
iRMX™ 86 PROGRAMMING TECHNIQUES

I I

CONTENTS

CHAPTER 1
SELECTING A PL/M-86 SIZE CONTROL
Purpose of This Chapter ••
Making the Selection •••

Ramifications of Your Selection ••••••••••••••••••••••••••••••••••
Restrictions Associated with Compact •••••••••••••••••••••••••••
Restrictions Associated with MediuDl ••••••••••••••••••••••••••••

Decision Algorithm •••

CHAPTER 2
INTERFACE PROCEDURES AND LIBRARIES
Purpose of This Chapter ••
Definition of Interface Procedure ••••••••••••••••••••••••••••••••••
Interface Libraries ••

CHAPTER 3
TIMER ROUTINES
Purpose of This Chapter •• , ••
Procedures Implementing the Timer ••••••••••••••••••••••••••••••••••
Restrictions •••

Call init time First •••
Only One Timer •••

Source Code ••

CHAPTER 4
ASSEMBLY LANGUAGE SYSTEM CALLS
Purpose of This Chapter ••
Calling the System •••
Selecting a Size Control., ••

CHAPTER 5
COMMUNICATION BETWEEN iRMXm 86 JOBS
Purpose of This Chapter •• o •••

Passing Large Amounts of Information Be!tween Jobs ••••••••••••••••••
Passing Objects Between Jobs •••••••••••••••••••••••••••••••••••••••

Passing Objects Through Object Directories •••••••••••••••••••••••
Passing Objects Through Mailboxes ••••••••••••••••••••••••••••••••
Passing Parameter Objects ••
Avoid Passing Objects Through Segments or Fixed Memory Locations.
Comparison of Object-Passing Techniques ••••••••••••••••••••••••••

Programming Techniques iii

PAGE

1-1
1-1
1-1
1-2
1-2
1-2

2-1
2-1
2-3

3-1
3-1
3-2
3-2
3-2
3-3

4-1
4-1
4-2

5-1
5-1
5-3
5-3
5-5
5-5
5-6
5-6

CONTENTS
(continued)

PAGE

CHAPTER 6
SIMPLIFYING CONFIGURATION DURING DEVELOPMENT....................... 6-1

CHAPTER 7
DEADLOCK AND DYNAMIC MEMORY ALLOCATION
Purpose of This Chapter.e.. 7-1
How Memory Allocation Causes Deadlock.............................. 7-1
System Calls That Can Lead to Deadlock............................. 7-2
Preventing Memory Deadlock... 7-3

CHAPTER 8
GUIDELINES FOR STACK SIZES
Purpose of This Chapter.. 8-1
Stack Size Limitation for Interrupt Handlers....................... 8-1
Stack Guidelines for Creating Tasks and Jobs....................... 8-2
Stack Guidelines for Tasks to be Loaded or Invoked................. 8-2
Arithmetic Technique ••••••••••••••••••••••••••• ~................... 8-2

Stack Requirements for Interrupts................................ 8-3
Stack Requirements for System Calls.............................. 8-3
Computing the Size of the Entire Stack........................... 8-5

Empirical Technique.. 8-5

2-1.
8-2.

1-1.
2-1.
2-2.
2-3.

TABLES

Interface Libraries and iRMXm 86 Subsystems ••••••••••••••••
Stack Requirements for System Calls ••••••••••••••••••••••••

FIGURES

Decision Algorithm for Size Control ••••••••••••••••••••••••
Direct Location-Dependent Invocation •••••••••••••••••••••••
Complex Location-Independent Invocation ••••••••••••••••••••
Simple Invocation Using an Interface Procedure •••••••••••••

Programming Techniques iv

2-4
8-4

1-4
2-2
2-2
2-3

CHAPTER 1
SELECTING A PL/M-86 SIZE CONTROL

This chapter applies to you only if you have decided to program your
iRMX 86 tasks using PL/M-86. In order to understand the following
explanation, you should be familiar lii th

• The PL/M-86 programming lan~lage

• PL/M-86 models of segmentation

• iRMX 86 jobs, tasks, and se~nents

PURPOSE OF THIS CHAPTER

Whenever you invoke the PL/M-86 Compiler, you must specify (either
explicitly or by default) a program size control (SMALL, COMPACT, MEDIUM,
or LARGE). This size c.ontrol determines which model of segmentation the
compiler uses and, consequently, greatly affects the amount of memory
required to store your application's object code.

The following section explains which size control to use in order to
produce the smallest object program while still satisfying the
requirements of your system.

MAKING THE SELECTION

When you compile your programs using the PL/M-86 SMALL control, all
POINTER values are 16 bits long. This leads to a number of restrictions,
including the inability to address the contents of an iRMX 86 segment
that has been received from another job. Because of these restrictions,
the iRMX 86 Operating System is currently not compatible with PL/M-86
procedures compiled usj.ng the SMALL size contro 1.

Since you cannot use the SMALL size control, you must choose between
COMPACT, MEDIUM and LARGE. The algorithm for selecting a size control is
presented later in this chapter. However, before you examine the
algorithm, you should be aware that your choice can place restrictions on
your system.

RAMIFICATIONS OF YOUR SELECTION

If you decide to use the COMPACT or MEDIUM size controls, the
capabilities of your system will be slightly restricted. Only the LARGE
size control preserves all of the features of the system.

Programming Techniques 1-1

SELECTING A PL/M-B6 SIZE CONTROL

Restrictions Associated With Compact

If you decide to use PL/M-86 COMPACT, you will not be able to use
exception handlers. However, you can still process exceptional
conditions by dealing with them in you.r task's code.

Restrictions Associated With Medium

If you decide to use PL/M-86 MEDIUM, you lose the option of having the
iRMX 86 Operating System dynamically allocate stacks for tasks that are
created dynamically. This means that you must anticipate the stack
requirements of each such task, and you must explicitly reserve memory
for each stack during the process of configuring the system.

DECISION ALGORITHM

Before you attempt to use the flowchart (Figure 1-1) to make your
decision, note that three of the boxes are numbered. Each of these three
boxes asks you to derive a quantity that represents a memory requirement
of your iRMX 86 job. In order to derive the quantity requested in each
of the boxes, follow the directions provided below in the section having
the same number as the box.

