
intJ

• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

iRMX®1
Dynamic Debugger
Reference Manual

Order Number: 462929-001

intel"
iRMX® I

Dynamic Debugger
Reference Manual

Order Number: 462929-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright © 1980, 1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back ofthe manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Inters software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
Genius intel iSSB Ripplemode
~
1 Intel376 iSXM RMXJ80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTIMODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980, 1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION mSTORY DATE

-001 Original Issue. 03/89

iii/iv

PREFACE

This manual documents the Dynamic Debugger, a subsystem of the iRMX® I Operating
System that allows you to examine your application system interactively to find and correct
errors. It contains introductory and overview material, as well as detailed descriptions of
all Dynamic Debugger commands.

READER LEVEL

This manual is intended for both application and system programmers who are familiar
with the concepts and terminology introduced in the iRM)(® I Nucleus User's Guide.

CONVENTIONS

The Debugger commands are listed alphabetically in Chapter 4. The first occurrence of
each command name is printed in blue ink and appears on the outside upper corner of the
page; subsequent occurrences are printed in black ink.

This manual contains several examples of Debugger commands entered at a terminal. In
these examples, entries made from your terminal appear in boldface type (this is an
example of boldface type.)

User input appears in one of the following forms:

as blue text

as bolded text within a screen

Dynamic Debugger v

PREFACE

RELATED PUBLICATIONS

The following manuals provide additional background and reference information.

vi

Manual Number

Introduction to the iRM)(® Operating System

iRM)(® I Nucleus User's Guide

iRMX® I Terminal Handler Reference Manual

Guide to the iRMX® I Interactive Configuration Utility

462909-001

462925-001

462930-001

462923-001

Dynamic Debugger

CONTENTS

Chapter 1. Introduction
1.1 Overview of iRMX® I Operating System Debugging Tools .. 1-1

1.1.1 iRMX® I Dynamic Debugger ... 1-1
1.1.2 System Debug Monitors .. 1-2

1.2 iRMX® I Debugger Implementation on 80186, 80286 and 386N CPUs 1-2
1.3 Overview of the Capabilities of the iRMX® I Debugger ... 1-3
1.4 Invoking the Debugger ... 1-4

Chapter 2. Special Characters
2.1 Introduction to Special Characters .. 2-1
2.2 End-of-Line-Characters ... 2-1
2.3 CONTROL-S ... 2-1
2.4 CONTROL-Q ... 2-2
2.5 CONTROL-O ... 2-2
2.6 CONTROL-D ... 2-2

Chapter 3. Command Syntax
3.1. Introduction to Command Syntax .. 3-1
3.2 Conventions ... 3-1
3.3 Pictorial Representation of Syntax .. 3-2
3.4 Special Symbols for the Debugger ... 3-3

Chapter 4. Debugger Commands
4.1 Introduction to Debugger Commands4-1
4.2 Command Dictionary ... 4-2
4.3 Symbolic Name Commands .. 4-4
4.4 Breakpoint Commands .. 4-10

4.4.1 Execution Breakpoint Display4-12
4.4.2 Exchange Breakpoint Display ... 4-13
4.4.3 Exception Breakpoint ... 4-14
4.4.4 Exception Breakpoint Differences ... 4-15

4.5 Memory Commands ... 4-41
4.6 Commands to Inspect System Objects4-57
4.7 Commands to View Object Lists4-76
4.8 Command to Exit the Debugger .. 4-92

Dynamic Debugger vii

CONTENTS

Chapter 5. Configuration
5.1 Introduction to Debugger Configurations .. 5-1
5.2 Baud Rate .. 5-1
5.3 Baud Count .. 5-2
5.4 Rubout Mode and Blanking Characters ... 5-2
5.5 USART ... 5-2
5.6 PIT ... 5-3
5.7 Mailbox Names ... 5-3
5.8 Interrupt Levels .. 5-3

Appendix A. Error Messages

Index

Figures
3-1. Syntax Diagram for Item .. 3-3
3-2. Syntax Diagrams for Term and Expression .. 3-5
4-1. Syntax Diagram for Memory Commands ... 4-41
4-2. Syntax Diagram for Inspecting System Objects ... 4-57
4-3. An iRMX® I Composite Report ... 4-58
4-4. An iRMX® I Mailbox Report .. 4-60
4-5. An iRMX® I Semaphore Report .. 4-62
4-6. An iRMX® I Region Report ... 4-63
4-7. An iRMX® I Segment Report ... 4-65
4-8. An iRMX® I Job Report .. 4-68
4-9. An iRMX® I Task Report .. 4-71
4-10. An iRMX® I Extension Report .. 4-74
4-11. Syntax Diagram for Viewing iRMX® I Object Lists ... 4-76

viii Dynamic Debugger

INTRODUCTION 1
1.1 OVERVIEW OF iRMX@ I OPERATING SYSTEM DEBUGGING

TOOLS

The development of almost every software application requires debugging. To aid in the
development of iRMX I-based systems, Intel provides various debugging tools. This
section gives an overview of some of the debugging tools available from Intel for
iRMX I -based systems.

1.1.1 iRMX® I Dynamic Debugger

The first tool available for system debugging is the iRMX I Dynamic Debugger. The
Dynamic Debugger will be referred to as the "iRMX I Debugger" or "the Debugger" for the
remainder of this manual. The Debugger enables you to dynamically examine the data
structures handled by the iRMX I operating system. For example, the Debugger can show
which tasks are waiting at a particular mailbox while the application program is running,
enabling you to easily debug a multitasking operation.

The Debugger supplies its own Terminal Handler, which includes all of the capabilities
described in the iRMX® I Terminal Handler Reference Manual. Your application software
can use the Debugger's Terminal Handler in its standard form, or you can configure your
own version (or versions) of it. (Refer to the Guide to the iRMX® I Interactive
. Configuration Utility for further configuration information.)

Dynamic Debugger 1-1

INTRODUCTION

1.1.2 System Debug Monitors

The second tool available to the programmer is the Intel series of monitors. This group of
monitors includes the iSBC® 957B monitor, the iRMX I System Debugger (SDB), and the
iSDM™ monitor. All of these monitors can, among other functions, single step instruction
code, set execution and memory breakpoints, display memory in various formats (such as
ASCII), perform I/O read and write operations, and move, search, and compare blocks of
memory. The SDB extends the use of the other monitors so you can directly examine
operating system data structures. For more information on the monitors, consult the
following manuals: iSDAr System Debug Monitor Reference Manual, or the iRM)(® System
Debugger Reference Manual.

1.2 iRMX® I DEBUGGER IMPLEMENTATION ON 80186, 80286 and
3S6™ CPUs

1-2

One of the advantages of the iRMX I Operating System is that it can run on anyone of
several Intel microprocessors. Thus, the use of the iRMX I Debugger does not change
even though the microprocessor running the operating system may be the 8086,80186,
8088,80188, 80286, or the 386™ cpu. This is because the Debugger acts on those features,
such as registers, that the 8086, 80186, 8088, 80188, 80286 and 386™ microprocessors have
in common. Thus, the iRMX I Debugger will appear to see an 8086 CPU although another
microprocessor may be physically running the system. (The 80286/386 microprocessors
achieve this by running in the Real Address mode.)

This same principle of compatibility applies to the 8087, 80287 and 387™ Numeric
Processor Extension (NPX) used by the particular microprocessors. The iRMX I
Debugger will see only those registers the 8087 NPX has in common with the other
Numeric Processor Extensions (e.g., the 80286/20 processor).

Dynamic Debugger

INTRODUCTION

1.3 OVERVIEW OF THE CAPABILITIES OF THE iRMX® I DEBUGGER

The iRMX I Debugger enables you to:

• Use the Debugger as a task, job, or system exception handler.

• View iRMX I object lists, including the lists of jobs, tasks, ready tasks, suspended tasks,
asleep tasks, task queues at exchanges, object queues at mailboxes, exchanges, and
iRMX I segments.

• Inspect jobs, tasks, exchanges, segments, composites, and extensions.

• Examine and/or alter the contents of absolute memory locations.

• Set, change, view, and delete breakpoints.

• View the list of tasks that have incurred breakpoints and remove tasks from it.

• Declare a task to be the breakpoint task.

• Examine and/or alter the breakpoint task's register values.

• Set, change, view, and delete special variables for debugging.

Dynamic Debugger 1-3

INTRODUCTION

1.4 INVOKING THE DEBUGGER

1-4

You can invoke the Debugger from your iRMX I terminal by entering

CONTROL-D

The Debugger responds with its sign-on message:

iRMX I DEBUGGER <version no.>
Copyright <years> Intel Corporation - All Rights Reserved

*
The asterisk is the prompt character for the Debugger and indicates the Debugger is ready
to accept input.

Besides the functions the Debugger can execute when you invoke it, there are two services
it can execute at any time, even when not invoked.

If a task encounters a breakpoint, the Debugger responds as described in Chapter 4.

If a task has the Debugger as its exception handler and the task causes an exceptional
condition, then the Debugger displays a message to that effect at the terminal. A task can
get the Debugger as its exception handler in one of the following ways:

• By using the SET$EXCEPTION$HANDLER system call.

• By acquiring the Debugger as the default exception handler. This is done during
configuration. Refer to the iRMX® I Interactive Configuration Utility Reference Manual
for a description of this process.

• By having the Debugger declared as the exception handler when the task is created
with CREA TE$JOB. For example, this code sets up one of these calls:

RQ$DEBUGGER$EX: PROCEDURE (EX$CODE, PARAM$NO, RESERVED,
NDP$STATUS, DUMMY$IF$COMPACT) EXTERNAL;

DEClARE
EX$CODE
PARAM$NO
RESERVED
NDP$STATUS
DUMMYIFCOMPACT

END RQ$DEBUGGER$EX;

WORD,
BYTE,
WORD,
WORD,
WORD;

DEClARE EXCEPT$BLOCK STRUCTURE (
EXCEPT$PROC POINTER,
EXCEPT$MODE BYTE);

Dynamic Debugger

EXCEPT$BLOCK.EXCEPT$PROC = @RQ$DEBUGGER$EX;
EXCEPT$BLOCK.EXCEPT$MODE = ZEROONETWOORTHREE;

RQ$CREATE$JOB(... ,@EXCEPT$BLOCK, ...);

INTRODUCTION

For this code to work, the task code must be linked to the CROOT.LIB library supplied
with the Nucleus. The DUMMYIFCOMPACT parameter in the
RQ$DEBUGGER$EX declaration is a dummy parameter that you must include if the
task is compiled using the PL/M-86 COMPACT.

Dynamic Debugger 1-5

SPECIAL CHARACTERS 2
2.1 INTRODUCTION TO SPECIAL CHARACTERS

In addition to the Debugger commands listed in Chapter 4, the Debugger recognizes
several special characters. This chapter lists these characters and describes their functions.

2.2 END-OF-LINE CHARACTERS

The Debugger takes input one line at a time from its Terminal Handler. The end-of-line
characters separate these individual input lines. The Debugger recognizes three end-of
line characters:

CARRIAGE RETURN
LINE FEED
ESCAPE

Both CARRIAGE RETURN and LINE FEED send the current input line to the
Debugger for processing. ESCAPE discards the current input line and displays a prompt.

2.3 CONTROL-S

The Debugger displays information on the terminal by sending output messages to its
Terminal Handler. Application tasks can also send messages to the same terminal. To
suppress output from application tasks during a debugging session, type CONTROL-So
The Debugger then stores the output from application tasks until you type CONTROL-Q.
If you do not enter CONTROL-S, any output from tasks is interspersed with output from
the Debugger. CONTROL-S has no effect on output from the Debugger.

Dynamic Debugger 2-1

SPECIAL CHARACTERS

2.4 CONTROL-Q

CONTROL-Q negates the effect of a previously entered CONTROL-S character. To
resume the output from tasks, type CONTROL-Q. CONTROL-Q also causes the
Debugger to display all output that was suppressed by CONTROL-So CONTROL-Q has
no effect on output from the Debugger.

2.5 CONTROL-O

Certain Debugger command responses are lengthy and can roll off the screen. To freeze
the top part of such a display before it disappears, enter CONTROL-O. This discards all
output (including Debugger prompts) until you enter another CONTROL-O. The
discarded output cannot be retrieved.

2.6 CONTROL-D

2-2

Occasionally you may want to terminate a Debugger memory command function response
before it completes. For example, if you asked for a display of memory locations OOOOH to
OFFFFH, you may change your mind because of the length of the display. To abort the
display and regain the Debugger prompt, enter CONTROL-D.

Note that CONTROL-O affects the display only, while CONTROL-D stops the function
entirely.

Dynamic Debugger

COMMAND SYNTAX 3
3.1. INTRODUCTION TO COMMAND SYNTAX

When using the iRMX I Debugger, you sit at a terminal and type commands. This chapter
describes the syntactical standards for commands to the Debugger and introduces
notational conventions used in this manual.

