

--------- - ---- ---- - ---- - - ----------_.-
Personal Computer
Hardware Reference
Library

BASIC
Reference

(Third edition May, 1984)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: International Business Machines Corporation
provides this manual "as is," without warranty of any kind, either expressed or implied,
including, but not limited to, the particular purpose. IBM may make improvements and/ or
changes in the product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this product and for
technical information about the system should be made to your authorized IBM Personal
Computer dealer.

The following paragraph applies only to the United States and Puerto Rico: A Reader's
Comment Form is provided at the back of this publication. If the form has been removed,
address comments to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca Raton,
Florida 33432. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1982 1983 1984

Preface

The IBM Personal Computer offers three upwardly
compatible versions of the BASIC interpreter:
Cassette, Disk, and Advanced. This BASIC Reference
and the companion volume, the BASIC Handbook, are
references for these three versions of BASIC-and for
the various releases of BASIC, beginning with 1.0.

It is important for you to know that these books are
written only as references for the BASIC programming
language, not as textbooks that will teach you how to
program. If you need step-by-step instruction in
learning to program in BASIC, we suggest that you ask
for the materials you need at your library, bookstore, or
computer store.

This book is, an encyclopedia-type manual. It contains,
in alphabetical order, the syntax and semantics of every
command, statement, and function in BASIC.

The BASIC Handbook contains general information
about using BASIC. There are sections that will help
you get started using BASIC, and there are some
sections that contain information on advanced subjects
for the experienced programmer.

These two BASIC books are extensively
cross-referenced and indexed. Each also includes
appendixes of useful information. In addition, there is a
Quick Reference that lists all the BASIC commands,
statements, and functions, categorized by task.

Note: If you have an IBM PC}r, use the BASIC
book specifically for the PC}r rather than these
books.

The IBM Personal Computer BASIC Compiler is an
optional software package that is available at your

iii

computer store. If you have the BASIC Compiler,
use the IBM Personal Computer BASIC Compiler
book in conjunction with this book and the BASIC
Handbook.

Related Publications

iv

The following books contain related information that
you may find useful:

• The IBM Personal Computer Guide to Operations.

• The IBM Personal Computer Disk Operating
System.

• The IBM Personal Computer Disk Operating System
Technical Reference.

• The IBM Personal Computer Technical Reference.

Summary of Changes

This summary first lists the changes that were made in
BASIC release 2.,0, and then lists the BASIC release
3.,0 changes.

Changes in BASIC 2.0 and BASIC 2.1

The changes that were made in BASIC release 2.,0 are
briefly described in the material that follows.

• Three enhancements were made to the BASIC
command line:

- The optional parameter max blocksize was added
to the 1M: switch, allowing you to reserve space
beyond BASIC's data segment for assembly
language subroutines.

- The ATN, COS, EXP, LOG, SIN, SQR, and
T AN functions now allow you to calculate in
double precision by specifying /D in the BASIC
command line.

- You can redirect standard input and standard
output by specifying <stdin or> stdout in the
BASIC command line.

• Pressing Ctrl-PrtSc causes text sent to your screen
to also be sent to your system printer.

• The filespec syntax was expanded to allow the
specification of a path for a device or file. All
commands and statements that accept filespec also
accept path. The commands that allow paths are

v

vi

BLOAD, BSAVE, KILL, LOAD, MERGE,
NAME, RUN, and SAVE. The statements that
allow paths are CHAIN and OPEN.

The DELETE command syntax was expanded to
allow line deletions from the specified line to the
end of the program.

• The PE option was added to the OPEN "COM ...
statement syntax to allow for parity checking.

• The PLAY statement has two new options. (For
use in Advanced BASIC only.)

- >n raises the octave and plays note n.

- < n lowers the octave and plays note n.

• The DRAW statement has two new options. (For
use in Advanced BASIC only.)

- TA(n) turns angle n from -36.0 to 36.0 degrees.

- P paint~boundary sets figure color and border
color.

• The POINT function allows the form v=POINT(n),
which returns the value of the current x or y
graphics coordinate. (For use in Advanced BASIC
only.)

• The RANDOMIZE statement allows
double-precision expressions.

• The LINE statement has a new option, style, which
uses hexadecimal values to plot a pattern of points
on the screen. (For use in Advanced BASIC only.)

• The PAINT statement has a new feature, tiling,
which allows you to paint an area with a pattern
rather than just a solid color. (For use in Advanced
BASIC only.)

• The ON KEY(n), KEY(n), and KEY statements
now allow trapping of six additional definable keys,
15-2,0. (For use in Advanced BASIC only.)

• The GET and PUT statements were enhanced to
allow record numbers in the range 1 to 16,777,215
to accommodate large files with short record
lengths.

• EOF(.0) returns the end-of-file condition on
standard input devices used with redirection of I/O.

• The LOF function returns the actual number of
bytes allocated to a file.

• The graphics statements CIRCLE, DRAW, LINE,
PAINT, POINT, PSET, PRESET, VIEW, and
WINDOW now use line clipping instead of
wraparound.

Three new functions were added:

• The PLA yen) function returns the number of notes
currently in the Music Background (MB) buffer.
(For use in Advanced BASIC only.)

• The PMAP function maps an expression to world or
physical coordinates. (For use in Advanced BASIC
only.)

• The TIMER function returns the number of seconds
that have elapsed since midnight or System Reset.

Four new statements were added:

• The ON PLAY statement allows continuous music
to play while a program is running. (For use in
Advanced BASIC only.)

• The ON TIMER statement transfers control to a
given line number in a BASIC program when a
defined period of time has elapsed. (For use in
Advanced BASIC only.)

vii

• The VIEW statement lets you define a viewport (or
area) within the physical limits of the screen. (For
use in Advanced BASIC only.)

• The WINDOW statement lets you redefine the
coordinates of the screen or viewport. (For use in
Advanced BASIC only.)

Three new commands were added:

• The CHDIR command allows you to change the
current directory.

The MKDIR command creates a directory on the
specified disk.

• The RMDIR command removes a directory from
the specified disk.

Changes in BASIC 3.0

viii

The following changes have been made in BASIC
release 3 . .0:

• Device support allows BASIC to communicate with
user-installed device drivers through the IOCTL
statement and IOCTL$ function.

• IOCTL and IOCTL$ are used to get information to
and from device channels.

• ENVIRON statement and ENVIRON$ function
allow you to modify parameters in BASIC's
environment table.

• ERDEV and ERDEV$ are device error variables
that allow you to read INT 24 error codes.

• SHELL allows you to execute DOS commands and
run child processes from BASIC.

Note: The terms "disk," "diskette," and "fixed
disk" are used throughout this book. Where
"diskette" is used, it applies only to diskette drives
and diskettes. Where "fixed disk" is used, it applies
only to the IBM nonremovable fixed disk drive.
Where "disk" is used, it applies to both fixed disks
and diskettes.

ix

x

Contents

BASI C Commands, Statements, and Functions 1
How to Use This Book 1
ABS Function 4
ASC Function 5
A TN Function 6
AUTO Command , 8
BEEP Statement 10
BLOAD Command 11
BSA VE Command 15
CALL Statement 17
CDBL Function 19
CHAIN Statement 20
CHDIR Command 23
CHR$ Function 25
CINT Function 27
CIRCLE Statement 28
CLEAR Command 32
CLOSE Statement 34
CLS Statement 36
COLOR Statement 38

The COLOR Statement in Text Mode .. 39
The COLOR Statement in Graphics Mode 43

COM(n) Statement 46
COMMON Statement 47
CONT Command 48
COS Function 50
CSNG Function 51
CSRLIN Variable 52
CVI, CVS, CVD Functions 53
DATA Statement 55
DATE$ Variable and Statement 57
DEF FN Statement 59
DEF SEG Statement 62
DEFtype Statements 64
DEF USR Statement 66
DELETE Command 68
DIM Statement 70

xi

DRAW Statement 72
EDIT Command 79
END Statement 80
ENVIRON Statement 81
ENVIRON$ Function 84
EOF Function 87
ERASE Statement 89
ERDEV and ERDEV$ Variables 91
ERR and ERL Variables 94
ERROR Statement 96
EXP Function 98
FIELD Statement 99
FILES Command 102
FIX Function 105
FOR and NEXT Statements 106
FRE Function 111
GET Statement (Files) 113
GET Statement (Graphics) 115
GOSUB and RETURN Statements 118
GOTO Statement 120
HEX$ Function 122
IF Statement 123
INKEY$ Variable 127
INP Function 129
INPUT Statement 130
INPUT # Statement 133
INPUT$ Function 135
INSTR Function 137
INT Function 138
IOCTL Statement 139
IOCTL$ Function 141
KEY Statement 142
KEY (n) Statement 148
KILL Command 150
LEFT$ Function 152
LEN Function 153
LET Statement 154
LINE Statement 156
LINE INPUT Statement 160
LINE INPUT # Statement 161
LIST Command 163
LLIST Command 166
LOAD Command 167

xii

LOC Function 170
LOCATE Statement 172
LOF Function 175
LOG Function 177
LPOS Function 178
LPRINT and LPRINT USING Statements .. 179
LSET and RSET Statements 182
MERGE Command 184
MID$ Function and Statement 186
MKDIR Command 189
MKI$, MKS$, MKD$ Functions 191
MOTOR Statement 193
NAME Command 194
NEW Command 196
OCT$ Function 197
ON COM(n) Statement 198
ON ERROR Statement 201
ON-GOSUB and ON-GOTO Statements .. 203
ON KEY(n) Statement 205
ON PEN Statement 209
ON PLAY(n) Statement 211
ON STRIG(n) Statement 214
ON TIMER Statement 217
OPEN Statement 220
OPEN" COM. .. Statement 226
OPTION BASE Statement 233
OUT Statement 234
PAINT Statement 236
PEEK Function 246
PEN Statement and Function 247
PLAY Statement 250
PLA yen) Function 255
PMAP Function 256
POINT Function 258
POKE Statement 261
POS Function 262
PRINT Statement 263
PRINT USING Statement 267
PRINT # and PRINT # USING Statements . 273
PSET and PRESET Statements 277
PUT Statement (Files) 279
PUT Statement (Graphics) 281
RANDOMIZE Statement 286

xiii

READ Statement 289
REM Statement 291
RENUM Command 293
RESET Command 295
RESTORE Statement 296
RESUME Statement " 297
RETURN Statement " 299
RIGHT$ Function 300 \
RM·DIR Command 301
RND Function 303
RUN Command 306
SAVE Command 308
SCREEN Function 310
SCREEN Statement 312
SG N Function 316
SHELL Statement 317
SIN Function 322
SOUND Statement 323
SPACE$ Function 326
SPC Function 327
SQR Function 328
STICK Function 329
STOP Statement 331
STR$ Function 333 '
STRIG Statement and Function 334
STRIG(n) Statement 336
STRING$ Function 337
SWAP Statement 338
SYSTEM Command 339
TAB Function 340
TAN Function 341
TIME$ Variable and Statement 342
TIMER Function ' 344
TRON and TROFF Commands 345
USRFunction 346
VAL Function 352
VARPTR Function " 353
V ARPTR$ Function 355
VIEW Statement 357
WAIT Statement " 362
WHILE and WEND Statements 364
WIDTH Statement 366
WINDOW Statement 370

xiv

WRITE Statement 375
WRITE # Statement 377

Appendix A. Error Messages A-3

Appendix B. Assembly Language Subroutines B-1
Deciding Where In Memory To Load Your

Subroutines B-2
DOS-Loaded Subroutines for BASIC .. B-2
Inside the BASIC Data Segment B-3
Beyond the BASIC Data Segment B-5·

How to Load and Call Your Assembly
Language Subroutines B-6

Poking or Assigning a Subroutine into
Memory B-6

BLOADing the Subroutine from a File B-10
A Sample Subroutine B-12

Sample Subroutine Explanation B-13
Loading the Subroutine as a Resident

Extension of DOS B-19
How BASIC Interfaces with Assembly

Language Subroutines B-24
The CALL Statement B-26
Memory Map B-29

Appendix C. Communications C-l
Opening a Communications File C-1
Communication 1/0 C-1
A Sample Program C-3

Operation of Control Signals C-6
Control of Output Signals with OPEN . C-6
Use of Input Control Signals C-6
Testing for Modem Control Signals ... C-7
Direct Control of Output Control Signals C-8
Communication Errors .j............ C-9

Appendix D. ASCII Character Codes D-l
Extended Codes D-6

Appendix E. Scan Codes E-l

Glossary Glossary-l

Index Index-l

xv

xvi

BASIC Commands, Statements, and
Functions

How to Use This Book

Descriptions of all the BASIC commands, statements,
and functions are included in this book. The entries are
arranged alphabetically. For more background and
general information on BASIC, refer to the
accompanying publication, the BASIC Handbook.

BASIC's built-in functions and variables can be used in
any program without further definition.

The distinction between a command and a statement is
largely a matter of tradition. Commands, because they
generally operate on programs, are usually entered in
direct mode. Statements generally direct program flow
from within a program, and so are usually entered in
indirect mode as part of a program line. Actually, most
BASIC commands and statements can be entered in
either direct or indirect mode.

The description of each command, statement, function,
or variable in this section is formatted as follows:

Purpose: Tells what the command, statement, function, or
variable does.

1

Versions: Indicates which versions of BASIC allow the
command, statement, function, or variable. For
example, if you look under "CHAIN Statement,"
you can see that after Versions: it says:

Format:

2

Cassette Disk

Advanced

Compiler
(**)

The asterisks indicate which versions of BASIC
support the function. This example shows that you
can use the CHAIN statement for programs written
in the Disk BASIC and Advanced BASIC versions of
BASIC.

In this example you will notice that the asterisks
under the word "Compiler" are in parentheses. This
means that that there are differences between the
way the statement works under the BASIC
interpreter and the way it works under the IBM
Personal Computer BASIC Compiler. The IBM
Personal Computer BASIC Compiler is an optional
software package available from your IBM dealer. If
you have the BASIC Compiler, the IBM Personal
Computer BASIC Compiler manual explains these
differences.

Shows the correct format for the command,
statement, function, or variable. A complete
explanation of the syntax format is presented in the
preface of this book. Remember to keep these rules
rules in mind:

Words in capital letters are keywords and must be
entered as shown, except that they can be entered
in any combination of uppercase and lowercase
letters. BASIC automatically converts letters to
uppercase (unless they are part of a quoted
string, remark, or DATA statement).

You are to supply any items shown in lowercase
italic letters.

Items in square brackets ([]) are optional.

• An ellipsis (...) indicates that an item can be
repeated as many times as you wish.

• All punctuation except square brackets (such as
commas, parentheses, semicolons, hyphens, or
equal signs) must be included where shown.

Remarks: Describes in detail how to use the command,
statement, function, or variable.

Example: Shows direct mode statements, sample programs, or
program segments that demonstrate the use of the
command, statement, function, or variable.

If a single- or double-precision value is supplied where
an integer is required, BASIC rounds up the fractional
portion and uses the resulting integer.

3

ABS
Function

Purpose: Returns the absolute value of the expression x.

Versions: Cassette

Format: v = ABS(x)

Disk

Advanced

Remarks: x can be any numeric expression.

Compiler

The absolute value of a number is always positive or
zero.

Example: This example shows that the absolute value of -35 is
positive 35.

4

PRINT ABS(7*(-5))
35

ASC
Function

Purpose: Returns the ASCII code for the first character of a
string (x$).

Versions: Cassette

Disk

Format: v = ASC(x$)

Advanced

Remarks: x$ can be any string expression.

Compiler

The result of the ASC function is a numerical value
that is the ASCII code of the first character of the
string x$. See Appendix D for a list of ASCII codes.
If x$ is null, an Illegal function call error is returned.

The CHR$ function is the inverse of the ASC
function, and it converts the ASCII code to a
character.

Example: This example shows that the ASCII code for a capital
T is 84. PRINT ASC("TEST") would work just as
well.

10 X$ = "TEST"
20 PRINT ASC(X$)
RUN

84

5

ATN
Function

Purpose: Returns the arctangent of x.

Versions: Cassette

Disk

Advanced

Compiler

Format: v = ATN(x)

Remarks: x can be a numeric expression of any type.

The A TN function returns the angle whose tangent is
x. The result is a value in radians in the range -PI/2
to PI/2, where PI=3.141593.

If you want to convert radians to degrees, multiply
by 18,0/pI.

In BASIC 2 . .0 and later releases, you can have this
caJculation performed in double-precision by
specifying ID in the BASIC command line when
BASIC is initially loaded. See "Options in the
BASIC Command" in the BASIC Handbook.

Example: The first example shows the use of the A TN function
to calculate the arctangent of 3.

6

PRINT ATN(3)
1.249(J46

ATN
Function

The second example finds the angle whose tangent
is 1. It is .7853983 radians, or 45 degrees.

10 PI=3.141593
20 RADIANS=ATN(l)
30 DEGREES=RADIANS*180/PI
40 PRINT RADIANS,DEGREES
RUN

.7853983 45

7

AUTO
Command

Purpose: Automatically generates the next line number each
time you press Enter.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

8

AUTO [number] [,[increment]]

number is the number used to start numbering
lines. A period (.) can be used in place
of the line number to indicate the
current line.

increment is the value added to each line number
to get the next line number.

Numbering begins at number and increases each
subsequent line number by the value of increment. If
both values are omitted, the default is 1,0,1.0. If
number is followed by a comma but increment is not
specified, the last increment specified in an AUTO
command is assumed. If number is omitted but
increment is included, then line numbering begins
with ,0.

AUTO is used for entering programs. It saves having
to type each line number.

If AUTO generates a line number that already exists
in the program, an asterisk (*) is printed after the
number to warn you that any input will replace the
existing line. However, if you press Enter
immediately after the asterisk, the existing line is not
replaced, and AUTO generates the next line number.

AUTO
Command

AUTO ends when you press Ctrl-Break. The line in
which Ctrl-Break is typed is not saved. After a
Ctrl-Break, BASIC returns to command level.

Note: When in AUTO mode, you can make
changes only to the current line. If you want to
change another line on the screen, be sure to exit
AUTO by first pressing Ctrl-Break.

Example: This generates line numbers 1.0, 2.0, 3,0, 4,0, ...

AUTO

This generates line numbers 1.0.0, 15.0, 2.0,0, ...

AUTO 100,50

This generates line numbers ,0, 2,0, 4,0, 6.0, ...

AUTO ,20

If the increment in the previous AUTO command
was 5,0, then this command generates line numbers
5,0,0,55,0,6.0,0,65,0, ...

AUTO 500,

9

BEEP
Statement

Purpose: Causes the speaker to sound.

Versions: Cassette

Format: BEEP

Disk

Advanced

Compiler

Remarks: The BEEP statement causes the speaker to sound at
8f),0 Hz for 1/4 second. BEEP has the same effect
as:

PRINT CHR$(7);

Example: In this example, the program checks to see if X is out
of range. If it is, the computer warns you by
beeping.

100 IF X < 20 THEN BEEP

10

BLOAD
Command

Purpose: Loads a memory image file into memory.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

BLOAD filespec [,offset]

filespec

offset

is a string expression for the file
specification. In BASIC 2 . .0 and later
releases, it can contain a path. It must
conform to the rules outlined under
"N aming Files" in Chapter 3 of the
BASIC Handbook; otherwise, an error
occurs.

is an integer expression in the range ,0 to
65535. This is an offset at which the file
will be loaded into the current segment
specified by the latest DEF SEG
statement.

If offset is omitted, the offset specified at BSA VE is
assumed. That is, the file is loaded into the same
location from which it was BSA VED.

When a BLOAD command is executed, the named
file is loaded into memory starting at the specified
location. If the file is to be loaded from the device
CAS 1:, the cassette motor is turned on
automatically.

If you are using Cassette Basic and the device name
is omitted, CAS 1: is assumed. CAS 1: is the only
device allowed for BLOAD in Cassette Basic. If you

11

BLOAD
Command

12

are using Disk BASIC or Advanced BASIC and the
device name is omitted, the DOS default drive is
used.

BLOAD is intended for use with a file that has
previously been saved with BSA VE. BLOAD and
BSA VE are useful for loading and saving machine
language programs, but they are not restricted to
assembly language programs. Any segment can be
specified as the target or source for these statements
through the DEF SEG statement. You have a useful
way of saving and displaying screen images: save
from or load to the screen buffer. See also Appendix
B, "Assembly Language Subroutines."

Warning:
BASIC does not check the offset of the current
segment where you are BLOADing. That is, it is
possible to use BLOAD anywhere in memory.
Do not BLOAD over BASIC's stack, BASIC's
variable area, or your BASIC program. See the
memory map in Appendix B.

Notes when using CAS 1::

1. If you enter the BLOAD command in direct
mode, the file names on the tape are displayed on
the screen followed by a period C.) and a single
letter indicating the type of file. This is followed
by the message Skipped for the files not matching
the named file, and Found when the named file is
found. Types of files and the associated letter
are:

.B for BASIC programs in internal format
(created with SAVE command)

.P for protected BASIC programs in internal
format (created with SAVE ,P command)

BLOAD
Command

.A for BASIC programs in ASCII format
(created with SAVE ,A command)

.M for memory image files (created with
BSA VE command)

.D for data files (created by OPEN followed
by output statements)

If the BLOAD command is executed in a BASIC
program, the file names skipped and found are
not displayed on the screen.

2. You can press Ctrl-Break any time during
BLOAD. This will cause BASIC to exit the
search and return to direct mode between files or
after a time-out period. Previous memory
contents do not change.

3. If CAS 1: is specified as the device and the
filename is omitted, the next memory image (.M)
file on the tape is loaded.

13

BLOAD
Command
Example: This example loads the screen buffer for the

Color/Graphics Monitor Adapter, which is at
segment address HB8.0.0.0. If you were loading the
screen buffer for the IBM Monochrome and Parallel
Printer Adapter, you would have to change line 3.0 to
read &HB.0.0.0. Line 5.0 loads PICTURE at offset .0,
segment &HB8.0.0.

14

10 'load the screen buffer
20 'point SEG at screen buffer
30 DEF SEG= &HB800
40 'load PICTURE into screen buffer
50 BLOAD "PICTURE",0

The example for the BSAVE command (see the
next entry) illustrates how PICTURE was saved.

BSAVE
Command

Purpose: Saves portions of the computer's memory on the
specified device.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

BSAVE filespec, offset, length

filespec

offset

length

is a string expression for the file
specification. In BASIC 2 . .0 and later
releases, it can contain a path. It must
conform to the rules outlined under
"Naming Files" in Chapter 3 of the
BASIC Handbook; otherwise, an error
occurs.

is an integer expression in the range .0 to
65535. This is the offset into the
segment declared by the last DEF SEG.
Saving starts from this location. See
"DEF SEG Statement."

is an integer expression in the range 1 to
65535. This is the length of the
memory image to be saved.

If offset or length is omitted, a Syntax error occurs
and the save is canceled.

In Cassette BASIC, if the device name is omitted,
CAS 1: is assumed. CAS 1: is the only device allowed
for BSA VE in Cassette Basic.. In Disk BASIC and
Advanced BASIC, if the device name is omitted, the
DOS default disk drive is used.

15

BSAVE
Command

If you are saving to CAS 1:, the cassette motor is
turned on and the memory image file is immediately
written to the tape.

When you use the DEF SEG statement, you can
specify any segment as the source segment for the
BSAVE data. For example, you can save an image
of the screen by doing a BSA VE of the screen
buffer.

Example: As explained under "BLOAD Command", the
segment address of the 16K screen buffer for
Color/Graphic Monitor Adapter is HBS.0.0.0. The
segment address of the 4K screen buffer for the IBM
Monochrome Display and Parallel Printer Adapter is
HB.000.0.

16

The DEF SEG statement must be used to set up the
segment address to the start of the screen buffer.
The offset of .0 and length &H4.0.0.0 specify that the
entire 16K screen buffer is to be saved.

10 'Save the color screen buffer
20 'point segment at screen buffer
30 DEF SEG= &HB800
40 'save buffer in file PICTURE
50 BSAVE "PICTURE",0,&H4000

CALL
Statement

Purpose: Calls an assembly language subroutine.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

CALL numvar [(variable [,variable])]

numvar

variable

is the name of a numeric variable. The
value of the variable indicates the offset
of the subroutine into the current
segment of memory as defined by the
last DEF SEG statement.

is the name of a variable to be passed as
an argument to the assembly language
subroutine.

The CALL statement is a way of interfacing
assembly language programs with BASIC. See
Appendix B, "Assembly Language Subroutines," for
specific considerations when using assembly
language subroutines.

17

CALL
Statement
Example: Line 1.0 sets the segment to BASIC's segment. Line

3.0 declares all scalar values and arrays used in the
program. Line 4.0 computes the offset of ARRAY
into BASIC'S data segment. Line 5.0 loads the file
into an integer array, and line 6.0 calls the routine.
The variables Q, B$, and C are passed as arguments
to the routine.

10 DEF SEG: OPTION BASE 1
20 DEFINT A-Z
30 DIM ARRAY(512): P=0: Q=5: B$=IITRUE":B$="TRUE": C=0
40 P=VARPTR(ARRAY(l))
50 B L GAD II ASM . F I L II , P
60 CALL P(Q,B$,C)

18

CDBL
Function

Purpose: Converts x to a double-precision number.

Versions: Cassette

Disk

Format: v = CDBL(x)

Advanced

Remarks: x can be any numeric expression.

Compiler

Rules for converting from one numeric precision to
another are followed as explained in Chapter 3 of the
BASIC Handbook. See also "CINT" and "CSNG"
functions for converting numbers to integer and
single precision.

Example: The value of CDBL(A) is accurate only to the
second decimal place after rounding. This is so
because only two decimal places of accuracy are
supplied with A.

10 A = 454.67
20 PRINT A;COBL(A)
RUN
454.67 454.669982910156

19

CHAIN
Statement

Purpose: Transfers control to another program, and passes
variables to it from the current program.

Versions: Cassette Disk Advanced

Compiler
(**) ***

Format: CHAIN [MERGE] filespec [,[line] [,[ALL]
[,DELETE range]]]

Remarks: MERGE brings a section of code into the BASIC
program as an overlay. That is, a MERGE operation
is performed with the chaining program. The
chained-to program must be an ASCII file if it is to
be merged. Example:

20

CHAIN MERGE "A:OVRLAYI,1000

filespec is a string expression for the file
specification. In BASIC 2.,0 and later
releases, it can contain a path. It must
conform to the rules outlined under
"Naming Files" in Chapter 3 of the
BASIC Handbook; otherwise, an error
occurs. The filename is the name of the
program to which control is transferred.
Example:

CHAIN "A:PROGI"

line is a line number or an expression that
evaluates to a line number in the
chained-to program. It specifies the line
at which the chained-to program is to

CHAIN
Statement

begin running. If it is omitted,
execution begins at the first line in the
chained-to program.

line is not affected by a RENUM
command. If PROG 1 is renumbered,
this example CHAIN statement should
be changed to point to the new line
number. Example:

CHAIN "A:PROG1 11 ,1000

ALL specifies that every variable in the current
program is to be passed to the chained-to program.
If the ALL option is omitted, you must include a
COMMON statement in the chaining program to
pass variables to the chained-to program. See
"COMMON Statement." Example:

CHAIN "A: PROG1 11 ,1000 ,ALL

DELETE behaves like the DELETE command. As
in the DELETE command, the line numbers
specified as the first and last line of the range must
exist, or an Illegal function call error occurs. After
using an overlay, you will usually want to delete it so
that a new overlay can be brought in. Example:

CHAIN MERGE "A:OVRLAY2",10(J(J,DELETE 1000-5000

21

CHAIN
Statement

22

This example deletes lines 1.0.0.0 through 5.0.0.0 of
the chaining program before loading in the overlay
(chained-to program). The line numbers in range are
affected by the RENUM command.

Notes:

1. The CHAIN statement leaves files open.

2. The CHAIN statement with MERGE option
preserves the current OPTION BASE setting.

3. Without MERGE, CHAIN does not preserve
variable types or user-defined functions for use
by the chained-to program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEF FN statements containing shared variables
must be restated in the chained program.

4. The CHAIN statement does a RESTORE before
running the chained-to program.

CHDIR
Command

I Purpose: Changes the current directory. (For BASIC 2 . .0 and
later releases.)

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

Example:

*** ***

CHDIRpath

path is a string expression, not exceeding 63
characters, identifying the new directory
that will become the current directory.
For more information on paths refer to
"Naming Files" and "Tree-Structured
Directories" in Chapter 3 of the BASIC
Handbook.

ROOT

/ \
SALES ACCTING

/ / \
MIKE SHANNON CHELLE

/
ALICE

23

CHDIR
Command

24

(The examples that follow refer to the tree structure
shown on the previous page.)

To change to the root directory from any
subdirectory, use:

CHOIR "\"

To change to the directory ALICE from the root
directory, use:

CHOIR "SALES\MIKE\ALICE"

To change to the directory CHELLE from the
directory ACCTING, use:

CHOIR IICHELLE"

To change from the directory MIKE to the directory
SALES, use:

CHOIR II .. II

To make SALES the current directory on the
current drive (drive A) and INVENTORY the
current directory on drive C, use:

CHOIR "SALES"
CHOIR "C:INVENTORY"

The directory INVENTORY must exist on drive C.
Now when you use filespec on drive A, it refers to
the files in the directory SALES. When you use
filespec on drive C, it refers to the files in the
directory INVENTORY.

CHR$
Function

Purpose: Converts an ASCII code to its character equivalent.

Versions: Cassette

Disk

Format: v$ = CHR$(n)

Advanced

Remarks: n must be in the range ,0 to 255.

Compiler

The CHR$ function returns the one-character string
with ASCII code n. ASCII codes are listed in
Appendix D, "ASCII Character Codes." CHR$ is
commonly used to send a special character to the
screen or printer. For instance, the BEL character,
which beeps the speaker, might be included as
CHR$(7) as a preface to an error message (instead
of using BEEP). See "ASC Function," earlier in this
manual, for information on how to convert a
character back to its ASCII code.

Example: This example prints the character equivalent of
ASCII code 66.

PRINT CHR$(66)
B

The next example sets function key F 1 to the string
"AUTO" plus Enter. This is a good way to set the
function keys so Enter is automatic when you press
the function key.

KEY 1,IAUTO"+CHR$(l3)

25

CHR$
Function

26

The following example is a program that shows all
the displayable characters, along with their ASCII
codes, on the screen in 80-column width. It can be
used with either the IBM Monochrome Display and
Parallel Printer Adapter or the Color/Graphics
Monitor Adapter.

10 CLS
20 FOR 1=1 TO 255
30 I ignore nondisplayable characters
40 IF (1)6 AND 1<14) OR (1)27 AND 1<32) THEN 100
50 COLOR 0,7 I bl ack on whi te
60 PRINT USING "###"; I ; I 3-digit ASCII code
70 COLOR 7,0 I white on black
80 PRINT II "; CHR$(I); II ";

90 IF POS(0»75 THEN PRINT I go to next line
100 NEXT I

CINT
Function

Purpose: Converts x to an integer.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = CINT(x)

x can be any numeric expression. If x is not in
the range -32768 to 32767, an Overflow error
occurs.

x is converted to an integer by rounding (up) the
fractional portion.

See "FIX" and "INT" functions, both of which also
return integers. See "CDBL" and "CSNG"
functions for converting numbers to single or double
precision.

Example: Observe in both examples how rounding occurs.

PRINT CINT(450499)
45

PRINT CINT(-2.89)
-3

27

CIRCLE
Statement

Purpose: Draws an ellipse on the screen with center (x,y) and
radius r.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

28

Graphics mode only.

CIRCLE (x,y),r ['color [,start,end [,aspect]]]

(X,y) are the coordinates of the center of the
ellipse. The coordinates can be given in
either absolute or relative form. See
"Specifying Coordinates" under
"Graphics Modes" in Chapter 3 of the
BASIC Handbook.

r is the radius (major axis) of the ellipse
in points.

color is an integer expression that chooses a
color attribute from the color attribute
range for the current screen mode. In
medium resolution, the color is the
current one for that color attribute as
defined by the COLOR statement.
Four color attributes (0-3) are available
in medium resolution; in high resolution,
two attributes (0-1) are available. Zero
(0) is always the color attribute for the
background. The default foreground
color attribute is always the maximum

CIRCLE
Statement

color attribute for that screen mode: 3
in medium resolution; 1 in high
resolution.

start, end are angles in radians and can range from
-2*PI to 2*PI, where PI=3.141593.

aspect is a numeric expression.

start and end specify where the drawing of the ellipse
will begin and end. The angles are positioned in the
standard mathematical way, with ,0 to the right and
going counterclockwise:

PI/2

PIOo.2*PI
3*P1/2

If the start or end angle is negative (-,0 is not
allowed), the ellipse is connected to the center point
with a line, and the angles are treated as if they were
positive (note that this is not the same as adding
2*PI). The start angle can be greater or less than the
end angle. For example,

10 PI=3.141593
20 SCREEN 1
30 CIRCLE (160,100),60,,-PI,-PI/2

draws a part of a circle similar to the following:

29

CIRCLE
Statement

30

aspect affects the ratio of the x-radius to the y-radius.
The default for aspect is 5/6 in medium resolution
and 5/12 in high resolution. These values give a
visual circle assuming the standard screen aspect
ratio of 4/3.

If aspect is less than 1, then r is the x-radius. That is,
the radius is measured in points in the horizontal
direction. If aspect is greater than 1, then r is the
radius. For example,

10 SCREEN 1
20 CIRCLE (160,100),60",,5/18

draws an ellipse like this:

In many cases, an aspect of 1 results in nicer-looking
circles in medium resolution. It also causes the circle
to be drawn somewhat faster.

CIRCLE
Statement

The last point referenced after a circle is drawn is the
center of the circle.

Points that are off the screen are clipped.

Example: The following example draws a face.

10 PI=3.141593
20 SCREEN 1 ' medium res. graphics
30 COLOR 0,1 ' black background, palette 1
40 'two circles in color 1 (cyan)
50 CIRCLE (120,50),10,1
60 CIRCLE (200,50),10,1
70 'two horizontal ellipses
80 CIRCLE (120,50),30",,5/18
90 CIRCLE (200,50),30",,5/18
100 'arc in color 2 (magenta)
110 CIRCLE (160,0),150,2, 1.3*PI, 1.7*PI
120 'are, one side connected to center
130 CIRCLE (160,52) ,50" 1.4*PI, -1.6*PI

31

CLEAR
Command

Purpose: Sets all numeric variables to zero and all string
variables to null. Options set the maximum number
of bytes that BASIC will address and the amount of
stack space.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

32

CLEAR [,[n] [,mll

n is a byte count that, if specified, sets the
maximum number of bytes for the BASIC
data segment (where your program and data
are stored along with the interpreter work
area). The default value for n is 65535. You
can specify n as a smaller value to decrease
BASIC's total addressable space. This
increases the amount of available memory
beyond BASIC's data segment in high
memory. Include n if you need to reserve
space in storage for assembly language
programs beyond the BASIC data segment.

m sets aside stack space for BASIC. The default
is 512 bytes, or 1/8 of the available memory
(whichever is smaller). Include m if you use
many nested GOSUB statements or
FOR ... NEXT loops in your program, or if you
use PAINT to do complex scenes.

CLEAR frees all memory used for data without
erasing the program currently in memory. After a
CLEAR, arrays are undefined; numeric variables
have a value of zero; string variables have a null

CLEAR
Command

value; and any information set with any DEF
statement is lost. (This includes DEF FN, DEF
SEG, and DEF USR, as well as DEFINT, DEFDBL,
DEFSNG, and DEFSTR.)

Executing a CLEAR command turns off any sound
that is running and resets to Music Foreground.
Also, PEN and STRIG are reset to OFF.