1. COMPUTE MEMORY REQUIREMENTS FOR STATIC DATA

Box 1 asks for an estimate of the amount of memory required to
store the static data for all the tasks of your iRMX 86 job.
Static data consists of all variables other than:

• parameters in a procedure call

• variables local to a reentrant PL/~86 procedure

• PL/M-86 structures that are declared to be BASED

To obtain an accurate estimate of this quantity, use the COMPACT
size control to compile the code for each task in your job. For
each compilation, find the MODULE INFORMATION area at the end of
the listing. Within this area is a quantity labeled VARIABLE
AREA SIZE and another labeled CONSTANT AREA SIZE.

Now you must compute the static data size for each individual
compilation by adding the VARIABLE AREA SIZE to the CONSTANT AREA
SIZE.

Once you have computed the static data size for each compilation
in the job, add them to obtain the static data size for the
entire job.

Programming Te ehniques 1-2

SELECTING A PL/M--86 SIZE CONTROL

2. COMPUTE MEMORY REQUIREMENTS FOR CODE

Box 2 asks for an estimate of the amount of memory required to
store the code for all the tasks of your iRMX 86 job. To obtain
this estimate, perform the following steps:

• Using the COMPACT size control, compile the code for each
task in your jo b.

• For each compilation, find the MODULE INFORMATION area at the
end of the listing. In this area is a value labeled CODE
AREA SIZE. This value is the amount of memory required to
store the code generated by this individual compilation.

• Sum the code requirements for all the compilations in the
job. The re~sult is the code requirement for the entire job.

3. COMPUTE MEMORY REQUIREMENTS FOR STACK

Box 3 asks for an estimate of the amount of memory required to
store the stacks of all the tasks in your iRMX 86 job. If you
plan to have thE~ iRMX 86 Operating System create your stacks
dynamically, your stack requirement (for the purpose of the
flowchart) is zero.

If, on the other hand, you plan to create the stacks yourself,
you can estimatE~ the memory requirements by performing the
following steps.. Refer to the MODULE INFORMATION AREA of the
compilation listings that you. obtained while working with Box 2.
Within this area is a value labeled MAXIMUM STACK SIZE. To this
number, add the system stack requirement that you can determine
by following the procedure in Chapter 8 of this manual. The
result is an estimate of the stack requirement for one
compilation. To compute the requirements for the entire job,
just sum the requirements for all the compilations in the jo b.

Programming TIe chniques 1-3

COMPUTE
MEMORY

REQUIREMENTS
FOR STATIC

DATA

SELECTING A PL/M-86 SIZE CONTROL

SEEmON
PAGE 2-2

~Y=ES~---------__ ~~I ___ Y_O_L~_i.I~ __ ~_S_T __ ~------------~~~C:,-_S_T_O_P ___ :>

COMPUTE
MEMORY

REQUIREMENTS
FOR CODE

COMPUTE
MEMORY

REQUIREMENTS
FOR STACK

ADD STATIC
DATA TO

STACK REQMT

SEEQ)ON
PAGE 2-3

YES CHOOSE IIETWEENJ* .,...:.-==---------..... MEDIUM AND -
LARGE

SEE Q)ON
PAGE 2-3

r-------------.*

CHOOSE BETWEEN :=)
COMPACT J---·--------__ 1Of __ S_T_C1P

AND
MEDIUM

~ C __ ST_O_P __ :>

*SEE
RAMIFICATIONS
ON PAGE 2-2

x-295

Figure 1-1. Decision Algorithm For Size Control

Programming Techniques 1-4

CHAPTER 2
INTERFACE PRO~CEDURES AND LIBRARIES

This chapter is for anyone who writes programs that use iRMX 86 system
calls. In order to understand this ehapter, you should be familiar with
the following concepts:

• the notion of system call

• the process of linking object modules

• the notion of an object library

• PL/M-86 size control

PURPOSE OF THIS CHAPTER

Familiarity with interface procedures is a prerequisite to understanding
several of the programming techniques discussed later in this manual.
The primary purpose of this chapter :ls to define the concept of an
interface procedure and explain how it is used in the iRMX 86 Operating
System.

DEFINITION OF INTERFACE PROCEDURE

The iRMX 86 Operating System uses interface procedures to simplify the
process of calling one software module from another. In order to
illustrate the usefulness of interface procedures, let's examine what
happens without them.

Suppose you are writing an application task that will run in some
hypothetical operating system. Figure 2-1 shows your application task
calling two system procedures. If the system calls are direct (without
an interface procedure serving as an intermediary), the application task
must be bound to the system procedures either during compilation or
during linking. Such binding causes your application task to be
dependent upon the memory location of the system procedures.

Programming Techniques 2-1

INTERFACE PROCEDURES AND LIBRARIES

APPLICATION SOFTWARE OPERATING SYSTEM

PROC ABC

------~

---- PROC DEF

~

APPLICATION T~§K

~ __ ~~~.BC (..) ___ _

L----=~~AL L OEF (

~

Figure 2-1. Direct Locati.on-Dependen t Invocation

Now suppose that someone updates your operating system. If, during the
process of updating the system, some of the system procedures are moved
to different memory locations, then your application software must be
relinked to the new operating system.

There are techniques for calling system procedures that do not assume
unchanging memory locations. However, most of these techniques are
complex (Figure 2-2) and assume that the application programmer is
intimately familiar with the interrupt architecture of the processor.

APPLICATION SOFTWARE OPERATING SYSTEM

A[Jhs~~CHANISM 0
_~ m PROCDE'

VISIBLE TO APPLICATION CODE i[]

Figure 2-2. Complex Lo cation-Independent Invocation

Programming Teehniques 2-2

x-296

x-297

INTERFACE PROCEDURES AND LIBRARIES

The iRMX 86 Operating System uses interface procedures to mask the
details of location-independent invocation from the application software
(Figure 2-3). Whenever application programmers need to call a system
procedure from application code, they use a simple procedure call (known
as a system call). This system call i.nvokes an interface procedure
which, in turn, invokes the actual system procedure.

CALL
RQ$ABC

CALL
RQ$DEF

INTERFACE PROCEDURES

Figure 2-3. Simple Invocation Using An Interface Procedure

INTERFACE LIBRARIES

x-298

The iRMX 86 Operating System provides you with a set of object code
libraries containing PL/Mr86 interface procedures. These procedures
preserve address independence while allowing you to invoke system calls
as simple PL/M-86 procedures.

During the process of configuring an application system you must link
your application software to the proper object libraries. Table 2-1
shows the correlation between subsystems of the iRMX 86 Operating System,
the PL/M-86 size control, and the interface libraries. To find out which
libraries you must link to, find the column that specifies the PL/M-86
size control that you arE~ using, and the rows that specify the subsystems
of the iRMX 86 Operating System that you are using. You must link to the
libraries that are named at the intersections of the column and the rows.