3.2 CONVENTIONS

The first one or two characters of a command constitute a key sequence for the command:

• Most Debugger commands are specified by one or two letters (e.g., BL, BT, D, DB, G,
I, L, M, N, Q, R, V, and Z).

• In a few cases, a command is specified by a name plus a letter or letters.. A name
consists of a period followed by a variable name.

After the key initial sequence, a command may be followed by one or more parameters or
additional specifiers. Blanks are used between elements of a command; they are required
except as follows:

• Immediately after a command key that is not a name.

• Between a letter or digit and a non-letter or non-digit. Legal non-digit/letter
characters are the following:

@ / () * +

Dynamic Debugger 3-1

COMMAND SYNTAX

3.3 PICTORIAL REPRESENTATION OF SYNTAX

3-2

In this manual, a schematic device illustrates the syntax of commands. The schematic
consists of what looks like an aerial view of a model railroad, with syntactic entities
scattered along the track. Imagine that a train enters the system at the upper left, drives
around as much as it can or wants to (sharp turns and backing up are not allowed), and
finally departs at the lower right. The command it generates in so doing consists, in order,
of the syntactic entities that it encounters on its journey. For example, a string of A's and
B's, in any order, would be depicted as

1497

If such a string has to begin with an A, the schematic could be drawn as:

----t-----(B}--~-..........

1540

In the second drawing, A must appear twice because it is playing two roles: it is a
mandatory first symbol and an optional symbol that may be used after the first symbol.
Note that a train could avoid the second A but cannot avoid the first A. The arrows are
not necessary and henceforth are omitted.

Dynamic Debugger

COMMAND SYNTAX

3.4 SPECIAL SYMBOLS FOR THE DEBUGGER

Instead of A and B, the following are used in the rest of the manual:

• CONSTANT. Constants are always hexadecimal. Unlike such constants in PL/M-86, a
trailing H is optional. Leading zeros are not necessary unless they help to distinguish
between constants and other parts of the command. For example, AH is a register in
the 8086, but OAR is a constant.

• NAME. A name is a period followed by up to 11 characters, the first of which must be
alphabetic. The other characters can be alphabetic, numeric, question marks (?), or
dollar signs ($).

Examples:

.task

.rnailbox$7

• ITEM. An item is either an expression or one of the segment registers of the cpu.
The values of items are used variously as tokens and as offsets in Debugger commands.
Graphically, an item is defined in Figure 3-1.

ITEM:

_---< EXPRESSION __ -_

~--~DS~------~

1542

Figure 3-1. Syntax Diagram for Item

Dynamic Debugger 3-3

COMMAND SYNTAX

3-4

• EXPRESSION. As in algebra, an expression is either a term or the result of adding
and subtracting terms. Also as in algebra, a term is a product; each factor in the
product is a constant, a name, a parenthetical expression, or one of the registers AX,
BX, ex, DX, DS, ES, SS, es, IP, FL, SI, DI, BP, and SP. Graphically, term and
expression are shown in Figure 3-2.

NOTE

If the computed value of an expression is too large to fit into four hexadecimal
digits, then only the low order four digits are used (overflow is ignored).

Dynamic Debugger

TERM: --~~------< CONSTANT }-----"'""""'

EXPRESSION:

NAME

~------------~CS~------------~

~------------~SS~------------~

TERM

TERM

COMMAND SYNTAX

1541

Figure 3-2. Syntax Diagrams for Term and Expression

Dynamic Debugger 3-5

DEBUGGER COMMANDS

4.1 INTRODUCTION TO DEBUGGER COMMANDS

This chapter presents the details of the Debugger commands. It is divided into several
sections, each of which describes a related group of commands. The command groups are
as follows:

• Symbolic Name Commands

• Breakpoint Commands

• Memory Commands

• Commands to Inspect iRMX I Objects

• Commands to View Object Lists

• Commands to Exit the Debugger

Each section contains a general information portion followed by detailed command
descriptions.

Following this introduction is a command directory. This directory, which lists the
commands in alphabetical order, includes short descriptions and page numbers for the
complete descriptions. Non-alphabetic commands are listed at the end of the dictionary.

The first occurrence of each command is printed in blue ink and appears on the outside
upper corner of the page; subsequent occurrences are printed in black ink. In the
examples, boldface type (this is boldface type) is used to indicate an entry you make from
your terminal.

Because the iRMX I operating system can run under several microprocessors, the generic
term "CPU" will be used instead of 8086, 80186, 8088, 80188, 80286 and 386™.

Dynamic Debugger 4-1

DEBUGGER COMMANDS

4.2 COMMAND DIRECTORY

Command Page

D --DEFINING NUMERIC VARIABLES ... 4-6

B --VIEWING BREAKPOINT PARAMETERS .. 4-16

BL --VIEWING THE BREAKPOINT LIST ... 4-19

BT --ESTABLISHING THE BREAKPOINT TASK .. 4-20

BT --LISTING THE BREAKPOINT TASK ... 4-21

DB --DEFINING A BREAKPOINT .. 4-24

G --RESUMING TASK EXECUTION .. 4-29

N --ALTERING THE BREAKPOINT TASK'S NPX REGISTERS 4-30

N --VIEWING THE BREAKPOINT TASK'S NPX REGISTERS 4-32

R --ALTERING THE BREAKPOINT TASK'S REGISTERS 4-35

R --VIEWING THE BREAKPOINT TASK'S REGISTERS 4-36

Z --DELETING A BREAKPOINT ... 4-38

M --CHANGING MEMORY ... 4-42

M --EXAMINING MEMORY ... 4-49

M --SETTING THE CURRENT DISPLAY MODE ... 4-53

IC --INSPECTING A COMPOSITE .. 4-55

IE --INSPECTING AN EXCHANGE .. 4-57

IG --INSPECTING A SEGMENT .. 4-62

IJ --INSPECTING A JOB ... 4-64

IX --INSPECTING AN EXTENSION ... 4-71

VA --VIEWING THE ASLEEP TASKS ... 4-75

VC --VIEWING COMPOSITES ... 4-76

VE --VIEWING EXCHANGES .. 4-77

4-2 Dynamic Debugger

DEBUGGER COMMANDS

Command Page

VG --VIEWING SEGMENTS ... 4-78

VJ --VIEWING JOBS .. 4-79

VM --VIEWING MAILBOX OBJECT QUEUES .. 4-80

VR --VIEWING READY TASKS ... 4-82

VS --VIEWING SUSPENDED TASKS ... 4-83

VT --VIEWING TASKS .. 4-84

VW --VIEWING WAITING TASK QUEUES ... 4-85

VX --VIEWING EXTENSIONS ... 4-87

Q --EXITING THE DEBUGGER ... 4-89

CHANGING NUMERIC VARIABLES ... 4-5

CHANGING A BREAKPOINT .. 4-21

EXAMINING A BREAKPOINT .. 4-25

EXCHANGE BREAKPOINT OUTPUT .. 4-27

Dynamic Debugger 4-3

DEBUGGER COMMANDS

4.3 SYMBOLIC NAME COMMANDS

4-4

For your convenience during debugging, the Debugger supports the use of alphanumeric
variable names that stand for numerical quantities. The Debugger accesses the names and
their values from any of the following sources:

• A Debugger-maintained symbol table. The table contains name/value pairs catalogued
by the Debugger as numeric variables. This section describes commands for defining,
changing, listing, and deleting numeric variables.

• The object directory of the current job. The current job is defined as the job that
contains the breakpoint task. (The command that establishes the breakpoint task is in
the "Breakpoint Commands" section of this chapter.) If no breakpoint task exists, the
current job is the root job.

• The object directory of the root job.

When you use a symbolic name that is not the name of a breakpoint variable, the Debugger
searches these sources in the order just listed.

Suppose that you want to refer to a particular task using .TASKOOl. If the task is
catalogued in the object directory of either the root job or the current job, then the
Debugger will go to the appropriate directory and fetch a token for the task whenever the
name .TASKOOI is used in a Debugger command. If the task is not so catalogued, you can
use VJ (view job), IJ (inspect job), VT (view task), or IT (inspect task) to deduce a token
for the task. Then you can define .TASKOOI to be a numeric variable whose value is that
token.

Dynamic Debugger

CHANGING NUMERIC VARIABLES

This command changes the value of an existing numeric variable. The syntax for this
command is as follows:

NAME ITEM

W-1058

Name of an existing numeric variable.

Parameters
NAME

ITEM An expression or the name of a CPU segment register. The value of
ITEM is associated with the variable name NAME.

Description

This command removes from the Debugger symbol table the value originally associated
with NAME and replaces it with the value of ITEM.

Examples

.TASKA = 2FOO

*
This command changes the value of .TASKA to 2FOOh .

. TASKA = .TASKB

*
This command changes the value of .TASKA to that of .TASKB.

Dynamic Debugger 4-5

DEFINING NUMERIC VARIABLES -- D

This command associates a variable name with a numeric value. The syntax for the D
command is as follows:

NAME ITEM

W-1059

Parameters
NAME Name of the variable. This must be a period followed by up to 11

characters, the first of which must be alphabetic. The other
characters can be alphabetic, numeric, question marks (?), or dollar
signs ($).

ITEM An expression or the name of a CPU segment register. The value of
ITEM is associated with the variable name NAME.

Description

This command places NAME and the value of ITEM into the Debugger symbol table. You
can use this command to create symbolic names for tokens, registers, or any other values.
Then, you can use the symbolic names in other Debugger commands instead of entering
the actual hexadecimal values.

Examples

4-6

D .TASKA = 2DC3

*
This command creates a symbol called .TASKA in the Debugger's local symbol table and
assigns this symbol the value 2DC3h.

Dynamic Debugger

LISTING NUMERIC AND BREAKPOINT VARIABLES -- L

This command lists numeric and breakpoint variable names and their associated values.
The syntax for the L command is as follows:

W-1073

Parameter
NAME Name of an existing numeric or breakpoint variable. If entered, the

Debugger lists the name and value of the indicated name only.

Description

The L command lists all numeric and breakpoint variable names and their associated
values. (Breakpoint variables are described in the "Breakpoint Commands" section of this
chapter.) Specifying NAME instead of L causes only one pair to be listed. In either case,
one pair is listed per line in this format:

NAME=xxxx

where xxxx is the associated value.

Examples

L
BP=2DC3:00FF
MBOX 2F34
TASKA 2DC3
TASKB 2BBC
TASKC 2DBA
TASKD 2CEF

*

Dynamic Debugger 4-7

LISTING NUMERIC AND BREAKPOINT VARIABLES -- L

4-8

This command lists the names and values of all the numeric and breakpoint variables in the
Debugger's local symbol table. It lists one breakpoint variable (.BP) and five numeric
variables (.MBOX, .TASKA, .TASKB, .TASKC, and .TASKD) .

. TASKA
TASKA=2DC3

*
This command lists the value associated with the variable .TASKA.

Dynamic Debugger

DELETING NUMERIC VARIABLES -- Z

This command deletes a numeric variable. The syntax for the Z command is as follows:

Parameter
NAME

Description

NAME

W-1060

Name of an existing numeric variable to be deleted.

This command removes the NAME and associated value from the Debugger's symbol
table.

Example

Z .TASKA

*
This command deletes the numeric variable .TASKA.

Dynamic Debugger 4-9

DEBUGGER COMMANDS

4.4 BREAKPOINT COMMANDS

The Debugger enables you to set, change, view, or delete breakpoints. You set a
breakpoint by defining an act that a task can perform. When a task performs the act, it
incurs the breakpoint, causing its execution to cease. The Debugger supports three kinds
of breakpoints:

• Execution breakpoint. A task incurs an execution breakpoint when it executes an
instruction at a designated location in memory.

• Exchange breakpoint. A task incurs an exchange breakpoint when it performs a
designated type of operation (send or receive) at a designated exchange.

• Exception breakpoint. A task incurs an exception breakpoint if its exception handler
has been declared to be the Debugger and the task causes an exceptional condition of
the type that invokes its exception handler.

When a task incurs a breakpoint (of any type), three events occur automatically:

• The task is placed in a pseudostate called "broken". Depending on the breakpoint
options selected, the broken task and the tasks in the containing job might be
suspended.

• If suspended, the broken task (and suspended tasks, if any) is placed on a Debugger
maintained list called the breakpoint list. You can resume a task on the breakpoint list
or you can remove it from the list.

• At the terminal, a display informs you that a breakpoint has been incurred. It also
provides information about the event.

Each task on the breakpoint list is assigned a breakpoint state, which reflects the kind of
breakpoint last incurred by the task. The states are as follows:

X --- The task incurred an execution breakpoint.

E --- The task incurred an exchange breakpoint.

Z --- The task incurred an exception breakpoint.

N --- The task was placed on the breakpoint list when another task in the same
job incurred a breakpoint which had been set with the DB command
(described later) using the J option.