The ERASE statement is useful to free some
memory without erasing all the data in the program.
It erases only specified arrays from the work area.
See "ERASE Statement."

Example: This example clears all data from memory (without
erasing the program):

CLEAR

The next example clears the data and sets the
maximum data segment size to 32K bytes:

CLEAR ,32768

The next example clears the data and sets the size of
the stack to 2.0.0.0 bytes:

CLEAR ,,2000

The last example clears data, sets the maximum data
segment for BASIC to 32K bytes, and sets the stack
size to 2.0.0.0 bytes:

CLEAR ,32768,2000

33

CLOSE
Statement

Purpose: Concludes 110 to a device or file.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

34

CLOSE [[#] filenum [,[#] filenuml ...]

filenum is the number used on the OPEN
statement.

The association between a particular file or device
and its file number stops when CLOSE is executed.
Subsequent 110 operations specifying that file
number will be invalid. The file or device can be
opened again using the same or a different file
number; or the file number can be reused to open
any device or file.

A CLOSE to a file or device opened for sequential
output causes the final buffer to be written to the file
or device.

A CLOSE with no file numbers specified causes all
open devices and files to be closed.

Executing an END, NEW, RESET, SYSTEM, or
RUN without the R option causes all open files and
devices to be automatically closed. STOP does not
close any files or devices.

See also "OPEN Statement" for information about
opening files.

CLOSE
Statement

Example: This example causes the files and devices associated
with file numbers 1, 2, and 3 to be closed.

100 CLOSE #1,#2,#3

This example causes all open devices and files to be
closed.

100 CLOSE

35

CLS
Statement

Purpose: Clears the screen.

Versions: Cassette

Disk

Advanced

Compiler

Format: CLS

Remarks: If the screen is in text mode, the active page is
cleared to the background color. See also "COLOR"
and "SCREEN" statements.

36

If the screen is in graphics mode (medium or high
resolution), the entire screen buffer is cleared to the
background color.

The CLS statement also returns the cursor to the
home position. In text mode, this means the cursor is
located in the upper left-hand corner of the screen.
In graphics mode, this means the "last point
referenced" for future graphics statements is the
point in the center of the screen: (16..0,1.0.0) in
medium resolution; (32.0,1.0.0) in high resolution.

Changing the screen mode or width by using the
SCREEN or WIDTH statements also clears the
screen. The screen can also be cleared by pressing
Ctrl-Home.

When you are using the VIEW statement, CLS clears
only the last viewport. To clear the entire screen you
must use VIEW to disable the active viewport, and
then use CLS to clear the screen. (Viewports are
used in BASIC 2 . ..0 and later releases.)

CLS
Statement

Example: With the Color/Graphics Monitor Adapter, this
example clears the screen to blue.

1{J SCREEN {J,{J,{J
2{J COLOR 1{J,1
3{J CLS

37

COLOR
Statement

Purpose: Sets the colors for the foreground, background, and
border screen. See "Text Mode" in Chapter 3 of the
BASIC Handbook for an explanation of these terms.

38

The syntax of the COLOR statement depends on
whether you are in text mode or graphics mode, as
set by the SCREEN statement.

When BASIC is first started, the color is initially set
to white on black.

In text mode, you can set the following:

Foreground-

Background
Border-

1 of 16 color attributes
Character blink, if desired
1 of 8 color attributes
1 of 16 color attributes

You can set the following in medium-resolution
graphics mode:

Background
Palette-

1 of 16 color attributes
1 of 2 palettes with 3 color attributes
each

The border is the same as the background color.

COLOR
Statement

The COLOR Statement in Text Mode

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

COLOR [foreground] [,[background] [,border]]

foreground is a numeric expression in the range .0
to 31, representing the character
color.

background is a numeric expression in the
range .0 to 7 for the background
color.

border is a numeric expression in the range .0
to 15. It is the color for the border
screen.

If you have the Color/Graphics Monitor Adapter, the
following colors are allowed in foreground:

,0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 White

8 Gray
9 Light Blue

1,0 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Yellow
15 High-intensity White

Colors and intensity can vary depending on your
display device.

You might like to think of colors 8 to 15 as "light" or
"high-intensity" values of colors ,0 to 7.

39

COLOR
Statement

40

You can make the characters blink by setting
foreground equal to 16 plus the number of the desired
color. That is, a value of 16 to 31 causes blinking
characters.

You can select only colors .0 through 7 for
background in text mode.

If you have the IBM Monochrome Display and Parallel
Printer Adapter, the following values can be used for
foreground:

.0 Black
1 Underlined character with standard

foreground color
2-7 Standard foreground color

With the Color/Graphics Monitor, adding 8 to the
number of the desired color gives you the color in
high intensity. For example, an attribute of 15 gives
you the standard color in high intensity.

With the Color/Graphics Monitor Adapter, you can
make the character blink by adding 16 to the
attribute. Thus, 31 gives you high-intensity standard
color characters.

For background with the IBM Monochrome Display
and Parallel Printer Adapter, you can select the
following values:

.0-6 Black
7 Standard foreground color

Note: Attribute 7 as a background attribute
appears as the standard color on the IBM
Monochrome Display only when it is used with a
foreground attribute of .0, 8, 16, or 24 (black).

COLOR
Statement

Conversely, black (attribute .0,8, 16, or 24) as a
foreground attribute shows up as black only when
used with a background attribute that creates
reverse image characters. Black used with a
background attribute of .0 makes the characters
invisible.

Other combinations of foreground and
background attributes produce standard results
on the IBM Monochrome Display.

Notes for either adapter:

1. Foreground attribute can equal background
attribute. This makes any character displayed
invisible. Changing the foreground or
background attribute makes subsequent
characters visible again.

2. Any parameter can be omitted. Omitted
parameters assume the old value.

3. If the COLOR statement ends in a comma (,),
you get a Missing operand error, but the color
changes. For example,

COLOR 1,7,

is invalid.

4. Any values entered outside the range .0 to 255
result in an Illegal function call error. Previous
values are retained.

Example: This statement sets a yellow foreground, a blue
background, and a black border screen.

10 COLOR 14,1,0

41

COLOR
Statement

42

The following example can be used with either the
Color / Graphics Monitor Adapter or the IBM
Monochrome Display and Parallel Printer Adapter:

10 PRINT "Enter your II;
20 COLOR 15,0 Ihighlight next word
30 PRINT "password";
40 COLOR 7 Ireturn to default (white on black)
50 PRINT II here: ";
60 COLOR 0 linvisible (black on black)
70 INPUT PASSWORD$
80 IF PASSWORD$=lsecret" THEN 120
90 I blink and highlight error message
100 COLOR 31: PRINT "Wrong Password": COLOR 7
110 GOTO 10
120 COLOR 0,7 Ireverse image (black on white)
130 PRINT "Program continues ... ";
140 COLOR 7,0 Ireturn to default (white on black)

COLOR
Statement

The COLOR Statement in Graphics Mode

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

Graphics mode, medium resolution only.

COLOR [background] [,[palettell

background is an integer expression in the range .0
through 15. It specifies the
background attribute.

palette is an integer expression. It selects
one of two p~lettes of color.

In graphics mode, the COLOR statement sets a
background color and chooses one of two palettes
with four color attributes each (0-3). Color
attribute.0 is always the current background. You
can select one of three color attributes for the
foreground color to be used with PSET, PRESET,
LINE, CIRCLE, PAINT, VIEW, and DRAW. The
COLOR statement in graphics mode has meaning
only for medium resolution. Using COLOR in high
resolution results in in an Illegal function call error.
The colors selected when you choose each palette are
as follows:

Color
1
2
3

Palette .,
Green
Red
Brown

Palette 1
Cyan
Magenta
White

43

COLOR
Statement

44

If palette is an even number, palette ,0 is selected.
This associates the colors green, red, and brown to
the color attributes 1, 2, and 3.

If palette is an odd number, palette 1
(cyan/ magenta/ white) is selected.

Graphics mode can display text in any of the three
colors available in the current palette. However, if
you are not using a U.S. keyboard, refer to the
"GRAFTABL Command" in Disk Operating System
Reference for information regarding additional
character support for the Color/Graphics monitor
adapter and other keyboards.

You can change the foreground color of the
characters from 3 to 2 to 1 by entering:

DEF SEG: POKE &HFE, COLQR

where COLOR is the attribute 1,2, or 3; ,0 is not
allowed. Later PRINTs will use the specified color
attribute.

The color selected for background can be the same
as any of the palette colors.

Any parameter can be omitted from the COLOR
statement. Omitting parameters will not cause the
current background or palette to change.

Any values entered outside the range .0 to 255 cause
an Illegal function call error. Previous values are
retained.

COLOR
Statement

Example: This statement sets the background to light blue and
selects palette 0.

10 SCREEN 1
20 COLOR 9,0

In the next example, the background stays light
blue, and palette 1 is selected.

10 COLOR ,1

45

COM(n)
Statement

Purpose: Enables or disables trapping of communications
activity to the specified communications adapter.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

46

COM(n) ON

COM(n) OFF

COM(n) STOP

n is the number of the communications adapter
(1 or 2).

A COM(n) ON statement must be executed to allow
trapping by the ON COM(n) statement. If a
nonzero line number is specified in the ON COM(n)
statement, BASIC checks every time a new
statement is executed to see if any characters have
come in to the communications adapter.

If COM(n) is OFF, no trapping takes place, and any
commQpication activity is not remembered even if it
does take place. .

If a COM(n) STOP statement has been executed, no
trappipg can take place. However, any
communications activity that does take place is
remembered so that an immediate trap occurs when
COM(n) ON is executed.

COMMON
Statement

Purpose: Passes variables to a chained program.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

COMMON variabIe [, variable J ...

variable is the name of a variable that to be
passed to the chained-to program.
Arrays are specified by appending" 0"
to the array name.

The COMMON statement is used with the CHAIN
statement. COMMON statements can appear
anywhere in a program, although it is recommended
that they appear at the beginning. Any number of
COMMON statements can appear in a program, but
the same variable cannot appear in more than one
COMMON statement. If all variables are to be
passed, use CHAIN with the ALL option and omit
the COMMON statement.

Any arrays that are passed do not need to be
dimensioned in the chained-to program.

Example: This example chains to program PROG3 on the disk
in drive A, and passes the array D along with the
variables A, BEEl, C, and G$.

100 COMMON A,BEE1,C,D(),G$
110 CHAHI IA:PROG3"

47

CONT
Command

Purpose: Resumes program execution after a break.

Versions: Cassette

Disk

Advanced

Compiler

Format: CONT

Remarks: The CONT command can be used to resume
program execution after Ctrl-Break has been
pressed; a STOP or END statement has been
executed; or an error has occurred. Execution
continues at the point where the break occurred. If
it occurred after a prompt from an INPUT
statement, execution continues with the reprinting of
the prompt.

48

CONT is usually used with STOP for debugging.
When execution is stopped, you can examine or
change the values of variables by using direct mode
statements. You can then use either CONT to
resume execution, or a direct mode GOTO to resume
execution at a particular line number.

CONT is invalid if the program has been edited
during the break.

CONT
Command

Example: The following example creates a long loop.

10 FOR A=l TO 513
L \i1 I"' K 11'l I f\;
313 NEXT A
RUN

1 2 3 4 5 6 7 8 9 113 11 12
13 14 15 16 17 18 19 213 21 22
23 24 25 26 27 28 29

(At this point we interrupt the loop by pressing
Ctrl-Break.)

Break in 213
CaNT

313 31 32 33 34 35 36 37 38 39
413 41 42 43 44 45 46 47 48 49
50

49

COS
Function

Purpose: Returns the trigonometric cosine function.

Versions: Cassette

Disk

Advanced Compiler
*** ***

Format:

Remarks:

v = COS(x)

x is the angle whose cosine is to be calculated.
The value of x must be in radians. To convert
from degrees to radians, multiply the degrees
by PI/18,0, where PI=3.141593.

In BASIC 2.,0 and later releases, you can have this
calculation performed in double-precision by
specifying /D in the BASIC command line when
BASIC is initially loaded. See "Options in the
BASIC Command" in BASIC Handbook.

Example: This example shows that the cosine of PI radians is
equal to -1. Then it calculates the cosine of 18,0
degrees by first converting the degrees to radians
(18,0 degrees happens to be the same as PI radians).

50

10 PI=3.141593
20 PRINT COS(PI)
30 DEGREES=180
40 RADIANS=DEGREES*PI/180
50 PRINT COS(RADIANS)
RUN
-1
-1

CSNG
Function

Purpose: Converts x to a single-precision number.

Versions: Cassette

Disk

Advanced Compiler
*** ***

Format:

Remarks:

v = CSNG(x)

x is a numeric expression that will be converted
to single precision.

The rules outlined under "How BASIC Converts
N umbers from One Precision to Another" in
Chapter 3 of the BASIC Handbook are used for the
conversion.

See also "CINT" and "CDBL" functions for
information on converting numbers to the integer
and double-precision data types.

Example: In this example the value of the double-precision
number A# is rounded at the 7th digit and returned
as CSNG(A#).

10 A# = 975.3421222#
20 PRINT A#; CSNG(A#)
RUN
975.3421222 975.3421

51

CSRLIN
Variable

Purpose: Returns the vertical coordinate of the cursor.

Versions: Cassette

Disk

Advanced

Compiler

Format: v = CSRLIN

Remarks: The CSRLIN variable returns the current line (row)
position of the cursor on the active page. The active
page is explained under "SCREEN Statement." The
value returned is in the range 1 to 25.

The POS function returns the column location of the
cursor. See "POS Function."

See also "LOCATE Statement" to see how to set the
cursor line.

Example: This example saves the cursor coordinates in the
variables X and Y, then moves the cursor to line 24
to put the words "HI MOM" on that line. Then the
cursor is moved back to its former position.

52

10 Y :: CSRLIN 'record current line
20 X :: POS(\J) I record current col umn
30 LOCATE 2491: PRINT "HI MOM"
40 LOCATE Y,X Irestore position

CVI, CVS, CVD
Functions

Purpose: Converts string variable types to numeric variable
types.

Versions: Cassette Disk Advanced

Compiler
*** ***

Format: v = CVI(2-byte string)

v = CVS(4-byte string)

v = CVD(8-byte string)

Remarks: Numeric values read from a random file must be
converted from strings into numbers. CVI converts
a 2-byte string to an integer. CVS converts a 4-byte
string to a single-precision number. CVD converts
an 8-byte string to a double-precision number.

The CVI, CVS, and CVD functions do not change
the bytes of the actual data. They change only the
way BASIC interprets those bytes.

See also "MKI$, MKS$, MKD$ Functions," as well
as Appendix A, "BASIC Disk Input and Output," in
the BASIC Handbook.

53

CVI, CVS, CVD
Functions
Example: This example uses a random file (#1), which has

fields defined as in line 1.0.0. Line 11.0 reads a record
from the file. Line 12.0 uses the CVS function to
interpret the first 4 bytes (N$) of the record as a
single-precision number. N$ was probably originally
a number that was written to the file using the MKS$
function.

54

100 FIELD #1,4 AS N$, 12 AS B$
110 GET #1
120 Y=CVS(N$)

Purpose:

DATA
(Statement

Stores the numeric and string constants that are
accessed by a program's READ statements.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

DATA constantLconstantl ..

constant can be a numeric or string constant. No
expressions are allowed in the list. The
numeric constants can be in any format
- integer, fixed point, floating point,
hex, or octal. String constants in DATA
statements do not have to be enclosed
by quotation marks, unless the string
contains commas, colons, or significant
leading or trailing blanks.

DAT A statements are nonexecutable and can be
placed anywhere in the program. A DATA
statement can contain as many constants as will fit
on a line, and any number of DATA statements can
be used in a program. The information contained in
the DATA statements can be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are placed in
the program. The READ statements access the
DAT A statements in line-number order.

The variable type (numeric or string) in the READ
statement must agree with the corresponding
constant in the DATA statement or a Syntax error
occurs.

55

DATA
Statement

You cannot use the single quote (') to add comments
to the end of a DATA statement. If you do, BASIC
thinks it is part of a string. You can, however, use
: REM to add a remark.

Use the RESTORE statement to reread information
from any line in the list of DATA statements. See
"RESTORE Statement."

Example: See examples under "READ Statement."

56

DA TE$ Variable and
Statement

Purpose: Sets or retrieves the date.

Versions: Cassette Disk Advanced

Compiler
*** ***

Format: As a variable:

v$ = DATE$

As a statement:

DATE$ = x$

Remarks: For the variable (v$ = DATE$):

A lO-character string in the form mm-dd-yyyy is
returned. Here, mm represents 2 digits for the
month, dd is the day of the month (also 2 digits), and
yyyy is the year. The date can have been set by DOS
before entering BASIC.

For the statement (DATE$ = x$):

x$ is a string expression used to set the current date.
You can enter x$ in anyone of the following forms:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

The year must be in the range 198,0 to 2.099. If you
use only one digit for the month or day, a .0 (zero) is
assumed in front of it. If you enter only 1 digit for

57

DA TE$ Variable and
Statement

the year, a zero is appended to make it 2 digits. If
you enter only 2 digits for the year, the year is
assumed to be 19yy.

Example: In this example we set the date to August 29, 1984.

58

Notice how, when we read the date back using the
DATE$ function, a zero is included in front of the
month to make it 2 digits, and the year becomes
1984. Also, the month, day, and year are separated
by hyphens even though we enter them as slashes.

10 DATE$= "8/29/84"
20 PRINT DATE$
RUN 08-29-1984

DEFFN
Statement

Purpose: Defines and names a function that you write.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

DEF FNname[(arg [,arg] ...)] =expression

name

arg

expression

is a valid variable name. This name,
preceded by FN, becomes the name
of the function.

is an argument. It is a variable name
in the function definition that is
replaced with a value when the
function is called. The arguments in
the list represent, on a one-to-one
basis, the values that are given when
the function is called.

defines the returned value of the
function. The type of the expression
(numeric or string) must match the
type declared by name.

The definition of the function is limited to one
statement. Arguments (arg) that appear in the
function definition serve only to define the function;
they do not affect program variables that have the
same name. A variable name used in the expression
does not have to appear in the list of arguments. If it
does, the value of the argument is supplied when the
function is called. Otherwise, the current value of
the variable is used.

59

DEFFN
Statement

The function type determines whether the function
returns a numeric or string value. The type of
function is declared by name, in the same way as
variables are declared. See "How to Declare Variable
Types" in Chapter 3 of the BASIC Handbook. If the
type of expression (string or numeric) does not match
the function type, a Type mismatch error occurs. If
the function is numeric, the value of the expression is
converted to the precision specified by name before
it is returned to the calling statement.

A DEF FN statement must be executed to define a
function before you can call that function; If a
function is called before it has been defined, an
Undefined user function error occurs. On the other
hand, a function can be defined more than once.
The most recently executed definition is used.

Recursive functions are not supported.

DEF FN is invalid in direct mode.

Example: In this example, line 2.0 defines the function
FNAREA, which calculates the area of a circle with
radius R. The function is called in line 4,0.

60

10 PI=3.141593
20 DEF FNAREA(R)=PI*RA2
30 INPUT "Radius? ",RADIUS
40 PRINT "Area is II FNAREA(RADIUS)
RUN
Radius?

(Suppose you respond with 2)

Radius? 2
Area is 12.56637

DEFFN
Statement

Here is an example with two arguments:

IG DEF FNMUD(X.Y)=X-(INT(X/Y)*Y)
2G A = FNMUD(7.4,4)
30 PRINT A
RUN
3.4

61

DEFSEG
Statement

Purpose: Defines the current segment of memory. A ~
subsequent BLOAD, BSA VE, CALL, PEEK,
POKE, or DEF USR definition specifies the offset
into this segment.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

62

DEF SEG [=segment]

segment is a numeric expression in the range .0 to
65535.

The initial setting for the segment when BASIC is
started is BASIC's data segment (DS). BASIC's
data segment is the beginning of your user workspace
in memory. If you execute a DEF SEG statement
that changes the segment, the value is not reset to
BASIC's DS when you issue a RUN command.

If segment is omitted from the DEF SEG statement,
the segment is set to BASIC's data segment. The
value of BASIC's data segment can be found in
segment .0, offsets &H51.0 and &H511.

If segment is given, it should be a value based upon a
16-byte boundary, since segments begin only on
paragraph boundaries. The value is shifted left 4 bits
(multiplied by 16) to form the segment address for
the subsequent operation. That is, if segment is in
hexadecimal, a .0 (zero) is added to get the actual
segment address. BASIC does not perform any
checking to ensure that the segment value is valid.

DEFSEG
Statement

DEF and SEG must be separated by a space;
otherwise, BASIC interprets the statement
DEFSEG=l"" to mean "Assign the value 100 to
the variable DEFSEG."

Any value entered outside the range indicated results
in an Illegal function call error. The previous value is
retained.

See also Appendix B, "Assembly Language
Subroutines," for more information on using DEF
SEG.

Example: The first example restores a segment to BASIC's
data segment.

OEF SEG I restore segment to BASIC's data segmer

In the second example, the screen buffer for the
Color/Graphics Monitor adapter is at segment B800
hex, offset 0. Since segments are specified on
16-byte boundaries, thf last hex digit is dropped on
the DEF SEG specifirltion.

OEF SEG=&HB800

63

DEFtype
Statements

Purpose: Declares variable types as integer, single-precision,
double-precision, or string.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

64

DEFtype letter[-letter] [,letter [-letter]] ...

type is INT, SNG, DBL, or STR.

letter is a letter of the alphabet (A-Z).

A DEFtype statement declares that the variable
names beginning with the letter or letters specified
will be that type of variable. However, a
type-declaration character (0/0, !, #, or $) always
takes precedence over a DEFtype statement in the
typing of a variable. See "How to Declare Variable
Types" in Chapter 3 of the BASIC Handbook.

If no type-declaration statements are encountered,
BASIC assumes that all variables without declaration
characters are single-precision variables.

If you use type-declaration statements, put them at
the beginning of the program. The DEFtype
statement must be executed before you use any
variables it declares.

DEFtype
Statements

Example: In this example, line 1.0 declares that all variables
beginning with the letter L, M, N, 0, or Pare
double-precision variables.

Line 2.0 causes all variables beginning with the letter
A to be string variables.

Line 3.0 declares that all variables beginning with the
letter X, D, E, F, G, or H are integer variables.

10 fJEFOBI. I..-'p
20 DEFSTR A
30 OFFINT x.n··H
40 ORfJER ~ l#/l. PRINT ORnER
50 ANIMAL::· "CAT": PRlNT ANIMAL
60 X'10/3: PRINT X
RUN

.3333333333333333
CAT

3

65

DEFUSR
Statement

Purpose: Specifies the location in memory of an assembly
language subroutine, which is later called by the USR
function.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

66

DEF USR[n]=offset

n

offset

must be a digit from .0 to 9. It identifies
the number of the USR routine whose
location in memory is being specified. If n
is omitted, DEF USR.0 is assumed.

is an integer expression in the range .0 to
65535. The value of offset is added to the
current segment value to obtain the actual
starting address of the USR routine. See
"DEF SEG Statement."

Any number of DEF USR statements can appear in a
program, thus allowing access to as many subroutines
as necessary. The most recently executed value is
used for the offset.

DEFUSR
Statement

Example: This example loads an assembly language subroutine
into an integer array. The n in iine 6.0 is determined
by the size of the subroutine. The offset passed to
DEF USR is the offset into BASIC's data segment.

10 OPTION BASE 1
20 DEFINT A-Z
30 IDefine all variables before VARPTR
40 SUBRT=0: 1=0: J=0
50 IDimension array for subroutine
60 DIM ARRAY (n)
70 IObtain offset of 1st array element into

BASICls data segment
80 SUBRT = VARPTR(ARRAY(l))
90 ILoad routine into the integer array
100 BLOAD "ASMFI LE II ,SUBRT

1000 I Pass offset to nFF llSR
1010 DEF USR0 = VARPTR(ARRAY(l))
1020 IExecute the subroutine
1030 J c.; USR0(I)

67

DELETE
Command

Purpose: Deletes program lines.

Versions: Cassette

Disk

Advanced Compiler

Format:

Remarks:

DELETE [line 1] [-line2]

DELETE [linel-]

line 1 is the line number of the first line to be
deleted.

line2 is the line number of the last line to be
deleted.

The DELETE command erases the specified range of
lines from the program. BASIC always returns to
command level after a DELETE is executed.

DELETE linel- deletes all lines from the specified
line number through the end of the program. This
form is valid for BASIC 2 . .0 and later releases.

A period C.) can be used in place of the line number
to indicate the current line. If you specify a line
number that does not exist in the program, an Illegal
function call error occurs.

Example: This example deletes line 4,0:

DELETE 40

68

DELETE
Command

This exam pIe deletes lines 4.0 through 1.0.0,
inclusive:

DELETE 40-100

This example deletes line 4.0 through the end of the
program:

DELETE 40-

The last example deletes all lines up to and including
line 4.0:

DELETE -40

69

DIM
Statement

Purpose: Specifies the maximum values for array variable
subscripts and allocates storage accordingly.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

70

DIM variable(subscripts) [, variable(subscripts)]. ..

variable

subscripts

is the name used for the array.

is a list of numeric expressions,
separated by commas, which define
the dimensions of the array.

When executed, the DIM statement sets all the
elements of the specified numeric arrays to an initial
value of zero. String array elements are all variable
length, with an initial null value (zero length).

If an array variable name is used without a DIM
statement, the maximum value of its subscript is
assumed to be 1.0. If a subscript is greater than the
maximum specified, a Subscript out of range error
occurs.

The minimum value for a subscript is always .0,
unless otherwise specified with the OPTION BASE
statement. (See "OPTION BASE Statement.") The
maximum number of dimensions for an array is 255.

If you try to dimension an array more than once, a
Duplicate definition error occurs. You can, however,
use the ERASE statement to erase an array so you

DIM
Statement

can dimension it again. For more information about
arrays, see "Arrays" in Chapter 3 of the BASIC
Handbook.

Example: This example creates two arrays: a one-dimensional
numeric array named SIS with 13 elements, SIS{,0)
through SIS(12); and a two-dimensional string array
named WRR$, with three rows and three columns.

10 WRRMAX=2
20 DIM 515(12), WRR$(WRRMAX,2)
30 DATA 26.5, 37, 8, 29, 80, 9.9, &H800
40 DATA 7, 18, 55, 12, 5,43
50 FOR 1=0 TO 12
60 READ SIS(I)
70 NEXT I
80 DATA SHERRY, ROBERT, "A: II

90 DATA "HI, LYNN", HELLO, GOOD-BYE
100 DATA BOCA RATON, DELRAY, MIAMI
110 FOR I=0 TO 2: FOR J=0 TO 2
120 READ WRR$(I,J)
13IJ ~jtXl J, 1
140 PRINT SIS(3); WRR$(2,0)
RUN

29 BOCA RATON

71

DRAW
Statement

Purpose: Draws an object as specified by string.

Versions: Cassette Disk Advanced

Compiler
(**)

Graphics mode only.

Format: DRA W string

Remarks: The DRAW statement draws objects using a graphics
definition language. The language commands are
contained in the string expression string. The string
defines an object, which is drawn when BASIC
executes the DRAW statement. During execution,
BASI C examines the value of string and interprets
single-letter commands from the contents of the
string. When a movement command is given, a line is
drawn from the last point referenced.

72

n in the following movement commands indicates the
distance to move. The number of points moved is n
times the scaling factor (set by the S command).
The movement commands are detailed on the next
page.

Un

Dn

Ln

Rn

En

Fn

Gn

Hn

Mx,y

Move up.

Move down.

Move left.

Move right.

DRAW
Statement

Move diagonally up and right.

Move diagonally down and right.

Move diagonally down and left.

Move diagonally up and left.

Move absolute or relative. If x has a plus
sign (+) or a minus sign (-) in front of it,
it is relative. Otherwise, it is absolute.

The following two prefix commands can
precede any of these movement
commands:

B Move, but don't plot any points.

N Move, but return to the original position
when finished.

The following commands are also available:

A n Set angle n. The value of n can range
from .0 to 3, where .0 is .0 degrees, 1 is 9.0,
2 is 18.0, and 3 is 27.0. Figures rotated 9.0
or 27.0 degrees are scaled so they appear
the same size with.0 or 18.0 degrees on a
display screen with standard aspect ratio
4/3.

73

DRAW
Statement

74

TAn Turn angle n. The value of n can range
from -36.0 to +36.0. If n is positive (+),
the angle turns counterclockwise. If n is
negative (-), the angle turns clockwise.
Values entered that are outside of the
range -36.0 to +36.0 cause an Illegal
function call error. This command is valid
for BASIC version 2 . .0 and later releases.

C n Set color n. The value of n can range
from .0 to 3 in medium resolution, and .0 to
1 in high resolution. In medium
resolution, n selects the color attribute
from the current palette as defined by the
COLOR statement. Zero (.0) is always
the attribute for the background. The
default foreground color attribute is
always the maximum attribute for that
screen mode: 3 in medium resolution; 1 in
high resolution.

S n Set scale factor. The value of n can range
from 1 to 255. The scale factor is n
divided by 4. For example, if n= 1, then
the scale factor is 1/4. The scale factor
multiplied by the distances given with the
U, D, L, R, E, F, G, H, and relative M
commands gives the actual distance
moved. The default value is 4, so the scale
factor is 1.

X variable;
Execute substring. This allows you to
execute a second string from within a
string.

P paint, boundary

DRAW
Statement

Set figure color to paint and border color
to boundary. The paint parameter is an
integer expression. It chooses an attribute
from the attribute range for the current
screen mode. In medium resolution, this
color is one from the current palette as
defined for that attribute by the COLOR
statement. Four color attributes (0-3) are
available in medium resolution. In high
resolution, two color attributes (0-1) are
available: .0 indicates black and 1
indicates white. The boundary parameter
is the border color of the figure to be filled
in, in the attribute range for the current
screen mode. You must specify both paint
and boundary, or an error occurs. This
command does not support paint tiling,
and it is valid for BASIC 2 . .0 and later
releases.

In all these commands, the n, x, or y argument can be
a constant such as 123 or it can be = variable; where
variable is the name of a numeric variable. The
semicolon (;) is required when you use a variable this
way, or in the X command. Otherwise, a semicolon
is optional between commands. Spaces are ignored
in string. For example, you can use variables in a
move command this way:
M+=Xl; -=X2;

You can also specify variables in the form
VARPTR$(variable), instead of = variable;. This is
the only form that can be used in compiled programs.
For example:

75

DRAW
Statement

76

One Method Alternative Method

DRAW "XA$;" DRAW "X" + VARPTR$(A$)
DRAW"S=SC;" DRAW "S="+VARPTR$(SC)

The X command can be a very useful part of DRAW.
It allows you to define segments of a picture in
different X variables and to combine these X
variables into a single DRAW statement. In this way
you are able to create DRAW strings longer than
255 characters. For example, if you are creating a
scene of a house with a chimney and a tree, each of
these objects can be defined in an X variable so your
DRAW statement can look like this:

DRAW "XHOUSE$;XCHIM$;XTREE$; II

The aspect ratio of your screen determines the
spacing of the horizontal, vertical, and diagonal
points. The DRAW statement does not take into
account the aspect ratio of the current screen mode;
that is, DRAW "R5,0 U5,0" plots exactly 5,0 points
to the right and then 5.0 up, but the two lines will not
appear to be equal in length.

The aspect ratio is used to correct the shape of
objects drawn on a nonlinear surface. The idea is to
be able to draw a square, for example, that indeed
looks square.

DRAW
Statement

If there are 64.0 by 64,0 dots on a screen evenly
spaced along the x and y axes, the aspect ratio is "1
to 1" or 1 / 1. This is an ideal surface. If you execute
the statement:

DRAW "R100 0100 L100 U100"

then the box appears square.

However, this is not the case in BASIC, which
supports two screen resolutions, each with its own
aspect ratio. These are:

Resolution

Medium resolution
High resolution

Aspect Ratio

32,0 by 2.0,0 dots
64,0 by 2.0,0 dots

5/6
5/12

To draw a box that appears square in either
resolution, scale the y axis by the corresponding
aspect ratio; or scale the x axis by 1/ aspect ratio.

For example, to draw a square box 1.0,0 high, scale
the x axis as follows:

10 ~100"'6/5 is 120
20 DRAW "U100 R120 0100 L120"

77

DRAW
Statement
Example: To draw a box using variables:

78

HJ SCREEN 1
20 A=2030 DRAW "U=A;R=A;D=A;L=A;"

To draw a box and paint the interior:

10 DRAW "U50R50D50L50 11 'Draw a box
20 DRAW IBEI0" I Move up and ri ght into box
30 0 RAW II PI, 3 II I P a i n tin t e rio r

To draw a triangle:

10 SCREEN 1
20 DRAW "E15 F15 L30"

To create a "shooting star":

10 SCREEN 1,0: COLOR 0,0: CLS
20 DRAW "BM300,25" I initial point
30 STAR$= "M+7,17 M-17,--12 M+20,0 M-17,12 M+7,-'17 11

40 FOR SCALE=1 TO 40 STEP 2
50 DRAW "Cl;S=SCALE; BM-2,0;XSTAR$;"
60 NEXT

To draw some spokes:

10 SCREEN 1,0:CLS
20 FOR 0=0 TO 360 STEP 10
30 DRAW "TA=D; NU50"
40 NEXT 0

EDIT
Command

Purpose: Displays a line for editing.

Versions: Cassette

Disk

Advanced Compiler

Format:

Remarks:

EDIT line

line is the line number of a line existing in the
program. If there is no such line, an
Undefined line number error occurs.

EDIT simply displays the line specified and positions
the cursor under the first digit of the line number.
The line can then be modified as described under
"The BASIC Program Editor" in the BASIC
Handbook.

A period C.) can be used for the line number to refer
to the current line. For example, if you have just
entered a line and wish to go back and change it, the
command EDIT redisplays the line for editing.

LIST can also be used to display program lines for
changing. See "LIST Command."

79

END
Statement

Purpose: Terminates program execution, closes all files, and
returns to command level.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: END

Remarks: END statements can be placed anywhere in the
program to terminate execution. END is different
from STOP in two ways:

• END does not cause a Break message to be
printed.

• END closes all files.

An END statement at the end of a program is
optional. BASIC always returns to command level
after an END is executed.

Example: This example ends the program if K is greater than
1,0,0,0; otherwise, the program branches to line
number 2.0.

100 IF K>1000 THEN END ELSE GOTO 20

80

ENVIRON
Statement

Purpose: Modifies parameters in BASIC's environment table.
ENVIRON is used to change the "PATH" parameter
for a child process or to pass parameters to a child
process by inventing a new environment parameter.
See ENVIRON$, SHELL, and the DOS PATH
Command.

Not valid for releases earlier than 3 . .0.

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

*** ***

ENVIRON parm = string

parm

string

is the name of the parameter, such as
"PATH".

is the text that defines the new parameter.

parm must be separated from string by an
equal sign or a blank. ENVIRON takes
everything left of the first blank or equal
sign as parm. The first "nonblank,
nonequal" after parm is taken as string.

If string is a null string or consists only of
";" (a single semicolon), such as:

"PATH:;:;!!

the parameter is removed from the
environment table and the table is
compressed.

81

ENVIRON
Statement

If parm does not exist, the new parameter
is added at the end of the environment
table.

If parm exists, it is deleted, the
environment table is compressed, and
parm is added at the end.

Note: When BASIC is invoked, the
size of its environment table is the
current size of DOS's environment
table (rounded up to the next 16-byte
paragraph boundary.) BASIC cannot
expand its environment table. If you
wish to add elements to BASIC's
environment table, you must expand
the table from DOS to the size your
application needs before invoking
BASIC.