Programming Techniques 2-3

INTERFACE PROCEDUR~S AND LIBRARIES

Table 2-1. Interface Librartes and iRMXTH 86 Subsystems

COMPACT LARGE OR
MEDIUM

NUCLEUS RPIFC.LIB RPIFL.LIB

BASIC I/O IPIFC.LIB IPIFL.LIB
SYSTEM

EXTENDED EPIFC.LIB EPIFL.LIB
I/O SYSTEM

APPLICATION LPIFC.LIB LPIFL.LIB
LOADER

HUMAN HPIFC.LIB HPIFL.LIB
INTERFACE

THE UNIVERSAL COMPAC.LIB LARGE. LIB
DEVELO PMENT

INTERFACE

Programming Te,:hniques 2-4

CHAPTER 3
TIMER ROUTINES

This chapter is for anyone who writes programs that must determine
approximate elapsed time. In order to make use of this chapter, you
should be familiar with the following eoncepts:

• INCLUDE files

• iRMX 86 interface. procedures

• iRMX 86 tasks

• initialization tasks

• using the LINK86 utility

Furthermore, if you want to understand how the timer routines work, you
must be fluent in PL/Mr86 and know how to use iRMX 86 regions.

PURPOSE OF THIS CHAPTER

The iRMX 86 Basic I/O System provides GET$TlME and SET$TlME system
calls. These two calls supply your application with a timer having units
of one second. However, if your application requires no features of the
Basic I/O System other than the timer, you can reduce your memory
requirements by dropping the Basic I/O System altogether and implementing
the timer in your application.

This chapter provides the source code needed to build a timer into your
application.

PROCEDURES IMPLEMENTING THE TIMER

Four PL/M-86 procedures are used to implement the timer. In brief, the
procedures are:

This procedure requires no input parameter and returns a double
word (POINTER) value equal to the curren t contents of the timer
in seconds. This procedure can be called any number of times.

• set time

This procedure requires a double word (POINTER) input parameter
that specifies the value (in seconds) to which you want the timer
set. This procedure can be called any number of times.

Programming Techniques 3-1

TIMER ROUTINE S

• init time

This procedure creates the timer, initializes it to zero seconds,
and starts it running. This procedure requires as input a
POINTER to the WORD which is to receive the status of the
initialization. This status wrill be zero if the timer is
successfully created and nonze~ro otherwise. This procedure
should be called only once.

• maintain time

This procedure is not called d.irectly by your application.
Rather, it runs as an iRMX 86 task that is created when your
application calls init_time. The purpose of this task is to
increment the contents of the timer once every second.

RESTRICTIONS

There are two important restrictions that you should keep in mind when
using the timer routines:

CALL init time FIRST

Before calling set time or get time, your application must call init
time. You can accomplish this-by calling the init time procedure from
your job's initialization task.

ONL Y ONE TIMER

These procedures implement only one ti.mer. They do not allow you to
maintain a different timer for each of several purposes. For example, if
one job changes the contents of the ti.mer (by using the set time
procedure), all jobs accessing the timer will be affected. -

Programming Te ehniques 3-2

TIME R ROUTINE S

SOURCE CODE

You can compile the following PL/M-86 source code as a single module.
This will yield an objec.t module that you can link to your application
code. However, before eompiling theste procedures, you must create files
containing the external procedure declarations for the iRMX 86 interface
procedures. The names of these files are specified in the $INCLUDE
statements below.

$title('INDEPENDENT TIMER PROCEDURES')
/***
* *
*
*
*
*
*
*
*
*
*
*

This module consists of four procladures which implement a timer *
having one-second granularity. The outside world has access to only *
three of these procedures- *

init time
set time
get time

The fourth procedure~, maintain time, is invoked by ini t time and
is run as an iRMX 86 task to measure time and increment-the time

*
*
*
*
*
*
* * counter. *

***/

timer: DO;

/***
* The following LITERALLY statements are used to improve the *
* readability of the code. *
***********************~~***/

DECLARE
FOREVER
DWORD
TOKEN
REGION
E$OK
PRIORITY QUEUE

LITERALLY 'WHILE OFFH',
LITERALL Y 'POINTE R ' ,
LITERALLY 'WORD',
LITERALLY 'TOKEN',
LITERALLY'OOOOOH',
LITERALLY '1',
LITERALLY 'TOKEN'; TASK -

Programming Techniques 3-3

TIMER ROUTINES

/***

* *
*
*
*
*

The following INCLUDE statements cause the external procedure
declarations for some of the iRMX ,86 system calls to be included
in the source code.

*
*
*
*

***/

$INCLUDE(:fl:icrtas.ext) /*
$INCLUDE(:fl:icrreg.ext) /*
$INCLUDE(:fl:isleep.ext) /*
$INCLUDE(:fl:idereg.ext) /*
$INCLUDE(:fl:iregio.ext) /*

/* and

rq$create$task interface
rq$create$region
rq$sleep
rq$delete$region
rq$send$control
rq$receive$control "

proc.*/
*/
*/
*/
*/
*/

$subtitle('Local Data')
/***
* The following variables can be acc'~ssed by all of the procedures *
* in this module. *
**************************************:k**********************************/

DECLARE
time_region

time in sec

time-i n se c 0

REGION,

DWORD,

/* Guards access to time in
sec.* /

/* Contains time in seconds.*/

/* Overlay */
STRUCTUR:E(/* used to obtain */
low WORD, /* high and low */
high WORD) /* order words. */
AT (@time in_se c),

POINTER, /* Used to obtain loc of data
seg.*/

STRUCTUR:E(/* Overlay used to */
offset ltlORD,/* obtain loc of */
base lrlORD)/* data segment. */
AT (@data_seg_p);

Programming Techniques 3-4

TIMER ROUTINES

$subtitle('Time maintenance task')
/**********************~,**
* maintain time *

*
*
*
*
*
*
*
*
*
*
*
*
*

This procedure is run as an iRMX 86 task. It repeatedly
performs the following algorithm-

Sleep 1 second.
Gain exclusive acces s to time in se c.
Add 1 to time in sec.
Surrender exclusive acces s to time in se c.

If the last three steps in the preceding algorithm require
more than one nucleus time unit, the time in sec counter
will run slow.

