the
; ROM Initialization Code switches the processor to Protected
; Mode. If an external procedure must be accessed from
; custom_rom_init, be sure to use a JMP instruction if the rom
; initialization mode is RAM-LESS.

nop
%'

%*define(custom_init_protected_mode) (%'

; Place any board initialization code here which must be done

; immediately after the ROM Initialization Code has switched the
; system to Protected Mode

i

i

push ds
push es
push fs
push gs
mov edx, cr2
push dx
call mix4_init ; mix4_init(cpu_sig)

call init_486 ; /* enable 486
internal cache */
pop gs
pop fs
pop es
pop ds
)%’

%*define(custom_clear_rnc) (%'

i

; Procedure clear_rnc which is called after switch to protected mode
code_rom segment er usel6 public

i

174 Chapter 9 Developing Applications for ROM

; Dummy procedure clear_rnc. The real clear_rnc procedure is
; required for Multibus Il systems. Therefore, if your target

; system runs on Multibus Il, comment out this dummy clear_rnc
; procedure by placing a ;' in front of each of its four lines.

public clear_rnc

;clear_rnc proc
; ret
;clear_rnc endp
code_rom ends

%'

%*define(monitor_break_option) (%'

; Variable used to indicate if the user wishes to break to the

; SDM monitor upon completion of the ROM Initialization Code and entry
; into the nucleus initialization code. Set to OFFH if monitor break is

; desired, otherwise set to 0.

; NOTE: Only set MONITOR_BREAK to OFFH if you have iSDM configured into
; the IRMX application system.

PUBLIC MONITOR_BREAK

MONITOR_BREAK DB OH
%'
To verify that the iRMX Nucleus initialization code has been entered, set the SLV
entry in the SDB screen to OFFH (you can change this later if you do not want
SDM configured in your final system).
With the "DebugOp" macro modified and the output device initialized, the
following ASCII characters will appear on a terminal connected to your output
device:

1 <====== Sent to output device by initialization code above

2 <====== Sent to output device immediately after call to custom_init_real_mode

macro - will probably be overwritten by the next character if code
switches successfully into protected mode
3 <====== Sent to output device immediately after call to

custom_init_protected_mode macro

Programming Techniques Chapter 9 175

1 <====== Sent to output device before microprocessor type is determined

Next 8 characters are the base address in RAM in reverse order at which
the iRMX GDT will be placed

0 <===== Translates to 18000H
0
0
8
1
0
0
0
4 <====== Sent to output device as delimiter before the iIRMX GDT has been

copied from nonvolatile memory to RAM and expanded

Next 8 characters are the base address in RAM in reverse order of the
iIRMX GDT just prior to loading it using an LGDT instruction; this is
the address to which the LGDT instruction will point

0 <===== Translates to 18000H

O O O 0 O

5 <====== Sent to output device immediately after LGDT instruction has been
issued; ROM Initialization Code now running out of the iRMX GDT

6 <====== Sent to output device immediately after LIDT instruction has been
issued; ROM Initialization Code now running out of the iRMX IDT

7 <====== Sent to output device immediately after LTR instruction has been
issued; ROM Initialization Code now running out of a temporary
Hardware Task defined in the iRMX GDT

8 <====== Sent to output device immediately before jumping to the iRMX
Hardware Task; the ROM Initialization Code has just set up the iRMX
Hardware TSS to reflect the new Free Space Memory base address

After the series 5, 6, 7, and 8 appear on the terminal, the flow of control leaves the
ROM Initialization Code and enters the iRMX nucleus initialization code.

176 Chapter 9 Developing Applications for ROM

Testing the Application

There are two ways to execute the test application. You can exectgeghe
program from the Human Interface during RAM-based testing or as a user job
which is executed from ROM on the Multibus Il target.

To run thereceiveapplication from the Human Interface on the Multibus Il target,
attach to thérmx386/demo/rom/mix4dendirectory containing the application and

type:

- receive <CR>

No messages will be displayed and the program will continue to run until
terminated by a Ctrl-C character.

Thereceiveprogram waits to receive a message at port 0x801 sent bgrilenb2
application. When it receives the message, it forms a new message and returns it to
sendmb?2

To run thereceiveapplication from ROM, first follow the directions in this chapter
to generate the application and burn the ROMs. Install the ROMs in the target and
then apply power to the system.

To test whether theeceiveapplication is running successfully, regardless of
whether it runs from the Human Interface or from ROM, executsehdmb?2
program. From the Human Interface on another Multibus Il board, attach to the
/rmx386/demo/rom/mix4dendirectory containing the application and type:

- sendmb2 slot id <CR>

Whereslot_idis the slot number of the Multibus Il agent runningréneeive
application.

ThesendmbZrogram sends a message to port 0x801 on the Multibus Il agent
running thereceiveprogram.

The final display from theendmbzrogram is:

Attempting to send 50 messages to slot X
Messages sent/received [50]
Program terminated successfully.

Programming Techniques Chapter 9 177

Developing Applications
for Multibus Il

This chapter provides a conceptual explanation for most of the Multibus I
examples provided with the iRMX OS. These examples provide a more complete
understanding of message passing techniques using the iRMX OS.

Code Examples

Each example in the manual includes a brief description of the example. Source
code for each example is provided with the iRMX OS.

|:| Note

The filesdcomext.randdcomlit.hare common to the examples in
this chapter.

The source code for the examples are located ifrhe886/demo/c/mb2/intro
directory. To attach to this directory, type:

- af /rmx386/demo/c/mb2/intro <CR>

To generate the proper executable 32-bit modules for these examples, run the
generation command (DOS batch file) for your compiler:

Compiler Generation Command
iC-386 demo - make

Microsoft C - mscdemo

Watcom C - watdemo

If each host has its own disk, enter this command on both host's terminals. If one
of the hosts is diskless, use the file server to generate the example.

Programming Techniques Chapter 10 179

Examples Using Nucleus Communication System

Calls

The examples in this chapter are presented in an order similar to their use in a real
system. The examples step you through these concepts:

Module

icscan.c

tranport.c

sndrsvp.c

rcvrsvp.c

sndmsg.c

Use

Scanning the system to determine what boards are in the system. This
example runs independently of all the other modules.

Creating a data transport protocol port to use in message passing.

Sending an RSVP message to another board and waiting for a reply.
This module must be run witlevrsvp.cor sndfrag.c

Answering an RSVP message from the receiving board. This module
must be run witlsndrsvp.c

Sending a contiguous buffer. This example must be run with either
rcvmsg.oor dcrcvmsg.c

dcsndmsg.cSending a data chain message. This example must be run with either

rcvmsg.c

rcvmsg.oor dcrcvmsg.c

Receiving a contiguous buffer. This example must be run with either
sndmsg.@r dcsndmsg.c

dcrcvmsg.c Receiving a data chain message. This example must be run with

sndfrag.c

rcvfrag.c
sfrag.c

eithersndmsg.or dcsndmsg.c

Sending a fragmented message. This example must be run with
sndrsvp.c

Receiving a fragmented message.

|:| Note

The examples make certain assumptions about the locations of
the host boards in the Multibus Il system that they run on. The
REMHOSTID definition in thesndrsvp.¢sndmsg.cdcsndmsg.c
sfrag.cexamples assume the processor location board is in slot O.
Change this definition if you want to change the remote host to
any processor board in the board.

180 Chapter 10 Developing Applications for Multibus 11

Interconnect Space Example - iscan.c

Before passing messages between agents (boards) in your system, you need to
determine what boards are in your system and the message addresses (cardslot
number for boards on the PSB) for the boards. Writing a board scanner task will
provide you with this information. This task accesses an interconnect register,
allowing you to dynamically determine host IDs, board type, and multiple
occurrences (instances) of a board type.

This section presents an example of getting the interconnect information for an
entire system. The example performs the board scan, get the slot number and
board type of each board in the system and places the information into an array of
structures calledys_map. When the board scan is completgs_map is

displayed on the console screen.

Figure 10-1 presents a board-scanning algorithm. The read statements in this figure
refer to therg_get_interconnectsystem call. For a map or template of a particular
board's interconnect registers, refer to the board's hardware reference manual.

FOR i = 0 to number of slots minus 1
DO;
Read board(i) vendor ID register;
IF vendor ID <> 0 then
DO;
Read board(i) class and subclass ID registers /*
Determine
board type */
Write the board information into the system map
END,;
ELSE;
Write 'empty’ into the sys_map for the slot number
END,;
END;
Get ID of local host
FOR i = 0 to number of slots minus 1
DO:
Print slot numbers and board types to console screen
END;

Figure 10-1. Board Scanning Algorithm

Programming Techniques Chapter 10 181

In the fourth line of the board scanner algorithm, a vendor ID of O (for PSB hosts
only) indicates that either the board was manufactured by a non-licensed vendor or
the cardslot is empty. If you are also scanning the iLBX Il bus, replace the 0 with
OFFFFH.

To run the board scanner example, type:
- icscan <CR>

The source code for this example is located in'timx386/demo/c/mb2/intro
directory.