Example: You can create a default PATH to the root directory
on drive A with the following statement:

82

ENVIRON IIPATH=A: \ II

Now, you can invoke DOS from your BASIC
program using the SHELL statement and issue any
valid DOS command. If a disk file is needed to
execute the command, DOS now automatically
searches for it (.COM, .EXE, or .BAT) in the root
directory on drive A if it is not on the current drive
or directory.

ENVIRON
Statement

SHELL IInvokes a copy of COMMAND.COM.

A> REM Changes directory to IIWORK II on drive B.
A> CD B: \ WORK
B> REM Loads PROJI under DEBUG even though no

drive is specified. DEBUG and PROJI are
located on different drives.

B> DEBUG PROJI

B> REM Return to BASIC program
B> EXIT (exit DOS, return to BASIC program.)

You can add a new parameter to the environment
table:

ENVIRON IIHELP = C:\HELpll Idefines
file parameter called IIHELp ll

CHOIR ENVIRON$ ("HELp lI
) Ichanqes dir to "HELP"

You can delete this parameter in the table by:

ENVIRON IIHELP=; II I del etes parameter "HELP"
from table

The environment you create from your BASIC
application is passed to COMMAND.COM when it
is invoked by the SHELL statement. This makes it
possible to pass parameters from a parent (BASIC)
to a child through the environment table.

Note: For related information, see also
"ENVIRON$ Function" and "SHELL
Statement" in this manual. Also "SET
Command" in Disk Operating System Reference
and the "EXEC Function Call" in Disk Operating
System Technical Reference

83

ENVIRON$
Function

Purpose: Retrieves and displays the specified string from
BASIC's environment table.

Not valid for BASIC releases earlier than 3 . .0.

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

84

*** ***

v$ = ENVIRON$ (parm)
or

v$ = ENVIRON$ (n)

parm

n

is a string expression containing
the parameter to be retrieved.

is an integer expression returning
a value in the range 1 to 255.

If a string argument is used, ENVIRON$ returns,
from the environment table, a string containing the
text that follows parm. If parm is not found or no
text follows the equal sign, the null string is returned.

If a numeric argument is used, ENVIRON$ returns a
string containing the nth parm from the environment
table, along with the parm= text. If there is no nth
parm, a null string is returned.

ENVIRON$ distinguishes between uppercase letters
and lowercase letters. If you add to the table in this
format:

ENVIRON$
Function

ENVIRON$ "load = high"

and want to check to see if the operation was
successful, you can use the ENVIRON$ function like
this:

PRI NT ENV I RON (Ill oad II)

But if you type:

PRINT ENVIRON$ ("LOAD")

ENVIRON$ returns a null string because 'LOAD"
is not in the table; however, "load" is in the table.

Example: When DOS loads initially, it sets a parameter called
"COMSPEC" that tells DOS where to locate the
COMMAND. COM file, and it sets up a null path.
To observe the contents of the environment table at
start-up time, enter the following from BASIC:

PRINT ENVIRON$ (1)

You now see printed on the screen:

PATH=

If you enter:

PRINT ENVIRON$ (2)

you see displayed:

COMSPEC = A:\COMMAND.COM

Note: If you booted from a fixed disk, the
previous example displays C: instead of A: for
the drive specification.

85

ENVIRON$
Function

86

If you enter:

PRINT ENVIRON$ ("COMSPEC")

the computer's response is:

A: \ COMMAND. COM

The following program saves BASIC's environment
table in an array so that it can be modified for a child
process. After the child process is completed, the
environment is restored.

10 DIM TABLE$(10) I assume no more than 10 parms
20 PARMS = 1 'initial number of parameters
30 WHILE LEN(ENVIRON$(PARMS)) > 0
40 TABLE$(PARMS) = ENVIRON$(PARMS)
50 PARMS = PARMS+1
60 WEND
70 PAR M S ~: PAR M S- 1 I d d jus t t (j C 0 (' (' e c t n urn bey
80 Inow store new environment
90 ENVIRON "DATAIN = C:\DATAIN\INP.FIL"
100 ENVIRON "SORT.DAT = SORT.DAT<" +

ENVIRON$ ("DATAIN") +">LPTl: "

1000 SHELL ENVIRON$("SORT.DAT") 'data is sorted
1010 FOR I = 1 TO PARMS
1020 ENVIRON TABLE$(I) Irestore parameters
1030 NEXT I

Note: See also "ENVIRON Statement" and
"SHELL Command." Also "SET Command" in
Disk Operating System Reference and "EXEC
Function Call" in Disk Operating System
Technical Reference.

EOF
Function

Purpose: Indicates an end-of-file condition.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

v = EOF(filenum)

filenum is the number specified on the OPEN
statement.

The EOF function is useful for avoiding an Input past
end error. EOF returns -1 (true) if end of file has
been reached on the specified file. A.0 (zero) is
returned if end of file has not been reached.

EOF is significant only for a file opened for
sequential input from disk or cassette, or for a
communications file. A -1 for a communications file
means the buffer is empty.

87

EOF
Function
Example: This example reads information from the sequential

file named "DATA". Values are read into the array
M until end of file is reached.

88

10 OPEN "DATA" FOR INPUT AS #1
20 C=0
30 IF EOF(l) THEN END
40 INPUT #l,M(C)
50 C=C+1: GOTO 30

EOF(,0) returns the end-of-file condition on
standard input devices used with redirection of I/O.
(For BASIC 2.,0 and later releases.)

ERASE
Statement

Purpose: Eliminates arrays from a program.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

ERASE arrayname[,arrayname] ...

arrayname is the name of the array you want to
erase.

You may want to use the ERASE statement if you
are running short of storage space while running a
program. After arrays are erased, the space in
memory allocated for the arrays can be used for
other purposes.

ERASE can also be used when you want to
redimension arrays in your program. If you try to
redimension an array without first erasing it, a
Duplicate definition error occurs.

The CLEAR command erases all variables from the
work area.

89

ERASE
Statement
Example: This example uses the FRE function to show how

ERASE can be used to free memory. The array BIG
used up about 4,0K bytes of memory (628,08-2198.0)
when it was dimensioned as BIG(l,0,0,0). After it
was erased, it could be redimensioned to
BIG(1,0,l,0), and it took up only a little more than
5.0.0 bytes (628,08-6228).

90

The actual values returned by the FRE function may
be different on your computer.

10 START=FRE("")
20 DIM BIG(100,100)
30 MIDDLE=FRE("II)
40 ERASE BIG
50 DIM BIG(10,10)
60 FINAL=FRE("")
70 PRINT START, MIDDLE, FINAL
RUN
62808 21980 62289

ERDEV and ERDEV$
Variables

Purpose: Read-only variables. Hold the INTerrupt 24 error
code of a device error, and the name of the device
generating the error.

Not valid for BASIC releases earlier than 3 . .0.

Versions: Cassette Disk Advanced Compiler
*** ***

Format: v = ERDEV

v$ = ERDEV$

Remarks: ERDEV is a read-only variable. When an error in
DOS is detected, ERDEV holds the INTerrupt 24
error code in the lower 8 bits, and the upper 8 bits
contain bits 13, 14, and 15 of the attribute word of
the device header block.

ERDEV$ is a read-only variable. If the error was on
a character device, ERDEV$ contains the 8-byte
character device name. If the error was not on a
character device, ERDEV$ contains the two
character block device name (A:, B:, C:, etc.).

91

ERDEV and ERDEV$
Variables
Example: Open the B drive door and enter the following:

92

FILES "B:"

and BASIC returns:

Disk not ready

Then enter:

PRINT ERDEV, ERDEV$

and BASIC returns:

2 B:

Note: If you refer to Disk Operating System
Technical Reference manual under the INT24
error code listing, you can see that error 2 is
Drive not ready. The high-order 8 bits (the word
attribute bits) are all zeros. As explained in the
DOS Technical Reference section called
"Attribute Field" under "Installable Device
Drivers," bits 13, 14, and 15 set to zero means
that B: is a block device, IOCTL is not
supported, and the device is in IBM format.

See also "IOCTL Statement" and "IOCTL$
Function. "

ERDEV and ERDEV$
Variables

This example simulates a printer error.

10 CLS
20 ON ERROR GOTO 50
30 LPRINTIIThe printer is rf':2dy'1
40 PRINTllThe printer is re~(iil

50 END
60 V$=HEX$(EROEV)
70 PRINT IIEROEV = II; V$
80 O$=EROEV$
90 PRINT IiEROEV$ = 11;0$
100 RESUME NEXT

If you run this example with the printer turned off,
the computer displays:

EROEV = 8009
EROEV$ = LPT1

The lower 8 bits (bits ,0-7) of the binary equivalent
equal 9, which is the INT24 error code for Printer
out of paper. The meaning of bits 13, 14, and 15 of
the value returned by ERDEV is explained in the
section "Attribute Field" of Disk Operating System
Technical Reference under "Installable Device
Drivers."

93

ERRandERL
Variables

Purpose: Return the error code and line number associated
with an error.

Versions: Cassette

Disk

Advanced

Compiler

Format: V= ERR

V= ERL

Remarks: The variable ERR contains the error code for the last
error, and the variable ERL contains the line number
of the line in which the error was detected. The
ERR and ERL variables are usually used in
IF-THEN statements to direct program flow in the
error-handling routine. See "ON ERROR
Statement. "

94

If you do test ERL in an IF-THEN statement, be
sure to put the line number on the right side of the
relational operator, like this:

IF ERL = line number THEN ...

The number must be on the right side of the
operator to be renumbered by RENUM.

If the statement that caused the error was a direct
mode statement, ERL contains 65535. You do not
want this number changed during a RENUM, so to
test whether an error occurred in a direct mode
statement use the form:

IF 65535 = ERL THEN ...

ERRandERL
Variables

ERR and ERL can be set using the ERROR
statement (see next entry).

BASIC error codes are listed in Appendix A, "Error
Messages. "

Example: This example tests to see if the drive door is open
when the program needs to open a file.

10 ON ERROR GOTO 100
20 OPEN "DATA" FOR INPUT AS #1
30 END

100 IF ERR=?1 THEN LOCATE 23,1:
PRINT "DISK IS NOT READY":RESUME

95

ERROR
Statement

Purpose: Simulates the occurrence of a BASIC error; or allows
you to define your own error codes.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

96

ERRORn

n must be an integer expression between 0 and
255.

If the value of n is the same as an error code used by
BASIC (see Appendix A, "Error Messages"), the
ERROR statement simulates the occurrence of that
error. If an error-handling routine has been defined
by the ON ERROR statement, the error routine is
entered. Otherwise, the error message corresponding
to the code is displayed, and execution halts. See the
first example below.

To define your own error code, use a value that is
different from any used by BASIC. (We suggest you
use the highest available values; for example, values
greater than 20,0.) This new error code can then be
tested in an error handling routine, just like any other
error. See the second example below.

If you define your own code in this way, and you
don't handle it in an error handling routine, BASIC
displays the message Unprintable error, and execution
halts.

ERROR
Statement

Example: The first example simulates a String too long error.

20 ERROR T
RUN
String too long in line 20

The next example is a part of a game program that
allows you to make bets. By using an error code of
21.0, which BASIC doesn't use, the program traps
the error if you exceed the house limit.

100 ON ERROR GOTO 1000
110 INPUT "WHAT IS YOUR BET";B
120 IF B > 5000 THEN ERROR 210

1000 IF ERR = 210 THEN PRINT
1'liOUSE LH~IT IS $5000"

1010 IF ERL = 120 THEN RESUME 110

97

EXP
Function

Purpose: Calculates the exponential function.

Versions: Cassette

Disk

Advanced

Compiler

Format: v = EXP(x)

Remarks: x can be any numeric expression.

This function returns the mathematical number e
raised to the x power. e is the base for natural
logarithms. An overflow occurs if x is greater than
88.,02969.

In BASIC 2 . .0 and later releases, you can have this
calculation performed in double-precision by
specifying ID in the BASIC command line when
BASIC is initially loaded. See "Options in the
BASIC Command" in the BASIC Handbook.

Example: This example calculates e raised to the (2-1) power,
which is simply e.

98

10 X = 2
20 PRINT EXP(X-l)
RUN
2.718282

FIELD
Statement

Purpose: Allocates space for variables in a random file buffer.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

FIELD [#lfilenum~ width AS stringvar [, width AS
stringvar] ...

filenum is the number under which the file was
opened.

width

stringvar

is a numeric expression specifying the
number of character positions to be
allocated to stringvar.

is a string variable that is used for
random file access.

A FIELD statement defines variables used to get
data out of a random buffer after a GET or to enter
data into the buffer for a PUT.

The statement:

FIELD 1, 20 AS N$, 10 AS 10$, 40 AS ADD$

allocates the first 2.0 positions (bytes) in the random
file buffer to the string variable N$, the next 1.0
positions to ID$, and the next 4.0 positions to ADD$.
FIELD does not actually place any data into the
random file buffer. This is done by the LSET and
RSET statements. See "LSET and RSET
Statements. "

99

FIELD
Statement

100

FIELD does not "remove" data from the file either.
Information is read from the file into the random file
buffer with the GET (file) statement. Information is
read from the buffer by simply referring to the
variables defined in the FIELD statement.

The total number of bytes allocated in a FIELD
statement must not exceed the record length
specified when the file was opened. Otherwise, a
Field overflow error occurs,

Any number of FIELD statements can be executed
for the same file number, and all FIELD statements
that have been executed are in effect at the same
time. Each new FIELD statement redefines the
buffer from the first character position, so this has
the effect of having multiple field definitions for the
same data.

Note: Be careful about using a fielded variable
name in an input or assignment statement. Once
a variable name is defined in a FIELD statement,
it points to the correct place in the random file
buffer. If a subsequent input statement or LET
statement with that variable name on the left side
of the equal sign is executed, the variable is
moved to string space and is no longer in the file
buffer.

See Appendix A, "BASIC Disk Input and Output,"
in the BASIC Handbook for a complete explanation
of how to use random files.

Example:

FIELD
Statement

This example opens a file named "CUST" as a
random file. The variable CUSTNO$ is assigned to
the first two positions in each record; CUSTNAME$
is assigned to the next 3,0 positions; and ADDR$ is
assigned to the next 35 positions.

Lines 3,0 through 5.0 put information into the buffer,
and the PUT statement in line 6.0 writes the buffer to
the file. Line 7,0 reads back that same record, and
line 9.0 displays the three fields. Note in line 8.0 that
it is permissible to use a variable name that was
defined in a FIELD statement on the right side of an
assignment statement.

10 OPEN "A:CUST" AS #1
20 FIELD 1, 2 AS CUSTNO$, 30 AS CUSTNAME$,

35 ,AS ,ADDR$
30 LSET CUSTNAME$= 110 I NEIL INC"
40 LSET ADDR$= "50 SE 12TH ST, NY, NY"
50 LSET CUSTNO$=MKI$(7850)
60 PUT 1,1
70 GET 1,1
80 CNUM%= CVI(CUSTNO$): N$ CUSTNAME$
90 PRINT CNUM%, N$, ADDR$

The program below shows a way to create a random
file buffer with multiple FIELD statements in a line.

10 OPEN IFOa" AS #1
20 FIELD 1, 100 AS A$, 200 AS B$
30 FIELD 1, 300 AS DUMMY$, 40 AS C$

Note that in line 3,0 DUMMY$ moves the pointer
into the file buffer so that you do not lose the
information in line 2.0.

101

FILES
Command

Purpose: Displays the names of files residing on the current
directory of a disk. The FILES command in BASIC
is similar to the DIR command in DOS.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

102

FILES [filespec]

filespec is a string expression for the file
specification. It must conform to the
rules outlined under "Naming Files" in
Chapter 3 of the BASIC Handbook;
otherwise, a Bad file name error occurs.
If filespec is omitted, all the files on the
current directory of the DOS default
drive are listed.

All files matching the filename are displayed. The
filename can contain question marks (?). A question
mark matches any character in the name or
extension. An asterisk (*) as the first character of
the name or extension matches any name or any
extension.

If a drive is specified as part of filespec, files that
match the specified filename on the current directory
of that drive are listed. Otherwise, the DOS default
drive is used.

FILES
Command

Example: This command displays all files on the current
directory of the DOS default drive.

FILES

This displays all files with an extension of .BAS on
the current directory of the DOS default drive.

FILES "*.BAS"

This displays all files on drive B.

FILES "B:*.*"

This lists each file on the current directory of the
DOS default drive that has a filename beginning with
TEST followed by up to two other characters, and an
extension of .BAS.

FILES "TEST??BAS"

Another way to list all the files on the current
directory of drive B is: (For BASIC 2 . .0 and later
releases.)

FTU:~ "R' II

In addition to listing all the files on the current
directory of the drive, BASIC displays the current
directory n.ame and the number of bytes free.

When using tree-structured directories, remember
that each subdirectory contains two special entries.
They are listed when you use the FILES command to
list a subdirectory. The first contains a single period
instead of a filename. It identifies this "file" as a
subdirectory. The second entry contains two periods

103

FILES
Command

104

instead of a filename. It is used to locate the higher
level directory that defines this subdirectory. (For
BASIC 2.,0 and later releases.)

This example lists all files in the current subdirectory
called LEVEL 1 on drive A. Note that the directory
is empty.

FILES "A:\LEVELl "

<OIR> <OIR>

32824 Bytes free

The FILES command can also be used to list files in
other directories. The example below lists all files in
the subdirectory LVLl. The backslash must be used
after the directory name.

FILES "LVLl\"

This example lists all files in the directory L VL2
with an extension of .BAS.

FILES "LVL2\ * .BAS"

FIX
Function

Purpose: Truncates x to an integer.

Versions: Cassette

Format: v = FIX (x)

Disk

Advanced

Remarks: x can be any numeric expression.

Compiler

FIX strips all digits to the right of the decimal point
and returns the value of the digits to the left of the
decimal point.

The difference between FIX and INT is that FIX
does not return the next lower number when x is
negative.

See the "INT" and "CINT" functions, which also
return integers.

Example: Note in the examples how FIX does not round the
decimal part when it converts to an integer.

PRINT FIX(45.67)
45

PRINT FIX(-2.89)
-2

105

FOR and NEXT
Statements

Purpose: Performs a series of instructions in a loop a given
number of times.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

106

FOR variable=x TO y [STEP z]

NEXT [variable [,variable] ...]

variable

x

y

z

is an integer or single-precision variable
to be used as a counter.

is a numeric expression that is the initial
value of the counter.

is a numeric expression that is the final
value of the counter.

is a numeric expression to be used as an
increment.

The program lines following the FOR statement are
executed until the NEXT statement is encountered.
Then the counter is incremented by the amount
specified by the STEP value (z). If you do not
specify a value for z, the increment is assumed to be
1. A check is performed to see if the value of the
counter is now greater than the final value y. If it is
not greater, BASIC branches back to the statement
after the FOR statement and the process is repeated.

FOR and NEXT
Statements

If it is greater, execution continues with the
statement following the NEXT statement. This is a
FOR-NEXT loop.

If the value of z is negative, the test is reversed. The
counter is decremented each time through the loop,
and the loop is executed until the counter is less than
the final value.

The body of the loop is skipped if x is already greater
than y when the STEP value is positive, or x is less
than y when the STEP value is negative. If z is zero,
an infinite loop is created unless you provide some
way to set the counter greater than the final value.

Program performance will be improved if you use
integer counters whenever possible.

Nested Loops

FOR-NEXT loops can be nested; that is, one
FOR-NEXT loop can be placed inside another
FOR-NEXT loop. When loops are nested, each
loop must have a unique variable name as its counter.
The NEXT statement for the inside loop must appear
before that for the outside loop. If nested loops have
the same end point, a single NEXT statement can be
used for all of them.

107

FOR and NEXT
Statements

108

A NEXT statement of the form:

NEXT varl, var2, var3 ...

is equivalent to the sequence of statements:

NEXT varl
NEXT var2
NEXT var3

The variable(s) in the NEXT statement can be
omitted, in which case the NEXT statement matches
the most recent FOR statement. It is a good idea
always to include the variables to avoid confusion;
but it can be necessary if you do any branching out
of nested loops. However, using variable names on
the NEXT statements causes your program to
execute somewhat slower.

Active loops should be exited by setting the loop
counter out of range or setting a conditional
statement with the loop causing the loop to
terminate, so that every iteration of the FOR
statement in the loop has a corresponding NEXT.

If a NEXT statement is encountered before its
corresponding FOR statement, a NEXT without FOR
error occurs.

FOR and NEXT
Statements

Example: The first example shows a FOR-NEXT loop with a
STEP value of 2.

10 J=10: K=30
20 FOR 1=1 TO J STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN

1 40
3 50
5 60
7 70
9 80

In the following example, the loop does not execute
because the initial value of the loop is more than the
final value:

10 J=0
/ fA F n R T = J Tn ,1
30 PRINT I
40 NEXT I
RUN

The next program results in a NEXT without FOR
error. There can be only one NEXT statement for
every FOR statement. (This is different from other
versions of BASIC that allow a different physical
NEXT statement when jumping out of a loop.)

10 FOR 1=1 TO 5
20 IF 1=2 GOTO 50
30 NEXT
40 GOTO 60
50 NEXT
60 END

109

FOR and NEXT
Statements

110

In the last example, the loop executes 1.0 times.
The final value for the loop variable is always set
before the initial value is set. (This is different from
some other versions of BASIC, which set the initial
value of the counter before setting the final value. In
another BASIC the loop in this example might
execute six times.)

10 1=5
20 FOR I=l TO I+5
30 PRINT I;
40 NEXT
RUN
1 2 3 4 5 6 7 8 9 10

Purpose:

FRE
Function

Returns the number of bytes within BASIC's data
space that are not being used. This number does not
include the size of the reserved portion of the
interpreter work area.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: v = FRE(x)

v = FRE(x$)

Remarks: x and x$ are dummy arguments.

Since strings in BASIC can have variable lengths
(each time you do an assignment to a string its length
can change), strings are manipulated dynamically.
For this reason, string space can become fragmented,
causing a decrease in program performance.

You can improve the performance of programs that
execute many string functions by using the MID$
statement to access substrings imbedded within one
large string. This prevents fragmentation of string
space. See "MID$ Statement" for an example.

FRE with any string value causes a housecleaning
before returning the number of free bytes. During
housecleaning, BASIC collects all its useful data and
frees up unused areas of memory once used for
strings. The data is compressed so you can continue
until you really run out of space.

111

FRE
Function

BASIC also automatically does a housecleaning
when it is running out of usable work area. Be
patient; housecleaning can take a while.

Note: Ctrl-Break cannot be used during
housecleaning.

Example: The actual value returned by FRE on your computer
can differ from this example.

112

PRINT FRE(0)
14542

GET
Statement (Files)

Purpose: Reads a record from a random file into a random
buffer.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

GET [#lfilenumL number]

filenum is the number under which the file was
opened.

number is the number of the recorctto be read, in
the range 1 to 16 megabytes. If number is
omitted, the next record (after the last
GET) is read into the buffer.

After a GET statement, INPUT #, LINE INPUT #,
or references to variables defined in the FIELD
statement can be used to read characters from the
random file buffer. See Appendix A, "BASIC Disk
Input and Output," in the BASIC Handbook for
more information on using GET.

Because BASIC and DOS block as many records as
possible in 512-byte sectors, the GET statement
does not necessarily perform a physical read from the
disk.

GET can also be used for communications files. In
this case number is the number of bytes to read from
the communications buffer. This number cannot
exceed the value set by the LEN option on the
OPEN "COM ... statement.

113

GET
Statement (Files)
Example: This example opens the file "CUST" for random

access, with fields defined in line 2,0. The GET
statement on line 3,0 reads a record into the file
buffer. Line 4.0 displays the information from the
record that was read.

114

10 OPEN "A:CUST" AS #1
20 FIELD 1, 30 AS CUSTNAME$, 30 AS ADDR$,

35 AS CITY$
30 GET 1
40 PRINT CUSTNAME$, ADDR$, CITY$

GET
Statement (Graphics)

Purpose: Reads points from an area of the screen.

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

*** ***

Graphics mode only.

GET (x1,yl)-(x2,y2),arrayname

(xl,yl), (x2,y2)
are coordinates in either absolute or
relative form. Refer to "Specifying
Coordinates" under "Graphics
Modes" in Chapter 3 of the BASIC
Handbook for more information on
coordinates.

a rrayn a me is the name of the array you want to
hold the information.

GET reads the attributes of the points within the
specified rectangle into the array. The specified
rectangle has points (xl,yl) and (x2,y2) as opposite
corners. (This is the same as the rectangle drawn by
the LINE statement using the B option.)

GET and PUT can be used for high-speed object
motion in graphics mode. You might think of GET
and PUT as "bit pump" operations that move bits
onto (PUT) and off (GET) the screen. Remember
that PUT and GET are also used for random access
files, but the syntax of these statements is different.

115

GET
Statement (Graphics)

116

The array is used simply as a place to hold the image
and must be numeric; it can be any precision,
however. The required size of the array, in bytes, is:

4+INT((x*bitsperpixel+7)/S)*y

where x and y are the lengths of the horizontal and
vertical sides of the rectangle, respectively. The
value of bitsperpixel is 2 in medium resolution, and 1
in high resolution.

For example, suppose you want to use the GET
statement to get a 1.0 by 12 image in medium
resolution. The number of bytes required is
4+ INT« 1.0*2+ 7)/8)* 12, or 40 bytes. The bytes
per element of an array are:

2 for integer string
• 4 for single-precision string

8 for double-precision string

Therefore, you could use an integer array with at
least 2.0 elements.

The information from the screen is stored in the
array as follows:

1. 2 bytes giving the x dimension in bits
2. 2 bytes giving the y dimension in bits
3. the data itself

It is possible to examine the x and y dimensions and
even the data itself if an integer array is used. The x
dimension is in element .0 of the array, and the y
dimension is in element 1.

Keep in mind that integers are stored low byte first,
then high byte; but the data is actually transferred
high byte first, then low byte.

GET
Statement (Graphics)

The data for each row of points in the rectangle is
left-justified on a byte boundary, so if less than a
multiple of 8 bits is stored, the rest of the byte is
filled with zeros.

PUT and GET work significantly faster in medium
resolution when xl MOD 4 is equal to zero, and in
high resolution when xl MOD 8 is equal to zero.
This is a special case where the rectangle boundaries
fall on the byte boundaries.

Example: See "PUT Statement (Graphics)" for an example.

117

GOSUB and RETURN
Statements

Purpose: Branches to and returns from a subroutine.

Versions: Cassette

Disk

Advanced Compiler
*** ***

Format:

Remarks:

118

GOSUB line

RETURN

line is the line number of the first line of the
subroutine.

A subroutine can be called any number of times in a
program, and a subroutine can be called from within
another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETURN statement causes BASIC to branch
back to the statement following the most recent
GOSUB statement. A subroutine can contain more
than one RETURN statement, so you can return
from different points in the subroutine. Subroutines
can appear anywhere in the program.

To prevent your program from accidentally entering
a subroutine, you can put a STOP, END, or GOTO
statement before the subroutine to direct program
control around it.

Use ON-GOSUB to branch to different subroutines
based on the result of an expression.

GOSUB and RETURN
Statements

Example: This example shows how a subroutine works. The
GOSUB in line 1,0 calls the subroutine in line 4,0. So
the program branches to line 4,0 and starts executing
statements there until it sees the RETURN statement
in line 7,0. At that point the program goes back to
the statement after the subroutine call; that is, it
returns to line 2,0. The END statement in line 3,0
prevents the subroutine from being performed a
second time.

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT II IN";
60 PRINT II PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

119

GOTO
Statement

Purpose: Branches unconditionally out of the normal program
sequence to a specified line number.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

120

GOTO line

line is the line number of a line in the program.

If line is the line number of an executable statement,
that statement and those following are executed. If
line refers to a nonexecutable statement (such as
REM or DATA), the program continues at the first
executable statement encountered after line.

The GOTO statement can be used in direct mode to
reenter a program at a desired point. This can be
useful in debugging.

Use ON-GOTO to branch to different lines based
on the result of an expression.

GOTO
Statement

Example: In this example, the GOTO statement in line 6,0 puts
the program into an infinite loop, which is stopped
when the program runs out of data in the DATA
statement. (Notice how branching to the DATA
statement does not add additional values to the
internal data table.)

10 DATA 5,7,12
20 READ R
30 PRINT "R = II;R,
40 A = 3.14*R/\2
50 PRINT "AREA = II;A
60 GOTO 10
RUN
R = 5
R = 7
R = 12
OUT OF DATA

AREA = 78.5
AREA 153.86
AREA = 452.16

IN 20

121

HEX$
Function

Purpose: Returns a string that represents the hexadecimal
value of the decimal argument.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v$ = HEX$(n)

n is a numeric expression in the range -32768 to
65535.

If n is negative, the twos complement form is used.
That is, HEX$(-n) is the same as HEX$(65536-n).

See "OCT$ Function" for octal conversion.

Example: The following example uses the HEX$ function to
figure the hexadecimal representation for the two
decimal values that are entered.

122

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X II DECIMAL IS II ;A$ II HEXADECIMAL"

RUN
? 32

32 DECIMAL IS 20 HEXADECIMAL
RUN
? 1023
1023 DECIMAL IS 3FF HEXADECIMAL

IF
Statement

Purpose: Makes a decision regarding program flow based on
the result of an expression.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

IF expression [,]THEN clause [ELSE clause]

IF expression [,]GOTO line [[,]ELSE clause]

expression

clause

line

can be any numeric expression.

can be a BASIC statement or a
sequence of statements (separated by
colons); or it can be simply the
number of a line to branch to.

is the line number of a line existing in
the program.

If the expression is true (not zero), the THEN or
GOTO clause is executed. THEN is followed by
either a line number for branching or one or more
statements to be executed. GOTO is always
followed by a line number.

If the result of expression is false (zero), the THEN
or GOTO clause is ignored and the ELSE clause, if
present, is executed. Execution then continues with
the next numbered line containing an executable
statement.

123

IF
Statement

124

If you enter an IF-THEN statement in direct mode,
and it directs control to a line number, an Undefined
line number error results unless you previously
entered a line with the specified line number.

Note: When using IF to test equality for a value
that is the result of a single- or double-precision
computation, remember that the internal
representation of the value may not be exact.
(This is because single- and double-precision
values are stored internally in floating point
binary format.) Therefore, the test should be
against the range over which the accuracy of the
value can vary. For example, to test a computed
variable A against the value 1.,0, use:

IF ABS (A-1.0)<1,0E-6 THEN ...

This test returns a true result if the value of A is
1.,0 with a relative error of less than 1.,0E-6.

Also note that IF-THEN-ELSE is just one statement.
Once an IF statement occurs on a line, everything
else on that line is part of the IF statement. Because
IF-THEN-ELSE is all one statement, the ELSE
clause cannot be a separate program line. For
example:

10 IF A=B THEN X=4
20 ELSE P=Q

is invalid. Instead, it should be:

10 IF A=B THEN X=4 ELSE P=Q

Nesting of IF Statements: IF-THEN-ELSE
statements can be nested. Nesting is limited only by
the length of the line. For example,

IF
Statement

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a valid statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example:

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

Example: This statement gets record I if I is not zero:

100 IF I THEN GET #1,1

In the next example, if I is between 1,0 and 2,0, DB
is calculated and execution branches to line 3,0,0. If I
is not in this range, the message Out of range is
printed. Note the use of two statements in the
THEN clause.

100 IF (1)10) AND (1<20) THEN
OB=1982-1: GOTO 300

ELSE PRINT "OUT OF RANGE"

125

IF
Statement

126

In the next example, in line 2.0 everything after the
THEN is part of the clause. This means that the
NEXT is not executed unless N =1. When line
2.0 executes, N does not equal I so the IF evaluation
is false. Therefore, the NEXT is not performed and
the program fallsthrough to line 3.0. The NEXT
must be coded on a separate line if you want the
program to loop until N =1.

10 N=15
20 FOR 1=1 TO 20:IF N=I THEN 40:NEXT
30 PRINT liN <> I":END
40 PRINT liN = I"
RUN
N <> I

INKEY$
Variable

Purpose: Reads a character from the keyboard.

Versions: Cassette

Disk

Format: v$ = INKEY$

Advanced

Compiler

Remarks: INKEY$ reads only a single character, even if
several characters are waiting in the keyboard buffer.
The returned value is a zero-, one-, or two-character
string.

• A null string (length zero) indicates that no
character is pending at the keyboard.

• A one-character string contains the actual
character read from the keyboard.

• A two-character string indicates a special
extended code. The first character is hex 00. For
a complete list of these codes, see Appendix D,
"ASCII Character Codes."

You must assign the result of INKEY$ to a string
variable before using the character with any BASIC
statement or function.

While INKEY$ is being used, no characters are
displayed on the screen and all characters are passed
through to the program except for:

• Ctrl-Break, which stops the program
• Ctrl-Num Lock, which sends the system into a

pause state
• Alt-Ctrl-Del, which does a System Reset
• PrtSc, which prints the screen

127

INKEY$
Variable

If you press Enter in response to INKEY$, the
carriage return character passes through to the
program.

Example: The following section of a program stops execution
until any key is pressed:

128

100 PRINT "Press any key to continue ll

110 A$=INKEY$: IF A$="II THEN 110

The next example shows program lines that could be
used to test a two-character code being returned:

100 KB$=INKEY$
110 IF LEN(KB$)=2 THEN KB$=RIGHT$(KB$,l)

INP
Function

Purpose: Returns the byte read from port n.

Versions: Cassette

Format: v = INP(n)

Disk

Advanced

Remarks: n must be in the range .0 to 65535.

Compiler

INP is the complementary function to the OUT
statement. See "OUT Statement."

INP performs the same function as the IN instruction
in assembly language. See also the IBM Personal
Computer Technical Reference manual for a
description of valid port numbers (I/O addresses).

Example: This instruction reads a byte from port 255 and
assigns it to the variable A.

HHJ A=INP(255)

129

INPUT
Statement

Purpose: Receives input from the keyboard during program
execution.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

130

INPUT[;]["prompt";] variableL variable] ...

"prompt" is a string constant that prompts for the
desired input.

variable is the name of the numeric or string
variable or array element that receives
the input.

When the program sees an INPUT statement, it
pauses and displays a question mark on the screen to
indicate that it is waiting for data. If a "prompt" is
included, the string is displayed. If "prompt" is
followed by the semicolon (;), a question mark will
follow the displayed string; if "prompt" is followed
by a comma, the question mark is not displayed.

You can use a comma instead of a semicolon after
the prompt string to suppress the question mark. For
example, the statement INPUT "ENTER
BIRTHDATE",B$ prints the prompt without the
question mark.

After the prompt or question mark is displayed, you
can enter the required data from the keyboard. The
data you enter is assigned to the variables given in the
variable list. The data items you supply must be

INPUT
Statement

separated by commas, and the number of data items
must be the same as the number of variables in the
list.

The type of data item that you enter must agree with
the type specified by the variable name. (Strings
entered in response to an INPUT statement need not
be surrounded by quotation marks.)

If you respond to INPUT with too many or too few
items, or with the wrong type of value (letters
instead of numbers, etc.), BASIC displays the
message ?Redo from start. If a single variable is
requested, you can simply press Enter to indicate the
default values of ,0 for numeric input or null for
string input. However, if more than one variable is
requested, pressing Enter causes the ?Redo from start
message to be printed because too few items were
entered. BASIC does not assign any of the input
values to variables until you give an acceptable
response.

In Disk BASIC and Advanced BASIC, if INPUT is
immediately followed by a semicolon, then pressing
Enter to input data does not produce a carriage
return/line feed sequence on the screen. This means
that the cursor remains on the same line as your
response.

Example: In this ~xample, the question mark displayed by the
computer is a prompt to tell you it wants you to enter
something. Suppose you enter a 5.

