
iRMXTM 86 BOOTSTRAP LOADER
REFERENCE~ MANUAL

J L

CONTENTS

CHAPTER 1
INTRODUCTION
The First Stage of the Bootstrap Loader •••••••
The Second Stage of the Bootstrap Loader ••••••
The Load File ••••
Device Drivers •••

CHAPTER 2
CONFIGURATION
BS1.A86 Configuration File •••.

%CPU Macro ••
iAPX 186 IN IT Macro ••••••..•••••••••••.
%CONSOLE~ %MANUAL, and %AUTO Macros ••••
%LOADFILE Macro ••••••••••••••••••••••••••••••••••••
%DEFAULTFILE Macro •••••••••••••••••••••
%RETRIES Macro ••••••••••••••••••.••••••
%CICO Macro •••••••••••••••••••••••••••••••••
%SERIAL CHANNEL Macro ••.•••••••••••••••••••••••••••
%DEVICE-Macro ••••••••••••••••••••••••••
%END Macro ••••••••••••••••••

BSERR.A86 Configuration File •• .
%CONSOLE Macro ••••••••••••••••••••••••
%TEXT Macro ••
%L 1ST Ma c r o. •
%AGAIN Macro •••••••••••••••••••••••••••
%INT3 Macro ••••••••••••••••••••••••••••
%HALT Macro

.
.

Intel-Supplied Device Driver Configuration Files •••••.•••••••••••••
%B204 Macro ••
%B206 Macro •••••••••••••••••••••••••••.••••••••••••••••••••
%B208 Macro ••
%B215 and %B220 Macros ••••••••••••••••.••••••••••••••
%B218 Macro •••••••••••••••
%B251 Macro •••••••••••••••
%B254 Macro ••••••••••••••••••••••••••
%BSAS I Ma era •••••••••••••••••••••••••
%BSCSI Macro •••••••••••••••••••••••••

User-Supplied Drivers ••••••••••••••••••.•••••••••••••••••••••••••••
Generating the Bootstrap Loader System •••••••••••••••••••••••••••••

Boots trap Loader iii

PAGE

1-1
1-2
1-2
1-2

2-1
2-3
2-4
2-4
2-6
2-6
2-7
2-7
2-8

2-12
2-13
2-13
2-14
2-14
2-15
2-15
2-15
2-16
2-16
2-16
2-17
2-17
2-17
2-18
2-19
2-19
2-19
2-20
2-21
2-22

CONTENTS]
(continued)

PAGE

CHAPTER 3
USING THE BOOTSTRAP LOADER
Preparing to Use the Bootstrap Loader............................... 3-1
Operator's Role in Bootstrap Loading................................ 3-2

Specifying the Load File.. 3-3
The Debug Switch.. 3-3

Analyzing Boo ts trap Loading Failures •••. ,........................... 3-4
Wi th Displayed Error Messages..................................... 3-5
Without Displayed Error Messages ••.•• "........................... 3-7

CHAPTER 4
WRITING A DRIVER FOR A BOOTSTRAP LOADING DEVICE
DEVICE$ INIT Procedure •••••••••••••••••• "........................... 4-1
DEVICE$READ Procedure ••.••••••••••••••. "........................... 4-2

APPENDIX A
AUTOMATIC BOOT DEVICE RECOGNITION
How Automatic Boot Device Recognition Works........................ A-I
How to Include Automatic Boot Device Reeognition in Your System.... A-2
How to Exclude Automatic Boot Device Reeognition................... A-3

APPENDIX B
PROMMING THE BOOTSTRAP LOADER WITH A SYSTEM DEBUG MONITOR
Combining with the iSDM 86 System Debug Monitor.................... B-1
Combining with the iSDM 286 System Debug Monitor................... B-1

3-1.

2-1.
2-2.
2-3.
A-I.
A-2.
A-3.
B-1.

TABLE

Postmortem Analysis of Bootstrap Loader Failure ••••••••••••

FIGURE:3

First Stage Configuration File BSl.A8& ••••.••••••••••••••••
First Stage Configuration File BSl.CSD •••••••••••••••••••••
First Stage Configuration File 3SERR.A86 ••••.••••••••••••••
EIOS Configuration Screen (ABR, DLN, DPN, DFD, and DO) •••••
Device-Uni t Informa tion Screen •.•••••••••••••••••••••••••••
Logical Names Screen ••••••••.••.••••••••••••••••••••• ••••••
Conte'nts of SDMGNB.CSD •••••••••.•••••.•••••••••••••••••••••

Bootstrap Loader iv

3-8

2-2
2-9
2-13
A-2
A-4
A-4
B-2

CHAPTER 1
INTRODUCTION

The Bootst~ap Loader is a means of loading part or all of an application
from secondary storage into RAM, either upon system reset or under
program control. With the Bootstrap Loader you have flexibility that can
simplify system maintenance and increase the versatility of your hardware.

The Bootstrap Loader operates in two stages. The first stage determines
the location of the second stage and the name of the load file, then
loads part of the second stage and passes control to the second stage.
The second stage finishes loading itself, transfers the load file into
memory, and passes control to the load file. The load file usually
consists of an iRMX 86 application system. Getting the load file into
memory and passing control to it is the objective of the bootstrap
loading process.

A device driver is a small program that interfaces between your software
and a hardware device (or a controller for the device). When you perform
Bootstrap Loader configuration, which is independent of application
system configuration with the ICU, you specify the device drivers that
the Bootstrap Loader requires. As you complete the Bootstrap Loader
configuration process, the device drivers needed for bootstrap loading
which are distinct from (although possibly identical to) the drivers
needed by the application itself -- are linked in automatically.

The following sections contain miscellaneous facts that will enable you
to understand the later discussion about incorporating the Bootstrap
Loader into your system.

THE FIRST STAGE OF THE BOOTSTRAP LOADER

The first stage consists of two parts. One part is the code for the
first stage. It varies from 100 to 1000 bytes (and averages about 500
bytes) in length, depending upon the options you request during
configuration. The other part is a set of minimal device drivers the
first and second stages need to accomplish their objectives.

When the bootstrap loading process begins, the first stage can be in
either of two places. If you are still developing your application, you
can keep your first stage: in secondary storage on your development
system, then load it and start it running by means of the iSBC 957B
package or the iSDM 86 or iSDM 286 System Debug Monitor. You can also
burn the first stage into ROM along with the iSDM 86 or iSDM 286
moni tor. When your appli.ca tion is fin:ished and ready to use, you will
probably burn the first stage into ROM, so it can be invoked when you
turn on or reset your system.

Bootstrap Loader 1-1

INTRODUCTION

THE SECOND STAGE OF THE BOOTSTRAP LOADER

Unlike the first stage, the second stage is not configurable. That is,
it is always the same -- its size is less than 8K bytes -- and does not
depend on the application in any way. Because of this, the software that
formats iRMX 86-based random access volumes places the random-access
version of the second stage on every nSlmed volume it forma ts, so it is
always available for loading applications residing on random-access
devices.

When the application system begins to run, RAM that had been used or
occupied by the first and/or second stage becomes part of the memory pool
for the application system.

THE LOAD FILE

NOTE

You must ensure that the memory
locations occupied by the first stage,
the second stage, and the load file
(applica tion sys tern) are mu tually
non-overlapping.

The load file must be placed on an iRMX 86-based named volume of
secondary storage. Recall that this volume also contains the second
stage of the Bootstrap Loader.

DEVICE DRIVERS

For every bootstrap device in your system, you must include a device
driver. As part of the iRMX 86 product, Intel has provided you with many
device drivers that are specifically for bootstrap loading. These
drivers are for the following controllers:

• iSBC 204 Flexible Diskette Controller

• iSBC 206 Disk Controller

• iSBC 208 Flexible Disk Drive Controller

• iSBC 215 Winchester Disk Controller

• iSBX 218A Flexible Disk Controller when used with the iSBC 215
controller

• iSBX 218A Flexible Disk Controller when used on a CPU board

• iSBC 220 SMD Disk Controller

Bootstrap Loader 1-2

INTRODUCTION

• iSBX 251 Bubble Memory Controller

• iSBC 254 Bubble Memory Controller

• SASI (Shugart Associates Systems Interface) Peripheral Bus
Controller

• SCSI (Small Compu ter Sys terns In terface) Peripheral Bus Con troller

These drivers are small, ranging from 300 to 1000 bytes in length, and
averaging about 500 bytes.

If you need additional device drivers, see Chapter 4.

Bootstrap Loader 1-3

CHAPTER 2
CONFIGURATION

The key to using the Bootstrap Loader Is to ensure that the first stage
is properly configured into your application. How to do that is the
subject of this chapter. (Recall that the second stage is constant and
therefore does not have to be configured.)

Configuring the first stage of the Bootstrap Loader consists of editing
three or more configuration files. If you have devices for which Intel
does not supply a device driver, you must prepare a device driver for
each of them. Chapter 4 describes how to do this.

The configuration files are the following:

BS1.A86

BSERR.A86

B204.A86
B206.A86
B208.A86
B215.A86
B218.A86
B251.A86
B254.A86
BSASI.A86
BSCSI.A86

BS1.CSD

This assembly language source file consists primarily
of macros that describe the device units that can be
used for bootstrap loading and the manner in which the
bootstrap device and load file are to be selected.

This assembly language source file consists primarily
of macros that tell the Bootstrap Loader what to do
when bootstrap load:lng is not successful.

These assembly language source files contain
configuration information about device drivers that
your bootstrap system can use.

This SUBMIT file contains the commands needed to
assemble the preced:lng source files, to link together
the resul ting modul.~s (and any others tha t you
supply), and to locate the resulting object module.