You set an execution or exchange breakpoint with the DB command by defining a
breakpoint variable and assigning it a breakpoint request. The request specifies to the
Debugger the nature of the breakpoint, and the variable provides you with a convenient
means of talking to the Debugger about the breakpoint. Using the breakpoint variable, you
can cancel the breakpoint or replace it with a new one.

4-10 Dynamic Debugger

DEBUGGER COMMANDS

If you want to monitor a particular task that has not necessarily incurred a breakpoint, you
can designate it to be the breakpoint task. If the task is not on the breakpoint list when you
do this, the task is suspended and is not placed on the breakpoint list. After designating a
breakpoint task, you can examine and alter some of its registers. You can also ascertain
the breakpoint state of the task. When ready, you can easily resume the task.

The Debugger displays informat~on when a task incurs a breakpoint. The format of the
display depends on the kind of breakpoint incurred.

When the task is accessing a region, the Debugger cannot process breakpoints normally.
When this situation occurs, the Debugger displays the following message:

TASK IN REGION INCURRED BREAKPOINT: bp-var, TASK=jjjjJ/ttttT
FULL BREAKPOINT INFORMATION NOT AVAILABLE

where:

bp-var

jjjj

tttt

TASK NOT PLACED ON BREAKPOINT LIST

The name of the breakpoint variable.

A token for the task's job.

A token for the task.

Dynamic Debugger 4-11

DEBUGGER COMMANDS

4.4.1 Execution Breakpoint Display

The Debugger displays the following information when a task incurs an execution
breakpoint:

bp-var: E, TASK=jjjjJ/ttttq, CS=cccc, IP=iiii

where:

bp-var

JJJJ

tttt

q

cccc

1111

4-12

The name of the breakpoint variable.

A token for the task's job.

A token for the task.

Either T (for task) or * (indicating that the task has overflowed its
stack).

The base of the code segment in which the breakpoint was set.

The offset of the breakpoint within its code segment.

Dynamic Debugger

DEBUGGER COMMANDS

4.4.2 Exchange Breakpoint Display

The Debugger displays the following information when a task incurs an exchange
breakpoint:

bp-var: a, EXCH=jjjjJjxxxxe, TASK=jjjjJjttttq, ITEM=item

where:

bp-var

a

JJJJ

xxxx

e

tttt

q

item

Dynamic Debugger

The name of the breakpoint variable.

Indicates which kind of operation (S for send or R for receive)
caused the breakpoint to be incurred.

A token for the job containing the exchange whose token follows.

A token for the exchange.

Indicates the type of the exchange (M for mailbox, S for semaphore,
R for region).

A token for the task.

Either T (for task) or * (indicating that the task has overflowed its
stack).

One of the following:

• If the exchange is a mailbox, this field lists a pair of tokens, in
this form:

jjjjJ / oooot,

where:

JJJJ A token for the mailbox's containing job.

0000 A token for the object being sent or received.

t The type of the object being sent or received (J
for job, T for task, M for mailbox, S for
semaphore, G for segment, R for region, X for
extension, C for composite).

• If the type of operation was receive, but no object was there to
be received, item is 0000.

• If the exchange is a semaphore, this field lists the number of
units held by the exchange.

4-13

DEBUGGER COMMANDS

4.4.3 Excepti~n Breakpoint

The Debugger displays the following information when a task incurs an exception
breakpoint:

EXCEPTION: jjjjJ/ttttT, CS=cccc, IP=iiii, TYPE=wwww, PARAM=vvvv

where:

jjjj

tttt

cccc and iiii

wwww

vvvv

4-14

A token for the job containing the task that caused the exception
condition.

A token for the task that caused the exception condition.

Respectively, the contents of the CS and IP registers when the
exception condition occurred.

The numerical value of the exception code; reflects the nature of the
exception condition. Refer to the iRMX reference manuals for the
mnemonic condition codes and their numerical equivalents.

The number (0001 for first, 0002 for second, etc.) of the parameter
that caused the exception condition. If no parameter was at fault,
vvvv is 0000.

Dynamic Debugger

DEBUGGER COMMANDS

4.4.4 Exception Breakpoint Differences

Exception breakpoints differ from execution and exchange breakpoints in several respects:

• You cannot set, change, view, or delete exception breakpoints by using the Debugger
commands. Instead, each task can set an exception breakpoint by declaring the
Debugger to be its exception handler. The task can then delete the breakpoint by
declaring a different exception handler. However, like the other kinds of breakpoints,
once a task incurs an exception breakpoint and is placed on the breakpoint list, you can
cause it to resume execution with the same command (the G command) used to
resume other tasks on the breakpoint list.exception handler

• You set exception breakpoint for a particular task, while you set execution and
exchange breakpoints for no particular task; any task can incur such a
breakpoint.execution breakpoints

• The Debugger does not know an exception breakpoint by a breakpoint variable name.

Exception breakpoints are handled different from execution and exchange breakpoints.
For example, exception breakpoints cannot be viewed, but the other breakpoints can.
Wherever this distinction applies, this chapter points it out.

Dynamic Debugger 4-15

VIEWING BREAI(POINT PARAMETERS ... B

This command displays the breakpoint parameters. The syntax for the B command is as
follows:

W-1061

Description

The B command performs these three functions:

• Displays the breakpoint list

• Displays the breakpoint task

• Displays the breakpoint variables

Breakpoint List Display

The B command first displays the breakpoint list in the following format:

BL=jjjjJjttttT(s) jjjjJjttttT(s) ... jjjjJjttttT(s)

where:

]]]]

tttt

A token for the job containing the task whose token follows.

A token for a task on the breakpoint list.

s

4-16

The breakpoint state of a task. Possible values are X (for
execution), E (for exchange), Z (for exception), and N (for null).

Dynamic Debugger

VIEWING BREAKPOINT PARAMETERS -- B

Breakpoint Task Display

The second effect of the B command is to display the breakpoint task originally selected
with the BT command. The format of this display is as follows:

where:

jjjj

tttt

BT=jjjjJ/ttttT(s)

A token for the job containing the breakpoint task.

A token for the breakpoint task.

s The breakpoint state of the breakpoint task. Possible values are X
(for execute), E (for exchange), Z (for exception), and N (for null).

If there is no breakpoint task, the display is

BT=O

Dynamic Debugger 4-17

VIEWING BREAKPOINT PARAMETERS -- B

Breakpoint Variables Display

Finally, the B command displays the breakpoint variables. The format of the display
depends on whether the variables are execution or exchange variables.

Execution breakpoints are displayed as:

where:

bp-var

xxxx

yyyy

z

ops

bp-var = xxxx:yyyy Z OpS

The name of the breakpoint variable.

The base portion of the address at which the breakpoint is set.

The offset portion of the address at which the breakpoint is set.

Indicates whether a task (T) or all the tasks in a job (J) are to be
suspended and placed on the breakpoint list when the breakpoint is
incurred.

Indicates the breakpoint options. If any are present, they can be C
(for Continue task) and/or D (for Delete breakpoint).

Exchange breakpoints are displayed as:

where:

bp-var

xxxx

a

z

ops

4-18

bp-var = xxxx a Z OpS

The name of the breakpoint variable.

A token for the exchange at which the breakpoint is set.

Indicates the kind of breakpoint activity at the exchange, either S
(for Send), R (for Receive), or SR (for both).

Indicates whether a task (T) or all the tasks in a job (J) are to be
suspended and placed on the breakpoint list when the breakpoint is
incurred.

Indicates the breakpoint options. If any are present, they can be C
(for Continue task) and/or D (for Delete breakpoint).

Dynamic Debugger

VIEWING THE BREAKPOINT LIST -- BL

This command displays the breakpoint list. The syntax for the BL command is as follows:

W-1062

Description

The BL command displays the entire breakpoint list at the terminal, as follows:

where:

JJJJ

tttt

s

BL=jjjjJ/ttttT(s) jjjjJ/ttttT(s) ... jjjjJ/ttttT(s)

A token for the job containing the task whose token follows.

A token for a task.

The breakpoint state of a task. Possible values are X (for
execution), E (for exchange), Z (for exception), and N (for null).

Dynamic Debugger 4-19

ESTABLISHING THE BREAI(POINT TASK -- BT

This command designates a task to be the breakpoint task. The syntax for the BT
command is as follows:

Parameter

ITEM

Description

A token for an existing task.

ITEM

W-1063

The task designated by ITEM becomes the breakpoint task. The Debugger suspends the
task but does not place it on the breakpoint list.

4-20 Dynamic Debugger

LISTING THE BREAKPOINT TASK -- 8T

This command lists the job and task tokens associated with the breakpoint task. The syntax
for the BT command is as follows:

W-1064

Description

This command displays the following information about the breakpoint task:

where:

JJJJ

tttt

s

BT=jjjjJjttttT(s)

A token for the job containing the breakpoint task.

A token for the breakpoint task.

The breakpoint state of the breakpoint task. Possible values are X
(for execute), E (for exchange), Z (for exception), and N (for null).

If there is no breakpoint task, the Debugger displays the following:

BT=

Dynamic Debugger 4-21

CHANGING A BREAI(POINT

This command changes an existing breakpoint. The syntax for this command is as follows:

BREAKPOINT VARIABLE

Parameters

BREAKPOINT
VARIABLE

ITEM and
EXPRESSION

SandR

TandJ

4-22

1551

An existing Debugger breakpoint name. If the Debugger's symbol
table does not already contain this name, an error message will
appear on the terminal.

If you are changing an execution breakpoint, use ITEM with
EXPRESSION to specify the address of the breakpoint. ITEM
must contain the base portion of the address, followed by":" and an
EXPRESSION, which must contain the offset portion. If you are
changing an exchange breakpoint, ITEM must contain a token for
an exchange.

To be used only when changing an exchange breakpoint. S means
that the exchange breakpoint is for senders only, while R designates
receivers only. If you want to set an exchange breakpoint for both
senders and receivers, omit both Sand R, as well as both ":" and
EXPRESSION.

Indicate which tasks are to be put on the breakpoint list when a
breakpoint is incurred. T indicates only the task that incurred the
breakpoint, while J indicates all of the tasks in that task's job. If
neither T nor J is present, T is assumed.

Dynamic Debugger

C

D

CHANGING A BR.EAKPOINT

Continue task execution option. This option directs the Debugger
not to "break" tasks that incur the breakpoint, and not to put them
on the breakpoint list. When a task incurs such a breakpoint, the
Debugger generates a breakpoint display, but the task continues to
run.

Delete breakpoint option. This option directs the Debugger to
delete the breakpoint after it is first incurred by a task. The
Debugger generates a breakpoint display and, unless the C option is
also specified, places the task that incurred the breakpoint on the
breakpoint list.

Description

This command deletes the breakpoint associated with the breakpoint variable name and
replaces it with a new breakpoint, as specified in the command. The breakpoint variable
name can be used when deleting or changing the breakpoint.

Example

. BPOINT
BPOINT=2F34 S T C

* .BPOINT = 2D2A S C

* . BPOINT
BPOINT=2D2A S C

*
In this example, the user lists a breakpoint variable, changes it, and lists it again.

Dynamic Debugger 4-23

DEFINING A BREAI(POINT -- DB

This command defines an execution or exchange breakpoint. The syntax for the DB
command is as follows:

Parameters

BREAKPOINT
VARIABLE

ITEM

SandR

EXPRESSION

A Debugger name that identifies the breakpoint. This name must
consist of a period followed by up to 11 characters, the first of which
must be alphabetic. The other characters can be alphabetic,
numeric, question marks (?), or dollar signs ($). If the Debugger's
symbol table already contains this name, an error message will
appear on the terminal.

If you are setting an execution breakpoint, use ITEM with
EXPRESSION to specify the address of the breakpoint. ITEM
must contain the base portion of the address, followed by":" and an
EXPRESSION, which must contain the offset portion. If you are
setting an exchange breakpoint, ITEM must contain a token for an
exchange.

To be used only when setting an exchange breakpoint. S means that
the exchange breakpoint is for senders only, while R indicates
receivers only. If you want to set an exchange breakpoint for both
senders and receivers, omit both Sand R, as well as both ":" and
EXPRESSION.

Use only when setting an execution breakpoint. EXPRESSION
must contain the offset portion of the address of the execution
breakpoint.

1552

4-24 Dynamic Debugger

TandJ

C

D

Description

DEFINING A BREAKPOINT -- DB

Indicates which tasks are to be put on the breakpoint list when a
breakpoint is incurred. T indicates only the task that incurred the
breakpoint, while J indicates all of the tasks in that task's job. The
default is T.

Continues task execution option. This option directs the Debugger
not to "break" tasks that incur the breakpoint, and not to put them
on the breakpoint list. When a task incurs such a breakpoint, the
Debugger generates a breakpoint display, but the task continues to
run.

Deletes breakpoint option. This option directs the Debugger to
delete the breakpoint after it is first incurred by a task. The
Debugger generates a breakpoint display and, unless the C option is
also specified, places the task that incurred the breakpoint on the
breakpoint list.

