
iRMX 86

VERSION 4.0 MARCH 1982

INTEL CORPORATION

iRMX 86 OVERViEW

•

/

. "

i
I
1
i

i

I
! '

, ,

WHAT iRMX 86 PROVI,DES

• ABSTRACTION OF ~~CHINE FUNCTIONS

• SEPARATION OF PROGRA~~ER SKILLS~ CONCENTRATION ON MODULAR DESIGN

• RANGE OF PRE WRITTEN SOFTWARE
- 110 SYSTEMS
- TASK CONTROL
- EXECUTIVE CONTROL SOFTWARE

• AN ENVIRONMENT FOR RUNNING ~ANY PROGRAMS
- EFFICIENT USE OF RESOURCES
- PREVENTION OF DEADLOCKS
- SCHED~LIN6
- CHANGE OF CONTEXT

LAYERING OF AN O.S.

HUMAN INTERFACE

1/0 SYSTEM

NUCLEUS

HARDWARE

Q. WHEN IS A REAL-TIME MULTI-TASKING . ,

EXECUTIVE REQUIRE;D?

A. WHEN THE APPLICATION NEEDS:

• MULTIPLE CONCURRENT PROCESSES

• MULTIPLE ASYNCHRONOUS EVENTS

~~-'-"------------~/

EXAMPLE: OFFICE AUTOMATION

• WORD PROCCSSlNG NEED

• SHARED PAINTER
• SHARED~K
• IIULTIPlE TERMIHALI
• SYSTEM CONSOLE

• LOCAL COMPUTATION
• EL£CTROHCC MAIL

..:= ~ eoaaUUHICAT1ONSUNI(
TO OrHat DFflCS
CONTIIOL .YSTEIIa

I

\
. ,

I I

SIMPLE TASKS

~~----------------~~

. ,
THE APPLICATION SOFTWARE IS

DIVIDED INTO A NUMBER OF TASKS •

...
I

• SINGLE PROCESSOR J SINGLE TASK a~VIRONMENT
\

+ ..
::::>
~
<...)

':"

=

FRED

)
TIME

"- ./

+

oo--------g CPU

• SINGLE PROCESSOR~ MULTIPLE TASK ENVIRONMENT
• NOTE *J CPU CAN BE ALLOCATED TO ONLY ONE TASK AT A TIME
• WHICH TASK IS;RUNNING? (ONLY HIS HAIRDRESSER KNOWS FOR SURE!)