The files requiring editing are BS1.A86, BSERR.A86, and BS1.CSD.

BS1.A86 CONFIGURATION FILE

The BS1.A86 file, shown in Figure 2-1, consists of two INCLUDE statements
and several macros. The BS1.INC file /Contains the definitions of the
macros in the BS1.A86 file.

Bootstrap Loader 2-1

name bs1

$include(:f1:bcico.inc)
$include(:f1:bs1.inc)

CONFIGURATION

%cpu(8086)
;iAPX_186_INIT(y,ofc38h,none,80bbh,none,003bh)
;iAPX_186_INIT(y,none,none,80bbh,none,0038h)

%console
%manual
%auto
%loadfile
%defaultfile('/system/rmx86')
%retries(5)

;cico

iSBC 86/05/12A/14/30
;serial_channel(8251a,Od8h,2,8253,OdOh,2,2,8)

; iSBC 351 (on iSBX #0)
;serial_channel(8251a,OAOh,2,8253,OBOh,2,2,8)

; 8MHz iSBC 186/03/51
;serial channel(8274,Od8h,2,80186,OffOOh,2,0,Odh)
;serial-channel(8274,Odah,2,80186,OffOOh,2,I,Odh)
;serial_channel(8274,Odah,2,80130,OeOh,2,2,034h)

; 6MHz iSBC 186/03/51
;serial channel(8274,Od8h,2,80186,OffOOh,2,0,Oah)
;serial-channel(8274,Odah,2,80186,OffOOh,2,I,Oah)
;serial channel(8274,Odah,2,80130,OeOh,2,2,027h)

; iSBC 188/48 SCC #1
;serial channel(82530,OdOh,I,82530 J OdOh,I,0,Oeh,a)
;serial-channel(82530,Od2h,I,82530.0d2h,I,0,Oeh,b)

,

188/48 board
186/03 and 186/51

boards

%device(fO, 0, deviceinit204, deviceread204)
%device(fl, 1, deviceinit204, deviceread204)
%device(f2, 2, deviceinit204, deviceread204)
%device(f3, 3, deviceinit204, deviceread204)
%device(afO, 0, deviceinit208gen, deviceread208gen)
%device(afl, 1, deviceinit208gen, deviceread208gen)
%device(af2, 2, deviceinit208gen, deviceread208gen)
%device(af3, 3, deviceinit208gen, deviceread208gen)

Figure 2-1. First Stage Configuration File BSl.A86

Bootstrap Loader 2-2

CONFIGURATION

%device(dO, 0, deviceinit206, deviceread206)
%device(wO, 0, deviceinit21Sgen, deviceread21Sgen)
%device(wfO, 8, deviceinit21Sgen, deviceread21Sgen)
%device(wfl, 9, deviceinit21Sgen, deviceread21Sgen)
%device(wf2, 10, deviceinit21Sgen, deviceread21Sgen)
%device(wf3, 11, deviceinit21Sgen, deviceread21Sgen)
%device(pmfO, 0, deviceinit218Agen" deviceread218Agen)
%device(bxO, 0, deviceinit2S1, deviceread2S1)
%device(bO, 0, deviceinit254, deviceread2S4)
%device(saO, 0, deviceinitsasi, devicereadsasi)
%device(scO, 0, deviceinitscsi, devicereadscsi)
%end

Figure 2-1. First Stage Configuration File BSl.A86 (continued)

The following sections describe the functions of the macros in the
BSl.A86 file. For each macro, if a percent sign (%) precedes the name,
then the macro is included (invoked). If a semicolon (;) precedes the
name, then the macro is treated as a comment and is not included.

The BS1.A86 file does not specifically mention iSBC 220 SI1D devices
because they are covered by the entries containing "21S".

In each %DEVICE macro shown in Figure 2-1 as having "gen" as a suffix on
its last two parameters, those parameters can also be present without the
suffix. That is, for each of those maeros, Intel has supplied two
versions of the device$init and device$read procedures, one with the
"gen" suffix and one without the suffix. The "gen" (for general)
versions, which provide automatic deviee recognition (see Appendix A),
require more (about SOO bytes) code.

%CPU MACRO

You mus t include the %CPU macro, to idE~n tify the type of CPU tha t
performs the bootstrap loading operation.

The form of the %CPU macro is:

%CPU(cpu_type)

where:

cpu_type 8086, 8088, 80186, 80188, or 80286. These are
informal names for the Intel processors whose formal
names are iAPX 86, iAPX 88, iAPX 186, iAPX 188, and
iAPX 286, respectively.

Bootstrap Loader 2-3

CONFIGURATION

iAPX 186 INIT MACRO

The iAPX_186_INIT macro specifies the initial chip select and mode values
for 80186 and 80188 CPUs. Include this macro if and only if the CPU type
is either 80186 or 80188.

The form of the %iAPX 186 INIT macro is:

%iAP~186_INIT(RMX, UMCS, LMCS, MMCS, MPCS, PACS)

where RMX must contain "y" as it does in the file. The remaining
parameters define initial values for the chip-select control registers.
They stand, respectively, for upper-memory chip-select, lower-memory
chip-select, midrange-memory chip-selec.t, memory-peripheral chip-select,
and peripheral-address chip-select block address. These registers are
described in the data sheets for the iAPX 186 and iAPX 188 processors.

%CONSOLE, %MANUAL, AND %AUTO MACROS

The %CONSOLE, %MANUAL, and %AUTO macros let you specify how the first
stage is to identify the load file and the device where the file will be
found.

You can include any combination of the %CONSOLE, %MANUAL, and %AUTO
macros. Because including %MANUAL causes the automatic inclusion of both
%CONSOLE and %AUTO, there are five func.tionally-distinct combina tions of
these macros. The following indicates the significance of each of the
five combinations.

None (Requires that the device list, defined by means of
the %DEVICE macro, have only one entry.)

• It (the Bootstrap Loader) tries once to load from
the device in the device list.

• It tries once to load the file with the default
pathname (either the system default or one you
define by means of the optional %DEFAULTFILE macro).

%CONSOLE (Requires that the device list have only one entry.)
only

• It tries once to load from the device in the device
lis t.

• It issues an asterisk (*) prompt for a pathname at
the application system terminal and then tries once
to load the file the operator specifies.

If a pathname is entered, it loads the file
with that pathname.

If only <cr> is entered, loads the file with
the default pathname.

Bootstrap Loader 2-4

%MANUAL
only

%AUTO
only

%AUTO
and
%CONSOLE

CONFIGURATION

(Requires a device list with at least one entry.)

• It issues an asterisk (*) prompt for a pathname at the
applica tion sys tern terminal.

• It chooses a deviee depending upon the operator's
response.

If a device name is entered, it loads from the
device with that device name. It tries to load
until the dev:lce becomes ready or until no more
tries are allowed (as limited by the optional
%RETRIES macro).

If no device name is entered before the carriage
return, it looks for a ready device by searching
through the lis t of devices (in the order in which
they appear in the BSl.A86 file). The search
continues until a ready device is found or until
no more tries are allowed (as limited by the
optional RETRIES macro). If it finds a ready
device, it loads from that device.

• It chooses a file depending upon the operator's
response to the prompt.

If a pathname is entered, it tries once to load
the file with that pathname.

If no file name is entered, it tries once to load
the file with the default pathname.

(Requires a device list with at least one entry.)

• It looks for a ready device by searching through the
list of devices (in the order in which they appear in
the BSl.A86 file). The search continues until a ready
device is found or until no more tries are allowed (as
limited by the optional RETRIES macro).

• If it finds a ready device, it tries once to load the
file with the default file name.

(Requires a device list with at least one entry.)

• It issues an asterisk (*) prompt for a pathname at the
application system terminal.

• If the opera tor rc~sponds wi th a pa thname tha t contains
no device name, it looks for a ready device by
searching through the list of devices (in the order in
which they appear in the BSl.A86 file). The search
continues until a ready device is found or until no
more tries are allowed (as limited by the optional
%RETRIES macro).

Bootstrap Loader 2-5

CONFIGURATION

• If it finds a ready device or the operator
responds with a pathname containing a device
name, it tries once to load the file indicated by
the operator's response.

If a pathname is entered, it tries to load
the file with that pathname.

If only <cr> is entered, it tries to load
the file with the default pathname.

In the foregoing macro descriptions, there are several references to an
asterisk (*) prompt. If you have a monitor in PROM, with a pointer to
its location in position 3 of the interrupt vector table, then when
responding to this prompt you can use the Bootstrap Loader's Debug
switch, which is described in Chapter 3.

The forms of the %CONSOLE, %MANUAL, and %AUTO macros are:

%CONSOLE

%MANUAL

%AUTO

%LOADFILE MACRO

The %LOADFILE macro causes the Bootstrap Loader to display at the console
the pathname of the file it loads. It displays the pathname after
loading the second stage and before loading the load file. The form of
the %LOADFILE macro is:

%LOADFILE

%DEFAULTFILE MACRO

The %DEFAULTFILE macro specifies the hierarchical path of the default
file. Its form is:

%DEFAULTFILE(pathname)

where pathname is the hierarchical path of the file enclosed in single
quotes, as, for example, '/SYSTEM/TEST/RMX86'. If this macro is omitted,
the pathname '/SYSTEM/RMX86' is assumed.

Do not omit this macro if you include the %LOADFILE macro.

Bootstrap Loader 2-6

CONFIGURATION

%RETRIES MACRO

The %RETRIES macro, when included along with the %AUTO or %MANUAL macro,
limits the number of times that the first stage goes through the device
list in search of a ready device. If this macro is not included along
with %AUTO or %MANUAL, and no device in the list is ready, then the
search continues indefinitely. The form of the %RETRIES macro is:

%RETRIES(number)

where number, which must lie in the range 1 through OFFFEH, is the
maximum number of times the first stage checks each device for a ready
condition.