Creating a Port for Message Passing - tranport.c

Once you have information on what boards are in your system, the next step is to
create a port for message passing and associate a buffer pool with it. This module
creates a buffer pool, releases a number of 400H byte buffers to it, creates a data
transport type port, and then creates a token to use as a reference to the port.

The source code for this example is located in'imx386/demo/c/mb2/intro
directory.

Sending Data Using Send_rsvp

182

Now that you have information on the boards in the system and a data port, you are
ready to send data in message form. The next example illustrates one of the most
common message passing formats, the request/response, typically used between
two iIRMX hosts. Two terms, client and server, are used to describe the boards
involved in request/response messages. The client is the requesting board and the
server is the responding board.

Figure 10-2 shows the logical representation of the message-passing model for a
request/response transaction. A task on the client board initiates the transaction by
sending arsend_rsvpcall to a well-known port on the server board (see

Figure 10-3). Because the ports on a remote board cannot be dynamically
determined, this example assumes a port that is created on all boards as a starting
point for message passing. Once you havesa id for a remote board
(REMHOSTID), you combine it with thegort_id (REMPORT) of the well-

known port to create the socket for the destination of a message. When the server
board receives the message, it replies withstral_replycall (see Figure 10-4).

The request/response messages continue until the data requested in the original
send_rsvpsystem call is received by the task on the client board.

See also: send_rsvp send_reply System Call Reference

Chapter 10 Developing Applications for Multibus 11

For this example, we assume:
« The port on the client board has one buffer large enough for the requested data.

e The port receiving the RSVP message is not being used as a sink port.

Board issuing the RSVP call Board replying to the RSVP call
Client Board e e e | Server Board
i Bus Interface Bus Interface i
| RECEIVE RECEIVE | L ocal CPU
L |CP S SR T T T T e ocal
O L O e o2 |
A VO o oY A
ol ‘{ SEND ‘ SEND */} L
: \ B e SO R B I]
| > 1] ® ® V@ [| TASK?2
TASK1 || I |
| |
| |

Operations that are transparent to calling tasks
LEGEND
""" > From Client Board
"7 " From Server Board
Message Passing Bus

W-0305

1. Task 1 on the Client board issues a send_rsvp system call. In an RSVP/REPLY transaction, the
board that issues the call is the client; the board that replies is the server.

2. The Nucleus Communication Service (NCS) turns the information from the send_rsvp system call
into a message then sets the buffer space for the expected reply.

3. The Message Passing Coprocessor (MPC) sends the message across a message passing bus to
the remote agent specified in the send_rsvp system call.

4. The CPU on the server board receives a PIC interrupt because a Multibus Il message has been
received.

The NCS on the server board directs the message to the appropriate port (and, therefore, task).

Task 2 responds with a send_reply system call that contains information about the data being
sent.

7. The NCS on the server board turns the information in the send_reply system call into a message
that is sent by the MPC.

8. The message travels across the message passing bus, an operation transparent to the operating
systems on both boards.

9. The MPC on the client board places the message into the buffer that was set up in step 2, and
then sends an interrupt to the CPU, informing it of the completion of the message transaction.

10. The NCS on the client board directs the message to the correct task using the port ID
(REMPORT). The CPU on the client board is aware of operations in steps 1, 2, 9, and 10.

Figure 10-2. An RSVP/REPLY Transaction between Two iRMXHosts

Programming Techniques Chapter 10 183

Figure 10-3 is an algorithm for the client board in this transaction.

Client board
Call an external procedure called get$dport that returns a
TOKEN for the local port to be used in the RQSSEND$SRSVP call.

Initialize the socket structure, declared externally.
Set the message size to be zero length.

Initialize the global variable rsvp_size to the LITERAL RSVPB
(128 bytes).

Issue the RSVP system call using the previously initialized
variables.

Use the RQ$RECEIVE$REPLY system call to wait for an answer.

Send the reply message, "This is a send$reply message" to the
console screen.

Exit from the example.

Figure 10-3. Algorithm for the Client Board

Figure 10-4 is an algorithm for the server board in this transaction.

Server board

Call an external procedure, get$dport, that returns a TOKEN to
be used in the RQ$RECEIVE and RQ$SENDS$REPLY calls.

Perform an RQ$RECEIVE using the TOKEN returned from get$dport.

Perform an RQ$SENDS$REPLY on successful completion of the
RQ$RECEIVE.

IF the data arrives correctly (msg_ptr <> NIL)
Return the buffer to the buffer pool.

End server procedure.

Figure 10-4. Algorithm for the Server Board

184 Chapter 10 Developing Applications for Multibus 11

The send message example must be run with the corresponding receive message
example. To run these examples, first type this command on the host in slot 0, or
in the slot as server defined by the REMHOSTID parameter:

- revrsvp <CR>
Then type this command on the host in any slot:
- sndrsvp <CR>

The source code for this example is located in'rtimx386/demo/c/mb2/intro
directory.

Sending and Receiving Messages

This section presents examples of sending and receiving buffers (messages) either
as contiguous buffers or as data chains. The example is presented in two modules,
one that sends a message and one that receives it. A port's ability to receive
messages in data chain form is set according to the attributes of the port's
associated buffer pool.

The programs for sending messages:

File Action Object

sndmsg.c Send Contiguous buffer
dcsndmsg.c Send Data chain buffer
rcvmsg.c Receive Contiguous buffer
dcrcvmsg.c Receive Data chain buffer

The source code for this example is located in'timx386/demo/c/mb2/intro
directory.

Programming Techniques Chapter 10 185

Receiving a Message

The receive example must be run with the corresponding send message example.
To run a receive example, first type one of these commands on the server in slot 0,
or in the slot as server defined by the REMHOSTID parameter:

- rcvmsg <CR> for sending a contiguous buffer
or
- dercvmsg <CR> for sending a data chain

After setting the host in slot O to receive, run the respective send example on
another host. After receiving the message, the host terminal in slot O displays:

Message received by [rcvmsg|dcrcvmsg] as a
[contiguous buffer|data chain] is as follows:

This is the message sent by [sndmsg|dcsndmsg] as
a [contiguous buffer|data chain].

Sending a Message

The send example must be run with a receive message example. To run a send
example, type one of these commands on the host in any slot other than 0:

- sndmsg <CR> for sending a contiguous buffer
or
- decsndmsg <CR> for sending a data chain

Sending a Message in Fragments

This section presents an example of sending and receiving a message that is broke
into fragments. The example is presented in two modules, one that sends the
fragmented message and one that receives it. A port's ability to receive messages
in fragment form is set according to the attributes given to the port at the time of its
creation.

The send fragment example must be run with the send RSVP procedure. To run
these examples, first type this command on the server in slot 0, or in the slot as
server defined by the REMHOSTID parameter:

- sndfrag <CR>

This procedure breaks the data into fragments and sends them to a processor boar
Then type this command on the host in any slot other than 0:

- sndrsvp <CR>

186 Chapter 10 Developing Applications for Multibus 11

This procedure receives the fragmented data and displays it on the host terminal
from which thesndrsvp command was executed:

This is a reply sent in fragments.

Receiving a Message in Fragment Form

This section presents an example of sending a message and receiving it in fragment
form. The example is presented in two modules. The first mosfudey initiates

a transaction which forces receiving in fragment form. The second module,

rcvfrag, receives the message and prints it on the console screen. To run these
examples, first type this command on the server in slot 0, or in the slot as server
defined by the REMHOSTID parameter:

- rcvfrag <CR>

Then type this command on the host in any slot other than 0O:
- sfrag <CR>

The host terminal from which ttefrag command was executed displays:
This is a reply to a fragmented message.

The host terminal in slot O displays:

This was received via fragmentation.
This is the second fragment.

The Name Server Example

This is the most complex example provided with the iIRMX OS. This example
implements a table that dynamically catalogs the names of all the ports created in a
system. Two tasks, one for remote requests and one for local requests, manage the
name server table.

The remote server task uses both control and data messages to service requests.
The local server services requests through data mailboxes. The name server table
is implemented as a circular list which is accessed by procedures that insert or
delete port names, get or change socket information, and set up the table for these
accesses.

When a client board makes a request to the name server, the request is sent, the
calling task waits for a reply, and the name server returns information specific to
the request (e.g., the result of modifying an entry in the table or the socket for a
remote port).

Programming Techniques Chapter 10 187

The example, written in PL/M, for the name server is located in the
/rmx386/demo/plm/mb2/nsergirectory. This command makes the directory
containing the name server example the current directory.