The DB command sets a breakpoint of the type indicated in the remainder of the
command line. The name designated as the breakpoint variable can be used when altering
or deleting the breakpoint.

Examples

DB .BP 2DC3:0FF

*
This command defines an execution breakpoint at address 2DC3:0FF and assigns the name
.BP to this breakpoint. When a task incurs this breakpoint, only the task itself is placed on
the breakpoint list.

DB .BPOINT

*
.MBOX S C

This command defines an exchange breakpoint at the mailbox whose token is specified by
the numeric variable .MBOX.

Dynamic Debugger 4-25

E)'AMINING A BREAKPOINT

This command displays information about a particular breakpoint. The syntax for this
command is as follows:

Parameter

BREAKPOINT
VARIABLE

Description

~
~

W-1065

The name of an existing breakpoint to be examined.

The Debugger displays two kinds of output, depending on whether the specified breakpoint
variable represents an execution or an exchange breakpoint. Exception breakpoints cannot
be examined.

4-26 Dynamic Debugger

EXAMINING A BREAKPOINT

Execution Breakpoint Output

If the designated breakpoint is an execution breakpoint, the Debugger sends the following
display to the terminal:

where:

bp-var

xxxx

yyyy

z

ops

Dynamic Debugger

bp-var=xxxx:yyyy Z OpS

The name of the breakpoint variable.

Base portion of the breakpoint's address.

Offset portion of the breakpoint's address.

Indicates whether a single task (T) is to be "broken" and placed on
the breakpoint list or all tasks in a job (J) are to be suspended and
placed on the breakpoint list, when the breakpoint is incurred.

Indicates the breakpoint options. If any are present, they can be C
(for Continue task) and/or D (for Delete breakpoint).

4-27

EXCHANGE BREAKPOINT OUTPUT

If the designated breakpoint is an exchange breakpoint, the Debugger sends the following
display to the terminal:

bp-var=xxxx a Z ops

where:

bp-var

xxxx

a

z

ops

The name of the breakpoint variable.

A token for the exchange at which the breakpoint is set.

Indicates the kind of breakpoint activity at the exchange, either S
(for send), R (for receive), or SR (for both).

Indicates whether a single task (T) is to be "broken" and placed on
the breakpoint list or all tasks in a job (1) are to be suspended and
placed on the breakpoint list, when the breakpoint is incurred.

Indicates the breakpoint options. If any are present, they can be C
(for Continue task) and/or D (for Delete breakpoint).

Examples

.BP
BP=2DC3:00FF T

*
This command lists the address of the execution breakpoint associated with the variable
.BP. It also indicates that the task is to be "broken" only if a breakpoint is encountered .

. BPOINT
BPOINT=2F34 S T C

*
This command lists the address of the exchange breakpoint associated with the variable
.BPOINT. The S, T, and C indicate that only tasks that send messages to the exchange will
incur the breakpoint, only the task that incurs the breakpoint will be "broken," and the task
will continue processing after incurring the breakpoint.

4-28 Dynamic Debugger

RESUMING TASK E)(ECUTION -- G

This command resumes execution of a task on the breakpoint list or the breakpoint task.
The syntax for the G command is as follows:

~--~-
~JTEM~ 1

W-1074

Parameter
ITEM A token for a task on the breakpoint list or the breakpoint task. If

the token is not for a task on the breakpoint list or is not the
breakpoint task, an error message is displayed. If this parameter is
omitted, the breakpoint task is assumed.

Description

The G command applies to the breakpoint task if ITEM is not present. Otherwise, it
applies to the task on the breakpoint list whose token is represented by ITEM.

The G command resumes execution of the designated task. If the task is in the broken
state, it is made ready. If in the suspended state, its suspension depth is decreased by one.

If the G command is invoked without ITEM when there is no breakpoint task, an error
message is displayed.

Dynamic Debugger 4-29

ALTERING THE BREAI(POINT TASI('S NP}{ REGISTERS -- N

This command modifies the breakpoint task's Numeric Processor Extension (NPX)
register values. This command applies only to tasks specified at creation as having the
ability to use the NPX. The syntax for the N command is as follows:

1555

4-30 Dynamic Debugger

ALTERING THE BREAKPOINT TASK'S NPX REGISTERS -- N

Parameters

CW, SW, TW, IP,
OC, OP, PO
through P7

CONSTANT

Description

Names of the breakpoint task's NPX registers, as follows:

CW
SW
TW
IP
OC
OP
PO-P7

Description

Control Word
Status Word
Tag Word
Instruction Pointer
Operation Code
Operand Pointer
Stack elements

A hexadecimal number used for the new register value.
CONSTANT can specify an 80-bit value for registers PO through P7,
a 20-bit value for registers IP and OP, and a 16-bit value for the
remaining registers. If this value is too large for the specified
register, the Debugger displays a SYNTAX ERROR message.

This command requests that the breakpoint task's NPX register, as specified in the
command request, be updated with the value of CONSTANT. This command applies only
to tasks specified at creation as using the NPX.

Dynamic Debugger 4-31

VIEWING THE BREAKPOINT TASK'S NPX REGISTERS -- N

This command displays the breakpoint task's Numeric Processor Extension (NPX) register
values. This command applies only to tasks specified at creation as having the ability to use
the NPX. The syntax for this command is as follows:

1556

4-32 Dynamic Debugger

VIEWING THE BREAKPOINT TASK'S NPX REGISTERS -- N

Parameters

CW, SW, TW, IP,
OC,OP,PO
through P7 Names of the breakpoint task's NPX registers, as follows:

Description

Control Word
Status Word

CW
SW
TW
IP
OC
OP
PO-P7

Tag Word
Instruction Pointer
Operation Code
Operand Pointer
Stack elements

If no name is specified, the Debugger displays values for all registers.

Description

This command lists NPX register values for the breakpoint task. It applies only to tasks
specified at creation as using the NPX. If the command is simply "N," then all of the
breakpoint task's NPX registers are displayed, in the following format:

New = xxxx NSW = xxxx
NIP = xxxxx NOe = xxx
NPO = xxxxxxxxxxxxxxxxxxxx
NPI = xxxxxxxxxxxxxxxxxxxx
NP2 = xxxxxxxxxxxxxxxxxxxx
NP3 = xxxxxxxxxxxxxxxxxxxx
NP4 = xxxxxxxxxxxxxxxxxxxx
NPS = xxxxxxxxxxxxxxxxxxxx
NP6 xxxxxxxxxxxxxxxxxxxx
NP7 xxxxxxxxxxxxxxxxxxxx
NES xxxx

NTW = xxxx
NOP = xxxxx

The size of the field indicates the number of hexadecimal digits that the Debugger displays.

Registers PO through P7 are 80-bit registers that the Debugger displays in temporary real
format.

Dynamic Debugger 4-33

VIEWING THE BREAKPOINT TASK'S NPX REGISTERS -- N

The NES field contains the value of the NPX Status Word if an NPX exception caused the
breakpoint task to be broken. The value for this field, under all other circumstances, is
NONE.

If the breakpoint task does not use the NPX, the Debugger returns an error message.

4-34 Dynamic Debugger

ALTERING THE BREAKPOINT TASK'S REGISTERS -- R

This command alters one of the breakpoint task's CPU register values. The syntax for the
R command is as follows:

R ;--,.----{

1557

Dynamic Debugger 4-35

ALTERING THE BREAKPOINT TASK'S REGISTERS -- R

Parameters

AH, AL, AX, BH,
BL, BP, BX, CH,
CL, CS, CX, DH,
DI, DL, DS, DX,
ES, FL, IP, SI, SP,
SS

EXPRESSION

Description

Names of the breakpoint task's CPU registers.

A Debugger expression whose value is used for the new register
value. If this value is too large to fit in the designated register, the
Debugger fills the register with the low-order bytes of the value.

This command requests that the breakpoint task's register, as specified in the command
request, be updated with the value of the EXPRESSION. However, if the breakpoint task
is in the null breakpoint state, its register values cannot be altered by the R command.

4·36 Dynamic Debugger

VIEWING THE BREAJ(POINT TASK'S REGISTERS -- R

This command lists one or all of the breakpoint task's CPU· registers. The syntax for the R
command is as follows:

RJ--o.--------.....

~----~CL~--~

1558

Dynamic Debugger 4-37

VIEWING THE BREAKPOINT TASK'S REGISTERS -- R

Parameters

AH, AL, AX, BH,
BL, BP, BX, CH,
CL, CS, CX, DH,
DI, DL, DS, DX,
ES, FL, IP, SI, SP,
SS

Names of the breakpoint task's CPU registers. If no name is
specified, the Debugger displays values for all registers.

Description

This command lists CPU register values for the breakpoint task. If the command is simply
"R," then all of the breakpoint task's registers are displayed, in the following format:

RAX=xxxx RSI=xxxx RCS=xxxx RIP=xxxx
RBX=xxxx RDI=xxxx RDS=xxxx RFL=xxxx
RCX=xxxx RBP=xxxx RSS=xxxx
RDX=xxxx RSP=xxxx RES=xxxx

If the command has the form Ryy, where yy is the register name, then the contents of the
specified register are displayed, either as

Ryy=xxxx

or as

Ryy=xx

depending on whether yy is a byte-size register (like AH) or a word-size register (like AX).

4-38 Dynamic Debugger

VIEWING THE BREAKPOINT TASK'S REGISTERS -- R

If the breakpoint task is in the null breakpoint state, only its BP, SP, CS, DS, SS, IP, and FL
register contents are displayed. The remaining register displays consist of question marks.

In certain circumstances the breakpoint task, when suspended, is in a state that prevents
the Debugger from obtaining its register contents. If this is the case, the Debugger displays
question marks for all registers.

Dynamic Debugger 4-39

DELETING A BREAI(POINT -- Z

This command deletes a breakpoint. The syntax for the Z command is as follows:

Parameter

BREAKPOINT
VARIABLE

Description

W-1066

Name of an existing Debugger breakpoint to be deleted.

The Z command deletes the specified breakpoint and removes the breakpoint variable
name from the Debugger's symbol table.

Example

Z .BP

*

This command deletes the breakpoint associated with the variable .BP and removes .BP
from the Debugger's symbol table.

4-40 Dynamic Debugger

DEBUGGER COMMANDS

4.5 MEMORY COMMANDS

The commands in this section enable you to inspect or modify the contents of absolute
memory locations. Figure 4-1 illustrates the syntax for all commands in this section.

M ~.-__ ~

1560

Figure 4-1. Syntax Diagram for Memory Commands

As Figure 4-1 illustrates, all memory commands begin with "M." A variety of parameters
can be specified with "M"; these parameters are grouped into the following basic options:

• Setting current display mode. This option begins with "!."

• Changing memory locations. This option includes" =."

Dynamic Debugger 4-41

DEBUGGER COMMANDS

• Displaying memory locations. This option consists of the remaining parameters.

This section discusses these three groups as separate commands; however, you can
combine any number of "M" command options in a single command, as Figure 4-1 shows.

The following command descriptions mention the current display mode, the current
segment base, the current offset, the current address, and the display of memory locations,
defined as follows:

• The current display mode determines how memory values are interpreted for display.
The possible modes are designated by B (byte), W (word), P (pointer), and A (ASCII).
The effects of these modes can easily be understood by an example.

Suppose that memory locations 042B through 042E contain, respectively, the values 25,
F3, 67, and 4C. If you ask for the display of the memory at location 042B, then the
effects, which depend on the current display mode, are as follows:

Current Display Mode Display

B 25
W F325
P 4C67:F325
A %

Observe that words and pointers are displayed from high-order (high address) to low
order (low address).

• If a location contains a value that does not represent a printable ASCII character, and
the current display mode is A, then the Debugger prints a period. The initial current
display mode is B.

• The value of the current segment base is always the value of the most recently used
CPU segment base. The initial value of the current segment base is o.

• The current offset is a value the Debugger maintains and uses when a memory location
is referenced with no offset value. Except when the current offset has been modified by
certain options of the M command, the current offset is always the value of the most
recently used offset. The initial value of the current offset is o.

• The current address is the memory address computed from the combination of the
current segment base and the current offset.

• When memory locations are displayed, the format is as follows:

xxxx:yyyy=value

4-42 Dynamic Debugger

DEBUGGER COMMANDS

• where xxxx and yyyy are the current segment base and current offset, respectively, and
value is a byte, word, pointer, or ASCII character, depending on the current display
mode. If several contiguous memory locations are being requested at one time, each
line of display is as follows:

xxxx:yyyy=value value value ... value

where xxxx, yyyy, and value are as previously described, and xxxx:yyyy represents the
address of the first value on that line.

The first such line begins with the first address in the request and continues to the end
of that (16-byte) paragraph. If additional lines are required to satisfy the request, each
begins at an offset that is a mUltiple of 16 (lOR).

Dynamic Debugger 4-43

CHANGING MEMORY -- M

This command changes the contents of designated RAM locations.