%CICO MACRO

The %CICO macro specifies that console input and output are to be
performed by standalone CI and CO routines, that is, routines that are
not part of an iSDM 86, iSDM 286, or iSBC 957B monitor. If you include
the %CICO macro, you must do some other things as well, depending upon
whether the CI and CO routines you want to use are your own or those
supplied by Intel.

If you use the Intel-supplied standalone CI and CO routines, you must do
the following:

• Change the line in the BSl.CSD file that reads

& :fl:bcico.obj, &

to

:fl:bc:Lco.obj, &

• Include exactly one instance of the %SERIAL CHANNEL macro
(described next) in the BSl.A86 file.

If you supply your own standalone CI and CO routines, you must do the
following:

• Change the line :Ln the BSl.CSD file that reads

& :fl:bc:Lco.obj, &

to

:fl:myeico.obj, &

where mycico.obj is an object file containing the CI and CO
routines and a file called CINIT, which performs initialization
functions required to prepare the console for input and output
operations.

• Include no instances of the %SERIAL CHANNEL macro.

Bootstrap Loader 2-7

CONFIGURATION

The form of the %CICO macro is:

%CICO

%SERIAL CHANNEL MACRO

Your CPU board can communicate over a serial channel by means of either
an 8251A USART, an 8274 Multi-Protocol Serial Controller, or an 82530
Serial Communications Controller. The %SERIAL CHANNEL macro, which
requires you to include the %CICO macro, allows you to specify which
serial controller device your CPU board uses as well as information that
defines the use characteristics of the device.

You can omit this macro if your system does not use a terminal during
bootstrap loading, if your supply your own CI and CO routines, or if you
system use the iSDM 86, iSDM 286, or iSBC 957B monitor. Otherwise,
include one instance of it in your BS1.A86 file for the serial controller
device that supports the terminal your system uses for bootstrap
loading. Including mUltiple %SERIAL CHANNEL macros causes an assembly
error when the BS1.CSD file runs. -

The format of the %SERIAL CHANNEL macro is as follows:

%SERIAL CHANNEL (serial_type, serial_baseyort, serial_port_delta,
counter type, counter base port, counter port delta,
baud_counter, count, flags) --

where:

serial_type

serial_baseJ>ort

The serial controller device you are using. The
valid values a:re 8251A, 8274, and 82530.

The 16-bit address of the base port used by the
device. This port varies according to the type
of the device and, if applicable, the channel
used on the device, as follows:

8251A
8274 Channel A
8274 Channel B
82530 Channel A
82530 Channel B

Data Register Port
Channel A Data Register Port
Channel B Data Register Port
Channel A Command Register Port
Channel B Command Register Port

The number of bytes between consecutive ports
used by the serial device.

The type of device containing the timer your CPU
board uses to generate a baud rate for the serial
device defined by this macro. The valid values
are 8253,8254:,80130,80186,82530, and NONE.
Specifying NONE implies that the baud rate timer
is automatically initialized and the Bootstrap
Loader does not have to perform this function.

Bootstrap Loader 2-8

CONFIGURATION

--Ic- BS1.CSD *-*-*
Generate the iAPX 86, 88 Bootstrap Loader VS.O first stage.

Invocation: submit bs1(first stage location, second stage location)

run
;
asm86 :f1:bs1.a86 macro(SO) object(:f1:bs1.obj) print(:f1:bs1.lst)
asm86 :f1:bserr.a86 macro(SO) object(:fl:bserr.obj) print(:f1:bserr.lst)
asm86 :fl:b204.a86 macro(50) object(:fl:b204.obj) print(:fl:b204.lst)
asm86 :f1:b206.a86 macro(50) object(:f1:b206.obj) print(:f1:b206.lst)
asm86 :f1:b208.a86 macro(50) object(:f1:b208.obj) print(:fl:b208.lst)
asm86 :f1:b215.a86 macro(50) object(:f1:b215.obj) print(:fl:b215.lst)
asm86 :fl:b218a.a86 macro(50) object(:fl:b218.obj) print(:f1:b218.lst)
asm86 :f1:b251.a86 macro(50) object(:f1:b251.obj) print(:fl:b251.lst)
asm86 :fl:b254.a86 macro(50) object(:fl:b2S4.obj) print(:f1:b254.lst)
asm86 :f1:bsasi.a86 macro(50) object(:fl:bsasi.obj) print(:fl:bsasi.lst)
asm86 :fl:bscsi.a86 macro(50) object(:f1:bscsi.obj) print(:f1:bscsi.lst)

link86
:fl:bs1.obj, ~I

:fl:bserr.obj, ~I

& :f1:bcico.obj, ~I ;for standalone serial channel
~I ;support

:f1:b204.obj, Ot
:fl:b206.obj, ~t

:fl:b208.obj, Ot
:fl:b215.obj, ~t

:f1:b218.obj, ~t

:fl:b251.obj, ~t

:f1:b254.obj, ~t

:fl:bsasi.obj, ~t

:f1:bscsi.obj, Ot
:f1:bs1.lib ~t

to :fl:bsl.lnk print(:f1:bsl.mp1) &
nopublics except(firststage,boot_186,bootstrap_entry)

loc86 :f1:bs1.lnk &
addresses(classes(code(%O),stack(%l») &
order(classes(code,code_error,stack,data,boot» &
noinitcode &
start(firststage) &

& ; change above line to start(boot_186) if iAPX 186 INIT is invoked &
segsize(boot(1800H» &
map print(:f1:bsl.mp2) &
; Add "bootstrap" to loc86 when locating the first stage in ROM

Figure 2-2. First Stage Configuration File BS1.CSD

Bootstrap Loader 2-9

,
exit

CONFIGURATION

Bootstrap Loader first stage generation complete.

Figure 2-2. First Stage Configuration File BS1.CSD (continued)

The 16-bi t add:ress of the base port used by the
baud rate timer. This port varies according to
the type of the device and, if applicable, the
channel used on the device, as follows:

8253
8254
80130
80186
82530 Channel A
82530 Channel B

Counter 0 Count Register Port
Counter 0 Count Register Port
ICW1 Register Port
Use OFFOOH on all Intel boards
Channel A Command Register Port
Channel B Command Register Port

counter_port_delta The number of bytes between consecutive ports
used by the timer.

baud counter The baud rate-generating counter on the timer.

count

flags

The devices and the counters you can specify for
them are as follows:

8253
8254
80130
80186
82530

0,
0,
2
0,
0

1, and 2
1 , and 2

1

A value that, when loaded into the timer
register, gene:rates the desired baud rate. The
method of calculating this value is described in
the paragraphs following these parameter
definitions.

A value tha t, ,~hen present, specif ies which
channel of an 82530 Serial Communications
Controller will serve as your serial controller.
If you give any value except 82530 for the
serial_type parameter, omit this parameter; that
is, write the macro as if the count parameter is
the last paramt~ter. If you give 82530 as the
value of the st~rial type parame ter, specify A
(for Channel A) or ~ (for Channel B) for this
parameter.

Bootstrap Loader 2-10

CONFIGURATION

To derive the correct value for the count parameter, you must perform a
short series of computations. The starting values for these computations
are the des ired baud ra tE~ and the clock inpu t frequency to the timer.

The firs t compu ta tion yie~lds a temporary value and depends upon the timer
used, as follows:

temporary_value (clock frequency in Hertz)/(baud rate x 16)

if the timer is an 8253, 8254, 80130, or 80186, but

temporary_value = «c.lock frequency in Hertz)/(baud rate x 2» - 2

if the timer is an 82530.

The second computation yields the fractional part of the temporary value,
as follows:

fraction = temporary_.value - INT (temporary_value)

where the INT function gives the integcar portion of temporary_value.

The third and fourth computations yield the desired count value and
another value, called error fraction. The error fraction value is then
used to de termine whe ther the calcula tc~d count value is feas i ble, given
the clock frequency specified in the f:irst computation. These
computations, which are performed according to the size of the value of
"fraction" from the second computation, are as follows:

count = INT (result) + 1
error fraction = 1 - fraction

if the value of "fraction" is greater than or equal to .5, but

count = INT (result)
error fraction = fraction

if the value of "fraction" is less than .5.

The fifth and fi~al computation, which yields the percentage of error
that occurs when the given clock frequency is used to generate the given
baud rate, is as follows:

% error = (error_fraction / count) x 100

If the % error value is less than 3, then the calculated count value is
appropriate and will lead to the desired baud rate being generated by the
specified clock frequency. However, if the % error value is 3 or
greater, you must do either or both of the following two things:

• Provide a higher clock frequency

• Select a lower baud rate

Bootstrap Loader 2-11

CONFIGURATION

After choosing one or both of these options, go through the series of
computations again so as to get a new value of "count" and to see whether
the revised value of "% error" is less than 3.

Continue this process -- raise the clock frequency and/or lower the baud
ra te, then do the compu ta tions -- un til you finally ge t a "% error" value
lower than 3.