- af /rmx386/demo/plm/mb2/nservr <CR>
To generate the executable name server, rum#iefileby entering:

- make <CR>

|:| Note

If an error is generated after running the makefile, you may need
to modify the file. Edit this file and delete the WORD16 switch
from this line:

PLMFLAGS=$(DEBUG) Set(r_32) word16
The name server can be run as a background job to one of the processors. To stal
the name server running as a background job, enter:
- background nservr > nservr.doc <CR>
See also: background commandCommand Reference

Two modules demonstrate the use of the nhame semgsndms@ndnsrcvmsg
which execute as a paiNsrcvmsgnust execute first. It posts a socket with the
name server under the name receilssndmsghen executes, sending the name
server a look-up request on the name receidssndmsghen sends a message to
receiver anghsrcvmsgprints the message:

On the same host in which you invoked nservr as a background process, enter:
- nsrcvmsg <CR>

On another host, enter:
- nssndmsg <CR>

The host terminal displays:
This is a simple message.

This process can be demonstrated on either host board, but the order of module
execution cannot be changed.

188 Chapter 10 Developing Applications for Multibus 11

The General Examples

The two examples presented in this section are located in the
/rmx386/demo/plm/mb2/generdirectory. The concepts they demonstrate are:

« Example 1. sending and receiving unsolicited messages
« Example 2: sending and receiving asynchronous solicited messages
To examine the examples, attach their directory by entering:

- af :rmx:demo/plm/mb2/general <CR>

To generate the executable modules for all of these examples, makbéleby
entering:

- make <CR>

If each host has its own disk, this command must be entered on both host's
terminals. If one of the hosts is diskless, enter this command on the host which is
acting as its fileserver.

|:| Note

The moduleutils.lit contain default client and server PSB slot
definitions. They can be changed for running the examples. All
PSB slot numbers are in hexadecimal.

Programming Techniques Chapter 10 189

Example 1: Sending and Receiving Unsolicited Messages

This example demonstrates sending and receiving unsolicited messages. It can be
executed on any Multibus Il boards running the OS or on any single board running
as both the CPU and the communications board (short-circuit mode). The client
and server boards must be situated in slot CLIENTPSBSLOT and
SERVERS$PSBS$SLOT, respectively. These slots are definaiilsdit, located in

this example's directory.

In this example, the client is defined as host 4 and the server as host 2.

Execution of Client and Server Programs

This table shows the various steps the client and server programs perform during
the execution of example one.

Table 10-1. Flow of Program Execution for Example 1

Steps Program Action
1 client Enable in-line exception handling
server Enable in-line exception handling
2 client Create port object; associate port with a default remote socket
server Create port object; associate port with a default remote socket
3 client Prompt user for message
Encrypt message
Send message asynchronously to server
Wait for response from board in slot SERVERPSBSLOT
4 server Receive message and display in encrypted form
Decrypt message and display in decrypted form
Send decrypted message back to client board
5 client Display decrypted message
Prompt user for another message

190

This cycle repeats steps 3 through 5 until six messages have been sent and
received. The programs then terminate.

Chapter 10 Developing Applications for Multibus 11

Running Example 1
To run this example, first enter this command on the host in slot 4:
- cInt32 <CR>
The terminal displays:
Enter any string of characters:
Second, enter this command on the host in slot 2:
- srvr32 <CR>

The server will wait for input from the host in slot 4. For example, your message
on host 4 can be:

My exciting message! <CR>

When host 0 receives the message, it first displays the encrypted version, then the
decrypted version.

Message received is: [encrypted version is displayed]
Converted message: My exciting message!

The server then sends the converted message back to the client, which displays the
message and prompts for the next input.

Message received is: My exciting message!
Enter any string of characters:

After six messages, both programs terminate.

Programming Techniques Chapter 10 191

Example 2: Sending Asynchronous Solicited Messages

This example demonstrates sending asynchronous solicited messages and using
buffer pools. It can be executed on any Multibus Il boards running the OS or on
any single board running as both the CPU and the communications board (short-
circuit mode). The client and server boards must be situated in slot
CLIENTPSBSLOT and SERVER$PSBS$SLOT, respectively. These slots are
defined inutils.lit, located in this example's directory.

In this example, the client is defined as host 4 and the server as host 2.

Execution of Client and Server Programs

This table shows the various steps the client and server programs perform during
the execution of example two.

Table 10-2. Flow of Program Execution for Example 2

Steps Program Action
1 client Enable in-line exception handling
server Enable in-line exception handling
2 client Create port object; associate port with a default remote socket
server Create port object; associate port with a default remote socket
3 client Create buffer pool; associate pool with the port created earlier
server Create buffer pool; associate pool with the port created earlier
4 client Create buffers and release them to the pool
server Create buffers and release them to the pool
5 client Prompt user for message
Encrypt message and send message asynchronously to server
Wait for asynchronous send transmission message
6 client Wait for response from board in slot SERVERPSBSLOT
server Receive encrypted msg from board in slot CLIENTPSBSLOT
Move message from buffer pool buffer to application buffer
Release the buffer back to the buffer pool
Decrypt message and display decrypted form
Send decrypted message synchronously to client board
7 client Release buffer back to buffer pool; display decrypted message
Prompt user for another message
This cycle repeats steps 5 through 7 until eight messages have been sent and
received. The programs then terminate.
192 Chapter 10 Developing Applications for Multibus 11

Running Example 2
To run this example, first enter this command on the host in slot 4:
- solcInt32 <CR>
The terminal displays:
Enter any string of characters:
Second, enter this command on the host in slot 2:
- solsrvr32 <CR>

The server will wait for input from the host in slot 4. For example, your message
on host 4 can be:

- My exciting message! <CR>

When host 0 receives the message, it first displays the encrypted version, then the
decrypted version.

Message received is: [encrypted version is displayed]
Converted message is: My exciting message!

The server then sends the converted message back to the client which displays the
message and prompts for the next input.

Message received is: My exciting message!
Enter any string of characters:

After eight messages, both programs terminate.

Programming Techniques Chapter 10 193

Developing Applications in
Assembly Language

This chapter provides information on invoking system calls from assembly
language. It also provides an example of an interrupt handler and an OS extension
interface.

Files referred to in this chapter are located in/thnex386/demo/asm/intro
directory.

Invoking System Calls from Assembly Language

To invoke system calls from assembly language programs, the assembly language
programs must obey the Fixed Parameter List (FPL) procedure-calling protocol
used by C and PL/M. For example, if your ASM386 program uses the
SendMessage system call, then you must call the RqSendMessage interface
procedure from your assembly language code.

In general, to call a C or PL/M procedure, do this:
1. Push all the parameters onto the stack.

Push the parameters in the order they are listed in the system call reference
manuals; that is, starting with the leftmost parameter and working towards the
right.

Push long pointers (complete addresses consisting of a selector and an offset)
selector (as a 16-bit value) first, then the offset (as a 32-bit value for PL/M
32-bit mode).

2. Call the procedure.

The CALL instruction also places the return address of your calling procedure
onto the stack. This enables control to return to your program after the system
call completes.

Programming Techniques Chapter 11 195

196

Some system calls return values. In assembly language, the returned values are
available in registers as listed in Table 11-1.

Table 11-1. Registers Containing Returned System Call Values

Type 32-bit Register
BYTE AL

WORD AX

DWORD EAX
INTEGER AX

POINTER DX:EAX
SELECTOR AX

The filereg.inc(used by the interrupt handler example) contains macro definitions
used to produce common source code for iRMX Il and 1ll. These macro definitions
define the register values shown in Table 11-1. The interrupt handler description
on page 199 shows how to invoke these definitions.

When writing assembly language routines that call iC-386 or PL/M-386 interface
procedures, use the compact model with ASM near calls.

If some of your application code is written in either C or PL/M, your assembly
language code should use the same interface procedures as those used by your
code. However, if your application is written entirely in assembly language, using
the compact interface library and coding your application to make NEAR calls will
produce size and performance advantages.

See also: Using Compact and Large Memory Models, Chapter 7

Chapter 11 Developing Applications in Assembly Language

This listing ofreg.incshows definitions for common sourced code.

: macro definitions for common sourced code

WIF (%RMX EQ 3)

%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
) ELSE (%'
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
%define
) FI%'

Programming Techniques

THEN
(ax)
(bx)
(cx)
(dx)

(si)

(di)
(bp)
(sp)
(mov16)
(pusha)
(popa)
(pushf)
(popf)
(iret)
(dw)
(dd)

(ax)
(bx)
(cx)
(dx)

(si)

(di)
(bp)
(sp)
(mov16)
(pusha)
(popa)
(pushf)
(popf)
(iret)
(dw)
(dd)

(eax)
(ebx)
(ecx)
(edx)
(esi)
(edi)
(ebp)
(esp)
(movzx)
(pushad)
(popad)
(pushfd)
(popfd)
(iretd)
(dd)
(dp)

(ax)
(bx)
(cx)
(dx)

(si)

(di)
(bp)
(sp)
(mov)
(pusha)
(popa)

(pushf)

(popf)

(iret)
(dw)
(dd)

Chapter 11

197

198

This example shows how to call IRMX system calls from assembly language.

example assumes that the compact segmentation model is used.