I

CPU IS FREE

• AN RQSLEEP SYSTEM CALL IS NOT A SOFTWARE DELAY LOOP

• IF BOTH TASKS ARE ASLEEP AT THE SAME TIME THE O.S. PROVIDES
A DEFAULT TASK THAT DOES NOTHING

• THE CPU~ UNDER THE CONTROL OF THE O.S.~ IS ALWAYS RUNNING A TASK

~~~--~----------~~ 

EXERCISE 

TASK A: WRITE A PLM TASK TO ACCOMODATE THE FOLLOWING FLOWCHART 

1. INITIALIZE A BYTE VARIABLE TO 1 
2. OUTPUT VARIABLE TO PORT g 

3. GO TO SLEEP FOR 1/4 SEC 
4. ROTATE VARIABLE TO THE LEFT BY ONE 
5. GO"TO 2. 



• TASK STATES 

. READY LIST 

{ 

TASKSA 
ASlEEP LIST ~ TASKSC 

} 

TASKSF 
TASK$l 
TASKSY ~ 
TASK$D ~~TA~SK~$~X~ 

RUNNING TASK 

• THERE MAY ~E MORE THAN ONE TASK IN THE READY AND ASLEEP ~TATES 

• EXAMPLE OF 3 TASKS 

CASE 1: 
• GIVEN: I 

- TIME 1 = TIME 2 = TIME 3 EQUAL EXECUTION TIMES ON ALL TASKS 
- INITIAL RUNNING TASK = FRED 
- INITIAL READY LIST = BOB J SANDY 

I 



UNEQUAL SLEEP TIMES 
·f 

Er~I~~ __ -+I __ ~ __ ~ __ ~ __ +: __ ~ __ ~ ______ ~ 
Tl T2 T3 T6 T7 T9 nMr 

Q: WHAT HAPPENS DURING T7? 
Q.WItAT HAPPENS DURING T9? 

BOB 
SANDY 

Q: HOW CAN WE GAIN MORE 

CONTROL OVER THE BEHAVIOR 

• 

OF THE TASKS IN OUR APPLICATION? 

/ , 
f' 

. ; 

t 
I 

I 
1 

I 



\ 

PRIORITY = HIGH 
FRED: -------

UNEQUAL PRIORITIES 

RMX 

PRIORITY = LOW 
BOB: -------

GO TO BOB 

• BY ASSIGNING PRIORITIES FRED RUNS. 
• WILL BOB EVER RUN? 

THE RUNNING TASK 

• NOTE· FOR A TASK TO BE THE RUNNING TASK 
TWO CONDITIONS MUST BE MET. 

1) A TASK MUST BE READY TO RUN 

2) IT MUST BE THE HIGHEST PRIORITY TASK 

• PRIORITY ALONE DOES NOT PROVIDE THE SOLUTION 

+ 

) 

l~ ___________ ) 



-, .. __ ._--_. '-' - - .. ~ -. - - .... - .'-- .--.~-........ - --.. ~. ---_ .. -_.-. -_. -'-'-". 

PRIORITIZED TASKSJEQUAL SLEEP TI~ES 

FRED 
BOB 
SANDY 

Tl T2 T3 

• LET'S TAKE CASE I AGAIN: 

T4 TS T6 T7 TS 

GIVEN: TIMEl = TlMEZ = TIME3 EQUAL EXECUTION AND SLEEP TIMES 
ON ALL TASKS 

Q: WHAT WILL THE INITIAL READY LIST BE? 

• FRED AND BOB NEVER RELINQUISH CONTROL 

• SANDY NEVER RUNS ~; 00 

• LET'S TAKE CASE 2 AGAIN: 

GIVEN: - SLEEP TIMES 
- TlMEl = IJ TIMEZ = 2J TIME3 = 4 

FRED 
BOB 
SANDY I 

TI 

- EXECUTION TIMES 
ALL TASKS = I 

T2 T3 T4 TS 

• FRED WILL ALWAYS RUN WHEN HE SAKES UP. WHY? 

Q: WHAT TASK RUNS DURING T8? 
Q: WHAT HAPPENS AT POINT A? 

T6 T7 TS 
. .. 
A Tt ME 

) 



ADVANCED TASK TOPICS 

• A TASK IS: 
-SCHEDUABLE UN IT OF WORK 

• AT ANY POINT IN TIME A TASK CAN BE DEFINED BY 
- CURRENT PROGRAM COUNTER (CS~ IP 8086 REGISTERS) 
- CURRENT STACK POINTER (SS~ SP 8086 REGISTERS) 
- TASK PRIORITY (0-255) 
- TASK STATE (RUNNING~ READY~ ASLEEP •.. ) 
- REGISTERS (OTHER 8086 REGISTERS AND/OR NDP REGISTERS) 

• PARAMETERLESS~ UNTYPED~ PUBLIC PROCEDURE THAT NEVER 
TERMINATES~ (UNlESS THE TASK GETS DELETED) 

• THE MODULE IN PLM 86 MUST BE A NON-MAIN MODULE 

TASK CREATION 

• CREATION OF A TASK IS ACCOMPLISHED AT RUN TIME BY AN 
RQ$CREATE$TASK SYSTEM CALL 

• THE TASK'S CODE MUST RESIDE IN SYSTEM MEMORY 
AT THE TIME THE CALL IS MADE 

• AFTER THE CALL~ THE O.S. RETURNS AN IDENTIFIER NUMBER 
TO THE CREATOR 

• THIS_~UMBER IS CALLED A TOKEN 



PREEMPTION 

• AS A TASK FROM THE READY LIST BECOMES THE RUNNING TASK# THE FOLLOWING 
EVENTS OCCUR# IN ORDER: 

- THE VALUES (CPU REGISTERS, ETC.) OF THE PREVIOUSLY 
RUNNING TASK ARE SAVED BY THE O.S. 

- THE O.S. LOADS THE NEW RUNNING TASK'S VALUES 

- THE NEW TASK BEGINS EXECUTING 

• EXAMPLE: 

} 

CONTEXT 
SWITCH 

- IF THE RUNNING TASK CREATES A HIGHER PRIORITY TASK" REI.ATIVE TO 
ITSELF" THEN THE RUNNING TASK IS PREEMPTED BY THE NEWLY 
CREATED TASK. 

J 
~~----------------~/ 

TASK DELETION 

IF A TASK IS NO LONGER NEEDED, THEN IT CAN BE DELETED 

• THE FO~ OF THE CALL rs 

• REFER TO NUCLEUS REFERENCE MANUAL FOR A DETAILED DESCRIPTION 
OF PARAMETERS 



SUSPENDED STATE 

• THE RUNNING TASK MAY SUSPEND ITSELF OR ANOTHER TASK 

• THE RUNNING TASK ~AY RESUME ANOTHER TASK 

• A TASK MAY BE ASLEEP AND SUSPENDED 

• A TASK MAY BE SUSPENDED MORE THAN ONCE 

~c;;J~ 
-I-As-LE-E:"p--I~ ~ .1--S=-US-PEN=--DE-D-"~ 

~ ASlEEP. ~ 
\ I SUSPENDED I. j 
~~ ____ ~f~ ______ ~/ 

TASK SUSPENSION 

• THE FORM OF THE CALL IS: 

CALL RQ$SUSPEND$TASK (TASKJ EXCEPT$PTR); 

• THE O.S. INCREMENTS THE SUSPENSION DEPTH OF THE TASK BY 
ONE EACH TIME THE CALL IS MADE. 



INTERRUPTS 

~~--------------------------~~ 

QUIZ 

• MTCH THE DESCRIPTION TO THE SYSTEM CALL 

RQ$DELETE$TASK 

RQ$CREATESTASK _ . 

RQ$SUSPENDSTASK ___ 

RQ$RESUMESTASK ___ :; 

RQSSLEEP 

0-INCREASES A TASK'S SUSPENSION DEPTH BY ONE; 
SUSPENDS THE TASK IF IT IS NOT ALREADY SUSPENDED 

(§)-CREATES A TASK AND RETUR~S A TOKEN FOR IT 

@- DELETES A TASK FROM THE SYSTEM 

@- PLACES. THE CALLING TASK IN THE ASLEEP STATE 
FOR A SPECIFIED AMOUNT OF TIME 

t':\ _ ncroc ~('C"C' 1\ TI\('V' C' r'1I('Mnu" "'" TlI='M-T'lI ~\IJ U"'"IJI='. \=.I -lJl..\'f\U'\';)I:,,;) M 11'\,;)1\ ,;) ,;)u.;)n:.ll.;)J.UI't lJ ... rln OJ .... ~ 

IF THE DEPTH BECOMES ZERO AND THE TASK WAS 
SUSPENDED 1 IT THEN BECOMES READY; IF THE DEPTH 
BECOMES ZERO AND THE TASK WAS ASLEEP-SUSPENDED~ 
THEN IT GOES INTO THE ASLEEP STATE 

.' , 



INTERRUPT SERVICE 

• AN INTERRUPT IS SERVICED IN ONE OF TWO WAYS 

- AN INTERRUPT HANDLER SERVICES THE INTERRUPT ALONE 

- AN INTERRUPT HANDLER INVOKES AN INTERRUPT TASK 

• IN PLM 86 INTERRUPT HANDLERS ARE WRITTEN AS INTERRUPT 
PROCEDURES 

'. I •. 

INTERRUPT HANDLER ALONE 

... 

• THE INTERRUPT HANDLER SERVICES THE INTERRUPT OUTSIDE OF THE CONTROL OF RMX 

I 
I 
I 
I 

INTERRUPT 
HANDLER 

RQ$EX1T$ INTERRUPT 

I' 

CJ I CJ I 
I Tl ~C~~ T2 
I RUNNING RUNNING 
• I "-----/ I 

LJ LJ I 

T3 T4 ... 
ALL READY I ASLEEP INTERRUPTS 

DISABt.ED 
RETURNS CONTROL 

TO RMX 
!-

. .. -.... 



\ 

'. I • 

IDENTIFYING INTERRUPT HANDLERS TO ~~X 

• INTERRUPT HANDLERS ARE SPECIFIED TO RMX BY THE SETS INTERRUPT SYSTEM CALL 
INITIALIZE$TASK: PROCEDURE; 

CALL RQ$SETSINTERRUPT(LEvEL 1 INTERRUPT$TASK$FLAG J 

INTERRUPT$PTR(INT$HANDLER$)I"'); 
END INITIALIZESTASK; 

- THE FIRST PARAMETER INDICATES THE 8086 INTERRUPT LEVEL 
- THE INTERRUPTSTASKSFLAG PARAMETER INDICATES IF THERE IS TO BE AN 

INTERRUPT TASK ASSOCIATED WITH THIS INTERRUPT LEVEL 
INTERRUPTSTASK$FLAG = 0 THEN NO INTERRUPT TASK 

- USE PUM86 INTERRUPTSPTR BUILT-IN TO PASS THE STARTING ADDRESS 
OF THE INTERRUPT HANDLER TO RMX 

• WHEN THE INTER~UPT HANDLER IS IDENTIFIED TO RMX 
- RMX ENTERS THE HANDLER'S ADDRESS INTO THE INTERRUPT" VECTOR TABLE. 

(THE PROCEDURE SHOULD BE COMPILED WITH NO$INTVECTOR) 
- RMX ENABLES THE CORRESPONDING U:vEL OF r~~ERRUPTS IN THE HARDWARE 

to • 

~~------------~/ 

USING INTERRUPT TASKS 

" .. ' AN INTERRUPT TASK WILL BE NEEDED WHEN 
- ANY SYSTEM CAllS ARE NEEDED TO SERVICE THE INTERRUPT 
- SYST5~ INTERRUPT LATENCY TIME IS SHORTER THAN THE EXECUTION TIME 

OF THE INTERRUPT HANDLER. (HOW LONG CAN YOU AFFORD TO WAIT?) 
• EXAMPLE 

. (ONCE PER/SEC) (ONCE PER/MW) 
--"" ~ INTERRUPT HANDLER ,til 
~ V'.J SECONDS = 60 -, I FALSE ? TRUE ,/ 

/ I '} " UPDATE I • / 

VARIABLES RQrXIT RQSIGNAL 
(HCURS ,INTERRUPT ,INTERRUPT, 
mN 
SEC) 

INTERRUPT TASK 

to • 

UPDATE 20 WALL 
CLOCK DISPLAYS 
THROUGHOUT BUILDING 



:.. .... ::..::.:::~ .. :....:.:...:.:.--. -_ .. 

\ 

" I 

• A TASK UNMASKS ITS LEVEL OF INTERRUPT BY A WAIiSINTERRUPT SYSTEM 
CALL 

- THIS CAUSES THE TASK TO WAIT FOR THE INTERRUPT HANDLER 
TO EXECUTE AN RQSIGNAL SYSTEM CALL. 

INT$TASK: PROCEDURE; 
CALL RQ$SET$INTERRUPT( ••• ); 

DO FOREVER; 
CALL RQ$WAIT$INTERRUPT( ••• ); 

• AFTER INITIALIZ~TIONJ AN INTERRUPT TASK IS ALWAYS EITHER SERVICING 
AN INTERRUPT OR :WAITING FOR AN INTERRUPT 

... 

~~------------~/ 

" I 

QUIZ 

• NAME TWO DIFFERENT SOFTWARE STRATEGIES FOR SERVIriS INTERRUPTS. 

• FOR FAST INTERRUPT RESPONSEJ THE USER CAN USE THE INTERRUPT HANDLER 
ALONE. NAME ONE DISADVANTAGE AND ONE ADVANTAGE. 

to ' 



. 

8259A 

INTERRUPT SEQUENCE 
INTERRUPT 1 (0 TO 7) 

NOTE • INTERRUPTS ARE DISABLED 
, I --

INTR Jv_ 
CD · Lf 
/ 'N' 

~~r 

~ 

N~ 8086 .. , 

_INTA@ 
~ 

: ('N' x 4) 
-

EACH: ADDRESS STORED 
IN TABLE EQUALS FOUR 
BYTES 

· · .. 

· · · 
256 INTERRUPT 

VECTOR 
TABLE 

INTERRUPT 
HANDLER 
ROUTINE .. 

INT ERRUPTS ARE EMP]LED 
RET UR~ TO POINT BEFORE 

NTERRUPT .;. 1. 

ADDRESS 
HANDLER 
IN VECTO 

OF INTERRUPT 
ROUTINE IS STORED 
R TABLE 

t· '. 

MORE INTERRUPT VECTOR TABLE 

3FFH 

RESERVED BY I R~~ 86 

183 

· · · 128 
} AVAILABLE TO THE USER 

FOR SOFTWARE INTERRUPTS 

127 

· · · · 
64 

1 
J 

SLAVE 8259As 

63 
56 ) rASTER 8259A 