The % SERIAL CHANNEL macro can generate the following error messages:

ERROR - invalid port delta for the Serial Device
ERROR - <ser type) is an invalid Serial Port type
ERROR - Invalid port delta for the Baud Rate Timer
ERROR - 8253/4 Baud Rate Counter is not 0, 1, or 2
ERROR - 2 is the only valid 80130 Baud Rate Timer
ERROR - 80186 counter counter type is not a valid baud rate counter
ERROR - <counter type) is an invalid Baud Rate Timer type
ERROR - Counter 0' is the only valid. 82530 baud rate counter
ERROR - 82530 channel must be specified as A or B only
ERROR - Baud Rate Count must be greater than 1

%DEVICE MACRO

The %DEVICE macro defines a device unit from which your application
system can be bootstrap loaded. If the: BS1.A86 file contains multiple
%DEVICE macros, their order in the file: is the order in which the firs t
stage searches for a ready device unit. Recall that mUltiple %DEVICE
macros may be included only if the %AUTO or %MANUAL macro is included.
(Otherwise, there is an assembly error when the BS1.CSD file runs.) The
form of the %DEVICE macro is:

%DEVICE(name, uni t, device$ini t, de:vice$read)

where:

name

unit

The physical na.me of the device, not enclosed in
quotes or between colons. The first stage passes
the physical na.me to the second stage, which, in
turn, passes it to the load file. If the
Automatic Boot Device Recognition (see Appendix
A) capabili ty :I.s configured into the load file,
then the physieal names in the %DEVICE macro
invocations must match the device unit names in
the load file. Otherwise, the load file will not
initialize properly and could "hang."

The number of this unit on this device.

Bootstrap Loader 2-12

device$init

device$read

%END MACRO

CONFIGURATION

The name of the device$init procedure of the
device driver the first stage will call for this
device unit. If you are using an Intel-supplied
driver, specify the procedure name as shown in
Figure 2-1. (You may omit the "gen" suffix; see
the discussion of this topic earlier in this
ehapter.) If you are supplying your own driver,
which you have written in accordance with the
lnstructions in Chapter 4, use the name of the
initialization procedure.

The name of the device$read procedure of the
device driver the first stage will call for this
device unit. If you are using an Intel-supplied
driver, specify the procedure name as shown in
Figure 2-1. (You may omit the "gen" suffix; see
the discussion of this topic earlier in this
chapter.) If you are supplying your own driver,
which you have written in accordance with the
i.ns truc tions in Chap ter 4, use the name of the
read procedure.

The %END macro is required at the end of the BS1.A86 and BSERR.A86
assembly language source files. Its form is:

%END

BSERR.A86 CONFIGURATION FILE

The BSERR.A86 file, shown in Figure 2-3, defines what the first stage of
the Bootstrap Loader does if it cannot load the load file.

name bserr

$include(:f1:bserr.inc)

;console
%text
%list

%again
;int3
;halt

%end

Figure 2-3. First Stage Configuration File BSERR.A86

Bootstrap Loader 2-13

CONFIGURATION

The BSERR.A86 file consists of an INCLL'DE statement and several macros.
The BSERR.INC file in the INCLUDE statement contains the definitions of
the macros in the BSERR.A86 file.

The following sections describe the functions of the macros in the
BSERR.A86 file. For each macro, if a percent sign (%) precedes the name,
then the macro is included (invoked). If a semicolon (;) precedes the
name, then the macro is treated as a comment and is not included.

The first three macros, %CONSOLE, %TEX1, and %LIST, determine what the
Bootstrap Loader displays at the console whenever a bootstrap loading
error occurs. The other three macros, %AGAIN, %INT3, and %HALT,
determine what recovery steps, if any, the Bootstrap Loader takes
whenever a bootstrap loading error occurs. Only one of the latter three
macros can be included in the BSERR.A86 file.

%CONSOLE MACRO

The %CONSOLE macro causes the Bootstrap Loader to display a brief message
at the console whenever a bootstrap loading error occurs. This message
indicates the nature of the error. The messages are given in Chapter 3.
The form of the %CONSOLE macro is:

%CONSOLE

This %CONSOLE macro is completely unrelated to the %CONSOLE macro in the
BS1.A86 file. Be careful not to confuse them with each other.

%TEXT MACRO

The %TEXT macro resembles the %CONSOLE macro in that it causes the
Bootstrap Loader to display a message at the console whenever a bootstrap
loading error occurs. The advantage of the %TEXT macro is that its
messages are longer and more descriptive. The disadvantage of the %TEXT
macro is that it generates more code and therefore makes the assembled
BSERR.OBJ file larger. The %TEXT macro has the form:

%TEXT

If you include the %TEXT macro, the %CONSOLE macro is automatically
included, as well.

Bootstrap Loader 2-14

CONFIGURATION

%LIST MACRO

The %LIST macro causes the Bootstrap Loader to display a list of the
ready device units whenever the operator enters an invalid device unit
name. You may include this macro only if you include the %MANUAL macro
in the BSl.A86 file, described earlier in this chapter. The %LIST macro
has the form:

%LIST

If you include the %LIS1' macro, the %CONSOLE and %TEXT macros are
automatically included, as well.

%AGAIN MACRO

The %AGAIN macro causes the bootstrap loading sequence to return to the
beginning of the first stage whenever a bootstrap loading error occurs.
It is a good idea to include this macro if you include the %CONSOLE macro
in the BSERR.A86 file, either directly or by including the %TEXT or %LIST
macro. The form of the %AGAIN macro is:

%AGAIN

Exactly one of the %AGAIN, %INT3, and %HALT macros must be included, or
there will be an assembly error when the BSl.CSD file runs.

%INT3 MACRO

The %INT3 macro causes the Bootstrap Loader to execute an INT 3 (software
interrupt) instruction whenever a bootstrap loading error occurs. If you
are using the iSDM 86 or iSDM 286 System Debug Monitor or the iSBC 957B
package, then the INT 3 instruction passes control to the monitor.
Otherwise, the INT 3 instruction will not produce the desired results
unless you have placed the appropriate address in position 3 of the
interrupt vector table. The form of the %INT3 macro is:

%INT3

Exactly one of the %AGAIN, %INT3, and %HALT macros must be included, or
there will be an assembly error when the BSl.CSD file runs.

The %INT3 macro and the %HALT macro (dc~scribed next) are reasonable
choices if none of the %CONSOLE, %TEXT, and %LIST macros are included in
the BSERR.A86 file.

Bootstrap Loader 2-15

CONFIGURATION

%HALT MACRO

The %HALT macro causes the Bootstrap Loader to execute a halt instruction
whenever a bootstrap loading error occurs. The form of the %HALT macro
is:

%HALT

Exactly one of the %AGAIN, %INT3, and ~'HALT macros must be included, or
there will be an assembly error when the BSl.CSD file runs.

The %HALT macro and the %INT3 macro arE~ reasonable choices if none of the
%CONSOLE, %TEXT, and %LIST macros are included in the BSERR.A86 file.

INTEL-SUPPLIED DEVICE DRIVER CONFIGURATION FILES

There is a separate configuration file for each device driver provided
with the Bootstrap Loader. These fileB are named B204.A86, B206.A86,
B208.A86, B215.A86, B218.A86, B251.A86" B254.A86, BSASI.A86, and
BSCSI.A86. Each consists of an include statement and a macro call. The
include statement always has the form:

$include(:fl:bxxx.inc)

where:

xxx Either 204, 206, 208, 215, 218, 251, 254, SASI,
or SCSI, depending upon the device driver.

The macro call has a form that depends upon the device driver. This form
is discussed in the following sections. The default parameter values for
the macros in these sections are compat.ible with the default parameter
values of the iRMX 86 Interactive Conflguration Utility.

%B204 MACRO

The %B204 macro has the form:

%B204(io_base, sector_size, track size)

where:

io base

sector size

track size

I/O port qddress selected (jumpered) on the iSBC
204 controller board.

Sector size for the device, in bytes.

Track size for the device, in bytes.

Bootstrap Loader 2-16

CONFIGURATION

The default form of this macro in the B204.A86 file is:

%B204(OAOH, 128, 26)

%B206 MACRO

The %B206 macro has the form:

where:

io base I/O port address selected (jumpered) on the iSBC
206 controller board.

The default form of this macro in the B206.A86 file is:

%B206(068H)

%B208 MACRO

The %B208 macro has the form:

where:

io base I/O port address selected (jumpered) on the iSBC
208 controller board.

The default form of this macro in the B208.A86 file is:

%B208(180H)

%B215 AND %B220 MACROS

The B215.A86 file contains two macros, of which you can use only one.
They are the %B215 and the %B220 macros. Both of them have the form:

%Bxxx(wakeup, cylinders, fixed heads, removable_heads, sectors,
dev_gran, alternates) -

where:

xxx Either 215 or 220.

wakeup Base address of the wakeup port

Bootstrap Loader 2-17

cylinders

fixed heads

removable heads

sectors

al terna tes

CONFIGURATION

Number of cylinders on the disk drive or drives.
(Note that, if your %DEVICE macro for 215 or 220
devices in the BS1.A86 file has deviceunit215
(rather than dE~viceunit215gen) as its third
parameter, then all iSBC 215 or iSBC 220 drives
used by the Bootstrap Loader must have the same
characteristicB. That is, they must have the
same number of cylinders per platter, fixed
heads, removable heads, sectors per track, bytes
per sector, and alternate cylinders. However, if
the %DEVICE maero specifies deviceunit215gen,
these res trict:lons do not apply and these values
are no t used.)

Number of heads on fixed platters.

Number of heads on removable platters.

Number of sectors per track.

Number of bytes per sector.

Number of cylinders set aside as backups for
cylinders having imperfections.

In the B215.A86 file, the default form of the %B215 macro is:

%B215(100H, 256, 2, 0,9, 1024, 5)

and the default form of the %B220 macro is:

%B220(100H, 256, 2, 0, 9, 1024, 5)

%B218 MACRO

The %B218 macro has the form:

where:

The base port address of this device unit, as
selected on the iSBX 218A controller board.