*
*
*
*
*
*
*
*
*
*
*
*
*

* This procedure must not be called by any procedure other than *
* init time. *
***/

maintain time: PROCEDURE REENTRANT;
DECLARE status WORD;

timer_loop:
DO FOREVER;

CALL rq$sleep(100, @status); /* Sleep for one
second. * /

CALL rq$receive$control /* Gain exclusive */
(time_region, @status); /* access. */

time in sec o.low =
-time in sec o.low +1;

IF (time in sec o.low = 0)
THEN-time in sec o. high _.

time in sec o.high + 1;

CALL rq$send$control(@status);

END timer loop;
END maintain_time;

/* Add 1 second */
/* to low order */
/* half of timer.*/

/* Handle overflow.*/

/* Surrender access*/

Programming TE~ chniques 3-5

TIMER ROUTINES

$subtitle('Get Time')
/***
* get time *

* *
*
*

This procedure is called by the ,application code in order to
obtain the contents of time in sec. This procedure can be

*
*

* called any number of times. *
***/

get_time: PROCEDURE DWORD REENTRANT PUBLIC;

DECLARE time DWORD,
status WORD;

CALL rq$receive$control
(time_region, @status);

CALL rq$send$control(@status);

RETURN(time);

/* Gain exclusive */
/* access. */

/* Surrender access.*/

$subtitle('Set Time')
/*************************************'k***********************************
* set time *

* *
* Application code can use this procedure to place a specific *
* double word value into time in slec. This procedure can be *
* called any number of times.- - *
**************************************:k**********************************/

set_time: PROCEDURE(time) REENTRANT PUBLIC;

DECLARE time DWORD,
status WORD;

CALL rq$receive$control j:k Gain exclusive access.* /
(time_region, @status);

time_in_sec = time; J'k Set new time. */

CALL rq$send$control(@status); /:k Surrender access. */

Programming Te c.hniques 3-6

TIMER ROUTINES

$subtitle('Initialize T:ime')
1***
* init time *
*
*
*
*
*
*
*
*
*

This procedure zeros the timer" creates a task to
maintain the timer, and a region to ensure exclusive
access to the timer. This procedure must be called
before the first time that get time or set time is
called. Also, th:ls procedure s~hould be called only
once. The easiest way to make sure this happens is
call init time from your initialization task.

* The timer task will run in the jo b from which this
* procedure is called.

*

*
*
*
*
*
*

to *
*
*
*
*
*

* If your application experiences: a lot of interrupts, *
* the timer may run slow. You ca.n rectify this *
* problem by raising the priority of the timer *
* task. To do this, change the 128 in the *
* rq$create$task system call to a. smaller ntunber. *
* This change may slow the processing of your *
* interrupts. *
***1

init_time: PROCEDURE(ret_status_p) REENTRANT PUBLIC;

POINTER, DECLARE ret_status_p
ret status
timer task t

BASED ret_status_p WORD,
TASK, - -local status WORD;

time in sec = 0;

time_region = rq$create$region 1* Create a region. *1

IF (re t_status
RETURN;

timer task t

(PRIORITY_QUEUE, re t_status_p);

E$OK) THEN

rq$create$task
(128,
@maintain time,
data_se~p_o.base,
0,
512,
0,
re t _ s ta tu s _p) ;

1* Return wi error. *1

1* Get contents of
DS register. *1

1* Create timer task. *1
1* priority *1
1* start addr *1
1* data seg base *1
1* stack ptr *1
1* stack size *1
1* task flags *1

Programming Techniques 3-7

TIMER ROUTINE S

IF (ret_status E$OK) THEN
CALL rq$delete$region

(time_region, @local_status);

END init_time;

END timer;

/* Since could not */
/* create task, */
/* must delete */
/* region. */

Programming Techniques 3-8

CHAPTER 4
ASSEMBLY LANGUAGE SYSTEM CALLS

This chapter is for anyone who wants to use iRMX 86 system calls from
programs written in ASM86 assembly language. In order to be able to use
system calls from assembly language, you should be familiar with the
following concepts:

• iRMX 86 system calls

• iRMX 86 interface procedures

• PL/Mr86 size controls

You should also be familiar with PL/M-86 and fluent in ASM86 assembly
language.

PURPOSE OF THIS CHAPTER

The purpose of this chapter is twofold. First, it briefly outlines the
process involved in using an iRMX 86 system call from an assembly
language program. Second, it directs you to other Intel manuals that
provide either background information or details concerning inter language
procedure calls.

CALLING THE SYSTEM

If you read Chapter 2 of this manual, you found that your programs
communicate with the iRMX 86 System by calling interface procedures that
are designed for use with programs ~~itten in PL/M-86. So the problem of
using system calls from assembly language programs becomes the problem of
making your assembly language progr~lms obey the procedure-calling
protocol used by PL/Mr86.. For example, if your ASM86 program uses the
SEND$MESSAGE system call, then you must call rq$send$message interface
procedure from your assembly language code.

NOTE

The techniques for calling PL/M-86
procedures from a.ssembly language are
completely described in the manual
ASM86 MACRO ASSEMffiLER OPERATING
INSTRUCTIONS for 8086-BASED DEVELOPMENT
SYSTEMS •

Programming Techniques 4-1

ASSEMBLY LANGUAGE: SYSTEM CALLS

SELECTING A SIZE CONTROL

Before writing assembly language routines that call PL/M-86 interface
procedures, you must select a size control (COMPACT, MEDIUM, or LARGE)
because conventions for making calls depend upon the model of
segmentation.

If all of your application is written in assembly language, you can
arbitrarily select a size control and use the libraries for the selected
control. However, you can obtain a size and performance advantage by
using the COMPACT interface procedures, since their procedure calls are
all NEAR. The LARGE interface, which has procedures that require FAR
procedure calls, is only advantageous if your application code is larger
than 64K bytes.

On the other hand, if some of your application code is written in
PL/Mr86, your assembly language code should use the same interface
procedures as are used by your PL/M-86 code.

Programming Tec:hniques 4-2

CHAPTER 5
COMMUNICATION BETWEEN

iRMX™ 86 JOBS

This chapter applies to anyone who wants to pass information from one
iRMX 86 job to another. In order to understand this chapter, you must be
familiar with the following concepts::

• iRMX 86 jobs, including object directories

• iRMX 86 tasks

• iRMX 86 segments

• the root job of an iRMX 86 -base d sys tern

• iRMX 86 mailboxes

• iRMX 86 physical files or named files

• iRMX 86 stream files

• iRMX 86 type managers and composite objects

PURPOSE OF THIS CHAPTER

In multiprogramming systems, where each of several applications is
implemented as a distinct iRMX 86 job, there is an occasional need to
pass information from one job to another. This chapter describes several
techniques that you can. use to accomplish this.