55 
· · 0 

} iRMX 86 RESERVED t, , 

FOR SYSTEM CALLS 



", I 

PROBLEM! 

• HOW CAN THE INTERRUPT HANDLER SHARE THE HOURS, MIN, SEC VARIABLES 
WiTH THE iNTERRUPT TASK? 

~ HANDLER 
HOUR 
MIN TASK 

INTR -----------, SEC 

RQ$WAIT$INTERRUPTL ~); 
(DS) 

DATASEGREG 
= ? 

., I . 

FIRST STEP: WHEN THE INTERRUPT TASK IDENTIFIES ITSELF TO THE 
RMX O.S. THE DATA SEGM8~T IS PASSED AS A PARAMETER. 

.. " 

.. " 



\ 

I 

TASK PRIORITY GROUPS 

• TASKS ARE ASSIGNED A PRIORITY NUMBER FROM 0 TO 255 

• TASK PRIORITIES 3 TO 128 ARE SPLIT INTO GROUPS OF 16 

• EACH GROUP IS ASSOCIATED WITH AN 8259A INTERRUPT LEVEL 

PRIORITY GROUPS 82S9A LEVEL 

3 

TASK 

o - 16 
17 - 32 
33 - 48 
49 - 64 
65 - 80 
81 - g~ 
97 -112 
ill - 128 
129 - 255 

PRIORITY 
a 

17 
33 

49 

65 

81 

97 

ill 

1 
2 
3 
4 
5 
6 
7 

NONE 

MASKED I NTERRUPT LEVELS 

0 1 
7 

ng r 
~ 

l 255 I 

I 
" I 1 

t, , 

" I '" 

INTERRUPT 
LEVEL 

I 
to ' 



PHONE TASK 

~~ - ~~~T~:DO~n~~~N:n~M~ ~usI~:~MEn 

I 
k - Uti UK trt\~) rKUI ~ IU rt 

3 - GET EMPTY ENVELOPE(S) FROM ENVELOPE RACK 

l 
4 - PLACE ORDER(S) INSIDE ENVELOPECS) 
5 - SEND ENVELOPE(S) TO MAl LBOX 1 

6 - GO TO 1 

COMPANY RULES: 
PHONE 
TASK ~. 

~(ENVELOPES) 
• ONLY ONE ORDER PER ENVELOPE 
• MAY HAVE f'lANY ORDERS PER CffiTCtER 

(MlLEGX) 
1 

L FROM PROCESSING TASK 

ORDER ENTRY TASK 

[

1 - WAIT FOR ENVELOPE IN MAILBOX 1 

2 - LOG THE ORDER IN COMPANY BOOKS 
3 - SEND ENVELOPE TO MAILBOX 2· 
4 - GO TO 1 . 

(l1ii000.-.->1 ORDER I 
FROM PHONE TASK ). 

(MAljEOX) ~ 

'. I 

l __ . _________________ ( ____ ) _______ ~_· ___ ) J U1AILBOX) 
2 



" , 

PROCESSING TASK 

1 - WAIT FOR AN ENVELOPE IN fttAILBOX 2 
2 - GET RAW MATERIALS TO FilL ORDER., ASSErELE AND PACK WIDGETS 

3 - RETUru~ ENVELOPE TO ENVELOPE RACK 
4 - CALL PARCEL SERVICE COMPANY FOR PICKUP 
5 - GO TO 1 

RETURN ENVELOPE TO RACK 
I I > TO TRUCKER TASK 

FROM ORDER ENTRY TASK -~ ___ _ t±jl (PACKED BOXES) 

MAILBOX) 
2 

PROCESSING 
TASK 

TRUCKER TASK 

1 - WAIT FOR TRUCK TO ARRIVE 
2 - OPEN SHIPPING DOCK 
3 - GIVE BOXES AND INSTRUCTIONS TO TRUCKER 
4 - CLOSE SHIPPING DOCK 
5 - GO TO 1 

TRUCKER 
TASK 

11 

(RAW fr!ATERIAlS) 

" . 

FROM PROCESSING TASK ---... ~. t±jl (PACKED BOXES) 

~ 

,. . 

t, , 



I 
i 
{ 

1 

INTERCOMMUNICATION RULES 

• INTERCO~~UNICATIaN 

_ ENVELOPES CARRY ORDERS FROM TASK .. TO ~AILBOX) TO TASK 
_ NOTE ENVELOPES DO NOT GO DIRECTLY FROM TASK TO TASK 

• ENVELOPES 
- THERE IS A FINITE Nu~mER OF ENVELOPES 
- THEY MUST BE RETURNED WHEN NOT I N USE 

to ' 

" . 

INTER-TASK CO~~UNlCATION 

OFFICE WORK FLOW 

ASSUME MANY ENVELOPES ARE WAITING TO BE PROCESSED. TWO ALTERNATIVES: 

(A) 1. AN ENVELOPE IS PROCESSED AT A DESK AND SENT TO THE 
NEXT ft1AILBOX. 

2. THE MAN THEN MOVES IMMEDIATELY TO THE NEXT DESK. 

(B) L AN ENVELOPE IS PROCESSED AT A DESK AND SENT TO THE NEXT 
MAILBOX. 

2. THE NEXT ENVELOPE IS PROCESSED .. AND MOVED. THIS CONTINUES 
UNTIL NO MORE ENVELOPES NEED TO BE PROCESSED. 

3. THE MAN MOVES TO THE NEXT DESK. " , 



~ (ENVELOPES) 

twj 
~--..... 

(MAILBOX) 
1 

ORDER 
ENTRY 

PRIORITY = 150 

ALTE&~ATIVE B 
TO COMPLETE ONE TASK FOR ALL 
ENVELOPES BEFORE STARTING 
THE NEXT TASK. 

• EACH SUCCESSIVE TASK MUS 
BE A LOWER (OR EQUAL) 
PRIORITY 

ttB (PACKED BOXES) 

PRIORITY = 152 

.. .' 

l AU (RAW MATERIALS) 
~~ 

"~------------~I~I--------~--~~ 

l 

EVENT 

PHONE RINGS 

SYSTEM IS EVENT DRIV[~ 

INTERRUPT .. 

MAILBOX 1 CONTAINS ENVELOPE SEND/RECEIVE ... 
MAILBOX 2 CONTAINS ENVELOPE SEND/RECEIVE 

TRUCK ARR IYES 

ALARM GOES ON 

NOTHING ELSE TO DO 

.. 
INTERRUPT • 
INTERRUPT ., 

DEFAULT 

TASK 

PHONE TASK 

" , 

ORDER ENTRY TASK 

PROCESSING TASK 

TRUCKER TASK 

WATER PLANT TASK 

DRINK COFFEE TASK 

'j 



SEND AND RECEIVE EXAMPLE 

• TASK A WILL SEND A MESSAGE TO TASK B THROUGH A MAILBOX CALLED ~ffiXl. 

• THEN TASK A WILL WAIT (RECEIVE) AT A SECOND MAILBOX CALLED MBX2 BEFORE 
IT CONTINUES EXECUTING. 

• TASK B WILL WA~i (RECEIVE) AT MBXl FOR MESSAGE. 

• WHEN TASK B RECEIVES THE MESSAGE IT WILL PROCESS THE INFOR~ATION 
IN THE MESSAGE. 

• THEN TASK B WILL SEND THE SAME MESSAGE (FOR SYNCHRONIZATION) TO 
MBX2 WHERE' TASK A IS WAITING. 

" . 

SEND A ~.ESSAGE 

• THE FORM OF THE CALL IS 

CALL RQ$SENDSMESSAGE (liHERL WHAT J ••• ); 

WHERE? = MBXl 

WHAT? = ENVELOPE 

!' . 

.' . 



SEND/RECEIVE MESSAGE CALLS 
TASK B 

TASK A DECLARE 
DECLARE 
(MBXlIMBX2IAMSGJAST~US)~ORDj 

(BMSG.. RESPONSL BSTA~_US_)_'tIO_RD_j __ _ t ............. _~.....-~l .. 
CALL RQ$SEND$MESSAGE( 

MBXlI 
AMSG .. -----'" 
MBX2,---

BMSG =RQ$RECEIVE$MESSAGE( 
MBXI, 

.... ____ aASTATUS) .. 

! 

RMX 
NUCLEUS 

t, .' 

SEE NUCLEUS REFER8ICE MANUAL FOR PARAMETER DETAILS 

'I I ' 

PLM86 EXAMPLE MODULE 

TASK A TASK B 
- -I .J!O FOREVER 

I -CREATE frmXl 

CREATE MBX2 
-

RECEIVE MESSAGE FROM MBXl 
L.... 

CREATE SEGMENT 
-
- -

PROCESS 

.QQ.. FOREVER; 

I FILL SEGMENT 
-

~ VALID INFO INFORMTION 
IN r·iESSAGE 

SEND f'ESSAGE TO MEn 

SEND MESSAGE TO f'4SX2 

! ! 
I 

-

I RECEIVE MESSAt:t' c:n"l:1 '!"'_ I 

,----I _I "" r nUll 'Ill"" I 



REVIEW TIME! 

... ' 

~~------------------------~~ 

'. I)·' 

QUIZ 

• MATCH THE DESCRIPTION TO THE SYSTEM CALL. 

RQ$CREATE$SEGMENT ____ 

RQ$DELETE$r~ILBOX. ____ 

RQ$RECEIVE$MESSAGE ____ 

RO$DELETE$SEGMENT 

RQ$SEND$MESSAGE ____ 

RQ$CREATE$MAILBOX ____ 

RQ$GET:SIZE 

@ THE CALLING TASK WAITS AT A MAILBOX 

® SEND AN OBJECT TO A MAILBOX 

© CREATES A SEGMENT AND RETURNS A TOKEN 
FOR IT 

@ CREATES A ft'A I LBOX AND RETURNS A TOKEN FOR IT 

® RETURNS A SEGI£l'ii TO THE POOL FROM WH I CH IT 
WAS ALLOCATED 

® RETURNS THE S IZE J IN BYTES, OF A SEGr'ENT 

® DELETES A r-'AILBOX FROM THE SYSTEM ... ' 



FIFO QUEUING 

REGARDLESS OF PRIORITYJ FIRST TASK TO ARRIVE RECEIVES FIRST OBJECT TO ARRIVE. 

• H1PTY r'iAILBOX 

TASK 
L.------~PRIORITY 

TASK 
PRIORITY 

170 

TASK 
PRIORITY 

170 

• LOW PRIORITY TASK ARRIVES AT ~AILBOX 

• r.EDIUM PRIORITY TASK ARRIVES AT MAILBOX 
AT r·iAILBOX 

TASK 
RIORITY 

lEO 

• HIGH PRIORITY TASK ARRIVES AT ~AILBOX 
TASK 

RIORITY 
lEO TASK 

PRIORITY 
150 

.. ", 

'f • ( 

PRIORITY QUEUING 

• Er:PTY EXCHANGE 

• TASK ARRIVES AT rAILBOX 

TASK " HIGHER PRIORITY TASK ARRIVES 
PRIORITY AT ~AILBOX , 

IASK 
PRIORITY 

150 

TASK 
PRIORITY 

• HiGHEST PRiORITi TASK ARRIVES 
AT ~1AILBOX 

TASK 
PRIORITY 

Hi 
TASK 

PRIORITY 
170 

.. ", 



I 

JOB 

• A JOB CONSISTS OF TASKS AND THE OBJECTS THEY CREATE FROM 
THE JOB'S MEMORY POOL 

TASKS 

" . 

r---------------------~------------------~, 

DDD 
:. DI RECTORY 

ASCII STRING 
'-" 1 .. ,.......:,... 

.= . . 

• • • 

c:::::r t::::l c=l ••• c:::::l SEGMENTS: ,II-....;,;:;.;.:;;.;.;.;:~~;;..: _.~~~. ~..;..@J......;;;C ~f~~~-.:_:· ~ __ @J ..... ~~. ____ r_. 'y 

SHARING RESOURCES 

• IN AN EARLIER EXAMPLE THE TOKEN FOR ~1AILBOX 1 WAS GLOBAL 
AND THEREFORE COULD BE USED BY BOTH. 

DECLARE (MBX1)". 

TASKSA 
DECLARE ( ~ ~ )", 

I CAS~;~~~ ( , , ".. J 
, ~~--------------------~- J 



JOB DIRECTORY 

• A DIRECTORY ALLOWS JOBS TO SHARE RESOURCES (TASKS 1 SEGMENTS~ MAILBOXES ... ) 
• A RESOURCE IS ENTERED INTO THE DIRECTORY (CATALOGED) BY CALLING 

RQSCATALOGSOBJECT 
• OBJECTS ARE REFERENCED BY ASCII NAMES 
• ASCII NAMES MAY BE UP TO 12 CHARACTERS LONG 

JOB DIRECTORY 
ASCII NAME OBJECT TOKEN 

, INTE$6$TASK' 8C58 

'MBXI' ; 9L!5C 

• • 
• • 
• • 

" ) 
~~--------------------------------~~ 

CATALOG/LOOKUP PROCESS 

• OBJECTS ARE CATALOGED UNDER A USER GIVEN NAME BY THE TASK 
THAT CREATED THE OBJECT. 

• TASKS WHICH KNOW THE NAME OF THE OBJECT THEN LOOK UP AN OBJECT'S 
TOKEN IN THE DIRECTORY. 

JOB 1 

EJ 
TASK B 

CATALOG 
MILBOX 

ROOT JOB 
JOB 

DIRECTORY 

OBJECT DIRECTORY , ~~::t '~BX!' t 8e58 

~1 .----1"1 



APPLICATION 

JOBS 

• AN APPLICATION CAN CONSIST OF ONE OR ~mRE JOBS 

I PRINT I JOB 
CONTROL 

JOB 
FiLE 

HANDLING 
JOB 

• AN APPLICATION'S JOBS FORM A FAMILY TREE 

- THE ROOT JOB IS PROVIDED BY THE IRMX 86 NUCLEUS 
- ALL OTHER JOBS ARE DESCENDENTS OF THE ROOT JOB 

I ROOT JOB J - I 
T T I 

PRINT JOB CONTROL JOB FILE HANDLING 
JOB 

• I or) L 

... ' 

,,~----------------------------~~ 

••• 

" , 

JOB TREES 

• DEPENDING ON SYSTEM DESIGN J JOBS MAY BE SET UP IN r~NY CONFIGURATIONS 

PLANT 
CONT~~~ JOB 

COpy JOB 

1ST LEVEL JOBS 

""'--..... '-__ ... 2ND lEVEL JOBl 

3RD LEVEL JOBS 



,-----";..--'-' -" '"--,----" "-"''-"---------

'. .J. I, 

A JOB MUST HAVE AN INITIALIZATION TASK 

JOB 