A value indicating whether the motor of a 5 1/4"
flexible diskette drive should be turned off
after bootstrap loading. Specify Yes, which
slows bootstrap loading, only if this device is
not the system device. For Yes, specify OFFH,
and for No, specify O.

The default form of this macro in the :B218.A86 file is:

%B218(80H, OOH)

Bootstrap Loader 2-18

CONFIGURATION

%B251 MACRO

The %B251 macro has the form:

where:

io base I/O port address selected (jumpered) on the iSBX
251 controller board.

Page size, in bytes.

The default form of this macro in the B251.A86 file is:

%B251(80H, 64)

%B254 MACRO

The %B254 macro has the form:

%B254(io_base, de v_gran , num_boards, board size)

where:

io base

num boards

board size

I/O port address selected (jumpered) on the iSBC
254 controller board.

Page size, in bytes.

Number of boards grouped in a single device unit.

Number of pages in one iSBC 254 board.

The default form of this macro in the B254.A86 file is:

%B254(0880H, 256, 8, 2048)

%BSASI MACRO

The %BSASI macro has the form:

%BSASI(ayort, bJort, c_port, control-port, ini t_command,
ini t_byte_count, ini t_bytes)

where:

ayort The address of Port A of the 8255 Programmable
Peripheral Interface (PPI) used by this SASI
driver.

Bootstrap Loader 2-19

byort

cyort

control-port

init command

init_byte_
count

CONFIGURATION

The address of Port B of the 8255 PPI used by
this SASI driver.

The address of Port C of the 8255 PPI used by
this SASI driver.

The address of the control word register of the
8255 PPI used by this SASI driver.

The command that initializes the controller. (If
the controller does not require initialization,
use the SCSI driver instead of the SASI driver.)
For the initialization command, look in the
owner's manual for the controller. It might be
labelled there either as a "command" or as an
"opcode."

The number of initialization bytes that follow
this parame ter.

A list of initialization bytes, separated by
commas, that define the characteristics of the
drive. These values depend upon both the type of
the controller and the type of the drive. The
values can be found in the owner's manual for the
con troller.

NOTE

The BSASI macro is different than the
other macros in that, if there are
multiple occurrences of it in the
BSASI.A86 file, then the corresponding
devices must be either identical or
completely compatible. That is, the
devices must have identical
specifications and can differ only in
their unit number.

The default form of this macro in the BSASI.A86 file is:

%BSASI(C8H, CAH, CCH, CEH, OCH, 8, 01H, 32H, 6, 0, OFFH, 0,
OFFH, OBH)

This default macro definition is for a Xebec S1410 5 1/4-inch Winchester
disk controller and a Computer Memories, Inc. CMI-5419 19-megabyte
Winchester disk drive.

Bootstrap Loader 2-20

CONFIGURATION

%BSCSI MACRO

The %BSCSI macro has the form:

where:

cyort

host-id

arbi trate

The address of Port A of the 8255 Programmable
Peripheral Interface (PPI) used by this SCSI
driver.

The address of Port B of the 8255 PPI used by
this SCSI driver ..

The address of Port C of the 8255 PPI used by
this SCSI driver ..

The address of the control word register of the
8255 PPI used by this SCSI driver.

The ID of the host computer on the SCSI bus.

A flag indicating whether bus arbitration is
supported. Set to 0, which signifies that bus
arbitration is not supported.

The SCSI driver can be used to bootstrap load from any Winchester device
on the SCSI bus.

The default form of this macro in the BSCSI.A86 file is:

%BSCSI(C8H, CAH, CCH, CEH, 80H, OOH)

The default macro definition is for an iSBC 186/03 board.

USER-SUPPLIED DRIVERS

If you want to bootstrap load your system from a device other than one
controlled by an iSBC 204, 206, 208, 215, 218A, 220, 251, or 254 board,
or one that interfaces with the SASI or SCSI driver, you must write your
own ini t and read device driver procedure:s. In addi tion, you mus t
specify their procedure names in the %DEVICE macro in the BS1.A86 file,
and you must assemble them and link them to the rest of the Bootstrap
Loader object files and libraries. Chapter 4 describes how to write the
device driver procedures.

Bootstrap Loader 2-21

CONFIGURATION

GENERATING THE BOOTSTRAP LOADER SYSTEM

To generate the bootstrap loading system, enter the command

SUBMIT BSl.CSD(first_stage_address, second_stage_address)

where the parameters specify the low-memory addresses of the stages.

The size of the first stage area depends upon the device drivers in the
first stage. If you use Intel-supplied drivers, the size is always less
than 8K bytes, even with all of the drivers configured in at once.

Recall that the first stage can be either in PROM or in RAM.
The second stage area, which includes the code of the second stage and
the data areas for both stages, consists of slightly less than 8K
contiguous bytes. The second stage always resides in RAM.

Bootstrap Loader 2-22

I

• C) CHAPTER 3
USING TIHE BOOTSTRAP LOADER

This chapter describes how to set up and invoke the Bootstrap Loader and
what to do if it fails to perform as expected.

PREPARING TO USE THE BOOTSTRAP LOADER

There are four ways to bootstrap load your application. The key to each
of these methods is the first stage of the Bootstrap Loader: where you
put it and how you invoke it. The four methods are as follows:

• Place the first stage, configured for standalone operation, in
PROM. In this case, bootstrap loading commences -- that is, the
firs t stage begins to run -- \lThen you turn on the sys tern
hardware or press the RESET button.

• Place the first stage in secondary storage, and then load it by
means of external commands. Doing this requires you to use the
iSDM 86, iSDM 286, or iSBC 957B monitor, or an ICE in-circuit
emulator, first to load the first stage into RAM and then to
invoke the first stage.

• Augment the iSDM 86, iSDM 286,. or iSBC 957B monitor by
reconfiguring the first stage of the Bootstrap Loader to include
the device driver(s) needed for bootstrap loading, and program
new PROMs with the combination of the monitor and the first
stage of the Bootstrap Loader.. With this method, you initiate
bootstrap loading by means of the B command of the monitor.

• Place the first stage in secondary storage, and then load it
programmatically.

In the first method, you must add the BOOTSTRAP control to the LOC86
command used in the BS1.CSD file, as indicated in the last comment in
that file. Otherwise, each of the first two methods is straightforward
and therefore is not described in this manual.

The instructions for using the third mE~thod lie outside of this chapter.
To use this method with the iSDM 86 monitor, follow the instructions
given in the iSDM 86 SYSTEM DEBUG MONITOR REFERENCE MANUAL. In addition,
Appendix B of this manual has a short section that describes a required
modification of a file that is listed in the iSDM 86 manual.

To use the third method with the iSDM 286 monitor, refer to Appendix B of
this manual, as well as the iSDM 286 SYSTEM DEBUG MONITOR REFERENCE
MANUAL.

Bootstrap Loader 3-1

USING THE BOOTSTRAP LOADER

To use the third method with the iSBC 957B monitor, follow the directions
given in the USER'S GUIDE FOR THE iSBC 957B iAPX 86, 88 INTERFACE AND
EXECUTION PACKAGE.

Note that error handling, as described later in this chapter, does not
take place when you use the third method of bootstrap loading with the
iSBC 957B package.

The rest of this section gives instructions for using the fourth method.

Although bootstrap loading is performed usually in response to an
external event, it can be initiated by an executing program by means of a
call to the PUBLIC symbol BOOTSTRAP ENTRY. To prepare for such a call,
do the following:

• Place a call to BOOTSTRAP ENTRY in the code of the invoking
program, and define BOOTSTRAP ENTRY as an EXTERNAL symbol
there. The form of the call is:

CALL BOOTSTRAP ENTRY(@filename)

where:

filename An ASCII 13 tring con taining ei ther the
pathname of the load file followed by a
carriage return, or only a carriage return.
If the s t:ring contains only a carriage
return, then the default file, as defined by
the %DEFAULTFILE macro in the BSl.A86
configuration file, is loaded. Otherwise,
the file ,,,hose pa thname is contained in the
string is loaded.

The call mus t follow the PL/M--86 LARGE model of segmen ta tion.
(Even though this is a call, rather than a jump, it does not
return.)

• Link the calling program to a version of the first stage of the
Bootstrap Loader. You can do this by following the BSl.CSD file
as a model, with the following changes:

Place the calling program in the link sequence.

If appropriate, "comment out" the locate sequence.

OPERATOR'S ROLE IN BOOTSTRAP LOADING

Depending upon the method used for Bootstrap Loading, an operator might
be required to enter the name of the bootstrap device, the name of the
load file, or both names. (Another pOBsibility, depending upon how the
Bootstrap Loader is configured, is that the operator can enter neither
device name nor file name. This section refers to what the operator
enters as the specification of the load file.) Along with the
specifica tion of the load file, the opE~ra tor can specify, by means of the

Bootstrap Loader 3-2

USING THE BOOTSTRAP LOADER

Debug switch, that control should pass to the monitor after loading has
been completed. These are the subjects of this section.

SPECIFYING THE LOAD FILE

There are two times at which an operator can enter the specification of a
load file. One time is when one of the monitors has issued a period (.)
prompt. In that case, the operator can enter the monitor's B (bootstrap)
command, followed by the specification. The other time is when the first
stage of the Bootstrap Loader has issued an asterisk (*) prompt at the
terminal. When this prompt appears on the screen, the first stage waits
for an operator to enter the specification of the load file.

Once the period or asterisk prompt has been issued, the specification
that the operator enters depends three things. They are:

• Which file is the load file.

• Which device unit contains the load file.

• Which of the %CONSOLE, %MANUAL, and %AUTO macros were in the
BSl.A86 file when the present configuration of the Bootstrap
Loader was defined.