The techniques are divi.ded into two [collections. The first collection
deals with passing large amounts of :information from one jo b to another,
while the second collection deals with passing iRMX 86 objects.

PASSING LARGE AMOUNTS OF INFORMATION BETWEEN JOBS

There are three methods for sending large amounts of information from one
job to another:

1) You can create an iRMX 86 segment and place the information in
the segment. Then, using on~~ of the techniques discussed below
for passing objects between Jobs, you can deliver the segment.

Programming Techniques 5-1

COMMUNICATION BETm~EN iRMX~ 86 JOBS

The advantages of this technique are:

• Since this technique rHquires only the Nucleus, you can
use it in systems that do not use other iRMX 86 subsystems.

• The iRMX 86 Operating System does not copy the information
from one place to anothe r.

The disadvantages of this technique are:

• The segment will occupy memory. until it is deleted, either
explicitly (by means of the DELETE$SEGMENT system call),
or implicitly (when thE~ job that created the segment is
deleted). Un til the sE~gment is deleted, a substantial
amount of memory is unavailable for use elsewhere in the
system.

• The application code may have to copy the information into
the segment.

2) You can use an iRMX 86 stream file.

The advantages of this technique are:

• The data need not be broken into records.

• This technique can easily be changed to Technique 3.

The disadvantage of this technique is that you must configure one
or both 1/0 systems into your application system.

3) You can use either the ExtendE~d or the Basic 1/0 System to write
the information onto a mass storage device, from which the job
needing the information can rE~ad it.

The advantages of this technique are:

• Many jobs can read the information.

• This technique can eastly be changed to Technique 2.

• The information need not be divided into records.

The disadvantages of this technique are:

• You must incorporate one or both 1/0 systems into your
application system.

• Device 1/0 is slower than reading and writing to a stream
file.

Programming Techniques 5-2

COMMUNICATION BETWEEN iRMXTH 86 JOBS

PASSING OBJECTS BETWEEN JOBS

Jobs can also communicate with each other by sending objects across job
boundaries. You can use any of several techniques to accomplish this,
and you should avoid using one seemingly straightforward technique. In
the following discussions you will see how to pass objects by using
object directories, mailboxes, and parameter objects. You will also see
why you should not pass object tokens by embedding them in an iRMX 86
segment or in a fixed memory location.>

Although you can pass any object from one job to another, there is a
restriction pertaining to connection objects. When a file connection
created in one job (Job A) is passed to a second job (Job B) the second
job (Job B) cannot successfully use the object to perform I/O. Instead,
the second job (Job B) must create another connection to the same file.
This restriction is discussed in the iRMX 86 BASIC I/O SYSTEM REFERENCE
MANUAL and in the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL.

PASSING OBJECTS THROUGH OBJECT DIRECTORIES

For the purpose of this discussion, consider a hypothetical system in
which tasks in separate jobs must comnrunicate with each other.
Specifically, suppose that Task B in .Job B must not begin or resume
running until Task A in Jo b A grants permission.

One way to perform this synchronization is to use a semaphore. Task B
can repeatedly wait at the semaphore until it receives a unit, and Task A
can send a unit to the semaphore whenever it wishes to grant permission
for Task B to run. If Tasks A and B ':ire within the same job, this would
be a straightforward use of a semaphore. But the two tasks are in
different jobs, and this causes some complications.

Specifically, how do Tasks A and B access the same semaphore? For
instance, Task A can create the semaphore and access it, but how can Task
A provide Task B with a token for the semaphore? The trick is to use the
object directory of the root job.

In the following explanation, each of the two tasks must perform half of
a protocol. The process of creating and cataloging the semaphore is one
half, and the process of looking up the semaphore is the other.

In order for this protocol to succeed, the programmers of the two tasks
must agree on a name for the semaphor1e, and they must agree which task
performs which half of t.he protocol. In this example, the semaphore is
named permit sem. And, because Task B must wait until Task A grants
permission, Task A will create and catalog the semaphore, and Task B will
look it up.

Programming TE! chniques 5-3

COMMUNICATION BETWEEN iRMX'H 86 JOBS

Task A performs the creating and cataloging as follows:

1) Task A creates a semaphore with no units by calling the
CREATE$SEMAPHORE system call. This provides Task A with a token
for the semaphore.

2) Task A calls the GET$TASK$TO~~NS system call to obtain a token
for the root jo b.

3) Task A calls the CATALOG$OBJECT system call to place a token for
the semaphore in the object d:l.rectory of the root job under the
name perm! t_ sem.

4) Task A continues processing, E!ventually becomes ready to grant
permission, and sends a unit to permi t_sem.

Task B performs the look-up protocol as follows:

1) Task B calls the GET$TASK$TOKENS system call to obtain a token
for the root job.

2) Task B calls the LOOKUP$OBJECT system call to obtain a token for
the object named permit sem. If the name has not yet been
cataloged, Task B waits-until it is.

3) Task B calls the RECEIVE$UNITS system call to request a unit from
the semaphore. If the unit is not available then Task A has not
yet granted permission, and Task B waits. When a unit is
available, Task A has granted permission, and Task B becomes
ready.

There are several aspects of this technique that you should be aware of:

• In the example, the object directory technique was used to pass a
semaphore. The same techniquE~ can be used to pass any type of
iRMX 86 object.

• The semaphore was passed via the object directory of the root
job. The root job's object di.rectory is unique in that it is the
only object directory to which all jobs in the system can gain
access. This accessibility allows one job to "broadcast" an
object to any job that knows the name under which the object is
cataloged.

• The object directory of the root job must be large enough to
accommodate the names of all the objects passed in this manner.
If it is not, it will become full and the iRMX 86 Operating
System will return an exception code when attempts are made to
catalog additional objects.

Programming Teehniques 5-4

COMMUNICATION BETWEEN iRMXTM 86 JOBS

• If you use this technique to pass many objects, you could have
problems ensuring unique names. If name management becomes a
problem, different sets of jobs can adopt the convention of using
an object directory other than that of the root job. To
accomplish this, one of the jobs catalogs itself in the root
job's object directory under an agreed-upon name. The other jobs
can then look up the cataloged job and use its object directory
rather than that of the root job.

• In the example, the object-passing protocol was divided into two
halves: the create-and-catalog half, and the look-up half. The
protocol works correctly regardless of which half starts to run
first.