CAUTION

Because the Debugger is most often used during system
development while your tasks, the Nucleus, the Debugger, and
possibly other iRMX I components are in RAM, you should use
these M command options with extreme care.

The syntax for this command is as follows:

DESTINATION:

~_...;l~~~>-""'~--------~l
~-...;-~-

SOURCE:

Parameters

As shown in the syntax diagram, the parameters for this command are divided into
DESTINATION and SOURCE parameters separated with an equal sign.

4-44 Dynamic Debugger

1561

CHANGING MEMORY -- M

Destination Parameters

These parameters define the memory location or locations to be changed. All parameters
change the current offset, and some of them change the current base. The valid parameter
combinations are as follows:

EXPRESSION

ITEM:
EXPRESSION

EXPRESSION
TO
EXPRESSION

ITEM:
EXPRESSION
TO
EXPRESSION

This form of the DESTINATION option implies that the address to
be changed has the current base as its base value and the value of
EXPRESSION as its offset.

This form of the DESTINATION option implies that the address to
be changed has the value of ITEM as its base value and the value of
EXPRESSION as its offset.

This form of the DESTINATION option implies that a series of
consecutive locations will be changed. The EXPRESSIONs
determine the beginning and ending offsets, respectively. The
current base is used as a base value. After memory has been
changed, the current offset is set to the value of the second
EXPRESSION.

This form of the DESTINATION option is the same as the previous
one, except that ITEM is used as the base value of the locations.

If no DESTINATION option is specified, the location specified by the current segment
base and current offset is changed. However, if the previous command was a "Display
Memory" command of the form

M EXPRESSION TO EXPRESSION

the entire range of locations specified in that command is changed.

Source Parameters

These parameters define the information to be placed into the DESTINATION memory.
The valid parameter combinations are as follows:

EXPRESSION

Dynamic Debugger

This form of the SOURCE option can be used only if the current
display mode is byte or word. It implies that the value represented
by EXPRESSION will be copied into the byte or word at the current
address. However, if the DESTINATION option (supplied or
default) specified a range of locations, this option instead copies the
value of EXPRESSION into each byte or word in DESTINATION.

4-45

CHANGING MEMORY -- M

Examples:

M EXPRESSION

4-46

1. When the DESTINATION option did not specify a range of
values:

M = 4C
0400:0008 09
0400:0008 4C

*

This example changes the contents of the current location
(0400:0008) from 09 to 4C. Notice that the Debugger displays both
the old and the new contents of memory.

2. When the DESTINATION option specified a range of values:

M 1 TO 4
0400:0001 06 07 08 09

*
M = 4C
0400:0001 06 07 08 09
0400:0001 4C 4C 4C 4C

*

In this example, because the previous command was an examination
of a range of memory, the command to change memory changes the
entire range of memory.

This form of the SOURCE option uses the current segment base
and the offset indicated by the value of EXPRESSION to compute
an address. It copies the value at that computed address into the
location specified by the current address.

However, if the DESTINATION option (supplied or default)
specified a range of locations, the value at the computed address is
instead copied to each location in the destination field.

Dynamic Debugger

Examples:

MITEM:
EXPRESSION

Dynamic Debugger

CHANGING MEMORY -- M

1. When the DESTINATION option did not specify a range of
values:

M 9
0400:0009 11

*
M = M 6
0400:0009 11
0400:0009 4C

*

This example replaces the value in location 4000:0009 (11) with the
value in location 4000:0006 (4C).

2. When the DESTINATION option specified a range of values:

M 100
0400:0100 FF

*
M 100 TO 103 = M 6
0400:0100 FF AO 16
0400:0100 4C 4C 4C

*

In this example, the command to change memory included a
DESTINATION option that specified a range of values. Thus the
contents of location 0400:0006 (4C) are copied into each
DESTINATION location.

This form of the SOURCE option uses ITEM and EXPRESSION
as base and offset, respectively, to compute an address. It copies the
value at that computed address into the location specified by the
current address. However, if the DESTINATION option (supplied
or default) specified a range of locations, the value at the computed
address is instead copied to each location in the destination field.

4-47

CHANGING MEMORY -- M

Examples:

M EXPRESSION
TO
EXPRESSION

4-48

1. When the DESTINATION option did not specify a range of
values:

M 9
0400:0009 4C

*
M = M 300:2643
0400:0009 4C
0400:0009 21

*

This example takes the value in location 0300:2643 (21) and copies
it into the current location (0400:0009).

2. When the DESTINATION option specified a range of
values:

M 100 TO 103 = M 300:2643
0400:0100 4C 4C 4C 22
0400:0100 21 21 21 21

*

This example copies the contents of location 0300:2643 (21) into
each location specified in the DESTINATION option.

This form of the SOURCE option uses the current segment base
and, in order, the offsets indicated by the EXPRESSIONs, to
compute a beginning address and an ending address. It copies the
sequence of values bounded by the computed addresses to the
sequence of locations that begin at the current address. However, if
the DESTINATION option (supplied or default) specified a range
of locations, the sequence of values bounded by the computed
addresses is copied to the destination field, with the source values
being truncated or repeated as required.

Dynamic Debugger

Examples:

MITEM:
EXPRESSION
TO
EXPRESSION

Dynamic Debugger

CHANGING MEMORY -- M

1. When the DESTINATION option did not specify a range of
values:

M 400:104
0400:0104 E1

*
M = H A TO C
0400:0104 E1 F2 OA
0400:0104 OB OC OD

*

In this example, the contents of the range of locations specified in
the SOURCE option (0400:000A - 0400:000C) are copied into the
range of locations that begin with the current address (0400:0104).

2. When the destination option specified a range of values:

M 1 TO 4 = M A TO C
0400:0001 4C 4C 4C 4C
0400:0001 OB OC OD OB (first value
* repeated)

This example copies the contents of three locations (0400:000A -
0400:000C) into four locations (0400:0001 - 0400:0004). Notice that
the values start repeating; 0400:0001 contains the same value as
0400:0004 (OB).

This form of the SOURCE option uses ITEM as a base and the
EXPRESSIONs as offsets to compute a beginning and an ending
address. The sequence of values bounded by the computed
addresses is copied to the sequence of locations beginning at the
current address. However, if the DESTINATION option (supplied
or default) specified a range of values, the sequence of values
bounded by the computed addresses is copied to the destination
field, with the source values being truncated or repeated as
required.

4-49

CHANGING MEMORY -- M

Examples:

Description

1. When the DESTINATION option did not specify a range of
values:

D .VALUE = 2643

* M 1
0400:0001 OB

* M = M 300:.VALUE TO .VALUE + 4
0400:0001 OB OC OD OB 4C
0400:0001 21 47 E2 C8 31

*

In this example, the contents of the range of locations specified in
the SOURCE option (0300:2643 - 0300:2647) are copied into the
range of locations that begin with the current address (0400:0001).

2. When the DESTINATION option specified a range of values:

M 101 TO 104
0400:0101 21 21 21 OB

*
M = M 300:2643 TO 2647
0400:0101 21 21 21 OB
0400:0101 21 47 E2 C8

*
(last value
truncated)

This example copies the contents of five locations (0300:2643 -
0300:2647) into four locations (0400:0101 - 0400:0104). Notice that
the value of the fifth location (0300:2647) is not copied.

This command changes the contents of designated RAM locations. The DESTINATION
options affect the current segment base and offset values. The SOURCE options do not
affect these values.

When executing this command, the Debugger displays the contents of the designated
locations, then updates the contents, and finally displays the new contents. Thus, if you
inadvertently destroy some important data, you can easily access the information needed to
restore it.

This command copies data in the byte mode. The current display mode is not affected by
these copying options.

4-50 Dynamic Debugger

CHANGING MEMORY -- M

CAUTION

When using the M command, be aware of the following hazards:

Dynamic Debugger

• You can modify memory within iRMX I components, such as the
Nucleus and Debugger, which may jeopardize the integrity of your
application system.

• You can request that non-RAM memory locations be modified. If you
attempt to read or write to a lion-RAM location, nothing happens to
memory and the displays indicate that the specified locations contain
zeros.

• A memory request might cross segment boundaries. In processing such
a request, the Debugger ignores such boundaries, so don't assume that
a boundary will terminate a request.

4-51

E)(AMINING MEMORY -- M

This command displays memory locations without changing their contents. The syntax for
this command is as follows:

Parameters

To avoid confusion, this section lists examples of complete commands in explaining the
parameters.

M/

Example:

This option increments the current offset according to the current
display mode: by one for byte or ASCII, by two for word, or by four
for pointer. Then it displays the contents of the new current
address.

HI
0400:0009 OA

*

1562

This example increments the current offset and displays the address
and contents of the location.

M\

4-52

This option is just like M/, except that the current offset is
decremented.

Dynamic Debugger

Example:

M

Example:

M@

Example:

M EXPRESSION

Dynamic Debugger

EXAMINING MEMORY -- M

M\
0400:0008 08

*

This example decrements the current offset and displays the address
and contents of the location.

When used by itself, M is an abbreviated way of specifying M/ or
M\, whichever was last used. If neither has been used in the current
Debugging session, M is interpreted as an M/ request.

M
0400:0007 08

*
M
0400:0006 07

*

Since M\ was used most recently, these commands decrement the
current offset before displaying the address and contents of
memory.

This option sets the current offset equal to the value of the word
beginning at the current address. Then the value at the adjusted
current address is displayed.

M!B

*
M@
0400:0807 46

*

Even though byte mode was selected, this example sets the current
offset equal to contents of the word at offset 07. From the previous
example you can see that this word is indeed 0807.

This option sets the current offset equal to the value of the
EXPRESSION and displays the value at the new current address.

4-53

EXAMINING MEMORY -- M

Example:

MITEM:
EXPRESSION

Example:

M EXPRESSION
TO
EXPRESSION

4-54

M 3
0400:0003 04

*

This example sets the current offset to 3 and displays the contents of
that location.

This option is just like M EXPRESSION, except that ITEM is used
as the base in the address calculation, and after the operation ITEM
is the new current segment base.

M 300:2644
0300:2644 47

*

This example sets the current base to 300 and the current offset to
2644. It also displays the contents of that location.

This option displays the values of a series of consecutive locations.
The EXPRESSIONs determine the beginning and ending offsets,
respectively; the second EXPRESSION must be greater than the
first. The current segment base is used as a base. After displaying
the locations, the Debugger sets the current offset to the value of
the second expression. If the specified range of locations is
incompatible with the current display mode--for example, an odd
number of locations is not compatible with the word or pointer
modes--then all words or pointers that lie partially or totally inside
the range are displayed.

Dynamic Debugger

Examples:

(1)

(2)

MITEM:
EXPRESSION
TO
EXPRESSION

Example:

Description

EXAMINING MEMORY -- M

M 4 TO 6
0300:0004 15 26 37

*

MHT

* H 4 TO 6
0300:0004 2615 4837

*

These examples display a consecutive series of memory locations in
both byte and word mode. Notice that the base set in the last
example (300) is still used.

This option is just like M EXPRESSION TO EXPRESSION, except
that ITEM is used as a base in the address calculation, and after the
operation ITEM is the new segment base.

M!B

*
D .MEM = 100

* M 400: .MEM TO .MEM +4
0400:0100 FF AO 16 22 E1

*

After setting the output mode to byte and defining a numeric
variable .MEM, this example sets the base to 400 and displays five
consecutive memory locations beginning with offset 100 (.MEM).
At the end of the example, the current offset is 400 and the current
base is 104.

This command displays the contents of memory without disturbing those contents. Be
aware, however, that all of the options change the current offset, and some of them change
the current segment base. None changes the current display mode.

Dynamic Debugger 4-55

SETTING THE CURRENT DISPLAY MODE -- M

This command specifies how the Debugger will display output. The syntax for the M
command is as follows:

Parameters

B,W,

P,A

Description

Indicates that the display mode is being changed.

Specifies the mode of display. B indicates byte mode,

W indicates word mode, P indicates pointer mode, and A indicates
ASCII mode.

This command sets the display mode for further Debugger output. When the Debugger
next displays memory, it will display the memory according to the mode specified with this
command.

Examples

M!B

*

This command instructs the Debugger to display all further output in byte mode.

M!W

*
This command instructs the Debugger to display all further output in word mode.

4-56 Dynamic Debugger

1563

DEBUGGER COMMANDS

4.6 COMMANDS TO INSPECT SYSTEM OBJECTS

The inspect commands allow you to examine iRMX I objects in detail. They give specific
information about the Nucleus object types. Figure 4-2 illustrates the general syntax for
these commands.

1564

Figure 4-2. Syntax Diagram for Inspecting System Objects

The second letter of the command indicates the type of object to inspect, as follows:

C Composite
E Exchange
G Segment
J Job
T Task
X Extension

The remainder of this section describes the commands in detail.