For a discussion of the possible operator actions and their effects, see
the description of the %CONSOLE, %MANUAL, and %AUTO macros in Chapter 2.

THE DEBUG SWITCH

Along with the specification of the load file, the operator can include
the Bootstrap Loader's Debug (D) switch. When specified, the Debug
switch instructs the second stage of the Bootstrap Loader to do the
following immediately after loading has been completed:

• Set a breakpoint at the first instruction to be executed by the
sys tern.

• Pass control to the monitor, which displays a "*BREAK* at
xxxx:xxxx" (iSDM 86 and iSBC 957B monitors) or an "Interrupt 3
at <xxxx:xxxx)" (iSDM 286 monitor) message at the terminal,
issues its prompt, and waits for a command from the terminal.
(To start up the loaded system, enter "G<cr)".)

One advantage of the Debug switch is that the monitor's message tells you
that the loading process is successful. When a system fails, it is
sometimes difficult to determine whether the bootstrap loading was
unsuccessful or whether the system loaded successfully and then failed
during initialization. The presence or absence of the message makes this
clear when you use the Debug switch.

The Debug switch also allows you to alter the contents of specific memory
locations before your system begins to run.

Bootstrap Loader 3-3

USING THE BOOTSTRAP LOADER

To use the Debug switch with a monitor's period (.) prompt, follow the B
command in the command line by the letter "D", which, in turn, can be
followed by the pathname of the load f:l1e. For example, any of the
following command lines invokes the Bootstrap Loader with the Debug
switch:

.bd

.b d

.bd Isystem/rmx86

.b d :wO:system/rmx86

Similarly, the way to use the Debug sw:itch with the first stage's
asterisk (*) prompt is to precede the load file specification with the
letter "D." Examples of this are:

*d

-k d

*d Isystem/rmx86

* d :wO:system/rmx86

The only restriction concerning the use of spaces in these command lines
is that there must be a space between the letter "D" and the pathname of
the load file.

Note that the Debug switch is available only in second stages residing on
secondary storage volumes tha t have be4~n forma t ted using the Release 6
(or later) versions of the iRMX 86 Format command. If you use the Debug
swi tch wi th older second stages, the l4~ t ter "D" is ignored, and the
loadfile is loaded and run without the effects the Debug switch has when
used with Release 6-compatible volumes.

ANALYZING BOOTSTRAP LOADING FAILURES

The Bootstrap Loader has the ability to display messages on the screen
when bootstrap loading is not successful. As you saw in Chapter 2, the
%CONSOLE, %TEXT, and %LIST macros in the BSERR.A86 file determine whether
such messages are to be displayed, how detailed the messages are, and
under wha t circums tances they are to b4~ displayed. This sec tion
describes two ways of analyzing bootstrap loading errors: first, when
messages are being displayed; and second, when there are no messages.

After responding to an error by pushing a word onto the stack and
optionally displaying a message, the Bootstrap Loader either tries again,
passes control to a monitor, or halts, depending upon whether your
BSERR.A86 file contains a %AGAIN, %INT.3, or %HALT macro.

Bootstrap Loader 3-4

USING THE BOOTSTRAP LOADER

WITH DISPLAYED ERROR MESSAGES

If your BSERR.A86 file contains the %CONSOLE, %TEXT, or %LI8T macro, then
the Bootstrap Loader displays an error message at your terminal whenever
a failure occurs in the bootstrap loading process. The message consists
of one or two parts. The: first part, lwhich is always displayed, is a
numerical error code. The second part, which is displayed only if the
%TEXT or %LIST macro was included, is a short verbal description of the
error.

Each numerical error code has two digits. The first digit indicates, if
possible, the stage of the bootstrap loading process where the error
occurred. The second digit distinguishes among types of errors that can
occur in a particular stage. There arle three poss i ble values for the
first digit:

First Digit

o
1
2

Stage

Can' t tell
First
Second

The error codes, their abbreviated display messages, and their causes and
meanings are as follows.

Error Code: 01
Description: I/O error

An I/O error occurred at some undetermined time during the bootstrap
loading process, but it is not clear when the error occurred. To
help you further diagnose this problem if the %CONSOLE macro is
included, the Bootstrap Loader plaees a code in the high-order byte
of the word it pushes onto the staek. This byte identifies the
driver for the device that produced the error, as follows:

Code Driver

04H 204
06H 206
08H 208
15H 215 (with or without 218A) or 220
18H 218A on CPU board
51H 251
54H 254

OEOH SCSI
OEIH SASI

other (in range AOH-DFH) drlver for your custom device

Note that this device code is overwritten during the printing of the
description in case the %TEXT or %1.1ST macro has been included.

The last entry in the list of deviee codes assumes that you have
written a device driver for your device and have identified the
driver by some code in the indicated range -- other values are
reserved for Intel drivers. For information about how to incorporate
this code into the driver, see Chapter 4.

Bootstrap Loader 3-5

USING THE BOOTSTRAP LOADER

Error Code: 11
Description: Device not ready.

The specific device designated for bootstrap loading is not ready.
This error occurs only when your BSERR.A86 file does not contain the
%AUTO macro. Therefore, either the operator has specified a
particular device or there is only one device in the Bootstrap
Loader's device list, and the device is not ready.

Error Code: 12
Description: Device does not exist. (If BSERR.A86 contains the %LIST

macro, the display then shows the list of known devices.)

The device name entered at the console does not have an entry in the
Bootstrap Loader's device list. Tbis error occurs only when your
BSERR.A86 file contains the %MANUAL macro and you enter a device
name, but the device name you entered is not known to the Bootstrap
Loader. After displaying the message, the Bootstrap Loader displays
the names of the devices in its device list.

Error Code: 13
Description: No device ready.

None of the devices in the Boo ts tra p Loader's device lis t are ready.
This error occurs only when your BSERR.A86 file contains the %AUTO or
%MANUAL macro and you do not enter a device name at the console.

Error Code: 21
Description: File not found.

The Bootstrap loader was not able to find the indicated file on the
designated bootstrap device. This is the default file if no pathname
was entered at the console. Other"rise, it is the file whose pathname
was entered.

Error Code: 22
Description: Bad checksum.

While trying to load the load file, the Bootstrap Loader encountered
a checksum error. Each file consists of several records, and
associated with each record is a checksum value that specifies the
numerical sum (ignoring overflows) of the bytes in the record. When
the Bootstrap Loader loads a file, it computes a checksum value for
each record and compares that value to the recorded checksum value.
If there is a discrepancy for any record in the file, it usually
means that one or more bytes of the file have been corrupted, so the
Bootstrap Loader returns this message instead of continuing the
loading process.

Error Code: 23
Description: Premature end of file.

The Bootstrap Loader did not find the required end-of-file records at
the end of the load file.

Bootstrap Loader 3-6

USING THE BOOTSTRAP LOADER

Error Code: 24
Description: No start address found in input file.

The Bootstrap Loader successfully loaded the load file but was unable
to transfer control to the file because when it got to the end of the
file it still had not found initial CS and IP values.

WITHOUT DISPLAYED ERROR MESSAGES

In most cases, by observing the behavior of the Bootstrap Lo~der when it
fails to load the application successfully, you can determine the cause
of the failure and take steps to correct it. Table 3-1 shows the
correlation between the behavior of the Bootstrap Loader and most of the
possible causes of its failure. The table assumes that the Bootstrap
Loader is set up to halt if it detects an error. Before halting, the
Bootstrap Loader places the error code into the CX register.

Another possible cause of failure of the Bootstrap Loader, the effects of
which are completely unpredictable, is that the device controller block
(as determined by the device's wake-up address) can be corrupted. To
avoid this kind of failure, see that neither the second stage nor the
load file overlaps the device controller block for the device.

Bootstrap Loader 3-7

USING THE BOOTSTRAP LOADER

Table 3-1. Postmortem Analysis Of Bootstrap Loader Failure

r---------------------------------~---.-

Behavior Of Loader

Bootstrap loading fails
in the first stage.

Bootstrap loading fails
in the second stage.

Bootstrap Loader enters
second stage, but does not
halt or pass control to
the loaded file.

Possible Causes

The indicated device is not ready
or is not known to the Bootstrap
Loader.

An I/O error occurred during the
first stage operation.

The indicated file is not on the
device.

The file had no end-of-file record
or no start address.

The file contained a checksum
error.

An I/O error occurred during the
second stage operation.

The Bootstrap Loader is
attempting to load the system on
top of the second stage.

The Bootstrap Loader is attempting
to load the system into
nonexistent memory.

Bootstrap Loader 3-8

CHAPTER 4
WRITING A DRIVER

FOR A BOOT!;TRAP LOADING DEVICE

The iRMX 86 Bootstrap Loader can be configured to run with many kinds of
devices. If you plan to use one of the devices for which Intel supplies
a device driver, you may skip this chapter.

If you want to use the Bootstrap Loader with a device other than those
supported by Intel, you must write YOUlC own device driver. The purpose
of this section is to provide you with guidelines for writing a
customized driver.

Two procedures must be included in every device driver for the Bootstrap
Loader. The initialization procedure initializes the bootstrap device.
The reading procedure loads information from the device into RAM.

The rest of this chapter refers to the two procedures as DEVICE$INIT, and
DEVICE$READ. However, you can give them any names you want during
configuration. You must specify each of their names in a %DEVICE macro
in the BS1.A86 file.

Both device driver procedures must conform to the LARGE model of
segmentation of the PL/M-86 programming language. This means that the
procedures must be FAR (not NEAR) and all pointers must be 32 bits long.