10 INPUT X
20 PRINT X "SQUARED IS" X/\2
30 END
RUN
?

131

INPUT
Statement

132

The program continues:

? 5
5 SQUARED IS 25

For this second example, a prompt was included in
line 2£), so this time the computer prompts with
"WHAT IS THE RADIUS?"

113 PI=3.14
213 INPUT "WHAT IS THE RADIUSII;R
313 A=PI*R/\2
413 PRINT liTHE AREA OF THE CIRCLE IS II;A
513 END
RUN
WHAT IS THE RADIUS?

Suppose you respond with 7.4. The program
continues:

WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464

INPUT #
Statement

Purpose: Reads data items from a sequential device or file and
assigns them to program variables.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

INPUT #filenum, variable [, variable] ...

filenum

variable

is the number used when the file was
opened for input.

is the name of a variable that will have
an item in the file assigned to it. It can
be a string or numeric variable, or an
array element.

The sequential file can reside on disk or on cassette;
it can be a sequential data stream from a
communications adapter; or it can be the keyboard
(KYBD:).

The type of data in the file must match the type
specified by the variable name. Unlike INPUT, no
question mark is displayed with INPUT #.

The data items in the file must appear just as they
would if the data were being typed in response to an
INPUT statement. With numeric values, the leading
spaces, carriage returns, and line feeds are ignored.
The first character encountered that is not a space,
carriage return, or line feed is assumed to be the start
of the number. The number ends with a space,
carriage return, line feed, or comma.

133

INPUT #
Statement

If BASIC is scanning the data for a string item, the
leading spaces, carriage returns, and line feeds are
also ignored. The first character encountered that is
not a space, carriage return, or line feed is assumed
to be the start of the string item. If this first
character is a quotation mark ("), the string item
consists of all characters read between the first
quotation mark and the second. Thus, a quoted
string cannot contain a quotation mark as a
character. If the first character of the string is not a
quotation mark, the string is an unquoted string. It
ends after a comma, carriage return, or line feed - or
after 255 characters have been read. If end of file is
reached when a numeric or string item is being input,
the item is canceled.

Example: See Appendix A, "BASIC Disk Input and Output,"
in the BASIC Handbook.

134

INPUT$
Function

Purpose: Returns a string of n characters, read from the
keyboard or from file number filenum.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v$ = INPUT$(n[,[#}filenum])

n is the number of characters to be read
from the file.

filenum is the file number used on the OPEN
statement. If filenum is omitted, the
keyboard is read.

If the keyboard is used for input, no characters are
displayed on the screen. All characters (including
control characters) are passed through except
Ctrl-Break, which is used to interrupt the execution
of the INPUT$ function. When responding to
INPUT$ from the keyboard, it is not necessary to
press Enter.

The INPUT$ function allows you to read characters
from the keyboard that are significant to the BASIC
Program Editor, such as Backspace (ASCII code 8).
If you want to read these special characters, you
should use INPUT$ or INKEY$ (not INPUT or
LINE INPUT).

For communications files, the INPUT$ function is
preferred over the INPUT # and LINE INPUT #

135

INPUT$
Function

statements, since all ASCII characters can be
significant in communications. See also Appendix C,
"Communications. "

Example: The following program lists the contents of a
sequential file in hexadecimal.

136

10 OPEN "DATAI! FOR INPUT AS #1
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUT$(l,#l)));
40 GOTO 20
50 PRINT
60 END

The next example reads a single character from the
keyboard in response to a question.

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

INSTR
Function

Purpose: Searches for the first occurrence of string y$ in x$
and returns the position at which the match is found.
The optional offset n sets the position for starting the
search in x$

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = INSTR([n,]x$,y$)

n

x$,y$

is a numeric expression in the range 1 to
255.

can be string variables, string expressions,
or string constants.

If n>LEN(x$), or if x$ is null, or if y$ cannot be
found, INSTR returns .0. If y$ is null, INSTR returns
n (or 1 if n is not specified).

If n is out of range, an Illegal function call error is
returned.

Example: This example searches for the string "B" within the
string "ABCDEB". When the string is searched from
the beginning, "B" is found at position 2; when the
search starts at position 4, "B" is found at position 6.

10 A$ = "ABCDEB"
20 B$ = "B11
30 PRINT INSTR(A$,B$);INSTR(4,A$,B$)
RUN

2 6

137

INT
Function

Purpose: Returns the largest integer that is less than or equal
to x.

Versions: Cassette

Format: v = INT(x)

Disk

Advanced

Remarks: x is any numeric expression.

Compiler

This is called the "floor" function in some other
programming languages.

See also "FIX" and "CINT" functions. (They also
return integer values.)

Example: This example shows how INT truncates positive
integers, but rounds negative numbers upward (in a
negative direction).

138

PRINT INT(45.67)
45

PRINT INT(-2.89)
-3

IOCTL
Statement

Purpose: Allows BASIC to send a control data string to a
device driver anytime after the driver has been
OPENed.

Not valid for BASIC releases earlier than 3 . .0.

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

*** ***

IOCTL [#}filenum,string

filenum is the file number for the device driver.

string is a string expression containing the
control data.

BASIC's file I/O system allows you to create and
install your own device drivers. The IOCTL
statement and the IOCTL$ function send control
data to and read data from your device driver.

An IOCTL command string can be up to 255 bytes
long. Multiple commands within the string can be
separated by semicolons:

You define the content and format of the control
data string. The possible commands are determined
by the characteristics of the driver installed.

139

IOCTL
Statement
Example: Initially, character device drivers for LPTl:, LPT2:,

and LPT3: are installed, but they can be replaced. If
you install a driver called LPT 1 to replace LPT 1: and
that driver is able to set page length, an IOCTL
command string to set or change the page length
might be:

140

IPLn" (where n is the new page length).

You can then open the new LPT 1 driver and set the
page length with:

OPEN ILPTl" FOR OUTPUT AS #1
IOCTL #1, IPL6(J"

You could, for instance, write a device driver that
controls a monitor and is capable of setting the mode
of the screen to color and also capable of setting the
width of the screen. For example:

OPEN "OPT" FOR OUTPUT AS #2
IOCTL #2, "CL:W4(J"

Assuming that your new driver accepts a command
called "CL" to change the screen to color and a
command called "Wn" to set the width of the screen,
the previous example passes those commands to your
driver and causes the screen to respond.

Note: For related information, see "IOCTL$
Function" in this manual, "Device Drivers" in
the BASIC Handbook, and the device driver
section of Disk Operating System Technical
Reference.

IOCTL$
Function

Purpose: Reads a control data string from a device driver that
is open.

Not valid for BASIC releases earlier than 3 . .0.

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

*** . ***

v$ = IOCTL$([#l!ilenum)

filenum is the number of the file open to the
device.

The IOTCL$ function can be used to get
acknowledgment that an IOCTL command has
succeeded or failed. It can also be used to get device
configuration information, such as device width.

Example: This example checks to see if control data was
successfully received.

10 OPEN "COM" AS #1
20 IOCTL #1, ISW132;GW"
30 IF IOCTL$(1) = "132 11

THEN PRINT "WIDTH SET SUCCESSFULLY II

If the device driver "COM" returns a value not
equal to 132 from the IOCTL$ request, your
command was not processed successfully and you
should check for errors. If a device failure occurs,
check-the system variables of ERDEV and
ERDEV$.

141

KEY
Statement

Putpose: Sets or displays the soft keys.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: KEY ON

KEY OFF

KEY LIST

KEY n, x$

KEY n, CHR$(KBflag) and CHR$(scan code) (For
Advanced BASIC 2.0 and later releases.)

Remarks: KEY ON causes the soft key values to be displayed
on the 25th line. When the width is 4,e), 5 of the 1.0
soft keys are displayed. When the width is 8.0, all 1.0
are displayed. In either width, only the first 6
characters of each value are displayed.

142

KEY OFF erases the soft key display from the 25th
line, making that line available for program use. It
does not disable the function keys.

After turning off the soft key display with KEY
OFF, you can use LOCATE 25,1 followed by
PRINT to display anything you want on the bottom
line of the screen. Information on line 25 is not
scrolled, as are lines 1 through 24.

KEY
Statement

KEY LIST lists all 1.0 soft key values on the screen.
All 15 characters of each value are displayed.

KEY n,x$ allows you to set each function key to
automatically type any sequence of characters. ON
is the default state for the soft key display.

n is the function key number in the range 1 to
1.0.

x$ is a string expression that is assigned to the
key. (Remember to enclose string constants in
quotation marks.)

The value of a function key n is reassigned the value
of the string x$. If the value entered for n is not in
the range 1 to 1.0, an Illegal function call error occurs.
The previous key string assignment is retained. x$
can be 1 to 15 characters in length. If it is longer
than 15 characters, only the first 15 characters are
assigned.

Assigning a null string to a soft key disables the
function key as a soft key.

When a soft key is pressed, the INKEY$ function
returns one character of the soft key string each time
it is called. The first character is binary zero, the
second is the key scan code, as listed in Appendix D,
"ASCII Character Codes."

143

KEY
Statement

144

There are also six definable key traps. With this
capability, you can trap any Ctrl, Shift, or super-shift
key. (For Advanced BASIC 2;,0 and later releases.)

These additional keys are defined by the statement:

KEY n,CHR$(KBflag)+CHR$(scan code)

n

KBflag

is a numeric expression in the range 15
to 2,0.

is a mask for the latched keys. The
appropriate bit in KBflag must be set in
order to trap a key that is shifted,
Alt-shifted, or Ctrl-shifted. The KBflag
values in hex are :

Caps Lock &H,0-Caps Lock is not active.

Caps Lock &H4,0-Caps Lock is active.

Num Lock &H,0-Num Lock is not active.

Num Lock &H2,0-Num Lock is active.

AU &H,08-AL T key is pressed.

Ctrl &H,04-Control key is pressed.

Left Shift &H,02-Left Shift key is pressed.

Right Shift &H,01-Right Shift is pressed.

Scan code is the number identifying one of the 83
keys to trap. See Appendix E, "Scan
Codes."

KEY
Statement

Note that key trapping assumes that the left and right
Shift keys are the same, so you can use a value of
&H,01, &H,02, or &H,03 (the sum of hex ,01 and hex
,02) to denote a Shift key.

You can also add multiple shift states. For example,
the Ctrl and Alt keys can be added together. Shift
state values must be in hex.

When trapping a key or key combinations, you must
know the state of Num Lock and Caps Lock.

When you trap keys, they are processed in the
following order:

1. Ctrl-PrtSc, which activates the line printer, is
processed first. Even if Ctrl-PrtSc is defined as a
trappable key, this does not prevent characters
from being echoed to the line printer.

2. Next, the function keys Fl to Fl,0, Cursor Up,
Cursor Down, Cursor Right, and Cursor Left
(1-14) are processed. Setting scan codes 59 to
68, 72, 75, 77, or 8,0 as key traps has no effect,
because they are considered to be predefined.

3. Last, the keys you define for 15 to 2,0 are
processed.

Notes:

• Trapped keys do not go into the BIOS buffer so
that only BASIC will know that the keys were
pressed.

• Be careful when you trap Ctrl-Break and
Ctrl-Alt-Del, because unless you have a test in
your trap routine, you will have to turn the power
off to stop your program,

145

KEY
Statement

The following entry, "KEY(n) Statement," explains
how to enable and disable function key trapping in
Advanced BASIC.

Example: This example displays the soft keys on the 25th line.

146

50 KEY ON

This example erases soft-key display. The soft keys
are still active, but not displayed.

10 KEY OFF

This example assigns the string "FILES" +Enter to
soft key 1. This is a way to assign a commonly used
command to a function key.

10 KEY 1,IFILES"+CHR$(13)

This example disables function key 1 as a soft key.

10 KEY 1,1111

KEY
Statement

This example sets up a Key trap for capital P. Note
that all three KEY statements - KEY, KEY(n), and
ON KEY-are used with key trapping.

10 KEY 15, CHR$(&H40)+CHR$(25)
20 ON KEY(15) GOSUB 1000
30 KEY(I5) ON

This example sets up a Key trap for Ctrl-Shift A.
Notice that the hex values for Ctrl (&H.04) and Shift
(&H,03) are added together to get the shift state.

10 KEY 20, CHR$(&H04+&H03)+CHR$(30)
20 ON KEY(20) GOSUB 2000
30 KEY(20) ON

147

KEY(n)
Statement

Purpose: Activates and deactivates trapping of the specified
key in a BASIC program. See "ON KEY(n)
Statement. "

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

148

KEY(n) ON

KEY(n) OFF

KEY(n) STOP

n

I-Itt
11
12
13
14
IS-2tt

is a numeric expression in the range 1 to 2.0,
and indicates the trapped key:

function keys Fl to Fl.0
Cursor Up
Cursor Left
Cursor Right
Cursor Down
keys defined by the form:
KEY n,CHR$(KBflag)+CHR$(scan code).
Keys 15-2.0 can be trapped in Advanced
BASIC 2 . .0 and later releases.

KEY(n) ON must be executed to activate trapping of
function key or cursor control key activity. After
KEY(n) ON, if a nonzero line number is specified in
the ON KEY(n) statement, then every time BASIC
starts a new statement it checks to see if the
specified key was pressed. If so it performs a

KEY(n)
Statement

GOSUB to the line number specified in the ON
KEY(n) statement. A KEY(n) statement cannot
precede an ON KEY(n) statement.

If KEY(n) is OFF, no trapping takes place and even
if the key is pressed, the event is not remembered.

Once a KEY(n) STOP statement has been executed,
no trapping takes place. However, if you press the
specified key your action is remembered, so that an
immediate trap takes place when KEY(n) ON is
executed.

KEY(n) ON has no effect on whether the soft key
values are displayed at the bottom of the screen.

If you use a KEY(n) statement in Cassette BASIC or
Disk BASIC, a Syntax error occurs. See also "KEY
Statement. "

149

KILL
Command

Purpose: Deletes a file from a disk. The KILL command in
BASIC is similar to the ERASE command in DOS.

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

150

*** ***

KILL filespec

filespec is a string expression for the file
specification. In BASIC 2 . .0 and later
releases, it can contain a path. Filespec
must conform to the rules outlined
under Naming Files in Chapter 3 of the
BASIC Handbook; otherwise, an error
occurs.

KILL can be used for all types of disk files. The
name must include the extension, if one exists. For
example, you can save a BASIC program using the
command

SAVE "TEST II

BASIC supplies the extension .BAS for the SAVE
command, but not for the KILL command. If you
want to delete that program file later, you must say
KILL "TEST.BAS", not KILL "TEST".

If a KILL statement is given for a file that is
currently open, a File already open error occurs.

KILL
Command

Example: To delete the file named "DATA 1" on drive A, you
might use:

200 KILL IA:DATAl"

To delete the file "PROG.BAS" in the LEVEL2
subdirectory, you might use:

KILL "LEVELI \LEVEL2\PROG.BAS"

Note that KILL can be used only to delete files.
The RMDIR command must be used to remove
directories.

151

LEFT$
Function

Purpose: Returns the leftmost n characters of x$.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v$ = LEFT$(x$,n)

x$ is any string expression.

n is a numeric expression that must be in the
range .0 to 255. It specifies the number of
characters that are to be in the result.

If n is greater than LEN (x$), the entire string (x$) is
returned. If n=.0, the null string (length zero) is
returned.

See also "MID$" and "RIGHT$" functions.

Example: In this example, the LEFT$ function is used to
extract the first five characters from the string
"BASIC PROGRAM".

152

10 A$ = IIBASIC PROGRAM II
20 B$ = LEFT$(A$,5)
30 PRINT B$
RUN
BASIC

LEN
Function

Purpose: Returns the number of characters in x$.

Versions: Cassette

Disk

Format: v = LEN (x$)

Advanced

Remarks: x$ is any string expression.

Compiler

Unprintable characters and blanks are included in
the count of the number of characters.

Example: There are 14 characters in the string "BOCA
RATON, FL" because the comma and the two
blanks are counted.

10 X$ = II BOCA RATON, FL II

20 PRINT LEN(X$)
RUN

14

153

LET
Statement

Purpose: Assigns the value of an expression to a variable.

Versions: Cassette

Disk

Advanced

Compiler

Format: [LET] variable=expression

Remarks:

154

variable

expression

is the name of the variable or array
element that is to receive a value. It
can be a string or numeric variable or
array element.

is the expression whose value is
assigned to variable. The type of the
expression (string or numeric) must
match the type of the variable, or a
Type mismatch error occurs.

LET
Statement

The word LET is optional; that is, the equal sign is
enough when assigning an expression to a variable
name.

Example: This example assigns the value 12 to the variable
DORI. It then assigns the value 14, which is the
value of the expression DORI+2, to the variable E.
The string "HORA" is assigned to the variable
FDANCE$.

10 LET DORI=12
20 LET E=DORI+2
30 LET FDANCE$= IiHORA II

The same statements could have also been written:

10 DORI=12
20 E=DORI+2
30 FDANCE$=IiHORA II

155

LINE
Statement

Purpose: Draws a line or a box on the screen.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

156

Graphics mode only.

LINE [(xl,yl)] -(x2,y2) [,[color] [,B[F]] [,style]]

(xl,yl), (x2,y2)
are coordinates in either absolute or
relative form. See "Specifying
Coordinates" under "Graphics Modes"
in Chapter 3 of the BASIC Handbook.

color is an integer expression. It chooses an
attribute from the legal attribute range
for the current screen mode. In medium
resolution, the color is the current color
for that attribute as defined by the
COLOR statement. Four attributes
(,0-3) are available in medium
resolution; in high resolution, two
attributes (,0-1) are available. Zero is
always the attribute for the background.
The default foreground attribute is
always the maximum attribute for that
screen mode: 3 in medium resolution; 1
in high resolution.

style is a 16-bit integer mask used to put
points on the screen. The style option is
used for normal lines and boxes, but
cannot be used with filled boxes (BF).

LINE
Statement

U sing style with BF results in a Syntax
error. This technique is called line
styling. (For BASIC 2 . .0 and later
releases.)

The simplest form of LINE is:

LINE -(X2,Y2)

This will draw a line from the last point referenced
to the point (x2,y2) in the foreground attribute.

We can include a starting point also:

LINE (O,O)-(319,199) 'diagonal down screen
LINE (O,100)-(319,100) 'horizontal bar

across screen

We can indicate the attribute in which to draw the
line:

LINE (10,10)-(20,20),2 'draw in attribute 2

10 'draw random lines in random colors
20 SCREEN 1,O,O,O: CLS
30 LINE -(RND*319,RND*199),RND*4
40 GOTO 20

10 'alternating pattern - line on, line off
20 SCREEN 1,O,O,O: CLS
30 FOR X=0 TO 319
40 LINE (X,0)-(X,199),X AND 1
50 NEXT

The next argument to LINE is B (box), or BF (filled
box). We can leave out color and include the
argument:

LINE (0.0)-(100.100)"B 'box in foreqround

157

LINE
Statement

158

or we can include the attribute:

LINE (0,0)-(100,100),2,BF
I filled box attribute 2

The B tells BASIC to draw a rectangle with the
points (xJ,yJ) and (x2,y2) as opposite corners. This
avoids having to give the four LINE commands:

LINE (Xl,Yl)-(X2,Yl)
LINE (Xl,Yl)-(Xl,Y2)
LINE (X2,Yl)-(X2,Y2)
LINE (Xl,Y2)-(X2,Y2)

that perform the equivalent function.

The BF means "draw the same rectangle as B, but
also fill in the interior points with the selected
color."

The last argument to LINE is style. LINE uses the
current circulating bit in style to plot (or store) points
on the screen. If the bit is .0 (zero), no point is
plotted. If the bit is 1 (one), a point is plotted.
After each point, the next bit position in style is
selected. When the last bit position has been
selected, LINE "wraps around" and begins with the
first bit again.

Note that a .0 (zero) bit indicates no store and does
not erase the existing point on the screen. You may
want to draw a background line before a styled line
to force a known background.

The style option can be used to draw a dotted line
across the screen by plotting (storing) every other
point. Because style is 16 bits wide, the pattern for a
dotted line looks like this:

LINE
Statement

1 0 1 0 1 0 1 0 1 0 1 0 1 010

This is equal to HAAAA in hexadecimal notation.

Examples: To draw a dotted line:

10 SCREEN 1,0
20 LINE (0,0)-(319,199)",&HAAAA

To draw a cyan box with dashes:

10 SCREEN 1,0
20 LINE (0,0)-(100,10(l),1,B,&HCCCC

In BASIC release 1.1, out-of-range coordinates
given to the LINE statement wrap-around to the
next horizontal line.

In BASIC 2 . .0 and later releases, out-of-range
coordinates are clipped.

The last point referenced after a LINE statement is
point (x2,y2). If you use the relative form for the
second coordinate, it is relative to the first
coordinate. For example,

LINE (100,100)-STEP (10,-20)

draws a line from 0.0.0,1.0.0) to (11.0,8.0).

This example draws random boxes filled with random
colors.

10 CLS
20 SCREEN 1,O: COLOR O,0
30 LINE -(RNO*319,RNO*199),RNO*2+1,BF
40 GOTO 30 Iboxes will overlap

159

LINE INPUT
Statement

Purpose: Reads an entire line (up to 255 characters) from the
keyboard into a string variable, ignoring delimiters.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

LINE INPUT[;]["prompt";] stringvar

"prompt" is a string constant that is displayed on
the screen before input is accepted. A
question mark is not printed unless it is
part of the prompt string.

stringvar is the name of the string variable or
array element to which the line will be
assigned. All input from the end of the
prompt to the Enter is assigned to
stringvar. Trailing blanks are ignored.

In Disk BASIC and Advanced BASIC, if LINE
INPUT is immediately followed by a semicolon, then
pressing Enter to end the input line does not produce
a carriage return/line feed sequence on the screen.
That is, the cursor remains on the same line as your
response.

You can exit LINE INPUT by pressing Ctrl-Break.
BASIC returns to command level and displays Ok.
You can then enter CONT to resume execution at
the LINE INPUT.

Example: See the example in the next entry, "LINE INPUT #
Statement. "

160

LINEINPUT#
Statement

Purpose: Reads an entire line (up to 255 characters), ignoring
delimiters, from a sequential file into a string
variable.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

LINE INPUT #filenum, stringvar

filenum

stringvar

is the number under which the file was
opened.

is the name of a string variable or array
element to which the line will be
assigned.

LINE INPUT # reads all characters in the sequential
file up to a carriage return. It then skips over the
carriage return/line feed sequence, and the next
LINE INPUT # reads all characters up to the next
carriage return. (If a line feed/carriage return
sequence is encountered, it is preserved. That is, the
line feed/carriage return characters are returned as
part of the string.)

LINE INPUT # is especially useful if each line of a
file has been broken into fields, or if a BASIC
program saved in ASCII mode is being read as data
by another program.

See also Appendix A, "BASIC Disk Input and
Output," in the BASIC Handbook.

161

LINE INPUT #
Statement
Example: The following example uses LINE INPUT to get

information from the keyboard, where the
information is likely to have commas or other
delimiters. Then the information is written to a
sequential file, and read back out from the file using
LINE INPUT #.

162

10 OPEN "LST" FOR OUTPUT AS #1
20 LINE INPUT "Address? II ;C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "LST" FOR INPUT AS #1
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN

Address?

Suppose you respond with DELRAY BEACH, FL
33445. The program continues:

Address? DELRAY BEACH, FL 33445

DELRAY BEACH, FL 33445

LIST
Command

Purpose: Lists the program currently in memory on the screen
or other specified device.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

LIST [lineJ] [-[line2]] Lfilespec]

line], line2

filespec

are valid line numbers in the range .0
to 65529. Nne] is the first line to be
listed. line2 is the last line to be
listed. A period (.) can be used for
either line nu:rnber to indicate the
current line.

is a string ~xpression for the file
specification. In BASIC 2 . .0 and later
releases, it can contain a path.
Filespec must conform to the rules
outlined under "Naming Files" in
Chapter 3 of the BASIC Handbook;
otherwise, an error occurs.

In Cassette BASIC, listings directed to the screen by
omitting the device specifier can be stopped at any
time by pressing Ctrl-Break. Listings directed to
specific devices cannot be intequpted and will list
until the range is too big. That is, LIST range can be
interrupted, but LIST range," SCRN:" cannot.

In Disk BASIC and Advanced BASIC, any listing to
either the screen or the printer can be interrupted by
pressing Ctrl-Break.

163

LIST
Command

164

If the line range is omitted, the entire program is
listed.

When the dash (-) is used in a line range, three
options are available:

• If only line 1 is given, that line and all higher
numbered lines are listed.

• If only line2 is given, all lines from the beginning
of the program through line2 are listed.

• If both line numbers are specified, all lines from
line 1 through line2, inclusive, are listed.

When you list to a file on cassette or disk, the
specified part of the program is saved in ASCII
format. This file can later be used with MERGE.

BASIC always returns to the command level after a
LIST is executed.

LIST
Command

Example: This example lists the entire program on the screen.

LIST

This example lists line 35 on the screen.

LIST 35,ISCRN:"

This example lists lines 1.0 through 2.0 on the
printer.

LIST 10-20, "LPTl: "

This example lists all lines from 1,0.0 through the
end of the program to the first communications
adapter at 12,0.0 bps, no parity, 8 data bits, 1 stop
bit.

LIST 100- , "COMl: 1200,N ,8"

This example lists from the first line through line
2,0.0 to a file named "BOB" on cassette.

LIST -200,ICASl:BOB"

165

LLIST
Command

Purpose: Lists all or part of the program currently in memory
on the printer (LPT 1 :).

Versions: Cassette

Disk

Advanced

Compiler

Format: LLIST [linel][- [line2]]

Remarks: The line number ranges for LLIST work the same as
for LIST.

BASIC always returns to command level after an
LLIST is executed.

Example: This example prints the entire program.

166

LLIST

This example prints line 35.

LLIST 35

This example prints lines 1,0 through 2.0.

LLIST 1(0-20

This example prints all lines from 1.0.0 through the
end of the program.

LLIST 100-

This example prints the first line through line 2.0,0.

LLIST -200

LOAD
Command

Purpose: Loads a program from the specified device into
memory, and optionally runs it.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

LOAD filespec[,R]

filespec is a string expression for the file
specification. In BASIC 2.,0 and later
releases, it can contain a path. Filespec
must conform to the rules outlined
under "Naming Files" in Chapter 3 of
the BASIC Handbook; otherwise, an
error occurs and the load is canceled.

LOAD closes all open files and deletes all variables
and program lines currently residing in memory
before it loads the specified program. If the R option
is omitted, BASIC returns to direct mode after the
program is loaded.

However, if the R option is used with LOAD, the
program runs after it is loaded. In this case all open
data files are kept open. Thus, LOAD with the R
option can be used to chain several programs (or
segments of the same program). Information can be
passed between the programs using data files.

LOAD filespec,R is equivalent to RUN filespec.

If you are using Cassette BASIC and the device
name is omitted, CAS 1: is assumed. CAS 1: is the
only device allowed for LOAD in Cassette BASIC.

167

LOAD
Command

168

If you are using Disk BASIC or Advanced BASIC,
the DOS default disk drive is used if the device is
omitted. The extension .BAS is added to the
filename if no extension is supplied and the filename
is eight characters or less.

Notes when using CAS 1 :

1. If the LOAD statement is entered in direct mode,
the file names on the tape are displayed on the
screen followed by a period (.) and a single letter
indicating the type of file. This is followed by the
message Skipped for the files not matching the
named file, and Found when the named file is
found. Types of files and their corresponding
letter are:

.B for BASIC programs in internal format
(created with SAVE command)

.P for protected BASIC programs in internal
format (created with SAVE ,P command)

.A for BASIC programs in ASCII format
(created with SAVE ,A command)

.M for memory image files (created with
BSA VE command)

.D for data files (created by OPEN followed
by output statements)

To see what files are on a cassette tape, rewind
the tape and enter some name that is known not
to be on the tape; for example, LOAD
"CAS1:NOWHERE". All filenames are then
displayed.

If the LOAD command is executed in a BASIC
program, the filenames skipped and found are not
displayed on the screen.

LOAD
Command

2. Note that Ctrl-Break can be typed at any time
during LOAD. Between files or after a time-out
period, BASIC exits the search and returns to
command level. Previous memory contents
remain unchanged.

3. If CAS 1: is specified as the device and the
filename is omitted, the next program file on the
tape is loaded.

Example: This example loads the program named MENU, but
does not run it.

LOAD "MENU II

This example loads and runs the program INVENT:

LOAD "INVENT",R

which is equivalent to

RUN ilINVE.NT 11

This example loads the file VLAD.BAS from disk
drive B. Note that the .BAS did not have to be
specified.

LOAD II B : VLAD . BAS II

This example loads the next program on the tape.

LOAD IICASl:"

169

LOC
Function

Purpose: Returns the current position in the file.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

170

v = LOC(filenum)

filenum is the file number used when the file was
opened.

With random files, LOC returns the record number
of the last record read or written to a random file
since the file was opened.

With sequential files, LOC returns the number of
records read from or written to the file since it was
opened. (A record for sequential files is a 128-byte
block of data.) When a file is opened for sequential
input, BASIC reads the first sector of the file, so
LOC returns a 1 even before any input from the file.

For a communications file, LOC returns the number
of characters in the input buffer waiting to be read.
The default size for the input buffer is 256
characters, but you can change this with the Ie:
option in the BASIC command line. If more than
255 characters are in the buffer, LOC returns 255.
Since a string is limited to 255 characters, this
practical limit means that you do not have to test for
string size before reading data into it. If fewer than
255 characters remain in the buffer, then LOC
returns the actual count.

LOC
Function

Example: This example stops the program when the 50th
record in the file is passed.

100 IF LOC(1»50 THEN STOP

This example could be used to rewrite the record
that was just read.

100 PUT #l,LOC(l)

171

LOCATE
Statement

Purpose: Positions the cursor on the active screen. Optional
parameters turn the blinking cursor on and off and
define the size of the blinking cursor.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

172

LOCATE [row][, [col] [,[cursor] [, [start][,stop]]]]

row is a numeric expression in the range 1 to
25. It indicates the screen line number
where you want to place the cursor.

col is a numeric expression in the range 1 to
4.0 or 1 to 8,0, depending upon screen
width. It indicates the screen column
number where you want to place the
cursor.

cursor

start

stop

is a value indicating whether the cursor is
visible or not. A.0 (zero) indicates off, 1
(one) indicates on.

is the cursor-start scan line. It must be a
numeric expression in the range ,0 to 31.

is the cursor-stop scan line. It also must
be numeric expression in the range ,0 to
31.

cursor, start, and stop do not apply to graphics mode.

start and stop allow you to make the cursor any size
you want. You indicate the starting and ending scan

LOCATE
Statement

lines. The scan lines are numbered from ,0 at the top
of the character position. The bottom scan line is 7
if you have the Color/Graphics Monitor Adapter, 13
if you have the IBM Monochrome Display and
Parallel Printer Adapter. If start is given and stop is
omitted, stop assumes the value of start. If start is
greater than stop, you'll get a two-part cursor. The
cursor "wraps" from the bottom line back to the top.

After a LOCATE statement, I/O statements to the
screen begin placing characters at the specified
location.

When a program is running, the cursor is normally
off. You can use LOCATE" 1 to turn it back on.

Normally, BASIC will not print to line 25. However,
you can turn off the soft key display using KEY
OFF, and then use LOCATE 25,1: PRINT ... to put
data on line 25. Line 25 does not scroll as the rest of
the screen does.

Any parameter can be omitted. Omitted parameters
assume the current value.

Any values entered outside the ranges indicated
results in an Illegal function call error. Previous
values are retained.

173

LOCATE
Statement
Example: This example moves the cursor to the home position

in the upper left-hand corner of the screen.

174

10 LOCATE 1,1

This example makes the blinking cursor visible; its
position remains unchanged.

10 LOCATE ,,1

In this example, position and cursor visibility remain
unchanged. The cursor is set to display at the
bottom of the character on the Color/Graphics
Monitor Adapter (starting and ending on scan line
7).

10 LOCATE ",7

This example moves the cursor to line 5, column 1.
It makes the cursor visible, covering the entire
character cell on the Color/Graphics Monitor
Adapter, starting at scan line ,0 and ending on scan
line 7.

10 LOCATE 5,1,1,0,7

LOF
Function

Purpose: Returns the number of bytes allocated to the file
(length of the file).

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

v = LOF(filenum)

filenum is the file number used when the file was
opened.

For disk files created by BASIC 1.1,0, LOF returns a
multiple of 128. For example, if the actual data in
the file is 257 bytes, the number 384 is returned.
For disk files created outside BASIC (for example,
by using EDLIN), and for files created by BASIC
2.,0 and later releases, LOF returns the actual
number of bytes allocated to the file.

For communications, LOF returns the amount of
free space in the input buffer. That is,
size-LOC(filenum), where size is the size of the
communications buffer, which defaults to 256 but
can be changed with the Ie: option in the BASIC
command line. Use of LOF can be used to detect
when the input buffer is getting full. In practicality,
LaC is adequate for this purpose, as demonstrated
in the example in Appendix C, "Communications."

175

LOF
Function
Example: These statements get the last record of the file

named BIG (if BIG was created with a record length
of 128 bytes):

176

10 OPEN "BIG" AS #1
20 GET #1,LOF(I)/128

LOG
Function

Purpose: Returns the natural logarithm of x.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = LOG(x)

x must be a numeric expression greater than
zero.

The natural logarithm is the logarithm to the base e.
In BASIC 2 . .0 and later releases, you can have this
calculation performed in double-precision by
specifying /D in the BASIC command line when
BASIC is initially loaded. See "Options in the
BASIC Command Line" in the BASIC Handbook.

Example: The first example calculates the logarithm of the
expression 45/7:

PRINT LOG(45/7)
1.860752

The second example calculates the logarithm of e
and of e2 :

E= 2.718282
? LOG(E)
1

? LOG(E*E)
2

177

LPOS
Function

Purpose: Returns the current position of the print head within
the printer buffer for LPTl:.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = LPOS(n)

n

tJ or 1
2
3

is a numeric expression that is a dummy
argument in Cassette BASIC. In Disk BASIC
and Advanced BASIC, n indicates the printer
being tested, as follows:

LPTl:
LPT2:
LPT3:

Therefore, we recommend you use .0 or 1 in Cassette
BASIC to maintain compatibility with the other
versions.

The LPOS function does not necessarily give the
physical position of the print head on the printer.

Example: In this example, if the line length is more than 6.0
characters a carriage return character is sent to the
printer so it skips to the next line.

100 IF LPOS(0»60 THEN LPRINT CHR$(13)

178

LPRINT and LPRINT USING
Statements

Purpose: Prints data on the printer (LPTI :).

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

LPRINT [list of expressions [;]

LPRINT USING v$~' list of expressions [;]

list of expressions
is a list of the numeric and/or string
expressions to be printed. The expressions
must be separated by commas or semicolons.

expression is a numeric or string expression whose
value is to be printed.

v$ is a string constant or variable that identifies
the format to be used for printing. This is
explained in detail under "PRINT Statement."

These statements function like PRINT and PRINT
USING, except output goes to the printer. See
"PRINT" and "PRINT USING" statements.

LPRINT assumes an 8,0-character-wide printer.
That is, BASIC automatically inserts a carriage
return/line feed after printing 8,0 characters. This
means that two lines are skipped when you print
exactly 8,0 characters, unless you end the statement
with a semicolon. You can change the width value
with a WIDTH "LPTl:" statement.

179

LPRINT and LPRINT USING
Statements

If you do a form feed (LPRINT CHR$(12);)
followed by another LPRINT and the printer takes
more than 1,0 seconds to do the form feed, you can
get a Device timeout error on the second LPRINT.
To avoid this problem, enter the following:

1 ON ERROR GOTO 65000

65000 IF ERR = 24 THEN RESUME '24=timeout

You may want to test ERR to make sure the
timeout was caused by an LPRINT statement.