Dynamic Debugger 4-57

INSPECTING A COMPOSITE -- IC

This command displays the principal attributes of the specified composite. The syntax for
the IC command is as follows:

ITEM

W-1067

Parameter
ITEM Token for the composite object to be inspected.

Description

The IC command displays the principal attributes of the composite object whose token is
represented by ITEM, in the form shown in Figure 4-3.

4-58

iRMXI COMPOSITE REPORT -----
COMPOSITE TOKEN bbbb CONTAINING JOB gggg
EXTENSION TOKEN ecce # TOKEN SLOTS hhhh
TOKEN(S) ffffJ/dddde ffffJ/dddde ffffJ/dddde ffffJ/dddde

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-3. An iRMX® I Composite Report®

Dynamic Debugger

INSPECTING A COMPOSITE -- IC

The following describes the fields in Figure 4-3 (in alphabetical order):

Field

aaaaaaaaaaaa

bbbb

ccce

dddd

e

ffff

gggg

hhhh

Dynamic Debugger

Meaning

Each such field contains a name under which the composite is
catalogued in the object directory of either the job containing the
composite or the root job. If the composite is not catalogued in
either directory, "NONE FOUND" is displayed here.

Hexadecimal token for the composite.

Hexadecimal token for the extension that represents license to
create this type of composite.

Hexadecimal token for one of the components of the composite
object.

Single letter that indicates the type of object dddd. This field can
have any of the following values:

C composite
G segment
J job
M mailbox
R regton
S semaphore
T task
X extension
* a task whose stack has overflowed or whose code was

loaded by the iRMX I Application Loader

Hexadecimal token for the job that contains object dddd.

Hexadecimal token for the job that contains composite object bbbb.

Hexadecimal value specifying the maximum allowable number of
component objects that the composite object can comprise.

4-59

INSPECTING AN EXCHANGE -- IE

This command displays the principal attributes of a mailbox, semaphore, or region whose
token is specified. The syntax of the IE command is as follows:

Parameter
ITEM

Description

ITEM

W-1068

Token for the exchange to be inspected.

The IE command displays the principal attributes of the mailbox, semaphore, or region
whose token is represented by ITEM. It produces three kinds of output, one for each kind
of exchange.

Mailbox Display

Figure 4-4 depicts the form of display produced by IE for a mailbox.

MAILBOX TOKEN
1f TASKS WAITING
FIRST WAITING
CACHE SIZE

bbbb
iRMXI MAILBOX REPORT ----

CONTAINING JOB
ecce
ddddf/eeeef
gggg

OBJECTS WAITING
QUEUE DISCIPLINE

hhhh
iiii

jjjjjjjj

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-4. An iRMX® I Mailbox Report

4-60 Dynamic Debugger

INSPECTING AN EXCHANGE -- IE

The following describes the fields in Figure 4-4:

Field Meaning

aaaaaaaaaaaa

bbbb

cccc

dddd

eeee

f

gggg

hhhh

nn

jjjjjjjj

Dynamic Debugger

Each such field contains a name under which the mailbox is
catalogued in the object directory of either the mailbox's containing
job or the root job. If the mailbox is not catalogued in either
directory, "NONE FOUND" is displayed here.

Hexadecimal token for the mailbox.

Number, in hexadecimal, of tasks in the mailbox's task queue.

Token for the containing job of either the first task waiting in the
task queue or the first object waiting in the object queue. Because
at least one of these queues is empty, dddd is not ambiguous. If
both queues are empty, dddd is absent.

Token for either the first task waiting in the task queue or the first
object waiting in the object queue. Because at least one of these
queues is empty, eeee is not ambiguous. If both queues are empty,
eeee is 0000.

Single letter that indicates the type of the first task waiting in the
task queue or the first object waiting in the object queue. Because
at least one of these queues is empty, f is not ambiguous. If both
queues are empty, f is absent. Otherwise, f has one of the following
values:

C composite
G segment
J job
M mailbox
R regIon
S semaphore
T task
X extension

Number, in hexadecimal, of objects that the mailbox's high
performance object queue can hold.

Hexadecimal token for the job containing the mailbox.

Number, in hexadecimal, of objects in the mailbox's object queue.

Describes how waiting tasks are queued in the mailbox's task queue,
either FIFO or PRIORITY.

4-61

INSPECTING AN EXCHANGE -- IE

Semaphore Display

Figure 4-5 depicts the form of the display produced by IE for a semaphore.

4-62

iRMXI SEMAPHORE REPORT -----
SEMAPHORE TOKEN bbbb CONTAINING JOB gggg
TASKS WAITING ecce QUEUE DISCIPLINE hhhhhhhh
CURRENT VALUE dddd MAXIMUM VALUE iiii
FIRST WAITING eeeeJjffffT
NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-5. An iRMX® I Semaphore Report

Dynamic Debugger

INSPECTING AN EXCHANGE -- IE

The following describes the fields in Figure 4-5:

Field

aaaaaaaaaaaa

bbbb

ecce

dddd

eeee

ffff

gggg

hhhhhhhh

1111

Region Display

Meaning

Each such field contains a name under which the semaphore is
catalogued in the object directory of either the semaphore's
containing job or the root job. If the semaphore is not catalogued in
either directory, "NONE FOUND" is displayed here.

Hexadecimal token for the semaphore.

Number, in hexadecimal, of tasks waiting in the queue.

Number, in hexadecimal, of units currently in the custody of the
semaphore.

Hexadecimal token for the containing job of the first waiting task. It
is absent if no tasks are waiting.

Hexadecimal token for the first waiting task. It is 0000 if no tasks
are waiting.

Hexadecimal token for the semaphore's containing job.

Describes how waiting tasks are queued in the semaphore's task
queue, either FIFO or PRIO RITY.

Maximum allowable number, in hexadecimal, of units that the
semaphore may have in its custody.

Figure 4-6 depicts the form of the display produced by IE for a region.

REGION TOKEN
If TASKS WAITING
TASK IN REGION

iRMXI REGION REPORT -----
bbbb CONTAINING JOB
ecce QUEUE DISCIPLINE
dddd FIRST WAITING

eeee
ffffffff

gggg

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-6. An iRMX® I Region Report

Dynamic Debugger 4-63

INSPECTING AN EXCHANGE -- IE

The following describes the fields in Figure 4-6:

Field

aaaaaaaaaaaa

bbbb

cccc

dddd

eeee

ffffffff

4-64

Meaning

Each such field contains a name under which the region is
catalogued in the object directory of either the job containing the
region or the root job. If the region is not catalogued in either
directory, "NONE FOUND" is displayed here.

Hexadecimal token for the region.

Number, in hexadecimal, of tasks awaiting access to the data
protected by the region.

Hexadecimal token for the task that currently has access.

Hexadecimal token for the job that contains the region.

Describes how waiting tasks are queued at the region, either FIFO,
PRIORITY, or INVALID.

Dynamic Debugger

INSPECTING A SEGMENT -- IG

This command displays the principal attributes of the specified segment. The syntax for
the IG command is as follows:

Parameter

ITEM

Description

ITEM

W-1069

Token for the segment to be inspected.

The IG command displays the principal attributes of the segment whose token is
represented by ITEM. Figure 4-7 depicts the form of the display produced by IG.

SEGMENT TOKEN
SEGMENT BASE

bbbb
ecce

iRMXI SEGMENT REPORT ----
CONTAINING JOB
SEGMENT LENGTH

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-7. An iRMX® I Segment Report

Dynamic Debugger

dddd
eeeee

4-65

INSPECTING A SEGMENT -- IG

The following describes the fields in Figure 4-7:

Field

aaaaaaaaaaaa

bbbb

cccc

dddd

eeeee

4-66

Meaning

Each such field contains a name under which the segment is
catalogued in the object directory of either the segment's containing
job or the root job. If the segment is not catalogued in either
directory, "NONE FOUND" is displayed here.

Hexadecimal token for the segment.

Base address of the segment.

Hexadecimal token for the job that contains the segment.

Number, in hexadecimal, of bytes in the segment.

Dynamic Debugger

INSPECTING A JOB -- IJ

This command lists the principal attributes of a specified job. The syntax for the IJ
command is as follows:

Parameters
ITEM

o

Description

W-1075

A token for the job to be inspected.

If this option is included, the job's object directory is also listed. If
omitted, the object directory is not listed.

The IJ command lists the principal attributes of a job whose token is represented by ITEM.
It also lists the object directory if the 0 option is included. If a large number of entries are
in the object directory, the CONTROL-O character can be used to prevent data from
rolling off the screen. The CONTROL-O special character is described in Chapter 2.

Figure 4-8 depicts the form of the display produced by the IJ command.

Dynamic Debugger 4-67

INSPECTING A JOB -- IJ

iRMXI JOB REPORT
JOB TOKEN bbbb PARENT JOB jjjj
POOL MAXIMUM ecce POOL MINIMUM kkkk
CURRENT ALLOCATED dddd CURRENT UNALLOCATED 1111
CURRENT # OBJECTS eeee CURRENT II TASKS mmmm
MAXIMUM # OBJECTS ffff MAXIMUM II TASKS nnnn
CURRENT # CHILD JOBS gggg DELETION PENDING PPP
EXCEPTION MODE hhhh EXCEPTION HANDLER qqqq:rrrr
MAXIMUM PRIORITY iiii

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

MAXIMUM SIZE
NAME TOKEN
ssssssssssss tttt

OBJECT DIRECTORY -----
uuuu VALID ENTRIES

NAME TOKEN NAME
vvvv

TOKEN
ssssssssssss tttt ssssssssssss tttt

Figure 4-8. An iRMX® I Job Report

The following describes the fields in Figure 4-8:

Field

aaaaaaaaaaaa

bbbb

cccc

dddd

eeee

ffff

gggg

4-68

Meaning

Each such field contains a name under which the job is catalogued
in the object directory of either the job's parent job or the root job.
If the job is not catalogued in either directory, "NONE FOUND" is
displayed here.

Hexadecimal token for the job.

Maximum number, in hexadecimal, of 16-byte paragraphs that the
job's pool can contain.

Number of paragraphs either allocated to tasks in the job or lent to
child jobs.

Number, in hexadecimal, of existing objects in job bbbb.

Maximum number, in hexadecimal, of objects that can exist
simultaneously in job bbbb.

Number, in hexadecimal, of existing jobs that are offspring of job
bbbb.

Dynamic Debugger

hhhh

o
1
2
3
INVALID

1111

JJJJ

kkkk

1lll

mmmm

nnnn

ppp

qqqq

rrrr

ssssssssssss

tttt

Dynamic Debugger

INSPECTING A JOB -- IJ

Exception mode for the job's default exception handler. Possible
values are as follows:

When to Pass Control
to Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditions
Never

Hexadecimal value that indicates the maximum (numerically lowest)
allowable priority for tasks in the job.

Hexadecimal token for the parent of job bbbb. If job bbbb is the
root job, however, jjjj is "ROOT'.

Minimum number, in hexadecimal, of 16-byte paragraphs that the
job's pool can contain.

Number, in hexadecimal, of unused 16-byte paragraphs in the job's
initial pool.

Number, in hexadecimal, of tasks currently in the job.

Maximum number, in hexadecimal, of tasks that can exist
simultaneously in job bbbb.

Indicator which tells whether a task has attempted to delete the job
but was unsuccessful because the job has obtained protection from
the DISABLE$DELETION system call. The possible values of ppp
are YES and NO.

Base, in hexadecimal, of the start address of the job's default
exception handler.

Hexadecimal offset, relative to qqqq, of the start address of the job's
default exception handler.

Each such field contains the name under which an object is
catalogued in the job's object directory. If no entries are in the
object directory, these fields are blank.

Each such field contains a token, in hexadecimal, of the object
whose name (in the directory) appears next to it.

4-69

INSPECTING A JOB -- IJ

uuuu

vvvv

4-70

Maximum allowable number, in hexadecimal, of entries in the job's
object directory.

Number, in hexadecimal, of entries currently in the job's object
directory.

Dynamic Debugger

INSPECTING A TAS~< -- IT

This command lists the principal attributes of a specified task. The syntax for the IT
command is as follows:

Parameter
ITEM

Description

ITEM

W-1070

Token for the task to be inspected.

The IT command displays the principal attributes of the task whose token is represented by
ITEM. Figure 4-9 depicts the form of display produced by IT.

----- iRMXI TASK REPORT -----
TASK TOKEN bbbb CONTAINING JOB kkkk
STACK SEGMENT BASE ecce STACK SEGMENT OFFSET 1111
STACK SEGMENT SIZE dddd STACK SEGMENT LEFT mmmm
CODE SEGMENT BASE eeee DATA SEGMENT BASE nnnn
INSTRUCTION POINTER ffff TASK STATE PPPPPPPP
STATIC PRIORITY gggg DYNAMIC PRIORITY qqqq
SUSPENSION DEPTH hhhh SLEEP UNITS REQUESTED rrrr
EXCEPTION MODE iiii EXCEPTION HANDLER ssss:tttt
NPX TASK jjj

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-9. An iRMX® I Task Report

Dynamic Debugger 4-71

INSPECTING A TASK -- IT

The following describes the fields in Figure 4-9:

Field

aaaaaaaaaaaa

bbbb

cccc

dddd

eeee

ffff

gggg

hhhh

iiii

o
1
2
3

jjj

kkkk

llll

mmmm

nnnn

pppppppp

qqqq

4-72

Meaning

Each such field contains a name under which the task is catalogued
in the object directory of either the task's containing job or the root
job. If the job is not catalogued in either directory, "NONE
FOUND" is displayed here.