You may write the procedures in assembly language, rather than in
PL/M-86, bu t if you do, you mus t adher«~ to the in terfacing and
referencing conventions of the PL/M-86 LARGE model.

DEVICE$INIT PROCEDURE

The DEVICE$INIT procedure must present the following PL/M-86 interface to
the Bootstrap Loader:

where:

unit

DEVICE$INIT: PROCEDURE (unit) WORD PUBLIC;
DECLARE unit WORD;

• (code)

END DEVICE$INIT;

The device's unit number, as defined during
Bootstrap Loader configuration.

Bootstrap Loader 4-1

WRITING A DRIVER FOR A BOOTSTRAP LOADING DEVICE

The WORD value returned by the procedure must be the device granularity,
in by tes, if the device is ready, or ZE~ro if the device is no t ready.

The following outline shows the steps that the DEVICE$INIT procedure must
perform to be compatible with the Boot8trap Loader:

1. Test to see if the device is present. If it is not, return the
value zero.

2. Initialize the device for reading. This is a device-dependent
operation. For guidance in initializing the device, refer to
the hardware reference manual for the device.

3. Test to see if device initialization was successful. If it was
not, return the value zero.

4. Obtain the device granularity. For some devices, only one
granulari ty is possible, whilE~ for others several granulari ties
are possible. This is a device-dependent issue that is
explained in the hardware refE~rence manual for your device.

5. Return the device granularity.

D~VICE$READ PROCEDURE

The DEVICE$READ procedure must present the following PL/M-86 interface to
the Bootstrap Loader:

DEVICE$READ: PROCEDURE (unit, blknum, bufptr) PUBLIC;
DECLARE unit WORD,

• (code)

END DEVICE$READ;

where:

unit

blk$num

buf$p tr

blk$num DWORD,
buf$ptr POINTER;

The device's unit number, as defined during
configuration.

A 32-bit number specifying the number of the
block that the Bootstrap Loader wants the
procedure to read.

A 32-bit POINTER to the buffer that is to receive
the information from the secondary storage device$

The DEVICE$READ procedure does not return a value to the caller.

Bootstrap Loader 4-2

WRITING A DRIVER FOR A BOOTSTRAP LOADING DEVICE

The following outline shows the steps that the DEVICE$READ procedure must
perform to be compatible with the Bootstrap Loader:

1. Read the block specified by the blk$num parameters from the
bootstrap device specified by the unit parameter into the memory
location specified by the buf$ptr parameter.

2. Check for 110 errors. If nonE~ occurred, re turn to the caller.
Otherwise, combine the device code, if any, for the device with
01 (in the form <device code)OI), push the resulting word value
onto the stack, and call the BSERROR procedure. For example, if
the device code is OB3H, push B301H onto the stack. If there
isn't a device code, use 00.

In PL/M-86, adding the following statements will accomplish this:

DECLARE BSERROR EXTERNAL;
DECLARE 10 ERROR LITERALLY 'OB301H';

CALL BSERROR(IO~RROR);

If you are calling the BSERROR procedure from assembly language,
note that BSERROR follows the PL/M-86 LARGE model of
segmentation; that is, declare BSERROR as:

extrn bserror:far

Bootstrap Loader 4-3

APPENDIX A
AUTOMATIC BOO-r DEVICE RECOGNITION

Automatic boot device recognition allows the iRMX 86 Operating System to
recognize the device from which it was bootstrap loaded and to assign a
logical name (normally :SD:) to represent that device.

If you use this feature, you can configure versions of the Operating
System that are device independent, that is, versions you can load and
run from any device your system supports.

This section describes thE~ au toma tic boot device recogni tion fea ture in
detail. It consolidates the information found in the other iRMX 86
manuals and answers the following questions:

• How does automatic boot device recognition work?

• How do you configure a version of the Operating System that
includes this feature?

HOW AUTOMATIC BOOT DEVICE RECOGNITION WORKS

The Nucleus, the Extended I/O System, and the second stage of the
Bootstrap Loader combine to provide the automatic boot device recognition
feature, as follows:

1. The second stage of the Bootstrap Loader, after loading the
Operating System, places a pointer in the DI:SI register pair.
This pointer points to a string containing the name of device
from which the system was loaded. The name it uses is the one
you (or whoever performed the configuration) supplied as a
parameter in the %DEVICE macro when configuring the Bootstrap
Loader.

2. The second stage sets the CX and DX registers to the value
1234H. This value signifies that the pointer contained in the
DI:SI register pair is valid.

3. The root job checks CX and DX and then, if both contain 1234H,
uses the pointer in DI:SI to obtain the device name. The root
job sets a Boolean variable to indicate whether it found the
name of the boot device.

4. The Nucleus checks the root job's Boolean variable and, if it is
true (equal to OFFH) , places the device name in a segment and
catalogs that segment in the root job's object directory under
the name RQBOOTED.

Bootstrap Loader A-I

AUTOMATIC BOOT DEVICE RECOGNITION

5. The Extended I/O System looks up the name RQBOOTED and, if
successful, obtains the device name from the segment cataloged
there. If the name RQBOOTED Is not cataloged in the root
directory, the Extended I/O System uses a default device name
that you must have specified during the configuration of the
Extended I/O System (DPN prompt of the "EIOS" screen).

6. The Extended I/O System attaches the device as the system
device, ass igning it the logi,:al name tha t you mus t have
specified during the configuration of the Extended I/O System
(DLN promp t on the "EIOS" scrl~en).

HOW TO INCLUDE AUTOMATIC BOOT DEVICE RECOGNITION IN YOUR SYSTEM

This section describes the operations you must perform to include the
automatic boot device recognition feature in your application. The
operations include:

---)
---)

---)
---)

---)

• The "EIOS" screen (see Figure A-I) contains several prompts that
affect the automatic boot device recognition feature. They are:
ABR, DLN, DPN, DFD, and DO.

With the ABR prompt, you specify whether you want to include the
automatic boot device recognition feature in your system. If
you set ABR to "yes," the Extended I/O System automatically
attaches the system device using the characteristics specified
in the DLN, DFD, and DO prompts. You must not supply this
information later in the "Logical Names" screen.

If you set ABR to "no," the Extended I/O System does not attach
a system device. In this case, the ICU does not display the
DLN, DPN, DFD, and DO prompts.

EIOS
(ASC) All Sys Calls in EIOS Req
(ABR) Au toma tic Boo t Device Recognition [Yes/No] Yes
(DLN) Default System Device Logical Name [1-12 characters] SD
(DPN) Default System Device Physical Name [1-12 characters] wO
(DFD) Default System Device File Driver [Phys/Str/Named] Named
(DO) Default System Device Owners ID [O-OFFFFH] OOOOH
(EBS) Internal Buffer Size [O-OFFFFhJ 0400H
(DDS) Default 10 Job Directory Size [5-0FFOh] 0032H
(ITP) Internal EIOS Task's Priorities [O-FFHl 0083H
(PMI) EIOS Pool Minimum [O-OFFFFHl 0180H
(PMA) EIOS Pool Maximum [O-OFFFFHl 0180H
(EIR) Extended I/O System in ROM [Yes/No] No

Figure A-I. EIOS Configuration Scrleen (ABR, DLN, DPN, DED, and DO)

Bootstrap Loader A-2

AUTOMATIC BOOT DEVICE RECOGNITION

With the DLN prompt, you can specify the logical name for your
system device. If you change this value from the default (SD),
you must change all other references to the :SD: logical name to
the new name you specify. The Extended I/O System creates the
logical name you specify only if you set ABR to "yes."

With the DPN prompt, you specify the physical name of a device
that you want to use as your system device in case the Extended
I/O System cannot find the name RQBOOTED cataloged in the root
object directory. This situation normally occurs when you load
your system using a means other than the Bootstrap Loader. For
example, if you transfer the Operating System to your target
system via the iSBC 957B load package or iSDM 86 or iSDM 286
monitor, there is no bootstrap device. In this case, the
Extended I/O System uses the device name specified in the DPN
prompt as the system device.

With the DFD and DO prompts, you set other characteristics
associated with the system device. For most cases, the defaults
(DFD=Named and D~:OOOOH) are the preferred values.

• During configuration of the Basic I/O System, you must specify
device-unit information for the devices you wish to support. One
of the prompts on each "Device-Unit Information" screen (NAM)
requires you to specify the name of the device-unit. Another
parame ter (UN) requires you to specify the uni t number. (See
Figure A-2 for an example of these prompts.) To enable the
automatic boot device recognition feature to work correctly,
assign device-unit names and unit numbers that match the device
names and unit numbers assigned during the configuration of the
Bootstrap Loader.

• You assign the Bootstrap Loader device names and unit numbers by
including or modifying %DEVICE macros in the first-stage
configuration file (BSI.A86) or in the iSBC 957B configuration
file. With the ICU, you can define device-unit names and unit
numbers other than those that are valid for the Bootstrap
Loader. But each Bootstrap Loader device name must have a
corresponding device-unit name, and the unit numbers must be the
same.

Before you can use the automatic boot device recognition feature, you
must format your system device using the Release 6 version of the FORMAT
command. The iRMX 86 CONFIGURATION GUIDE describes how to set up your
system device for use with Release 6.

HOW TO EXCLUDE AUTOMATIC BOOT DEVICE RECOGNITION

To configure a system that does not include the automatic boot device
recognition feature, set the ABR prompt in the "EIOS" screen to "No" (see
Figure A-I). This disa blE~s the au toma tic boo t device recogni tion fea ture.