Chapter 11

DATA segment RW PUBLIC

seg_tok DW ?
excep DW?
DATA ENDS

CODE segment ER PUBLIC
extrn rgcreatesegment: near
my_prog PROC near

; Get addressability to parameters

bush ebp
mov ebp, esp

Save caller's DS and obtain local DS

push ax

push ds

mov ax, data
mov ds, ax

Typical ASM statements

seg_tok = rg$create$segment (400H, @excep);

movzx ax,400H

push eax

push ds

push offset excep
call rgcreatesegment
mov seg_tok, ax

: IF except <> ESOK THEN GOTO error;

cmp excep, 0
jnz error

Typical ASM statements
my._prog ENDP

CODE ENDS
END

The

Developing Applications in Assembly Language

Interrupt Handler Example

The assembly language applicatiorthand.asmprovides an example of an
interrupt handler. The include filegg.ing used by this application provides macro
definitions used for various versions of the iRMX OS. The proper definitions are
invoked using one of these ASM invocation lines (froakefile:

asm86 .obl .Isl
asm286 .obl12 .Is2
asm386 .obj .Ist

Generating the Interrupt Handler Example

Theinthand.asnfile contains the assembly language code for the interrupt handler.
To examine the example, attach to the directory by entering:

- af /rmx386/demo/asm/intro <CR>

Theinthand.asnfile contains the assembly language code for the interrupt handler.
To generate the object file fromthand.asmrun themakefileutility by entering:

- make <CR>

OS Extension Example

This assembly language code provides a listing of the recommended interface to an
OS extension.

Once a call gate has been reserved for use as an OS extension (either using the ICU
in the iIRMX Il OS, or using themx.ini configuration), it can be bound to an
application using thege_set_os_extensiosystem call. Other applications can

access the OS extensions using assembly language interface procedures described
below.

Programming Techniques Chapter 11 199

200

This ASM module is a sample interface to Call Gate 441, which is one of the
user-accessible gates. The OS Extension procedure tied to the gate has this FAR
external interface:

out$char: PROCEDURE(value, status$p) EXTERNAL;
GATE_441 equ 441

$GENONLY
%*DEFINE(CALL_G(ARG))
(DB 9AH

DD 0, %ARG*8)

Name Interface

Code Segment ER PUBLIC

Public Outchar

Outchar Proc Near

; PLM CALL - CALL OUT$CHAR (VALUE, @STATUS);
Figure 11-1. OS Extension Code in Assembly Language

Chapter 11 Developing Applications in Assembly Language

; STACK FRAME AFTER PUSHING EBP

. ESP->| OLDEBP | [EBP]

: : OFFSET OF RET. ADD. | [ElBP + 4]

: : OFFSET OF STATUS | [EI|3P + 8]

: : SEGMENT OF STATUS | [lEBp +12]

; [|
: | VALUE (PARAMETER) | [EBP + 16]

push ebp

mov ebp, esp

push dword ptr ss:[ebp + 16] ; value

push dword ptr ss:[ebp + 12] ; selector of status_p
push dword ptr ss:[ebp + 8] ; offset of status_p

%call_g(GATE_441)

;CALL gate_441 - Invoke entry procedure through the call gate
les edi, pword ptr ss:[ebp + 8] ; Load status_p in es:edi
mov cx,es:[edi] ; Load condition code
7 incXx
jcxz done ; If CX=0, then no error

; Error processing code IF CX <> 0

done:
pop ebp
ret 12

Outchar Endp

Code Ends
End

Figure 11-1. OS Extension Code in Assembly Language (continued)

Programming Techniques Chapter 11 201

Developing Applications
in PL/M

This chapter contains specific information about using PL/M to create application
code. It discusses:

e Making calls to the operating system

e Using include files and libraries

e Linking or binding object modules

* A multitasking demo program that uses iRMX system calls
e A <Ctrl-C> handler example

You should already be familiar with these concepts as well as the PL/M language
and PL/M segmentation models.

See also: PL/M-386 Programmer's Guide
Introducing the iRMX Operating Systems

You can compile, bind, and run the demo program from the Human Interface, or
you can use the code and this discussion purely as an example of how to perform
certain operations in PL/M under the OS.

Invoking System Calls from PL/M

Invoking iRMX system calls is just like calling any PL/M procedure. Because you
do not define the system calls in your programs, they must be external procedures.
Therefore, include external declarations for each system call you invoke.

See also: Binding Your Code to Interface Libraries

Programming Techniques Chapter 12 203

Including External Declaration Files

204

When you call a procedure that is not defined in your current program module (a
separately compiled portion of code), declare that procedure to be external. The
binder can then satisfy the references to that procedure as it links the program
modules together. A program in one module can then call a procedure in another
module.

Include files are supplied with the iIRMX OS. These files are placed permanently
in one location and provide the external procedure declarations for all IRMX
system calls. The declarations are written once, placed in an include file, and then
used in place of repeating the actual declaration in each module.

For example, to use the PL/M include filaclus.extplace this statement at the
beginning of your PL/M source code. This statement declares all the Nucleus
system calls to be external.

$include(/rmx386/inc/nuclus.ext)

See also: Header fileSystem Callsfor a list of external declaration include
files for PL/M which are supplied with iRMX

Because each include file contains external declarations for many system calls,
including a particular file will probably result in external declarations for several
system calls your program does not invoke. These extra external declarations pose
no problems for the compilers and cause no error conditions.

Chapter 12 Developing Applications in PL/M

Binding Your Code to Interface Libraries

After you have written your programs and inserted include statements for the
necessary system calls, compile the code and bind it to the appropriate iRMX
interface library.

Interface libraries supplied with the iIRMX OS provide a standard interface to the
system calls. The interface libraries contain procedures that correspond to iRMX
system calls. These procedures have the same names and use the same parameters
as the system calls. The interface procedure performs operations to invoke the
actual system call. For example, iRMX interface procedures make calls to call

gates when accessing system calls.

After compiling the program code, satisfy the external references to the system
calls by using BND386, which binds the compiled code to the appropriate interface
libraries. There are several interface libraries to choose from. The library you
choose depends on the system calls and the segmentation model used.

See also: Interface LibrarieSystem Call Referenci®r the general iRMX
libraries and the UDI libraries

Using the UDI calls exclusively enables an application to be easily transported
between Intel OSs. To help you choose which library to bind your program to,
consider this:

« If your code includes only UDI system calls or if it uses the 1/0O support
provided by the language, bind your program only to the UDI library.

« If your code does not invoke UDI system calls, or you do not plan to include
the language's 1/0 support, bind the code just to the iRMX library.

« If your code invokes both UDI and other iRMX system calls, bind the code to
both of the libraries for the segmentation model you chose.

Programming Techniques Chapter 12 205

PL/M Multitasking Example

The PL/M example program is calledampl32 In addition to studying this

program and its discussion, you can use the files as a starting point in developing
your application code. This could save you time when creating the source module,
adding include statements, or producing code that attaches the console, etc.

These sections provide:
e An overview of the demo program
* The location of the code in the standard iRMX directory structure

e Information on how to build and run the program

Example Overview

The multitasking example demonstrates some iIRMX programming concepts by
printing prompts to the console screen and accepting input from the user. To
accomplish this, the program uses two tasks: the initial task and a second task
called Task2. The main program code contains the initial task and it creates Task?2

The function of the initial task in the main program code is this:

e Set up the programming environment by creating objects, the second task, etc.
e Prompt the user for and capture keyboard input

e Pass the captured input to Task2

« Exit with an error after receiving three user-supplied keystrokes

The function of Task2 is to receive user-supplied keystrokes from the initial task
and process them. The processing consists of printing the received keystroke to th
screen once every second.

Because the job uses two tasks, each task can perform its function separately from
the other task. Communication and data passing between the initial task and Task:
are handled using some basic iRMX programming techniques.

206 Chapter 12 Developing Applications in PL/M

Location of Multitasking Example Code
The files for the multitasking example are in thax386/demo/plm/intralirectory.

Before attempting to understand this example, produce hard copies of the source
code or be able to view them from a console screen.

These files are the source files for the examples:

makefile File to generate 32 bit example

demo.plm Main program code containing the initial task
task2.plm Second task code

crbpool.plm Buffer pool code

except.plm Exception handling code

strng.plm String manipulation utility

condec.plm Decimal conversion utility

Compiling and Binding the Multitasking Example Code

In addition to the example source code files, there is a file you can use to compile
and bind the example. The fileakefilecompiles and binds the source files using
PL/M-386 and BND386 and creates two 32-bit executable programs named
exampl32andtskcom32

|:| Note

The exampletskcom32is the PL/M version of the task
communication example described in Chapter 5, Debugging
Applications.

Before runningnakefile first attach to the directory where the examples
are kept. Then run threakefileutility:

- af /rmx386/demo/plm/intro <CR>
- make <CR>

Now run the example by entering:

- tskcom32 <CR>

Programming Techniques Chapter 12 207

Themake command executesakefile This initiates the compilation and binding
of all the job's source code files.

|:| Note

If you wish to generate the example as another user, create a new
directory, copy the example's files to the new directory, move to
that directory and invokmnakefile Generating the example from
another directory enables you to alter source code, while keeping
the original version intact.