PASSING OBJECTS THROUGH MAILBOXES

Another means of sending objects from one job to another is to use a
mailbox. This is a two-step process i.n that the two jobs using the
mailbox must first use the object dirE~ctory technique to obtain mutual
access to the mailbox, and then they use the mailbox to pass additional
objects.

PASSING PARAMETER OBJECTS

One of the parameters of the CREATE$JOB system call is a parameter
object. The purpose of this parameter is to allow a task in the parent
job to pass an object to the newly created job. Once the tasks in the
new job begin running, they can obtain a token for the parameter object
by calling GET$TASK$TOKENS. This technique is illustrated in the
following example:

Suppose that Task 1 in Job 1 is responsible for spawning a new job
(Job 2). Suppose also that Task 1 maintains an array that is needed by
Job 2. Task 1 can pass the array to ~rob 2 by putting the array into an
iRMX 86 segment, and designating the segment as the parameter object in
the CREATE$JOB system call. Then the tasks of Job 2 can call the
GET$TASK$TOKENS system call to obtain a token for the segment.

In the foregoing example, the parameter object is a segment. However,
you can use this technique to pass any kind of iRMX 86 object.

Programming Techniques 5-5

COMMUNICATION BETWEEN iRMX'" 86 JOBS

AVOID PASSING OBJECTS THROUGH SEGMENTS OR FIXED MEMORY LOCATIONS

In the current version of the iRMX 86 Operating System, tokens remain
unchanged when objects are passed from job to job. However, Intel
reserves the right to modify this ruIE~. In other words, if you pass
objects from one job to another and you want your software to be able to
run on future releases of the iRMX 86 System, obey the following
guidelines:

• Never pass a token from one job to another by placing the token
in an iRMX 86 segmen t and then passing the segment.

• Never pass a token from one job to another by placing the token
in any memory location that the two jobs both access.

COMPARISON OF OBJECT-PASSING TECHNIQUES

There are several guidelines to consider when deciding how to pass an
object between jobs:

• If you are passing only one 0 hject from a parent job to a child
job, use the parameter object when the parent creates the child.

• If you are passing only one 0 bject but not from parent to child,
use the object directory technique. It is simpler than using a
mailbox.

• If you need to pass more than one object at a time, you can use
any of the following techniqu€:s:

Assign an order to the objects and send them to a mailbox
where the receiving job CcLn pick them up in order.

Give each of the objects a name and use an object directory.

Write a simple type manag€!r that packs and unpacks a set of
objects. Then pass the SE~t of objects as one composite
object.

Programming Techniques 5-6

CHAPTER 6
SIMPl.lFYING CONFIGURATION

DURING DEVELOPMENT

For your convenience, the configuration information found in this chapter
has been added to the iRMX 86 CONFIGURATION GUIDE. For any information
that you might need concerning the following topics, refer to the iRMX 86
CONFIGURATION GUIDE.

• Data segments

• Configuration

• Freezing locations of entry points

• The Interactive Configuration Utility (ICU)

• The LOC86 command

• Padding memory segments

Programming Techniques 6-1

CHAPTER 7
DE:ADLOCK AND DYNAMIC

MEMORY ALLOCATION

This chapter is for anyone who writes tasks which dynamically allocate
memory, send messages, create 0 bjects, or delete 0 bjects. In order to
understand this chapter, you should be familiar with the following
concepts:

• memory management in the iRMX 86 Operating System

• using either iRMX 86 semaphores or regions to obtain mutual
exclusion

PURPOSE OF THIS CHAPTER

Memory deadlock is not difficult to diagnose or correct, but it is
difficult to detect. Because memory deadlock generally occurs under
unusual circumstances, it can lie dorm.ant throughout development and
testing, only to bite you when your back is turned. The purpose of this
chapter is to provide you with some special techniques that can prevent
memory deadlock.

HOW MEMORY ALLOCATION CAUSES DEADLOCK

The following example illustrates the concept of memory deadlock and
shows the danger that iRMX 86 tasks ca.n face when they cause memory to be
allocated dynamically.

Suppose that the following circumstanees exist for Task A and B which
belong to the same job:

• Task A has lower priority than Task B.

• Each task wants two iRMX 86 segments of a given size, and each
asks for the segments by calli.ng the CREATE$SEGMENT system call
repeatedly until both segments are acquired.

• The jobVs memory pool contains only enough memory to satisfy two
of the requests.

• Task B is asleep and Task A i8 running.

ITogramming Techniques 7-1

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

Now suppose that the following events occur in the order listed:

1) Task A gets its first segment.

2) An interrupt occurs and Task B is awakened. Since Task B is of
higher priority than Task A, Task B becomes the running task.

3) Task B gets its first segment.

The two tasks are now deadlocked. Task B remains running and continues
to ask for its second segment. Not only are both of the tasks unable to
progress, but Task B is consuming a great deal, perhaps all, of the
processor time. At best, the system is seriously degraded.

This kind of memory allocation deadlock problem is particularly insidious
because it quite likely would not occur during debugging. The reason for
this is that the order of events is critical in this deadlock situation.

Note that the key event in the deadlock example is the awakening of Task
B just after Task A invokes the first CREATE$SEGMENT system call, but
just before Task A invokes the second CREATE$SEGMENT call. Because this
critical sequence of events occurs only rarely, a "thoroughly debugged"
system might, after a period of flawless performance, suddenly fail.

Such intermittent failures are costly to deal with once your product is
in the field. Consequently, the most economical method for dealing with
memory deadlock is to prevent it.

SYSTEM CALLS THAT CAN LEAD TO DEADLOCK

A task cannot cause memory deadlock unless it causes memory to be
allocated dynamically. And the only means for a task to allocate memory
is by using system calls. If your task uses any of the following system
calls, you must take care to prevent deadlock:

• any system call that creates an object

• any system call belonging to a subsystem other than the Nucleus

• SEND$MESSAGE

• DELETE$JOB

• DELETE$EXTENSION

If a task uses none of the preceding system calls, it cannot deadlock as
a result of memory allocation.

Programming Techniques 7-2

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

PREVENTING MEMORY DEADLOCK

Using anyone of the following techniques, you can eliminate memory
deadlock from your system:

• When a task receives an E$MEM condition code, the task should not
endlessly repeat the system call that led to the code. Rather,
it should repeat the call only a predetermined number of times.
If the task still receives the E$MEM condition, it should delete
all its unused objects, and try again. If the E$MEM code is
still received, the task should sleep for a while and then
reissue t he system call.