Bootstrap Loader A-3

Intel
---> (NAM)

(PFD)
(NFD)
(SDD)
(SDS)
(EFI)
(GRA)
(DSZ)

--->(UN)
(UIN)
(UDT)
(NB)
(FUP)
(MB)

AUTOMATIC BOOT DEVICE RECOGNITION

iSBC 215/iSBX 218 Device-Unit Information
Device-Unit Name [1-13 chars]
Physical File Driver Required [Yes/No]
Named File Driver Required [Yes/No]
Single or Double Density Disks [Single/Double]
Single or Double Sided Disks [Single/Double]
8 or 5 inch Disks [8/5]
Granularity [O-OFFFFH]
Device Size [O-OFFFFFFFFH]
Unit Number on this Device [O-OFFH]
Unit Info Name [1-17 Chars]
Update Timeout [O-OFFFFH]
Number of Buffers [nonrand = O/rand = 1-0FFFFH]
Fixed Update [True/False]
Max Buffers [O-OFFH]

Yes
Yes
Single
Single
8
0080H
0003E900H
OOOOH

0064H
0006H
True
OOFFH

Figure A-2. Device-Unit Information Screen (NAM and UN)

When you set ABR to "No", the ICU deletes the DLN, DPN, DFD, and DO
prompts from the EIOS screen. Therefore, you must provide this
information as input to the "Logical Names" screen. Figure A-3 shows an
example of this screen after it has been filled in to include a logical
name for the system device. The underlined information in Figure A-3 is
the information you would supply if you set the ABR prompt in Figure A-I
to "No" and you want the system device to be a flexible diskette drive
controlled by an iSBC 208 board.

Logical Names
Logical Name logical name,device name,file driver,owners-id

[1-12 Chars, 1-14 Chars, Physical/Stream/Named, O-OFFFFH]

Logical Name
Logical Name

--->Logical Name

BB, BB, Physical, OOOOH
STREAM, STREAM, Stream, OOOOH
SD, AFO, Named, OOOOH

Figure A-3. Logical Names Screen

Bootstrap Loader A-4

APPENDIX B
PROMMING THE BOOTSTRAP LOADER

WITH A SYSTEM DEBUG MONITOR

In Chap ter 3, it was men ti.oned tha t one of the ways in which you can
prepare to use the Boots trap Loader is to combine it wi th one of the
Intel monitor packages and burn the combined code into PROM. This
appendix supplies information that is not contained in the reference
manuals for the iSDM 86 and iSDM 286 monitors.

COMBINING WITH THE iSDM 86 SYSTEM DEBUG MONITOR

The iSDM 86 SYSTEM DEBUG l10NITOR REFERENCE MANUAL correc tly describes the
procedure for combining the iRMX 86 Bootstrap Loader with the iSDM 86
monitor. However, if you are going to combine the Release 6 version of
the Bootstrap Loader with the iSDM 86 monitor, you must first modify one
of the files described in that manual. This file, called SDMGNB.CSD,
must be changed to the read as is shown in Figure B-1. In the figure,
the lines tha t are differc~n t from the lis ting in the iSDM 86 manual are
marked with comments on the right-hand side of the figure.

COMBINING WITH THE iSDM 286 SYSTEM DEBUG MONITOR

The iSDM 286 SYSTEM DEBUG MONITOR REFERENCE MANUAL does not describe the
procedure for combining the iRMX 86 Bootstrap Loader with the iSDM 286
monitor. This section gives the instructions required to burn the first
stage and the iSDM 286 monitor into two 2764 EPROMs. You can modify this
example to suit your own purposes, or you can follow it exactly. The
step-by-step procedure is as follows:

En ter the name of the (vers ion 1.3 or 1a ter) sof tware used wi th the iUPP
Universal Prom Programmer:

:fO:ipps

Specify that the PROMs are 2764 EPROMs:

type 2764

Ini tialize the file type to be loaded:

initialize 86

This says that the load file is an 8086 Object Module Format file.

Bootstrap Loader B-1

PROMMING THE BOOTSTRAP LOADER WITH A SYSTEM DEBUG MONITOR

run

asrn86 :f1:bs1.aB6 rnacro(90)
asrnB6 :f1:bserr.aB6 rnacro(50)
;asrnB6 :f1:b204.aB6 rnacro(50)
;asrnB6 :fl:b206.aB6 rnacro(50)
;asrn86 :fl:b20B.aB6 rnacro(50)
;asrnB6 :f1:b215.aB6 rnacro(50)
;asrn86 :f1:b218a.aB6 rnacro(50)
;asmB6 :f1:b251.aB6 rnacro(50)
;asmB6 :f1:b254.aB6 rnacro(50)
;asmB6 :f1:bsasi.aB6 rnacro(50)
;aBmB6 :fl:bscsi.aB6 rnacro(50)
,
linkB6 &

:f1:sdrnB6.lib(rnonitor), &
:f1:%O.obj, &
:f1:bsl.obj, &
:f1:bserr.obj, &
:f1:sdmB6.obj, &

& :f1:b204.obj, &
& :f1:b206.obj, &
& :f1:b20B.obj, &
& :f1:b215.obj, &
& :f1:b21Ba.obj, &
& :f1:b251.obj, &
& :f1:b254.obj, &
& :f1:bsasi.obj, &
& :fl:bscsi.obj, &

,

:f1:bsl.lib, &
BOB7.lib to :f1:%O.lnk

10cB6 &
:f1:%O.lnk &
addresses(classes(sdmB6 data(400h), &
stack(3cOOOh), & -
code(OfBOOOh») &

;changed line

;new line
;new line

;new line
;new line

;new line
;new line

;new line
;new line

order(classes(sdmB6 data, sdrn86 stack, &
stack-;- data, bo()t~ &

;
exit

code» &
segsize(boot(lBOOh» &
s tart(%l) boots trap noini tcod(~

Figure B-1. Contents Of SDMGNB.CSD

B-2

PROMMING THE BOOTSTRAP LOADER WITH A SYSTEM DEBUG MONITOR

Specify that the even-numbered bytes of the BSI (first stage) file are to
go into EPROM 0 and the odd-numbered bytes are to go into EPROM 1. (The
address FD800H is an example value for a particular configuration. The
numbers 3, 2, and 1 match ipps prompts for defining the information.)

format :fl :bsl(FDBOOH)
3
2
1
o to :fl:bsl.evn
1 to :fl:bsl.odd
<cr>

Tell the software to program one EPROM with even-addressed bytes. (The
address OeOOH is correct for the Bootstrap Loader-iSDM 286 combination.)

copy :fl:mbsl.evn to prom(OeOOh)

Do the same thing for the: odd-numbered bytes.

copy :fl:mbsl.odd to prom (OeOOh)

Exit the ipps program.

exit

B-3

Underscored entries are primary references.

%AGAIN macro 2-15
%AUTO macro 2-4
%B204 macro 2-16
%B206 macro 2-17
%B215 macro 2-17
%B218 macro 2-18
%B220 macro 2-17
%B251 macro 2-19
%B254 macro 2-19
%BSASI macro 2-19
%BSCSI macro 2-21
%CICO macro 2-7
%CONSOLE macro 2-4, 2-14, 2-15
%CPU macro 2-3
%DEFAULTFILE macro 2-6
%DEVICE macro 2-12
%END macro 2-13
%HALT macro 2-16
%iAPX 186 INIT macro 2-4
%1 NT3-ma cro 2-15
%LIST macro 2-15
%LOADFILE macro 2-6
%MANUAL macro 2-4, 2-15
%RETRIES macro ~7
%SERIAL CHANNEL macro 2-8
%TEXT macro 2-14, 2-15
asterisk (*) prompt 2-5, 3-3, 3-4
automatic boot device recognition A-1

B command of monitor 3-3
BOOTSTRAP control 2-9, 3-l
BOOTSTRAP_ENTRY symbol 3-2
Bootstrap Loader 1-1
Bootstrap Loader in PROM B-1
Bootstrap Loader operation 3-1, 3-2
bootstrap loading 1-1
BS1.A86 file 2-1, 2-2
BS1.CSD file 2-1, 2-9
BSERR.A86 2-1, 2-13

CI and CO routines 2-7
GINIT file 2-7
configuration 2-1, A-2
configuration files 2-1
CPU type 2-3

Bootstrap Loader Index-1

INDEX

DEVICE$INIT procedure 4-1
DEVICE$READ procedure 4-2
DEBUG switch 3-3

INDEX (continued)

device driver 1-1, 1-2, 2-16, 2-21, 4-1
device driver configuration files 2-16

error codes for bootstrap loading 3-5
error messages 2-12, 2-14, 3-5
errors in bootstrap loading ~1, 2-13, 3-4

failure of bootstrap loading 3-4
files 2-1
first stage 1-1, 2-1, 3-1

generating a Bootstrap Loader system 2-22

iSBC 957B package 1-1, 2-8, 2-15, 3-1, 3-3
iSDM 86 System Debug Monitor 1-1, 2-8, 2-15, 3-1, 3-3, B-1
iSDM 286 System Debug Monitor 1-1, 2-8, 2-15, 3-1, 3-3, B-1

load device 2-4
load file 1-1, 2-4, 3-3

pathname of load file 2-4, 2-6
period (.) prompt 3-3, 3-4
PROM 1-1, 3-1, B-1
programmatic bootstrap loading 3-2

ROM 1-1, B-1

SASI driver 2-19
SCSI driver 2-21
SDMGNB.CSD file B-2
second stage 1-1, 1-2
system generation 2-22

user-supplied dev~ce drivers 2-21
using a terminal while bootstrap loading 2-4, 2-6, 2-7
using the Bootstrap Loader 3-1

writing device drivers 4-1

Bootstrap Loader Index-2

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	idx01
	idx02