Example: This is an example of sending special control
characters to the IBM 8,0 CPS Matrix Printer using
LPRINT and CHR$. The printer control characters
are listed in the IBM Personal Computer Technical
Reference manual.

180

10 LPRINT CHR$(14);" Title Line"
20 FOR 1=2 TO 4
30 LPRINT "Report line";I
40 NEXT I
50 LPRINT CHR$(15);"Condensed print;132

char/line"
60 LPRINT CHR$(18); "Return to normal II

70 LPRINT CHR$(27);IE"
80 LPRINT "This is emphasized print"
90 LPRINT CHR$(27);IF"
100 LPRINT "Back to normal again"

LPRINT and LPRINT USING
Statements

The output produced by this program looks like this:

h:c'-!pDro t 1 :io fiE' 2
F;: to::: p C) r" t]. i n f:? :::::

F;:[~p Dlro t :I. i n E~ 4
Condensed print; 132 char/line
Return to normal

This is emphasized print

Back to normal again

181

LSET and RSET
Statements

Purpose: Moves data into a random file buffer in preparation
for a PUT (file) statement.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

182

LSET stringvar = x$

RSET stringvar = x$

stringvar

x$

is the name of a variable defined in a
FIELD statement.

is a string expression to place the
information into the field identified by
stringvar.

If x$ requires fewer bytes than were specified for
stringvar in the FIELD statement, LSET left-justifies
th~ string in the field, and RSET right-justifies the
string. (Spaces are used to pad the extra positions.)
If x$ is longer than stringvar, characters are dropped
from the right.

Numeric values must be converted to strings before
they are LSET or RSET. See "MKI$, MKS$,
MKD$ Functions."

See also Appendix A, "BASIC Disk Input and
Output," in the BASIC Handbook for a complete
explanation of using random files.

LSET and RSET
Statements

Note: LSET or RSET can also be used with a
string variable that was not defined in a FIELD
statement to left-justify or right-justify a string in
a given field. For example, the program lines:

10 A$=SPACE$(2(})
20 RSET A$=N$

right-justify the string N$ in a 2,0-character
field. This can be useful for formatting printed
output.

Example: This example converts the numeric value AMT into a
string, and left-justifies it in the field A$ in
preparation for a PUT (file) statement.

10 LSET A$=MKS$(AMT)

183

MERGE
Command

Purpose: Merges the lines from an ASCII program file into the
program currently in memory.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

184

MERGE filespec

filespec is a string expression for the file
specification. In BASIC 2 . .0 and later
releases, it can contain a path. Filespec
must conform to the rules outlined
under "Naming Files" in Chapter 3 of
the BASIC Handbook; otherwise, an
error occurs.

The device is searched for the named file. If found,
the program lines in the device file are merged with
the lines in memory. If any lines in the file being
merged have the same line number as lines in the
program in memory, the lines from the file replace
the corresponding lines in memory.

After the MERGE command, the merged program
resides in memory, and BASIC returns to command
level.

In Cassette BASIC, if the device name is omitted,
CAS 1: is assumed. CAS 1: is the only device allowed
for MERGE in Cassette BASIC. With Disk BASIC
and Advanced BASIC, if the device name is omitted,
the DOS default drive is assumed.

MERGE
Command

If CAS 1: is specified as the device name and the
filename is omitted, the next ASCII program file
encountered on the tape is merged.

If the program being merged was not saved in ASCII
format (using the A option on the SAVE command),
a Bad file mode error occurs. The program in
memory remains unchanged.

Example: This example merges the file named "NUMBRS" on
drive A with the program in memory.

MERGE IIA:NUMBRS"

185

MID$ Function and
Statement

Purpose: Returns the requested part of a given string. When
used as a statement, as in the second format, replaces
a portion of one string with another string.

Versions: Cassette

Disk

Advanced

Compiler

Format: As a function:

v$ = MID$(x$,n[,m])

As a statement:

MID$(v$,n[,m]) = y$

Remarks: For the function (v$=MID$...):

186

x$ is any string expression.

n is an integer expression in the range 1 to 255.

m is an integer expression in the range .0 to 255.

The function returns a string of length m characters
from x$ beginning with the nth character. If m is
omitted or if fewer than m characters are to the right
of the nth character, all rightmost characters
beginning with the nth character are returned. If m
is equal to .0, or if n is greater than LEN(x$), then
MID$ returns a null string.

See also "LEFT$" and "RIGHT$" functions.

MID$ Function and
Statement

For the statement (MID$... =y$)

v$ is a string variable or array element that will
have its characters replaced.

n is an integer expression in the range 1 to 255.

m is an integer expression in the range .0 to 255.

y$ is a string expression.

The characters in v$, beginning at position n, are
replaced by the characters in y$. The optional m
refers to the number of characters from y$ used in
the replacement. If m is omitted, all of y$ is used.

However, regardless of whether m is omitted or
included, the length of v$ does not change. For
example, if v$ is four characters long and y$ is five
characters long, then after the replacement v$
contains only the first four characters of y$.

Note: If either n or m is out of range, an Illegal
function call error is returned.

187

MID$ Function and
Statement
Example: The first example uses the MID$ function to select

the middle portion of the string B$.

188

10 A$="GOOD II

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)
RUN
GOOD EVENING

The next example uses the MID$ statement to
access substrings imbedded within one large string.
This technique reduces fragmentation of string space.

10 RECORD$ = STRING${255,O)
20 PART1.0FF 1
30 PART1.LEN 5
40 PART2.0FF 6
50 PART2.LEN 15

100 MID$(RECORD$,PART1.0FF,PART1.LEN) "STRNG"

MKDIR
Command

Purpose: Creates a directory on the specified disk. (For
BASIC 2 . .0 and later releases.)

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

*** ***

MKDIRpath

path is a string expression, not exceeding 63
characters, that identifies the new directory to
be created. For more information about paths
refer to "Naming Files" and "Tree-Structured
Directories" in Chapter 3 of the BASIC
Handbook.

Example: This example creates, from the root directory, a
subdirectory called SALES:

MKDIR "SALES"

This example creates, from the root directory, a
subdirectory called MIKE under the directory
SALES:

MKDIR "SALES\MIKE"

This example creates, from the root directory, a
subdirectory called ALICE under the directory
MIKE:

MKDIR "SALES\MIKE\ALICE"

This example creates, from the root directory, a
subdirectory called ACCTING:

189

MKDIR
Command

190

MKOIR "ACCTING"

This example makes ACCTING the current
directory; then creates two subdirectories called
SHANNON and CHELLE:

CHOIR "ACCTING"
MKOIR "SHANNON"
MKOIR "CHELLE"

The same structure can be created from the root by
entering:

MKOIR "ACCTING\SHANNON"
MKOIR "ACCTING\CHELLE"

By following the above examples, you create a tree
structure that looks like this:

ROOT

/ \
SALES ACCTI N G

/ / \
MIKE SHANNON CHELLE

/
ALICE

MKI$, MKS$, MKD$
Functions

Purpose: Convert numeric type values to string type values.

Versions: Cassette Disk Advanced

Compiler
*** ***

Format: v$ = MKI$ (integer expression)

v$ = MKS$(single-precision expression)

v$ = MKD$(double-precision expression)

Remarks: Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer to a
2-byte string. MKS$ converts a single-precision
number to a 4-byte string. MKD$ converts a
double-precision number to an 8-byte string.

These functions differ from STR$ because they do
not really change the bytes of the data - just the way
BASIC interprets those bytes.

See also "CVI, CVS, CVD Functions" in this
manual and Appendix A, "BASIC Disk Input and
Output," in the BASIC Handbook.

191

MKI$, MKS$, MKD$
Functions
Example: This example uses a random file (#1) with fields

defined in line 1,0,0. The first field, D$, is intended
to hold a numeric value, AMT. Line 11,0 converts
AMT to a string value using MKS$ and uses LSET
to place what is really the value of AMT into the
random file buffer. Line 12,0 places a string into the
buffer (it is not necessary to convert a string); then
line 13,0 writes the data from the random file buffer
to the file.

192

100 FIELD #1,4 AS D$, 20 AS N$
110 LSET D$ MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

MOTOR
Statement

Purpose: Turns the cassette player on and off.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

MOTOR [state]

state is a numeric expression indicating on or
off.

If state is nonzero, the cassette motor is turned on. If
state is zero, the cassette motor is turned off.

If state is omitted, the cassette motor state is
switched. That is, if the motor is off, it is turned on
and vice versa.

Example: The following sequence of statements turns the
cassette motor on, then off, then back on again.

10 MOTOR 1
20 MOTOR 0
30 MOTOR

193

NAME
Command

Purpose: Changes the name of a disk file. The NAME
command in BASIC is similar to the RENAME
command in DOS.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

194

*** ***

NAME filespec AS filespec

filespec

filespec

is a string expression for the file
specification. In BASIC 2.,0 and later
releases, it can contain a path. Filespec
must conform to the rules outlined
under "Naming Files" in Chapter 3 of
the BASIC Handbook; otherwise, an
error occurs.

is the new filespec. It must be a valid
filespec as outlined in the same section.

The file specified by filespec must exist and filename
must not exist on the disk; otherwise, an error
results. If the device name is omitted, the DOS
default drive is assumed. Note that the file extension
does not default to .BAS.

After a NAME command, the file exists on the same
disk, in the same disk space, with the new name.

Example:

NAME
Command

In this example, the file that was formerly named
ACCTS.BAS on the disk in drive A is now named
LEDGER. BAS.

NAME "A:ACCTS.BAS" AS "LEDGER.BAS"

195

NEW
Command

Purpose: Deletes the program currently in memory and clears
all variables.

Versions: Cassette

Format: NEW

Disk

Advanced

Compiler

Remarks: NEW is usually used to remove a program from
memory before entering a new program. BASIC
always returns to command level after NEW is
executed. NEW causes all files to be closed and
turns trace off if it was on. See also "TRON and
TROFF Commands."

Example: This example deletes the program in memory.

NEW

196

OCT$
Function

Purpose: Returns a string that represents the octal value of the
decimal argument.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v$ = OCT$(n)

n is a numeric expression in the range -32768 to
65535.

If n is negative, the twos complement form is used.
That is, OCT$(-n) is the same as OCT$(65536-n).

See "HEX$ Function" for hexadecimal conversion.

Example: This example shows that 24 in decimal is 3.0 in octal.

PRINT OCT$(24)
30

197

ONCOM(n)
Statement

Purpose: Sets up a line number for BASIC to trap to when
there is information coming into the communications
buffer.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

198

ON COM(n) GOSUB line

n is the number of the communications adapter
(1 or 2).

line is the line number of the beginning of the trap
routine. Setting line equal to.0 (zero)
disables trapping of communications activity
for the specified adapter.

A COM(n) ON statement must be executed to
activate this statement for adapter n. After COM(n)
ON, if a nonzero line number is specified in the ON
COM(n) statement, then every time the program
starts a new statement, BASIC checks to see if any
characters have come in to the specified
communications adapter. If so, BASIC performs a
GOSUB to the specified line.

If COM(n) OFF is executed, no trapping takes place
for the adapter. Even if communications activity
does take place, the event is not remembered.

If a COM(n) STOP statement is executed, no
trapping takes place for the adapter. However, any

ONCOM(n)
Statement

characters being received are remembered so an
immediate trap takes place when COM(n) ON is
executed.

When the trap occurs, an automatic COM(n) STOP
is executed so that recursive traps never take place.
The RETURN from the trap routine automatically
does a COM(n) ON unless an explicit COM(n) OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place, all trapping is automatically disabled
(including ON COM, ON ERROR, ON PEN, ON
PLAY, ON STRIG, and ON TIMER).

Typically, the communications trap routine reads an
entire message from the communications line before
returning. It is not recommended that you use the
communications trap for single character messages,
since at high baud rates the overhead of trapping and
reading for each individual character allows the
interrupt buffer for communications to overflow.

You can use RETURN line if you want to go back to
the BASIC program at a fixed line number. This
nonlocal return must be used with care, however,
since any other GOSUBs, WHILEs, or FORs active
at the time of the trap remain active.

Active loops are exited by setting the loop counter
variable out of range or setting a conditional
statement within the loop to terminate it. This
insures that every iteration of a FOR has a
corresponding NEXT and every iteration of a
WHILE has a corresponding WEND.

199

ONCOM(n)
Statement
Example:

200

150 ON COM(l) GOSUB 500
160 COMO) ON

500 'incoming characters

590 RETURN 300

This example sets up a trap routine for the first
communications adapter at line 5.0.0.

ON ERROR
Statement

Purpose: Enables error trapping and specifies the first line of
the error handling subroutine.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

ON ERROR GOTO line

line is the line number of the first line of the error
trapping routine. If the line number does not
exist, an Undefined line number error results.

Once error trapping has been enabled, all errors
detected (including direct mode errors) will cause a
jump to the specified error handling subroutine.

To disable error trapping, execute an ON ERROR
GOTO.0. Subsequent errors print an error message
and halt execution. An ON ERROR GOTO .0
statement that appears in an error trapping
subroutine causes BASIC to stop and print the error
message for the error that caused the trap. It is
recommended that all error-trapping subroutines
execute an ON ERROR GOTO .0 if an error is
encountered for which there is no recovery action.

BASIC considers itself to be within the error
trapping routine from the time an error occurs. It
branches to the line specified by the ON ERROR
statement until a RESUME statement is
encountered. You must use the RESUME statement
to exit from the error trapping routine. See also
"RESUME Statement."

201

ON ERROR
Statement

Because error trapping does not occur within the
error trapping routine, an ON ERROR GOTO line
(within the error trapping routine), where line is
anything other than ,0, will not work.

Note: If an error occurs during execution of an
error handling subroutine, the BASIC error
message is printed and execution terminates.
Error trapping does not occur within the error
handling subroutine.

Example: This example tests to see if the drive door is open
when the program needs to open a file.

202

10 ON ERROR GOTO 100
20 OPEN "DATA" FOR INPUT AS #1
30 END

100 IF ERR=?l THEN LOCATE 23,1:
PRINT "DISK IS NOT READY"

110 RESUME NEXT

ON-GOSUB and ON-GOTO
Statements

Purpose: Branches to one of several specified line numbers,
depending on the value of an expression.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

ON n GOTO lineLline] ...

ON n GOSUB lineLlinel ..

n is a numeric expression, rounded to an
integer, if necessary. It must be in the
range .0 to 255, or an Illegal function call error
occurs.

line is the number of the line to which the
program branches.

The value of n determines which line number in the
list the program uses for branching. For example, if
the value of n is 3, the third line number in the list is
the point at which the program branches.

In the ON-GOSUB statement, each line number in
the list must be the first line number of a subroutine.
Eventually you must have a RETURN statement to
bring you back to the line following the
ON-GOSUB.

If the value of n is .0, or greater than the number of
items in the list (but less than or equal to 255),
BASIC continues with the next executable
statement.

203

ON-GOSUB and ON-GOTO
Statements
Example: The first example branches to line 15,0 if L-1 equals

1; to line 3,0,0 if L-1 equals 2; to line 32,0 if L-1
equals 3; and to line 39,0 if L-1 equals 4. If L-1 is
equal to ,0, or is greater than 4, then the program just
goes on to the next statement.

204

100 ON L-1 GOTO 150,300,320,390

The next example shows how to use an
ON-GOSUB statement.

100 REM display menu
110 PRINT "1. Routine 1"
120 PRINT "2. Routi ne 2"
130 PRINT "3. Routine 3"
140 PRINT "4. Routine 4"
150 INPUT "Your choice?"; CHOICE
160 ON CHOICE GOSUB 200, 300, 400,500
170 GOTO 100 I redisplay menu after routine is done
200 REM start of first routine

290 RETURN
300 REM start of second routine

ONKEY(n)
Statement

Purpose: Sets up a line number for BASIC to trap to when the
specified function key or cursor control key is
pressed.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

ON KEY(n) GOSUB line

n

1-1"
11
12
13
14
15-2.,

line

is a numeric expression in the range 1 to
2J1 indicating the key to be trapped, as
follows:

Function keys F 1 to F 1 J1
Cursor Up
Cursor Left
Cursor Right
Cursor Down
keys defined by the form:
KEY n,CHR$(KBflag)+CHR$(scan code).
(Keys 15-2J1 can be trapped only in
Advanced BASIC 2 . .0 and later releases.)
See "KEY(n) Statement" for more
information.

is the line number of the beginning of the
trapping routine for the specified key. Setting
line equal to J1 stops trapping of the key.

A KEY(n) ON statement must be executed to
activate this statement. After KEY(n) ON, if a
nonzero line number is specified in the ON KEY(n)
statement, then every time the program starts a new

205

ONKEY(n)
Statement

206

statement, BASIC checks to see if the specified key
was pressed. If so, BASiC performs a GOSUB to
the specified line.

If a KEY(n) OFF statement is executed, no trapping
takes place for the specified key. Even if the key is
pressed, the event is not remembered.

If a KEY(n) STOP statement is executed, no
trapping takes place for the specified key. However,
if the key is pressed the event is remembered, so an
immediate trap takes place when KEY(n) ON is
executed.

When the trap occurs, an automatic KEY(n) STOP is
executed so that recursive traps never take place.
The RETURN from the trap routine automatically
does a KEY(n) ON unless an explicit KEY(n) OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place, all trapping is automatically disabled
(including ON COM, ON ERROR, ON PEN, ON
PLAY, ON STRIG, and ON TIMER).

Key trapping may not work if you press other keys
before the specified key. The key that caused the
trap cannot be tested using INPUT$ or INKEY$, so
the trap routine for each key must be different if a
different functioIi is desired.

You can use RETURN line if you want to go back to
the BASIC program at a fixed line number. This
nonlocal return must be used with care, however,
since any other GOSUBs, WHILEs, or FORs active
at the time of the trap remain active.

ONKEY(n)
Statement

Active loops are exited by setting the loop counter
variable out of range or setting a conditional
statement within the loop to terminate it. This
ensures that every iteration of a FOR has a
corresponding NEXT and every iteration of a
WHILE has a corresponding WEND.

KEY(n) ON has no effect on whether the soft key
values are displayed at the bottom of the screen.

Special considerations for DOS national diskettes:

The DOS national diskette keyboard programs have
a feature that allows you to change between the
United States and national keyboard at any time. Use
the F 1 or F2 key while holding down Alt and Ctrl to
perform the switch. (See Disk Operating System
Reference for more information on the DOS
keyboard programs.) If your BASIC program traps
either of these keys, it will not pass the information
to the DOS keyboard program and the keyboard
change will not take place. If your program needs to
provide this ability to change keyboard formats,
avoid trapping the FI and F2 keys.

Note: The shift state you use when trapping
either of these keys makes no difference when
considering the DOS keyboard programs. Any
shift of base state trapping of F 1 and F2 prevents
the keystroke from being passed to the DOS
program.

207

ONKEY(n)
Statement
Example: The following is an example of a trap routine for

function key 5.

208

100 ON KEY(5) GOSUB 200
110 KEY(5) ON

200 'function key 5 pressed

290 RETURN 140

This example traps Ctrl-Break and Ctrl-Alt-Del.
(For BASIC 2.,0 and later releases.)

10 KEY 15,CHR$(&H04)+CHR$(70) 'Trap Ctrl-Break
20 KEY 16,CHR$(&H04+&H08)+CHR$(83)

'Trap Ctrl-Alt-Del
30 ON KEY(15) GOSUB 1000
40 ON KEY(16) GOSUB 2000
50 KEY(15) ON: KEY(16) ON

1000 PRINT "Trapping for Ctrl-Break"
1010 RETURN
2000 TRAPS=TRAPS+1
2010 ON TRAPS GOTO 2100,2200,2300,2400, 2500
2020 I

2100 PRINT "First trap of System Reset":RETURN
2200 PRINT "Second trap of System Reset":RETURN
2300 PRINT "Third trap of System Reset":RETURN
2400 PRINT "Fourth trap of System Reset":RETURN
2500 KEY(16) OFF 'Disable trap of System Reset

ON PEN
Statement

Purpose: Sets up a line number for BASIC to transfer control
to when the light pen is activated.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

ON PEN GOSUB line

line is the line number of the beginning of the trap
routine for the light pen. Using a line number
of .0 disables trapping of the light pen.

A PEN ON statement must be executed to activate
this statement. After PEN ON, if a nonzero line
number is specified in the ON PEN statement, then
every time the program starts a new statement
BASI C checks to see if the pen was activated. If so,
BASIC performs a GOSUB line.

If PEN OFF is executed, no trapping takes place.
Even if the light pen is activated, the event is not
remembered.

If a PEN STOP statement is executed, no trapping
takes place, but pen activity is remembered so that
an immediate trap takes place when PEN ON is
executed.

When the trap occurs, an automatic PEN STOP is
executed so recursive traps never take place. The
RETURN from the trap routine automatically does a
PEN ON unless an explicit PEN OFF was performed
inside the trap routine.

209

ON PEN
Statement

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ON COM, ON ERROR, ON PEN, ON PLAY, ON
STRIG, and ON TIMER).

PEN(0) is not set when pen activity causes a trap.

You can use RETURN line if you want to go back to
the BASIC program at a fixed line number. This
nonlocal return must be used with care, however,
since any other GOSUBs, WHILEs, or FORs active
at the time of the trap remain active.

Active loops are exited by setting the loop counter
variable out of range or setting a conditional
statement within the loop to terminate it. This
insures that every iteration of a FOR has a
corresponding NEXT and every iteration of a
WHILE has a corresponding WEND.

Note: Do not perform cassette 110 while PEN is
ON.

Example: This example sets up a trap routine for the light pen.

210

10 ON PEN GOSUB 500
20 PEN ON

500 'subroutine for pen

650 RETURN 30

ONPLAY(n)
Statement

Purpose: Plays continuous background music during program
execution. (For BASIC 2.,0 and later releases.)

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

ON PLA Y(n) GOSUB line

n is an integer expression in the range 1 to 32
indicating the notes to be trapped. Values
entered outside this range result in an Illegal
function call error.

line is the beginning line number of the trap
routine for PLAY. A line number of ,0 stops
the trapping of PLAY.

A PLAY ON statement must be used to start the ON
PLAY(n) statement. After PLAY ON, if a nonzero
line number is specified in the PLA Y(n) statement,
each time the program starts a new statement BASIC
checks to see if the music buffer has gone from n to
n-l notes. If so, BASIC performs a GOSUB to the
specified line.

If PLAY OFF is used, no trapping takes place. Even
if a play activity takes place, the event is not
remembered.

If a PLAY STOP statement is used, no trapping
takes place, but play activity is remembered so that
an immediate trap takes place when PLAY ON is
executed.

211

ONPLAY(n)
Statement

212

When the trap occurs, an automatic PLAY STOP is
run so recursive traps never take place. The
RETURN from the trap routine automatically does a
PLAY ON unless an explicit PLAY OFF was
performed inside the trap routine.

Event trapping does not take place when BASIC is
not running a program. When an error trap
(resulting from an ON ERROR statement) takes
place, all trapping is automatically disabled
(including ON COM, ON ERROR, ON PEN, ON
PLAY, ON STRIG, and ON TIMER).

You can use RETURN line if you want to go back to
the BASIC program at a fixed line number. This
nonlocal return must be used with care, however,
since any other GOSUBs, WHILEs, or FORs active
at the time of the trap remain active.

Active loops are exited by setting the loop counter
variable out of range or setting a conditional
statement within the loop to terminate it.

Notes:

1. A PLAY event trap is issued only when PLAY is
in the Music Background mode (PLAY "MB ... ").
An event trap is not issued when PLAY is in the
Music Foreground mode (PLAY "MF ... ").

2. A PLAY event trap is not issued if the Music
Background buffer is already empty when a
PLAY ON statement is performed.

,3. Be careful choosing values for n. For example:
ON PLA Y(32) causes so many event traps that
little time remains to run the rest of the program.

ONPLAY(n)
Statement

See also "PLA Y(n) Function" in this chapter for
additional information.

Example: This example sets up a trap routine that is invoked
when five notes are left in the background music
buffer.

10 ON PLAY(5) GOSUB 500
20 PLAY ON

500 Isubroutine for background music

650 RETURN 30

213

ON STRIG(n)
Statement

Purpose: Sets up a line number for BASIC to trap to when one
of the joystick buttons (triggers) is pressed.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

214

ON STRIG(n) GOSUB line

n can be .0, 2, 4, or 6, and indicates the button
to be trapped as follows:

.6 button Al

2 button BI

4 button A2

6 button B2

line is the line number of the beginning of the trap
routine for STRIG. A line number of .0 stops
trapping of the joystick button.

A STRIG(n) ON statement must be executed to
activate this statement for button n. If STRIG(n) ON
is executed and a nonzero line number is specified in
the ON STRIG(n) statement, then every time the
program starts a new statement BASIC checks to see
if the specified button has been pressed. If so,
BASIC performs a GOSUB to the specified line.

If STRIG(n) OFF is executed, no trapping takes
place for button n. Even if the button is pressed, the
event is not remembered.

ONSTRIG(n)
Statement

If a STRIG(n) STOP statement is executed, no
trapping takes place for button n, but the button
being pressed is remembered so that an immediate
trap takes place when STRIG(n) ON is executed.

When the trap occurs, an automatic STRIG(n) STOP
is executed so that recursive traps never take place.
The RETURN from the trap routine automatically
does a STRIG(n) ON unless an explicit STRIG(n)
OFF was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place, all trapping is automatically disabled
(including ON COM, ON ERROR, ON PEN, ON
PLAY, ON STRIG, and ON TIMER).

Using STRIG(n) ON activates the interrupt routine
that checks the button status for the specified
joystick button. Downstrokes that cause trapping do
not set functions STRIG(f), STRIG(2), STRIG(4),
or STRIG(6).

You can use RETURN line to go back to the BASIC
program at a fixed line number. This nonlocal return
must be used with care, however, since any other
GOSUBs, WHILEs, or FORs active at the time of
the trap remain active.

Active loops are exited by setting the loop counter
variable out of range or setting a conditional
statement within the loop to terminate it. This
insures that every iteration of a FOR has a
corresponding NEXT and every iteration of a
WHILE has a corresponding WEND.

-215

ON STRIG(n)
Statement
Example: This is an example of a trapping routine for the

button on the first joystick.

216

10 ON STRIG(0) GOSUB 2000
20 STRIG(0) ON

500 'subroutine for 1st button

650 RETURN

ON TIMER
Statement

Purpose: Transfers control to a given line number in a BASIC
program when a defined period of time has elapsed.
(For BASIC 2 . .0 and later releases.)

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

ON TIMER(n) GOSUB line

n is a numeric expression in the range 1 to
86,4.0.0 (1 second through 24 hours). Values
entered that are outside this range result in an
Illegal function call error.

line is the beginning line number of the trap
routine for TIMER. A line number of .0 stops
timer trapping.

A TIMER ON statement must be used to start the
ON TIMER statement. After TIMER ON,
specifying a nonzero line number in the ON
TIMER(n) statement causes BASIC to keep track of
the passing seconds. When n seconds have elapsed,
BASIC performs a GOSUB to the specified line.
The event trap occurs, and BASIC starts counting
again from .0.

If TIMER OFF is used, no trapping takes place.
Even if TIMER activity takes place, the event is not
remembered.

217

ON TIMER
Statement

218

If a TIMER STOP statement is used, no trapping
takes place, but TIMER activity is remembered so
that an immediate trap occurs when TIMER ON is
used.

When the trap occurs, an automatic TIMER STOP is
executed so that recursive traps never take place.
The RETURN from the trap routine automatically
does a TIMER ON unless an explicit TIMER OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not running a program. When an error trap
(resulting from an ON ERROR statement) takes
place, all trapping is automatically disabled
(including ON COM, ON ERROR, ON PEN, ON
PLAY, ON STRIG, and ON TIMER).

You can use RETURN line to go back to the BASIC
program at a fixed line number. This nonlocal return
must be used with care, however, since any other
GOSUBs, WHILEs, or FORs active at the time of
the trap remain active.

Active loops are exited by setting the loop counter
variable out of range or setting a conditional
statement within the loop to terminate it. This
insures that every iteration of a FOR has a
corresponding NEXT and every iteration of a
WHILE has a corresponding WEND.

ON TIMER
Statement

Example: ON TIMER is useful in programs that need an
interval timer. This example displays the time of day
on line 1 every minute.

10 CLS
20 ON TIMER(60) GOSUB 10000
30 TIMER ON

10000 OLDROW=CSRLIN Isave current row
100100LDCOL=POS(0) Isave current column
10020 LOCATE 1,1:PRINT TIME$;
10030 LOCATE OLDROW,OLDCOL Irestore row & col
10040 RETURN

219

OPEN
Statement

Purpose: Allows input or output to a file or device.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

220

First form:

OPEN filespec [FOR mode] AS [#]filenum
[LEN = recl]

Alternate form:

OPEN mode2, [#]filenum, filespec [,recl]

mode (first form) is one of the following:

OUTPUT specifies sequential output mode.

INPUT specifies sequential input mode.

APPEND specifies sequential output mode where
the file is positioned to the end of data on
the file when it is opened.

mode2

Note that mode must be a string constant,
not enclosed in quotation marks. If mode
is omitted, random access is assumed.

(alternate form) is a string expression with
the first character being one of the
following:

OPEN
Statement

o specifies sequential output mode

I specifies sequential input mode

R specifies random input/ output mode

For both formats:

filenum is an integer expression whose value is
between 1 and the maximum number of
files allowed. In Cassette BASIC, the
maximum number is 4. In Disk BASIC
and Advanced BASIC, the default
maximum is 3, but this can be changed
with the IF: switch on the BASIC
command line.

filespec is a string expression for the file
specification. In BASIC 2.,0 and later
releases, it can contain a path. Filespec
must conform to the rules outlined under
"Naming Files" in Chapter 3 of the
BASIC Handbook; otherwise, an error
occurs.

reel is an integer expression which, if included,
sets the record length for random files. It
can range from 1 to 32767. The default
record length is 128 bytes. reel cannot
exceed the value set by the IS: switch in
the BASIC command line.

OPEN allocates a buffer for I/O to the file or device
and determines the mode of access that is used with
the buffer.

filenum is the number that is associated with the file
or device for as long as it is open and is used by
other I/O statements to refer to the file or device.

221

OPEN
Statement

222

An OPEN must be executed before any 110 can be
done to a device or file using any of the following
statements, or any statement or function requiring a
file number:

PRINT #
PRINT # USING
INPUT #
LINE INPUT #
IOCTL#

WRITE #
INPUT$
GET #
PUT #

GET and PUT are valid for random files or
communications files. A disk file cay be either
random or sequential, and a printer can be opened in
either random or sequential mode; however, all other
standard devices can be opened only for sequential
operations. See "OPEN "COM ... Statement."

BASIC normally adds a line feed after each carriage
return (CHR$(13)) sent to a printer. However, if
you open a printer (LPTl:,LPT2:, or LPT3:) as a
random file with width 255, this line feed is
suppressed.

APPEND is valid only for disk files. The file pointer
is initially set to the end of the file, and the record
number is set to the last record of the file. PRINT #
or WRITE # then extends the file.

A file cannot be opened for sequential output or
append if the file is already open.

If the device name is omitted when you are using
Cassette BASIC, CASl: is assumed. If you are using
Disk BASIC or Advanced BASIC, the DOS default
drive is assumed.

OPEN
Statement

If CAS l: is specified as the device and the filename
is omitted, then the next data file on the cassette is
opened.

In Cassette BASIC, a maximum of four files can be
open at one time (cassette, printer, keyboard, and
screen). Note that only one cassette file can be open
at a time. For Disk BASIC and Advanced BASIC
the defau1t maximum is three files. You can override
this value by using the IF: option in the BASIC
command line.

If a file opened for input does not exist, a File not
found error occurs. If a file that does not exist is
opened for output, append, or random access, a file
is created.

Any values given outside the ranges indicated result
in an Illegal function call error. The file is not
opened.

See also the section on device drivers in Chapter 3 of
the BASIC Handbook, as well as Appendix A of the
BASIC Handbook, for a complete explanation of
using disk files. See also "OPEN "COM Statement"
for information on opening communications files.

Examples: Either of the following statements opens the file
named "DATA" for sequential output on the default
device (CASl: for Cassette BASIC, default drive for
Disk BASIC and Advanced BASIC).

10 OPEN "OATA " FOR OUTPUT AS #1
or

10 OPEN IOI,#l,IOATA"

223

OPEN
Statement

224

In the preceding example, note that opening for
output destroys any existing data in the file. If you
do not wish to destroy data, you must open for
APPEND.

Either of the following two statements opens the file
named "SSFILE" on the disk in drive B for random
input and output. The record length is 256.

1(.3 OPEN "B:SSFILE" AS 1 LEN=256
or

1(.3 OPEN IRI,I,IB:SSFILE",256

This example opens the file "DATA.ART" on the
disk in drive A and positions the file pointers so that
any output to the file is placed at the end of existing
data in the file.

10 FILE$ = "A:DATA.ART"
20 OPEN FILE$ FOR APPEND AS 3

Line 1.0 in the next example opens the printer in
random mode. Because the default width is 8.0, the
lines printed by lines 2.0 and 3.0 end with a carriage
return/line feed. Line 4.0 changes the printer width
to 255, so the line feed after the carriage return is
suppressed. Therefore, the line printed by line
5.0 ends only with a carriage return and not a line
feed. This causes the line printed by line 7.0 to
overprint "This line will be underlined", causing the
line to be underlined. Line 6,0 changes the width
back to 8.0 so the underlines and following lines end
with a line feed.

OPEN
Statement

10 OPEN "LPT1: II AS #1
20 PRINT #l,"Printing width 80"
30 PRINT #l,"Now change to width 255"
40 WIDTH #1,255
50 PRINT #l,"This line will be underlined"
60 WIDTH #1,80
70 PRINT #1, STRING$(28, II ")

80 PRINT #l,"Printing width 80 with CR/LF"
RUN

Printing width 80
Now change to width 255
This line will be underlined
Printing width 80 with CR/LF

The following examples illustrate the use of paths
for filespec.

Either of these statements opens the file called
"DATA" for sequential output on the default device
in the directory called L VL2.

10 OPEN "LVLl \LVL2\DATA '1 FOR OUTPUT AS #1
or

10 OPEN "0" ,#1, "LVL1 \LVL2\DATA"

Either of the next two statements opens the file
named "RRFILE" in the LVLl directory on the disk
in drive B for random input and output. The record
length is 256.

20 OPEN "B:LVL1 \RRFILE" AS 1 LEN=256
or
20 OPEN IR",B:LVL1\RRFILE:",256

225

OPEN "COM . ..
Statement

Purpose: Opens a communications file.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

226

Valid only with Asynchronous Communications
Adapter.

OPEN "COMn:[speed] [,parity] [,data] [,stop] [,RS]
[,CS[n]] [,DS[n]] [,CD[n]] [,LF] [,PE]" AS
[#lfilenum [LEN=number]

n is 1 or 2, indicating the number of the
Asynchronous Communications Adapter.

speed is an integer constant specifying the
transmit/ receive bit rate in bits per second
(bps). Valid speeds are 75, 11,0, 15,0,
3~,0,6,0~, 12,0~, 18~~,240~,48,0,0,and
96,0~. The default is 3~,0 bps.

parity is a one-character constant specifying the
parity for transmit and receive as follows:

S SPACE: Parity bit always transmitted and
received as a space (~ bit).

o ODD: Odd transmit parity; odd receive parity
checking.

M MARK: Parity bit always transmitted and
received as a mark (1 bit).

OPEN"COM ...
Statement

E EVEN: Even transmit parity; even receive
parity checking.

N NONE: No transmit parity; no receive parity
checking.