Running the Multitasking Example

208

You should now have a file callekampl32hat you can execute. To run the
example, type its name as follows:

- exampl32 <CR>
After typing the filename, the example prompts you with this message:

iRMX PL/M Example, Vx.y
Welcome to the PL/M Demo Program!

At the prompt you will be given 60 seconds to hit any key.
If you do not hit a key the demo will continue anyway.
You may hit an "E" if you wish to exit the program.

You now have <xx> seconds left to hit a key.

At this point, the example is executing code in the promptandwait procedure
from the filedemo.plm The example is counting down from 60, waiting for you to
press a key to begin the demo. The steirg> in the previous screen is the
decrementing count. To continue, press a key. After pressing any key, the
example clears the screen and prompts you with this message:

Please hit a key which will be forwarded to task2 for
processing.

Assuming you enter the letter X for the first keystroke, the main program,
containing the initial iRMX task, reads the X from the terminal and passes it on to
Task2. Task2 wakes up and prints out this message to the screen:

TASK2 PROCESSING

Please hit a key which will be forwarded to task2 for

processing
1,9,9,.9,90,9,9.9,9,0.90.9,9,.9.9,:9,0.90,9,0,:9.9.9,0.9,.9,9.90.0.9,0.0,9,0.9.9.0.0.9.0,0.9,.0.0, QW

Chapter 12 Developing Applications in PL/M

The X characters that Task2 prints to the screen continue to appear at the rate of
one per second. The character will repeat indefinitely until you enter another
keystroke. Also, notice that the prompt to enter another keystroke is buried in the
middle of Task2's processing message and the string of letters that it displays. A
close examination of the initial task and Task2 show the synchronization used to
time the output of these tasks. The tasks use a semaphore to achieve task
communication.

Entering the next two keystrokes concludes the example. This output assumes you
enter the characters Y and Z:

TASK2 PROCESSING Y

Please hit a key which will be forwarded to task2 for

processing
YY ...
TASK2 PROCESSING zZ

This concludes the PL/M Demo Program.
This demo now exits by generating an internal error.

INTERNAL ERROR AT # 340 STATUS = 0023: E$SUPPORT

After you enter the final keystroke, the initial task recognizes that you have entered
three characters. This signals the code to end the program. Notice that the initial
task ends the program before Task2 can begin printing the third character to the
console screen.

Programming Techniques Chapter 12 209

Programming Concepts lllustrated by the
Multitasking Demo

210

This example demonstrates the use of iRMX system calls from a PL/M program.
For simplicity, in the discussions of these calls, the iRMX system call prefjig
usually dropped. The example illustrates nine common iRMX programming
concepts as listed below.

In-line exception processing The processing of all errors resulting from iIRMX
system calls in your application code rather than
using the default exception handler, which deletes
tasks that get errors.

Using literal files Using separate files that contain PL/M data
structure definitions and literal definitions needed
to make system calls. Providing separate literal
files relieves you from repeating data structure and
literal definitions throughout modules.

Getting and setting terminal Using iRMX system calls to get the current

attributes terminal attributes. After getting and altering the
attributes, you can use another iRMX system call
to set them.

Creating tasks Using an iRMX system call to create additional
tasks from an existing task.

Cataloging objects Describing to the system where key objects the job
uses reside. Tasks can easily share cataloged
objects.

Using response pointers Instructing server tasks where to respond with

during inter-task information that signals the completion of a request

communication task. Response pointers allow server tasks to keep

track of which request tasks they are responding to.

Using buffer pools Creating areas of memory for a job that tasks can
use as a common memory resource. Once a buffer
pool and its buffers have been created, the system
can use the memory by simply requesting and
releasing buffers.

Performing screen Reading and writing data to the physical terminal
input/output screen.

Performing simultaneous Tasks performing 1/O operations independent of

input/output one another. For example, one task may wait for
terminal input while another task processes data
and writes it to the terminal.

Chapter 12 Developing Applications in PL/M

In-line Exception Processing

In-line exception processing provides a way for your application to handle errors
generated from system calls. You can process them in-line, use the default
exception handler, or assign your own exception handler. The example in this
section shows how to process exceptions in-line. In order to do this, first create
your own in-line exception handler routine, and then, explicitly pass control to your
exception handler routine instead of to the default exception handler routines.

To get the OS to pass control to your routine instead of a default routine, reset the
value of the current task's exception mode and code your tasks to call your
exception handler routine.

The example uses a procedure cadlet@exception in the fileexcept.plmo

reset the exception mode to a value of zero. A value of zero tells the OS never to
pass control to default exception handler routines. If you examine the beginning
code of both the initial task and Task2, you will see that the very first executable
statement is a call to tet$exception procedure as follows:

CALL set$exception(NOSEXCEPTIONS);

This call passes a zero value paramet€@$EXCEPTIONSupplied from a literal
file) to the procedure. Wheset$exception executes, it calls
get$exception$handler , which returns exception handler information to the
data structure addresseddxgept$info

The procedure then replaces the exception mode with zero using this statement:
except$info.mode = except$mode;

The procedure then cabgt$exception$handleto reset the exception handler
information with the altered data addresse@mepts$info

See also: set_exception_handleandrg_set_exception_handlersystem calls,
System Call Reference

The technique of setting the exception mode to zero is not always desirable. You
should understand managing exceptions before deciding on a specific technique.

See also: Exception handlers, Chapter 3,
Exceptional condition managemes8gstem Concepts

Programming Techniques Chapter 12 211

Since (with exception mode set to 0) the OS will no longer pass control to
exception handler routines, your tasks must check for individual errors or provide
your own inline exception handler routine. This example uses a procedure called
errorcheck in the fileexcept.plmas the inline exception handler routine.

Notice that in the source code for the initial task and Task2, a call to

errorscheck follows every system call. This code is fréamsk2.pim

CALL rgsopen (co$conn, WRITESONLY, 0, @status);

CALL error$check(510,status);

mail$box = rq$lookup$object (CALLER, @(3,'MBXY),
INFINITESWAIT, @status);

CALL error$check(520,status);

pool$tkn = rq$lookup$object (CALLER, @(6,'BUFFER'),
INFINITESWAIT, @status);

CALL error$check(530,status);

Each time a system call is made, a subsequent call is maderfizheck

passing it a line number and a word containing the status from the previous system
call. The routineerror$check tests the value aftatus and returns to the

calling task if it is zero (no error occurred). If the valuatafus is not zero (an

error occurred), then error$check builds an error message, prints it to the screen,
and exits the job.

The line numbers passed as the first parameter in calsot§check have no

implicit meaning. These numbers are arbitrary numbers that can be associated wit
a system call. This technique enables you to easily find a system call that
generates an error.

Use of Literal Files

Within the iRMX directory structure are find Intel-supplied literal files. These files
are located in the directofymx386/incand have a file extension dit. Literal

files provide many data structure definitions used by iRMX system calls and useful
literal definitions for PL/M code. Use include statements to include those literal
files that apply to a code file.

These PL/M statements are from the initial task's code in theefiteo.plm These
statements show how to include six literal files.

$include(/rmx386/inc/error.lit)
$include(/rmx386/inc/common.lit)
$include(/rmx386/inc/nstexh.lit)
$include(/rmx386/inc/tscrn.lit)
$include(/rmx386/inc/iaiors.lit)
$include(/rmx386/inc/io.lit)

212 Chapter 12 Developing Applications in PL/M

Table 12-1 shows which Intel-supplied literal files are useful for various types of
system calls.

Table 12-1. PL/M Literal Files for Use with iRMX System Calls

Nucleus System Call Literal File
create$job nstexh.lit
get$exceptionShandler nstexh.lit
get$task$tokens ngttok.lit
get$type ngttyp.lit
set$exception$handler nstexh.lit
BIOS System Call Literal File

agetconnection$status
a$gets$fileSstatus

iagtcs.lit, io.lit
iagtfs.lit, iotyp.lit, io.lit

a$open io.lit
a$physical$attach$device io.lit

a$seek io.lit

a$special tscrn.lit

EIOS System Call Literal File
createiojob nstexh.lit, iexioj.lit
e$create$io$job nstexh.lit
exitiojob iexioj.lit
get$logical$device$status io.lit
get$logical$attach$device io.lit

sgetconnection$status
sgetfile$status

isgtcs.lit, io.lit
isgtfs.lit, ifltyp.lit, io.lit

s$open io.lit

s$seek io.lit

s$special isiors.lit, tscrn.lit
Human Interface System Call Literal File
cgetoutputSconnection hgtocn.lit
cgetoutputspathname hgtocn.lit
message passing calls nmesgs.lit
buffer pool calls nbpool.lit

Programming Techniques

Chapter 12

213

214

Aside from the literal files shown in Table 12-1, two other important literal files
exist: common.litandiaiors.lit. The filecommon.littcontains many literal
declarations commonly used in PL/M programming. You should include this file
in all your PL/M programs. The fileiors.lit contains the structure for the I/O
Result Segment (IORS) returned in most BIOS system calls. You should include
this file in all your PL/M programs that make BIOS system calls.

Chapter 12 Developing Applications in PL/M

Resource and Stack
Size Guidelines

This appendix discusses guidelines for using memory to support iRMX object
types. It also discusses stack size requirements and calculations.

Resource Requirements

The Nucleus obtains memory from the calling job's memory pool when creating
objects or borrowing memory. When a job borrows memory from its parent, the
Nucleus uses three 16-byte paragraphs in addition to the amount it uses for object

creation. Table A-1 lists the memory requirements of the iRMX OS.

Table A-1. Nucleus Memory Requirements

Object Number of 16-byte Paragraphs Required

job 3 + object directory

object directory 1 per entry in the directory

task 5 + 6 (if the task uses the NPX) + stacksize/16 (if the Nucleus
allocates the stack)

mailbox 2 + size of high performance queue/4

semaphore 2

region 2

segment 1 + segsize/16

extension 2

composite 3 + number of positions available for components/8

Programming Techniques

Appendix A 215

The BIOS obtains memory from the calling job's memory pool when creating
objects. These values are shown in Table A-2.

Table A-2. BIOS Memory Requirements

Object Number of 16-byte Paragraphs Required

I/O Result 4 (5 for an internal IORS that the operating system creates
Segment when attaching a device)

Connection to 6

named file

Connection to 4

physical file

User object 3 (minimum)

RAM Requirements

This information helps estimate the amount of RAM needed to use the EIOS. The
descriptions that follow state explicitly from which pool the RAM is taken. Use
this information when deciding how large to make the memory pools of the jobs in
your application.

Attaching a Logical Device

Each time one of your tasks usesithelogical_attach_devicesystem call, the
EIOS uses 98 bytes of RAM from your job's pool and 64 bytes of RAM from the
pool of the EIOS job created during the configuration process. This RAM is in
addition to the RAM required by the BIOS for a device connection.

Both quantities of RAM are eventually returned to the memory pools from which
they originated, but they are returned at different times. The memory taken from
the EIOS pool is returned only when the device is detached. In contrast, the
memory taken from your job's pool is returned as soon the
rq_logical_attach_devicesystem call finishes running.

216 Appendix A Resource and Stack Size Guidelines

Creating an I/O Job

Whenever one of your tasks creates an I/O job, the EIOS uses 176 bytes of RAM
from the pool of this new I/O job. This is in addition to the RAM used by the
Nucleus to create the job. All of this memory returns to the pool of the parent job
after the 1/O job has been deleted.

In addition to the memory requiremerd, create_io_jobandrge_create_io_job
also require five entries in the object directory of the I/O job being created.

See also: Configuratiorogramming Concepts for DOS and Windpws
Memory ScreendCU User's Guide and Quick Reference

Opening a Connection

When a task opens a file connection usingrthes_opensystem call, the EIOS

uses some RAM from the pool of the calling job to create objects. The amount of
RAM required depends on whether the connection is opened for buffered 1/O or
nonbuffered 1/O.

« If the connection is not buffered, the EIOS uses 64 bytes of RAM.

« Ifthe connection is buffered, use this expression to compute the RAM size.
This amount is a function of the buffer size in by@®safd the number of
buffers ():

number_of bytes =80+5 N+ NS +64)

Regardless of whether the connection is buffered or not, all RAM returns to the
memory pool when the connection is closed or deleted.

Other RAM Requirements

For system calls other than those discussed above, the EIOS has varying memory
requirements. However, when you make an EIOS call, the call requires no more
than:

e 300 bytes of your job's memory pool
e 400 bytes of the calling task's stack

This RAM returns to your job's pool as soon as each system call finishes.

Programming Techniques Appendix A 217

Object Counts

You can assume that the EIOS creates no more than 10 objects during the
execution of any system call.

Except in a few cases, all of these objects are deleted before the system call has
finished running. The few exceptions are the system calls that explicitly create
objects at the request of your application tasks, such ag_theattach_file system
call (which creates a file connection) and thelogical_attach_devicesystem call
(which creates a device connection).

Stack Size Limitations

You must know the stack size limitations depending on your application. Three
primary cases are listed below and are explained in these sections:

e Tasks that create iRMX jobs or tasks
e Interrupt handlers

* Tasks to be loaded by the Application Loader or tasks to be invoked by the
Human Interface

To use this information, you should already be familiar with the System Debugger
(SDB), and should know which system calls are provided by the various layers of
the OS. You also should know the difference between maskable and nonmaskable
interrupts.

Stack Size Limitation for Interrupt Handlers

218

Interrupt handlers, invoked by maskable or nonmaskable interrupts, use the stack ¢
the interrupted task. The OS assumes a maximum of 256 bytes of stack for
interrupt handlers. Exceeding this maximum causes stack overflow errors.

To stay within the 256 byte limitation, restrict the number of local variables that
the interrupt handler stores on the stack. For interrupt handlers serving maskable
interrupts, you can use up to 20 bytes of stack for local variables. For handlers
serving nonmaskable interrupts, use no more than 10 bytes. The balance of the
256 bytes is consumed by tteg signal_interrupt system call and by storing the
registers on the stack.

See also: Interrupt§ystem Concepts

Appendix A Resource and Stack Size Guidelines

Stack Guidelines for Creating Tasks and Jobs

When you create a task by invoking tige create_tasksystem call, you must

specify the size of the task's stack. Since every new job has an initial task created
simultaneously with the job, you must also designate a stack size when you create a
job.

Specifying a stack size that is too small causes the task to overflow its stack. If the
stack overflows, the hardware will detect the error and cause the Nucleus to invoke
an exception handler. The exception handler either deletes the offending task or
activates SDM. Specifying a stack size that is too large wastes memory. Ideally,
you should specify a stack size that is only slightly larger (500 to 1000 bytes) than
what is actually required. This also minimizes problems resulting from unforeseen
situations.

These sections illustrate arithmetic and empirical techniques for estimating a task's
stack size. For best results, start with the arithmetic technique and then use the
empirical technique to adjust your original estimate.

If your programs are recursive, do not rely solely on either of these techniques.
Stack usage in recursive routines varies because of run-time events and should be
tracked carefully.

Stack Guidelines for Tasks to be Loaded or Invoked

If you are creating a task which will be loaded by the Application Loader or
invoked by the Human Interface, you must specify the size of the task's stack
during the bind process. These techniques will help you estimate stack size
requirements.

Arithmetic Technique for Estimating Stack Size

The arithmetic technique slightly overestimates a task’s stack size. Estimate the
stack size by:

« Accommodating the needs of two interrupt handlers: one for maskable
interrupts and one for nonmaskable interrupts.

« Allocating enough stack to satisfy the requirements of the most demanding OS
layer to satisfy the requirements of all system calls used by your task.

« Fulfilling requirements of the task's code (for example, the stack used to pass
parameters to procedures or to hold local variables in reentrant procedures).

Programming Techniques Appendix A 219

Estimate the size of a task's stack by adding the amount of memory required to
accommodate these factors. This section explains how to compute these values.

See also: Stack Size Limitation for Interrupt Handlers

Table A-3 shows the stack size required by a task to support the system calls of
each layer. These figures include the 256 bytes required by the interrupt handlers.

Table A-3. Stack Requirements for Interrupts and System Calls

Layer Number of Bytes Required
uDlI 6000

Human Interface 5000

C libraries 5000

Application Loader 2000

Extended 1/O System 2000

Basic 1/0 System 1200

Nucleus 800

Computing Stack Size

To compute stack size, add these numbers:

e The number of bytes required for interrupts and system calls, according to the
most demanding layer you intend to use.

« The amount of stack required by the task's code. This amount is determined b
looking at the information about the STACK segment in.tygl map file
thatBND386 produces. This usage is the result of calling local procedures and
using the stack for local variables when your code is reentrant.

This sum is a conservative, but reasonable, estimate of a task's stack size
requirements. For more accuracy, use the sum as a starting point for the empirical

method.

220 Appendix A

Resource and Stack Size Guidelines

Empirical Technique

This technique starts with a larger-than-needed stack and uses SDM to determine
how much of the stack is unused. Once you have found out how much stack is
unused, you can modify your task-creation and job-creation system calls to create
smaller stacks.

To use this technique, change your program code to break to the monitor at the
beginning and at the end of the program. Use the convention appropriate to your
application for breaking to the monitor.

e When coding in C, use theid causeinterrupt (unsigned char 3);
statement.

* When coding in PL/M, use theAUSE$INTERRUPT(3) statement.
* When using ASM, usmeNT3.

* When using the Human Interface to load the application, usgethey
command.

When SDM first receives control, fill the unused portion of the stack with a value
that would not normally appear there. For example, use the Sddieamand to
fill the remaining stack with a value of OCCH.

Continue running the program. When SDM receives control at the end of the
program, examine the stack and see how much of it still contains the value you
filled in earlier. That portion was unused throughout the entire execution of the
program.

Use this technique to estimate stack usage; the value you determine usually will not
be exact because a typical run of the program may not take the deepest path (use
the most stack) through the program. Also, a typical run may not encounter
interrupts on these paths.

Programming Techniques Appendix A 221

Index

A

a_special call, 56

a_write call, 42, 50

<align.h> header file, 84
alignment, with iC-386 compiler, 87
alphonse.plm file, 95

application development, see also resource
requirements

assemblers, 15

binary compatibility with iRMX II, 112

debugging tools, 17

design concepts, 27

functional partitioning, 35

memory separation, 35

optimizing controls, 16

outline, 19

porting code to 32 bits, 111

privilege, 35

utilities, 17
ASM example, see examples, ASM code
ASM language

advantages of compact model, 196

assembler invocation line examples, 199

calling conventions for PL/M interface
procedures, 196

compact model example, 198

demo files, location, 195

incrementing an index, 118

interrupt handlers, 118

macro defs for common sourced code,
listing, 197

mixed code, ASM and PL/M, 196

parameter passing, 198

porting code to 32 bits, 117

Programming Techniques

returning pointers, 118
segmentation model calling
conventions, 196
system calls, 195
from ASM source code, 198
assemblers, 15

B

binary compatibility with iRMX II, 112
BIOS memory requirements, 216
BLD386 utility, 17

BND386 utility, 17, 66
board-scanning algorithm, 181
Borland C tools, 79

buffer pools, 44, 45, 48

C

C
binding code, 66
condition codes, 66
debug switches, 91
debugging, 91
interface libraries, 66
iRMX-provided elements, 67
C demonstration program, 27
C example
cataloging objects, 37
inter-task communication, 40
IORS processing, 38
task creation, 34
type checking, 34
C interface library, 89
c_format_exception call, 54
catalog_object call, 37
cataloging objects, 33
clib.job file, 29
code blocks, displaying, 101

Index 223

commands, debug, 221
common sourced code, macro defs listing,
ASM code, 197

common.lit file, 214
compact/large models

exception handler restrictions, 137

RAM compiler control, 137

restrictions, 137

ROM, compiler control, 137

selecting size, 136
compiler controls

noalign control, 16

nodebug control, 16

optimize control, 16

segmentation control, 16
compilers

features, 16

iC-386, 15

non-Intel, 15

PL/M-386, 15

supported, 15
condec.plm file, 207
connection, RAM needed to open, 217
crbpool.c file, 27, 45
crbpool.plm file, 207
create_buffer call, 44
create_buffer_pool call, 44
create_mailbox call, 42
create_segment call, 44, 46
create_task call, 36
creating objects, 33

D

data chain messages, 185
dcomext.h file, 179
dcomlit.h file, 179
dcrcvmsg.c file, 180, 185
dcsndmsg.c file, 180, 185
ddt SDM command, 103
debug session
approaches, 99
breakpoints, 100
changing disassembled code, 104
code blocks, displaying, 105
code display, 101
code listing, PL/M, 97

224 Index

corrected program description, 96

deadlock, 107

disassembled code

changing, 106
displaying, 104

include files, 97

job tree screen output, 107

mailbox display, 108

objects, viewing, 107

re-entering the SDM monitor, 104

register contents, 101

running tasks, 109

running the code, 99

SDM commands, 99

single line execution, 102

stack contents, examining, 108

tokens, displaying, 107
definition files, 21
delete_segment call, 39, 56
demo.c file, 27

system calls, 28
demo.plm file, 207, 208
development tools, 14
directories/rmx386/in¢ 204
dx SDM command, 100

E

end_init_task call, 155
environmental conditions, see C, condition
codes
error conditions, see C, condition codes
exampl32 example, 208
example code summary, 14
examples
ASM interrupt handler, 199
debug PL/M, 95
debugging, 99
breakpoints, 100
developing for different environments, 21
device driver, PL/M, 121
interrupt handler, 199
synchronizing tasks with mailboxes, 96

examples, ASM code
compact model, 198
interrupt handler, 199
invocation lines, 199
pushing parameters onto the stack, 198
system calls, source code, 198
except.c file, 27,54
except.plm file, 207, 211
exception handlers, 32-bit and 16-bit, 52
exception processing, 52, 54
PL/M, 211, 212
external procedures, calls in PL/M, 204

F

flat model
advantages, 144
disadvantages, 144
execution model, 148
overview, 143
paging, 145
porting compact/large, 151
subsystem, 146
system calls, 150
flat.job file, 147, 148
fragmented messages, 186
FTP (File Transfer Protocol), 24

G

gaston.plm file, 95

get_exception_handler, 54

get_exception_handler call
in PL/M example, 211

get_priority call, 36

H

header files, C, 84

I/O job creation, 217
iaiors.lit file, 214

Programming Techniques

iC-386
#include statement, 65
alignment, 87
header files, 65
icscan.c file, 180, 181
ICU, 21
include files, PL/M, 204, 212
include files, C, 84
init.plm file, 95
fintel/include directory, 66, 116
fintel/lib directory, 98
Interactive Configuration Utility (ICU), 21
interconnect space example, 181
interface libraries, PL/M, 205
interrupt handler, 60
interrupt handlers
example, ASM code, 199
porting to 32 bits, 118
interrupt processing, 58
interrupt task, 61
interrupts, stack size, 218
inter-task communication, 40
inthand.asm file, 199
inthand.c file, 58
inttask.c file, 58
IORS (Input/Output Result/Request Segment)
processing, 38

L

large model,Seecompact\large model
LIB386 utility, 17
libraries

C interface, 89

system call interface, 89

uUDlI, 89
literal files, PL/M, 212, 213
loading the stack, ASM example, 198
logical device, RAM needed, 216
lookup_object call, 212

M

mailboxes, 108
make file, 27
MAP386 utility, 17
measure.csd file, 63

Index 225

memory model,Seesegmentation model
memory requirements
BIOS, 216
EIOS object counts, 218
EIOS system calls, 217
logical device, 216
nucleus, 215
RAM, 216
stack size limitations, 218
stacks, 219, 220, 221
Microsoft C tools, 68

migrating existing code, see porting code

Multibus development, 21
Multibus Il
board scanner, 181
client board algorithm, 184
data chain message, 185
examples, 179
fragmented messages, 186, 187
general examples, 189
name server, 187
port creation example, 182
receiving buffers, 186
sending buffers, 186
sending data, 182
server board algorithm, 184
multiple buffering, 62

N

n SDM command, 102

name server example, 187
<noalign.h> header file, 84

noalign compiler control, 16
NOALIGN macro, 87

nodebug compiler control, 16
non-intel C compiler support, 67
nservr file, 188

nucleus memory requirements, 215
nuclus.ext file, 204

O

object counts, EIOS number, 218
OMF-386 converter, 89
optimizing application code, 16

226 Index

P

paging.job file, 146
parameter passing, ASM example, 198
performance gain, 113
PL/M example
demonstration program, 206
exception handlers, 212
include files, 204, 212
literal files, 212
running the demo program, 207
PL/M language
demonstration program, 206
exception processing, 211
external procedure calls, 204
get$exception$handler call, 211
include files, 204, 212
interface libraries, 205
literal files, 212, 213
lookup$object call, 212
set$exception$handler call, 211
plm code examples, 95
porting code to 32 bits
ASM code differences
incrementing an index, 118

interrupt handlers, example, 118

register usage, 117

returning pointers, 118
C code differences, 116
device driver example, 121
no switch method, 114
performance gain, 113
PL/M code differences

CMPB function, 115

FINDB function, 115

OFFSET, reserved word, 115

WORD_16 variables to

WORD_32, 115

porting application, 113
WORD16 switch method, 114

programmer errors, see C, condition codes

R

RAM compiler controls, 137
RAM required, I/O jobs, 217
RAM requirements, 216

ramdrv.org file, 141 ROM compiler controls, 137

ramdrv.p38 file, 140 rq_a_special call, 56
rcvfrag.c file, 180 rq_a_write call, 42,50
rcvmsg.c file, 180, 185 rq_c_format_exception call, 54
rcvrsvp example, 185 rq_create_buffer call, 44
rcvrsvp.c file, 180 rq_create_buffer_pool call, 44
Read-only Memory,SeeROM rq_create_io_job call, 217
receive.c file, 158 rq_create_mailbox call, 42
receive_message call, 39, 56 rq_create_segment call, 44, 46
receiving buffers example, 186 rg_create_task call, 219
reg.inc file, 196 rq_delete_segment call, 56
register contents, examining, 101 rq_end_init_task call, 155
register usage rq_get_exception_handler call, 54
clearing registers, 117 in PL/M example, 211
incrementing an index, 118 rq_logical_attach_device call, 216
returning pointers, 118 rg_lookup_object call, 212
release_buffer call, 42, 44, 46, 48 rq_receive_message call, 39, 56
reset_interrupt call, 53 rg_release_buffer call, 44, 46, 48
resources requirements, 215 rq_reset_interrupt call, 53
response pointers, 40 rq_s_special call, 56
<restore.h> header file, 84 rq_send_message call, 195
<_restore.h> header file, 87 rq_send_units call, 42
/rmx386/demo/asm/intro directory, 195 rg_set_exception_handler call
/rmx386/demo/c/int directory, 58 in PL/M example, 211
/rmx386/demo/c/intlat directory, 63 rg_signal_interrupt call, 218
/rmx386/demol/c/intro directory, 27 rq_wait_io call, 42
/rmx386/demo/c/mb2/intro directory, 179 rq_wait_iors call, 39, 42
/rmx386/demo/plm/intro directory, 95, 207 rge_create_io_job call, 217
/rmx386/demo/plm/mb2/general directory, 189 rge_set_os_extension call, 199
/rmx386/demo/plm/sdb directory, 95 RUNS86 utility, 19
/rmx386/demo/rom/mix4denatrectory, 158
/rmx386/lib directory, 98 S
rmx.ini file, 199
rmx_c.h file, 116 s_special call, 56
rmx_def.h file, 54 screen I/O, 50
rmx_err.h file, 66 sdbiii file, 99
rmxerr.h file, 66 SDM commands, vu, 108
<rmxtypes.h> header file, 84 segmentation compiler controls, 16
ROM segmentation modelSeeflat model.See
configuring the OS, 159 compact\large model
debugging, 172 segmentation models
developing an application, 157 calling conventions, ASM language, 196
example application, 158 compact
ICU configuration, 154 advantages, ASM code, 196
placing an application into, 157 ASM example, 198
segment map, 162 send_message call, 195
testing an application, 154 send_reply call, 182

Programming Techniques Index 227

send_rsvp call, 182
send_units call, 42
sending buffers example, 186
sendmb?.c file, 158
set_exception_handler call
in PL/M example, 211
sfrag.c file, 180
sndfrag.c file, 180
sndmsg.c file, 180, 185
sndrsvp example, 185
sndrsvp.c file, 180
Soft-Scope 1, 17
stack contents, examining, 108
stack size, see also memory requirements
computing, 220
estimating, 219, 221
limitations, 218
requirements for interrupts, 219
tasks and jobs, 219
STL converter, 89
strng.plm file, 207
subsystems
advantages of, 138
closed, 138
configurations, 139
creating closed, 139
creating open, 141
open, 139
overview, 137
synchronous initialization, 155
system call interface library, 89
System Debugger (SDB), 18

T

target environments, 21

228 Index

task creation, 34, 36
task synchronization, 40
task synchronization examples, 96
task2.c file, 27, 36
task2.plm file, 207
terminal attributes, C, 56
tools, development, 14
transport.c file, 180, 182
type definitions
example, 117
NATIVE_WORD, 117

U
UDI library, 89

Vv

vj SDM command, 107
vo SDM command, 107

w

wait_io call, 42
Watcom C tools, 75

X
x SDM command, 101

Y

<yvals.h> header file, 84

	Other iRMX Manuals
	iRMX® Programming Techniques
	Quick Contents
	Contents
	1. iRMX Application Development Environment
	Examples Provided with the Operating System
	Application Development Tools
	Assemblers
	Intel Compilers
	Application Building Utilities
	Debugging Tools

	Application Development Process

	2. Target Environment Development
	Generating Target Files
	Generating a Target File Example

	3. Designing an Application
	Application Categories
	Measurement
	Process Control
	Data Acquisition

	Design Concepts
	C Multitasking Demo Program
	Demo Code Location
	Running the Multitasking Demo
	Programming Concepts

	Creating and Cataloging Objects
	Operations on Objects
	Creating Tasks

	Processing Input/Output Result Segments (IORS)
	Processing an IORS Code Example

	Using a Response Pointer During Inter-task Communication
	Task Synchronization/Data Passing Code Example

	Using Buffer Pools
	Creating Buffer Pools Code Example
	Using Buffer Pools Code Example

	Methods of Screen Input/Output
	Screen Input/Output Code Example

	In-line Exception Processing
	Writing Your Own Exception Handler
	Exception Handler Control Flow
	Exception Processing Code Example

	Getting and Setting Terminal Attributes
	Getting/Setting Terminal Attributes Code Example

	Interrupt Processing
	Interrupt Handlers
	Interrupt Servicing
	Interrupt Latency

	4. C Compiler-specific Information
	Using the iC-386 Compiler to Develop iRMX Applications
	Using the C Language Header Files
	Binding Your Code to Interface Libraries
	Condition and Error Codes

	Using Non-Intel Tools to Develop iRMX Applications
	Using Microsoft C /C++ Development Tools
	Using Watcom C /C++ Development Tools
	Using Borland Development Tools

	Using Header Files
	Existing iC-386 Applications
	Built-in Functions
	Calling Conventions
	Structure Data Alignment
	Alignment with iC-386
	Supported Memory Models

	Using Cstart Startup Code
	Stack Size

	Using Interface Libraries
	Using the STL OMF-386 Converter
	Input Files
	Output Files
	Invocation
	Error Messages

	Debugging with the Soft-Scope Debugger
	Summary of Debug Switches

	Adding a First Level Job Using Non-Intel Tools

	5. Debugging Applications
	Example Application Program
	Include Files
	Compiling and Running the Code

	Debugging the Program
	Debugging Approach #1
	Debugging Approach #2

	Viewing System Objects
	Alternative Debugging Techniques

	6. Porting Applications
	Porting Code from 16-Bits to 32-Bits
	Using Existing 16-Bit Code
	Advantages of 32-Bit Application Code
	Porting Entire Applications to 32-Bits

	Porting 16-Bit PL/M Code to 32 Bits
	Differences Between PL/M-386 and Previous PL/M Code

	Porting 16-Bit C Code to 32 Bits
	Using the rmx_c.h Header file
	Using the NATIVE_WORD Type Definition

	Porting 16-Bit ASM Code to 32 Bits
	Example: Porting a Device Driver
	xtstdn.lit

	Migrating Code to a PC-Bus Platform
	Using a Numeric Processor Extension (NPX)

	Segmentation Considerations

	7. Using Compact and Large Memory Models
	Choosing a Memory Model
	32-Bit Applications
	16-Bit Applications
	Porting Applications
	Using ROM and RAM Compiler Controls

	Subsystems
	Subsystem Advantages
	Closed Subsystems
	Open Subsystems
	Subsystem Configurations
	Creating a Closed Subsystem
	Creating an Open Subsystem

	8. Using the Flat Memory Model
	Flat Model Overview
	Flat Model Advantages and Disadvantages

	Executing Flat Model Applications on iRMX
	Using Flat Model With Paging Support

	Paging Subsystem
	The Paging Job

	Flat Model Support Code
	Conversion of Flat Model Pointers in System Calls
	The Flat Model Job

	Execution Model
	System Calls
	 Existing System Calls

	Using the Flat Model System Calls
	Virtual Memory
	Porting Compact/Large to Flat

	Debugging Support

	9. Developing Applications for ROM
	Testing a System
	Loading an Application into ROM

	Preparing an Application to Reside in ROM
	Methodology for Burning an Application into ROM
	Developing a ROM-based Application System
	Overview of the ROM-based Application Example
	Generating the ROM-based Application Example
	Configuring the iRMX OS
	Debugging the ROM Initialization Process

	Testing the Application

	10. Developing Applications for Multibus II
	Code Examples
	Examples Using Nucleus Communication System Calls
	Interconnect Space Example - iscan.c
	Creating a Port for Message Passing - tranport.c
	Sending Data Using Send_rsvp
	Sending and Receiving Messages
	Receiving a Message
	Sending a Message

	Sending a Message in Fragments
	Receiving a Message in Fragment Form
	The Name Server Example
	The General Examples
	Example 1: Sending and Receiving Unsolicited Messages
	Example 2: Sending Asynchronous Solicited Messages

	11. Developing Applications in Assembly Language
	Invoking System Calls from Assembly Language
	Interrupt Handler Example
	Generating the Interrupt Handler Example

	OS Extension Example

	12. Developing Applications in PL/M
	Invoking System Calls from PL/M
	Including External Declaration Files
	Binding Your Code to Interface Libraries
	PL/M Multitasking Example
	Example Overview
	Location of Multitasking Example Code
	Compiling and Binding the Multitasking Example Code
	Running the Multitasking Example

	Programming Concepts Illustrated by the Multitasking Demo
	In-line Exception Processing
	Use of Literal Files

	A. Resource and Stack Size Guidelines
	Resource Requirements
	RAM Requirements
	Attaching a Logical Device
	Creating an I/O Job
	Opening a Connection
	Other RAM Requirements

	Object Counts
	Stack Size Limitations
	Stack Size Limitation for Interrupt Handlers
	Stack Guidelines for Creating Tasks and Jobs
	Stack Guidelines for Tasks to be Loaded or Invoked
	Arithmetic Technique for Estimating Stack Size
	Empirical Technique

	Index