Hexadecimal token for the task.

Base address, in hexadecimal, of the task's stack segment.

Size, in bytes, of the task's stack segment.

Base address, in hexadecimal, of the task's code segment.

Current value, in hexadecimal, of the task's instruction pointer.

Hexadecimal priority of the task.

Current number, in hexadecimal, of "suspends" against the task.
Before the task can be made ready, each "suspend" must be
countered with a "resume".

Exception mode for the task's exception handler. Possible values
are as follows:

When to Pass Control
to Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditions

Indicator that tells whether the task uses the NPX. The possible
values of are YES and NO.

Hexadecimal token for the task's containing job.

Hexadecimal offset, relative to ecce, of the task's stack segment.

Hexadecimal number of bytes currently available in the task's stack.

Base address, in hexadecimal, of the task's data segment.

Current execution state of the task. Possible values are "READY,"
"ASLEEP" "SUSPENDED" "ASLEEP/SUSP " "BROKEN" and , , , ,
"INVALID."

A temporary hexadecimal priority sometimes assigned to the task by
the Nucleus to improve system performance.

Dynamic Debugger

rrrr

ssss

tttt

Dynamic Debugger

INSPECTING A TASK -- IT

If the task is asleep or asleep/suspended, this is the number of sleep
units that the task requested before going to sleep. If the task is
ready or suspended, qqqq is 0000.

Base, in hexadecimal, of the start address of the task's exception
handler.

Hexadecimal offset, relative to ssss, of the start address of the task's
exception handler.

4-73

INSPECTING AN EXTENSION -- DC

This command displays the principal attributes of the specified extension object. The
syntax for the IX command is as follows:

ITEM

W-1071

Parameter
ITEM Token for the extension object to be inspected.

Description

The IX command displays the principal attributes of the extension whose token is
represented by ITEM. Figure 4-10 depicts the form of the display produced by IX.

4-74

iRMXI EXTENSION REPORT -----
EXTENSION TOKEN bbbb CONTAINING JOB dddd
TYPE CODE ecce DELETION MAILBOX eeee

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 4-10. An iRMX® I Extension Report

Dynamic Debugger

INSPECTING AN EXTENSION -- IX

The following describes the fields in Figure 4-10:

Field Meaning

aaaaaaaaaaaa

bbbb

ecce

dddd

eeee

Dynamic Debugger

Each such field contains a name under which the extension is
catalogued in the object directory of either the job containing the
extension or the root job. If the extension is not catalogued in either
directory, "NONE FOUND" is displayed here.

Hexadecimal token for the extension.

Hexadecimal type code associated with composite objects licensed
by this extension.

Hexadecimal token for the job containing this extension.

Hexadecimal token for the deletion mailbox associated with the
extension. If there is no deletion mailbox for the extension,
"NONE" is displayed here.

4-75

DEBUGGER COMMANDS

4.7 COMMANDS TO VIEW OBJECT LISTS

These commands enable you to view lists of iRMX I objects. Figure 4-11 illustrates the
general syntax for commands in this section.

1571

Figure 4-11. Syntax Diagram for Viewing iRMX® I Object Lists

4-76 Dynamic Debugger

DEBUGGER COMMANDS

The second letter of the command indicates the type of object list to display, as follows:

A Asleep tasks
C Composites
E Exchanges
G Segments
J Jobs
M Mailbox queues
R Ready tasks
S Suspended tasks
T Tasks
W Waiting task queues
X Extensions

The remainder of this section describes the commands in detail.

Dynamic Debugger 4-77

VIEWING THE ASLEEP TASI(S -- VA

This command displays a list of asleep tasks. The syntax for the VA command is as
follows:

Parameter

ITEM

Description

W-1092

Token for a job. If this option is included, the Debugger lists only
those asleep tasks that are contained in the specified job. If this
option is omitted, all asleep tasks in the system are listed.

The VA command displays asleep tasks as

where:

tttt

jjjj

4-78

SA = jjjjJ/ttttT jjjjJ/ttttT ... jjjjJ/ttttT

Token of an asleep task.

Token for the job containing the task. An asterisk following the task
token indicates that the task has overflowed its stack.

Dynamic Debugger

VIEWING COMPOSITES -- VC

This command displays a list of composite objects. The syntax for the VC command is as
follows:

Parameter

ITEM

Description

---f3-~----------., L:: ITEM:=> 1
W-1093

Token for a job. If this option is included, the Debugger lists only
the composite objects contained in the specified job. If this option is
omitted, all composite objects in the system are displayed.

The VC command displays composite objects as

CL = jjjjJjccccC jjjjJjccccC ... jjjjJjccccC

where:

cccc Token for a composite object.

jjjj Token for the job containing the composite object.

Dynamic Debugger 4-79

VIEWING E}(CHANGES -- VE

This command displays a list of exchanges. The syntax for the VE command is as follows:

Parameter
ITEM

Description

W-1094

Token for a job. If this option is included, the Debugger lists only
those exchanges contained in the specified job. If this option is
omitted, all exchanges in the system are listed.

The VE command lists exchanges as

where:

xxxx

t

jjjj

4-80

EL = jjjjJjxxxxt jjjjJjxxxxt ... jjjjJjxxxxt

Token for an exchange.

Type of the exchange (M for mailbox, S for semaphore, or R for
region).

Token for the job containing the exchange.

Dynamic Debugger

VIEWING SEGMENTS -- VG

This command displays a list of segments. The syntax for the VG command is as follows:

Parameter
ITEM

Description

W-1095

Token for a job. If this option is included, the Debugger lists only
the segments contained in the specified job. If this option is
omitted, all segments in the system are displayed.

The VG command displays segments as

where:

gggg

JJJJ

Dynamic Debugger

GL = jjjjJ/ggggG jjjjJ/ggggG ... jjjjJ/ggggG

Token for a segment.

Token for the job containing the segment.

4-81

VIEWING JOBS -- VJ

This command displays a list of jobs. The syntax for the VJ command is as follows:

Parameter
ITEM

Description

----f2ji---~--------_

~l
W-1095

Token for a job. If this option is included, the Debugger lists only
those jobs that are children of the specified job. If this option is
omitted, all jobs in the system are listed.

The VJ command displays jobs as

where:

jjjj

pppp

4-82

JL = ppppJ/jjjjJ ppppJ/jjjjJ ... ppppJ/jjjjJ

Job token.

Token of its parent job. If the job designated by jjjj is the root job,
then "ROOT" replaces "ppppJ".

Dynamic Debugger

VIEWING MAILBO)(OBJECT QUEUES -- VM

This command displays object queues at mailboxes. The syntax for the VM command is as
follows:

Parameter
ITEM

W-1097

Token for a mailbox or a job. If you specify a mailbox token for this
option, the Debugger lists only the object queue associated with the
specified mailbox. If you specify a job token for this option, the
Debugger lists all object queues in the specified job. If you omit this
option, the Debugger displays object queues for all exchanges in the
system.

Description

The VM command displays object queues at mailboxes as

ML jjjjJ/mrnmmM = jjjjJ/oooot jjjjJ/oooot
ML jjjjJ/mrnmmM = jjjjJ/oooot jjjjJ/oooot

jjjjJ/oooot
jjjjJ/oooot

ML jjjjJ/mrnmmM = jjjjJ/oooot jjjjJ/oooot ... jjjjJ/oooot

Dynamic Debugger 4-83

VIEWING MAILBOX OBJECT QUEUES -- VM

where:

mmmm

0000

t

jjjj

4-84

Token for a mailbox.

Token for an object in that mailbox's object queue.

Type of the object (1 for job, T for task, M for mailbox, S for
semaphore, and G for segment).

Token for the job containing the mailbox or object.

Dynamic Debugger

VIEWING READY TASKS -- VR

This command displays a list of ready tasks. The syntax for the VR command is as follows:

Parameter

ITEM

Description

W-109a

Token for a job. If this option is included, the Debugger lists, in
priority order, the ready tasks contained in the specified job. If this
option is omitted, all ready tasks in the system are listed in order of
priority.

The VR command displays ready tasks as

where:

tttt

JJJJ

Dynamic Debugger

RL = jjjjJ/ttttT jjjjJ/ttttT ... jjjjJ/ttttT

Token of a ready task.

Token for the job containing the task. An asterisk following a task
token indicates that the task has overflowed its stack.

4-85

VIEWING SUSPENDED TASf(S -- VS

This command displays a list of suspended tasks. The syntax for the VS command is as
follows:

Parameter

ITEM

Description

W-1099

Token for a job. If this option is included, the Debugger lists only
those suspended tasks that are contained in the specified job. If this
option is omitted, all suspended tasks in the system are listed.

The VS command displays suspended tasks as

where:

tttt

jjjj

4-86

SL = jjjjJ/ttttT jjjjJ/ttttT ... jjjjJ/ttttT

Token of a suspended task.

Token for the job containing the task. An asterisk following a task
token indicates that the task has overflowed its stack.

Dynamic Debugger

VIEWING TAS~(S -- VT

This command displays a list of tasks. The syntax for the VT command is as follows:

Parameter
ITEM

Description

W-1100

Token for a job. If this option is included, the Debugger lists only
those tasks contained in the specified job. If this option is omitted,
all tasks in the system are listed.

The VT command displays tasks as

where:

tttt

jjjj

Dynamic Debugger

TL = jjjjJ/ttttT jjjjJ/ttttT ... jjjjJ/ttttT

Task token.

Token for the job that contains the task. An asterisk following a
task token indicates that the task has overflowed its stack.

4-87

VIEWING WAITING TASJ(QUEUES -- VW

This command displays the waiting task queues at exchanges. The syntax for the VW
command is as follows:

Parameter
ITEM

----e-----
L::ITEM~ 1

W-1101

Token for an exchange or a job. If you specify an exchange token
for this option, the Debugger lists only the task queue associated
with the specified exchange. If you specify a job token for this
option, the Debugger lists all task queues in the specified job. If you
omit this option, the Debugger displays task queues for all
exchanges in the system.

Description

The VW command displays task queues at exchanges as

WL jjjjJ/xxxxt = jjjjJ/ttttT jjjjJ/ttttT
WL jjjjJ/xxxxt = jjjjJ/ttttT jjjjJ/ttttT

jjjjJ/ttttT
jjjjJ/ttttT

WL jjjjJ/xxxxt = jjjjJ/ttttT jjjjJ/ttttT ... jjjjJ/ttttT

4-88 Dynamic Debugger

where:

xxxx

t

tttt

JJJJ

Dynamic Debugger

VIEWING WAITING TASK QUEUES -- VW

Token for an exchange.

Type of the exchange (M for mailbox, S for semaphore 4, or R for
region).

Token for a task queued at that exchange.

Token for the job containing the task. An asterisk indicates that
either the task has overflowed its stack or the task was loaded by the
Application Loader.

4-89

VIEWING E}{TENSIONS -- V}{

This command displays either a list of extension objects or a list of composite objects
associated with a particular extension object. The syntax for the VX command is as
follows:

Parameter
ITEM

Description

---e-~-
~l

W-1102

Token for an extension object. If this option is included, the
Debugger lists all composite objects associated with the specified
extension object. If this object is omitted, the Debugger lists all
extension objects in the system.

If the ITEM parameter is omitted, the VX command displays extension objects as follows:

XL = jjjjJjxxxxX jjjjJjxxxxX ... jjjjJjxxxxX

4-90 Dynamic Debugger

VIEWING EXTENSIONS -- VX

where:

:xxxx Token for an extension object.

JJJJ Token for the job containing the extension.

If the ITEM option is included, the VX command lists the composite objects associated
with a particular extension object as follows:

where:

:xxxx

JJJJ

ccce

kkkk

Dynamic Debugger

XL jjjjJ/xxxxX = kkkkJ/ccccC kkkkJ/ccccC ... kkkkJ/ccccC

Token for the extension object.

Token for the job containing the extension.

Token for the composite object associated with the specified
extension.

Token for the job containing the composite object.

4-91 .

E)(ITING THE DEBUGGER -- Q

This command exits the Debugger. The syntax for the Q command is as follows:

W-1072

Description

The Q command deactivates the Debugger. When a debugging session is terminated, the
tables and lists the Debugger maintains are not destroyed. Q also displays the message
"EXIT iRMX I DEBUGGER."