The default is EVEN (E).

data

stop

filenum

number

is an integer constant indicating the
number of transmit/receive data bits.
Valid values are: 5, 6, 7, or 8. The
default is 7.

is an integer constant indicating the
number of stop bits. Valid values are 1
or 2. The default is two stop bits for 75
and 11 ~ bps; one stop bit for all others.
If you use 5 for data, a 2 here means
1-1/2 stop bits.

is an integer expression that evaluates to
a valid file number. The number is then
associated with the file for as long as it is
open and is used by other
communications I/O statements to refer
to the file.

is the maximum number of bytes that can
be read from the communication buffer
when using GET or PUT. The default is
128 bytes.

OPEN "COM .. allocates a buffer for I/O in the
same fashion as OPEN for disk files. It supports
RS232 asynchronous communication with other
computers and peripherals.

A communications device can be open to only one
file number at a time.

227

OPEN "COM ...
Statement

228

The RS, CS, DS, CD, LF and PE options affect the
line signals as follows:

RS

CS[n]

DS[n]

CD[n]

LF

PE

suppresses RTS (Request To Send)

controls CTS (Clear To Send)

controls DSR (Data Set Ready)

controls CD (Carrier Detect)

sends a line feed following each carriage
return

enables parity checking

The CD (Carrier Detect) is also known as the RLSD
(Received Line Signal Detect).

Note: The speed, parity, data, and stop parameters
are positional, but RS, CS, DS, CD, LF, and PE
are not.

The RTS (Request To Send) line is turned on when
you execute an OPEN "COM .. statement unless you
include the RS option.

The n argument in the CS, DS, and CD options
specifies the number of milliseconds to wait for the
signal before returning a Device timeout error. n can
range from ,0 to 65535. If n is omitted or is equal to
zero, then the line status is not checked at all.

The defaults are CSl~~~, DSl~~~, and CD~. If RS
was specified, CS~ is the default.

That is, normally 110 statements to a
communications file fail if the CTS (Clear To Send)
or DSR (Data Set Ready) signals are off. The

OPEN "COM . ..
Statement

system waits 1 second before returning a Device
timeout. The CS and DS options allow you to ignore
these lines or to specify the amount of time to wait
before the timeout.

Normally Carrier Detect (CD or RLSD) is ignored
when an OPEN "COM ... statement is executed. The
CD option allows you to test this line by including
the n parameter, in the same way as CS and DS. If n
is omitted or is equal to zero, then Carrier Detect is
not checked at all (which is the same as omitting the
CD option).

The LF parameter is intended for those using
communications files to print to a serial line printer.
When you specify LF, a line feed character (hex.0A)
is automatically sent after each carriage return
character (hex .0C). (This includes the carriage
return sent as a result of the width setting.) INPUT
and LINE INPUT #, when used to read from a
communications file that was opened with the LF
option, stop when they see a carriage return. The
line feed is always ignored.

The PE option enables parity checking. The default
is no parity checking. The PE option causes a Device
I/O error on parity errors and turns on the high
order bit for 7 or less data bits. The PE option does
not affect framing and overrun errors. These errors
always turn on the high order bit and cause a Device
I/O error.

Any coding errors within the string expression
starting with speed result in a Bad file name error. No
indication is given as to which parameter is in error.

229

OPEN "COM ...
Statement

See also Appendix C, "Communications," for more
information on control of output signals, as well as
other technical information on communications
support.

If you specify 8 data bits, you must specify parity N.
BASIC uses all 8 bits in a byte to store numbers, so
if you are transmitting or receiving numeric data (for
example, by using PUT), you must specify 8 data
bits. (This is not necessary if you are sending
numeric data as text.)

See also the previous entry, "OPEN Statement," for
information on opening devices other than
communications devices.

Example: In this example, file 1 is opened for communication
with all defaults. The speed is 3.0.0 bps with even
parity. There are 7 data bits and 1 stop bit.

230

10 OPEN IICOM1: 11 AS #1

In this example, file 2 is opened for asynchronous
I/O at 12.0£); no parity is to be produced or checked;
8-bit bytes are sent and received; and 1 stop bit is
transmitted.

10 OPEN "COM2:1200,N,8 11 AS #1

This example opens COM1: at 96.0.0 bps with no
parity and 8 data bits. CTS, DSR, and CD are not
checked.

10 OPEN IICOM1:9600,N,8"CS,DS,CD" AS #1

This example opens COM1: at 12.0.0 bps with the
defaults of even parity, 7 data bits, and 1 stop bit.
R TS is sent, CTS is not checked, and Device timeout
is given if DSR is not seen within 2 seconds. The

OPEN"COM ...
Statement

commas are required to indicate the position of the
parity, start, and stop parameters, even though a value
is not specified. This is what is meant by positional
parameters.

10 OPEN IiCOM1:1200""CS,DS20001i AS #1

An OPEN statement can be used with an ON
ERROR statement to make sure a modem is working
properly before sending any data. For example, the
following program makes sure you get Carrier Detect
(CD or RLSD) from the modem before starting.
Line 2.0 I is set to timeout after 1.0 seconds. TRIES
is set to 6 so we give up if Carrier Detect is not seen
within 1 minute. Once communication is established,
the file reopens with a shorter delay until timeout.

10 TRIES=6:0N ERROR GOTO 100
20 OPEN IiCOM1:300,N,8,2,CS,DS,CD10000" /\S #1
30 ON ERROR GOTO 0
40 CLOSE #1 'Works so can continue
50 GOTO 1000

100 TRIES=TRIES-1
110 IF TRIES~0 THEN ON ERROR GOTO 0 'give up
120 RESUME

1000 OPEN ICOM1:300,N,8,2,CS,DS,CD2000" AS #1

231

OPEN "COM . ..
Statement

232

The next example shows a typical way to use a
communication file to control a serial line printer.
The LF parameter in the OPEN statement ensures
that lines do not print on top of each other.

1(J WIDTH IICOM1:1I, 132
2(J OPEN "COM1:12(J(J,N,8"CSl(J(J(J(J,

DSl(J(J(J(J,CD1(J(J(J(J,LF Ii AS #1

OPTION BASE
Statement

Purpose: Declares the minimum value for array subscripts.

Versions: Cassette

Disk

Format: OPTION BASE n

Remarks: n is 1 or ,0.

Advanced

Compiler

The default base is ,0. If the statement:

OPTION BASE 1

is executed, the lowest value an array subscript can
have is 1.

The OPTION BASE statement must be coded before
you define or use any arrays. An error occurs if you
change the base value when arrays exist.

In BASIC 1.1,0, the program you are chaining to
cannot have an OPTION BASE statement even
when both programs have the same base value.

233

OUT
Statement

Purpose: Sends a byte to a machine output port.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

234

OUT n,m

n is a numeric expression for the port number,
in the range .0 to 65535.

m is a numeric expression for the data to be
transmitted, in the range .0 to 255.

See also the IBM Personal Computer Technical
Reference manual for a description of valid port
numbers (I/O addresses).

OUT is the complementary statement to the INP
function. See also "INP Function."

One use of OUT is to affect the video output. On
some displays attached to the Color/Graphics
Monitor Adapter, you may find that the first two or
three characters on the line don't show up on the
screen. If your display does not have a horizontal
adjustment control, you can use the following
statements to shift the display:

OUT 980,2: OUT 981,43

OUT
Statement

This shifts the display two characters to the right in
4.0-column width (or 16 points in medium resolution
graphics mode, or 32 points in high resolution
graphics mode).

OUT 980,2: OUT 981,85

This shifts the display five characters to the right in
8.0-column width.

The shift caused by these OUT statements remains in
effect until a WIDTH or SCREEN statement is
executed. The MODE command from DOS can also
be used to shift the display as described here; it has
the benefit of remaining in effect until a System
Reset.

Example: This sends the value 1,0.0 to output port 32.

100 OUT 32,100

235

PAINT
Statement

Purpose: Fills in an area on the screen with the selected color.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

236

Graphics mode only.

PAINT (x,y) [[,paint] [,boundary] [,backgroundJ]

(x,y) are the coordinates of a point within the
area to be filled in. The coordinates can
be given in absolute or relative form
(see "Specifying Coordinates" under
"Graphics Modes" in Chapter 3 of the
BASIC Handbook). This point is used
as a starting point. Points specified
outside the limits of the screen are not
plotted, and no error occurs.

paint can be a numeric or string expression.
It is used to fill a color or pattern in or
around a bounded area. When paint is a
numeric expression, it chooses an
attribute from the legal attribute range
for the current screen mode. In medium
resolution, the color is the current color
for that attribute defined by the
COLOR statement. Four attributes
(0-3) are available in medium
resolution. In high resolution, two
attributes (0-1) are available. Zero is
always the attribute for the background.
The default foreground attribute is the

boundary

background

PAINT
Statement

maximum attribute for that screen
mode: 3 in medium resolution; 1 in high
resolution.

If paint is a string expression, then
"tiling" is performed, as described later
in this entry. Paint tiling is valid for
BASIC 2 . .0 and later releases.

is a numeric expression that evaluates to
an integer in the legal attribute range of
the current screen mode. It defines the
attribute for the edges of the figure to
be painted.

is a I-byte string expression used in
paint tiling. (For BASIC 2 . .0 and later
releases.)

Since there are only two attributes in high resolution,
paint should not be different from boundary. By
default, boundary is equal to paint. You can paint
either a white area black or a black area white.

In medium resolution, you can fill inside or around a
defined area with anyone of four colors from the
current palette defined by the COLOR statement.
An example of this is filling a red circle with green,
or surrounding a red circle with green.

paint begins at the specified starting point and covers
an area until it meets the specified boundary
attribute. Therefore, paint must always begin inside
the area to be painted. If the specified starting point
already has the same attribute as boundary, then
painting stops at that point and appears not to occur.
An example of this is plotting a point with PSET that

237

PAINT
Statement

238

has the same attribute as boundary, and then using
the coordinates of that point with the PAINT
statement.

PAINT fills any designated area no matter what the
shape of the area; however, the more complex the
edges of a figure (jagged edges, for instance), the
more stack space BASIC uses. Under these
circumstances you may want to use the CLEAR
statement at the beginning of your program to
increase the stack space.

The PAINT statement allows scenes to be displayed
with very few statements.

In the example that follows, the PAINT statement in
line 3.0 fills in the box drawn in line 2.0 with the
color represented by the attribute in the current
palette.

10 SCREEN 1
20 LINE (0,0)-(100,150),2,8
30 PAINT (50,50),1,2

The following discussion deals with paint tiling only.
(For BASIC 2 . .0 and later releases.)

To use paint tiling, the paint attribute must be a
string expression in the form:

CHR$(&Hnn)+CHR$(&Hnn)+CHR$(&Hnn)

The CHR$ sequence specifies a bit mask that is 1
byte wide. When the mask is plotted all the way
across and down the designated area defined by
boundary, a pattern is created rather than a solid
color. You design the pattern. The two hexadecimal
numbers in the CHR$ expression correspond to 8

PAINT
Statement

bits, or 1 byte. The string expression can contain up
to 64 bytes. The design created by the string
expression can be mapped as follows:

x increases -->
76543 2 1.6

.0,.0 x x x x x x x x

.0,1 xxxxxxxx

.0,2 x x x x x x x x

.0,63 x x x x x x x x

Tile byte .0
Tile byte 1
Tile byte 2

Tile byte 63
(maximum allowed)

The tile pattern is repeated uniformly over the area
defined by boundary. If you do not define an area,
the whole screen is your designated area. Each byte
of the tile string masks 8 bits along the x axis when
plotting points. Each byte of the tile string is rotated
as required to align the pattern along the y axis.
BASIC chooses the particular byte of the pattern to
plot, using the formula y mod tile length.

239

PAINT
Statement

240

Because there is only 1 bit per pixel in high
resolution, a point is plotted at every position in the
bit mask that has a value of 1. In high resolution, the
screen can be painted with x's using the following
example:

10 CLS:SCREEN 1: COLOR 1: KEY OFF
20 LOCATE 12,7:PRINT "I JUST LOVE MY IBM COMPUTEF
30 PAINT(320,100),CHR$(&H81)+CHR$(&H42)+

CHR$(&H24)+CHR$(&H18)+CHR$(&H24)+
CHR$(&H24)+CHR$(&H42)+CHR$(&H81)

40 GOTO 40

The length of this mask is 8, indexed ,{} through 7.
In this case, PAINT at coordinates (32,{},1.0.0) begins
by plotting byte 4. This is calculated using the y mod
tile length formula by substituting 1.0.0 for y and 8 for
tile length. This pattern appears on the screen as:

Tile byte .0
Tile byte 1
Tile byte 2
Tile byte 3
Tile byte 4
Tile byte 5
Tile byte 6
Tile byte 7

CHR$(&H81)
CHR$(&H42)
CHR$(&H24)
CHR$(&HI8)
CHR$(&HI8)
CHR$(&H24)
CHR$(&H42)
CHR$(&H81)

PAINT
Statement

The method of designing patterns in each screen
varies depending on the number of color attributes
available in each screen mode. This is so because the
number of bits per pixel is directly related to the
number of color attributes available in each screen
mode. In any screen, where X is the total number of
color attributes for that screen,

where Y is the number of bits per pixel. In high
resolution, each byte of the string is able to plot 8
points across the screen (1 bit per pixel), since
LOG2(2)=I.

In Screen 1, one medium-resolution tile byte
describes 4 pixels, since medium resolution has only
2 bits per pixel: that is, LOGz{ 4) =2 bits per pixel.
Every 2 bits of the tile byte describes 1 of 4 possible
color attributes associated with each of the 4 pixels
to be plotted.

The following chart shows the binary and
hexadecimal values associated with each attribute in
medium resolution.

241

PAINT
Statement

242

Color Attrib. Pattern to Pattern to
palette in draw solid draw solid

J1 binary line in line in
binary hexadecimal

green ,01 ,01,0U11,01 &H55
red 1,0 1,01,01,01,0 &HAA
brown 11 11111111 &HFF

Color Attrib. Pattern to Pattern to
palette in draw solid draw solid
1 binary line in line in

binary hexadecimal

cyan ,01 ,01,01,01,01 &H55
magenta 1,0 1,01,01,01,0 &HAA
white 11 11111111 &HFF

In medium resolution, the following example plots a
pattern of boxes with a border color of red in palette
,0 and magenta in palette 1.

10 CLS: SCREEN 1: COLOR 1: KEY OFF
20 LOCATE 12,7:PRINT III JUST LOVE MY IBM COMPUTER II
30 PAINT (320,100),CHR$(&HAA)+CHR$(&H82)+

CHR$(&H82)+CHR$(&H82)+CHR$(&H82)+
CHR$(&H82)+CHR$(&H82)+CHR$(&HAA)

40 GOTO 40

Tile byte .0
Tile byte 1
Tile byte 2
Tile byte 3
Tile byte 4
Tile byte 5
Tile byte 6
Tile byte 7

7654321~
1.01.01,01,0
1,0.0.0.0,01,0
1,0.0.0.0,01,0
1.0.0.0.0.01,0
1.0.0.0,0.01,0
1.0.0.0.0.01,0
1.0.0,0.0.01,0
1,01,01,01,0

PAINT
Statement

CHR$(&HAA)
CHR$(&H82)
CHR$(&H82)
CHR$(&H82)
CHR$(&H82)
CHR$(&H82)
CHR$(&H82)
CHR$(&HAA)

Occasionally, you may want to tile over an already
painted area that is the same color or pattern as two
consecutive bytes in the tile mask. Normally, this
constitutes a terminating condition because your
point is surrounded by points of the same bit pattern.
(An example follows on the use of background.)

You can use the background attribute to skip this
terminating condition. You cannot specify more
than two consecutive lines in the tile pattern that
matches this background attribute. Doing so causes
an Illegal function call error.

243

PAINT
Statement
Example: The program below demonstrates how to tile an area

with three lines of red, two lines of green, and one
line of red. The palette then changes to show that
the same tile mask yields the same pattern with
different colors.

244

10 CLS:SCREEN 1,0:KEY OFF
20 TIL$=CHR$(&HAA)+CHR$(&HAA)+CHR$(&HAA)

+CHR$(&H55)+CHR$(&H55)+CHR$(&HFF)
30 COLOR 0,0 I choose pal ette 0
40 VIEW (1,1)-(150,100),0,2
50 GOSUB 1000
60 COLOR 0,1 I choose pa 1 ette 1
70 GOTO 1020
1000 PAINT (125,50),TIL$,2
1010 RETURN
1020 GOTO 1020

PAINT
Statement

The following example uses paint tiling with the
background attribute.

10 CLS:SCREEN l:COLOR 0,1:KEY OFF
20 TIL$=CHR$(&H5F)+CHR$(&H5F)+CHR$(&H27)+CHR$(&H81)
30 VIEW (1,1)-(150,100),0,2
40 LOCATE 3,22:PRINT "<---Without back-ii
50 LOCATE 4,22:PRINT " ground tile"
60 PAINT (125,50),CHR$(&H5F)
70 PAINT (125,50),TIL$,2
80 '
90 'with background tile'
100 '
110 VIEW (160,100)-(310,198),0,2
120 LOCATE 16,1:PR1NT "With background-->"
130 LOCATE 17,1:PRINT "tile chr$(&H5F)"
140 PAINT (125,50),CHR$(&H5F)
150 PAINT (125,50),TIL$,2,CHR$(&H5F)
160 LINE (1,100) - (319 ,100) ,3
170 FOR 1=1 TO 2500:NEXT I
180 GOTO 180

245

PEEK
Function

Purpose: Returns the byte read from the indicated memory
position.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = PEEK(n)

n is an integer in the range .0 to 65535. n is the
offset from the current segment as defined by
the DEF SEG statement. See "DEF SEG
Statement. "

The returned value is an integer in the range .0 to
255.

PEEK is the complementary function to the POKE
statement. See "POKE Statement."

Example: The following example in a program tests which
display adapter is on the system. After line 3.0 is
executed, the variable IBMMONO has a value of .0
if the IBM Color/Graphics Monitor Adapter is used,
or 1 if the IBM Monochrome Display and Parallel
Printer Adapter is used.

246

10 'test display adapter
20 DEF SEG=0
30 IF (PEEK(&H410) AND &H30)=&H30

THEN IBMMONO=l
ELSE IBMMONO=0

PEN
Statement and Function

Purpose: Reads the light pen.

Versions: Cassette

Disk

Advanced

Compiler
(**)

PEN STOP only in Advanced BASIC and Compiler.

Format: As a statement:

PENON

PEN OFF

PEN STOP

As a function:

v = PEN(n)

Remarks: The PEN function, v=PEN(n), reads the light pen
coordinates.

n is a numeric expression in the range .0 to 9,
and affects the value returned by the function
as follows:

., A flag indicating if pen was down since
last poll. Returns -1 if down, .0 if not.

1 Returns the x coordinate where pen
was last activated. Range is .0 to 319
in medium resolution, and .0 to 639 in
high resolution.

247

PEN
Statement and Function

248

2 Returns the y coordinate where pen
was last activated. Range is .0 to 199.

3 Returns the current pen switch value.
-1 if down, .0 if up.

4 Returns the last known valid x
coordinate. Range is .0 to 319 in
medium resolution, and .0 to 639 in
high resolution.

5 Returns the last known valid y
coordinate. Range is .0 to 199.

6 Returns the character row position
where pen was last activated. Range is
1 to 24.

7 Returns the character column position
where pen was last activated. Range is
1 to 4.0 or 1 to 8.0, depending on
WIDTH.

8 Returns the last known valid character
row. Range is 1 to 24.

9 Returns the last known valid character
column position. Range is 1 to 4.0 or 1
to 8.0, depending on WIDTH.

PEN ON enables the PEN read function. The PEN
function is initially off. A PEN ON statement must
be executed before any pen read function calls can
be made. A call to the PEN function while the PEN
function is off results in an Illegal function call error.

Conversely, to improve execution speed, turn the pen
off with a PEN OFF statement when you are not
using the light pen.

PEN
Statement and Function

For Advanced BASIC, executing PEN ON also
allows trapping to take place with the ON PEN
statement. After PEN ON, if a nonzero line number
was specified in the ON PEN statement, then every
time the program starts a new statement BASIC
checks to see if the pen was activated. See "ON
PEN Statement."

PEN OFF disables the PEN read function. For
Advanced BASIC, no trapping of the pen takes
place. Action by the light pen is not remembered
even if it does take place.

PEN STOP is available only in Advanced BASIC. It
disables trapping of light pen activity. If activity does
occur, however, it is remembered, so an immediate
trap occurs when a PEN ON is executed.

When the pen is down in the border area of the
screen, the values returned are inaccurate.

You should not try I/O to cassette while PEN is ON.

Example: This example prints the pen value since the last poll,
and the current value.

10 PEN ON
20 FOR 1=1 TO 500
30 X=PEN(0): X1=PEN(3)
40 PRINT X, Xl
50 NEXT
600 PEN OFF

249

PLAY
Statement

Purpose: Plays music as specified by string.

Versions: Cassette Disk Advanced

Compiler
(**)

Format: PLA Y string

Remarks: PLAY implements a concept similar to DRAW by
imbedding a "tune definition language" into a
character string.

250

string is a string expression consisting of single
or double-character music commands.

The commands in PLAY are:

A to G with optional #, +, or -
Plays the indicated note in the current octave.
A number sign (#) or plus sign (+) afterward
indicates a sharp; a minus sign (-) indicates a
flat. A #, +, or - is not allowed unless it
corresponds to a black key on a piano. For
example, B# is an invalid note.

o n Octave. Sets the current octave for the notes
that follow. There are 7 octaves, numbered ,0
to 6. Each octave goes from C to B. Octave
3 starts with middle C. Octave 4 is the
default octave.

> n Go up to the next higher octave and play note
n. Each time note n is played, the octave goes
up, until it reaches octave 6. For example,
PLAY ">A" raises the octave and plays note
A. Each time PLAY ">A" is executed, the
octave goes up until it reaches octave 6; then

PLAY
Statement

each time PLAY ">A" executes, note A
plays at octave 6. (For BASIC 2.,0 and later
releases.)

< n Go down one octave and play note n. Each
time each time note n is played, the octave
goes down, until it reaches octave,0. For
example, PLAY" <A" lowers the octave and
plays note A. Each time PLAY "<A" is
executed, the octave goes down until it
reaches octave ,0; then each time PLAY
"<A" executes, note A plays at octave ,0.
(For BASIC 2.,0 and later releases.)

N n Plays note n, which can range from ,0 to 84.
In the 7 possible octaves, there are 84 notes.
n=,0 means "rest." This is an alternative way
of selecting notes besides specifying the
octave (0 n) and the note name (A-G).

L n Sets the length of the notes that follow. The
actual length of the note is 1/ n. n can range
from 1 to 64.

Length Equivalent

L1 whole note
L2 half note
L3 one of a triplet of three half notes

(1/3 of a 4-beat measure)
L4 quarter note
L5 one of a quintuplet

(1/5 of a measure)
L6 one of a quarter-note triplet

L64 sixty-fourth note

251

PLAY
Statement

252

The length can also follow the note when you
want to change only the length of the note.
For example, A 16 is equivalent to L 16A.

P n Pause (rest). n can range from 1 to 64, and
figures the length of the pause in the same
way as L (length).

(dot or period) When placed after a note,
causes the note to be played as a dotted note.
A dot increases the duration of a note by half
the duration of the note. A note can have
more than one dot. Each dot increases the
total value of the note by 1/2 the value of the
previous dot. For example, a double-dotted
halfnote is equivalent in duration to a half
note plus a quarter note plus an eighth note.
Dots can also appear after a pause (P) to
scale the pause length in the same way.

T n Tempo. Sets the number of quarter notes in a
minute. n can range from 32 to 255. The
defaultis 12,0. Under "SOUND Statement" is
a table listing common tempos and the
equivalent beats per minute.

MF Music foreground. Music (created by
SOUND or PLAY) runs in foreground. Each
subsequent note or sound will not start until
the previous note or sound is finished. You
can press Ctrl-Break to exit PLAY. Music
foreground is the default state.

MB Music background. Music (created by
SOUND or PLAY) runs in background
instead of in foreground. Each note or sound
is placed in a buffer, allowing the BASIC
program to continue executing while music

PLAY
Statement

plays in the background. The music
background buffer can hold up to 32 notes at
one time.

MN Music normal. Each note plays 7/8 of the
time specified by L (length). This is the
default setting of MN, ML, and MS.

ML Music legato. Each note plays the full period
set by L (length).

MS Music staccato. Each note plays 3/4 of the
time specified by L.

X variable;
Executes specified string.

In all these commands the n argument can be a
constant such as 12, or it can be = variable; where
variable is the name of a variable. The semicolon (;)
is required when you use a variable in this way, and
when you use the X command. Otherwise a
semicolon is optional between commands, except
that a semicolon is not allowed after MF, MB, MN,
ML, or MS. Also, any blanks in string are ignored.

You can also specify variables in the form
V ARPTR$ (variable), instead of = variable;. The
VARPTR$ form is the only one that can be used in
compiled programs. For example:

One Method Alternative Method

PLAY "XA$;" PLAY "X" + V ARPTR$(A$)

PLAY "0=1;" PLAY "0="+ VARPTR$(I)

253

PLAY
Statement

You can use X to store a "subtune" in one string and
call it repetitively with different tempos or octaves
from another string.

Examples: The following example plays a tune.

254

10 I 1 itt 1 e 1 amb
20 MARY$="GFE-FGGG"
30 PLAY "MB T100 03 L8;XMARY$;P8 FFF4"
40 PLAY "GB-B-4; XMARY$; GFFGFE- "

The following example plays the scale from octave .0
to octave 6.

10 I Play the scale using> octave
20 SCALE$="CDEFGAB"
30 PLAY "00 XSCALE$;"
40 FOR 1=1 TO 6
50 PLAY ">XSCALE$;"
60 NEXT
70 I Play the scale using < octave
80 PLAY "06 XSCALE$;"
90 FOR 1=1 TO 6
100 PLAY "<XSCALE$;"
110 NEXT

PLAY(n)
Function

Purpose: Returns the number of notes currently in the music
background buffer. (For BASIC 2.,0 and later
releases.)

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

Example:

v=PLAY(n)

n is a dummy argument that can have any value.

PLA Y(n) returns a .0 when the program is running in
Music Foreground mode. The maximum value that
can be returned is 32, which is the maximum number
of notes held in the buffer.

PLA Y(n) returns notes in the buffer only when you
are using Music Background (MB) mode.

10 'When 5 notes are left in the background music buffer
20 'go to line 1000 and play another tune
30 PLAY "MB CDEFGAB"
40 IF PLAY(1)=5 GOTO 1000
50 GOTO 2000

1000 PLAY "MB 04 T200 L4 MS GG#GE"
2000 END

255

PMAP
Function

Purpose: Maps physical coordinates to world coordinates or
world coordinates to physical coordinates. (For
BASIC 2 . .0 and later releases.)

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

256

Graphics mode only

v=PMAP(x,n)

x

n

coordinate of the point that is to be
mapped

can be a value in the range .0 to 3 such
that:

., maps the world coordinate x to
the physical coordinate x

1 maps the world coordinate y to
the physical coordinate y

2 maps the physical coordinate x to
the world coordinate x

3 maps the physical coordinate y to
the world coordinate y

PMAP is used to translate coordinates between the
world system as defined by the WINDOW statement
and the physical coordinate system.

PMAP
Function

PMAP(x,.0) and PMAP(x, 1) are used to map values
from the world coordinate system to the physical
coordinate system.

PMAP(x,2) and PMAP(x,3) are used to map values
from the physical coordinate system to the world
coordinate system.

For example, if the statement

SCREEN 1: WINDOW (-1,-1)-(1,1)

is in effect you can use PMAP to map the world
coordinate points of (-1,-1) and (1,1) to their
corresponding physical points on the screen.

PMAP(-1,.0) returns the physical x coordinate value
of .0.

PMAP(-1,1) returns the physical y coordinate value
of 199.

PMAP(1,.0) returns the physical x coordinate value
of 319.

PMAP(1,1) returns the physical y coordinate value
of .0.

The above information tells you that the point
(-1,-1), which is in the lower left corner of the
screen, corresponds to the physical point (.0,199).
You also know that the point (1,1), which is in the
upper right corner, corresponds to the physical point
(319,.0).

257

POINT
Function

Purpose: The first form returns the attribute of the specified
point on the screen. The second form returns the
value of the current x or y graphics coordinate.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

258

Graphics mode only.

v = POINT (x,y)

v = POINT (n)

(x,y) are the coordinates of the point to be
used. They must be in absolute form as
explained in "Specifying Coordinates"
under "Graphics Modes" in Chapter 3 of
the BASIC Handbook.

If the point given is out of range, the value
-1 is returned. In medium resolution valid
returns are ,0, 1, 2, and 3. In high
resolution they are ,f) and 1.

n returns the value of the current x or y
graphics coordinate. (For BASIC 2.,f) and
later releases.) n can have a value from ,f)
to 3 where:

1

returns the current physical x
coordinate.

returns the current physical y
coordinate.

POINT
Function

2 returns the current world x
coordinate if WINDOW is
active. If WINDOW is not
active, returns the current
physical x coordinate.

3 returns the current world y
coordinate if WINDOW is
active. If WINDOW is not
active, returns the current
physicaly.

See also "WINDOW Statement."

Example: The following example inverts the current setting of
point (1,1).

10 SCREEN 2
20 IF POINT(I,I)<>0 THEN PRESET(I,I)

ELSE PSET(I,I)
or

20 PSET(I, I) ,I-POINT(1,1)

259

POINT
Function

260

This example illustrates values returned by the
POINT function. Note the change in the values
depending upon WINDOW.

10 CLS:SCREEN 1,0:KEY OFF
20 PRINT IIPOINT(n) with WINDOW inactive"
30 GOSUB 110
40 WINDOW (0,0)-(319,199)
50 PRINT IIPOINT(n) with WINDOW active ll

60 GOSUB 110
70 PRINT IIPOINT(n) with WINDOW and SCREEN active ll

80 WINDOW SCREEN (O,0)-(319,199)
90 GOSUB 110
100 END
110 PSET (5,15)
120 FOR 1=0 TO 3
130 PRINT POINT (I);
140 NEXT
150 PRINT:PRINT
160 RETURN
RUN

POINT(n) with WINDOW inactive
5 15 5 15
POINT(n) with WINDOW active
5 184 5 15
POINT(n) with WINDOW and SCREEN active
5 15 5 15

POKE
Statement

Purpose: Writes a byte into a memory location.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

POKE n,m

n must be in the range ,0 to 65535. It indicates
the offset into the current segment where that
data is to be written. The current segment is
defined by the DEF SEG statement. See
"DEF SEG Statement."

m m is the data to be written to the specified
location. It must be in the range .0 to 255.

The complementary function to POKE is PEEK.
POKE and PEEK are useful for efficient data
storage and loading assembly language subroutines.
See also "Peek Function."

Warning:
BASIC does not check the offset specified. So
don't go POKEing around in BASIC's stack,
BASIC's variable area, or your BASIC program.

Example: See the examples in Appendix B, "Assembly
Language Subroutines."

261

POS
Function

Purpose: Returns the current cursor column position.

Versions: Cassette

Disk

Advanced

Compiler

Format: v = POSen)

Remarks: n is a dummy argument.

The current horizontal (column) position of the
cursor is returned. The returned value is in the range
1 to 4£} or 1 to 8.0, depending on the current WIDTH
setting. CSRLIN can be used to find the vertical
(row) position of the cursor. See "CSRLIN
Variable."

See also "LPOS Function."

Example: This example prints a carriage return (moves the
cursor to the beginning of the next line) if the cursor
is beyond position 6£} on the screen.

IF POS(0»60 THEN PRINT CHR$(13)

262

PRINT
Statement

Purpose: Displays data on the screen.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

Remarks:

PRINT [list of expressions] [;]

? [list of expressions] [;]

list of expressions
is a list of numeric and/or string
expressions, separated by commas, blanks,
or semicolons. Any string constants in the
list must be enclosed in quotation marks.

If the list of expressions is omitted, a blank line is
displayed. If the list of expressions is included, the
values of the expressions are displayed on the screen.

Print Positions

The position of each printed item is determined by
the punctuation used to separate the items in the list.
BASIC divides the line into print zones of 14 spaces
each.

In the list of expressions:

• Typing a comma between expressions causes the
next value to be printed at the beginning of the
next zone.

263

PRINT
Statement

264

• Typing a semicolon causes the next value to be
printed immediately after the last value.

• Typing one or more space~ between expressions
has the same effect as typing a semicolon.

If a comma, semicolon, or SPC or TAB function
ends the list of expressions, the next PRINT
statement begins printing on the same line, spacing
accordingly. If the list of expressions ends without a
comma, semicolon, SPC or TAB function, a carriage
return is printed at the end of the line; that is,
BASI C moves the cursor to the beginning of the next
line.

If the length of the value to be printed exceeds the
number of character positions remaining on the
current line, the value is printed at the beginning of
the next line. If the value to be printed is longer than
the defined WIDTH, BASIC prints as much as it can
on the current line and continues printing the rest of
the value on the next physical line.

Scrolling occurs as described under "Text Mode" in
Chapter 3 of the BASIC Handbook.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space. Negative
numbers are preceded by a minus sign. When
single-precision numbers can be represented with 7
or fewer digits in fixed-point format as accurately as
in floating point-format, they are returned in
fixed-point or integer format. For example, 1.0/\ (-7)
is printed as . .0,0.0,0,0.01 and 1.0 /\ (-8) is output as
lE-8.

BASIC automatically inserts a carriage return/line
feed after printing width characters, where width is
4.0 or 8.0, as defined by the WIDTH statement. This

PRINT
Statement

causes two lines to be skipped when you print
exactly 4f) (or 8f) characters, unless the PRINT
statement ends in a semicolon (;).

LPRINT is used to print information on the printer.
See "LPRINT and LPRINT USING Statements."

265

PRINT
Statement
Example: In this example, the commas in the PRINT statement

cause each value to be printed at the beginning of the
next print zone.

266

10 X=5
20 PRINT X+5, X-5, X*(-5)
RUN

10 0 -25

Here, the semicolon at the end of line 2.0 causes
both PRINT statements to be printed on the same
line.

10 INPUT X
20 PRINT X;"SQUARED ISI;X/\2;IAND";
30 PRINT X; "CUBED IS" ;X/\3
RUN

79
9 SQUARED IS 81 AND 9 CUBED IS 729

Purpose:

PRINT USING
Statement

Prints strings or numbers using a specified format.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

PRINT USING v$; list of expressions [;]

v$ is a string constant or variable that
consists of special formatting
characters. These formatting characters
determine the field and the format of
the printed strings or numbers.

list of expressions
consists of the string or numeric
expressions that are to be printed,
separated by semicolons or commas.

String Fields

When PRINT USING is used to print
strings, one of three formatting
characters can be used to format the
string field:

! Specifies that only the first character in
the given string is to be printed.

\n spaces\ Specifies that 2 + n characters from the
string are to be printed. If the
backslashes are typed with no spaces,
two characters are printed; with one
space, three characters are printed, and
so on. If the string is longer than the

267

PRINT USING
Statement

268

field, the extra characters are ignored.
If the field is longer than the string, the
string is left-justified in the field and
padded with spaces on the right.

Example: This example shows how to use ! and
\ \ to print string fields.

10 A$="LOOK" :B$="OUT II

20 PRINT USING II! II ;A$;B$
30 PRINT USING "\ \ II ;A$;B$
RUN
LO
LOOKOUT

& Specifies a variable-length string field.
When the field is specified with "&", the
string is output exactly as input.
Example:

10 A$="LOOK": B$="OUT"
20 PRINT USING "JII;A$;
30 PRINT USING "&II;B$
RUN
LOUT

Numeric Fields

When PRINT USING is used to print
numbers, the following special
characters can be used to format the
numeric field:

A number sign is used to represent each
digit position. Digit positions are always
filled. If the number to be printed has
fewer digits than positions specified, the
number is right-justified (preceded by
spaces) in the field.