~~~l. __ +-------START TASK IS AN INITIALIZATIOr~ 

TASK FOR THIS JOB

AN INITIALIZATION TASK:

• IS PLACED ON THE READY LIST
WHEN THE JOB IS CREATED

• IS THE "ROOT TASK" FOR THE JOB
(CREATES 1ST LEVEL TASKS IN JOB)

• CONTAINS AN RQ$ENDSINITSTASK
SYSTEM CALL

f"EMORY POOLS

• CREATED OBJECTS (EXCEPT TASKS CODE) ARE ALLOCATED FROM MEMORY POOLS

• EACH JOB CONTAINS A MEMORY POOL WHICH WAS ALLOCATED FROM ITS
PARENT'S POOL

• THERE IS A TREE-STRUCTURE HIERARCHY OF ME~10RY POOLS EQUIVALENT
TO HIERARCHY OF JOBS

• MB-1)RY THAT A JOB BORROWS FROM ITS PARENT REMAINS IN THE PARENT POOL

JOB A

·-B/ ~B-JO B JU' L

JOB~

.. " ."0

-.. _. -~ - _ .. , . . -..- . . -~

PARAMETER OBJECT TOKEN

• WHEN A TASK CREATES A JOB" iT CAN ALSO PASS A SINGLE TOKEN AS A
PARAMETER TO THE NEWLY CREATED JOB

JOBtTOKEN = RQ$CREATESJOB(... J PARAMETERSOBJECTnOKEiL .•.) i

FOR EXAMPLE:
IN ORDER TO CATALOG IN A PARENT'S DIRECTORY" A TASK MUST KNOW

THE TOKEN OF THE PARENT JOB. THE PARENT JOB TOKEN COULD BE PASSED~
IN THE RQ$CREATESJOB CALL. ..

" ..

~~--------------~~

TOKENS AVAIlABLE TO TASKS

. THE RQ$GETSTASKSTOKENS SYSTEM CALL MAKES TOKENS AVAILABLE TO
THE CALLING TASK.

REQUESTSTOKEN = RQSGETSTASKtTOKENS(SELECTION" EXCEPT$PTR);

THE TOK~~S COME IN FOUR FLAVORS:
SELECTION

A BYTE INDICATING OBJECT TYPE OF REQUESTED TOKEN
= al THE CALLING TASK
= 11 THE CALLING TASK'S JOB
= 21 THE PARAMETER OBJECT OF CALLING TASK'S JOB
= 31 THE ROOT JOB

FOR EXAMPLE:
A JOB'S PARAMETER OBJECT TOKEN CAN BE OBTAINED BY A TASK IN THE
CH ILD JOB IF SELECTION:: 2.

r .

ADVANCED TOPICS ON

)
/

I. ,'- ,

INTERT ASK COMMUNICATION

• SEMAPHO RES

", .. ,"

I, , .

REVISIT ONE rAN WIDGET MFG. CO.

dNE MAN WIDGET MANUFACTURING CO .

• OfIE rwt OOES EVERYTHING

~
CKER

, TASK

<£>

~
SIJ16

, TASK

<£>

, I

PROCESSING TASK

1 - \"AIT FOR AN ENVELOPE 'IN MAILBOX 2

2 - GET RAW MATERIALS AND ASSEMBLE ONE WIDGET
3 - INCREMENT NUMBER OF WIDGETS ASSEMBLED BY ONE
4 - RETURN ENVELOPE TO RACK
5 - GO TO 1

, ENVELOPE 11
(I-1A I LBOX)

2

PROCESSING
TASK

t----~ (WIDGETS)

(RAW MATERIALS)

SH IPP ING TASK

1 - WAIT FOR AT LEAST 5 WIDGETS ASSEMBLED
2 - DECREMENT tWMBER OF WIDGETS ASSEtrmLED BY 5

3 - PACK INTO BOXES
4 - CALL PARCEL SERVICE COt1PP.NY
5 - GO TO 1

11 I_~
t±8!-_--4__.S_H T_I~~~~_N_G ---,I \

A
I I (PACKED BOXES)

A (WIDGETSl

NUMBER
OF
WIDGETS

NUf-iBER
OF

WIDGETS

.......

t, .

SEMAPHORE QUEUE

A SEMAPHORE HAS A QUEUE OF TASKS WHICH CAN BE FIFO OR :
PRIORITY BASED.

FIFO
QUEUE

TASK A
(8)

TASK A
. (8)

TASK B
(4)

I I
TASK B CANNOT BE SATISFIED UNTIL AFTER TASK A HAS LEFT THE QUEUE.

SYSTEft1 CALLS FOR SEAAPHORES

RQ$CREATESE?AAPHORE - CREATES A SE~APHORE AND RETURNS A TOKEN FOR IT

RQ$DELETESSEMAPHORE - DELETES A SE~~PHORE FROM THE SYSTEM

RQ$SEND$UNITS - ADDS A SPECIFIC NUMBER OF UNITS TO THE COUNT OF
A SEMAPHORE

RQ$RECEIVESUNITS - ASKS FOR A SPECIFIC NUMBER OF UNITS FROM
A SEftlAPHORE

• REFER TO NUCLEUS REFER5~CE MANUAL FOR DETAILS ON PARAMETERS

....

!

1
,

TERMINAL HA~mLER

TERMINAL HANDLER JOB

TERMINAL HANDLER IN
TASK

RQTHNORMIN

TERMINAL HANDLER OUT
TASK .

RQTHNORJ~OUT

RMX 86 PROVIDED JOB FOR INTERFACING WITH A TE~'INAL (INPUT AND OUTPUT)

USER
TASK

HOW TO USE THE TERMINAL HANDLER

~
RQTHNORMXX

CD

RESPON~ MBOX

~

" I •

(j) USER CREATES, INITIALIZES AND SENDS A SEGMENT TO THE APPROPRIATE
TERMINAL HANDLER MAILBOX (RQTHNORMIN OR RQTHNO~iOUT)

CD THE SEGMENT IS QUEUED AT THE ~ILBOX
~ THE TERMINAL HANDLER PROCESSES THE REQUEST

- THE REQUEST ~AY BE READ OR WRITE ..
(g) AFTER PROCESSING THE REQUEST , THE TE&~INAL HANDLER RETURNS THE SEGMENT TO

THE USER, VIA A RESPONSE MAILBOX
THE USER TASK WAITS AT THE RESPONSE ~AILBOX

OUTPUT TO THE TERMINAL

; THE TASK SENDS AN OUTPUT REQUEST MESSAGE TO THE TERMINAL
HANDLER'S MAILBOX 'RQTHNORMOUT'

" I

• OUTPUT IS SErif BY THE TERMINAL HANDLER TO THE TERMINALJ ONE CHARACTER
AT A TIME (A CARRIAGE RETURN) ~DHJ IS ADDED TO THE OUTPUT WHEN A
LINEFEEDJ ~AHI IS SE8~)

• THE TASK CAN WAIT AT ITS RESPONSE MAILBOX FOR SUCCESS OF THE
OUTPUT ACT ION .

• IF NO RESPONSE MAILBOX IS GIVEN 1 IN THE RQSENDMESSAGE SYSTBi CALLI
THE SEGME.~T IS DELETED BY THE TERMINAL HANDLER

PLM AND THE REQUEST MESSAGE

'* DEFINE MESSAGE AND BASE IT *'
DECLARE THSSEGSTOKEN WORD;
DECLARE THSREQSMSGSPTR POINTER; .
DECLARE THSREQSMSGSOVL STRUCTURE(OFFSET WORD} BASE NORD)

" I

aTI-ISREQ$MSGSPTR);
DECLARE THREQMSG BASED TH$REm'SGSPTR STRUCTURE (FUNCTION WORD)

...

COUNT \'/ORD"
EXCEPTIONSCODE WORD}
ACTUAL WORD"

'* CREATE SEGMENT FOR MESSAGE */
THESSEGSTOKEN=RQSCREATESSEGMENT(140" aSTATUS);
THREQMSG$P.BASE=TH$SEG$TO~J;
THSREQ$MSGSOVL.OFFSET=O '* SET MESSAGE VALUES */
THESREQ$MSG.FUNCTION=FSREAD;
THSREQSMSG.COUNT=132

BUFFER (132) BYTE);

....

(
i

THE DEBUGGER

DEBUGGER

• REAL TIME DEBUGGING CAPABILITY

• CAN VIEW RMX NUCLEUS DATA STRUCTURES

• VIEW/CHANGE VARIABLES AND BREAKPOINTS

• DEBUGGER INVOKED BY A CONTROL-D ENTERED AT THE TERMINAL
- PROMPT IS ,.,

e' ,

" .

...

, -

SET A BREAKPOINT

*DB .BRKPTI = 1011T

SEND TO
EXCHANGE BREAKPOINT
RECEIVE FROM EXCHANGE BREAKPOINT

EXECUTING TASK SUSPENDED
T AND PUT ON BREAKPOINT LIST

NO TASKS SUSPENDED OR PUT
ON BREAKPOINT LIST

THE BREAKPOINT LIST

TO VIEW THE BREAKPOINT LIST:

*BL

BL = Ol04J/0076TX 0104J/0092TE

TASK INCURRED AN
EXECUTION BREAKPOINT

TASK INCURRED IN AN
EXCHANGE BREAKPOINT

...

" I •

• THE G COMMAND RESUMES A TASK AND R~OVES IT FORM THE BREAKPOINT LIST

EXAMPLE: *G 0092

RESUMES THE BREAKPOINT TASK

~
I

TOKEN FOR TASK TO BE RESUMED

.. .

I

EXAMPLE OF OUTPUT FROM THE I COM~AND

ell 2f'£B 0

JOB Ta<£H
POOL ttAXII'U'I
0JRRENr ALLOCATDl
CURR£HT t OBJECTS

----- IRnX 86
21'EB
fTFF
eSS2
ee&4

QJRRDfT • TASKS 8001
~T • OULDREJ't JOBS . see::!
txCEPTIOH ttOIlE. ' . ee'ee
MXIt'U1 PRIORITY
tw1E(S) HOt£ FOUt1D

. aeee

--.---oSJECT
eeeA

TCKDi ttAt1E

JOB R£rftQRT -~--
PAREMT JOB
POOL ttIHI11Ut1
o..RR£HT \.JHALLOCATED
MAXIHUtt • OBJECTS
11AXll'1 . .lI1 • TASKS
DEl..£iIOtI PEliDIMG
txC£PTIOH HAHDLER

DIRECTORY----
VALID EKTRIES-

TOKEH MFW£
2f'&4.. RQTHttORI1OUT 2f'ZB

TASK TOKEN --
STAO< SEQ1EMT BASE
STACt< SEQ1£HT SIZE

I COnE. SEQi£JiT BAS£
IHSlRUCTIOtl P01t1TER
STATIC PRIORIty
SlJSPtHSIOti t:IEPTH
txC£PTIOH MODE
ttAt£(S) t4Ot£ FOlHl

lRt1X B6
21'69
;zr .. a
82ge

9888
2£e9
Bea2
eeee
aeee

TASK REPORT
COHTAIHIHG JOB
STACK S£Q1EMT OFFSET
STACK S£Q1EHT LEF"T,

, DAl'A S£Gl1EHT BASE
TASK STATE
Ir11'ft1IC PRIORIty
SLEEP UtilTS' REQUEST£D
EXCEPTIOtt ttAfitLER

EXAMINING OR MODIFYING MEMORY - THE M COMMAND

ROOT
ee ... e
BiSf"
ITFr
F"FF"f"
t4()

2428:823$

eee2
TOKDt

2F1lC
BiDA
B,l3-4
eDA9
READY
eee2
fTFf'

-2428;8235

" I

.. -

. r......-______________________________________ ~

.

SUMMARY

.• BREAKPOINT RELATED COMMANDS

B Vlr~ BREAKPOINT PAR~METERS; BREAKPOINT LIST J AND BREAKPOINT TASK
INFORMATION

BL VIEW BREAKPOINT LIST
BT INQUIRE ABOUT BREAKPOINT TASK
DB DEFINE A BREAKPOINT
G REMOVE A TASK FROM THE BREAKPOINT LIST
R VIEW/CHANGE BREAKPOINT TASKS REGISTERS
Z DELETE A BREAKPOINT
. VARIABLE - CHANGE/EXAMINE BREAKPOINT NAMED

• MEf"DRY LOCATION RElJ\TED COft4J'1ArmS

D DEFINE NUMERIC VALUE
I EXAMIME-:SYSTEM OBJECTS
L LIST Nur1ERIC VARIABLES
M ~~MINE MODIFY MEMORY
Q EXIT THE DEBUGGER .. .

V VIEW SYSTEM LISTS
.VARIABLE - CHANGES VALUE OF VARIABLE NAMED

RMX 86 TEST

I ~

!
f ,
1

1
I

~~X 86 TEST (OPEN BOOK)

@ CONTINUED

DECLARE <THIN., RSPMBX .. ROOTKrLSEGTKN .. STATUS) WORD;
RSPMBX = RQCREATEMAILBOX ();
ROOTKN = RQGETTASKTOKENS ();
THIN = RQLOOKUPOBJECT (_~ __ .---.J -~ --);

SEGTKN = ROCREATESEGMENT ();

,

. . . ~ ...

RMX 86 TEST (OPEN BOOK)

<lD WHAT IS THE MOST "ECONOMICAL" WAY TO SYNCHRONIZE TWO TASKS?

<S) CAN A JOB BE DELETED IF IT CONTAINS AN INTERRUPT TASK?

\ ~

I
l

@ FREAD = __

FWRITE = __

RMX 86 TEST (OPEN BOOK)

" I' ••

@ WHAT DO YOU NEED TO DO.. TO ft'AKE THE TERMINAL HANDLER.. DELETE
THE SEGM8iT AFTER IT HAS OUTPUTTED THE MESSAGE?

l ___ -..---____ ·,----+""/'

RMX 86 TEST (OPEN BOOK)

@ GIVEN: THE FOLLOWING INTERRUPT HANDLER + TASK

INTHND:PROCEDURE INTERRUPT X;

RQSIGNALINTERRUPT(LEVEL 3 .. @STATUS)
END;

INTTASK:PROCEDURE PUBLIC;
CALL RQSETIrITERRUPHLEVELS3 .. .r •••);

DOFOREVER;

END;
END;

1"111 I nnl./II TTTlITr-nnllnTfI r:'\ICI.7 , .
\.Jiu.. r.blnJil1 inl f:.!\l\ur I \1..f:.ff:.~""'J J" • J j

/*PROCESS*/

\ -t- .••

--~--"'--"-'---

R.M.X 86 DISKETTES

• THE O.S. COMES FROM THE FACTORY IN SEVERAL DISKETTES
(ISIS FOR~~T) SINGLE OR DOUBLE DENSITY),

• EACH DISKETTE CONTAINS A SUBSYSTEM} CONFIGURATION FILE(S)J
LIBRARIESJ AND A SUBMIT FILE.

• THE CONFIGURATION FILES ARE WRITTEN AS ASSEMBLY LANGUAGE MACROS.

• DESIRED FEATURES OF A SUBSYSTEM CAN BE SELECTED BY MODIFYING THE
CONFIGURATION FILES (EGJ NUCLEUS CAN BE CONFIGURED FROM 12K TO 26K
OF CODE DEPENDING ON NU~ffiER OF FEATURES REQUIRED).

• THE CONFIGURATION FILES HAVE THE EXTENSION .A86 J THEY ARE MODIFIED
THROUGH THE T~XT EDITOR

(EGJ CREDIT:Fl: NTABLLA86)'

---------,....--...,...,

! + .. -

~---------------. ~

SBC957

NO
MEMORY

FREE
SPACE

APP #3

APP #2

APP #1
ROOT JOB
DEBUGGER
INTERRUPT

VECTORS

" ." ..
SYSTEM LAYOUT

• LAY OUT THE SELECTED SUBSYSTEMS

• ALLOW SPACE FOR THE ROOT JOB
(BETWEEN 500 TO 1000 BYTES)

• LAY OUT EACH APPLICATION SOFTWARE
JOB IN TURN

• APPLICATION JOBS ARE THE MOST VOLATILE!
LAY THESE OUT LAST.

/ THE DEBUGGER JOB CONTAINS THE TERMINAL HANDLER JOB

00000

..
. I

, ~-

'\ NDEVCF.A86

• THE MASTER_PIC AND TIMER MACROS MUST ALWAYS BE INVOKED

• IF SLAVES ARE CONFIGURED IN THE SYSTEM} THE r~STER_PIC MACRO
MUST BE INVOKED PRIOR TO ANY SLAVE_PIC MACRO INVOCATIONS

• INVOCATIONS OF THE SLAVE_PIC AND NDP_SUPPORT ~~CROS ARE OPTIONAL

TO CONFIGURE A DEVICE INTO THE IP~ 86 SYSTEM
~~D TO DEFINE ITS ATTRIBUTES} INVOKE THE
FOLLOWING MACROS WITH THE DESIRED PAP~METERS.

NUCLEUS DEVICE CONFIGURATION TABLE
..

%MASTER_PIC (8259AJ OCOH} OIO})
;S~VE_PIC(SLAVE_TYPE} BASE_PORT) EDGE_VS_LEVEL I MASTER_LEVEL)
UfMER(8253)ODOH} 28H}12288)
%NDP_SUPPORT(08H)

I

• REFER TO CONFIGURATION MANUAL FOR FURTHER DETAILS.

--:

LOCATE ADDRESSES " J" ••

• THE LOCATE UTILITY PROGRAM GENERATES A MAP LIST FILE
CALLED NUCLUS.MP2

EXAMING THE r·1f;p WE OBTAIN THE ENDING ADDRESS OF THE NUCLEUS

MEMORY MAP OF MODULE NBEGIN
SEGf18H MAP .
START STOP LENGTH ALIGN N~~E CLASS OVERLAY
OOOOOH 003FFH 00400H A (ABSOLUTE
01040H 070nH 6038H W CODE CODE
07078H 07091H OOlAH W OBJ_SEG CODE

92H 0709BH OOOAH W JOB_SEG CODE
0709CH 070AFH 0014H W TASK_SEG CODE
".,/,,\n/,,\II /"\.,nn.,,, nnnou \.J Me {,!:"t: rnnr U/UDun U/UO/n uuuon n rUJ_,J~1J vv-ur-.

070B8H 070BFH 0008H W SB'LSEG CODE
070COH 070C9H OOOAH W REG~SEG CODE
070CAH 070D7H OOOEH W FS_SEG CODE

I
070D8H 070FIH OOlAH W INT_SEG CODE

~

L 07190H 07190H OOOOH W SrACK STACK
07190H 07190H OOOOH W MEMORY MEMORY

ROOT JOB CONFIGURATION

• THE CONFIGURATION FILE FOR THE ROOT JOB IS NOT PROVIDED
I N THE SYSTEM D I SKEnE

• CONFIGUPATION FILE IS A SINGLE SOURCE FILE WHICH DESCRIBES:
- EACH FIRST-LEVEL JOB TO BE CREATED
- THE APPLICATION SYSTEM ADDRESS BLOCKS
- THE APPLICATION SYSTEM AS GLOBAL ATTRIBUTES

• THE CONFIGURATION I~FORMATION IS PROVIDED BY ASSEMBLY MACRO
CALLS

%JOB

%SAB

DEFINES JOB PARAMETERS FOR EACH FIRST
LEVEL APPLICATION JOB

DEFINES MEMORY NOT TO BE ASSIGNED
TO THE FREE SPACE MANAGER AT INITIALIZATION

%SYSTEM DEFINES SYSTEM PARAMETERS FOR THE SYSTB'1
CONFIGURATION

.......

~~------------~/

. . , . .. ~

% JOB

MACRO CALL: JOB (DEFINES FIRST-LEVEL JOBS)
NUMBER OF CALLS REQUIRED: ONE FOR EACH FIRST-LEVEL JOB
CONFIGURATION FILE NAME: __________ _

FORMAT: SUGGESTED
PAP~METER TYPE DEFAULT VALUE

%JOB <DIRECTORY_SIZE" WORD
POOLJUN" WORD
POOLMAX" WORD (OFFFEH)
MAX_OBJECTS" WORD
MAX_JOB-PRIORITY: BYTE
EXCEPTION_HANDLER_ENTRY" ADDR (0:0)
EXCEPT I ON-HAN DLER-MQDE " BYTE (1)

JOB_FLAGS" WORD (0)
INIT_TASK_PRIORITY" BYTE (0)
INIT _TASK_ENTRY" ADDR
DATA_SEGMENT-BASE" BASE (0)
ST ACKJ'O INTER., ADDR (0:0)
ST ACK_S I ZE" WORD (512)
TASK_FLAGS) WORD (0)

I
f

i
I
I ,

" I' ••

THE %SYSTEM MACRO

• DEFINES GLOBAL APPLICATION SYSTS~ PARAMETERS

MACRO CALL: SYSTEM (SYSTEM PA RAMETERS)

NUMBER OF CALLS REQUIRED: ---,EX~ACt....L.iTLI.J.Y...:.OtJ.l,;NE _________ _

CONFIGURATION FILE NAME ____________ _

FORMAT:
SUGGESTED

PARAMETER TYPE DEFAULT VALUE

%SYSTEM . (NUCLEUS_ENTRY} BASE -
ROD_SIZE} WORD
MHLTRANS_S IZL WORD (54)
DEBUGGER} SEE NOTE (Al

1
DEFAULT_E_H_PROVIDEDJ SEE NOTE (N)

" , "

MODE) WORD

"------------------:;

" I" .-

STEPS IN BUILDING THE ROOT JOB

1) CREATE A CONFIGURATION FILE
2) ASSEMBLE THE CONFIGURATION FILE
3) LINK AND LOCATE THE ROOT JOB

) CREDIT :Fl: ROOT.A85

• • t ~ ••

WHAT/WHY UDI?

UNIVERSAL DEVELOPMENT INTERFACE

UDI IS A SPECIFICATION OF A SET OF PROCEDURE CALLS THAT ARE USED
TO REQUEST OPERATING SYSTEM FUUCTIONS.

THE KINDS OF FUNCTIONS THAT ARE AVAILABLE THROUGH UDI PROCEDURE CALLS INCLUDE:
• CREATING AND BREAKING CONNECTIONS TO DATA FILES
• OPENING~ READING~ SEEKING~ WRITING~ AND CLOSING DATA FILES
• CONTROLLING PROGRAM EXECUTION
• CONTROLLING MEMORY ALLOCATIONS
• HANDLING SYST81 EXCEPTION CONDITIONS
• CONTROLLING THE PROCESSING. OF CONSOLE INPUT & PARS ING COMMAND LINES
• FETCHING THE CURRENT DATE AND TIME ~

FUNCTIONS ARE IMPCEMENTED BY ~1ODULES THAT TRANSLATE FROM THE UDI STANDARD
TO THE ACTUAL OPERATING SYSTEM CALLS

EACH ItITEL OPERATING SYSTEM FOR THE IAPX 86 J 88 FAMILY PROVIDES A
., UNIVERSAL DEVELOPMENT INTERFACE OR A SUBSET THEREOF. ... " .

UDI ~ ~~------~--------~/

LINK {

(

LINK j
I

\.

LIBRARIES

THE iRMX 86 OPERATING SYSTEM SUPPORTS UDI BY PROVIDING
UDI INTERFACE LIBRARIES.

" !- .•.

INTEL APPLICATION ~~GUAGES (ASSEMBLY} PLM, PASCALI FORTRAN)

RUN-TIME LIBRARIES I
UDI LIBRARIES I

OPERATING SYSTEM I
IAPX 86 J 88 HARDWARE

~

" .

THE 1 RMX OPERATING SYSTEM CONS I STS OF A NU~'BER OF SUBSYSTEMS

OMY I I\vt:o~
l" i" 'L ... n I '-1\""",

NUCLEUS

TERHINAL HANDLER

BASIC I/O SYSTEM

-
EXTENDED I/O. SYSTEM

APPLI CAT ION
LOADER

HUMAN INTERFACE

DESCRIPTION

THE CORE OF THE IRMX 86 OPERATING SYSTEM
AND IS REQUIRED FOR EVERY APPLICATION
SYSTEM

PROVIDES A REAL-TIME INTERFACE BETWEEN
YOUR TERMINAL AND OTHER SOFTWARE.

PROVIDES ASYNCHRONOUS FILE ACCESS
CAPABIL1TIES

PROVIDES HIGH LEVELJ SYNCHRONOUS FILE
ACCESS CAPABILITIES

PROVIDES THE CAPABILITY TO LOAD OBJECT
FILES INTO MEMORY FROM DISK ~ ..

I PROVIDES AN INTERACTIVE INTERFACE BEiWEEN I A USER AND SOFTWARE

. . . ~

UDI CALLS AND iRMX 86 SYSTEM CALLS

. UDI CALLS iRMX 86 SYSTEM CALLS SUBSYSTEMS

DQ$ALLOCATE RQSCREATESSEGMENT NUCLEUS
DQSATTACH RQSATTACH$FILE EXTENDED I/O SYSTEM
DQSCH~~GE$EXTENSION (NOND (NONE)
DQ$CLOSE RQ$SSCLOSE EXTENDED I/O SYSTEM
DQSCREATE RQSSSCREATESFILE EXTENDED lIO SYSTEI"

RQSSSGETSFlLESSTATUS
DQ$DECODESEXCEPTION RQ$CSFORMATSEXCEPTION HUMAN INTERFACE
DQ$DELETE RQ$DELETE$FlLE EXTENDED I/O SYSTEM
DQ$DETACH RQ$SSDELETESCONNECTION EXTENDED I/O SYSTEM

RQ$SSCLOSE
DQ$FREE RQSDELETE$SEGMENT NUCLEUS

J

•

.

I
I

, I I ~ ...

ERROR REPORTING

UDI PROCEDURES RETURN A CONDiTiON CODE THAT INDICATES THE RESULTS
OF EXECUTING A UDI PROCEDURE.

• YOU MUST CHECK THE CONDITION CODE AFTER EACH UDI CALL TO
ENSURE PROPER RESULTS

TABLE 6-2. iRMX 86 EXCEPTION CODES AND MNEMONICS

HEX CODE HEX CODE MNEMONIC

ESEOF 0000
0001
0002

MNEr.'()NIC

ESOK
E$TIME .
E$MEM

0065
0066
0067

ESFIXUP
E$NOSlOADERSMEM

• ... '

(SEE COMPLETE LISTING IN RUN TIME SUPPORT MANUAL)

' . . ' .".

OTHER UDI FACTS

INTERRUPT HANDLI~rG

PROGRAMS THAT RUN UNDER THE iRMX 86 OPERATING SYSTEM SHOULD USE
i RMX 86 INTERRUPT ~ANAGEMENT TECHN I QUES TO HANDLE INTERRUPTS.
• THE UDI LIBRARIES DO NOT INCLUDE INTERRUPT MANAGEMENT.

REENTRANCY

UDI ~IBRARIES ARE FULLY REENTRANT WITH THE FOLLOWING RESTRICTIONS:
: EACH JOB MUST HAVE ITS OWN COpy OF THE UDI LIBRARIES.
• YOU CAN HAVE ONLY ONE COPY OF THE UDI LIBRARIES WITHIN

A SINGLE JOB.

~.uLTITASKING

• THE UDI LIBRARIES ARE FULLY COMPATIBLE WITH A MULTITASKING- :'.
ENVIRONMENT. HOWEVER} THERE ARE NO UDI CALLS TO CREATE
AND DELETE TASKS.

MIP and iMMX 800

" ... ' I
~~-------------' ~

., r"

WHAT IS MIP?

• THE MULTIBUS INTERPROCESSOR PROTOCOL (MIP) IS A SPECIFICATION
FOR A SET OF MECHANISMS AND PROTOCOLS.

• PROVIDES AN EXCHANGE OF DATA AMONG TASKS EXECUTING ON VARIOUS
SINGLE-BOARD COMPUTERS.

RR
... '

-

CHANNELS

• CO~~UNICATION BEr~EEN DEVICES IS IMPLEMENTED USING CHANNELS
- A CHANNEL CONSISTS OF A PAIR OF QUEUES
- ONE CHANNEL MUST BE DEFINED FOR EACH Dr/ICE PAIR WHICH WILL

COMMUNICATE WITH EACH OTHER
• A CHANNEL MUST RES IDE I N A ME.11ORY SEGMENT ACCESS IBLE BY BOTH

DEVICES WHICH USE THAT CHANNEL
- GLOBAL MEMORY
- DUAL PORT MEMORY

... --... , --'"\
II8a

DC\'ICa

......

• byt ..
,

Descriptor Request Oueue {I ROD

Request Queue ,
Entries •

I
.......

...

I
ROE

RQE

ROE

ROE

V"

..

18 bytes

!(~I

iMMX 800
• iMMX 800 IS THE IMPL(~ENTATION OF THE MIP SPECIFICATION

• COMES IN THREE VERS IONS
- OPERATION UNDER IRMX 80 NUCLEUS

*iMMX 800/SO
- OPERATION UNDER iRMX 88 NUCLEUS

·iMMX 800/880 FOR NON-MEGABYTE SUPPORT
·iMMX 800/881 FOR MEGABYTE SUPPORT

- OPERATION UNDER iRMX 86 NUCLEUS
·iMMX 800/86

• ALL THREE VERSIONS PRESENT IDENTICAL USER INTERFACES

• CONSISTS OF THREE PARTS
- MESSAGE MANAGER

·PROVIDES INTERFACE TO USER TASKS (SEND~ RECEIVE)
- PARTITIONED MEMORY MANAGER (PMM)

·MANAGES MEMORY POOLS
- SIGNAL MANAGER

·PROVIDES INTERFACE TO OTHER DEVICES

" II '.

I.

I
I
I

I
~

... '

- .•.. __ . _ .. _. _____ .. ~._,_ •. ,., ___ ,_'._. ' _ _ .'_~·n'~_'_.·..., __ ._ ... · , __ , .. __ ~ _____ . '._". _. _. __ ___ _

(MESSAGE MANAGER

• FUNCTIONALITY FROM USER ViEwPOINT

PRODUCER CONSUMER

RECEIVE
THE

MESSAGE

DATA BASE APPLICATION EXAMPLE

• 2 OPERATORS - 2 TERMINALS ACCESSING DATA FILES :
• THE TERMINALS CONTROLLED BY RMX 80 j

• • • ~)I .••

• THE DATA BASE ("WINCHESTER") CONTROLLED BY RMX 86 BASIC 110 SYSTEM

~
~
~ ...:--

\ -- J (8085)
'-./ RMX80

--
r- ------, --,

8
_- ...:-..". i I I

-- (S(86) I
RMX 86

@
L _________ -.J

... A

... '

\
I
~ ,

· . '. '

THE

80130

.... i "

' .. ~ ,

REVIEW/QUIZ

1) WHAT IS A CONTEXT SAVE?

2) WHAT ARE DIFFERENCES BETHEEN CALL RQSLEEP AND C.AlL TIl'1E?

3) WHAT ARE THE TWO CONDITIONS H1POSED ON A TASK BEFORE IT
BECOMES THE RUNNING TASK?

4) WRITE THE COMMAND (USING THE RMX86 DEBUGGER) TO BREAK POINT
A TASK (9C4F) AT A SEr.APHORE (9D4~) WHEN THE TASK RECEIVES
3 UNITS FROM THAT SEMAPHORE.

5) CAN I HAVt MORE THAN ONE TERMiNAL HANDLER?

-.. r " -
'" t '.

.....

I

I

1
!

. -----..-.-..• --.-.~.~-".~.---------

HARDWARE FEATURES

.. rc • 128X BIT CCftTROI. STORAGE -,,--- - ZERO WAIT STATES AT 8PIH2 (lOONs ACCESS TIl£)
- ADIlRESSABl.£ AS 16K X 8 BITS OR 8lC X 16 BITS

• PROGIWIWllE IHTERRlJPT COHTRa..LEP

- COPPtETELy I'IN&AGEJ) BY PRII1ITIVES
- 8lHTERRUPT INPUTS IHDIVIDtJAUY MSICED BY THE Il.S.
- CAl EXPAHD TO 57 INPUTS WITH CASCAOOl 82S9-A'S .

• 3 PBlGlWPABL£ TII£RS: SYSIDI. DELAY, BAUD RATE GalEP.ATIIlt

- SYSTEPI TIrO TO A I'IIItI'1J111 OF 1 /lISE!:

- DElAY COUftTS IlOWft SYSIDI TIMER INTERVAlS
(SIWLS Ilt ZERO)

- BAUD RATE GEHERATION - 8254 OPERATES IS SaJAR£ WAVE ~ ... -.....
:=-

- OSF INTERRUPT CONTROLLER
OPERATION

CJ Operation Is similar to 8259A PIC
CJ One or more interrupt inputs are activated
CJ 80130 activates INT line to notify CPU of Interrupt request
CJ CPU adcnowledges interrupt with two interrupt acknowiedge

(INTA) C"/des
o For external 825SAs, 80'130 drives cascade address

(CAS2-CASO) on A01Q-A08 during second INTA cyc!e
Cl An 8-bit interrupt vector is returned to the CPU by either the

80130 or by the selected slave 82S9A during the second
INTAcyde

J

\

·_------------... _ .. _--_ _- .-

(. PRIMITIVES FOR TASKS

o Create$task
- Creates a task and returns a token for it

o Delete$task
- DeJetes a task that is not an interrupt task

o Suspend$task
- Increases a task's suspension depth by one. Suspends the task if

it is not already suspended

o Resume$task
- Decreases a task's suspension depth by one. Resumes

(unsuspends) the task if the suspension depth becomes zero ..

o Sleep
- Places the-caUing task in the asleep state for a specified amount

of time .~.

o Get$task$tokens
- Returns a token for either the caUing task, the caUing task's jobs

the pararpeter object of the calling task's job, or the root job
o Set$priority.i

- Changes the priority of a noninterrupl task

PRIMITIVES FOR MAILBOXES
....•.

o Create$mailbox
- Creates a mailbox and returns a token for it

o Delete$mailbox
- Deletes 8. mailbox from the system

o Send$message
~ Sends an object to a mailbox

o Receive$message
....;. Sends the calling task to a mailbox for an object (the task

has the option of waiting if no objects are present)

PRIMITIVES FOR JOBS

o Create$job
- Creates a job with a task and returns a token for the job

·~.' ..•.•.... __________ :."'"" - .-'~~~ ~- -:: •.,:.-;,~ -...... ;:W!?:!t..-·,.w...;;.. ___ o..i:.i·t. ___ p·.-· - -.----------- "i
t

.' ..
PRIMITIVES FOR ADDITIONAL SUPPORT

o Set$exception
....... Assigns an exception handler to the calling task and sets the

exception mode attributes

o Get$exception ~
- Returns to the calling task the current values of its exception

handler and exception friode attributes

o Get$type
- Accepts a to.ken for an object and returns the object's type code

o Disable$deletion
- Makes an object susceptible to ordinary deletion ;.

o Set$O.S.$extension
- Enters or deletes the address of an entry or function procedure in

the interrupi vector table

o Signal$exception
- Invoked by 0.5. extensions to signal the occurrence of an

exceptional condition

80130 INITIALIZATION AND
. ·· .. CONFIGURATION CODE REQUIREMENTS

The complete set of iRMX 86 facilities can be added to an
IAPX 86/30 or 88/30 system to meet extensive requirements

Using 80130 with BIOS of iRMX 86
- 4.5K Bytes without parameter validation
- 6.5K Bytes with parameter validation

Using 80130 with EIOS, human interface, or UDI
- 8K Bytes without parameter validation
- 10.5K Bytes with parameter validation

Note: ihis code must be adjacent to 80130'5 address space
(The BIOS, EJOS, and HI can reside elsewhere!)

AJso: The numbers do not include BIOS, E10S, or HI cod~

I
1
I

--. ,.... "------

~ -.-----.-,~--.. ----- - -~--.- .. , . . - .. -.~--.-----"--,,-.. ---.--.. - ... ,,--~--.--------------------~

• , ·to '

80 130 CONFIGURATION

10SP 86 [~
MANUAL,;' + G

DISKffiE

" I

IOSP SUPPORT PACKAGE

~.. .. i •.

DISKETTE CONTENTS

CONFIGURATION FILES

- DEVICE CONFIGURATION TABLE

- PRIMITIVE/FEATURES CONFIGURATION TABLE

SUBMIT FILES

- ASSEMBLE~ LINKJ LOCATE CONFIGURATION FILESJ APPLICATION

CODE AND ROOT JOB

INTERFACE LIBRARIES

- I~ITERFACE FROM APPLICATION CODE CALLS TO PRIMITIVES

- COMPACT J MEDIUM AND LARGE LIBRARIES SUPPLIED

CODE LIBRARIES CONTAINING "FRmn ENDS" TO 80130 PRUUTIVES

- INITIALIZATION CODE

...

., ...

GENERATE THE SYSTt~ CONFIGUP~TION (ROOT JOB)

1) CREATE CONFIGUP.ATION MODULE
USING FOUR TYPES OF MACROS

%~AB - DEFINES ADDRESS BLOCKS NOT ASSIGNED
TO FREE SPACE MANAGER

%JOB - DEFINES JOB PARAMETERS FOR EACH
FIRST LEVEL JOB

%OSX <DEFINES BASE ADDRESS OF 80130

%SYSTEM~ - DEFINES'SYSTEM WIDE PARAMETERS
2) ASSEMBLE CONFIGURATION MODULE TO CREATE ROOT JOB

3) LINK AND LOCATE ROOT JOB

.. ,; '.

INTEL SYSTEM 86/330

POlO (II

APPlJ CAT UII
~

.IITJAUZE

80130

.. -- ---

80130
AM .

IITUR1I'TS

85/330 SOFntARE

.••. eo \ •• INTEL

- LINK86 - ASM86

- LOC86 - ·LIB86
- OH86 - EDIT86
- DIAGNOSTICS -SYSTEM DEBUG MON ITOR
- PLM86 -PASCAL86 (OPTION)

• THIRD PARTY

- nc w WHITESMITH
- MICROFOCUS COBr~
-MICROSOFT COBOL (6182)
- MICROSOFT BASIC INTERPRETER

~ - MICROS9fT BASIC COMPILER (6182)

____ ... ,' " _r' ___________)

0 \

-..

86/330 SOED/ARE

...
1'\0. ... -

.-: -=<:..Ar--' ., __ --_-_--.-__ ' :> -'N'IIOCI_a __ _ ---

• COMPLETE SUPPORT FOR
THE UDIINTERFACE

• IM~ROVED DeBUG
CAPABIUTIES .

• UNE PRINTER DRIVER

• DISK VERIFY

• DISK BACKUP

• CONFIGURATION UNDER
IRUX 8a

i~~ 86 RELEASE 5

BIOS
• PERFORMANCE ENHANCEMENTS

• NEw STATUS INTERFACE-wAiTSFOR$iO
-NO IORS
-FASTER

• OVERLAPPED SEEKS
• UPDATEITIMEOUT "CLOCKED"
• "HOT SPOT" TUNING

• iSBC 215/isBX 217 STREAMER TAPE DRIVER

• MULTITERMINAL SUPPORT
• 53Lf DRIVER
• 544 DRIVER
• BOTH WITH CONFIBURABLE INTERRUPTS

• AUTO DENSITY RECOGNITION ON ATTACHMENT OF DEVICE!
• 208 DRIVER

..... ,

\.. • iSBX 218!iSBC 215 DRIVER /

,~----------------~./

IRMX 86 RELEASE BIOS

TERMINAL DRIVER

• SUPPORTS 534 A~D/OR ONBOARD USART

• PHYSICAL FILE INTERFACE

• FEATURES
• ASC I I CRT AND HARD COpy
• TYPE AHEAD
• LINEEDIT
• TRANSPARENT MODE (ECHO OPTIONAL)
• DYNAMIC MODE CHANGES
• CONFIGURABLE

- FEATURES
- CRT's
- PORTS

• ALL ON EACH USART!

. ...! ~.

544 DRIVER

• Mft1.x BASED
- ON BOARD EDITING

AND USART HANDLING

..... '

IR"'X SE RELEASE 5

INTERACTIVE CONFIGURATION UTILITY (leU)

• UD I BASED (W ILL RUN ON SYSTH1 I I I)

• EASY TO USE QUESTION/ANSWER
• CONFIGURATION PROCESS:

1. LAYOUT APPLICATION
JOBS~ TASKS, ~~CHANGES

2. WRITE1 COMPlLE~ LINK, LOCATE APPLICATION CODE
3. USE ICU TO GENERATE DESCRIPTION FILE
4. ICU/GENEPATE COMMAND

CONFIGURATION MODULES
SUBMIT FILE (ICU86)

5. !- PARTITION SUBMIT FILE IF FLOPPY SYSTEM
6. ~ SUBMIT ICU86
7.'- TEST
8. REDO STEPS 1 - 7 IF NECESSARY
9. FINAL RECONFIGURE FOR MINIMUM SYSTEM

SYSTEM CALLS
DEBUGGER REMOVAL

IRMX 86 RELEASE 5

INVOCATION EXAMPLE

ICU 86 <INPUT FILE NAME TO) OUTPUT FILE NAME
- NO INPUT FILE NAME: SYSTEM DEFAULT

DESCRIPTOR FILE USED AS INPUT
- DUPLICATE OUTPUT FILE NAME: OLD FILE

COPIED TO HOUTPUT FILE NAME BAK"

. 4' •. -

.* .. s ...

iRUG

LIFEBOAT lINTEL COMMITl"£NTS ,I

- .

LIFEBOAT WILL PROVIDE THE MAJOR FUNDING AND WILL ORGANIZE AND MANAGE A
CLERlCAL~ TECHNICAL AND PUBLICATION STAFF FORTHE USER GROUP. THEY WILL
ACTIVELY PROMOTE~ ADVERTISE AND DISTRIBUTE USER-GENERATED SOFTwARE TO BE
CATALOGED AND INCORPORATED INTO AN IRUG LIBRARY.

INTEL WILL PROVIDE PARTIAL FUNDING~ AN86/330 SYSTEM AND TRAINING
TO SUPPORT LIFEBOAT'S ENDEAVORS.

. .. ,

