
INTRODUCTION TO THE
iRMX 86™

OPERATING SYSTEM

Manual Order Number: 9803124-02

Copyright © 1980, Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 l

PUBLICATION NOTICE

This document is the second edition of the INTRODUCTION TO THE iRMX 86
OPERATING SYSTEM. The manual reflects the software associated with Release 2.0 of the
iRMX 86 Operating System. This edition applies to all future software releases until further
notice.

Manual
Edition:

First
Second

PRINTING HISTORY:

Software
Release:

1.0
2.0

Print
Date:

April, 1980
November, 1980

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and· shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel
products:

BXP
CREDIT
i
iCE
iCS
im
Insite
Intel

Intel
Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS

Megachassis
Micromap
Multibus
MULTIMODULE
PROMPT
Promware
RMX/SO
UPI
,.,scope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, or MCS and a numerical suffix.

ii A270/1080 13K DO

PREFACE

If you are looking for a high-level introduction to the iRMX 86
Operating System, this manual will satisfy you. By reading
this manual, you will acquire sufficient knowledge of the
iRMX 86 Operating System to:

• See how the iRMX 86 Operating System can help you
develop your application system in less time and at
less expense.

• Begin reading the more detailed iRMX 86 manuals.

This manual, which is written for engineers and managers, is
designed to be read completely in one or two sittings. It
presents information starting with the most general and
familiar terms which it then uses to define specific and new
terms.

Throughout this manual, the expression "iAPX 86-based
microcomputer" is used to refer to any microcomputer that uses
the Intel iAPX 86 microprocessor as its central processing unit.

iii

CONTENTS

PAGE

PREFACE .•••.••.••••••••••••••••.••.•.••••.•.•••••••..•••.••. iii

CHAPTER 1
OVERVIEW OF THE iRMX 86 OPERATING SYSTEM
Major Characteristics of the iRMX 86 System •••.•.••..•••.•.. l-l
Customers of the iRMX 86 Operating System•.•.•.......... l-l
Commonly Used iRMX 86 Terminology .•••.•......•...•••.•...... 1-2
Purpose of the iRMX 86 Operating System ...•......••..•...... 1-3
Organization of this Manual .•.•.•••....•.....•...••....•.•.. 1-3

CHAPTER 2
CONSIDERATIONS RELATING TO REALTIME SOFTWARE
Event Detection .•.•.•.........•..•..••....•..•...••..•....•• 2-1
Scheduling of Processing .•.•.....•.......................... 2-1
Error Processing •.............••.....•••....••..•....•••.... 2-1
Device Sensitivity •...•...............•.....•........••..... 2-2
Device Selection •..•................•.•..............•...... 2-2
Mass storage File Allocation Tradeoffs •......•..•.•..••..... 2-2
Unneeded Features•...•••...•.........••..... 2-2
Multiple Applications ..•.•.•.....••...••.....••.•....••..... 2-2
Memory Requirements•.......•..••..........•..•••...•. 2-2
F i 1 e san d M u 1 tip 1 e Use r,s•••......•.•.•...••..... 2 - 3
Debugging ... 2-3
Chapter Perspective•.•..••......•.•.....•...•.. 2-3

CHAPTER 3
BENEFITS OF THE iRMX 86 OPERATING SYSTEM
Development Time .•..... ~•.•......•.•...•..•.•..•........ 3-2
Cost of Implementation •...........•.......•...•............. 3-2
Costs After Development ...•....•.....•..•.•..........••...•. 3-2
Chapter Perspective•........•..................... 3-3

CHAPTER 4
FEATURES OF THE iRMX 86'OPERATING SYSTEM
Object-Oriented Architecture .•...•...••....•.......•........ 4-2

Explanation of Object-Oriented Architecture 4-2
Advantages of Object-Oriented Architecture•...•.•...... 4-4

Mul ti tasking .. 4-4
Explanation of Multitasking ..••..••..•.•..........•...•..•. 4-4
Advantages of Multitasking ...•...•••...•......•............ 4-5

Interrupt Processing••..•...•••.....•.....•.•.•... 4-5
Explanation of Interrupt Processing .•..•................... 4-5
Advantages of Interrupt Processing•...••.•...••. ;. 4-6

Preemptive Priori ty-Based Scheduling•..........•....•... 4-6
Explanation of Preemptive Priority-Based Scheduling 4-6
Advantage of Preemptive Priority-Based Scheduling ..•...•... 4-7

Multiprogramming•...•....••...•••...•..••..•....•..••... 4-7
Explanation of Multiprogramming ...•........................ 4-7
Advantages of Multiprogramming .•.••.•.•...•.....•.•...••... 4-8

iv

CONTENTS (continued)

PAGE

Error Handling ..••••.••.••...•..••..•....•.....•••...•..•... 4-8
Explanation of Error Handling •.••.......•......•...••...... 4-8
Advantage of Error Handling••...............•.......... 4-11

Dynamic Memory Allocation••...................•...... 4-11
Explanation of Dynamic Memory Allocation •.................. 4-1l
Advantage of Dynamic Memory Allocation .•................... 4-12

Intertask Coordination ...•......••.............•............ 4-12
Explanation of Intertask Coordination ..•......••........... 4-12
Advantage of Intertask Coordination•...••.......... 4-l6

Runtime Binding ..••...•....•.....•..........•............... 4-16
Explanation of Runtime Binding .••.......................... 4-16
Advantages of Runtime Binding ..•...............•......•.... 4-l8

Extendibi Ii ty ... ~-18
Explanation of Extendibility 4-l9
Advantage of Extendibility 4-19

Terminal Handling .•.........•............................... 4-19
Explanation of the Terminal Handler 4-19
Advantages of the Terminal Handler•.... 4-20

Application Loading ... 4-20
Explanation of Application Loading•.... 4-20
Advantage of Application Loading•....... 4-20

Device-Independent Input and Output 4-20
Explanation of Device-Independent Input and Output•.... 4-20
Advantages of Device-Indpendent Input and Output•.... 4-21

Hierarchical Naming of Mass Storage Files•....... 4-21
Explanation of Hierarchical Naming•.... 4-2l
Advantages of Hierarchical Naming•.... 4-24

File Access Control••..............................•.... 4-25
Explanation of File Access Control••... 4-25
Advantages of File Access Control•...•... 4-25

Control over File Fragmentation•...•.... 4-25
Explanation of File Fragmentation 4-26
Advantages of Control over Fragmentation 4-26

Selection of Device Drivers ..•.•...................•...•.... 4-27
Explanation of Device Drivers •............................. 4-27
Advantages of Having a Selection•................ 4-27

Object-Oriented Debugger•.........................•.... 4-27
Explanation of an Object-Oriented Debugger ...•....•........ 4-28
Advantage of an Object-Oriented Debugger•...• 4-28

Bootstrap Loading ..•...........•...................•......•. 4-28
Explanation of Bootstrap Loader•. 4-29
Advantages of a Bootstrap Loader•........••..•.... 4-29

Configurabil i ty •..........•..•••...........•.......••....... 4-29
Explanation of Configurability •...••.....................•. 4-30
Advantages of Configurability •.......................•...•• 4-33

Chapter Perspective .. 4-33

v

CONTENTS (continued)

PAGE

CHAPTER 5
A HYPOTHETICAL SYSTEM
Interrupt Processing•.....•.......•..••.••••.••. 5-3
Terminal Handler .••..•...••.•...••.......•........•••...•.••. 5-4
Mul ti tasking ... 5-4
Intertask Coordination ...•••••...••...•..••...•••....•••.••.. 5-5
Multiprogramming••.........••..•..•.••.....•.•.......••. 5-5
Runtime Binding •.•...••.......•.••.........•.........••••.••. 5-5
Mass Storage Files•.••.....••....••..•.....•.•..•....•.. 5-6
Device Independence ..•.•.••.••..•••..•••.•.....••...••....••• 5-6
Chapter Perspective ...••••...••.•••.•.••.....•.......•....•.. 5-6

CHAPTER 6
iRMX 86 LITERATURE
Introduction to the iRMX 86 Operating System .•..•••...•...•.. 6-3
iRMX 86 Nucleus, Terminal Handler, and Debugger

Reference Manual ...•..............•••....••..•....••..•.• 6-3
iRMX 86 I/O System and Loader Reference Manual ...•...••...•.• 6-4
iRMX '86 System Programmer's Reference Manual .•..•••....•..••• 6-4
iRMX 86 Installation Guide for ISIS-II Users .•....•..•••....• 6-5
iRMX 86 Configuration Guide for ISIS-II Users •...•...•....•.• 6-5
iRMX 86 Programming Techniques••.....•......•.• 6-S
iRMX 86 Pocket Reference•................•.....•........• 6-6
Guide to Writing Device Drivers for the

iRMX 86 Operating System••..............• 6-6
Reading Tips ... 6-6

ILLUSTRATIONS

1-1 The iRMX 86 foundation for application systems 1-2
3-1 The iRMX 86 Operating System provides

economic benefits ...•.....................•..•.. 3-1
4-1 Features of the iRMX 86 Operating System•...... 4-2
4-2 An Engineering directory ..••.................•..••.. 4-22
4-3 A Marketing directory •..•....•.......•...•.•..••..•. 4-23
4-4 Hierarchical naming of files•...•.........•••.•. 4-24
4-5 Configuration of a hypothetical system ...•.••.•••••. 4-30
4-6 Dual objective of iRMX 86 configuration•...•••. 4-3l
5-1 Hardware of the dialysis application system••.. 5-2

TABLES

VI-I Correlation of manuals and features•...•••. 6-2

vi

-CHAPTER 1. OVERVIEW OF THE iRMX 86 1M OPERATING SYSTEM

The iRMX 86 Operating System is a software package designed for
use with Intel's iSBC 86 Single Board Computers and with other
iAPX 86-based computers.

The iRMX 86 Operating System is different from many other
systems in that it is not turnkey.' Rathe~, it is specifically
designed to be incorporated in the products that you build.

The iRMX 86 Operating System consists of a collection of
subsystems, each of which provides one or more features that
can be used in your product. Based on the features that you
need to build your product, you decide which subsystems you
want. You then combine these subsystems to form a tailored
operating system that precisely meets your needs.

MAJOR CHARACTERISTICS OF THE iRMX 86 SYSTEM

The iRMX 86 Operating System exhibits the following
characteristics:

• It can simultaneously monitor and control unrelated
events occuring outside the single board computer.

• It can communicate with a wide variety of input,
output, and mass storage devices.

• It provides a powerful and flexible means for an
operator to observe and modify the behavior of the
system.

These characteristics (especially when combined with features
discussed in Chapter 4) make the iRMX 86 Operating System an
excellent foundation for your software-based products (Figure
1-1).

CUSTOMERS OF THE iRMX 86 OPERATING SYSTEM

The iRMX 86 Operating System is designed for two types of
customers. Original Equipment Manufacturers, OEMs, are
companies that build products for resale. Volume End Users,
VEUs, are companies that build products for use within their
organization. Both types of customers can produce products
more quickly and at less expense by using the iRMX 86 Operating
System.

1-1

OVERVIEW OF THE iRMX 86™ OPERATING SYSTEM

APPLICATION SYSTEM

APPLICATION
SOFTWARE

iRMX 86
OPERATING

SYSTEM

Figure 1-1. The iRMX 86™ foundation for application systems

COMMONLY USED iRMX 86 TERMINOLOGY

The following terms are used frequently in this book:

• Application

An application is the problem that you solve with your
product.

• Application System

An application system is the product that satisfies the
requirements of the application (Figure 1-1).

• Application Software

The application software is all the software you must
add to the iRMX 86 Operating System in order to
complete your application system (Figure 1-1).

• User

The user is the individual or organization who uses
your application system.

1-2

OVERVIEW OF THE iRMX 86™ OPERATING SYSTEM

PURPOSE OF THE iRMX 86 OPERATING SYSTEM

The iRMX 86 Operating System is your shortcut to the market­
place. By supplying you with features that can be used in a
large number of application systems, the iRMX 86 Operating
System allows you to focus your attention on the specialized
application software. Since you spend less time and effort
developing sophisticated system software, you can bring your
application system to market faster and at a lower price.

ORGANIZATION OF THIS MANUAL

This manual is divided into six chapters. Some of the chapters
are designed for managers, some for engineers, and others for
both. The following paragraphs identify the audience and
purpose of each chapter.

• Chapter 1 - Overview of the iRMX 86 Operating System

Chapter I provides managers and engineers with a very
brief introduction to the iRMX 86 Operating System. It
provides vocabulary needed in later chapters and
contains a statement of purpose for each chapter in
this manual.

• Chapter 2 - Considerations Relating to Realtime Software

Chapter 2 introduces engineers to some of the obstacles
that the iRMX 86 Operating System can eliminate.
Managers who have had programming experience may want
to read this short chapter.

• Chapter 3 - Benefits of the iRMX 86 Operating System

Chapter 3 provides managers with a discussion of the
economic benefits of using the iRMX 86 Operating
System. Interested engineers may also want to read
this short chapter.

• Chapter 4 - Features of the iRMX 86 Operating System

Chapter 4 is a tutorial for engineers. It discusses
the features of the iRMX 86 Operating System and, at
the same time, it defines the vocabulary used in the
ot~er iRMX 86 manuals. Engineers who are already
proficient at realtime, multitasking programming need
only skim this chapter to ascertain the features of the
iRMX 86 Operating System.

1-3

OVERVIEW OF THE iRMX 86™ OPERATING SYSTEM

• Chapter 5 - A Hypothetical System

Chapter 5 is designed primarily for engineers. It
describes a relatively simple application system. The
purpose ~f this chapter is to illustrate the use of
some of the features discussed in Chapter 4.

• Chapter 6 - iRMX 86 Literature

Chapter 6 contains a description of the other manuals
associated with the iRMX 86 Operating System. This
chapter is designed for engineers who need information
more detailed than that provided by this introductory
manual.

1-4

CHAPTER 2. CONSIDERATIONS RELATING TO REALTIME SOFTWARE

The kinds of difficulties encountered in realtime programming
differ significantly from those found in other aspects of
programming. This chapter briefly introduces some of'the
problems that face designers of.realtime systems.

The purpose of this chapter is not to discourage you from
building a realtime application system. Rather, its purpose is
to show you the kinds of hurdles that the iRMX 86 Operating
System can help you jump. Consequently, this chapter only
poses questions -- it provides no answers. You can find the
answers in the discussion of iRMX 86 features in Chapter 4 of
this manual.

EVENT DETECTION

Realtime application systems monitor events in the real world.
These events occur asynchronously, that is, at seemingly random
intervals. When an event occurs, the system could be in the
midst of processing information associated with a previous
event. Even so, the system must be able to detect and record
the occurrence of the second event.

SCHEDULING OF PROCESSING

Assuming that the system can detect and record the occurrence
of an event, it still must decide in what order to process
recorded events. For that matter, when the system is
processing a relatively unimportant event and a critical event
occurs, the system must be able to respond correctly. It must
be able to postpone the processing of the less significant
event until the more important one has been processed. Then,
after the higher-priority processing, the system must resume
where it left off.

ERROR PROCESSING

Suppose that during the processing of realtime events, an error
is detected. How can the error be corrected, or how can its
impact be limited, without adversely affecting the running of
the system? The whole system, for instance, should not be shut
down merely because an error is detected.

2-1

CONSIDERATIONS RELATING TO REALTIME SOFTWARE

DEVICE SENSITIVITY

Many realtime applications use one or more input or output
devices. And sometimes, the devices associated with an
application system must be changed. By allowing devices to be
changed without requiring recompilation, the operating system
can save much time and effort.

DEVICE SELECTION

What kinds of devices should an operating system support?
Can it handle line printers? Disks? Bubble memories? Tapes?

MASS STORAGE FILE ALLOCATION TRADEDFFS

In any realtime system, performance is an important
consideration. One decision that relates directly to
performance must be made before formating mass storage files.
In some applications, large granularity (large amounts of
information located contiguously) results in much faster
retrieval. In other applications, larg~ granularity does not
improve performance, but does waste space on the device. The
operating system must contend with the tradeoff between
performance and optimal use of space on the device.

UNNEEDED FEATURES

Some OEM and VEU applications require features that other
applications do not. An operating system should provide a
means of selecting required features and rejecting unneeded
features.

MULTIPLE APPLICATIONS

Sometimes there is a need to run more than one application on
the same computer. Several applications might need to share
some resources, such as hardware and perhaps some files, while
reserving other resources for themselves.

MEMORY REQUIREMENTS

The memory requirements of some applications change according
to the events that occur in the real world. If a system can
share memory between applications, then the total amount of
memory required for the system might be less then the sum of
the maximum amounts required by each application.

2-2

CONSIDERATIONS RELATING TO REALTIME SOFTWARE

FILES AND MULTIPLE USERS

Some applications, such as key-to-disk and database-management
systems, support more than one user. In such systems, two
problems relate to mass storage files.

The first problem pertains to file naming. The users must be
able to name files without concern for duplicate names. If
they cannot, each user may be forced to guess at names that
have not yet been assigned by other users.

The second problem deals with selective sharing of files.
Multiuser systems often must be able to share and protect
files. For instance, in a key-to-disk system, one operator may
be entering data while another simultaneously verifies. This
illustrates the need for sharing a file. Now suppose that the
file contains confidential information. Once verified, the
file must be protected against unauthorized reading and
writing. This illustrates the need for restricting access.
The system must provide for both sharing and restricted access.

DEBUGGING

Virtually all software, no matter how carefully checked out by
manual inspection, contains some bugs. Usually, these bugs are
detected by using the system until an error occurs. Once the
error is found, an engineer begins tracing backwards from the
error to the bug that caused it. When the bug is identified,
the engineer modifies the software and eliminates the bug.
This process, called debugging, is repeated until no more
errors are found.

This debugging process is not always straightforward in
realtime systems. Often, bugs in realtime systems are
dependent upon events in the real world (outside of the
computer). In order to detect some realtime bugs, the system
must continue to run even while it is being debugged.

CHAPTER PERSPECTIVE

If the foregoing considerations pertain to your application,
then the iRMX 86 Operating System can save iou an enormous
amount of effort. To see how the iRMX 86 System resolves these
and other similar problems, read Chapter 4.

2-3

CHAPTER 3. BENEFITS OF THE iRMX 86™ OPERATING SYSTEM

You are reading this manual because you are planning to develop
a realtime application system. As an OEM or a VEU, you are
interested in developing your application system quickly while
still holding down the cost of development. Furthermore, you
want to minimize your costs after development. By serving as a
foundation for your application software (Figure 3-1), the
iRMX 86 Operating System can ·help you meet your objectives.

APPLICATION SYSTEM

APPLICATION
SOFTWARE

Figure 3-1. The iRMX 86 System provides economic benefits

3-1

BENEFITS OF THE iRMX 86™ OPERATING SYSTEM

DEVELOPMENT TIME

The iRMX 86 Operating System helps you develop realtime
application systems quickly. Acting as the foundation for your
specialized application software, the iRMX 86 Operating System
provides services that are required by many realtime
applications. Since these services are supplied by the iRMX 86
Operating System, your application engineers spend no time
writing software to manage multitasking, dynamic memory
allocation, and other functions vital to many realtime
applications. Rather, your engineers concentrate their efforts
on the software that relates specifically to the application
being solved. This greatly reduces the time needed to develop
your application system.

COST OF IMPLEMENTATION

The iRMX 86 Operating System helps reduce the cost of
implementation in two ways. First, by supplying the general
services required by many realtime applications, the iRMX 86
System reduces your manpower requirements. Second, the
features of the Operating System simplify the process of
development. These features, such as object-oriented
architecture, device independence, and others, are discussed in
Chapter 4.

COSTS AFTER DEVELOPMENT

After your application system is developed, your major expense
is maintenance -- the process of removing bugs, making changes,
and adding features. The iRMX 86 Operating System helps
minimize these costs.

First, a number of features of the iRMX 86 Operating System
smooth the process of system design, reducing the probability
of major design errors. These features, which include
multitasking and multiprogramming,:are described in Chapter 4.

Second, when errors do reveal the presence of bugs in your
application software, the iRMX 86 System provides features to
help find the bugs. These features include error handlers and
an object-oriented, realtime debugger.

Third, the modularity provided by multiple jobs and tasks lets
you make changes and additions without severely affecting the
system's overall design.

3-2

BENEFITS OF THE iRMX 86TM OPERATING SYSTEM

CHAPTER PERSPECTIVE

The iRMX 86 Operating System is your economic ally. It helps
you put your realtime application system in the hands of your
users in less time and at less expense. It also reduces your
maintenance costs after your system is developed.

3-3

CHAPTER 4. FEATURES OF THE iRMX 86™ OPERATING SYSTEM

This chapter provides you with moderately detailed descriptions
of the following features (Figure 4-1) of the iRMX 86 Operating
System:

• Object-Oriented Architecture

• Multitasking

• Interrupt Processing

• Preemptive Priority-Based Scheduling

• Multiprogramming

• Error Handling

• Dynamic Memory Allocation

• Intertask Coordination

• Runtime Binding

• Extendibility

• Terminal Handler

• Application Loading

• Device-Independent Input and Output

• Hierarchical Naming of Mass Storage Files

• File Access Control

• Control over File Fragmentation

• Selection of Devi~e Drivers

• Object-Oriented Debugger

• Bootstrap Loading

• Configurability

Each section of this chapter deals with one of these features
and, in case you are already familiar with some features, each
section is organized for easy skimming. The first few
sentences of each section provide a summary of the feature's
value. The feature is then described in moderate detail and,
near the end of each section, the advantages of the 'feature are
discussed.

4-1

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

APPLICATION SYSTEM

APPLICATION
SOFTWARE

Figure 4-1. Features of the iRMX 86™ Operating System

OBJECT-ORIENTED ARCHITECTURE

The iRMX 86 Operating System uses an object-oriented
architecture because it makes the Operating System easy to
learn and use.

EXPLANATION OF OBJECT-ORIENTED ARCHITECTURE

An operating system is a collection of software that is meant
to be used by software engineers. Many operating systems are
so complex that the majority of the engineers using them are
unable to fully grasp their organization. In contrast, systems
exhibiting object-oriented architectures are easier to
understand. Their mechanisms are well defined, and they
demonstrate a consistency that makes the operating system seem
less awesome.

4-2

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

In other words, ~n object-oriented architecture is a means of
humanizing an operating system. It uses a collection of
building blocks that are manipulated by operators. Let's look
at a typed architecture that you might be familiar with
FORTRAN.

FORTRAN exhibits a typed architecture. Its building blocks are
variables of several types. For instance, it has integers,
real numbers, double-precision real numbers, etc. It also has
operators (+, -, *, I, **, and others) that act on variables to
produce understandable results. Let's turn back to operating
systems and see how object-oriented architecture works in the
iRMX 86 System.

The building blocks of the iRMX 86 Operating System are called
objects and, as with FORTRAN variables, objects are of several
types. There are tasks, jobs, mailboxes, semaphores, segments,
and connections. There are also other types of objects, but we
already have enough for an introduction.

Just as the variables in a FORTRAN program are acted upon by
operators, the objects in an iRMX 86-based application system
are acted upon by system calls. In other words, your
application software uses system calls to manipulate the
objects in your application system. For instance, the CREATE
MAILBOX and DELETE MAILBOX system calls do precisely what their
names suggest.

How does an object-oriented architecture make a system easier
to learn and use? By taking advantage of useful
classification. To illustrate this, let's return to FORTRAN.
The variables of FORTRAN are classified into types because each
type exhibits certain characteristics. For instance, all
integer variables are somewhat similar, even though they can
take on different values. Once you learn the characteristics
of an integer variable, you feel comfortable with every integer
variable. This similarity makes FORTRAN easy to master.

For the same reasons, the objects of the iRMX 86 Operating
System are classified into types. Each object type (such as a
semaphore) has a specific set of attributes. Once you become
familiar with the attributes of a semaphore, you are familiar
with all semaphores. There are no special cases.

This useful classification also applies to iRMX 86 system
calls. Each type of iRMX 86 object has an associated set of
system calls. These calls cannot be used to manipulate objects
of another type without causing an error. (Our analogy breaks
down at this point. FORTRAN operators almost always work on
several types of variables.)

4-3

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

The beauty of the object-oriented architecture of the iRMX 86
Operating System can be summed up in one statement. Once you
learn the attributes and the system calls associated with a
type of object, you have complete knowledge of the behavior of
the object type.

ADVANTAGES OF OBJECT-ORIENTED ARCHITECTURE

The advantages of an object-oriented architecture depend upon
your point of view. If you are an engineer, the advantage is
that you can master the Operating System in a very short time.
You can also focus your learning on the objects you plan to
use. If you only need a few object types, you can ignore the
others.

If you are a manager, you reap economic benefits. Because
engineers can quickly become familiar with the iRMX 86
Operating System, you can trim large amounts of time out of
your system's development cycle. Your system reaches your
users far sooner and at far less cost than it could without
object-oriented architecture.

MULTITASKING

The iRMX 86 Operating System uses multitasking to simplify the
development of applications that process realtime events.

EXPLANATION OF MULTITASKING

The essence of realtime application systems is the ability to
process numerous events occurring at seemingly random times.
These events are asynchronous because they can occur at any
time, and they are potentially concurrent because one event
might occur while another is being processed.

Any single program that attempts to process multiple,
concurrent, asynchronous events is bound to be complex. The
program must perform several functions. It must process the
events. It must remember which events have occurred and the
order in which they occurred. It must remember which events
have occurred but have not been processed. The complexity
obviously grows greater as the system monitors more events.

~ Multitasking is a technique that unwinds this confusion.
Rather than writing a single program to process N events, you
can write N programs, each of which processes a single event.
This technique eliminates the need to monitor the order in
which events occur.

4-4

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

Each of these N programs forms an iRMX 86 task, one of the
types of objects mentioned in "Object-Oriented Architecture."
Tasks are the only active objects in the iRMX 86 Operating
System, as only tasks can issue system calls.

ADVANTAGES OF MULTITASKING

Multitasking simplifies the process of building an application
system. This allows you to build your system faster and at
less expense. Furthermore, because of the one-to-one
relationship between events and tasks, your system's code is
less complex and easier to maintain.

INTERRUPT PROCESSING

The iRMX 86 Operating System is an interrupt processor. When
an interrupt occurs, the iRMX 86 Operating System schedules a
task to process the interrupt. This method of event detection
improves the performance of your application system.

EXPLANATION OF INTERRUPT PROCESSING

There are two ways that computer systems can schedule
processing associated with detecting and controlling events in
the real world -- polling and interrupt processing. Polling,
is implemented by having the software periodically check to see
if certain events have occurred. An example of polling from a
human perspective can be created using a class of students and
a teacher. If, rather than spotting raised hands, the
"instructor specifically asks each student in the class if the
student has any questions, then the instructor is polling the
students.

Polling has a major shortcoming. A significant amount of the
processor's time is spent testing to see if ~vents have
occurred. If events have not occurred, the processor's time
has been wasted.

The second method of controlling processing is interrupt
processing. In this method, when an event occurs the processor
is literally interrupted. Rather than executing the next
sequential instruction, the processor begins to execute a task
associated specifically with the detected event.

The classroom example used earlier to portray a polling
situation can also be used to illustrate interrupt processing.
If a student has a question, he raises his hand and speaks the
instructor's name. The instructor, interpreting this as an
interrupt, finishes his sentence and deals immediately with the
student's question. Once the instructor has answered the
student's question, he returns to what he was doing. before he
was interrupted.

4-5

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

ADVANTAGES OF INTERRUPT PROCESSING

Interrupt processing of external events provides your
application system with three benefits.

• Better Performance

Interrupt processing allows your system to spend all of
its time running the tasks that process events, rather
than executing a polling loop to see if events have
occurred.

• More Flexibility

Because of the direct correlation between interrupts
and tasks, your system can easily be modified to
process different events. All you need to do is write
the tasks to process the new interrupts.

• Economic Benefits

Because interrupt processing allows your system to
respond to events by means of modularly coded tasks,
your system's code is more structured and easier to
understand. Modular code is ~ess costly to develop and
maintain, and it can be developed more quickly than
unstructured code.

PREEMPTIVE PRIORITY-BASED SCHEDULING

The iRMX 86 Operating System uses preemptive, priority-based
scheduling to decide which task runs at any instant. This
technique ensures that if a more important task becomes ready
while a less important task is running, the more important task
begins execution immediately.

EXPLANATION OF PREEMPTIVE PRIORITY-BASED SCHEDULING

In multitasking systems, there are two common techniques for
deciding which task is to be run at any given moment. Time
slicing, where tasks are run in rotation, is the technique used
in time-sharing systems. The second technique, priority-based
scheduling, uses assigned priorities to decide which task is to
be run.

Within priority-based scheduling, there are two approaches.
Nonpreemptive scheduling allows a task to run until it
relinquishes the processor. Even if while running it causes a
higher-priority task to become ready for execution (for
instance, by deallocating a peripheral device), the original
task continues to run until it explicitly surrenders the
processor.

4-6

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

The second approach to priority-based scheduling is
preemptive. In systems using preemptive scheduling, the system
always executes the highest priority task that is ready to
run. In other words, if the running task or an interrupt
causes a higher-priority task to become ready, the operating
system switches the processor to the higher-priority task.

ADVANTAGE OF PREEMPTIVE PRIORITY-BASED SCHEDULING

Preemptive, priority-based scheduling goes hand-in-hand with
the interrupt processing discussed earlier. The priorities of
tasks can be tied to the relative importance of the events that
they process. This enables the processing of more important
events to preempt the processing of less important events.

MULTIPROGRAMMING

Multiprogramming provides your system with the ability to run
more than one application on one iAPX 86-based microcomputer.
This helps reduce hardware costs.

EXPLANATION OF MULTIPROGRAMMING

Multiprogramming is a technique used to run several
applications on a single application system. By using this
technique, the hardware is used more fully. More processing is
squeezed out of each hardware dollar.

In order to take full advantage of multiprogramming, you must
provide each application with a separate environment; that is,
separate memory, files and objects. The reason for the
isolation is to prevent independently developed applications
from causing problems for each other.

For instance, suppose that two unrelated applications share a
temporary file on a disk. If Application 1 writes information
to the file and Application 2 writes over the file, Application
1 has problems. The only way to avoid this kind of problem
with shared files is to create some form of mutual exclusion.
But if the two applications must interact even to the point of
excluding each other, they cannot be developed independently.
The two engineers creating the applications must coordinate
with each other and spend valuable time that could be used
within, rather than between, applications. The only
alternative is to avoid sharing the file.

4-7

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

The iRMX 86 Operating System provides a type of object that can
be used to obtain this kind of isolation. The object is called
a job, and it has the following characteristics:

• Unlike tasks, jobs are passive. They cannot invoke
system calls.

• Each job includes a collection of tasks and resources
needed by those tasks.

• Jobs serve as useful boundaries for dynamically
allocating memory. When two tasks of one job request
memory, they share the memory associated with their
job. Two tasks in different jobs do not directly
compete for memory.

• An application consists of one or more jobs.

• Each job serves as an error boundary. When the
application detects an error, or when the operator
decides to abort an application, a job is a convenient
object to delete.

ADVANTAGES OF MULTIPROGRAMMING

Multiprogramming provides your application system with two
benefits:

• Multiprogramming increases the amount of work your
system can do. By using your hardware a larger
percentage of the time, it lets your system run several
applications rather than one. This reduces the
hardware cost of implementation.

• Because of the correspondence between jobs and
applications, new jobs can be added to your system (or
old jobs removed) without affecting other jobs. This
makes your system much easier and faster to modify.

ERROR HANDLING

The iRMX 86 Operating System allows your application system to
specify an error handling procedure for each task.

EXPLANATION OF ERROR HANDLING

Error handling is the process of detecting and reacting to
unexpected conditions. The iRMX 86 Operating System supports
error handling by doing a SUbstantial amount of validity
testing and condition checking within system calls, but it
cannot detect every error.

4-8

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

The iRMX 86 Operating System runs on an iAPX 86-based
microcomputer. Such computers do not provide memory
protection. Consequently, if one of the procedures in your
application software contains bugs, it could execute code at
random locations and write over parts of the Operating System.
The iRMX 86 Operating System cannot detect this kind of error.

Nonetheless, the iRMX 86 Operating System does protect your
system from some types of errors. The concepts involved in the
iRMX 86 error handling scheme are condition codes, exception
handlers, and exception modes. We'll look at these one at a
time.

• Condition Codes

Whenever a task invokes a system call, the iRMX 86
Operating System attempts to perform the requested
function. Whether or not the attempt is successful the
Operating System generates a condition code. This code
indicates two things. First, it shows whether the
system call succeeded or failed. Second, in the case
of failure, the code shows which unexpected condition
prevented successful completion. Successful completion
is indicated by a normal condition code, while
unsuccessful completion is indicated by an exceptional
condition code.

For the sake of flexibility in processing unexpected
conditions, exceptional condition codes are divided
into two categories. The first category, environmental
condition codes, consists of errors that a task cannot
anticipate. An example of such an error is
insufficient memory. The second category, programming
error codes, consists of two subcategories:

Errors Detected by the Processor

The iAPX 86 microprocessor detects several kinds of
error conditions. One of these, for instance, is
an attempted division by zero. Such errors can be
avoided by using good programming techniques.

Incorrect System Calls

If the Operating System detects parameters or
combinations of parameters that are incorrect, the
problem is considered a programming error. This
kind of error can usually be avoided by good
programming techniques.

4-9

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

• Exception Handlers

An exception handler is a procedure that the Operating ,
System can invoke when a task receives an exceptional
condition code. As each task is created, it is assigned
an exception handler; therefore an exception handler is
an attribute of a task. The alternative to using
exception handlers is to process exceptional condition
codes in the procedure that issued the system call.

• Exception Modes

An exception mode is an attribute of a task. When you
create a task (using the CREATE TASK system call), you
must set the task's exception mode to one of four
values. This value governs the processing of condition
codes received by the task. The exception mode can be
assigned any of these values:

Any processing of exceptional conditions must be
done within the procedure that issued the system
call leading to the exceptional condition.

The task's exception handler processes only
environmental condition codes. Any processing of
programming error codes must be done within the
procedure that issued the system call leading to the
programming error code.

The task's exception handler processes only
programming error codes. Any processing of
environmental codes must be done within the
procedure that issued the system call leading to the
environmental condition code.

The task's exception handler processes both
environmental condition codes and programming error
codes.

In summary, exception handling works as follows. The Operating
System generates a condition code for each system call. If the
code indicates successful completion, the Operating System
detected no problems. If the code indicates an exceptional
condition, the code can be processed either of two ways: within
the procedure that invoked the system call, or by the task's
error handler which is invoked by the Operating System. The
decision as to which technique is used is a function of the
task's exception mode and the category of the condition code
(programming error or environmental condition).

4-10

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

You can control the behavior of a task's error handler because
you can write the handler. Consequently, the handler can
recover from the error, delete the job or task containing the
error, warn the operator of the error, or ignore the error
altogether. The choice is yours.

ADVANTAGE OF ERROR HANDLING

Error handling provides your application system with several
methods for reacting to unusual conditions. One of these
methods, having the Operating System automatically invoke your
task's error handling procedure, greatly simplifies error
processing. The other method, dealing with some or all unusual
conditions within your application task, allows you to provide
special processing for unusual circumstances. The iRMX 86
Operating System allows your application system to use both
methods.

DYNAMIC MEMORY ALLOCATION

The iRMX 86 Operating System supports dynamic allocation of
memory. This allows you to reduce your implementation costs by
building systems in which applications share memory. It also
allows your applications to change the amount of memory they use
as their needs change.

EXPLANATION OF DYNAMIC MEMORY ALLOCATION

Although there are numerous techniques for assigning memory to
jobs, each technique falls into one of two classes: static
allocation or dynamic allocation. Let's look briefly at static
allocation first.

Static memory allocation entails assigning memory to jobs when
the system is starting up. Once the memory is allocated, it
cannot be freed to be used by other jobs. Consequently, the
total memory requirements of the system is always the sum of the
memory requirements of each job.

Dynamic memory allocation, on the other hand, allows jobs to
share memory. Memory is allocated to jobs only when tasks
request it. And when a job no longer needs the memory, one of
its tasks can free the memory for use by other jobs.

Dynamic allocation also is useful within a job. Some tasks can
use additional memory to improve efficiency. An example of this
is a task that allocates large buffers to speed up input and
output operations.

4-11

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

ADVANTAGE OF DYNAMIC MEMORY ALLOCATION

The dynamic allocation of memory provides your application
system with reduced implementation costs. If your application
system runs more than one application, chances are fair that
memory demands for various jobs will be out of phase. That is,
one job will be freeing memory while another needs more.
Dynamic memory allocation allows jobs to take advantage of
this. Consequently, your application system requires less
memory than it would using static allocation.

INTERTASK COORDINATION

The iRMX 86 Operating System provides simple techniques for
tasks to coordinate with one another. These techniques allow
tasks in a multitasking system to mutually exclude, synchronize,
and communicate with each other.

EXPLANATION OF INTERTASK COORDINATION

As we have already seen, multitasking is a technique used to
simplify the designing of realtime application systems that
monitor multiple, concurrent, asynchronous events. Multitasking
allows engineers to focus their attention on the processing of a
single event rather than having to contend with numerous other
events occurring in an unpredictable order.

However, the processing of several events may be related. For
instance, the task processing Event A may need to know how many
times Event B has occurred since Event A last occurred. This
kind of processing requires that tasks be able to coordinate
with each other. The iRMX 86 Operating System provides for this
coordination.

Tasks can interact with each other in three ways. They can
exchange information, mutually exclude each other, and
synchronize each other. We'll now examine each of these.

• Exchanging Information

Tasks exchange information for two purposes. One
purpose is to pass data from one task to another. For
instance, suppose that one task accumulates keystrokes
from a terminal until a carriage return is encountered.
It then passes the entire line of text to another tas~,
which is responsible for decoding commands.

The second reason for passing data is to draw attention
to a specific object in the application system. In
effect, one task says to another, "I am talking about
that object."

4-12

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

The iRMX 86 System facilitates intertask communication
by supplying objects called mailboxes along with system
calls to manipulate mailboxes. The system calls
associated with mailboxes are CREATE MAILBOX, DELETE
MAILBOX, SEND MESSAGE, and RECEIVE MESSAGE. Tasks use
the first two system calls to build and eradicate a
particular mailbox. They use the second two calls to
communicate with each other.

Let's see how tasks can use a mailbox for drawing
attention and for sending information. If Task A wants
Task B to become aware of a particular object, Task A
uses the SEND MESSAGE system call to mail the object to
the mailbox. Task B uses the RECEIVE MESSAGE system
call to get the object from the mailbox.

NOTE

The foregoing example, along with all
of the examples in this section, is
somewhat simplified in order to serve
as an introduction. If you want
detailed information, refer to the
iRMX 86 NUCLEUS, TERMINAL HANDLER AND
DEBUGGER REFERENCE MANUAL.

As mentioned previously, tasks can use mailboxes to
send information to each other. This is accomplished
by putting the information into a segment (an iRMX 86
object consisting of a contiguous block of memory) and
using the SEND MESSAGE system call to mail the
segment. The other task invokes the RECEIVE MESSAGE
system call to get the segment containing the message.

Why don't tasks just send messages directly between
each other, rather than through mailboxes? Tasks are
asynchronous -- they run in upredictable order. If two
tasks want to communicate with each other, they need a
place to store messages and to wait for messages. If
the receiver uses the RECEIVE MESSAGE system call
before the message has been sent, the receiver waits at
the mailbox until a message arrives. Similarly, if the
sender uses the SEND MESSAGE system call before the
receiver is ready to receive, the message is held at
the mailbox until a task requests a message from the
mailbox. In other words, mailboxes allow tasks to
communicate with each other even though tasks are
asynchronous.

• Mutual Exclusion

Occasionally, when tasks are running concurrently, the
following kind of situation arises:

4-13

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

Task A is in the process of reading information
from a segment.

An interrupt occurs and Task B, which has higher
priority than Task A, preempts Task A.

Task B modifies the contents of the segment that
Task A was in the midst of reading.

Task B finishes processing its event and surrenders
the processor.

Task A resumes reading the segment.

The problem is that Task A might have information that
is completely invalid. For instance, suppose the
application is air traffic control. Task A is
responsible for detecting potential collisions, and
Task B is responsible for updating the Plane Location
Table with the new X- and V-coordinates of each plane's
location. Unless Task A can obtain exclusive use of
the Plane Location Table, Task B can make Task A fail
to spot a collision.

Here's how it could happen. Task A reads the X­
coordinate of the plane's location and is preempted by
Task B. Task B updates the entry that Task A was
reading, changing both the X- and V-coordinates of the
plane's location. Task B finishes its function and
surrenders the processor. Task A resumes execution and
reads the new V-coordinate of the plane's location. As
a direct result of Task B changing the Plane Location
Table while Task A was reading it, Task A thinks the
plane is at old X and new Y. This misinformation could
easily lead to disaster.

This problem can be avoided by mutual exclusion. If
Task A can prevent Task 8 from modifying the table
until after A has finished using it, A can be assured
of valid information. Somehow, Task A must obtain
exclusive use of the table.

The iRMX 86 Operating System provides a type of object
that can be used to provide mutual exclusion -- the
semaphore. A semaphore is an integer counter that
tasks can manipulate using four system calls: CREATE
SEMAPHORE, DELETE SEMAPHORE, SEND UNITS and RECEIVE
UNITS. The creation and deletion system calls are used
to build and eradicate semaphores. The send and
receive system calls can be used to achieve mutual
exclusion.

4-14

FEATURES- OF THE iRMX 861M OPERATING SYSTEM-

Before discussing how semaphores can provide exclusion,
we must examine their: properties. A:s -mentioned above,
a: semaphore is a counter. It can take on only­
nonneg.ative integer values. Tasks can modify a
semaphore's value by using: the SEND UNITS or RECEIVE
UNI TS system calls. When a task sends N unlts (must be
zero or greater) to a semaphore, the value of the
counter is increased by N. When a task uses the
RECEIVE UNITS system call to request M units (must be
zero or greater) from a semaphore, one of two things
happens.

If the semaphore's counter is g.reater than or equal
to M, the Operating System reduces the counter by M
and continues to execute the task.

otherwise~ thB Operating System begins running the
task having the next highest priority, and the
requesting task waits at the $,emaphore until the
counter reaches M or greater.

How can tasks use a semaphore to achieve mutual
exclusion? Easy! Create a s.emaphore with an initial
value of I. He-fore- any task uses the shared resource',
it must receive one unit from the semaphore. Also, as
soon as a task finishes using the resource, it must
send one unit to the semaphore. This technique ensures
the follawing behavior. At any given mom~nt, no more
than, one task can use the resource, and any oth,er tasks
that want to- use. it awa! t their turn at the semaphore.

Semap.hores allo,w mutual exclusion; they don"t enforce
it. All tasks (there can be more than two) sharing the
resource must receiv·e one unit from the semaphore
before using the resource. If one task fails to do
this, mutual exclusion is not achieved. Also, each
task must send a unit to the semaphnre when the
res,ource is no longer needed. Failure to do this can
permanently lock a1.1 tasks out of the resource.

• Synchronization

As mentioned earlier, tasks a.re asynchronous.
Nonetheless, occasionally a task must know. that a
certain event has occurred before the task starts
running. For instance, suppose that a particular
application sys-tem requires that Task A, cannot run
until after Task B: has- run. This kind of requirement
calls for synchronizing' Task A with Task B.

4-15

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

Your application system can achieve synchronization by
using semaphores. ~efore executing either Task A or
Task B, create a semaphore with an initial value of
zero. Then have Task A issue RECEIVE UNITS requesting
one unit from the semaphore. Task A is forced to wait
at the semaphore until Task B sends a unit. This
achieves the desired synchronization.

ADVANTAGE OF INTERTASK COORDINATION

Every realtime multitasking system must provide for inter task
coordination, so this coordination cannot be billed as an
a d van tag e . The t rue a d van tag ear is e s f r o'm the fIe x i b Ie mea n s
that the iRMX 86 System provides for accomplishing coordination.

The intertask coordination supplied by the iRMX 86 Operating
System is flexible and simple to use. Semaphores and mailboxes
can accommodate a wide variety of situations. And your
application system is not limited to some arbitrary number of
mailboxes or semaphores. It can create as many as it needs.

RUNTIME BINDING

The iRMX 86 Operating System uses runtime binding. This
provides your system with three kinds of flexibility. It
allows tasks in different jobs to share objects; it lets your
procedures use logical names for files and devices; and it
simplifies the process of attaching your application software
to the iRMX 86 Operating System.

EXPLANATION OF RUNTIME BINDING

Before we look into runtime binding, let's consider binding as
it relates to a program'. Binding is the process of letting
each program know the locations of the variables and procedures
that it uses.

Binding can be performed several times during the development
and execution of a program. Some binding takes place during
the process of compilation. As a program is being compiled,
its references to variables and procedures are resolved (that
is, converted into machine language) whenever the compiler has
sufficient information. Sometimes, however, a program refers
to variables or procedures that are part of a separate
program. When this happens, the compiler cannot resolve the
reference, and binding must be delayed.

4-16

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

Some binding also takes place during linking. Linking is the
process of combining several programs that are compiled
separately. The purpose of linking is to allow a program to
refer to variables and procedures defined in a different
program. (Such references are called external references
because they refer to information outside of the program under
consideration.) When the linking process resolves an external
reference, it performs binding that cannot be completed during
compilation.

Runtime binding means binding while the system is actually
running. The iRMX 86 Operating System provides three kinds of
runtime binding:

• Binding objects to tasks.

• Binding files and devices to tasks.

• Binding your application software to the Operating
System.

The first two kinds of runtime binding are based on the use of
object directories. An object directory is an attribute of a
job that allows tasks to provide ASCII names for objects.
Tasks use the CATALOG OBJECT, LOOKUP OBJECT, and UNCATALOG
OBJECT system calls to define, lookup, or delete the name of an
object. In each case, the task using the system call must
specify the job whose object directory is to be accessed.

Now we'll look more closely at each type of runtime binding.

Binding Objects to Tasks

When two tasks use a mailbox to pass information, they
obviously must both access the same mailbox. But if the
programs for the two tasks are compiled-and linked
independently of one another (as they probably would be if they
are in separate jobs), the tasks must use runtime binding to
access the same mailbox.

The runtime binding of objects to tasks is accomplished as
follows. When a task creates an object that it wishes to share
with other tasks, the creator task catalogs the object in an
object directory. Other tasks can then access the cataloged
object if they know its ASCII name.

Engineers can control the sharing of objects by selectively
broadcasting object names. If two engineers wish to share an
object, they must agree on both the name and the object
directory that is to contain the name. One task then creates
the object and the other accesses it through the object
directory.

4-17

FEATURES OF THE- iRMX -861M OPERATING SYSTEM

Binding ,of File-sandOevic:e-s to Tasks

Suppose you wish to code an application utility program that
take-s input from any supported input device or frama disk
file. Runtime binding can help accomplish this. The utility
program ~anbecoded to lookup an input connection under a
particular name. Then any program that needs th'eutili ty
pro,gram can create the input connectlon,cat:alag it -under the
agreed-upon name, and invoke the utility program. In effect,
the ASCII nameln the object directory is the logical name of
the input file.

Binding of Application Software to Operating System

The iRMX 86 Operating System uses a third type of runtime
binding to allow your application software to communicate with
the Operating System. Whenever your application software
invokes a system call,an INTEL-supplied interface routine
converts the call into a software-generated interrupt. This
interrupt causes control to be transf'-erred to a procedure
·wlthlnthe iRMX 86 Operating System that performs the desired
function. In other words, th.esoftware inteTruptsbindthe
system calls of your applicatIon soft·w:are to theiRMX86
procedures.

ADVANTAGES OF RUNTIME BINDING

Runtime binding provides your application system with
flexibility. By allowing your system to name objects, the
iRMX 86 Operating System provides a means of sharing
dynamically created ObJects between Jobs. By supporting
logical names fD.r files and devices,. the iRMX 86 System allows
tasks to work with any combination nf files and devices rather
than with a single, fixed combination. By using software
interrupts to bind your application software to the Operating
System, you can reconfigure the Operating System without having
to recompile vr relink your application software.

EXTENDIBILITY

TheiRMX86 Operating System is extendible. It allows you to
create your own object types and -to add system calls lathe
Operating Sy stem.

4-18

FEATURES OF THE IRMX86™OPERATING SYSTEM

EXPLANATION OF EXTENDIBILITY

Something is ·extendible if you can add to it, and the iRMX86
Operating System Is extendible. Your 'system' programming
engineers can build theiTown types of objects' and the system
calls to manipulate those o'bjects. These custom features
become a part of the Operating System. From the point of view
of the application programming engineer, there is noway to
distinguish your custom objects from those supplied by Intel.

ADVANTAGE OF EXTENDIBILITY

The advantage ofextendibility is that you can add your
features to the iRMX86 Operating System and obtain the same
benefits as supplied by its object~oriented architecture.
These benefits include the ability to send your custom-made
objects to mailboxes and the ability to put them in object
directories. Additionally~ your application engineers can more
quickly become familiar with your custom features. This
shrinks your development time and costs, and it allows you to
bring your application system to your users sooner.

TERMINAL HANDLING

The iRMX 86 Operating System includes the software to control
one terminal which can be either a teletypwriter or a keyboard
and screen.

EXPLANATION OF THE TERMINAL HANDLER

The iRMX 86 Terminal Handler isa job that runs under the
control of the iRMX 86 Operating System. Thlsjob, which
serves as the interface between the terminal.and the tasks of
your application system, provides the following capabilities:

• Your tasks can communicate with the terminal
asynchronously.

• Theoperaior using the terminal can edit lines before
they Bre seen by the application software.

• The operator using ·the te.rminal can suppress or slow
down the display of Qutput generated by the application
system.

Using these 'features, your application system can interact with
a human ·.operator.

4-19

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

ADVANTAGES OF THE TERMINAL HANDLER

The advantages of the Terminal Handler are economic. By
relieving you of the chore of creating an interface with a
terminal, the Terminal Handler reduces your system's cost of
implementation and time to market. Furthermore, because it has
been debugged by Intel, the Terminal Handler also reduces your
maintenance costs.

APPLICATION LOADING

The iRMX 86 Operating System allows your application to read
programs from disk into memory.

EXPLANATION OF APPLICATION LOADING

Application systems occasionally contain some programs that are
infrequently used. If the programs are stored on disk, the
application system can load them into main memory whenever they
are required. This loading process is called Application
Loading.

ADVANTAGE OF APPLICATION LOADING

The iRMX 86 Operating System allows you to store infrequently
used programs on disk rather than in main memory. This reduces
the amount of memory that you must incorporate in your system's
hardware.

DEVICE-INDEPENDENT INPUT AND OUTPUT

The input and output capabilities of the iRMX 86 Operating
System are device independent. This adds flexibility to your
system by allowing you to easily reroute input or output to
different devices.

EXPLANATION OF DEVICE-INDEPENDENT INPUT AND OUTPUT

Device independence is a relatively simple yet powerful
concept. A system provides device-independent I/O if it has
one set of system calls for communicating with all I/O
devices. The alternative to device independence is to provide
different calls for each type of d~vice. Let's first examine
the alternative and then move on to device independence.

4-20

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

Consider an operating system that does not p~ovide device
independence. The system calls controlling input and output
operations are explicitly related to the I/O devices being
used. For instance, the system call for writing to the line
printer might be PRINT, while the system call for writing to
the terminal might be TYPE. Once you have written a procedure
in such a system, the procedure is locked into a particular
combination of devices. The only way you can reroute input or
output is to edit the source code and recompile.

Now consider an operating system that is device independent:
the iRMX 86 Operating System. Because the iRMX 86 System
supports device-independent lID, the system calls are not
device dependent. The READ system call is always used for
input, and the WRITE system call is always used for output.
The device is specified by a parameter of the system call.
Consequently, by using a variable as the parameter that selects
the device, you can create lID procedures that are completely
independent of the devices they use.

ADVANTAGES OF DEVICE-INDEPENDENT INPUT AND OUTPUT

Device independence makes your application system very
flexible. If you write a procedure to log events on a line
printer, you can use the same procedure to log events on a
terminal or, for that matter, on a disk. You need not
recompile or otherwise modify your system.

HIERARCHICAL NAMING OF MASS STORAGE FILES

The iRMX 86 Operating System supports hierarchical naming of
files on mass storage devices. This naming technique provides
your application systems with additional flexibility by
simplifying the process of organizing and naming files.

EXPLANATION OF HIERARCHICAL NAMING

Hierarchical naming is one of three common techniques used to
name files on mass storage devices such as disks, bubble
memories, or drums. The other two techniques are called simple
naming and directory naming. The advantages of hierarchical
naming become clear when that technique is compared to the
other two. First we'll look at simple naming.

4-21

FEATURES OF THE iRMX 86™ OPERATING SYSTE·M

Simple naming allows you to provide files with. a descriptive
name. For instance, you might decide to name files ACCOUNTS
PAYABLE, ACCOUNTS RECEIVABLE, TRANSACTIONS, and INVENTORY.
These names are certainly descriptive~ but what ha~pens when a
different application running in the same system also decides
to use one of these names? This question is avoided by using a
more powerful naming technique: directory naming.

Directory naming allows different applications (or different
application engineers, for that matter) to use the same file
name. Each application (or engineer) is given one
special-purpose file, called a directory. This directory
contains only file names; it does not contain data. Figures
4-2 and 4-3 provide examples of directories.

When application software refers to a specific file, it first
names the directory and then names the file. For instance, in
Figure 4-2, the TRANSACTIONS file associated with Engineering
would be designated ENGINEERING/TRANSACTIONS. The comparable
file for Marketing, in Figure 4-3, w·ould be designated
MARKETING/TRANSACTIONS.

ENGINEERING

ACCOUNTS
PAYABLE

ACCOUNTS
RECEIVABLE

TRANSACTIONS 1--------------,;1~

INVENTORY t-------.- ~ ~e

t·
DIRECTORY

FILE

~Q cnz
~~ ~m
(jmg~
::u:!! ZQ -<e cn---

Figure 4-2. An Engineering directory

4·-22

~

FilE
NAMES

~

DATA
FILES

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

MARKETING

ACCOUNTS
PAYABLE I---------------------------------------~>

ACCOUNTS
RECEIVABLE

TRANSACTIONSI---------------. ~ ~

INVENTORY 1:--------. Z ~ ~ ~

~----~ ~! ~~ Z m O-f

DIRECTORY
FilE

d~ :::!z
:u Z ~e <e tn

Figure 4-3. A Marketing directory

o
O~
0>
i~ ~
-fm FilE
~~ NAMES

?-­
III ... m

~

DATA
FilES

The advantage of directory naming over simple naming is that
directory naming allows the file names to reflect the
relationships between files. In Figure 4-2, all the files
pertaining to Engineering are in the directory called
ENGINEERING. This grouping of related files is not supported
by simple naming.

What about situations in which more than one level of directory
is required? This si tuation is illustrated in Figure 4-4. Thi,s
figure differs from 4-3 only in that a second level of grouping
has been included.

Just as Figure 4-4 shows that single-level directory naming is
not sufficient for all collections of files, another figure
could be constructed to show that two-level directory naming is
not always sufficient. Consequently, the iRMX 86 Operating
System supports any number of levels of directories. This
n-Ievel directory naming is called hierarchical naming of files.

4-23

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

MARKETING
ACCOUNTS

PAYABLE
ACCOUNTS

RECEIVABLE
TRANSACTIONS

INVENTORY

CAPITAL ACE

EQUIPMENT BOOKINGS TRILOBITE STATIONARY
MEMORIES SMITH

NONCAPITAL
PlEISTOCEIE n ADVERTISING

EQUIPMENT - BILLINGS

I ELECTRONICS SMUDGE
PENCILS I

mZ -.:
~OZ~ ,t/

g~~~
=i~~~ C>~:zI DIRECTORY

;;~!i~ ..-- FILES
ifi:!~~ I:j;o~ FILE

7\ /\e NAMES

~
DATA
FILES

Figure 4-4. Hierarchical naming of files

ADVANTAGES OF HIERARCHICAL NAMING

Hierarchical naming of files simplifies the process of adding
new applications to your system. One concern about expanding
your system is the naming of mass storage files associated with
a new application. Names of new files must differ from names
of existing files. If your system uses only a few mass storage
files, you can expect little difficulty in assigning unique
file names. But if your system uses a large number of files,
the problem of assuring uniqueness becomes more significant.
This uniqueness problem becomes particularly difficult if file
names are assigned by an operator in a system having more than
one operator.

Hierarchical file naming eliminates this problem. Whenever you
add a new application to your system, you can assign it a
directory. The new application can then use this directory to
provide unique names to any number of files. Also, each
operator can be assigned a unique directory which can then be
used to provide unique names.

4-24

I

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

FILE ~CCESS CONTROL

The iRMX 86 Operating System allows your application system to
control access to hierarchically named files. This facilitates
file sharing while still preventing valuable data from being
copied, modified, or destroyed by unauthorized users.

EXPLANATION OF FILE ACCESS CONTROL

In the multiprogramming environment provided by the iRMX 86
Operating System, the sharing of files can be useful. But the
job that owns a file may wish to share it with only certain
other jobs rather than all other jobs. Furthermore, the job
owning a file may wish to restrict the nature of the shared
access. For example, the owning job may wish to allow a
particular file to be read but not written. The ability to
specify how and with whom a file is shared is called file
access control. ----

The iRMX 86 Operating System provides powerful file access
control by allowing the owner of a file to specify who can use
the file and how they can use it. In fact, a file's owner can
even grant different combinations of access (reading only,
writing only, reading and writing, etc.) to each user of a file.

ADVANTAGES OF FILE ACCESS CONTROL

By controlling who can access a file and how they can access
it, your system becomes more reliable and secure. There is
less chance for an unauthorized task to accidentally modify a
valuable file, and there is less opportunity for an
unauthorized task to read a confidential file.

Your application software can, in fact, expand file access
protection into a file security system. For instance, suppose
that your application involves several operators accessing
files on disk. By providing each operator with a password, so
an individual's identity can be verified, your application
software can strictly control which operators have access to
which files.

CONTROL OVER FILE FRAGMENTATION

The iRMX 86 Operating System allows you to specify the
granularity of each mass storage file. This lets you trade
faster I/O for more efficient use of space on the mass storage
device.

4-25

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

EXPLANATION OF FILE FRAGMENTATION

When information is stored on a mass storage device, space is
allocated in chunks rather than one byte at a time. These
chunks, called granules, can be large or small, but all granules
within one file must be the same size. This size is called the
file granularity, and it is specified by the engineer who creates
the file.

A file's granularity affects the use of a storage device in three
ways.

• Data Transfer Rate

The file granularity directly affects the speed at which
the Operating System can transfer information to or from
the storage device. The larger the granularity, the
faster the Operating System transfers data.

• Access Time

The smaller the granules, the more time is required to
access a series of random locations in the file. Larger
granules reduce access time.

• Wasted Device Space

The file granularity directly affects the amount of
wasted space on the device. The larger the granularity,
the more device space is wasted.

Here's an example. (For the sake of simplicity, we will
ignore any information stored on the device on behalf of
the Operating System.) Consider a file containing 20010
bytes. If the granularity is 10000 bytes, the file
occupies three granules, each of which is 10000 bytes
long. The first two granules are full and the third
contains only 10 useful bytes. This file wastes almost
10000 bytes of storage space.

If we change the file granularity to 200 bytes, the file
occupies 101 granules. Each of the first 100 granules is
full and the last granule contains only 10 useful bytes.
The file now wastes only 190 bytes of storage space.

ADVANTAGES OF CONTROL OVER FRAGMENTATION

By allowing you to control the file granularity, the iRMX 86
Operating System lets you trade device space for performance. If
your application has many mass storage units and space is readily
available, you can specify a large file granularity. This
provides you with faster average transfer rates and shorter
access times, but it wastes some ·of your device space.

4-26

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

If, on the other hand, you have only one small mass storage
unit, you might want to sacrifice some performance for better
use of space. This trade would be particularly desirable if
you do not use the device often enough to be concerned with the
rate of data transfer.

SELECTION OF DEVICE DRIVERS

The iRMX 86 Operating System offers you your choice of Intel­
supplied device drivers. It also allows you to write your own
drivers.

EXPLANATION OF DEVICE DRIVERS

A device driver is a software module that serves as the
interface between a device's controller (which is hardware) and
the iRMX 86 I/O System. The purpose of the driver is to make
all devices look alike to the I/O System. In effect, the
driver hides the idiosyncrasies of a device from the I/O System.

ADVANTAGES OF HAVING A SELECTION

By selecting and creating device drivers, you can attach any
device to your application system. This means that you are not
limited to a few specific devices. You can select devices on
any basis at all -- performance, cost, reliability,
availability, whatever. The choice is yours.

NOTE

The iRMX 86 Operating System is being
released in several phases. The
second release contains drivers for
the iSBC 206 rigid disk controller,
the iSBC 204 flexible disk controller
and the USART on the iSBC 86 Single
Board Computer. Later releases will
contain additional drivers.

OBJECT-ORIENTED DEBUGGER

The iRMX 86 Operating System provides a special debugger that
is attuned to iRMX 86 objects. This debugger simplifies the
process of removing the bugs in the interaction between tasks
of the application system. It also facilitates debugging in a
realtime environment.

4-27

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

EXPLANATION OF AN OBJECT-ORIENTED DEBUGGER

We have already discussed the object-oriented architecture of
the iRMX 86 Operating System. Reviewing briefly, each iRMX 86
job is a community of tasks, and each task can manipulate
objects. A special set of objects (mailboxes and semaphores)
provides a means for tasks to coordinate with one another.

The iRMX 86 Debugger has two capabilities that greatly simplify
the process of debugging in a multitasking environment. First,
the Debugger allows you to debug several tasks while the
balance of the application system continues to run in real
time. Second, the debugger lets you see which tasks or objects
are queued at mailboxes and semaphores.

These two capabilities help you debug your application system
at two levels. You can look into the behavior of an individual
task, and you can examine the interaction between tasks. Both
levels must be thoroughly debugged before your system is fully
implemented.

ADVANTAGE OF AN OBJECT-ORIENTED DEBUGGER

The object-oriented Debugger gives your application system
flexibility while simultaneously providing economic benefits.

• Added Flexibility

By allowing you to debug several tasks while the system
continues to run in real time, the Debugger lets you
check out new tasks in a running system. This
simplifies the process of adding new tasks to an
existing application system.

• Economic Benefits

By simplifying the process of debugging the interplay
between tasks, the Debugger lessens the amount of time
needed to debug your application system. This directly
reduces the time to market, the cost of implementation,
and the cost of maintenance.

BOOTSTRAP LOADING

The iRMX 86 Operating System contains a bootstrap loader that
al~ows your application system to reside on disk and be loaded
into RAM (random-access memory).

4-28

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

EXPLANATION OF BOOTSTRAP LOADER

A bootstrap loader is a program that resides in ROM on your
application hardware. When your iAPX 86 microprocessor is
reset the bootstrap loader receives control and loads the rest.
of the software, including the iRMX 86 Operating System and the
application software.

ADVANTAGES OF A BOOTSTRAP LOADER

The iRMX 86 Bootstrap Loader provides your application system
with two major advantages:

• Reduced Manufacturing Costs

By placing the iRMX 86 Bootstrap Loader in ROM, you can
shift the rest of your application system to RAM.
Since the rest of your system is probably one or two
orders of magnitude larger than the Bootstrap Loader,
this displacement substantially decreases the amount of
ROM required to implement your application.

This decrease in the amount of ROM required for your
application leads directly to reduced manufacturing
costs. ROM, unlike RAM, requires that information be
"burned" or masked into memory. By e1ecreasing the
amount of ROM in your system, the Bootstrap Loader
reduces your masking or "burning" expenses.

• Reduced Software Maintenance Costs

The iRMX 86 Boostrap Loader simplifies the process of
providing updated software toyeur customers. Rather
than shipping ROMs containing the modified software,
you can ship diskettes. This greatly reduces the cost
of updating your software.

CONFIGURABILITY

The iRMX 86 Operating System is configurable. By allowing you
to select only the parts of the Operating System that you need,
configurability reduces the amount of memory required for your
application system.

4-29

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

EXPLANATION OF CONFIGURABILITY

A system is configurable if you can select the pieces of it
that you want and discard the pieces that you don't want. For
example, Figure 4-5 shows a system that consists of six parts.
During the process of configuration, you select the desired
parts and combine them to form the system.

INDIVIDUAL PARTS

PART 1

PART 2

I PART 3

I

PART 4

DESIRED SYSTEM

PART 1

PART 5

PART 4

PART 6 PART 6

Figure 4-5. Configuration of a hypothetical system

4-30

FEATURES OF THE iRMX 861M OPERATING SYSTEM

When you configure an application system that is based on the
iRMX 86 Operating System, you have two objectives. First, you
select the parts of the iRMX 86 Operating System that your
application system needs. And second, you combine those parts
with your application software to form the complete application
system. These two objectives are depicted in Figure 4-6.

PARTS OF iRMX 86
OPERATING SYSTEM

BOOTSTRAP
LOADER

APPLICATION
LOADER

DEBUGGEB

TERMINAl.
HANDLER

I/O
SYSTEM

z c o
r­m
c rn

Figure 4-6.

o m
m
c a
a
m
:D

~.
SELECT PARTS OF iRMX 86

1 OPERATING SYSTEM
REQUIRED BY
APPLICATION SOFTWARE.

APPLICATION
SOFTWARE

O
COMBINE APPLICATION

2 . SOFTWARE WITH iRMX 86
. OPERATING SYSTEM TO FORM

APPLICATION SYSTEM.

APPLICATION SYSTEM

The dual objective of iRMX 86™ configuration

4-31

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

The iRMX 86 Operating System consists of six major parts.
During the process of configuration you must specify which of
these parts are to be included in your application system. The
six parts are:

• The Nucleus

The Nucleus is the heart of the iRMX 86 Operating
System. All of the other pieces of the Operating
System use the Nucleus, so it must be included in every
application system built upon the-iRMX 86 Operating
System.

• The I/O System

The I/O System provides file management and the
device-independent interface to input and output
devices. The I/O System is an optional component of
the iRMX 86 Operating System, so it can be excluded
from the Operating System if it is not needed.

• The Terminal Handler

The Terminal Handler is the software interface for the
terminal. It can be used alone or through the
device-independent interface of the I/O System. Like
the I/O System, the Terminal Handler is an optional
component and can be left out of the Operating System
if it is not required.

• The Debugger

The Debugger is also an optional component of the
iRMX 86 Operating System. While the application system
is being developed~ the Debugger is a very useful
tool. By including it in your system during the
development period, you can take advantage of its
powerful capabilities. then, once development is
completed, you can remove the Debugger and reduce the
size of your finished application system.

• The-Application loader

The Application Loader allows your application to load
programs from disk into main memory. This part of the
iRMX 86 Operating System is optional but, if included,
requires the I/O System.

• The Bootstrap Loader

The Bootstrap Loader is an optional component of the
iRMX 86 Operating System. The Bootstrap Loader reads
your application system from disk into main memory
whenever you reset the hardware Df the application
system.

4-32

FEATURES OF THE iRMX 86™ OPERATING SYSTEM

ADVANTAGES OF CONFIGURABILITY

Figure 4-6 shows the advantage of configurability. In this
figure, an iRMX 86 Operating System consisting only of the
Nucleus, Terminal Handler, and Debugger is being combined with
application software. By excluding from your finished product
the subsystems of the iRMX 86 System that you don't need, you
reduce the amount of memory needed by your system.

CHAPTER PERSEPCTIVE

In this chapter we discussed some features of the iRMX 86
Operating System. We also saw some of the advantages that each
feature lends your application system. Next we'll see how some
of these features work together.

4-33

CHAPTER 5. A HYPOTHETICAL SYSTEM

In the previo. chapter,. you w~re ..nown some of the features of
the iRMX86 ~rating System. The f ... tures were disctJssed
individually. This chapter revisits some of these features
using a hypottJetical syst~m to show you how features combine to
form a powerful environment for your application software.

During the following discussion, a nypothetical application
system is used to illustrate the relationship between your
application software and the iRMX 86 Operating System. The
system monitors and controls a variable number of kidney
machines in a hospital. These machines remove toxins from the
blood of patients whose kidneys are not functioning correctly ..

The system, w~ich is portrayed in Figure 5-1, consists of three
main hardware components.

• Intel iSBC 86 Single Board Computer

The single board computer provides the intelligence for
the entire system. It contains the software to·monitor
and control the function of all the machines in the
system.

• Bedside Units

One of these units is located at the side of each
patient's bed. Connected by cable to the iSBC 86
Single Board Computer, each of these units performs
four distinct functions:

Measuring the level of toxins in the blood as the
blood enters the unit.

Displaying information so medical personnel at the
bedside can monitor the dialysis process.

Accepting commands from the bedside personnel.

Removing toxins from the blood.

Each bedside unit performs these functions under the
control of the single board computer. That is,
commands and measurements are sent to the single board
computer which then adjusts the rate of dialysis and
generates the bedside display.

5-1

A HYPOTHETICAL SYSTEM

• Master Control Unit

The system's master control unit consists of a terminal
with a screen and a keyboard. This terminal, which
allows one individual to monitor and control the entire
system, operates under control of the single board
computer.

BEDSIDE
/UNIT

MASTER
CONTROL

UNIT

BEDSIDE
/UNIT

Figure 5-1. The hardware of the dialysis application system

So, in summary, the system consists of one master control unit
and a variable number of bedside units, all operating under
control of the software within an Intel iSBC 86 Single Board
Computer. Now let's look at the software.

The application software controls the dialysis process. In
order to do this, the software must:

• Obtain commands from the master control unit.

• Obtain commands (if there are any) from each of the
active bedside units.

• Reconcile the commands from the master control unit and
the commands of the active bedside units.

5-2

A HYPOTHETICAL SYSTEM

• Obtain a toxicity level from each of the active bedside
units.

• Create a display at each active bedside unit.

• Create a display at the master control unit.

• Control the rate of dialysis at each of the active
bedside units.

Now that we have roughly examined the nature of the system,
let's investigate how the iRMX 86 Operating System fits in.
Let's start with interrupt processing.

INTERRUPT PROCESSING

Two kinds of information flow from the bedside units to the
single board computer -- commands and toxicity levels. Before
we delve into the technique used to process this information,
we must know more about the form of the information.

The toxicity levels, measured as the blood enters the bedside
unit, are not subject to violent change. The machine slowly
removes toxins from the blood while the patient's body, even
more slowly, puts toxins back in. The result is a rather
steadily declining toxicity level.

This means that the toxicity levels must be monitored
regularly, but not too frequently. Let's suppose that each
bedside unit computes the toxicity levels once every ten
seconds and sends a signal when the computation is complete.
When the signal line goes high, the levels are available until
the signal line goes low and then high again for the next
computation.

The command information changes less predictably than the
toxicity levels. Persons at the patient's bedside can enter
commands through the bedside unit. Let's suppose that after
encoding the information they press a button labeled ENTER, and
that this button sets a line high. When the line goes high,
the command information is available until the ENTER button is
pressed for the next command.

Now let's see how the interrupt processing of the iRMX 86
Operating System fields the commands. (The toxicity levels can
be fielded in precisely the same manner so, for the sake of
brevity, they are not discussed.) By attaching all the signal
lines to a Multibus interrupt line, we convert the signal into
an interrupt level. Each interrupt level has an interrupt task
that is executed when the 1evel goes high. So, when the ENTER
line from any bedside unit goes high, the interrupt task for
bedside commands begins running.

5-3

A HYPOTHETICAL SYSTEM

You must write the interrupt tasks for your system's custom
devices, so the bedside-command task may serve as a4l example
for you. In brief, the task performs the following steps.

• It determines which bedside unit received the command.

• It puts the command information, along with the number
of the bedside unit that received the command, into a
message.

• It sends the message to a predetermined mailbox. The
only task that waits at this mailbox is the task that
reconciles bedside commands with the commands from the
master control unit.

• It surrenders the processor to the iRMX 86 Operating
System.

One advantage of interrupt processing now becomes clear.
Instead of wasting time polling the bedside units to see if a
command has been issued, the application system can do other
things until interrupted by one of the units. When an
interrupt (an event) does occur, it is quiCkly converted into a
message and is placed into a mailbox for processing by a task.
The system then returns to its normal priority-based,
preemptive scheduling. This technique enables your system to
deliver more throughput.

Interrupt processing also provides the application system with
flexibility. For instance, you can add more bedside units
without modifying the system's software at all.

TERMINAL HANDLER

The iRMX 86 Terminal Handler simplifies the process of fitting
the master control unit into the application system. Rather
than dealing with the mechanics of a terminal, your tasks wait
at a mailbox for input information and send output information
to the output mailbox. Alternatively, your tasks can use the
Terminal Handler through the I/O System. This latter technique
preserves device independence.

MULTITASKING

The entire application system is based on the multitasking
capability of the iRMX 86 Operating System. Tasks are run
using the preemptive, priority-based, scheduling that was
discussed in Chapter 4. This alrows the more important tasks
(such as those controlling the bedside units) to preempt lower
priority tasks (such as those of the Terminal Handler).

5-4

A HYPOTHETICAL SYSTEM

INTERTASK COORDINATION

The only form of intertask coordination used in our
hypothetical dialysis system is intertask communication. The
system uses a number of mailboxes to send information from one
task to another. The simplicity of mailboxes allows engineers
to divide the system into tasks on the basis of modularity,
rather than on the basis of minimizing intertask communication.

MULTIPROGRAMMING

Although multiprogramming has not yet been of use in our
hypothetical example, its potential is high. Suppose that we
extend the example to include cardiac monitoring in addition to
dialysis. The two functions could advantageously be performed
in different jobs. Why? Because they need share very few
resources.

If the cardiac application has very little to do with the
kidney application, there is no need for them to share
mailboxes, tasks, or any other objects. By splitting them into
two different jobs, there is less chance that one application
can affect the environment of the other.

But what happens if the two applications need to share only a
little information? How can the shared data be passed from one
job to another without losing the benefits of isolation? The
iRMX 86 Operating System provides for this contingency in its
implementation of runtime binding.

RUNTIME BINDING

As mentioned earlier in this manual, runtime binding provides a
means for tasks of different jobs to share objects. As tasks
create objects to be shared, the tasks catalog the objects in
a nob j e c t d ire c t O""f'"Y;; The nth eta s k s t hat nee d the a b j e c t s can
look them up by using their ASCII names.

Runtime binding also allows you to change the configuration of
the iRMX 86 Operating System without recompiling or relinking
your application software. For instance, suppose you have been
including the iRMX 86 Debugger in systems delivered to your
customers. The advantage in doing this is that it allows some
debugging on systems as they are being used. But now, a year
or so after you started delivering systems, your product has
stabilized. Virtually no new bu~s are being found. If you
delete the Debugger from your system, you can reduce the amount
of memory required in any new systems you sell. The runtime
binding of the system to your application software allows you
to remove the Debugger from your system without makiny any
changes to your application software.

5-5

A HYPOTHETICAL SYSTEM

MASS STORAGE FILES

As specified, the hypothetical system does not require mass
storage files. However, a very reasonable extension of the
current specification could include recording information about
patients.

The iRMX 86 I/O System allows you to record information in
files on flexible and hard disks. The system provides device
handlers, disk formatting and allocating, and the means of
actually moving information between main memory and the disk.
Your application software need not include code to perform
these functions.

DEVICE INDEPENDENCE

Even if the application system uses mass storage devices,
device independence is not necessarily required. But, if the
application is extended to allow the operator at the MCU to
direct recorded data to any of several devices (say
teletypewriter, line printer, magnetic tape or disk), device
independence becomes more important. The device-independent
I/O System lets you implement recording without adding code
specific to each possible d~vice.

CHAPTER PERSPECTIVE

In this and the previous chapters, you were introduced to some
of the features and benefits associated with the iRMX 86
Operating System. If you want more detailed information, you
will find the next chapter very useful. It contains
descriptions of all the iRMX 86 technical manuals.

5-6

CHAPTER 6. iRMX 86™ LITERATURE

Nine manuals relating to the iRMX 86 Operating System are
currently available. They are:

• INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM
Manual no. 9803124

• iRMX 86 NUCLEUS, TERMINAL HANDLER, AND DEBUGGER
REFERERNCE MANUAL

Manual no. 9803122

• iRMX 86 I/O SYSTEM AND LOADER REFERENCE MANUAL
Manual no. 9803123

• iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL
Manual no. 142721

• iRMX 86 INSTALLATION GUIDE FOR ISIS-II USERS
Manual no. 9803125

• iRMX 86 CONFIGURATION GUIDE FOR ISIS-II USERS
Manual no. 9803126

• iRMX 86 PROGRAMMING TECHNIQUES
Manual no. 142982

• iRMX 86 POCKET- REFERENCE
Manual no. 142861

• GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86
I/O SYSTEM

Manual no. 142926

Each of these manuals is designed for a well-defined set of
readers and each has a different purpose. This chapter
describes the readers at whom each manual is aimed and the
purpose of each manual. (Table VI-I correlates features with
manuals.) Also, the chapter provides some time-saving tips to
bear in mind as you read the documentation.

6-1

iRMX 86™ LITERATURE

TABLE VI-I

CORRELATION OF MANUALS AND FEATURES

TITLE

iRMX 86 Configuration Guide for
ISIS-II Users

iRMX 86 Nucleus, Terminal
Handler and Debugger
Reference Manual

iRMX 86 I/O System
And Loader Reference
Manual

iRMX 86 System Programmer's
Reference Manual

Guide to Writing Device
Drivers for the iRMX 86
System

FEATURE

Configurability

Object-Oriented Architecture
Multiprogramming
Multitasking
Interrupt Processing
Preemptive, Priority-based

Scheduling
Error Handling
Dynamic Memory Allocation
Intertask Coordiation
Runtime Binding
Terminal Handling
Object-Oriented Debugger

Device-Independent I/O
Hierarchical Naming of Mass

Storage Files
File Access Control
Control of File Fragmentation
Applicaton Loading

Intertask Coordination
Expandibility
Selection of Device Drivers
Runtime Binding
File Access Control
Device Independence
Bootstrap Loading

Selection of Device Drivers

The following descriptions deal with engineers in two classes
-- system programmers, and application programmers. System
programmers are responsible for configuring the system,
extending the Operating System, writing interrupt handlers, and
performing other functions that affect the entire application
system. Application programmers, on the other hand, are
responsible for writing application software. This distinction
is drawn because the actions of the system programmer have a
more global affect.

6-2

iRMX 86™ LITERATURE

Specifically, some system calls can, if used improperly, cause
problems for all the tasks in your system; other system calls
can affect only the task invoking the call. As a matter of
policy, the more powerful system calls should be used only by
system programmers and, even then, only within Operating System
extensions. To emphasize this distinction, the more powerful
system calls are all explained in one manual, the SYSTEM
PROGRAMMER'S REFERENCE MANUAL.

The following sections describe the iRMX 86 manuals.

INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM

This manual, the one you are presently reading, is aimed at a
wider variety of readers than any of the other iRMX 86
manuals. Being an introduction, it can be understood by anyone
who has some experience programming or managing programming
projects. It is designed to introduce managers and engineers
to the iRMX 86 Operating System.

iRMX 86 NUCLEUS, TERMINAL HANDLER, AND DEBUGGER REFERENCE MANUAL

This reference manual is written for any engineers planning to
use the iRMX 86 Operating System.

It is the information warehouse for the Nucleus, the Terminal
Handler, and the Debugger. It contains concise but detailed
discussions of the following topics:

• The nature of objects in general and of tasks, jobs,
semaphores, mailboxes, and segments in particular.

• Error processing.

• Interrupt processing.

• The requirements and behavior of the Nucleus system
calls available to all engineers.

• How to use the Terminal Handler directly (without the
I/O System), from both the programming and the
operating points of view.

• The requirements and behavior· of the Debugger commands
available to all engineers.

Each of the foregoing topics is presented in a manner suitable
for reference purposes and, to a lesser degree, for
instructional purposes.

6-3

iRMX 86™ LITERATURE

iRMX 86 I/O SYSTEM AND LOADER REFERENCE MANUAL

The iRMX 86 I/O System is distinct from, but built upon, the
iRMX 86 Nucleus. The I/O System provides device independence,
hierarchical naming of mass storage files, control over
fragmentation of files, and file access control. The iRMX/86
I/O SYSTEM AND LOADER REFERENCE MANUAL tells you how to use
these features. It also tells you how to load programs from
disk to memory while the system is running.

The manual is aimed at any engineer who is familiar with the
information presented in the iRMX 86 NUCLEUS, TERMINAL HANDLER,
AND DEBUGGER REFERENCE MANUAL.

iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL

This manual describes aspects of the iRMX 86 Operating System
that should be used only within extensions of the iRMX 86
Operating System. If these features are used by application
software that has not been incorporated into the Operating
System, your application system will not be compatible with
future releases of the iRMX 86 Operating System. Also, readers
of the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL must be
familiar with the information presented in the iRMX 86 NUCLEUS,
TERMINAL HANDLER, AND DEBUGGER REFERENCE MANUAL and the iRMX 86
I/O SYSTEM AND LOADER REFERENCE MANUAL.

This reference manual discusses the following topics:

• The creation and deletion of extensions to the
Operating System.

• Region exchanges and related system calls.

• Enabling and disabling the deletion of the objects.

• Attaching and detaching devices.

• Creation and deletion of user objects.

• Adding new types of objects to the Operating System.

• Using the Bootstrap Loader

The foregoing topics are presented in a manner suitable for
reference and, to a lesser degree, for instruction.

6-4

iRMX 86™ LITERATURE

iRMX 86 INSTALLATION GUIDE FOR ISIS-II USERS

The INTELLEC Microcomputer Development System is a general
purpose tool for programming microcomputers. When you purchase
the iRMX 86 Operating System, you receive the iRMX 86 software
on several flexible disks and you receive the i$BC 957A
package. The iRMX 86 INSTALLATION GUIDE FOR ISIS-II USERS
tells you how to use the software and the iSBC 957A package in
conjunction with your Microcomputer Development System and an
iSBC Single Board Computer. These four elements form the
development environment for your application system.

This manual is designed to lead the reader, step by step,
through the process of adding the iRMX 86 software and hardware
to the INTELLEC system. If you are not responsible for
performing this addition, you can gain very little from reading
this manual. If, on the other hand, you are responsible for
the installation and you are familiar with the ISIS-II
Operating System, this manual will prove very useful.

iRMX 86 CONFIGURATION GUIDE FOR ISIS-II USERS

As you build an application system upon the iRMX 86 Operating
System, you must decide which optional iRMX 86 features you
want in your system. For instance, if your system uses no
features of the I/O System, you can save a substantial amount
of memory by excluding the iRMX 86 I/O System.

Once you have made these decisions and have written your
application software, you must configure your system.
Configuration is the process of building a complete system from
the iRMX 86 Nucleus, your application software, and iRMX 86
options that you have selected. The iRMX 86 CONFIGURATION
GUIDE FOR ISIS-II USERS leads you through the process of
configuration.

The readers of this manual must be thoroughly familiar with the
ISIS-II operating system and the language translators being
used to compile the application software. Furthermore, they
must know which parts of the iRMX 86 System are used by the
application software, and they must be fluent in the vocubulary
of the iRMX 86 Nucleus, Terminal Handler, Debugger, I/O System,
Bootstrap Loader, and Application Loader.

iRMX 86 PROGRAMMING TECHNIQUES

This manual provides system and application programmers with
techniques that can save time during system development.

6-5

iRMX 86™ LITERATURE

iRMX 86 POCKET REFERENCE

This manual summarizes the information contained in the iRMX 86
NUCLEUS, TERMINAL HANDLER AND DEBUGGER REFERENCE MANUAL and the
iRMX 86 I/O SYSTEM AND LOADER REFERENCE MANUAL.

GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 OPERATING SYSTEM

This manual gives detailed instructions for writing a device
driver that is compatible with the iRMX 86 I/O System. System
programmers can use this manual to add new devices to
application systems. Readers of this manual must be very
familiar with the I/O System and the Nucleus.

READING TIPS

The following pointers can save you a substantial amount of
time:

• No one individual need become intimately familiar with
all of the documents associated with the iRMX 86
Operating System. Read only the documents that relate
to your responsibilities.

• Before reading one of the documents, read its preface
and scan its table of contents to see if the manual
contains the kind of information you seek.

• Read the Introductory Manual before reading any of the
others.

By following these tips, you can quickly focus your attention
on the information that is of most value to you.

6-6

INDEX

For your convenience, the primary reference of each multiple-page
topic is underscored.

access time 4-26 to 4-27
application 1-2, 4-8
application loading 4-20, 4-32, 6-4
appl icat ion so ftwar·e 1-2
application system 1-2
asynchronous 2-1, 4-4, 4-13
attaching devices 6-4
binding 4-16 to 4-17
bootstrap-rDading 4-28 to 4-29, 4-32, 6-4
concurrency 4-4, 4-13
condition codes- 4-9 to 4-10
configuring 4-29-rQ 4-33, 5-5, 6-5
cost of implementation 3-2
costs after development 3-2
data transfer rate 4-26 to 4-27
debugging 2-3, 4-27-ro-4-28, 4-32, 5-5, 6-3
detaching devices 6-4 ----
development time 3-2
device drivers 4-27, 6-6
device independence 2-2, 4-20 to 4-21, 5-4, 5-6, 6-4
device selection 2-2, 4-21, 4-27
devices, attaching and detaching 6-4
directories

file 4-21 to 4-24
object 4-17, 5-5

documentation--6-1 to 6-6
dynamic memory allocation 2-2, 4-8, 4-11 to 4-12
editing 4-19
error handling 4-8 to 4-11
error processing 2-1, 4-8 to 4-11, 6-3
events 2-1, 4-4 to 4-5, 4-7, 4-12
example of application system 5-1 to 5-6
exception handlers 4-10
exception mode 4-10
exchanging information 4-12 to 4-13
extending the Operating System 4-18 to 4-19, 6-4
file access control 2-3, 4-25, 6-4
file directories 4-21 to 4=24, 6-4
file fragmentation 4-25 to 4-27, 6-4
file granularity 2-2, 4-25 to 4-27, 6-4
file naming 4-21 to 4-24, 6-4
file protection 2-3, 4-25, 6-4
file sharing 2-3, 4-7, 4-25

Index-l

INDEX

granularity of files 2-2, 4-25 to 4-27, 6-4
hierarchical file naming 4-21 to 4-25, 6-4
iRMX 86 Operating System

architecture 4-2 to 4-4, 4-28
benefits 3-1 to 3-3
characteristics 1-1
customers l~l
documentation 6-1 to 6-6
features 4-1 to 4-33, 6-2
installation 6-5
purpose 1-3

implementation cost 3-2
input and output 4-20 to 4-21, 4-25 to 4-27, 4-32, 5-6, 6-4
installation of iRMX 86 6-5
interrupts 4-5, 5-3 to 5-4, 6-3
intertask coordination 4-12 to 4-16
job 4-8, 4-11, 4-17, 4-25, 5-5, 6-3
literature 6-1 to 6-6
loading

application 4-20, 4-32, 6-4
bootstrap 4-~o 4-29, 4-32, 6-4

logical names 4-18
mailbox 4-13, 4-16, 4-28, 5-4, 6-3
maintenan~3-2
manuals 6-1 to 6-6
memory allocation 2-2, 4-8, 4-11 to 4-12
multiprogramming 2-2, 4-7 to~, 5-5
multitasking 4-4 to 4-5, 4-12, 5-4
mutual exclusion 4-7, 4-13 to 4-15
object directories 4-17, 5-5
object names 4-17, 5-5
object-oriented architecture 4-2 to 4-4, 4-19, 4-28
objects 4-2, 4-12 to 4-17, 4-19, 4-28, 5-5, 6-3 to 6-4
OEM 1-1-
operator 4-19, 4-24, 4-25, 5-6
original equipment manufacturers 1-1
output and input 4-20 to 4-21, 4-25 to 4-27, 4-32, 5-6, 6-4
polling 4-5, 5-4
priority-based scheduling 4-6 to 4-7, 5-4
realtime programming 2-1
realtime software 2-1
regions 6-4
runtime binding 4-16 to 4-18, 5-5
scheduling 2-1, 4-5, 4-7, 5-4
segment 4-13 to 4-14,6=3
semaphore 4-14 to 4-16, 4-28, 6-3
synchronization 4-15 to 4-16
system calls 4-3, 4-13 to 4-19, 4-21, 6-3 to 6-4
task 4-5 to 4~ 4-10 to 4-18, 4-28, 5-4 to 5-5, 6-3
terminal handler 4-19 to 4-20, 4-32, 5-4, 6-3
terminal handling 4-19 to 4-20, 5-4
types of objects 4-3, 4-19, 6-4
user 1-2 ----
user objects 6-4
VEU 1-1
volume end users 1-1

Index-2

REQUEST FOR READER'S COMMENTS

Introduction
iRMX 86™ Operating:

980~

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This fOI
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestio
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documel
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME __ DATE ______ __

TITLE
COMPANY NAME/DEPARTMENT __ ___
ADDRESS __ __

CITY STATE ___ ZIP CODE ___

Please check here if you require a written reply. 0

'0 LIKE YOUR COMMENTS ...

document is one of a series describing Intel products. Your comments on the back of this form
help us produce better manuals. Each reply will be carefully reviewed by the responsible
on. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
3585 S.W. 198th
Aloha, Oregon 97005

.M.S. Technical Publications

111111 NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