• If you have desl.gned your system so that a job cannot borrow
memory from the pool of its parent, you can use an iRMX 86
semaphore or region to govern access to the memory pool. Then,
when a task requires memory, it must first gain exclusive access
to the job's memory pool. Only after obtaining this access may
the task issue any of the system calls listed above.

The task's behavior should then depend upon whether the system
can satisfy all of the task's memory requirements:

If the system cannot satisfy all requirements, the task
should delete any objects that were created and surrender the
exclusive access. Then the task should again request
exclusive access to the pool.

If, on the other hand, all requests are satisfied, the task
should surrender exclusive access and begin using the objects.

This technique prevents deadlock by returning unused memory to
the memory pool, where it may be used by another task.

• If you have designed your system so that a job cannot borrow
memory from the pool of its parent, prevent the tasks within the
job from directly completing for the memory in the job's pool.
You can do this by allowing no more than one task in each job to
use the system calls listed earlier.

Programming TE~chniques 7- 3

CHAPTERS
GUIDELINES FOR STACK SIZES

This chapter is for three kinds of readers:

• Those who write tasks that create iRMX 86 jobs or tasks.

• Those who write interrupt handlers.

• Those who write tasks that a.re to be loaded by the Application
Loader or tasks to be invoked by the Human Interface.

In order to understand all of this chapter, you must be familiar with the
iRMX 86 Debugger, and you must know which system calls are provided by
the various subsystems of the iRMX 86 Operating System. You also must
know the difference between maskable! and nonmaskable interrupts.
Finally, if you are writing an interrupt handler, you must know what an
interrupt handler is.

PURPOSE OF THIS CHAPTER

This chapter has three purposes. If your are writing a task that creates
a job or another task, the purpose of this chapter is to help you compute
the amount of stack that you must specify in the system call that
performs the creation. If you are ~rriting an interrupt handler, the
purpose of this chapter is to inform you of stack size limitations to
which you must adhere. If you are ~rriting a task that is to be loaded by
the Application Loader or invoked by the Human In terface, the purpose of
this chapter is to sho'w you how much stack to reserve during the linking
and locating process.

STACK SIZE LIMITATION FOR INTERRUPT HANDLERS

Many tasks running in the iRMX 86 Operating System are subject to two
kinds of interrupts -- maskable, and nonmaskable. When these interrupts
occur, the associated interrupt handlers use the stack of the interrupted
task. Consequently, you must know how much of your task's stack to
reserve for these interrupt handlers.

The iRMX 86 Operating System assumes that all interrupt handlers,
including those that you write, require no more than 128 (decimal) bytes
of stack, even if a task is interrupted by both a maskable and a
nonmaskable interrupt. If when writing an interrupt handler you fail to
adhere to this limitat:ion, you expose your system to the risk of stack
overflow.

Programming Techniques 8-1

GUIDELINES FOR STACK SIZES

In order to stay within the 128 (decimal) byte limitation, you must
restrict the number of local variables that the interrupt handler stores
on the stack. For interrupt handlers serving maskable interrupts, you
may use as many as 20 (decimal) bytes of stack for local variables. For
handlers serving the nonmaskable interrupt, you may use no more than 10
(decimal) bytes. The balance of the 128 bytes is consumed by the
SIGNAL$INTERRUPT system call, and by storing the registers on the stack.

For more information about interrupt handlers, refer to the iRMX 86
NUCLEUS REFERENCE MANUAL.

STACK GUIDELINE S FOR CREATING TASKS AND JOB S

Whenever you invoke a system call to create a task, you must specify the
size of the task's stack. And, since every new job has an initial task
that is created simulta.neously with the job, you must also designate a
stack size whenever you create a job.

When you specify a task's stack size, you should do so carefully. If you
specify a number that is too small, your task might overflow its stack
and write over information following the stack. This situation can cause
your system to fail. On the other hand, if you specify a number that is
too large, the excess memory will be wasted. So ideally, you should
specify a stack size that is only slightly larger than what is actually
required.

This chapter provides you with two techniques for estimating the size of
your task's stack. One technique is arithmetic, and the other is
empirical. For best results, you should start with the arithmetic
technique and then use the empirical technique for tuning your original
estimate.

STACK GUIDELINES FOR TASKS TO BE LOADED OR INVOKED

If you are creating a task that is to be loaded by the Application Loader
or invoked by the Human Interface, you must specify the size of the
task's stack during the linking or locating process. The arithmetic and
empirical techniques in this manual will help you estimate the size of
your task's stack.

ARITHMETIC TECHNIQUE

This technique provides you with a reasonable overestimate of your task's
stack size. After you use this technique to obtain a first
approximation, you may be able to save several hundred bytes of memory by
using the empirical technique described later in this chapter.

Programming Te ehniques 8-2

GUIDELINES FOR STACK SIZES

The arithmetic techniquc~ is based on the fact that there are at most
three factors affecting a task's stack. These factors are:

• interrupts

• iRMX 86 system calls

• requirements of the task's cOide
(For example, the stack used to pass parameters to procedures or
to hold local variables in reentrant procedures.)

You can estimate the size of a task's stack by summing the amount of
memory needed to accommodate these factors. The following sections
explain how to compute the stack requirements for the first three factors.

STACK REQUIREMENTS FOR INTERRUPTS

Whenever an interrupt oecurs while YOlur task is running, the interrupt
handler uses your task's stack while servicing the interrupt.
Consequently, you must ensure that YOlur task's stack is large enough to
accommodate the needs 0:[two interrupt handlers -- one for maskable
interrupts, and one for nonmaskable i,nterrupts. All interrupt handlers
used with the iRMX 86 Operating system are designed to to ensure that,
even if two interrupts occur (one maskable, one not), no more than 128
(decimal) bytes of stack are requiredl by the interrupt handlers.

STACK REQUIREMENTS FOR SYSTEM CALLS

When your task invokes an iRMX 86 system call, the processing associated
with the call uses some of your task"s stack. The amount of stack
required depends upon which system calls you use.

Table 8-1 tells you how many bytes of stack your task must have to
support various system ealls. To find out how much stack you must
allocate for system calls, compile a list of all the system calls that
your task uses. Scan Table 8-1 to ftnd which of your system calls
requires the most stack. By allocatlng enough stack to satisfy the
requirements of the most demanding system call, you can satisfy the
requirements of all system calls used by your task.