4-92 Dynamic Debugger

CONFIGURATION 5
... _. ,.' - ., " . .. -......... ~ ... "'.'" ,- ... -""' ... ,~.. -

5.1 INTRODUCTION TO DEBUGGER CONFIGURATION

The Debugger is a configurable layer of the operating system. It contains several options
that you can adjust to meet your specific needs. To make configuration choices, Intel
provides three kinds of information:

• A list of configurable options

• Detailed information about the options

• Procedures to enable you to specify your choices

The balance of this chapter provides the first category of information. To obtain the
second and third categories of information, refer to the Guide to the iRM)(® I Interactive
Configuration Utility.

Debugger configuration is almost identical to Terminal Handler configuration (except that
only one Debugger can be present in the application system). Debugger configuration
involves selecting characteristics of the Debugger's Terminal Handler and specifying
information about the processor board and the terminal. The following sections describe
the configurable options available on the Debugger.

5.2 BAUD RATE

You can set the baud rate for the Debugger's Terminal Handler to any of the following
values:

110
150
300

600
1200
2400

4800
9600
19200

The default baud rate for the Debugger's Terminal Handler is 9600.

Dynamic Debugger 5-1

CONFIGURATION

5.3 BAUD COUNT

The baud count calculates internal timer values, given the clock input frequency. The baud
count sets the limits on the baud rate attributes of the Debugger's Terminal Handler. If
your system's programmable interval timer (PIT) has a clock input frequency other than
1.2288 MHz, you must set the baud count. The default value for the baud count is 4.

5.4 RUBOUT MODE AND BLANKING CHARACTER

You can delete a character from the buffer in one of two ways:

• Echo mode

• Replace mode

In the echo mode, the character being deleted from the current line is re-echoed to the
display. For example, entering "CAT" and then pressing RUBOUT three times results in
the display "CATTAC".

In the replace mode, the deleted character is replaced on the display with the blanking
character. For example, entering "CAT" and then pressing RUBOUT three times deletes
"CA T" from the display.

The blanking-character and the default RUBOUT mode can be specified when you
generate your system. If they are not specified, they default to a blank (20H)and echo.

5.5 USART

5-2

The USART is a device that, depending on the application, can either convert serial data
to parallel data or convert parallel data to serial data. The Debugger's Terminal Handler
requires an 8251A USART as a terminal controller. You must specify

• The port address of the USART (default value is OD8H).

• The interval between the port addresses for the USART.

• The number of bits of valid data per character that can be sent from the USART,
(default value is 7).

Dynamic Debugger

CONFIGURATION

5.6 PIT

You must specify the following information about the programmable interval timer (PIT):

• The port address of the PIT, (default value is ODOH).

• The interval between the port addresses for the PIT.

• The number of the PIT counter connected to the USART clock input, (default value is
2).

5.7 MAILBOX NAMES

You can change the default names of both the input mailbox (RQTHNORMIN) and the
output mailbox (RQTHNORMOUT). The new names must not be over 12 alphanumeric
characters long.

5.8 INTERRUPT LEVELS

You must specify the interrupt levC'ls used by the Debugger's Terminal Handler for input
and output. You choose interrupt levels by selecting a value that corresponds to a
particular interrupt value. The default value for the input interrupt level is 68H, and the
default value for the output interrupt level is 78H.

Dynamic Debugger 5-3

ERROR MESSAGES A
A.1 INTRODUCTION TO DEBUGGER ERROR MESSAGES

This appendix lists the error messages that can occur when you enter Debugger commands.
Since the Debugger reads commands on a line-by-line basis, it will not issue an error
message for a command until you terminate the command with an end-of-line character
(CARRIAGE RETURN or LINE FEED). Then, if the Debugger detects an error, it
generates a display of the following form:CARRIAGE RETURNLINE FEED

command portion #
error message

where "command portion" consists of the command up to the point where the Debugger
detected the error, and "error message" consists of one of the following:

Message Description

ATIEMPT TO MODIFY NON-RAM You tried to define a breakpoint
LOCATION at a non-RAM memory location.

BREAKPOINT TASK NOT AN You specified the N command,
NPX TASK but the breakpoint task was not designated as a

Numeric Processor Extension (NPX) task at its creation.

COMMAND TOO COMPLEX To process your commands, the Debugger maintains a
semantic stack, where it places all the semantic entities
of the commands. Your command was too complex
and overflowed this stack. To correct this problem, you
should first define numeric variables for some of the
more complex expressions, and then use these
variables in your command in place of the expressions.

DEBUGGER POOL TOO SMALL To process your command, the Debugger tried to
create an iRMX I segment, but not enough free space
was available in the system to create this segment.

DUPLICATE SYMBOL You attempted to define a numeric or breakpoint
variable name that was already defined.

Dynamic Debugger A-I

ERROR MESSAGES

Message Description

EXECUTION BREAKPOINT You attempted to define (or redefine) an execution
ALREADY DEFINED breakpoint at an address that already specifies an

execution breakpoint. This breakpoint may have been
set up by the Debugger or by the Monitor
and must be deleted before a new one can use this
location.

INTERRUPT TASK NOT ON You attempted to make an interrupt task the current
BREAKPOINT LIST breakpoint task without first suspending that interrupt

task. An interrupt task can be made the current
breakpoint task only by first incurring a breakpoint.

INVALID TASK STATE The Nucleus-maintained task descriptor contains incon-
sistent information. You may have overwritten this area
of memory. The task probably will not continue to run.

INVALID TOKEN You specified a token for a different kind of object than
the command required.

ITEM NOT FOUND You tried to delete or change a nonexistent numeric
variable.

NO BREAKPOINT TASK You entered the R or N command without first
establishing a breakpoint task.

SYNTAX ERROR The command is syntactically incorrect.

TASK NOT ON BREAKPOINT LIST You tried to remove a task from the breakpoint list with
the G command when the task was not on the list.

TASK NOT SUSPENDABLE. You entered the BT command to establish a breakpoint
WILL BE BROKEN WHEN task, but the Debugger could not suspend the task
SUSPENDABLE in its current state (for example, the task currently has

access to a region). The Debugger will suspend the task
when it becomes possible to do this.

UNDEFINED SYMBOL The Debugger was unable to find the specified symbol
in the local symbol table, the object directory of the
breakpoint task's job, or the root object directory.

UNKNOWN BREAKPOINT The Debugger encountered a breakpoint for which it
iAPX 86, 88 MONITOR had no record. It tried to pass the breakpoint to
NOT CONFIGURED the Monitor but could not because the Monitor is not

included in your system.

A-2 Dynamic Debugger

A
ASCII 4-56
Asleep task 1-3,4-77,4-78

8
B command 4-16
Baud count 5-2
Baud rate 5-1
BL command 4-19
Blanking character 5-2
Breakpoint 1-3

commands 4-1
display 4-23,4-25
list 4-16, 19,4-25
task 4-4
task 1-3,4-16,4-17,4-20,4-21,4-39
variable 4-7,4-11,4-13,4-15,4-16,4-18

BT command 4-20,4-21
Byte mode 4-56

C
CARRIAGE RETURN 2-1, A-1
Command directory 4-1
Command key 3-1

Composite object 4-57,4-59,4-61,4-79,4-90,4-91
Composites 4-77
Condition codes 4-14
Constant 3-3, 4
CONTROL-D 1-4,2-2
CONTROL-O 2-1,2-2,4-67
CONTROL-Q 2-1,2-2
CONTROL-S 2-1,2-2
Conventions 3-1
CPU register 4-37,4-38

segment base 4-42
segment register 4-5

CREATE$JOB 1-4
CROOT.LIB library 1-5
Current execution state 4-72
Current segment base 4-45,4-50,4-55

Dynamic Debugger

INDEX

Index - 1

Index

D
D command 4-6
DB command 4-10,24
Debugger

commands 3-1
invoking 1-4,1-5
syntax 3-1

Debugging
system 1-1
tools 1-1

Delete
breakpoint 4-23
character 5-2

Display mode 4-42,4-52,4-54,4-56

E
Echo mode 5-2
End-of-line characters 2-1
Error message A-1,A-2
ESCAPE 2-1
Exception breakpoint 4-10,4-14,4-15,4-26

code 4-14
handler 1-3,1-4,4-10,4-15,4-69,4-72,4-73
mode 4-69

Exchange 4-13,4-57,4-80
breakpoint 4-10,4-13,4-15,4-22,4-24,4-28

Exchanges 1-3,4-77
Execution breakpoint 4-10,4-12,4-15,4-18,4-22,4-24,4-27,4-28
Exit the Debugger 4-1
Expression 3-3,3-4
Extension 4-57, 59, 61, 75,4-77
Extension object 4-74,4-90,4-91

G
G command 4-15, 29

IC command 4-58
IE command 4-60
IG command 4-65
IJ command 4-67
Interactive Configuration Utility 1-4
Interrupt levels 5-3

Index - 2 Dynamic Debugger

iRMX I Objects
inspect 4-1
segments 1-3

iSBOB> 957B monitor 1-2
iSDMn.t monitor 1-2
IT command 4-71
Item 3-3
IX command 4-74

J
J option 4-10
Job 4-57,4-59,4-61,4-84
Jobs 4-77

L
L command 4-7
LINE FEED 2-1, A-1

M
M 4-53
M command 4-56
M/ 4-53
M\ 4-53
Mailboxes 1-3,4-13, 4-59,4-60,4-61,4-80,4-83,4-84,4-89,5-3
Mailbox queues 4-77
Memory address 4-42

commands 4-1
locations 1-3

Microprocessors 1-2

N
N command 4-30
Name 3-4
NPX 1-2, 4-30
NPX register 4-31, 4-33

Status Word 4-34
Nucleus 1-5
Numeric Processor Extension 1-2, 4-30, A-1
Numeric variable 4-5, 4-7

o
Object directory 4-69, 4-70
Object lists 1-3
Object queue 1-3,4-61,4-83
Output from application tasks 2-1

Dynamic Debugger

Index

Index - 3

Index

P
PL/M-86 1-5
Pointer mode 4-56
Programmable interval timer (PIT) 5-3
Prompt character 1-4

Q
Q command 4-92

R
R command 4-35,4-36
Ready tasks 1-3,4-77
Real Address mode 1-2
Region 4-13,4-59,4-60,4-61,4-64,4-80
Replace mode 5-2
Root job 4-4

S
SDB 1-2
Segment 4-57,4-59,4-61,4-66,4-77,4-84
Semaphore 4-13,4-59,4-60,4-61,4-63,4-80,4-84
SET$EXCEPTION$HANDLER 1-4
Special character 2-1,4-67
Suspended tasks 1-3,4-77,4-86
Symbol table 4-4,4-5,4-6
Symbolic name 4-4

commands 4-1
Syntax 3-2

Debugger 3-1
ERROR message 4-31

System Debug Monitor 1-2

T
Tasks 1-3,4-57,4-59,4-61,4-77,4-84

queue 4-61,4-88
queues at exchanges 1-3

Terminal Handler 1-1,2-1,5-1,5-2

U
USART 5-2

Index - 4 Dynamic Debugger

v
VA command 4-78
Variable names 4-4,4-6,4-23
Variables 1-3
VB command 4-80
VG command 4-81
View Object Lists 4-1
VJ command 4-82
VM command 4-83
VR command 4-85
VS command 4-86
VT command 4-87
VW command 4-88
VX command 4-90

W
Waiting task queues 4-77
Word mode 4-56

z
Z command 4-9,4-40

Dynamic Debugger

Index

Index - 5

intel® i RMX® I Dynamic Debugge
Reference Manui

462929-00

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME __ DATE

TITLE
COM~NYNAM~DEPARTMENT __ ~

ADDRESS PHONE (
--~----~----------------------

CITY STATE ZIP CODE
--- -----------------------

(COUNTRY)

Please check here if you require a written reply D

VE'D LIKE YOUR COMMENTS ...

his document is one of a series describing Intel products. Your comments on the back of this form will
elp us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
:>mments and suggestions become the property of Intel Corporation.

you are in the United States, use the preprinted address provided on this form to return your
:>mments. No postage is required. If you are not in the United States, return your comments to the Intel
:lIes office in your country. For your convenience, international sales office addresses are printed on
lelast page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3-72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124-9978

11.1111111111111111.1.1 •• 11.1111.111111.11111111 •• 11

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTERNATIONAL SALES OFFICES

INTEL CORPORATION
3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor
dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.
Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY
Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris

1 Rue Edison-BP 303

78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN

Intel Japan K.K.
Flower-Hill Shin-machi

1-23-9, Shinmachi
Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam

NORWAY
Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA

28010 Madrid

SWEDEN
Intel Sweden A.B.

Dalvaegen 24

S-17136Solna

SWITZERLAN D

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27

D-8000 Munchen

intJ

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• •
• •
• •
• •
• •
• •
• •
• •

•

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

INTEL CORPORATION
3065 Bowers Avenue

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

Santa Clara, California 95051
(408) 987-8080

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •

