
iRMX 86™ SYSTEM DEBUG
MONITOR REFERENCE MANUAL

Order Number: 143908·001

Copyright © 1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 12/81

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The Information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined as
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Insite iSBC Multibus
CREDIT Intel iSBX Multimodule

intel Library Manager Plug-A-Bubble
ICE Intelevision MCS PROMPT
iCS Intellec Megachassis RMX/80
im iOSP Micromainframe System 2000
iMMX iRMX Micromap UPI

A605/482/4K SVP

PREFACE

This manual describes the iRMX 86 System Debug Monitor (also referred to
as the SDB). The SDB is an extension of the iSBC 957B Monitor that
allows you to interactively examine your iRMX 86 System in order to find
and correct errors. This manual contains introductory and overview
material as well as detailed descriptions of all SDB commands.

READER LEVEL

This manual is intended primarily for system programmers who are familiar
with both the iRMX 86 Operating System and with the concepts and
terminology in the USER'S GUIDE FOR THE iSBC 957B iAPX 86, 88 INTERFACE
AND EXECUTION PACKAGE. However, application programmmers will find some
of the SDB features helpful in debugging application tasks.

CONVENTIONS

Throughout this manual, the iRMX 86 System Debug Monitor is called the
SDB and the iSBC 957B iAPX 86, 88 Interface and Execution Package is
called the iSBC 957B Monitor.

Chapter 4 of this manual, which contains detailed descriptions of the
commands, uses "CS:IP" to mean "code segment:instruction pointer." This
chapter also contains several examples of SDB commands entered at the
terminal. In these examples, user input is underscored to distinguish it
from SDB output. Carriage returns are not shown after the user input but
they are required for the SDB to execute the command.

Unless otherwise noted, all numbers the SDB displays are hexadecimal.
All bits are numbered from right to left with the bit on the far right
being zero.

iii

RELATED PUBLICATIONS

The following manuals provide additional background and reference
information-

Manual

Guide to Writing Device Drivers for the iRMXm 86
and iRMXm 88 I/O Systems

iRMXm 86 Nucleus Reference Manual

iRMXm 86 System Programmers Reference Manual

iRMXm 86 Basic I/O System Reference Manual

iRMXm 86 Disk Verification Utility Reference Manual

User's Guide for the iSBCm 957B iAPX 86, 88 Interface and
Execution Package

iRMXm 86 Configuration Guide

iv

Number

142926

9803122

142721

9803123

144133

143979

9803124

CONTENTS

CHAPTER 1
ORGANIZATION •••••••••••••••••••••••••

CHAPTER 2
INTRODUCTION
Advantages of the iRMX 86 Debugger •••••••••••••••••••••••••••••••••
Advantages of the ICE-86 Emulator ••••••••••••••••••••••••••••••••••
Advantages of the iSBCm 957B Monitor and the SDB •••••••••••••••••••
Requirements of the iRMX 86 System Debug Monitor •••••••••••••••••••

CHAPTER 3
INSTALLATION AND CONFIGURATION
How the SDB
Configuring
Assembling,

is Supplied ••
the Interrupt Level ••••••••••••••••••••••••••••••••••••
Linking, and Locating ••••••••••••••••••••••••••••••••••

Configuring the SDB Into Your System •••••••••••••••••••••••••••••••
Using the Interrupt ••

Loading the SDB from a Development System ••••••••••••••••••••••••••
Bootstrap Loading the SDB from an iRMX 86 Device •••••••••••••••••••

Using the Debug Command ••
Returning to Your Application ••••••••••••••••••••••••••••••••••••••

CHAPTER 4
COMMANDS
Validity of a Token ••
Pictorial Representation of Syntax •••••••••••••••••••••••••••••••••
Command Dictionary •••

VC--Display System Call Information ••••••••••••••••••••••••••••••
VD--Displaya Job's Object Directory •••••••••••••••••••••••••••••
VH--Display Help Information •••••••••••••••••••••••••••••••••••••
VJ-~Display the Job Heirarchy ••••••••••••••••••••••••••••••••••••
VK--Display Ready and Sleeping Tasks •••••••••••••••••••••••••••••
VO--Display the Objects in a Job •••••••••••••••••••••••••••••••••
VR--Display I/O Request/Result Segment •••••••••••••••••••••••••••
VS--Display Stack and System Call Information ••••••••••••••••••••
VT--Display iRMX 86 Object •••••••••••••••••••••••••••••••••••••••

Job Display••.•...•.......•..••••......•..•......
Task Display•.....................................
Mailbox Display•....•....•.....•..•....•.....
Semaphore Display ••
Region Display •••
Segment Display ••
Extension Display ••
Composite Display ••

v

PAGE

1-1

2-1
2-1
2-2
2-2

3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-5
3-5

4-1
4-2
4-3
4-4
4-7
4-9
4-11
4-14
4-16
4-19
4-23
4-28
4-28
4-30
4-33
4-35
4-36
4-37
4-37
4-38

3-1.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22.
4-23.
4-24.

CONTENTS (continued)

FIGURES

Configuration Module (SDBCNG.A86) ••••••••••••••••••••••••••
Format of VC Output ••
Format of VD Output ••
VH Display ••••••••••••••••••••••••••••••••••••.••••••••••••
10rmat of VJ Output ••
Format of VK Output ••
Format of VO Output ••
Format of VR Output ••
Format of VS Output ••
Format of VT Output (Job Display) ••••••••••••••••••••••••••
Format of VT Output (Non-Interrupt Task) •••••••••••••••••••
Format of VT Output (Interrupt Task) •••••••••••••••••••••••
Format of VT Output (Mailbox with No Queue) ••••••••••••••••
Format of VT Output (Mailbox with Task Queue) ••••••••••••••
Format of VT Output (Mailbox with Object Queue) ••••••••••••
Format of VT Output (Semaphore with No Queue) ••••••••••••••
Format of VT Output (Semaphore with Task Queue) ••••••••••••
Format of VT Output (Region) •••••••••••••••••••••••••••••••
Format of VT Output (Segment) ••••••••••••••••••••••••••••••
Format of VT Output (Extension) ••••••••••••••••••••••••••••
Format of VT Output (Composites Other Than BIOS) •••••••••••
Format of VT Output (BIOS User Object Composites) ••••••••••
Format of VT Output (Physical File Connection) •••••••••••••
Format of VT Output (Stream File Connection) •••••••••••••••
Format of VT Output (Named File Connections) •••••••••••••••

vi

3-2
4-4
4-7
4-10
4-11
4-14
4-16
4-19
4-23
4-29
4-31
4-31
4-33
4-34
4-34
4-35
4-35
4-36
4-37
4-38
4-38
4-39
4-40
4-43
4-44

CHAPTER 1. ORGANIZATION

This manual is divided into four chapters. Some of the chapters contain
introductory or overview material which you might not need to read if you
are already familiar with the iSBC 957B Monitor and the iRMX 86 System
Debug Monitor (SDB). Other chapters contain reference material which you
will refer to as you debug your system. You can use this chapter to
determine which of the other chapters you should read.

The organization of the manual is as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

This chapter describes the organization of the
manual. You should read this chapter if you are going
through the manual for the first time.

This chapter describes the features of the iRMX 86
System Debug Monitor (SDB) and its relationship to the
iSBC 957B Monitor. You should read this chapter if
you are going through the manual for the first time.

This chapter explains how to install and configure the
iRMX 86 System Debug Monitor into your system. It
also describes how to invoke and execute the iRMX 86
System Debug Monitor (SDB). You should read this
chapter if you are installing and/or configuring the
SDB into your system.

This chapter contains detailed descriptions of the
iRMX 86 System Debug Monitor (SDB) commands. The
commands are listed in alphabetical order for easy
referencing. When you are debugging your system, you
should refer to this chapter for specific information
about the format and parameters of the command.

1-1

CHAPTER 2. INTRODUCTION

The development of almost every system requires debugging. To aid in the
development of iRMX 86-based application systems, Intel provides three
debugging tools: the iRMX 86 Debugger, the ICE-86 In-Circuit Emulator,
and the iSBC 957B Monitor. This manual describes how the SDB extends the
capabilities of the 957B Monitor.

ADVANTAGES OF THE iRMX 86 DEBUGGER

The iRMX 86 Debugger is a debugging tool which is sensitive to the data
structures that the Nucleus maintains. The iRMX 86 Debugger is
especially good to use when you want to :

• manipulate or examine one task while other tasks in the system
continue to run

• monitor system activity without interfering in the execution

• examine and interpret the data structures associated with the
Nucleus and the Nucleus objects

ADVANTAGES OF THE ICE-86 EMULATOR

ICE-86 providesin-curcuit emulation for 8086 microprocessor-based
systems. The ICE-86 emulator is especially good to use when you want to:

• get closer to the hardware level by examining the contents of
input pins and input ports

o change the values at output ports

• examine individual components rather than an entire board

o look at the most recent 80 to 150 assembly language instructions
executed

2-1

INTRODUCTION

ADVANTAGES OF THE iSBC 957B MONITOR AND THE SDB

The iSBC 957B Monitor supports both interactive commands and system I/O
routines. It allows you to

• disassemble code

• set execution and memory break points

• display memory

You can extend these capabilities by making the iRMX 86 System Debug
Monitor (SDB) part of your operating system. In addition to retaining
the features of the iSBC 957B, the SDB

• identifies and interprets iRMX 86 system calls

• displays and interprets iRMX 86 objects

REQUIREMENTS OF THE iRMX 86 SYSTEM DEBUG MONITOR

In order to use the SDB, you must have ~ of the following combinations
of equipment:

• a terminal connected directly to an iAPX 86, 88-based board.

• an Intellec system connected to an iAPX 86, 88-based board.

You must also have the monitor portion of the iSBC 957B iAPX 86, 88
Interface and Execution Package, the iRMX 86 System Debug Monitor, and at
least the minimal configuration of the Nucleus. The SDB needs only a
small portion of valid Nucleus code so most of the SDB commands will
function even if you accidentally write over part of the Nucleus. This
allows you to continue debugging even if a large portion of the Nucleus
has been overwritten or destroyed. See Chapter 3 for more information on
configuring ~nd installing the SDB.

2-2

CHAPTER 3. INSTALLATION AND CONFIGURATION

There are three ways to include the SDB in your application system. You
can:

• configure the SDB into your system so that every time you bring
your system up you also have the SDB

• load the stand-alone SDB module from a Development System

• boot the stand-alone SDB module from an iRMX 86 device

If you intend to configure the SDB into your system, you must first
configure the interrupt level that the SDB is to use, assemble the
configuration module, and then link and locate the SDB. If you intend to
load or bootstrap load the SDB, you do not need to configure the
interrupt level, but you must locate the SDB at an absolute address.
This chapter describes these processes as well as the steps for loading
or bootstrap loading the SDB.

HOW THE SDB IS SUPPLIED

The SDB is available on Release Diskettes in either an ISIS-II format or
an iRMX 86 format. If you use the ISIS-II format you will perform the
configuration on a Development System. If you use the iRMX 86 format,
you will work on your target system.

CONFIGURING THE INTERRUPT LEVEL

If you wish to include the SDB as part of your application system, you
can use a built-in interrupt handler that allows you to enter the
iSBC 957B Monitor by pressing your interrupt button providing that the
interrupt button is connected to the corresponding interrupt level. The
interrupt level for the interrupt handler is configurable. The default
level is interrupt level 1 which is encoded as 18h. If you want to use a
different interrupt level, change "018h" to the correct encoded iRMX 86
interrupt level in the configuration module SDBCNF.A86 (shown in Figure
3-1) •

3-1

INSTALLATION AND CONFIGURATION

name sdbcnf

data_fpi
data_fpi

level

segment
ends

assume

public

segment

dw

end

public 'DATA'

level

018h ;change "OI8h" to the correct
;encoded interrupt level

Figure 3-1. Configuration Module (SDBCNF.A86)

If you decide to use an interrupt level other than the default, be sure
that the interrupt button is also connected to this level. See the
Nucleus System Call, RQSETINTERRUPT, and the Interrupt Management
chapter in the iRMX 86 NUCLEUS REFERENCE MANUAL for more information on
interrupt levels.

If you do not plan to include the SDB as part of your system, the
configuration of the interrupt level has no effect. This is because the
SDB uses the Nucleus system call SET$INTERRUPT to set the interrupt level
and if the SDB is not part of your system, there may be no Nucleus. The
only way you can interrupt into the monitor, once your system is running,
is if your interrupt button is connected to the non-maskable interrupt.

ASSEMBLING, LINKING, AND LOCATING

After you have set the interrupt level to the correct value, invoke the
SUBMIT file SDB.CSD as follows:

-SUBMIT :device:SDB.CSD (loc_address)

where :device: identifies the device containing the SDB.CSD file. If you
are using an iRMX 86-based system, you might also have to enter
additional path components. This SUBMIT command assembles the
configuration module (SDBCNF.A86), links it to the SDB, and locates the
entire SDB at the address you specify in "(loc address)." Even if you do
not plan to include the SDB as part of your application system, you must
still use this SUBMIT command to locate the SDB. However, do not locate
the SDB at an address that will cause it to overlay other parts of the
system.

3-2

INSTALLATION AND CONFIGURATION

CONFIGURING THE SDB INTO YOUR SYSTEM

You can include the SDB as part of your iRMX 86 application system by
going through the configuration and the root job generation processes.
(The process of configuring your application system and generating the
iRMX 86 root job is throughly explained in the iRMX 86 CONFIGURATION
GUIDE.)

Use a %SAB macro to allocate space for the SDB so the Nucleus won't
assign this memory as free space. Now, assign the SDB as a first-level
job using the locate address of the SDB as the start address of the job
in the %JOB macro. An example of the SDB root %JOB macro is as follows:

%JOB(O, %' object directory size
0100h, 0100h, %' pool size (min. , max.)
010h, 010h, %' max objects and tasks
0, %' max job priority
0:0, 0, %' exception handler addr, mode
0, %' job flags
130, %' init task priority,
loc3ddress, %' init task entry address
0, %' init task data segment address
0:0, 100h, %' init task stack address, stack size
0) %' init task flags

You would place the start address in the "loc address" of the %JOB macro
in the previous example. (See the iRMX 86 CONFIGURATION GUIDE for more
information about %JOB and %SAB macros.) When the system starts running,
a task in the job created as a result of the %JOB macro initializes the
SDB. The task then deletes the entire job that was created as a result
of the %JOB macro and all the job's resources are released to the system.

USING THE INTERRUPT

If you configure the SDB into your system, you can interrupt your
application system while it is running by pushing the interrupt button.
When you press the interrupt button, your program stops at the current
address of whatever instruction was being executed. The iAPX 86, 88
Monitor then displays that address on your screen along with a prompt.
You can now use the iSBC 957B and SDB commands to debug your program.

LOADING THE SDB FROM A DEVELOPMENT SYSTEM

If you are using a development system, you can load the SDB into memory
by entering the iSBC 957B load (L) command as follows:

.L : fx: SDB

where ":fx:" is the disk identifier that corresponds to the release disk
which contains the SDB and "SDB" is the file on the release diskette that

3-3

INSTALLATION AND CONFIGURATION

contains the located iRMX 86 System Debug Monitor. You obtained this
file as a result of submitting SDB.CSD, as described previously. The
load command(L) automatically sets the CS and IP registers to the SDB
starting address.

Next, use the iSBC 957B go command (G) to automatically initialize the
SDB and return to the iSBC 957B Monitor •

• G

The system responds with the SDB sign-on message and a prompt.

iRMX 86 SYSTEM DEBUG MONITOR, Vx.x

An alternative to using the load (L) and go (G) commands is to use the
load-and-go command (R). You can enter this command as follows:

.R : fx: SDB

where :fx: is the disk identifier that corresponds to the release disk
which contains the SDB. This command functions identically to using the
load (L) and go (G) commands separately.

You can now enter any iSBC 957B or SDB commands. If you want to run your
application system, you must enter the iSBC 957B go command (G) with the
starting address of your system.

NOTE
After you start your iRMX 86-based
system running, there is no way to
return to the SDB or the iSBC 957B
Monitor unless:

• you have set breakpoints

• you use the Human Interface DEBUG
command (see "Using the DEBUG
Command" in this chapter)

• your interrupt switch is connected
to the non-maskable interrupt

BOOTSTRAP LOADING THE SDB FROM AN iRMX 86 DEVICE

If the iRMX 86 Bootstrap Loader resides in ROM on your hardware system,
you can use it to load the SDB. In order to do this you must first place
the located SDB in a file on an iRMX 86 device. Then you can load the
SDB into memory by using the iSBC 957B bootstrap (B) command as follows:

• B sub-pathname

3-4

INSTALLATION AND CONFIGURATION

where "sub-pathname" is the pathname of the file that contains the
located SDB. The Bootstrap command automatically initializes the SDB and
the system responds with the a sign-on message and a prompt.

iRMX 86 SYSTEM DEBUG MONITOR, Vx.x

You can now enter any iSBC 957B or SDB commands. If you want to run your
iRMX 86 system, you must enter the iSBC 957B go command (G) along with
the starting address of your system.

NOTE
After you start your iRMX 86-based
system running, there is no way to
return to the SDB or the iSBC 957B
Monitor unless:

• you have set breakpoints

• you use the Human Interface DEBUG
command (see "Using the DEBUG
Command" in this chapter)

o your interrupt switch is connected
to the non-maskable interrupt

USING THE DEBUG COMMAND

If your Operating System includes the Human Interface, you can debug a
file instead of accessing the iSBC 957B Monitor directly. You can use
the Human Interface command, DEBUG along with the path name of the file
you wish to debug. See the iRMX 86 HUMAN INTERFACE REFERENCE MANUAL for
more information concerning the DEBUG command.

When you use the DEBUG command along with a path name of a file, the
Operating System returns control to the iSBC 957B Monitor by breaking at
the start address of the file. At this point, the Monitor is ready to
accept iSBC 957B and SOB commands.

RETURNING TO YOUR APPLICATION

When you have finished debugging your application system, you can let it
continue executing by using the iSBC 957B go command (G). See the USER'S
GUIDE FOR THE iSBCm 957B iAPX 86, 88 INTERFACE AND EXECUTION PACKAGE for
more information concerning the (G) command.

3-5

CHAPTER 4. COMMANDS

This chapter contains some general information concerning the SDB
commands plus detailed descriptions of the iRMX 86 System Debug Monitor
commands, in aphabetical order. There is also a Command Dictionary which
lists the commands in functional groups.

VALIDITY OF A TOKEN

The iRMX 86 Operating System maintains tokens in doubly-linked lists.
So, whenever you enter a command that requires a token as a parameter,
the SDB automatically checks the validity of that token by looking at the
token's forward and backward links. It checks tokens that you enter as
parameters for the VD, VK, VJ, VO, VR, and VT commands as well as the
tokens that are listed in the displays.

If a token's forward link is bad, the SDB generates a forward link error
message along with the information that the particular command usually
displays. The token you enter as a parameter of the SDB command always
appears in the center of the display. The display for the forward link
error is as follows:

Forward link ERROR: 4111--)4E85 4111(--4E85--)4155 ?FFFF(--4155

The arrows represent links. A right pointing arrow represents a forward
link. In this example, you can tell the token 4E85 was used as a
parameter since it is in the center of the display and is the only token
with an arrow in each direction. The forward link for 4E85 points to
4155. However, the back link from 4155 does not point backward to 4E85,
but to FFFF. The question mark before FFFF indicates an error.

If a token's backward link is bad, the SDB generates a back-link error
message along with the information the particular command usually
displays. The token you enter as a parameter of the SDB command always
appears in the center of the display. The display for the backward link
error is as follows:

Back link ERROR: 4111--)410F? 4111(--4E85--)4155 4E85(-4E53

The left pointing arrow respresents a backward link. In this example,
you can tell the token 4E85 was used as a parameter since it is in the
center of the display and is the only token with an arrow in each
direction. The backward link for 4E85 points to 4111. But the forward
link from 4111 does not point to 4E85. The question mark after 410F
indicates an error.

4-1

A forward or backward link error means that the iRMX 86 data structures
have been damaged or destroyed. The most common reason for this problem
is overwriting. You or one of your tasks may have accidentally written
over part of the Operating System's data structures and/or code. Another
common reason for the problem (if you are using a non-maskable interrupt)
could be that you interrupted the Nucleus while it was setting up the
links. If either of these things happen, you must re-initialize and
reload the SDB (and perhaps your System) before you can use the VD, VJ,
VK, VO, VR, or VT commands without getting another link error. See
Chapter 3 in this manual for more information on initializing and loading
the SDB on your system.

If both links are bad, the SDB considers the token invalid and displays
the following message.

*** INVALID TOKEN ***

PICTORIAL REPRESENTATION OF SYNTAX

This manual uses a schematic device to illustrate the syntax of
commands. The schematic consists of what looks like an arerial view of a
model railroad setup, with syntactic entities scattered along the track.
Imagine that a train enters the system at the far left, drives around as
much as it can or wants to (sharp turns and backing up are not allowed),
and finally departs at the far right. The command it generates in so
doing consists of the syntactic entities that it encounters on its
journey. The following pictorial syntax shows two ways (A or B) of
reaching "C."

The pictorial syntax of the commands in this chapter does not show spaces
as entities. However, the SDB does allow one or more spaces between the
command and the parameter. For example, even though the syntax for VR is:

----------~~ c::f~~~~~---------------
you can enter:

.VR xxxx

The space between "VR" and "xxxx" does not affect the result of the
command.

4-2

COMMAND DICTIONARY

Command

DISPLAYING iRMX 86 DATA STRUCTURE

VD--Displaya Job's Object Directory ••••••••••••••••••••••••••••••••• 4-7

VJ--Display the Job Heirarchy •• 4-11

VK--Display Ready and Sleeping tasks ••••••••••••••••••••••••••••••••• 4-14

Vo--Display the Objects in a Job ••••••••••••••••••••••••••••••••••••• 4-16

VR--Display an I/O Request/Result Segment •••••••••••••••••••••••••••• 4-19

VT--Display an iRMX 86 Object •• 4-28

RECOGNIZING AND DISPLAYING iRMX 86 SYSTEM CALLS

VC--Display System Call Information •••••••••••••••••••••••••••••••••• 4-4

VS--Display Stack and System Call Information •••••••••••••••••••••••• 4-23

OTHER COMMANDS

VH--Display Help Information •• 4-9

4-3

VC - Display System Call Information

VC--Display System Call Information

The VC command checks to see if a CALL instruction is an iRMX 86 system
call.

----......,8
PARAMETER

pointer

DESCRIPTION

The pointer is an optional parameter. It can be
any valid iSBC 957B address.

If you do not specify a pointer, the System Debug
Monitor uses the current CS:IP as the default
value. If you do specify an IP value but not a
CS value, the SDB uses the current CS as the
default base.

If the CALL instruction is an iRMX 86 system call, VC displays
information about the CALL instruction as shown in Figure 4-1.

S/W int: xx (subsystem) entry code xxxx system call

Figure 4-1. Format of VC Output

The fields in Figure 4-1 are as follow·s:

S/W int: xx (subsystem)

entry code xxxx

system call

The software interrupt number and the
iRMX 86 subsystem that corresponds to
that number.

The entry code for the system call
within the subsystem.

The name of the iRMX 86 system call.

4-4

VC - Display System Call Information

VC (continued)

ERROR MESSAGES

The SDB returns the following error messages for the VC command

Error Message Description

Syntax Error You made an error in entering the command.

Not a system CALL The parameter you specified does not point
to a system call.

Not a CALL instruction The parameter you specified does not point
to any kind of call instruction.

EXAMPLES

Suppose you disassembled the following code using the iSBC 957B command,
"DX".

49A4:006D 50 PUSH AX
49A4:006E E8ADIE CALL A = lFlE ;$+7856
49A4:007l E8DD03 CALL A = 045lH ;$+992
49A4:0074 B80000 MOV AX,O
49A4:0077 50 PUSH AX
49A4:0078 8D060600 LEA AX,WORD PRT 006H
49A4:007C IE PUSH DS
49A4:007D 50 PUSH AX
49A4:007E E84llE CALL A = lEC2H ;$+7748
49A4:008l A30000 MOV WORD PTR OOOOH,AX

If you use the VC command on the CALL instruction at address 49A4:006E

.VC 49A4:006E

the System Debug Monitor displays the following information.

S/W Int: B8 (Nucleus) entry code 0801 set exception handler

The "S/W Int: B8 (Nucleus)" means that the software interrupt number,
"B8" , identifies this call as a Nucleus call. The entry code within the
Nucleus is "0801" which corresponds to an RQSETEXCEPTION$HANDLER system
call.

Now suppose you want to see if the CALL instruction at 49A4:007l is a
system call. Type:

• VC 49A4: 0071

The System Debug Monitor responds with the following message.

Not a system CALL

4-5

VC - Display System Call Information

VC
EXAMPLES (continued)

If you use the VC command on the instruction at 49A4:0074, the System
Debug Monitor responds with:

Not a CALL instruction

4-6

VD - Display a Job's Object Directory

VD--Display a Job's Object Directory

The VD command displays a job's object directory.

__________ ~~~----~~tOk~~--------------

PARAMETER

job token

DESCRIPTION

The token for the job whose object directory you
want to display.

If the parameter is a valid job token, the System Debug Monitor displays
the job's object directory as shown in Figure 4-2.

Directory size:

namel
name 2

name·
invalid entry
namek

xxxx Entries used: xxxx

tokenl
tasks waiting token2 ••• tokeni

tokenu

Figure 4-2. Format of VD Output

The fields in Figure 4-2 are as follows:

Directory size

Entries used

namel- •• nam~

The maximum allowable number of entries this
job can have in its object directory.

The number of entries used within the
directory.

The names under which objects are cataloged-

4-7

VD - Display a Job's Object Directory

VD
DESCRIPTION (continued)

token1···tokeUn

tasks waiting

invalid entry

ERROR MESSAGES

Tokens for specific cataloged objects.

Signifies tasks that have performed a
RQ$LOOKUP$OBJECT on an object which has not
been cataloged. The tokens following this
field are the tokens for the tasks that are
waiting.

This field appears only if the object
directory has been destroyed or written over.

The SDB returns the following error messages for the VD command

Error Message

Syntax Error

TOKEN is not a Job

*** INVALID TOKEN ***

EXAMPLES

Description

You did not specify a parameter for the
command or you made an error in entering the
command.

You entered a valid token that is not a job
token.

You entered a value for the token that is
not a valid token.

If you want to look at the object directory of job "528F," you would type:

• VD 528F

The System Debug Monitor responds as follows.

Directory size: OOOA Entries used: 0003

$ 5229
R?IOUSER 5201
RQGLOBAL 528F

The words "$," "R?IOUSER," and "RQGLOBAL" are the names of the objects
and their respective tokens are 5229, 5201, and 528F. There are no
waiting tasks or invalid entries.

4-8

· VH - Display. Help Information

VH--Display Help Information

The VH command displays and describes the other 8 System Debug Commands.

----------~~~---------

PARMlETERS

There are no parameters for this call.

DESCRIPTION

The VH command lists all of the System Debug Commands along with their
parameters and a short description of each command.

ERROR MESSAGE

The SDB returns the following error message for the VH command

Error Message Description

Syntax Error You made an error in entering the command.

EXAMPLE

If you type:

.VH

the System Debug Monitor responds as shown in Figure 4-3.

4-9

VH - Display Help Information

VH
EXAMPLE (continued)

iRMX 86 SYSTEM DEBUG MONITOR, Vx.x

vc

vd
vh
vj

vk
vo
vr
vs

vt

[<POINTER)]

(Job TOKEN)

Display system call,
(POINTER optional).

Display job's object directory.
Display help information.

[(Job TOKEN)] Display job heirarchy from specified level,

(Job TOKEN)
(Seg TOKEN)
[(Count)]

(TOKEN)

(TOKEN optional).
Display ready and sleeping tasks.
Display list of objects for specified job.
Display I/O Request/Result Segment.
Display stack and system call information,

(word count is in hex, default 10h).
Display iRMX 86 object.

Figure 4-3. VH Display

NOTE

If you enter a zero (0) for any of the
optional parameters in the previous
commands, the SDB behaves as if you had
used the default for that command.

4-10

VJ - Display Job Hierarchy

VJ--Display the Job Hierarchy

The VJ command displays the job hierarchy from the level you specify.

PARAMETER

job token

DESCRIPTION

The token for the job that heads the job heirarchy you
want to display.

If you do not specify a job token, VJ assumes the
token to be the Root Job (default).

The VJ command displays the token of the specified job and all the tokens
of its offspring jobs. The offspring jobs are indented three spaces to
show their position in the heirarchy. This command displays the job
heirarchy as shown in Figure 4-4.

iRMX/86 Job Tree

token1
token2

token3
token4

tokens
token6

Figure 4-4. Format of VJ Output

The fields in Figure 4-4 are as follows:

token2···token6

The token for the root job or the job you
specify.

The tokens for the offspring jobs of the
root job or the job your specify.

4-11

VJ - Display Job Hierarchy

VJ
DESCRIPTION (continued)

In Figure 4-4, tokens 2 and 6 are both indented three spaces symbolizing
that they are child jobs of token 1. Token 1 has two offspring (6 and
2). Token 2 has two offspring (S and 3). And token 3 has one offspring
job (4). Your job may have more or less tokens, but the job heirarchy
will be similar in format.

ERROR MESSAGES

The SDB returns the following error messages for the VJ command

Error Message

Syntax Error

TOKEN is not a Job

*** INVALID TOKEN ***

Error looking for
root job

EXAMPLES

Description

You made an error in entering the command.

You entered a valid token that is not a job
token.

You entered a value for the token that is
not a valid token.

The SDB cannot find the root job.

If you want to examine the heirarchy of the root job you should type:

.VJ

Suppose the System Debug responds with the following job tree.

iRMX/86 Job Tree

S7DE
S28F

SICE
4F9F

S741
S7BS

The previous display shows "S7DE" to be the root job.

If you want to display the job tree from "SICE" you can type:

.VJ SICE

4-12

V J - Display Job Hierarchy

VJ
EXAMPLES (continued)

The System Debug Monitor displays the following job tokens.

51CE
4F9F

NOTE

The VJ command (without a parameter)
needs the Nucleus interrupt vector and
a small part of the Nucleus code in
order to function correctly. If you
destroy the Nucleus ,interrupt vector
(by pressing the RESET switch) or if
you write over the required part of
Nucleus code, this command will not
operate properly. You must
re-initialize your system in order to
restore the VJ command. See Chapter 3
for more information.

4-13

VK - Display Ready and Sleeping Tasks

VK--Display Ready and Sleeping Tasks

The VK command displays the tokens for ready and sleeping tasks

----------~~~-------

PARAHETERS

This command has no parameters.

DESCRIPTION

The VK command displays the tokens for the tasks that are ready and
asleep in the format shown in Figure 4-5.

Ready tasks: xxxx
Sleeping tasks:

xxxx

Figure 4-5. Format of VK Output

The fields in Figure 4-5 are as follows:

Ready tasks

Sleeping tasks:

ERROR MESSAGES

The tokens for all the ready tasks in the
system.

The tokens for all the sleeping tasks in the
system.

The System Debug Monitor uses the Nucleus interrupt vector and some
Nucleus code in order to identify the ready and sleeping tasks. If you
somehow destroy the Nucleus interrupt vector or the required code, the
System Debug Monitor can't identify the ready and sleeping tasks. This
causes the System Debug Monitor to display the following error messages.

Ready tasks: Can't locate
Sleeping tasks:

Can't locate

4-14

(

VK - Display Ready and Sleeping Tasks

VK
ERROR MESSAGES (continued)

The most common reasons for this type of error are:

• pressing the RESET switch during debugging

• not initializing the Nucleus interrupt vector

• tasks writing over the Nucleus code

• tasks writing over iRMX 86 objects

The SDB also displays the following error message if you entered the
command incorrectly.

Error Message Description

Syntax Error You made an error in entering the command.

EXAMPLE

If you want to display a list of all the ready and sleeping tasks in a
the system, you can type:

.VK

In this example, the System Debug Monitor responds as follows:

Ready tasks: 4F02
Sleeping tasks:

56F5
5021
50D1

558A
4FFE
2302

56BF
5697

NOTE

5204
5238

51B3
511F

5090
566E

The VK command needs the Nucleus
interrupt vector and a small part of
the Nucleus code in order to function
correctly. If you destroy the Nucleus
interrupt vector (by pressing the RESET
switch) or if you write over the
required part of Nucleus code, this
command will not operate properly. You
must re-initialize your system in order
to restore the VK command. See Chapter
3 for more information.

4-15

55EC
563A

5052
5769

VO - Display Objects in a Job '

VO--Display Objects in a Job

The VO command displays the tokens of the objects in a job.

__________ ~~~--~~tOk~~--------------

PARAMETER

job token

DESCRIPTION

The token for the job whose objects you want to
display.

The VO command lists the tokens for a job's child jobs, tasks, mailboxes,
semaphores, regions, segments, extensions, and composites in the format
shown in Figure 4-6.

Child jobs:
Tasks:
Mailboxes:
Semaphores:
Regions:
Segments:
Extensions:
Composites:

The fields in Figure

Child jobs

Tasks

Mailboxes

xxxx xxxx xxxx •••
xxxx xxxx xxxx •••
xxxx xxxx xxxx •••
xxxx xxxx xxxx •••
xxxx xxxx xxxx •••
xxxx xxxx xxxx •••
xxxx xxxx xxxx •••
xxxx xxxx xxxx •••

Figure 4-6. Format of VO Output

4-6 are as follows:

The tokens for the child jobs within the job.

The tokens for the tasks within the job.

The tokens for the mailboxes 'vithin the
job. A lower-case "0" immediately following
a token for a mailbox means that one or more
objects are queued at the mailbox. A
lower-case "t" immediately following a token
for a mailbox means that one or more tasks
are queued at the mailbox.

4-16

VO
DESCRIPTION (continued)

Semaphores

Regions

Segments

Extensions

Composites

ERROR MESSAGES

VO - Display Objects in a Job

The tokens for all the semaphores within the
job. A lower-case "t" immediately following
a token for a semaphore means that one or
more tasks are queued at the semaphore.

The tokens for all the regions within the
job. A lower-case "b" (busy) immediately
following a token for a region means that a
task is accessing information guarded by the
region.

The tokens for all the segments within the
job.

The tokens for all the extensions within the
job.

The tokens for all the composites within the
job.

The SDB returns the following error messages for the VO command

Error Message

Syntax Error

TOKEN is not a Job

*** INVALID TOKEN ***

EXAMPLE

Description

You did not specify a parameter for the
command or you made an error in entering the
command.

You entered a valid token that is not a job
token.

You entered a value for the token that is
not a valid token.

Suppose you want to look at the objects in "51CE."

.VO 51CE

The System Debug Monitor responds with the following display.

4-17

VO - Display Objects in a Job

va
EXAMPLE (continued)

Child jobs: 4F9F
Tasks: 511F 50D1 5090 5052- 5021 4FFE
Mailboxes: 5119 5110 5100 t 50FB t 50CE t 5089 t
Semaphores: 50FE 501F t
Regions:
Segments: 510C 5103 508C 504E 4FE6 4FCB
Extensions:
Composites: 511C 5113 50C8 5083 4FF3 4FED

The previous display shows the tokens for the child jobs, tasks,
mailboxes, semaphores, regions, segments, extensions, and composites in
the job. It also tells you that there are tasks waiting at four
mailboxes and one semaphore.

4-18

(

VR - Display I/O Request / Result Segment

VR--Display I/O Request/Result Segment

The VR command displays information about an iRMX 86 Basic I/O System I/O
request/result segment (IORS) associated with the segment token that you
enter.

~ Gsagme~~--------------------~~~--~ ~Oke~

PARAMETER

Segment token

DESCRIPTION

The token for a segment containing the IORS
you want to display. This segment must be
an IORS or the VR command returns invalid
information.

The VR command displays the names and values for the fields of a specific
IORS. The SDB cannot determine if the segment contains a valid IORS so
it is up to you to be sure that the segment does indeed contain an IORS.
If the parameter is a valid segment token for an IORS, the SDB displays
information about the IORS as shown in Figure 4-15. For more information
concerning the following fields, see the GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS.

I/O Request Result Segment

Status xxxX Unit status xxxx
Device xxxx Unit xx
Function xxxxx Subfunction xxxxxxx
Count xxxxxxx Actual xxxx
Device location xxxxxxxx Buffer pointer xxxx:xxxx
Resp mailbox xxxx Aux pointer xxxx:xxxx
Link forward xxxx:xxxx Link backward xxxx:xxxx
Done xxxx Cancel ID xxxx

Figure 4-7. Format of VR Output

4-19

· VR - Display I/O Request / Result Segment

VR
DESCRIPTION (continued)

The fields in Figure 4-7 are as follows:

Status

Unit status

Device

Unit

Function

Subfunction

The exception code for the I/O operation.

Additional status information. The Status
field must be set to indicate the E$IO
condition (002Bh) in order for the Unit
Status to contain information. If the Status
field is not an E$IO condition, the Unit
Status field contains "N/A."

See the description of I/O Request/Result
Segments in the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL for further information.

The number of the device for which the
request is intended.

The number of the unit for which this request
is intended.

A description of the function for the
operation to be performed by the Basic I/O
System. The descriptions of the possible
functions and their corresponding system
calls are as follows:

Function

Read
Write
Seek
Special
Att Dev
Det Dev
Open
Close

System Call

RQAREAD
RQAWRITE
RQASEEK
RQASPECIAL
RQAPHYSICAL$ATTACH$DEVlCE
RQAPHYSICAL$DETACH$DEVICE
RQAOPEN
RQACLOSE

If the function field can't be interpreted,
the SDB displays the actual hexadecimal
value of the field followed by a space and
two question marks.

The actual function if the Function field
contains "Special." The possible
subfunctions are as follows:

Subfunction
For/Que
Notify
Satisfy

4-20

Description
Format or Query
Notify function
Stream file satisfy function

VR
DESCRIPTION (continued)

Subfunction (con't)

Count

Actual

Device location

Buffer pointer

Resp mailbox

Aux pointer

Link forward

Link backward

Done

Cancel ID

VR - Display I/O Request / Result Segment

If the Function field doesn't contain
"Special", then the Subfunction field will
contain "N/A." If the Subfunction field
can't be interpreted, the SDB displays the
actual hexadecimal value of the field
followed by a space and two question marks.

The number of bytes of data that the Basic
I/O System sets to be transferred.

The number of bytes of data actually
transferred.

The 8-digit hexadecimal value of the absolute
device location of the I/O operation.

The address of the buffer from which the
Basic I/O System reads or to which it writes.

A token for the response mailbox. Upon
completion of the operation, the device
driver sends the IORS to this mailbox.

The pointer to the location of any auxiliary
data. The I/O System uses this data when the
request is "Special" and the device driver
needs extra data.

The address of the next IORS in the request
queue.

The address of the previous IORS in the
request queue.

Indicates if the I/O operation is complete.
A value of "TRUE" means that the I/O
operation is complete, whereas a value of
"FALSE" means that the I/O operation is
incomplete.

A word that identifies queued I/O requests
that are to be removed from the queue by the
CANCEL$IO procedure.

4-21

VR _. Display I/O Request / Result Segment

VR (continued)

ERROR MESSAGES

The SDB returns the following error messages for the VR command

Error Message

Syntax Error

Description

You did not specify a parameter for the
command or you made an error in entering the
command.

TOKEN is not a Segment You entered a valid token that is not a
segment token.

*** INVALID TOKEN *** You entered a value for the token that is not
a valid token.

4-22

VS - Display Stack and System Call Information

VS--Display Stack and System Call Information

The VS command identifies system calls (as does the VC command) and
displays the stack.

----~G

PARAMETER

count

DESCRIPTION

The count is the number of words (in hexadecimal)
of the stack that you want to display.

If you do not specify a count, VS uses a default
value of lOH.

The VS command identifies iRMX 86 system calls for all iRMX 86 subsystems
(as does the VC command) and interprets the parameters on the stack. If
one of these parameters is a string, the SDB disassembles the string.
See the appropriate iRMX 86 Manual for additional information on system
call information.

If you do not change the CS:IP value, the VS command interprets the CALL
instruction at the current CS:IP. If you want to interpret a CALL
instruction at a different CS:IP value, you must move the CS:IP to that
value by using the iSBC 957B GO command.

The VS command uses the SS:SP (stack segment:stack pointer) registers to
display the current values on the stack. If the instruction is an
iRMX 86 system call, VS displays the system call and the stack
information as shown in Figure 4-8.

xxxx:xxxx
xxxx:xxxx

xxxx
xxxx

xxxx
xxxx

S/W int: xx (subsystem)

:parameters.:

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

entry code xxxx

Figure 4-8. Format of VS Output

4-23

xxxx
xxxx

xxxx xxxx
xxxx· xxxx

system call

VS - Display Stack and System Call Information

VS
DESCRIPTION (continued)

The fields in Figure 4-8 are as follows:

xxxx:xxxx

xxxx

parameters

The contents of the SS:SP.

Stack values.

The names of the stack values. The
parameters correspond to the stack values
directly above them.

The three remaining fields in Figure 4-8 are identical to those in the VC
command.

S/W int: xx (subsystem) The software interrupt number and the
iRMX 86 subsystem that corresponds to that
number.

entry code xxxx

system call

ERROR MESSAGES

The entry code for the system call within
the subsystem.

The name of the iRMX 86 system call.

The SDB returns the following error messages for the VS command

Error Message

Syntax Error

Not a system CALL

unknown entry code

Description

You made an error in entering the command.

The CS:IP is not pointing to a system call.

This error message appears in place of the
system call field when the SDB has been
overwritten or when the SDB has
misinterpreted the call.

If the instruction is not a CALL instruction, VS displays the contents of
the words on the stack and no message. Even if you get the error
messages previously described, the VS command displays the top of the
stack.

EXAMPLES

Suppose you disassembled the following code using the iSBC 957B command,
"DX" •

4-24

VS - Display Stack and System Call Information

VS
EXAMPLES (continued)

49A4:015C E8CBID CALL A = IF1AH ;$+7630
49A4:0I5F B80000 MOV AX,O
49A4:0I62 50 PUSH AX
49A4:0I63 B80000 MOV AX,O
49A4:0166 8ECO MOV ES,AX
49A4:0168 06 PUSH ES
49A4:0169 50 PUSH AX
49A4:016A 8D060800 LEA AX,WORD PTR 0008H
49A4:016E IE CALL DS
49A4:016F 50 PUSH AX

Since the CS:IP is at 49A4:0I5C, when you use the VS command

.VS

the System Debug Monitor displays the following information.

4906:07CA
4906:07DA

0008
49A4

S/W int: B8 (Nucleus)

4984
0020

4EAC
2581

4983
4EAC

entry code 0301

: •• excep$p •• : .mbox. :

4983
4EA1

0000
4EE7

delete mailbox

0600
0000

4906
0000

The parameters names in the previous example identify the stack values
directly above them. The "excep$p" parameter signifies that the first
two words represent a pointer (4984:0008) to the exception code. The
"mbox" parameter signifies that the third word (4EAC) is the token for
the mailbox being deleted.

Now, suppose you moved the CS:IP to 49A4:016E. If you invoke the VS
command now, the debug monitor displays the stack as follows:

.VS

4906:07DO
4906:07EO

4983
F7C7

Not a system CALL

4983
F7C7

0000
F5C7

0600
F5C7

4906
F5C7

49A4
F5C7

0020
F5CF

2581
F5CF

The SDB displays the stack and a message which informs you that the call
is not a system call.

If you want to display the stack at a call which happens to have more
parameters than will fit on one line, the SDB automatically displays the
extra parameters below the corresponding words in the stack. For example
suppose you used the VS command and received the following display •

• VS

4-25

VS - Display Stack and System Call Information

VS
EXAMPLES (continued)

57CC:OF9A 015A 60C7 0000 60C6 60C6 0000 0600 57CC
57CC:OFAA 60EF 0028 2322 0000 60C7 6618 6605 6623
57CC:OFBA 6609 5A5F 5AF8 660B 0000 0000 0000 0000

s/W Int: B8 (Nucleus) entry code 0100 create job

: ••• excep$p ••• :t$flgs:stksze: •• sp •• : •• ss •• : •• ds •• : •• ip •• :
: •• cs •• :.pri •• :j$flgs:.exp$info$p •• :maxpri:maxtsk:maxobj:
:poolmx:poolmn:param.:dirsiz:

The previous display tells you that the CALL instruction is a Nucleus
RQ$CREATE$JOB system call that has 18 parameters. The names of these
parameters are shown between the colons (:). The words on the stack
which correspond to the parameters are shown directly above the
parameters.

The following displays show several examples of parameters with strings.
The first line of each example is the CALL instruction and the lines
following the VS command are the stack values.

l1B8:159D E8AA15 CALL A = 2B4AH $+5549

.VS

57CC:OF4E
57CC:OF5E

OF8C
660B

57CC
3C13

65FD
6602

0000
2325

6600
66D2

69A2
OF7C

0000 6602
ODF7 FFFF

S/w Int: CO (BIOS) entry code 0002 attach file

: ••• excep$p ••• :.mbox.: •• subpath$p •• :prefix:.user.:
subpath--)07'example'

The previous display tells you that the CALL instruction is a Basic I/O
System (BIOS) RQAATTACH$FILE system call that has 5 parameters. The
"subpath$p" parameter points to a string that is 07 characters long.
This string consists of the word "example."

60EF:0776 E82714 CALL A = IBAOH $+5162

.VS

57CC:OF98
57CC :OFA8

014A
57CC

60C7
60EF

06A5
0028

S/w Int: Cl (EIOS) entry code 0108

60EF
2322

06A5
0000

60EF
60C7

rename file

: ••• excep$p ••• :.new$path$p •• : ••• path$p •••• :
new path--)04'XY70'
path--)04'temp ,

4-26

0000
OOOA

0600
6605

(

VS - Display Stack and System Call Information

VS
EXAMPLES (continued)

The previous display tells you that the CALL instruction is an Extended
I/O System (EIOS) RQSRENAME$FILE system call that has 3 parameters.
There are two parameters with strings in this example. The parameter,
"new$path$p" points to a string that is 04 characters long. This string
consists of the word "XY70." The parameter "path" is a string that is
also 04 characters long and consists of the word "temp."

NOTE

If a string is longer than 50
characters, the SDB will display only
the first 50 characters of the string.

4-27

VT - Display an iRMX 86 Object

VT--Display an iRMX 86 Object

The VT command displays information about the iRMX 86 object associated
with the token you enter.

__________ ~~~--~~Oken~~--------

PARAMETER

token The token for the object to be displayed.

DESCRIPTION

The VT command determines what type of object the token represents and
displays information about that object. Both the information and the
format in which the SDB displays the information are different for each
type of object. The following sections are divided into display groups.
Each display group contains the format and information for a particular
type of object.

ERROR MESSAGES

The SDB returns the following error messages for the VT command

Error Message

Syntax Error

*** INVALID TOKEN ***

JOB DISPLAY

Description

You did not specify a parameter for the
command or you made an error in entering the
command.

You entered a value for the token that is not
a valid token.

If the parameter is a valid job token, the SDB displays information about
the job as shown in Figure 4-9.

4-28

VT - Display an iRMX 86 Object

VT
JOB DISPLAY (continued)

Object type = 1 Job

Current tasks xxxx Max tasks xxxx Max priority xx
Current OBJs xxxx Max objects xxxx Parameter OBJ xxxx
Directory size xxxx Entries used xxxx Job flags xxxx
Except handler xxxx:xxxx Except mode xx Parent job xxxx
Pool min xxxx Pool Max xxxx Initial size xxxx
Pool size xxxx Allocated xxxx Largest seg xxxx

Figure 4-9. Format of VT Output (Job Display)

The fields in Figure 4-9 are as follows:

Current tasks

Max tasks

Max priority

Current OBJs

Max objects

Parameter OBJ

Directory size

Entries used

The number of tasks currently existing in
the job.

The maximum number of tasks that can exist
in the job at the same time. This value was
set when the job was created with the system
call RQ$CREATE$JOB.

The maximum (lowest numerically) priority
allowed for anyone task in the job. This
value was set when the job was created with
the system call RQ$CREATE$JOB.

The number of objects currently existing in
the job.

The maximum number of objects that can exist
in the job at the same time. This value was
set when the job was created with the system
call RQ$CREATE$JOB.

The token for the object the parent job
passed to this job. This value was set when
the job was created with the system call
RQ$CREATE$JOB.

The maximum number of entries the job can
have in its object directory. This value
was set when the job was created with the
system call RQ$CREATE$JOB.

The number of objects currently cataloged in
the object directory.

4-29

VT - Display an iRMX 86 Object

VT

JOB DISPLAY (continued)

Job flags

Except handler

Except mode

Parent job

Pool min

Pool max

Initial size

Pool size

Allocated

Largest Seg

TASK DISPLAY

The job flags parameter that was specified
when the job was created.

The start address of the job's exception
handler. This address was set when the job
was created with the system call
RQ$CREATE$JOB.

The value that indicates when control is to
be passed to the new job's exception
handler. This value was set when the job
was created with the system call
RQ$CREATE$JOB.

The token for the parent job of this job.

The minimum size (in 16-byte paragraphs) of
the job's memory. This value was set when
the job was created.

The maximum size (in 16-byte paragraphs) of
the job's memory pool. This value was set
when the job was created.

The initial size (in 16-byte paragraphs) of
the job's memory pool.

The current size (in 16-byte paragraphs) of
the job's memory pool.

The number of 16-byte paragraphs in the
job's memory pool which are currently
allocated.

The number of 16-byte paragraphs in the
largest segment in the job's memory pool.

The SDB displays information about tasks in two different ways. The
first display is for non-interrupt tasks and the second display is for
interrupt tasks. The format of the two types of tasks is shown in
Figures 4-10 and 4-11.

4-30

(

VT - Display an iRMX 86 Object

VT
TASK DISPLAY (continued)

object type = 2 Task

Static PRI xx Dynamic PRI xx Task state xxxx
Suspend depth xx Delay req xxxx Last exchange xxxx
Except handler xxxx:xxxx Except mode xx Task flags xx
Containing job xxxx Interrupt task no

Figure 4-10. Format of VT Output (Non-Interrupt Task)

object type = 2 Task

Static PRI xx Dynamic PRI xx Task state xxxx
Suspend depth xx Delay req xxxx Last exchange xxxx
Except handler xxxx:xxxx Except mode xx Task flags xx
Containing job xxxx Interrupt task yes Int Level xx
Master mask xx Slave mask xx Slave number xx
Pending int xx Max interrupts xx

Figure 4-11. Format of VT Output (Interrupt Task)

The fields in Figures 4-10 and 4-11 are as follows:

Static PRI

Dynamic PRI

Task state

The current priority of the task. This
value was set when the job was created with
the system call RQ$CREATE$TASK.

A temporary priority that the Nucleus
sometimes assigns to the task in order to
improve system performance.

The state of the task. There are five
possible states:

State
ready
asleep
susp
aslp/susp

deleted

Description
ready for execution
task is asleep
task is suspended
task is both asleep and

suspended
task is being deleted

If this field can't be interpreted, the SDB
displays the actual haexadecimal value
followed by a space and two question marks.

4-31

VT - Display an iRMX 86 Object

VT
TASK DISPLAY (continued)

Suspend depth

Delay req

Last exchange

Except handler

Except mode

Task flags

Containing job

Interrupt task

Int level

Master mask

The current number of outstanding
RQ$SUSPEND$TASK system calls applied to this
task without corresponding RQ$RESUME$TASK
system calls.

The number of sleep units the task requested
when it called RQ$SLEEP.

The token for the mailbox, region, or
semaphore at which the task is currently
waiting.

The start address of the job's default
exception handler. This value was set when
the task was created with RQ$CREATE$TASK or
when RQSETEXCEPTION$HANDLER was used.

The value used to indicate when control is to
be passed to the new task's exception
handler. This value was set when the task was
created with RQ$CREATE$TASK or when
RQSETEXCEPTION$HANDLER was used.

The task flags parameter used when the task
was created with the system call
RQ$CREATE$TASK.

The token of the job which contains this task.

"No" signifies that the task is not an
interrupt task. In this case, there are no
more fields in the display (see Figure 4-10).

"Yes" signifies that the task is an interrupt
task. In this case, there are six more fields
in the display (see Figure 4-11).

The level that the interrupt task services.
This level was set when the system call
RQSETINTERRUPT was used.

The hexadecimal value associated with the
interrupt mask for the master interrupt
controller. This value comes from the bits
that correspond to the different master
interrupt levels. Remember that bit numbers \
corresponds to interrupt level numbers. For
example, bit 0 corresponds to interrupt level
o and bit 7 corresponds to interrupt level 7.
If the bit is set, the corresponding interrupt
is disabled. For more information see the
iRMX 86 NUCLEUS REFERENCE MANUAL.

4-32

(

VT
TASK DISPLAY (continued)

Slave mask

Slave number

Pending int

Max interrupts

MAILBOX DISPLAY

VT - Display an iRMX 86 Object

The hexadecimal value associated with the
interrupt mask for a slave interrupt
controller. This value comes from the bits
that correspond to the different slave
interrupt levels. Remember that bit numbers
correspond to interrupt level numbers. For
example, bit 0 corresponds to interrupt
level 0 and bit 7 corresponds to interrupt
level 7. If the bit is set, the
corresponding interrupt is disabled. For
more information see the iRMX 86 NUCLEUS
REFERENCE MANUAL.

The programmable interrupt controller number
of the slave that is referred to by the
slave mask. For more information see the
iRMX 86 NUCLEUS REFERENCE MANUAL.

The number of RQ$SIGNAL$INTERRUPT calls that
are pending.

The maximum number of RQ$SIGNAL$INTERRUPT
calls that can be pending.

The SDB displays information about mailboxes in three different ways.
The first display appears when nothing is queued at the mailbox, the
second display appears when tasks are queued at the mailbox, and the
third display appears when objects are queued at the mailbox. The format
for the three types of displays are shown in Figures 4-12, 4-13, and 4-14.

Object type = 3 Mailbox

Task queue head
Queue discipline
Containing job

xxxx
xxxx
x xxx

Object queue head
Object cache depth

Figure 4-12. Format of VT Output (Mailbox with No Queue)

4-33

xxxx
xxx x

VT - Display an iRMX 86 Object

VT
MAILBOX DISPLAY (continued)

Object type = 3 Mailbox

Task queue head
Queue discipline
Containing job

Task queue

xxxx
xxxx
xxxx

xxxx xxxx •••

Object queue head
Object cache depth

xxxx
xXXx

Figure 4-13. Format of VT Output (Mailbox with Task Queue)

Object type = 3 Mailbox

Task queue head
Queue discipline
Containing job

Object queue

xxxx
xxxx
xxxx

xxxx xxxx •••

Object queue head
Object cache depth

xxxx
xxxx

Figure 4-14. Format of VT Output (Mailbox with Object Queue)

The fields in Figure 4-12, 4-13, and 4-14 are as follows:

Task queue head

Object queue head

Queue discipline

Object cache depth

The token for the task at the head of the
queue.

The token for the object at the head of the
queue.

The way you ordered the tasks and objects in
the queue. The tasks and objects can be
ordered in a "first-in/first-out" (FIFO)
method or in a priority based method (PRI)
when the mailbox is set up with
RQ$CREATE~ILBOX.

The size of the high performance queue
associated with the mailbox. The size of
this cache was set up when the mailbox was
created with RQ$CREATE$MAILBOX.

When the list of tokens in the object queue
is greater than the object cache depth, you
have temporarily overflowed your high
performance queue.

4-34

(

VT
MAILBOX DISPLAY (continued)

Containing job

Task queue

Object queue

SEMAPHORE DISPLAY

VT - Display an iRMX 86 Object

The token for the job that contains this
mailbox.

A list of tokens for the tasks queued at the
mailbox. This list appears in the display
only if there are tasks queued at the
mailbox.

A list of tokens for the objects queued at
the mailbox. This list appears in the
display only if there are objects queued at
the mailbox.

The SDB displays information about semaphores in two ways. The first
display appears when no tasks are queued at the semaphore, and the second
display appears when tasks are queued at the semaphore. The formats for
the two types of displays are shown in Figures 4-15 and 4-16.

Object type = 4 Semaphore

Task queue head
Current value
Containing job

xxxx
xxxx
xxxx

Queue discipline
Maximum value

xxx
xxxx

Figure 4-15. Format of VT Output (Semaphore with No Queue)

Object type = 4 Semaphore

Task queue head
Current value
Containing job

Task queue

xxxx
xxxx
x xxx

xxxx xxxx •••

Queue discipline
Maximum value

xxx
xxxx

Figure 4-16. Format of VT Output (Semaphore with Task Queue)

4-35

VT - Display an iRMX 86 Object

VT
SEMAPHORE DISPLAY (continued)

The fields in Figures 4-15 and 4-16 are as follows:

Task queue head

Queue discipline

Current value

Maxinrum value

Containing job

Task queue

REGION DISPLAY

The token for the task at the head of the
queue.

The way the tasks are ordered in the queue.
The tasks can be ordered in a
"first-in/first-out" (FIFO) method or in a
priority based method (PRI) when the
semaphore is created with
RQ$CREATE$SEMAPHORE.

The number of units currently contained in
the semaphore.

The maximum number of units the semaphore
can have. This number was set when the
semaphore was created with
RQ$CREATE$SEMAPHORE.

The token for the job which contains the
semaphore.

A list of tokens that represent the tasks
queued at the semaphore. This list appears
in the display only if there are tasks
queued at the semaphore.

If the parameter is a valid token for a region, the SDB displays the
information about the region as shown in Figure 4-26.

Object type = 5 Region

Entered task
Containing job

xxxx
xxxx

Queue discipline

Figure 4-17. Format of VT Output (Region)

4-36

xxxx

(

VT - Display an iRMX 86 Object

VT
REGION DISPLAY (continued)

The fields in Figure 4-17 are as follows:

Entered task

Queue discipline

Containing job

SEGMENT DISPLAY

The token for the task that is currently
accessing information guarded by the region.

The way you ordered the tasks in the queue.
The tasks can be ordered in a
"first-in/first-out" (FIFO) method or in a
priority based method (PRI) when the region
is created with RQ$CREATE$REGION.

The token for the job that contains the
region.

If. the parameter is a valid token for a segment, the SDB displays the
information about the segment as shown in Figure 4-18.

Object type = 6 segment

Num of paragraphs xxxx Containing job xxxx

Figure 4-18. Format of VT Output (Segment)

The fields in Figure 4-18 are as follows:

Num of paragraphs

Containing job

EXTENSION DISPLAY

The number of 16-byte paragraphs in this
segment. The size of the segment was
specified when the system call,
RQ$CREATE$SEGMENT was used.

The token for the job that contains the
region.

If the parameter is a valid token for an extension, the SDB displays the
information about the extension as shown in Figure 4-19.

4-37

VT - Display an iRMX 86 Object

VT
EXTENSION DISPLAY (continued)

Object type = 7 Extension

Extension type
Containing job

xxxx
xxxx

Deletion mailbox xxxxx

Figure 4-19. Format of VT Output (Extension)

The fields in Figure 4-19 are as follows:

Extens:f.on type

Deletion mailbox

Containing job

COMPOSITE DISPLAY

The type code associated with composite objects
licensed by this extension. The type code was
specified when the system call,
RQ$CREATE$EXTENSION was used. See the iRMX 86
SYSTEM PROGRAMMERS REFERENCE MANUAL for more
information.

The token for the deletion mailbox associated
with this extension. This mailbox was set up
when the system call RQ$CREATE$EXTENSION was used.

The token for the job that contains the extension.

There are five kinds of composite displays. Each display is an extension of
the display that precedes it. The fields that are introduced in the figures
are explained as they occur. The first kind appears for all composites
except Basic I/O System (BIOS) composites. The second kind appears for BIOS
user objects and the other three kinds appear for physical, for stream, and
for named BIOS connections.

The format for the first kind of display is as shown in Figure 4-20.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

Component list xxxx

Extension OBJ
Num of entries

xxxx xxxx

xxxx
xxxx

xxxx •••

Deletion mbox

Figure 4-20. Format of VT Output (Composites Other Than BIOS)

4-38

xxxx

(

VT - Display an iRMX 86 Object

VT
COMPOSITE DISPLAY (continued)

The fields in Figure 4-20 are as follows:

Extension type

Extension OBJ

Deletion mbox

Containing job

Num of entries

Component list

The extension type code for the composite.
This code was specified when the composite
was created with RQ$CREATE$COMPOSITE.

The token for the extension object that
represents the license to create this type
of composite.

The token for the mailbox to l'lhich this
composite goes when it is to be deleted.
This mailbox was specified when the
extension was created with
RQ$CREATE$EXTENSION.

The token for the job that contains the
composite.

The number of component entries in the
composite.

The list of tokens for the objects that
currently make up the composite.

The format the for Basic I/O System user object display is shown in
Figure 4-21.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

BIOS USER OBJECT:
User segment xxxx

User ID list xxxx

Extension OBJ
Num of entries

Number of IDs

xxxx

xxxx
xxxx

xxxx

Deletion mbox xxxx

Figure 4-21.
I

Format of VT Output (BIOS User Object Composites)

The fields introduced in Figure 4-21 are as follows:

User segment The token for the segment containing the
user IDs.

4-39

VT - Display an iRMX·86 Object

VT
COMPOSITE DISPLAY (continued)

Number of IDs

User ID list

The number of user IDs associated with the
user ID.

The list of user IDs.

The format for a connection to a physical file is shown in Figure 4-22.

Object type = 8 Composite

Extension type
Containing job

xxxx Extension OBJ
xxxx Num of entries

xxxx
xxxx

Deletion mbox xxxx

T$CONNECTION OBJECT
File driver
Open mode
File node
Num of conn
File type
Device gran
Device conn

Physical Conn flags
xxxx Open share
xxxx Device desc
xxxx Num of readers
xxxx File share
xxxx Device size
xxxx Device name

xx Access xxxx
xxxx File pointer xxxxxxxx
xxxx DUIB pointer xxxx:xxxx
xxxx Num of writers xxxx
xxxx File drivers xxxx
xxxxxxxx Device functs xxx x
xxxx

Figure 4-22. Format of VT Output (Physical File Connection)

The fields introduced in Figure 4-22 are as follows:

File driver

Conn flags

Access

The type of file driver to which this
connection is attached. The three possible
values are physical, stream, and named. If
this field can't be interpreted, the SDB
displays the actual hexadecimal value
followed by a space and two question marks.

The flags for the connection. If bit 1 is
set to one, this connection is active and
can be opened; if bit 2 is set, this
connection is a device connection.

The access rights for this connection. The
access rights are displayed in the same
format as the display access rights for the
DIR command in the Human Interface. This
display uses a single character to represent
a particular access right. If the file has
the access right, the character appears.
However, if the file does not have the

4-40

(

VT
COMPOSITE DISPLAY

Access (continued)

Open mode

Open share

VT - Display an iRMX 86 Object

access right, a blank appears in the
character position. The access rights along
with the characters that represent them are
as follows:

List
Directory files: rE Delete

,II. ~!nge
DLAC

DRAU

Data Files: E
Update
Append
Read
Delete

The mode established when this connection
was opened. The possible values are:

0Een Mode DescriEtion
Closed Connection is closed
Read Connection is open for reading
Write Connection is open for writing
R/W Connection is open for reading

and writing

If this field can't be interpreted, the SDB
displays the actual hexadecimal value
followed by a space and two question marks.
This value is set during a RQSOPEN or
RQAOPEN system call.

The sharing status established when this
connection was opened. The possible values
are:

Share Mode
Private
Readers
Writers
ALL

DescriEtion
Private use only
File can be shared with readers
File can be shared with writers
File can be shared with all
users

If this field can't be interpreted, the SDB
displays the actual hexadecimal value
followed by a space and two question marks.
This value is set during a RQSOPEN or
RQAOPEN system call. See the iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAL for more
information.

4-41

VT- Display an iRMX 86 Object

VT
COMPOSITE DISPLAY

File pointer

File node

Device desc

DUIB pointer

Num of conn

Num of readers

Num of writers

File type

File share

File drivers

The current contents of the file pointer for
this connection.

A token to a segment that the Operating
System uses to maintain information about
the connection. The information in this
segment appears in the next two fields.

A token to the segment that contains the
device descriptor. The device descriptor is
used by the Operating System to maintain
information about the connections to the
device.

The address of the Device Unit Information
Block (DUIB). See the GUIDE TO WRITING
DEVICE DRIVERS FOR THE iRMX 86 AND iID1X 88
I/O OPERATING SYSTEMS for more information
on the DUIB.

The number of connections to the file.

The number of connections currently open for
reading.

The number of connections currently open for
writing.

The type of file. This field is for Named
files only so does not apply (N/A) to this
display.

The share mode of the file. This parameter
defines how the file can be opened. The
possible values are:

Share Mode Description
Private Private use only
Readers File can be shared with readers
Writers File can be shared with writers
ALL File can be shared with all

users

If this field can't be interpreted, the SDB
displays the actual hexadecimal value followed
by a space and two question marks. This value
is set during RQSOPEN or RQAOPEN system
calls. See the iRMX 86 BASIC I/O SYSTEI1
REFERENCE MANUAL for more information.

The file drivers that can be used with the
containing the file.

4-42

VT - Display an iRMX 86 Object

VT
COMPOSITE DISPLAY

Device gran

Device size

Device functs

Device conn

Device name

Bit
-0-

1
2
3

Driver
Physical file
Stream file
reserved
Named file

The granularity (in bytes) of the device.

The size (in bytes) of the device.

describes the functions supported by the device
on which this file resides. Each bit has a
corresponding function. If that bit is set,
then the corresponding function is supported by
the device.

Bit
o
1
2
3
4
5
6
7

Function
F$READ
F$WRITE
F$SEEK
F$SPECIAL
F $ATTAC H$DEV
F$DETACH$DEV
F$OPEN
F$CLOSE

The number of connections to the device.

The 14-character name of the device where this
file resides.

The format for a stream connection display is shown in Figure 4-23.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

Extension OBJ xxxx
Num of entries xxxx

T$CONNECTION OBJECT
File driver Stream Conn flags xx
Open mode xxxx Open share xxxx
File node xxxx Device'desc xxxx
Num of conn xxxx Num of readers xxxx
File type xxxx File share xxXx
Device gran xxxx Device size xxxxxxxx
Device conn xxxx Device name xxxx
Req queued xxxx Queued con xxxx

Deletion mbx xxxx

Access xxxx
File pointer xxxxxxxx
DUIB pointer xxxx:xxxx
Num of writers xxxx
File drivers xxxx
Device functs xxxx

Open conn xxxx

Figure 4-23. Format of VT Output (Stream File Connecti~ns)

4-43

VT - Display an iRMX 86 Object

VT
COMPOSITE DISPLAY (continued)

The fields introduced in Figure 4-23 are as follows:

Req queued

Queued conn

Open conn

The number of requests that are currently
queued at the stream file. See the iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAL for more
information.

The number of connections that are currently
queued at the stream file. See the iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAL for more
information.

The number of connections that are currently
open on the stream file. See the iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAL for more
information.

The format for a named file connection display is shown in Figure 4-24.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

Extension OBJ x xxx
Num of entries xxxx

Deletion mbx

T$CONNECTION OBJECT
File driver
Open mode
File node
Num of conn
File type
Device gran
Device conn
Fnode
File ID
Total blocks
Volume gran

Named Conn flags
xxxx Open share
xxxx Device desc
xxxx Num of readers
xxxx File share
xxxx Device size
xxxx Device name
xxxx Fnode flags
xxxx File gran
xxxxxxxx Total size
xxxx Volume size

xx Access
xxxx File pointer
xxxx DUIB pointer
xxxx Num of writers
xxxx File drivers
xxxxxxxx Device functs
xxxx
xxxx Owner
xxxx Fnode PTR(s)
xxxxxxxx This size
xxxxxxxx Volume name

Figure 4-24. Format of VT Output (Named File Connections)

The fields introduced in Figure 4-24 are as follows:

xxxx

xxxx
xxxxxxxx
xxxx:xxxx
xxxx
xxxx
xxxx

xxxx
xxxx:xxxx
xxxxxxxx
86/330

File type The type of file. The possible values are:

File type
DIR
DATA

4-44

Description
Directory file
Data file

VT - Display an iRMX 86 Object

VT
COMPOSITE DISPLAY (continued)

Fnode

Fnode flags

Owner

File ID

File gran

Fnode PTR(s)

Total blocks

Total size

This size

A token for the segment in which the Basic
I/O System keeps a copy of the fnode. See
the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL for more information about
fnodes.

A word containing flag bits. Each bit has a
corresponding description. If that bit is
one, then the corresponding description is
true; if the bit is zero, then the
corresponding description is false.

Bit DescriEtion
---0 This fnode is allocated

1 The file is a long file
2 Primary fnode
3-4 Reserved
5 This file has been modified
6 This file is marked for

deletion
7-15 reserved

The ID of the owner of the file. If this field
has a value of FFFF, then the field is
interpreted as "World." See the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

The number of the file's file descriptor. The
file descriptor is a Basic I/O System data
structure containing file attribute and status
data.

The granularity of the file (in device
granularity units).

The values of the fnode pointers. See the iRMX
86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

The total number of volume blocks currently
used for the file; this includes indirect
blocks. See the iRMX 86 DISK VERIFICATION
UTILITY REFERENCE MANUAL for more information.

The total size (in bytes) of the file; this
includes actual data only. See the iRMX 86
DISK VERIFICATION UTILITY REFERENCE MANUAL for
more information.

The size (in bytes) of the file. See the iRMX
86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

4-45

VT - Display an iRMX 86 Object

VT
COMPOSITE DISPLAY (continued)

Volume gran The granularity (in bytes) of the volume.

Volume size The size (in bytes) of the volume.

Volume name The name of the volume.

4-46

access 4-40
actual 4-21
assembling 3-2
aux pointer 4-21

B 3-4
back link 4-1
back link error 4-1
BIOS user object 4-39
bootstrap loading 3-4
breakpoint
buffer pointer 4-21

cancel ID 4-21
child jobs 4-16
command

debug command 3-5
command dictionary 4-3
load command 3-3
go command 3-4
R command 3-4

component list 4-39
composite display 4-38
composites 4-17

INDEX

BIOS user object composites 4-39
composites other than BIOS 4-38
named file connections 4-44
physical file connections 4-40
stream file connections 4-43

configuration 3-1
configuration module 3-2
configuring the SDB into your system 3-1, 3-2
configuring the interrupt level 3-1

conn flags 4-40
connections 4-40
containing job 4-32, 4-35, 4-36, 4-37, 4-38, 4-39
count 4-21, 4-23
current OBJ's 4-29
current tasks 4-29
current value 4-36

DEBUG command 3-5
debugger 2-1
delay req 4-32

Index-1

deletion mailbox 4-38
deletion mbox 4-39
device 4-20
device conn 4-43
device desc 4-41
device functs 4-43
device gran 4-43
device location 4-21
device name 4-43
device size 4-43
directory size 4-29
done 4-21
DUIB pointer 4-42
dynamic PRI 4-31

entered task 4-37
entries used 4-29
entry code 4-4, 4-21

INDEX (continued)

error messages 4-1, 4-2, 4-5, 4-8, 4-9, 4-12, 4-14, 4-17, 4-22, 4-24,
4-28

examples
VC 4-5
VD 4-8
VH 4-9
VJ 4-12
VK 4-15
VO 4-17
VS 4-24

except handler 4-32
except mode 4-32
extension OBJ 4-39
extension display 4-37
extension type 4-38, 4-39
extensions 4-17

file ID 4-45
file driver 4-40
file drivers 4-42
file gran 4-45
file node 4-42
file pointer 4-42
file share 4-42
file type 4-42, 4-44
forward link 4-1
forward link error 4-1
fnode 4-45
fnode PTR(s) 4-45
fnode flags 4-45
function 4-20

G 3-4
go command 3-4

help information 4-9

Index-2

INDEX (continued)

ICE-86 emulator 2-1
installation 3-1
int level 4-32
interrupt 3-3
interrupt levels 3-1
interrupt task 4-32
invalid token 4-2, 4-8, 4-17, 4-22, 4-28
I/O request/result segment 4-19
IORS 4-19
iRMX 86 debugger 2-1
iRMX 86 object 4-17
iRMX 86 system debug monitor 2-2
iSBC 957B monitor 2-2

job display 4-28
job flags 4-30
job heirarchy 4-11
job tree 4-11
job's object directory 4-7

L 3-3
last exchange
link backward
link forward
linked lists
linking 3-2
load command

4-32
4-1, 4-21

4-1, 4-21
4-1

3-3
load-and-go command 3-4
loading 3-3

loading from a development system 3-3
bootstrap loading from an iRMX 86 device 3-4

locating 3-2

mailbox display 4-33
mailboxes 4-16
master mask 4-32
max interrupts 4-33
max objects 4-29
max priority 4-29
max tasks 4-29
maximum value 4-36

non-maskable interrupt
num of conn 4-42
num of entries 4-39
num. of paragraphs 4-33
num of readers 4-42
num. of writers 4-42
number of ID's 4-40

4-34 object cache depth
object queue 4-35
object queue head
objects in a job

4-34
4-17

3-2

Index-3

INDEX (continued)

job 4-11
4-44
4-41

4-41

offspring
open conn
open mode
open share
organization
owner 4-45

1-1

parameter OBJ 4-29
parameters 4-24
parent job
pending int 4-31
physical file connection 4-40
pictorial syntax 4-2
'pool max 4-30
pool min 4-30
pool size 4-30
PRI 4-31

dynamic PRI
static PRI

prompt 3-4

queue displine

R 3-4

4-31
4-31

4-34, 4-36, 4-37

ready tasks 4-14
regions 4-17
region display 4-36
req queued 4-44
resp mailbox 4-21
RESET switch 4-13, 4-15

SDB 2-2
segments 4-17
segment display 4-37
semaphore display 4-35
semaphores 4-17

semaphore with no queue 4-35
semaphore with task queue 4-35

slave mask 4-33
slave number 4-33
sleeping tasks 4-14
stack and system call information 4-23
stack information 4-23
stack segment:stack pointer 4-23
static PRI 4-31
status 4-20
submit file
subfunction
suspend depth
syntax 4-2

4-20
4-32

syntax error 4-5, 4-8, 4-9, 4-15, 4-17, 4-22, 4-24, 4-28
system call information 4-4
S/W int 4-4, 4-21

Index-4

task display 4-30
task flags 4-32
task queue 4-35, 4-36
task queue head 4-34, 4-36
task state 4-31
tasks 4-16

ready tasks 4-14
sleeping tasks 4-14

this size 4-45
token validity
total blocks 4-45
total size 4-45

unit status 4-20
unit 4-20
user ID list 4-40
user segment 4-39

validity of a token
VC 4-4
VD 4-7
VH 4-9
VJ 4-11
VK 4-14
VO 4-16
volume gran 4-46
volume name 4-46
volume size 4-46
VR 4-19
VS 4-23
VT 4-28

4-1

INDEX (continued)

Index-5

REQUEST FOR READER'S COMMENTS

IRMXTM 86 System Debug
Monitor Reference Manual
143908·001

Intel Corporation attempts to provide documents that meet the needs of all ~ntel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME ___ DATE ____________ _

TITLE

COMPANY NAME/DEPARTMENT __ __

ADDRESS __ __

CITY _______________________________________ STATE ___ ZI P CODE ______ __

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

''''''
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