Programming Techniques 8-3

GUIDELINES FOR STACK SIZES

Table 8-1. Stack Requirements For System Calls

System Calls Byte s (Decimal)

S$ S END$ COMMAND 800
C$GE T$INPUT$PATHNAME
CGETOUTPUT$PATHNAME
CGETINPUT$CONNECTION
CGETOUTPUT$CONNECTION

ALL OTHER
HUMAN INTERFACE 600
SYSTEM CALLS

S$LOAD$IO$JOB 440

A$LOAD$IO$JOB 400
A$LOAD
S$OVERLAY

EXTENDED I/O 400
SYSTEM CALLS

BASIC I/O 300
SYSTEM CALLS

CREATE$JOB 225
DELETE$EXTENSION
DELETE$JOB
DELETE$TASK
FORCE$DELETE
RESET$INTERRUPT

ALL OTHER NUCLEUS CALLS 125

Programming Techniques 8-4

GUIDELINES FOR STACK SIZES

COMPUTING THE SIZE OF THE ENTIRE STACK

To compute the size of the entire stack, add the following three nmnbers:

• the number of bytes required for interrupts (128 decimal bytes)

• the number of bytes required for system calls

• the amount of stack required by the task's code segment

You can use the sum of these three nwnbers as a reasonable estimate of
your task's stack requirements. If you desire more accuracy, use the sum
as a starting point for the empirical fine tuning described later in this
chapter.

EMPIRICAL TECHNIQUE

This technique starts with an overly large stack and uses the iRMX 86
Debugger to determine how much of the stack is unused. Once you have
found out how much stack is unused, you can modify your task- and
job-creation system calls to create smaller stacks.

The cornerstone of this technique is the iRMX 86 Debugger. In order to
use the Debugger, you must include it when you configure your application
system. Information on how to do this is provided in the iRMX 86
CONFIGURATION GUIDE.

The Inspect Task command of the De bugger provides a display that includes
the number of bytes of stack that havle not been used since the task was
created. If you let your task run a :sufficient length of time, you can
use the Inspect Task command to find out how much excess memory is
allocated to your task's stack. Then you can adjust the stack-size
parameter of the system call to reserve less stack.

The only judgment you must exercise when using this technique is deciding
how long to let your task run before obtaining your final measurement.
If you do not let the task run long enough, it might not encounter the
most demanding combination of interrupts and system calls. This could
cause you to underestim~lte your task's s tack requirement and could,
consequently, lead to a stack overflow in your final system.

Underestimation of stack size is a risk inherent in this technique. For
example, your task might: be written so as to use its peak demand for
stack only once every two months. Yet you probably don't want to let
your system run for two months just to save several hundred bytes of
memory. You can avoid such excessive trial runs by padding the results
of shorter runs. For instance, you might run your task for 24 hours and
then add 200 (decimal) bytes to the maximum stack size. This padding
reduces the probability of overflowing your task's stack in your final
system.

Programming Te!chniques 8-5

Primary references are underscored.

algorithm for selecting model of segmentation 1-1
application 5-2, A-I
Application Loader 2-4, 8-4
asleep, task state 7-1
ASM86 command 4-1
assembly language system calls 4-1

Basic I/O System 2-4, 3-1, 5-2, 8-4

CATALOG$OBJECT system call 5-4
cataloging objects 5-4
code size 1-3
communication between iRMX 86 jobs 5-1
COMPAC.LIB library 2-4
COt1PACT model of segmentation 1-1, 4-2
compilation 2-1
computing stack size 8-2
configuration 6-1
CREATE$JOB system call 5-5
CREATE$SEGMENT system call 7-1

deadlock 7-1
DELETE$JOB system call 7-2
DELETE$SEGMENT system call 5-2, 7-2
direct linking, disadvantages 2-1
dynamic memory allocation 7-1

E$MEM exception code 7-3
entry points, freezing locations of 6-1
EPIFC.LIB library 2-4
EPIFL.LIB library 2-4
Extended I/O System 2-4, 5-2, 8-4

fixed memory locations 5-6

GET$TASK$TOKENS system call 5-4, 5-5
get_time procedure 3-1

HPIFC.LIB library 2-4
HPIFL.LIB library 2-4
Human Interface 2-4, 8-4

Programming Techni.ques Index-l

INDEX

init time procedure 3-2
initialize time 3-7
inter-job communication 5-1

INDEX (continued)

Interactive Configuration Utility (ICU) 6-1
interface prcocedures and libraries 2-1, 4-1
interrupts, interrupt handler 7-2, 8=1-
IPIFC.LIB library 2-4
IPIFL.LIB library 2-4
iRMX 86 Operating System

interface libraries 2-3
job 5-1
mailbox 5-5
objects 5-1
object directory 5-3
segment 5-1
semaphore 5-3
stream file 5-2
subsystem (layer) 5-2
tasks 5-3

job 5-1

LARGE model of segmentation 1-1, 4-2
LARGE.LIB library 2-4
linking 2-1
location-dependent system procedures 2-2
LOOKUP$OBJECT system call 5-4
LPIFC.LIB library 2-4
LPIFL.LIB library 2-4

mailboxes 5-5
maintain time procedure 3-2
MEDIUM model of segmentation 1-1, 4-2
memory

borrowing 7-3
computing size 1-2
deadlock 7-1

models of segmentation 1-1
multiprogramming 5-1

Nucleus 2-4, 5-2, 8-4

object code libraries 2-3
object directory 5-3

passing between jobs
connections 5-3
objects 5-3
connections 5-3

PL/M-86
models of segmentation 1-1
size control 1-1, 2-3

priority, tasks 7=r-

Programming Techniques Index-2

INDEX (continued)

RECEIVE$UNITS system call 5-4
restriction (passing connections between jobs) 5-3
RPIFC.LIB library 2-4
RPIFL.LIB library 2-4
running, task state 7-1

segment 5-1
segmentation model, choosing of 2-1
selecting model of segmentation 1-1
semaphore 5-3
SEND$MESSAGE system call 4-1, 7-2
set_time procedure 3-1
SMALL model of segmentation 1-1
source code, timer procedures 3-3
stack

requirements for system calls 8-3
size, overflow 1-3, 8-1

static data size 1-2

task priority 7-1
tasks 5-3, A-I
techniques for computing stack size 8-5
timer procedures 3-1

Universal Development Interface (UDI) 2-4, 8-4
upward-compatability 5-6

Programming Techniques Index-3

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	idx01
	idx02
	idx03
	idx04