PRINT USING
Statement

A decimal point can be inserted at any
position in the field. If the format string
specifies that a digit is to precede the
decimal point, the digit is always printed
(as ,0 if necessary). Numbers are
rounded as necessary.

PRINT USING "##.##";.78
0.78

Example: In this example, three spaces are inserted at the end
of the format string to separate the printed values on
the line.

PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

+ A plus sign at the beginning or end of
the format string causes the sign of the
number (plus or minus) to be printed
before or after the number.

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

A minus sign at the end of the format
field causes negative numbers to be
printed with a trailing minus sign.

PRINT USING "##.##- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-

** A double asterisk at the beginning of
the format string causes leading spaces
in the numeric field to be filled with
asterisks. The * * also specifies positions
for two more digits.

269

PRINT USING
Statement

270

PRINT USING "**#.# ";12.39,-0.9,765.1
*12.4 *-0.9 765.1

$ $ A double dollar sign causes a dollar
sign to be printed to the immediate left
of the formatted number. The $$
specifies two more digit positions, one
of which is the dollar sign. The
exponential format cannot be used with
$$.

PRINT USING 11$$###.##
$456.78 $0.90

II ; 456 . 78 ,0 . 9 , -765 . 1
-$765.10

**$ The **$ at the beginning of a format
string combines the effects of the above
two symbols. Leading spaces are filled
with asterisks, and a dollar sign is
printed before the number. **$
specifies three more digit positions, one
of which is the dollar sign.

PRINT USING "**$##.##";2.34
***$2.34

A comma left of the decimal point in a
formatting string prints a comma left of
every third digit left of the decimal
point. A comma at the end of the
format string is printed as part of the
string. A comma specifies another digit
position. The comma has no effect if
used with the exponential (1\ 1\ 1\ 1\)

format.

/\/\/\/\

PRINT USING
Statement

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.5
1234.50,

Four carets can be placed after the
digit position characters to specify
exponential format. The four carets
allow space for E±nn or D±nn to be
printed. Any decimal point position can
be specified. The significant digits are
left-justified, and the exponent is
adjusted. Unless a leading + or trailing
+ or - is specified, one digit position is
used to the left of the decimal point to
print a space or a minus sign.

PRINT USING "##.##/\/\/\/\";234.56
2.35E02

PRINT USING ". ### i\ /\ /, /\ ~ ", ~88888
.889E05-

PRINT USING "+.##/\/\/\/\";123
+.12E03

An underscore in the format string
causes the next character to be output
as a literal character.

PRINT USING II !##.## !";12.34
!12.34! - -

The literal character itself can be an
underscore by placing " __ " in the
format string.

271

PRINT USING
Statement

If the number to be printed is larger than the
specified numeric field, a percent sign (%) is printed
in front of the number. If rounding causes the
number to exceed the field, the percent sign is
printed in front of the rounded number.

PRINT USING 11##.##";111.22
%111.22

PRINT USING II. ##11;.999
%1.00

If the number of digits specified exceeds 24, an
Illegal function call error occurs.

Example: This example shows how you can include string
constants in the format string.

PRINT USING IITHIS IS EXAMPLE ##11; 1
THIS IS EXAMPLE #1 -

272

PRINT # and PRINT # USING
Statements

Purpose: Writes data sequentially to a file.

Versions: Cassette

Disk

-Advanced

Compiler

Format:

Remarks:

PRINT #filenum, [USING x$;] list of exps [;]

filenum

x$

list of exps

is the number used when the file was
opened for output.

is a string expression comprised of
formatting characters as described in
the previous entry, "PRINT USING
Statement. "

is a list of the numeric and/or string
expres~ions that will be written to the
file.

PRINT # does not compress data in the file. An
image of the data is written to the file just as it would
be displayed on the screen with a PRINT statement.
For this reason, care should be taken to delimit the
data in the file, so that it is input correctly from the
file.

In the list of expressions, numeric expressions should
be delimited by semicolons. For example,

PRINT #l,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks
inserted between print fields are also written to the
file.)

273

PRINT # and PRINT # USING
Statements

274

String expressions must be separated by semicolons
in the list. To format the string expressions correctly
in the file, use explicit delimiters in the list of
expressions.

For example, let A$="CAMERA" and
B$="936.04-1". The statement

PRINT #l,A$;B$

writes CAMERA936.04-1 to the file. Because there
are no delimiters, this could not be input as two
separate strings. To correct the problem, insert
explicit delimiters into the PRINT # statement as
follows:

PRINT #l,A$;",Ii;B$

The image written to the file is

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to the file
surrounded by explicit quotation marks using
CHR$(34).

For example, let A$="CAMERA, AUTOMATIC"
and B$=" 936.04-1". The statement:

PRINT #l,A$;B$

writes the following image to the file:

CAMERA, AUTOMATIC 93604-1

and the statement:

PRINT # and PRINT # USING
Statements

INPUT #l,A$,B$

inputs the string "CAMERA" to A$ and
"AUTOMATIC 936.04-1" to B$.

To separate these strings properly in the file, write
double quotes to the file image using CHR$(34).
The statement:

PRINT #1,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)

writes the following image to the file:

IICAMERA, AUTOMATIC1 1193604-1 11

and the statement:

INPUT #l,A$,B$

inputs "CAMERA, AUTOMATIC" to A$ and
"936.04-1" to B$.

The PRINT # statement can also be used with the
USING option to control the format of the file. For
example:

275

PRINT # and PRINT # USING
Statements
Example: Since data written to the file contains a dollar sign,

use string variables to read them back, as in this
example.

276

10 A=123
20 B=6789
30 C=22.33
40 OPEN "DATAII FOR OUTPUT AS #1
50 PRINT #l,USING "$$###.##,";A;B;C
60 CLOSE
70 OPEN "DATA" FOR INPUT AS #1
80 INPUT #l,A$,B$,C$
90 CLOSE
100 PRINT A$,B$,C$

PSET and PRESET
Statements

Purpose: Draws a point at the specified position on the screen.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

Graphics mode only.

PSET (x,y) Lcolor]

PRESET (x,y) Lcolor]

(x,y) are the coordinates of the point to be set.
They can be in absolute or relative form,
as explained in "Specifying Coordinates"
under "Graphics Modes" in Chapter 3 of
the BASIC Handbook.

color is an integer expression that chooses an
attribute from the attribute range for the
current screen mode. In medium
resolution, the color is the current one for
that attribute as defined by the COLOR
statement. Four attributes (0-3) are
available in medium resolution; in high
resolution, two attributes (,0-1) are
available. Zero on is always the attribute
for the background. The default
foreground attribute is always the
maximum attribute for that screen mode:
3 in medium resolution; 1 in high
resolution.

PRESET is almost identical to PSET. The only
difference is that if no color parameter is given to

277

PSET and PRESET
Statements

PRESET, the background attribute (,0) is selected.
If color is included, PRESET is identical to PSET.
Line 7,0 in the example below could just as easily be:

70 PSET(I, 1) ,0

Out-of-range coordinates are clipped.

Example: Lines 2,0-4,0 of this example draw a diagonal line
from the point (,0,,0) to the point (1,0,0,1,0,0). Then
lines 6,0-8.0 erase the line by setting each point to a
color of ,0.

278

10 CLS:SCREEN l:KEY OFF
20 FOR 1=0 TO 100
30 PSET (I, 1)
40 NEXT
50 lerase line
60 FOR 1=100 TO 0 STEP -1
70 PRESET(I, I)
80 NEXT

PUT
Statement (Files)

Purpose: Writes a record from a random buffer to a random
file.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

PUT [#lfilenum [,number]

filenum is the number under which the file was
opened.

number is the record number for the record to be
written, in the range 1 to 16 megabytes.

If number is omitted, the record has the next
available record number (after the last PUT).

PRINT #, PRINT # USING, WRITE #, LSET, and
RSET can be used to put characters in the random
file buffer before a PUT statement. In the case of
WRITE #, BASIC pads the buffer with spaces up to
the carriage return.

Any attempt to read or write past the end of the
buffer causes a Field overflow error. See also
Appendix A, "BASIC Disk Input and Output," in
the BASIC Handbook.

Because BASIC and DOS block as many records as
possible in 512-byte sectors, the PUT statement does
not necessarily perform a physical write to the disk
for each record.

279

PUT
Statement (Files)

PUT can be used for a communications file. In that
case number is the number of bytes to write to the
communications file. This number must be less than
or equal to the value set by the LEN option on the
OPEN "COM ... statement.

Example: See Appendix A, "BASIC Disk Input and Output,"
in the BASIC Handbook.

280

PUT
Statement (Graphics)

Purpose: Plots images on a specified area of the screen.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

Graphics mode only.

PUT (x,y), array [,action]

(x,y) are the coordinates of the top left corner
of the image to be transferred.

array is the name of a numeric array containing
the information to be transferred. For
more information on this array, see also
"GET Statement (Graphics)."

action is one of:

PSET
PRESET
XOR
OR
AND

XOR is the default.

PUT is the opposite of GET in the sense that it takes
data out of the array and puts it on the screen.
However, it also provides the option of interacting
with the data already on the screen.

PSET simply stores the data from the array onto the
screen, so this is the true opposite of GET.

281

PUT
Statement (Graphics)

282

PRESET is the same as PSET except that a
complementary image is produced. For example, in
medium resolution, which has a maximum attribute
of 3, an attribute of .0 in the array causes the
corresponding point to be plotted with an attribute
of 3, and vice versa; an attribute of 1 in the array
causes the corresponding point to be plotted with an
attribute of 2, and vice versa.

AND, OR, and XOR specify the logical operations
on the bits of each image. AND is used when an
image already exists in the area to which the image is
transferred.

OR is used to superimpose the transferred image
onto the existing image.

XOR is a special mode that can be used for
animation. Its unique property is that when an image
is PUT against a complex background twice, the
background is restored unchanged. This allows you
to move an object around without obliterating the
background.

In medium resolution mode, AND, XOR, and OR
have the following effects on color:

AND

screen

{)

1

2

3

OR

screen

6

1

2

3

PUT
Statement (Graphics)

array value
{} 1 2 3

0 0 (1 0

0 1 0 1

0 (1 2 2

0 1 2 3

array value
0 1 2 3

0 1 2 3

1 1 3 3

2 3 2 3

3 3 3 3

283

PUT
Statement (Graphics)

XOR

284

array value
screen 0 1 2 3

{} 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Animation of an object can be performed as follows:

1. PUT the object on the screen (with XOR).

2. Recalculate the new position of the object.

3. PUT the object on the screen (with XOR) a
second time at the old location to remove the old
image.

4. Repeat step 1, this time putting the object at the
new location.

Movement done this way leaves the background
unchanged. Flicker can be reduced by minimizing
the time between steps 4 and 1, and making sure
there is enough time delay between steps 1 and 3. If
more than one object is being animated, each object
should be processed individually, one step at a time.

If it is not important to preserve the background,
animation can be performed using the PSET action
verb. But you should remember to have an image
area that will contain the "before" and "after"

PUT
Statement (Graphics)

images of the object. This way the extra area
effectively erases the old image. This method can be
somewhat faster than the method using XOR
described above, since only one PUT is required to
move an object (although you must PUT a larger
image).

If the image to be transferred is too large to fit on
the screen, an Illegal function call error occurs.

Example: This example shows how to move a circle across the
screen with XOR.

10 CLS:DEFINT A-Z:SCREEN l:KEY OFF
20 DIM A(404)
30 CIRCLE (160,100), 20,3
40 PAINT (160,100),2,3
50 GET (140,80)-(180,120),A:CLS
60 X=30: Y=50
70 FOR 1=1 TO 20
80 PUT (X,Y),A,XOR
90 PUT (X,Y),A,XOR
100 X=X + 10
110 NEXT

285

RANDOMIZE
Statement

Purpose: Reseeds the random number generator.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

286

RANDOMIZE [n]

RANDOMIZE TIMER

n is an integer, single-, or double-precision
expression that is used as the random number
seed. In Cassette BASIC, n must be an
integer expression.

If n is omitted, BASIC suspends program execution
and asks for a value by displaying:

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded, the
RND function returns the same sequence of random
numbers each time the program is run. To change
the sequence of random numbers every time the
program is run, place a RANDOMIZE statement at
the beginning of the program and change the seed
with each run.

In Disk BASIC and Advanced BASIC, the internal
clock can be a useful way to get a random number
seed. You can use V AL to change the last two digits
of TIME$ to a number, and then use that number for
n.

Example:

RANDOMIZE
Statement

You can get a new random number seed without
being prompted. To do this, use the TIMER
function in the expression. (For BASIC 2 . .0 and later
releases.)

10 RANDOMIZE
20 FOR 1=1 TO 4
30 PRINT RND;
40 NEXT I

RUN
Random Number Seed (-32768 to 32767)7

Suppose you respond with 3. The program
continues:

Random Number Seed (-32768 to 32767)7 3
.7655695 .3558607 .3742327 ,1388798

RUN
Random Number Seed (-32768 to 32767)7

Suppose this time you respond with 4. The program
continues:

Random Number Seed (-32768 to 32767)? 4
.1719568 .5273236 .6879686 .713297

RUN
Random Number Seed (-32768 to 32767)7

If you try 3 again, you'll get the same sequence as
the first run:

Random Number Seed (-32768 to 32767)7 3
.7655695 .3558607 .3742327 .1388798

287

RANDOMIZE
Statement

288

This example uses TIMER. Note that each time the
program is run you see a different sequence of
numbers.

10 RANDOMIZE TIMER
20 FOR 1=1 TO 4
30 PRINT RND;
40 NEXT
RUN

.9590051 .1036786 .1464037 .7754918
RUN

.8261163 .17422 .9191545 .5041142

READ
Statement

Purpose: Reads values from a DATA statement and assigns
them to variables. See "DATA Statement."

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

READ variable [, variable]. ..

variable is a numeric or string variable or array
element that is to receive the value read
from the DATA table.

A READ statement must always be used with a
DATA statement. READ statements assign DATA
statement values to the variables in the READ
statement on a one-to-one basis.

READ statement variables can be numeric or string,
and the values that are read must agree with the
variable types specified. If they do not agree, a
Syntax error results.

A single READ statement can access one or more
DATA statements (they are accessed in order), or
several READ statements can access the same
DATA statement. If the number of variables in the
list of variables exceeds the number of elements in
the DATA statement(s), an Out of data error occurs.
If the number of variables specified is fewer than the
number of elements in the DATA statement(s),
subsequent READ statements begin reading data at
the first unread element. If there are no subsequent
READ statements, the extra data is ignored.

289

READ
Statement

To reread data from any line in the list of DATA
statements, use the RESTORE statement. See
"RESTORE Statement."

Example: This program segment reads the values from the
DATA statements into the array A. After execution,
the value of A(1) is 3.,08, and so on.

290

10 FOR 1=1 TO 10
20 READ A(1)
30 NEXT I
40 DATA 3.08,5.19,3.12,3.98,4.24
50 DATA 5.08,5.55,4.00,3.16,3.37

This program reads string and numeric data from
the DATA statement in line 3.0. Note that you do
not need quotation marks around COLORADO,
because it does not have commas, semicolons, or
significant leading or trailing blanks. However, you
do need the quotation marks around "DENVER,"
because of the comma.

10 PRINT "CITY", "STATE", II ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
RUN
CITY STATE ZIP
DENVER, COLORADO 80211

REM
Statement

Purpose: Inserts explanatory remarks in a program.

Versions: Cassette

Disk

Format: REM remark

Advanced

Compiler
(**)

Remarks: remark can be any sequence of characters.

REM statements are not executed, but are displayed
when the program is listed exactly as they were
entered. However, they do slow execution time
somewhat and take up space in memory.

REM statements can be branched into (from a
GOTO or GOSUB statement), and execution
continues with the first executable statement after
the REM statement.

Remarks can be added by preceding the remark with
a single quotation mark instead of :REM. If you put
a remark on a line with other BASIC statements, the
remark must be the last statement on the line.

You cannot use the single quote (') to add comments
at the end of a DATA statement. If you do, BASIC
thinks it is part of a string. You can, however, use
:REM to add a remark.

291

REM
Statement
Example: This example shows the two ways to insert remarks

in a program.

292

10 'calculate average velocity
20 SUM=0: REM initialize SUM
30 FOR 1=1 TO 20
40 SUM=SUM + V(I)

Line 2.0 might also be written:

20 SUM=0 • initialize SUM

RENUM
Command

Purpose: Renumbers program lines.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

RENUM [newnum] [,[oldnum] [,increment]]

newnum is the first line number to be used in the
new sequence. The default is 1.0.

oldnum is the line in the current program where
renumbering is to begin. The default is
the first line of the program.

increment is the amount each line number will
increase in the new sequence. The
default is 1.0.

To reflect the new line numbers, RENUM also
changes all line number references following ELSE,
GOSUB, GOTO, ON ... GOTO, ON ... GOSUB,
RESTORE, RESUME, THEN and ERL test
statements. If a nonexistent line number appears
after one of these statements, the error message
Undefined line number xxxxx in yyyyy is displayed.
The incorrect line number reference (xxxxx) is not
changed by RENUM, but line number yyyyy may be
changed.

Note: RENUM cannot be used to change the
order of program lines or to create line numbers
greater than 65529. An attempt to do so results
in an Illegal function call error.

293

RENUM
Command
Example: This example renumbers the entire program. The

first new line number is 1.0. Line numbers increment
by 1.0.

294

RENUM

This example also renumbers the entire program.
The first new line number is 3.0.0. Line numbers
increment by 5.0.

RENUM 300,,50

This example renumbers the lines from 9.0.0 up so
they start with line number 1.0.0.0 and increment by
2.0.

RENUM 1000,900,20

RESET
Command

Purpose: Closes all disk files and clears the system buffer.

Versions: Cassette Disk

Format: RESET

Advanced

Compiler

Remarks: If all open files are on disk, RESET is the same as
CLOSE with no file numbers after it.

295

RESTORE
Statement

Purpose: Allows DATA statements to be reread from a
specified line.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

RESTORE [line]

line is the line number of a DATA statement in
the program.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the first
DATA statement in the program. If line is specified,
the next READ statement accesses the first item in
the specified DATA statement.

Example: In this example, the RESTORE statement in line 2.0
resets the DATA pointer to the beginning so that the
values that are read in line 3.0 are 57, 68, and 79.

296

1(3 READ A,B,C
2(3 RESTORE
3(3 READ D,E,F
4(3 DATA 57, 68, 79
5(3 PRINT A;B;C;D;E;F
RUN

57 68 79 57 68 79

RESUME
Statement

Purpose: Continues program execution after an error recovery
procedure is performed.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format: RESUME [0]

RESUME NEXT

RESUME line

Remarks: Any of the formats shown above can be used,
depending on where execution is to resume:

RESUME or RESUME.0
Execution resumes at the statement
that caused the error.

RESUME NEXT

Note: If you try to renumber a
program containing a
RESUME 0 statement, you will
get an Undefined line number
error. The statement will still say
RESUME 0, which is okay.

Execution resumes at the statement
immediately following the one that
caused the error.

RESUME line Execution resumes at the specified
line number.

297

RESUME
Statement

A RESUME statement that is not in an error trap
routine causes a RESUME without error message to
occur.

Example: In this example, line 1 £HH1 is the beginning of the
error trapping routine. The RESUME statement
causes the program to return to line 8£> when error
23.0 occurs in line 9£).

298

10 ON ERROR GOTO 1000

1000 IF (ERR=230)AND(ERL=90) THEN PRINT
"TRY AGAIN": RESUME 80

RETURN
Statement

Purpose: Stops a subroutine and returns to the main program.
See "GOSUB and RETURN Statements."

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

RETURN [line]

line is the number of the program line you wish to
return to. You can use it only in Advanced
BASIC and BASIC Compiler.

Although you can use RETURN line to return from
any subroutine, this enhancement was added to allow
nonlocal returns from the event trapping routines.
From one of these routines you will often want to go
back to the BASIC program at a fixed line number
while still eliminating the GOSUB entry the trap
created. The nonlocal RETURN must be used with
care, however, since any other GOSUB, WHILE, or
FOR statements active at the time of the trap remain
active.

299

RIGHT$
Function

Purpose: Returns the rightmost n characters of string x$.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v$ = RIGHT$(x$,n)

x$ is any string expression.

n is an integer expression that specifies the
number of characters to be in the result.

If n is greater than or equal to LEN (x$), then x$ is
returned. If n is zero, the null string (length zero) is
returned.

See also "MID$" and "LEFT$" functions.

Example: In this example, the rightmost seven characters of the
string A$ are returned.

300

10 A$="BOCA RATON, FLORIDA"
20 PRINT RIGHT$(A$,7)
RUN
FLORIDA

RMDIR
Command

Purpose: Removes a directory from the specified disk. (For
BASIC 2 . .0 and later releases.)

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

Example:

*** ***

RMDIRpath

path is a string expression, not exceeding 63
characters, that identifies the subdirectory
to be removed from the existing directory.
See also "Naming Files" and
"Tree-Structured Directories" in Chapter
3 of the BASIC Handbook for more
information.

The directory must be empty of all files and
subdirectories before it can be removed, with the
exception of the"." and" .. " entries, or a Path/file
access error occurs.

ROOT

/ \
SALES ACCTING

/ / \
MIKE SHANNON CHELLE

/
ALICE

301

RMDIR
Command

302

The examples that follow refer to the tree structure
shown on the preceding page.

If you are in the root directory and you want to
remove the directory called ALICE, use:

RMOIR "SALES\MIKE\ALICE"

If you want to make ACCTING the current
directory and remove the directory called CHELLE,
use:

CHOIR "ACCTING"
RMOIR "CHELLE"

Another way to remove the directory CHELLE is
to make the root the current directory and then
remove CHELLE.

CHOIR "\"
RMOIR "ACCTING\CHELLE"

The directory preceding the current directory
cannot be removed. Using the same tree structure,
suppose that MIKE is the current directory. If you
try to remove the SALES directory, you will get a
Path/file access error.

If you try to use the KILL command to remove a
directory, you will get a Path/file access error.

RND
Function

Purpose: Returns a random number between ,0 and 1.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = RND[(x)]

x is a numeric expression that affects the
returned value as described below.

The same sequence of random numbers is generated
each time the program is run unless the random
number generator is reseeded. Reseeding is most
easily done by using the RANDOMIZE statement.
See "RANDOMIZE Statement."

You can also reseed the generator when you call the
RND function by using x where x is negative. This
always generates the particular sequence for the
given x. This sequence is not affected by
RANDOMIZE, so if you want it to generate a
different sequence each time the program is run, you
must use a different value for x each time.

If x is positive or not included, RND(x) generates the
next random number in the sequence.

RND(,0) repeats the last number generated.

To get random numbers in the range ,0 (zero)
through n, use the formula:

INT(RND * (n+l))

303

RND
Function
Example: In this example, the first horizontal line of results

shows three random numbers, generated using a
positive x.

304

In line 4.0, a negative number is used to reseed the
random number generator. The random numbers
produced after this reseeding are in the second row
of results.

In line 8.0, the random number generator is reseeded
using the RANDOMIZE statement; in line 9,0 it is
reseeded again by calling RND with the same
negative value as in line 4,0. This cancels the effect
of the RANDOMIZE statement, as you can see; the
third line of results is identical to the second line.

In line 13.0, RND is called with an argument of ,0, so
the last number printed is the same as the preceding
number.

10 FOR 1=1 TO 3
20 PRINT RND(I); I x>0
30 NEXT I
40 PRINT: X=RND(-6) I x<0
50 FOR 1=1 TO 3
60 PRINT RND(I); I x>0
70 NEXT I
80 RANDOMI ZE 853 I random; ze
90 PRINT: X=RND(-6) I x<0
100 FOR 1=1 TO 3
110 PRINT RND; same as x>0
120 NEXT I
130 PRINT: PRINT RND(0)
RUN

.6291626 .1948297 .6305799

.6818615 .4193624 .6215937

.6818615 .4193624 .6215937

.6215937

RND
Function

Reseeding with the RND (negative number)
function reseeds through permutation of the last
floating point temporary. Since no floating point
calculations are done in this example, the new seed is
always the same.

10 DEF1NT A-Z
20 FOR J=l TO 5
30 X=RND(-J)
40 FOR 1=1 TO 5:PR1NT RND;NEXT:PR1NT
50 NEXT J

If line 2.0 is changed to:

20 FOR J=l TO 2 STEP .1

a new seed is generated each time.

305

RUN
Command

Purpose: Begins execution of a program.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

306

RUN [line]

RUN filespec[,R]

line

filespec

is the line number of the program in
memory where you want execution to
begin.

is a string expression for the file
specification. In BASIC 2.0 and later
releases, it can contain a path. Filespec
must conform to the rules outlined
under "Naming Files" in Chapter 3 of
the BASIC Handbook; otherwise, an
error occurs.

RUN or RUN line begins execution of the program
currently in memory. If line is specified, execution
begins with the specified line number. Otherwise,
execution begins at the lowest line number.

R UN filespec loads a file from disk or cassette into
memory and runs it. It closes all open files and
deletes the current contents of memory before
loading the designated program. However, with the
R option, all data files remain open. See also
Appendix A, "BASIC Disk Input and Output" in the
BASIC Handbook.

RUN
Command

Executing a RUN command turns off any sound that
is running and resets to Music Foreground. Also,
PEN and STRIG are reset to OFF.

Example: The first example shows the first form of RUN in
two very short programs. The first program is run
from the beginning. The RUN line option in the
second example runs the program from line 2.0. In
this case, line 1 £) is not executed, so PI does not
receive its proper value. A.0 is printed because all
numeric variables have an initial value of zero.

10 PRINT 1/7
RUN

.1428571

10 PI=3.141593
20 PRINT PI
RUN 20
o

This example loads the program "NEWFIL" and
runs it, keeping files open.

RUN "NEWFIL",R

307

SAVE
Command

Purpose: Saves a BASIC program file on disk or cassette.

Versions: Cassette

Disk

Advanced Compiler

Format:

Remarks:

308

SAVE filespec [,A]

SAVE filespec [,P]

filespec is a string expression for the file
specification. In BASIC 2.0 and later
releases, it can contain a path. Filespec
must conform to the rules outlined
under "Naming Files" in Chapter 3 of
the BASIC Handbook; otherwise, an
error occurs.

The BASIC program is written to the specified
device. When the program is being saved to CAS 1 :,
the cassette motor is turned on and the file is
immediately written to the tape.

For disk files, if the filename is eight characters or
less and no extension is supplied, the extension .BAS
is added to the name. If a file with the same
filename already exists on the diskette, it will be
written over.

In Cassette BASIC, if the device name is omitted,
CAS 1: is assumed. CAS 1: is the only device allowed
for SAVE in Cassette BASIC.

For Disk BASIC and Advanced BASIC, the device
defaults to the DOS default drive.

SAVE
Command

The A option saves the program in ASCII format.
Otherwise, BASIC saves the file in a compressed
binary (tokenized) format. ASCII files take up more
space, but some types of access require that files be
in ASCII format. For example, a file intended to be
merged must be saved in ASCII format. Programs
saved in ASCII can be read as data files.

The P (protection) option saves the program in an
encoded binary format. When a protected program is
later run (or loaded), any attempt to LIST or EDIT it
fails with an Illegal function call error. No way is
provided to "unprotect" such a program.

Note: The disk directory entry for a BASIC
program file gives no indication that the file is
either protected or stored in ASCII format. The
.BAS extension is used in any case.

See also Appendix A, "BASIC Disk Input and
Output," in the BASIC Handbook.

Example: This example saves the program in memory as
INVENT with the default extension .BAS.

SAVE "INVENT"

This example saves PROG.BAS on drive B in
ASCII, so it can be merged later.

SAVE "B:PROG",A

This example saves SECRET.BOZ on drive A,
protected, so it cannot be altered.

SAVE IA:SECRET.BOl",P

309

SCREEN
Function

Purpose: Returns the ASCII code (0-255) for the character on
the active screen at the specified row (line) and
column.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

310

v = SCREEN(row,col[,z])

row is a numeric expression in the range 1 to 25.

col is a numeric expression in the range 1 to 4.0 or
1 to 8.0, depending on the WIDTH setting.

z is a numeric expression that evaluates to a
true or false value. z is valid only in text
mode.

For a list of ASCII codes, See Appendix D, "ASCII
Character Codes."

In text mode, if z is included and is true (nonzero),
the color attribute for the character is returned
instead of the code for the character. The color
attribute is a number in the range ,0 to 255. This
number, v, is deciphered as follows:

(v MOD 16) is the foreground attribute.

«(v - foreground)/16) MOD 128) is the
background attribute, where foreground is
calculated as above.

SCREEN
Function

(v> 127) is true (-1) if the character is blinking;
false (,0) if it is not.

For a list of colors and their associated attributes, see
"COLOR Statement."

In graphics mode, if the specified location contains
graphic information (points or lines, not just a
character), then the SCREEN function returns ,0.

Any values entered outside the ranges indicated
result in an Illegal function call error.

The SCREEN statement is explained in the next
entry.

Example: In this example, if the character at 1.0,1.0 is A, then
X is 65.

100 X = SCREEN (10,10)

This example returns the color attribute of the
character in the upper left-hand corner of the screen.

110 X = SCREEN (1,1,1)

311

SCREEN
Statement

Purpose: Sets the screen attributes to be used by subsequent
statements.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

312

Meaningful with the Color/Graphics Monitor
Adapter only.

SCREEN [mode] [,[burst] [,[apage] [,vpage]]]

mode is a numeric expression resulting in an
integer value of ,0, 1, or 2. Valid modes
are:

» Text mode at current width (4,0 or
8,0).

1 Medium resolution graphics mode
(32,0x2,0,0). Use only with
Color / Graphics Monitor Adapter.

2 High resolution graphics mode
(64,0x2,0,0). Use only with
Color / Graphics Monitor Adapter.

burst is a numeric expression resulting in a true
or false value. It enables or disables color.
On an RGB monitor, color burst is always
on. On a composite monitor, color burst
can be on or off. In text mode (mode= ,0),
a false (zero) value disables color (only
the monochrome images are displayed); a
true (nonzero) value enables color (color

apage

vpage

SCREEN
Statement

images are displayed). In medium
resolution graphics mode (mode= 1), a true
(nonzero) value disables color, and a false
(zero) value enables color. Since high
resolution graphics are only two colors
(black and white), this parameter has no
effect in high resolution.

(active page) is an integer expression in
the range ,0 to 7 for width 4,0;,0 to 3 for
width 8,0. It selects the page to be written
to by output statements to the screen, and
is valid only in text mode (mode=,0).

(visual page) selects the page to be
displayed on the screen, in the same way
as apage above. The visual page can be
different from the active page. vpage is
valid only in text mode (mode=,0). If
omitted, vpage defaults to apage.

If all parameters are valid, the new screen mode is
stored; the screen is erased; the foreground color is
set to white; and the background and border colors
are set to black.

If the new screen mode is the same as the previous
mode, nothing is changed.

If the mode is text and only apage and vpage are
specified, display pages are changed for viewing.
Initially, both active and visual pages default to ,0
(zero). By manipulating active and visual pages, you
can display one page while building another. Then
you can switch visual pages instantaneously.

If you mix text and graphics in the 40= or 80=
column graphics mode and are not using a U.S.
keyboard 9 refer to "GRAFT ABL Command" in the

313

SCREEN
Statement

Disk Operating System Reference for information
regarding additional character support with the
Color / Graphics monitor.

Note: Only one cursor is shared among all the
pages. If you are going to switch active pages
back and forth, you should save the cursor
position on the current active page (using
POS(,0) and CSRLIN), before changing to
another active page. Then when you return to
the original page, you can restore the cursor
position using the LOCATE statement.

Any parameter can be omitted. Omitted parameters,
except vpage, assume the old value.

Any values entered outside the ranges indicated
result in an Illegal function call error. Previous values
are retained.

Example: This example selects text mode with color burst
enabled, and sets active and visual page to *,.

314

10 SCREEN O,1,O,O

In this example, mode and color burst remain
unchanged. Active page is set to 1 and display page
to 2.

10 SCREEN ,,1,2

SCREEN
Statement

This example switches to high-resolution graphics
mode.

10 SCREEN 2,,0,0

This example switches to medium-resolution color
graphics, color burst enabled.

10 SCREEN 1,0

This example sets medium-resolution graphics with
color burst disabled.

50 SCREEN ,1

315

SGN
Function

Purpose: Returns the sign of x.

Versions: Cassette

Format: v = SGN(x)

Disk

Advanced

Remarks: x is any numeric expression.

Compiler

SGN(x) is the mathematical signum function:

• If x is positive, SGN(x) returns 1.
• If x is zero, SGN(x) returns ,0.
• If x is negative, SGN(x) returns -1.

Example: This example branches to 1,0,0 if X is negative; 2,0,0
if X is zero; and 3.0,0 if X is positive.

ON SGN(X)+2 GOTO 100,200,300

316

SHELL
Statement

Purpose: Loads and executes another program file (such as
files with the .COM, .BAT, and .EXE extensions).
Any program executed under BASIC is referred to as
a child process. When the child process has finished
executing, control returns to the parent BASIC
program at the statement following the SHELL
statement.

(Not valid for BASIC releases earlier than 3.0.)

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

*** ***

SHELL [command string]

command string is a string expression containing
the name of a program to run,
and, optionally, any parameters
you are passing to the child
process.

Child processes are executed by SHELL loading and
running a copy of COMMAND. COM with the Ie
switch. By using COMMAND in this way any
parameters you can have are correctly passed into
the default File Control Blocks. Standard input and
output can be redirected, and built-in commands
such as DIR, PATH, and SORT can be executed. If
you enter SHELL with no command string, a copy of
COMMAND. COM is loaded, the DOS prompt
appears, and you can enter any commands that are
valid under DOS (DIR, COPY, SORT, ETC.). You
can return to BASIC by typing the word EXIT. You
can also invoke batch files from the SHELL

317

SHELL
Statement

318

statement. To return to the parent BASIC program,
your batch file must contain EXIT as the last
statement of the batch file.

When running child processes from a BASIC
application using the SHELL statement, there are
some procedures and rules that your application
should follow. Going outside the boundaries of these
guidelines could cause your application to fail or
produce unpredictable results.

To guarantee that you return to BASIC from your
child process in the the screen mode that you expect,
you can do one of two things:

• Use BIOS Interrupt t.0H, function callt5, to
save the current video mode. When your child
process returns to DOS, use function call .0 to
restore the video mode.

• From your BASIC program, execute a SCREEN
statement followed by a CLS statement
immediately after the SHELL statement.

Before BASIC executes a SHELL statement, it saves
any interrupt vectors it uses; but this does not ensure
that any interrupt vectors your routines use, and are
not used by BASIC, are restored. So be sure to save
any interrupt vectors your routine uses to preserve
the proper interface to DOS.

Certain devices must be left untouched to ensure
that they are exactly as DOS and BASIC expect
them to be. These devices are the 8259 interrupt
controller, the 8253 counter timer, the 8237 DMA
controller, the 8255 I/O latch, and the 825.0
asynchronous communications element. Further
descriptions of these devices can be found in the
IBM Personal Computer Technical Reference manual.

SHELL
Statement

A child process that alters any file opened by the
BASIC application can have unpredictable results. If
you must update such files, be sure to close them
from your BASIC application before executing a
SHELL to your child process. Remember that files
that were opened under redirection of standard input
and output constitute OPEN files and that these files
should not be modified in a SHELLed process.

Before BASIC executes a SHELL statement, it frees
any memory it is not using except when BASIC is
invoked with the 1M: switch. Because BASIC was
invoked with the 1M: switch, BASIC assumes that a
assembly language routine will be loaded just beyond
BASIC's data segment. This prevents BASIC from
compressing its workspace before executing a
SHELL and, consequently, SHELL can fail with an
Out of memory error when using the 1M: switch.

The preferred method for running applications that
use the SHELL statement is to load the assembly
language subroutines before you run BASIC. This
involves placing code in your subroutines that, when
invoked from DOS, allows them to terminate and
stay resident (INT 27H). For more information
refer to Appendix B, "Assembly Language
Subroutines. "

Any routine that you execute from the SHELL
statement should never terminate and stay resident.
Doing so may not leave BASIC enough room to
restore its workspace. All files are closed, the error
message Can't continue after SHELL is printed, and
BASIC exits to DOS.

BASIC remains in memory while the child process is
running. When the child process finishes, BASIC
continues.

319

SHELL
Statement

A program name in command strlng can have any
extension you choose. If you do not supply an
extension, DOS looks for a .COM extension, then a
.EXE extension, and finally a .BA T extension. If the
filename is not located during this search,
COMMAND issues an error message.

Any text separated from a program name supplied in
command string by at least one blank is processed as
program parameters.

When BASIC is run, its environment is inherited
from DOS. Any changes your application makes to
BASIC's environment are reflected in the
environment for the child process.

Note: For more information on environment, see
"Detailed Descriptions of Advanced DOS
Commands" in Disk Operating System (DOS
manual).

You cannot SHELL to BASIC. If you attempt to run
BASI C as a child process, you will receive an error
message. After this message is displayed, control
returns to the BASIC parent.

Example: This example creates a file, exits to the DOS SORT
utility, and then returns to BASIC.

320

10 OPEN "SORTIN.DAT" FOR OUTPUT AS #1
20 'writes data to be sorted

100 CLOSE 1
110 SHELL "SORT <SORTIN.DAT >SORTOUT.DAT"
120 OPEN "SORTOUT.DAT" FOR INPUT AS #1
130 Iprocesses the sorted data

SHELL
Statement

The following example displays a disk directory
from BASIC.

SHELL
A>OIR
A>EXIT

(type OIR command at DOS prompt)
(type EXIT to return to BASIC)

The same result can be achieved with:

SHELL "OIR".

321

SIN
Function

Purpose: Calculates the trigonometric sine function.

Versions: Cassette

Disk

Advanced

Compiler

Format: v = SIN (x)

Remarks: x is an angle in radians.

To convert degrees to radians, multiply by PI/ 18.0,
where PI=3.141593.

In BASIC 2 . .0 and later releases, you can have this
calculation performed in double precision by
specifying /D on the BASIC command line when
BASIC is initially loaded. See "Options in the
BASIC Command" in the BASIC Handbook.

Example: This example calculates the sine of 9.0 degrees after
first converting the degrees to radians.

322

10 PI=3.141593
20 DEGREES = 90
30 RADIANS=DEGREES * PI/180 I PI/2
40 PRINT SIN(RADIANS)
RUN

1

SOUND
Statement

Purpose: Generates sound through the speaker.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

SOUND freq~ duration

freq

duration

is the desired frequency in Hertz (cycles
per second). It must be a numeric
expression in the range 37 to 32767.

is the desired duration in clock ticks.
The clock ticks occur 18.2 times per
second. duration must be a numeric
expression. In Disk BASIC, duration is
.027 to 65535. In Advanced BASIC,
duration is .,0015 to 65535.

When the SOUND statement produces a sound, the
program continues to execute until another SOUND
statement is reached. If duration of the new SOUND
statement is ,0, the currently running SOUND
statement is turned off. Otherwise, the program
waits until the first sound completes before it
executes the new SOUND statement.

If you are using Advanced BASIC, you can cause the
sounds to be buffered so execution does not stop
when a new SOUND statement is encountered. See
the explanation of the MB (Music Background)
command under "PLAY Statement."

If no SOUND statement is running, SOUND x,,0 has
no effect.

323

SOUND
Statement

324

The tuning note, A, has a frequency of 44.0. The
following table correlates notes with their
frequencies.

Note Frequency Note Frequency

C 130.810 C 523.250
D 146.83.0 D 587.330
E 164.810 E 659.260
F 174.61.0 F 698.460
G 196.00.0 G 783.990
A 220.000 A 880 . .000
B 246.940 B 987.770
C* 261.63.0 C 1.046.500
D 293.660 D 1174.700
E 329.63.0 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.00.0 A 1760.000
B 493.88.0 B 1975.500

* middle C. Higher (or lower) notes can be
approximated by doubling (or halving) the frequency
of the corresponding note in the previous (next)
octave.

To create periods of silence, use SOUND
32767,duration.

The duration for one beat can be calculated from
beats per minute by dividing the beats per minute
into 1.092 (the number of clock ticks in a minute).

SOUND
Statement

The next table shows typical tempos in terms of
clock ticks:

Tempo Beats/ Ticks/ Beat
Minute

very slow Larghissimo
Largo 40-60 27.3-18.2
Larghetto 60-66 18.2-16.55
Grave
Lento
Adagio 66-76 16.55-14.37

slow Adagietto
Andante 76-108 14.37-10.11

medium Andantino
Moderato 108-120 1.0.11-9.1

fast Allegretto
Allegro 120-168 9.1-6.5
Vivace
Veloce
Presto 168-2@8 6.5-5.25

very fast Prestissimo

Example: The following program creates a glissando (sliding up
and down the scale).

10 FOR 1=440 TO 1000 STEP 5
20 SOUND I, 0.5
30 NEXT
40 FOR 1=1000 TO 440 STEP -5
50 SOUND 1,7 0.5
60 NEXT

325

SPACE$
Function

Purpose: Returns a string consisting of n spaces.

Versions: Cassette

Disk

Format: v$ = SPACE$(n)

Advanced

Remarks: n must be in the range .0 to 255.

See also "SPC Function."

Compiler

Example: This example uses the SPACE$ function to print
each number Ion a line preceded by I spaces. An
additional space is inserted because BASIC puts a
space in front of positive numbers.

326

10 FOR I = 1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$;I
40 NEXT I
RUN

1
2

3
4

5

SPC
Function

Purpose: Skips n spaces in a PRINT statement.

Versions: Cassette

Disk

Format: PRINT SPC(n)

Advanced

Remarks: n must be in the range ,0 to 255.

Compiler

If n is greater than the defined width of the device,
the value used is n MOD width. SPC can be used
only with PRINT, LPRINT, and PRINT #
statements.

If the SPC function is at the end of the list of data
items, BASIC does not add a carriage return, as
though the SPC function had an implied semicolon
after it.

See also "SPACE$ Function."

Example: This example prints OVER and THERE separated
by 15 spaces.

PRINT "OVER" SPC(15) "THERE"
OVER THERE

327

SQR
Function

Purpose: Returns the square root of x.

Versions: Cassette

Format: v = SQR(x)

Disk

Advanced

Compiler

Remarks: x must be greater than or equal to zero.

In BASIC 2.£) and later releases, you can have this
calculation performed in double-precision by
specifying ID on the BASIC command line when
BASIC is initially loaded. See "Options in the
BASIC Command" in the BASIC Handbook.

Example: This example calculates the square roots of the
numbers 1£), 15, 2~, and 25.

328

10 FOR X = 10 TO 25
20 PRINT X, SQR(X)
30 NEXT

STEP 5

RUN
10
15
20
25

3.162278
3.872984
4.472136
5

STICK
Function

Purpose: Returns the x and y coordinates of two joysticks.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = STICK(n)

n is a numeric expression in the range .0 to 3
that affects the result as follows:

o returns the x coordinate for joystick A.

1 returns the y coordinate of joystick A.

2 returns the x coordinate of joystick B.

3 returns the y coordinate of joystick B.

Note: STICK(.0) retrieves all four values for the
coordinates, and returns the value for STICK(.0).
STICK(1), STICK(2), and STICK(3) get the
values previously retrieved by STICK(.0).

The range of values for x and y depends on your
particular joysticks.

329

STICK
Function
Example: This program prints 1.0.0 samples of the coordinates

of joystick B.

330

10 PRINT "Joystick BII
20 PRINT "X coordinate","y coordinate"
30 FOR J=1 TO 100
40 TEMP=STICK(0)
50 X=STICK(2): Y=STICK(3)
60 PRINT X,Y
70 NEXT

STOP
Statement

Purpose: Stops execution of a program and returns to
command level.

Versions: Cassette

Format: STOP

Disk

Advanced

Compiler
(**)

Remarks: STOP statements can be used anywhere in a program
to stop execution. When BASIC encounters a STOP
statement, it displays the following message:

Break in nnnnn

at which nnnnn is the line number where the STOP
occurred.

Unlike the END statement, the STOP statement does
not close files.

BASIC always returns to command level after it
executes a STOP. You can resume execution of the
program by issuing a CONT command. See "CONT
Command."

331

STOP
Statement
Example: This example calculates the value of TEMP, then

stops. While the program is stopped, you can check
the value of TEMP. Then you can use CONT to
resume program execution at line 4.0.

332

10 INPUT A, B
20 TEMP= A*B
30 STOP
40 FINAL = TEMP+200: PRINT FINAL
RUN
? 26, 2.1
Break in 30
PRINT TEMP
54.6

CONT
254.6

STR$
Function

Purpose: Returns a string representation of the value of x.

Versions: Cassette

Disk

Format: v$ = STR$(x)

Advanced

Remarks: x is any numeric expression.

Compiler

If x is positive, the string returned by STR$ contains
a leading blank (the space reserved for the plus sign),
For example:

? STR$(321); LEN(STR$(321))
321 4

The V AL function is complementary to STR$. See
"VAL Function."

Example: This example branches to different sections of the
program according to the number of digits in a
number that is entered. The number of digits are
counted by using STR$ to convert the number to a
string; then the program branches, based on the
length of the string.

10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N))-l GOSUB 30,100,200,300

333

STRIG
Statement and Function

Purpose: Returns the status of the joystick buttons (triggers).

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

334

As a statement:

STRIG ON

STRIG OFF

As a function:

v = STRIG(n)

n is a numeric expression in the range ,0 to 3. It
affects the value returned by the function as
follows:

if Returns -1 if button A 1 was pressed
since the last STRIG(,0) function call;
returns .0 if not.

1 Returns -1 if button A 1 is currently
pressed; returns .0 if not.

2 Returns -1 if button B 1 was pressed
since the last STRIG(2) function call;
returns ,0 if not.

3 Returns -1 if button B 1 is currently
pressed; returns ,0 if not.

STRIG
Statement and Function

In Advanced BASIC and the BASIC
Compiler, you can read four buttons from the
joysticks. The additional values for n are:

4 Returns -1 if button A2 was pressed
since the last STRIG(4) function call;
returns ,0 if not.

5 Returns -1 if button A2 is currently
pressed; returns ,0 if not.

6 Returns -1 if button B2 was pressed
since the last STRIG(6) function call;
returns ,0 if not.

7 Returns -1 if button B2 is currently
pressed; returns .0 if not.

STRIG ON must be executed before any STRIG(n)
function calls can be made. After STRIG ON, every
time the program starts a new statement, BASIC
checks to see if a button was pressed.

If STRIG is OFF, no testing takes place.

See the next entry, "STRIG(n) Statement," for
enhancements to the STRIG function in Advanced
BASIC.

335

STRIG(n)
Statement

Purpose: Enables and disables trapping of the joystick
buttons.

Versions: Cassette Disk Advanced

Compiler
(**)

Format:

Remarks:

336

STRIG(n) ON
STRIG(n) OFF
STRIG(n) STOP

n can be ,0, 2, 4, or 6 and indicates the button
to be trapped as follows:

o button Al
2 button BI
4 button A2
6 button B2

STRIG(n) ON must be executed to enable trapping
by the ON STRIG(n) statement. See "ON STRIG
Statement." After STRIG(n) ON, every time the
program starts a new statement, BASIC checks to
see if the specified button has been pressed.

If STRIG(n) OFF is executed, no testing or trapping
takes place. Even if the button is pressed, the event
is not remembered.

If a STRIG(n) STOP statement is executed, no
trapping takes place. However, if the button is
pressed it is remembered so that an immediate trap
takes place when STRIG(n) ON is executed.

STRING$
Function

Purpose: Returns a string length n whose characters all have
ASCII code m or the first character of x$.

Versions: Cassette

Disk

Advanced Compiler
*** ***

Format:

Remarks:

v$ = STRING$(n,m)

v$ = STRING$(n,x$)

n, m are in the range ,0 to 255.

x$ is any string expression.

Example: This example repeats an ASCII value of 45 to print a
string of hyphens.

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT----------

This example repeats the first character of the string
"ABCD".

10 X$="ABCD "
20 Y$=STRING$(10,X$)
30 PRINT Y$
RUN
AAAAAAAAAA

337

SWAP
Statement

Purpose: Exchanges the values of two variables.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

SWAP variablel, variable2

variable l, variable 2
are the names of two variables or array
elements.

Any type variable can be swapped (integer,
single-precision, double-precision, string), but the
two variables must be of the same type or a Type
mismatch error results.

Example: In this example, after line 3.0 is executed, A$ has the
value" ALL" and B$ has the value" ONE ".

338

10 A$=" ONE II : B$=" ALL II : C$="FOR"
20 PRINT A$;C$;B$
30 SWAP A$, B$
40 PRINT A$;C$;B$
RUN

ONE FOR ALL
ALL FOR ONE

SYSTEM
Command

Purpose: Exits BASIC and returns to DOS.

Versions: Cassette

Format: SYSTEM

Disk

Advanced

Compiler

Remarks: SYSTEM closes all files before it returns to DOS.
Your BASIC program is lost.

If you entered BASIC through a batch file from
DOS, the SYSTEM command returns you to the
batch file, which continues executing at the next
statement.

339

TAB
Function

Purpose: Tabs to position n.

Versions: Cassette

Disk

Advanced

Compiler

Format: PRINT TAB(n)

Remarks: n must be in the range 1 to 255.

If the current print position is already beyond space
n, TAB goes to position n on the next line. Space 1
is the leftmost position, and the rightmost position is
the defined WIDTH.

TAB can be used only in PRINT, LPRINT, and
PRINT # statements.

If the TAB function is at the end of the list of data
items, BASIC does not add a carriage return, as
though the TAB function had an implied semicolon
after it.

Example: TAB is used in the following example to cause the
information on the screen to line up in columns.

340

1(0 PRINT "NAME" TAB(25) "AMOUNT)) : PRINT
2(0 READ A$,B$
3(0 PRINT A$ TAB(25) B$
4(0 DATA ilL. M. JACOBSI,"$25.(O(O"
RUN
NAME AMOUNT

L. M. JACOBS $25.(0(0

TAN
Function

Purpose: Returns the trigonometric tangent of x.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = TAN(x)

x is the angle in radians. To convert degrees to
radians, mUltiply by PI/18.0, where
PI=3.141593.

In BASIC 2 . .0 and later releases, you can have this
calculation performed in double-precision by
specifying /D in the BASIC command line when
BASIC is initially loaded. See "Options in the
BASIC Command" in the BASIC Handbook.

Example: This example calculates the tangent of 45 degrees.

10 PI=3.141593
20 DEGREES=45
30 PRINT TAN(DEGREES*PI/180)
RUN

1

341

TIME$
Variable and Statement

Purpose: Sets or retrieves the current time.

Versions: Cassette Disk Advanced

Compiler
*** ***

Format: As a variable:

v$ = TIME$

As a statement:

TIME$ = x$

Remarks: For the variable (v$ = TIME$):

342

The current time is returned as an 8-character string.
The string is of the form hh:mm:ss, where hh is the
hour (0.0 to 23), mm is the minutes (.0.0 to 59), and
ss is the seconds (0.0 to 59). (You may have set the
time in DOS before you invoked BASIC.)

For the statement (TIME$ = x$):

The current time is set. x$ is a string expression
indicating the time to be set. x$ can be given in one
of the following forms:

hh Set the hour in the range .0 to 23.
Minutes and seconds default to .0.0.

hh:mm Set the hour and minutes. Minutes must
be in the range .0 to 59. Seconds default
to .0.0.

hh:mm:ss Set the hour, minutes, and seconds.
Seconds must be in the range .0 to 59.

TIME$
Variable and Statement

A leading zero can be omitted from any of the above
values, but you must include at least one digit. For
example, if you want to set the time as a half hour
after midnight, you can enter

TIME$=" ,0:3,0"

but not

TIME$ =":3,0"

If any of the values are out of range, an Illegal
function call error is issued. The previous time is
retained. If x$ is not a valid string, a Type mismatch
error results.

Example: The following program continuously displays the
time on the screen.

10 CLS
20 LOCf\TE 10,15
30 PRINT TIME$
40 GOTO 20

343

TIMER
Function

Purpose: Returns a single-precision number representing the
number of seconds elapsed since midnight or a
system reset. (For BASIC 2 . .0 and later releases.)

Versions: Cassette Disk Advanced Compiler
*** ***

Format: v=TIMER

Remarks: Fractional seconds are calculated to the nearest
degree possible. TIMER is a read-only function.

Example: This example illustrates how TIMER resets after
midnight. Values may be slightly different for your
system.

344

10 TIME$=1I23:59:59 11

20 FOR 1=1 TO 20
30 PRINT IITIME$= II ;TIME$; II TIMER=" ;TIMER
40 NEXT
RUN

TIME$= 23:59:59 TIMER= 86399.06
TIME$= 23:59:59 TIMER= 86399.11
TIME$= 23:59:59 TIMER= 86399.18

TIME$= 24:00:00 TIMER= 0
TIME$= 00:00:00 TIMER= .05
TIME$= 00:00:00 TIMER= .16
TIME$= 00:00:00 TIMER= .21

TRON and TROFF
Commands

Purpose: Traces the execution of program statements.

Versions: Cassette

Format: TRON

TROFF

Disk

Advanced

Compiler
(**)

Remarks: As an aid in debugging, the TRON command (which
can be entered from within a program or in direct
mode) enables a trace flag that prints each line
number of the program as it is executed. The
numbers appear enclosed in square brackets. The
trace is turned off by the TROFF command.

Example: This example uses TRON and TROFF to trace
execution of a loop. The numbers in brackets are
line numbers; the numbers not in brackets at the end
of each line are the values of J, K, and L, which are
printed by the program.

10 K=HJ
20 FOR 1=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10
60 NEXT
70 END
TRON
RUN
[10J[20J[30J[40J 0 10 20
[50J[60J[30J[40J 0 20 30
[50J[60J[70J
TROFF

345

USR
Function

Purpose: Calls the indicated assembly language subroutine
with the argument argo

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

346

v = USR[n](arg)

n is an integer in the range £}-9 and corresponds
to the digit supplied with the DEF USR
statement for the desired routine. If n is
omitted, USR.0 is assumed. See "DEF USR
Statement. "

arg is any numeric expression or string variable
that is the argument to the assembly language
subroutine. If the subroutine does not require
an argument, arg must still be supplied as a
dummy argument.

The CALL statement is another way to interface
with assembly language subroutines. See "CALL
Statement." and also Appendix B, "Assembly
Language Subroutines," for more information.

When the USR function is called, register AL
contains a value that specifies the type of argument
supplied. The value in AL will be one of the
following:

USR
Function

Value in AL Type of Argument

2 2-byte integer (twos complement)
3 String
4 Single-precision number
8 Double-precision number

If the argument is a string, the DX register points to
the 3-byte string descriptor. See Appendix B,
"Assembly Language Subroutines," under "How
BASIC Interfaces with Assembly Language
Subroutines" for information on the string
descriptor.

If the argument is a number and not a string, the
value of the argument is placed in the Floating Point
Accumulator (FAC), which is an 8-byte area in
BASIC's data space. In this case, the BX register
contains the offset within the BASIC data space to
the fifth byte of the 8-byte F AC. For the following
examples, assume that the FAC is in bytes hex 49F
through hex 4A6; that is, BX contains hex 4A3:

If the argument is an integer:

• Hex 4A4 contains the upper 8 bits of the
argument.

• Hex 4A3 contains the lower 8 bits of the
argument.

If the argument is a single-precision number:

• Hex 4A6 contains the exponent minus 128, and
the binary point is to the left of the most
significant bit of the mantissa. Hex 4A5 contains

347

USR
Function

348

the highest 7 bits of the mantissa with the leading
1 suppressed (implied). Bit 7 is the sign of the
number (,0 = positive; 1 = negative).

• Hex 4A4 contains the middle 8 bits of the
mantissa.

Hex 4A3 contains the lowest 8 bits of the
mantissa.

If the argument is a double-precision number:

Hex 4A3 through hex 4A6 are the same as
described under single-precision floating-point
number in the preceding paragraph.

Hex 49F through Hex 4A2 contain 4 more bytes
of the mantissa (hex 49F contains the lowest 8
bits).

Usually, the value returned by a USR function is the
same type (integer, string, single-precision, or
double-precision) as the argument that was passed to
it. However, a numerical argument of the function,
regardless of its type, can be forced to an integer
value by calling the FRCINT routine to get the
integer equivalent of the argument placed into
register BX.

If the value being returned by the function is to be an
integer, place the resulting value into the BX register.
Then make a call to MAKINT just before the
intersegment return. This passes the value back to
BASIC by placing it into the FAC.

USR
Function

Example: The methods for accessing FRCINT and MAKINT
are shown in the following example:

10 DEFINT A-Z
20 OPTION BASE 1
30 X=0: Y=0: Z=0:
40 DIM ARRAY(&H14)
50 Z = VARPTR(ARRAY(l))
60 BLOAD"SUBRT.COM",Z
70 DEF USR0= Z
80 X=5
90 Y=USR0(X)
100 PRINT Y

The following assembly language subroutine has
been loaded into an integer array. This subroutine
doubles the argument passed and returns an integer
result.

349

USR
Function

350

,
AAA

AAA

,
RSEG

FRCINT

MAKINT
RSEG

,

PAGE,132
TITLE SUBRT.ASM

BLOAO header
SEGMENT PARA PUBLIC 'CODE'
DB
OW
OW
ENDS

(JFDH
(J,(J
TRAILER-HEADER

SEGMENT AT (JF6(J(JH ;base of BASIC ROM
ORG 3 ;offset to force integer
LABEL FAR
ORG 7 ;offset to make integer
LABEL FAR
ENDS

CSEG SEGMENT BYTE PUBLIC 'CODE'
HEADER EQU $
USRPRG PROC FAR ;entry point
;call FRCINT and force argument
;in FAC into [BX]

DB 9AH
OW FRCINT ;offset
OW (JF6(J(JH ;segment id
ADD BX,BX ;[BX]=[BX]*2

;call MAKINT and put integer result
;in [BX] into FAC

DB 9AH
OW MAKINT ;offset
OW (JF6(J(JH ;segment id
RET ;intersegment return

USRPRG ENOP
TRAILER EQU $
CSEG ENDS

END

USR
Function

Note: FRCINT and MAKINT perform
intersegment returns. Make sure that the calls to
FRCINT and MAKINT are defined by aFAR
procedure.

351

VAL
Function

Purpose: Returns the numerical value of string x$.

Versions: Cassette

Disk

Advanced

Compiler

Format: v = V AL(x$)

Remarks: x$ is a string expression.

The VAL function strips blanks, tabs, and line feeds
from the argument string to determine the result.
For example,

VAL(II -3")

returns -3.

If the first characters of x$ are not numeric,
VAL(x$) returns ,0 (zero).

See "STR$ Function" for numeric to string
conversion.

Example: In this example, VAL is used to extract the house
number from an address.

352

PRINT VAL(1I3408 SHERWOOD BLVD.II)
3408

VARPTR
Function

Purpose: Returns the offset to the current segment of memory
of the variable.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

v = VARPTR(variable)

variable is the name of a numeric or string
variable or array element in your
program. A value must be assigned to
variable before the call to VARPTR, or
an Illegal function call error results.

V ARPTR returns an offset in the range .0 to 65535.
This number is the offset into BASIC's data segment
of the first byte of data identified with variable. The
format of this data is described in Appendix B,
Memory Information, in the BASIC Handbook,
under "How Variables Are Stored."

Note: All simple variables should be assigned
before calling VARPTR for an array, because
arrays will be relocated whenever a new simple
variable is assigned.

VARPTR is usually used to get the offset of a
variable or array to BASIC's data segment so it can
be used to access assembly language subroutines and
pass variables or arrays to them.

353

VARPTR
Function
Example: This example uses VARPTR to get the data from a

variable. In line 3,0, P gets the address of the data.
Integer data is stored in two bytes, with the less
significant byte first. The actual value stored at
location P is calculated in line 4.0. The bytes are
read with the PEEK function, and the second byte is
multiplied by 256 because it contains the high-order
bits.

354

10 DEFINT A-Z
20 DATAl=500
30 P=VARPTR(DATA1)
40 V=PEEK(P) + 256*PEEK(P+1)
50 PRINT V

VARPTR$
Function

Purpose: Returns a character form of the offset of a variable
in memory. It is primarily for use with PLAY and
DRAW in programs that will be compiled.

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

*** ***

v$ = V ARPTR$ (variable)

variable is the name of a variable in the program.

Note: All simple variables should be assigned
before calling VARPTR$ for an array element,
because arrays are relocated whenever a new
simple variable is assigned.

V ARPTR$ returns a 3-byte string in the form:

Byte ,0 Byte 1 Byte 2

type low byte of high byte of
variable address variable address

type indicates the variable type:

2 integer
3 string
4 single-precision
8 double-precision

355

VARPTR$
Function

356

The returned value is the same as:

CHR$(type)+MKI$(VARPTR(variable))

You can use V ARPTR$ to indicate a variable name
in the command string for PLAY or DRAW. For
example:

Method One Alternative Method

PLA Y "XA$;" PLA Y "X" + V ARPTR$ (A$)
PLAY "0=1;" PLAY "0=" + V ARPTR$(I)

VIEW
Statement

Purpose: Defines a rectangular subset of the screen onto
which WINDOW and WINDOW contents are
mapped. (For BASIC 2 . .0 and later releases.)

Versions: Cassette Disk Advanced

Compiler

Format:

Remarks:

Graphics mode only.

VIEW [[SCREEN] [(xl,yl)- (x2,y2) [,[color]
[,[boundary]]]]]

(xl,yl)-(x2,y2)

color

are the upper-left (xl,yl) and the
lower-right (x2,y2) coordinates of
the viewport defined. The x and y
coordinates must be within the
actual limits of the screen or an
Illegal function call error occurs.
For more information, see
"Specifying Coordinates" under
"Graphics Modes" in Chapter 3
of the BASIC Handbook.

lets you fill the defined viewport
with color. If color is omitted, the
viewport is not filled. color is an
integer expression that chooses an
attribute from the attribute range
for the current screen mode. In
medium resolution, the color is the
current one for that attribute as
defined by the COLOR
statement. Four attributes (.0-3)

357

VIEW
Statement

358

boundary

are available in medium
resolution; in high resolution, two
attributes (,0-1) are available.
Zero (0) is always the attribute
for the background. The default
foreground attribute is always the
maximum attribute for that screen
mode: 3 in medium resolution; 1
in high resolution.

lets you draw a boundary line
around the viewport (if space is
available). If boundary is omitted,
no boundary is drawn. boundary is
an integer expression in the range
described in color.

It is important to note that VIEW sorts the x and y
argument pairs, placing the smaller values for x and y
first. For example:

VIEW (100,100)-(5,5)

becomes:

VIEW (5,5)-(100,100)

Another example:

VIEW (310,100)-(200,150)

becomes:

VIEW (200,100)-(310,150)

All possible pairings of x and yare valid. The only
restrictiop is that xl cannot equal x2 and y 1 cannot
equal y2.~ The viewport cannot be larger than the
viewing surface.

VIEW
Statement

If the SCREEN argument is omitted, all points
plotted are relative to the viewport. That is, xl and
yl are added to the x and y coordinates before
plotting the point on the screen. For example, if:

10 VIEW (10,10)-(200,100)

is executed, the point plotted by PSET (0,.£}),3 is at
the actual screen location 1,0,1,0.

If the SCREEN argument is included, all points
plotted are absolute and can be inside or outside the
screen limits. However, only those points within the
viewport limits are visible. For example if:

10 VIEW SCREEN (10,10)-(200,100)

is executed, the point plotted by PSET (,0,,0),3 does
not appear on the screen because ,0,,0 is outside the
viewport. PSET (1,0,1,0),3 is within the viewport
and places the point in the upper-left corner.

VIEW with no arguments defines the entire screen as
the viewport.

You can define multiple viewports, but only one
viewport can be active at a time. RUN and change
in SCREEN attributes disable the viewports.

VIEW used with WINDOW allows you to scale
images. See the second example. See also
"WINDOW Statement."

Note: When VIEW is used, the CLS statement
clears only the current viewport. To clear the
entire screen, you must use VIEW to disable the
viewports, and then use CLS to clear the screen.

359

VIEW
Statement

With viewports, CLS does not move the cursor to
the home position. Use Ctrl-Home to send the
cursor home and clear the screen.

Examples: The following example defines four viewports:

360

10 SCREEN I:VIEW:CLS:KEY OFF
20 VIEW (1,1)-(151 ,91),,1
30 VIEW (165,1)-(315,91),,2
40 VIEW (1,105)-(151,195),,2
50 VIEW (165,105)-(315,195),,1
60 LOCATE 2,4:PRINT "Viewport 1"
70 LOCATE 2,25:PRINT "Viewport 2"
80 LOCATE 15,4:PRINT "Viewport 3"
90 LOCATE 15,25:PRINT "Viewport 4"
100 VIEW (1,1)-(151,91):GOSUB 1000
200 VIEW (165,1)-(315,91):GOSUB 2000
300 VIEW (1,105)-(151,195):GOSUB 3000
400 VIEW (165,105)-(315,195):GOSUB 4000
900 END
1000 CIRCLE (65,50),30,2
1010 'Draw a circle in first viewport
1020 RETURN
2000 LINE (45,50)-(90,75),I,B
2010 'Draw a box in second viewport
2020 RETURN
3000 FOR 0=0 TO 360:DRAW Ita=d;nu20":NEXT
3010 'Draw spokes in third viewport
3020 RETURN
4000 PSET(60,50),2:DRAW l eI5;fI5;130"
4010 'Draw a triangle in fourth viewport
4020 RETURN

VIEW
Statement

This example demonstrates scaling with VIEW.

10 KEY OFF:CLS:SCREEN 1,0:COLOR 0,0
20 WINDOW SCREEN(320,0)-(0,200)
30 GOTO 80
40 C=l
50 CIRCLE (160,100),60,C",5/18
60 CIRCLE (160,100),60,C",1
70 RETURN
80 GOSUB 460:FOR 1=1 TO 1500:NEXT I: CLS
90 VIEW (1,1).,.(160,90),,2:GOSUB 40
100 GOTO 100

361

WAIT
Statement

Purpose: Suspends program execution while monitoring the
status of a machine input port.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

362

WAIT port, nLm]

port is the port number, in the range ,0 to 65535.

n, m are integer expressions in the range ,0 to 255.

See the IBM Personal Computer Technical Reference
for a description of valid port numbers (I/O
addresses) .

The WAIT statement suspends program execution
until a specified machine input port develops a
specified bit pattern.

The data read at the port is XORed with the integer
expression m and then ANDed with n. If the result is
zero, BASIC loops back and reads the data at the
port again. If the result is nonzero, execution
continues with the next statement. If m is omitted, it
is assumed to be zero.

The WAIT statement lets you test one or more bit
positions on an input port. You can test the bit
position for either a 1 or a ,0. The bit positions to be
tested are specified by setting 1 's in those positions
in n. If you do not specify m, the input port bits are

WAIT
Statement

tested for 1 'so If you specify m, a 1 in any bit
position in m (for which there is a 1 bit in n) causes
WAIT to test for a ,0 for that input bit.

When executed, the WAIT statement loops, testing
those input bits specified by 1 's in n. If anyone of
those bits is 1 (or ,0 if the corresponding bit in m is
1), then the program continues with the next
statement. Thus WAIT does not wait for an entire
pattern of bits to appear, but only for one of them to
occur.

Note: It is possible to enter an infinite loop with
the WAIT statement. You can do a Ctrl-Break
or a System Reset to exit the loop.

Example: To suspend program execution until port 32 receives
a 1 bit in the second bit position:

100 WAIT 32,2

363

WHILE and WEND
Statements

Purpose: Executes a series of statements in a loop as long as a
given condition is true.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

364

WHILE expression

(loop statements)

WEND

expression is any numeric expression.

If expression is true (not zero), loop statements
execute until the WEND statement is encountered.
BASIC then returns to the WHILE statement and
checks expression. If expression is still true, the
process is repeated. If it is not true, execution
resumes with the statement following the WEND
statement.

WHILE-WEND loops can be nested to any level.
Each WEND matches the most recent WHILE. An
unmatched WHILE statement causes a WHILE
without WEND error, and an unmatched WEND
statement causes a WEND without WHILE error.

WHILE and WEND
Statements

Example: The following example sorts the elements of the
array A into alphabetical order. A was defined with
J elements.

10 'bubble sort array A
20 FLIPS=l 'force first pass thru loop
30 WHILE FLIPS
40 FLIPS=0
50 FOR 1=1 TO J-1
60 IF A(I»A(I+1) THEN

SWAP A(I),A(I+l): FLIPS=l
70 NEXT I
80 WEND

365

WIDTH
Statement

Purpose: Sets the output line width in number of characters.
After outputting the indicated number of characters,
BASIC adds a carriage return.

Versions: Cassette

Disk

Advanced

Compiler
(**)

Format:

Remarks:

366

WIDTH size

WIDTH device,size

WIDTH #filenum,size

size is a numeric expression in the range .0 to
255. This is the new width. WIDTH.0 is
the same as WIDTH 1.

device is a string expression for the device
identifier. Valid devices are SCRN:,
LPTl:, LPT2:, LPT3:, COMl:, or
COM2:.

filenurn is a numeric expression in the range 1 to
15. This is the number of a file opened to
an output device.

Depending on the device specified, the following
actions are possible:

WIDTH size or WIDTH "SCRN:" size
Sets the screen width. Only 4.0- or
8 .0-column widths are allowed. WIDTH
4.0 is not valid for the IBM Monochrome
Display.

WIDTH
Statement

If the screen is in medium-resolution
graphics mode (as occurs with a SCREEN
1 statement), WIDTH 8~ forces the
screen into high resolution (as with a
SCREEN 2 statement). The reverse if
true when in high resolution.

Note: Changing the screen width
causes the screen to be cleared, and
sets the border screen color to black.

WIDTH device,size
Is a deferred width assignment for the
device. This form of width stores the new
width value without changing the current
width setting. A subsequent OPEN to the
device will use this value for width while
the file is open. The width does not
change immediately if the device is already
open.

Note: LPRINT, LLIST, and
LIST, "LPTn" do an implicit OPEN
and are therefore affected by this
statement.

WIDTH #filenum,size
The width of the device associated with
filenum is immediately changed to the new
size specified. This allows the width to be
changed at will while the file is open.
This form of WIDTH has meaning only
for LPTl: in Cassette BASIC. Disk
BASIC and Advanced BASIC also allow
LPT2:, LPT3:, COMl:, and COM2:.
Note that the number sign (#) is required.

367

WIDTH
Statement

368

Any value entered outside the ranges indicated
results in an Illegal function call error. The previous
value is retained.

WIDTH has no effect for the keyboard (KYBD:) or
cassette (CAS 1:).

The width for each printer defaults to 8,0 when
BASIC is started. The maximum width for the IBM
8,0 CPS Matrix Printer is 132. However, no error is
returned for values between 132 and 255.

It is up to you to set the appropriate physical width
on your printer. Some printers are set by sending
special codes; some have switches. For the IBM 8,0
CPS Matrix Printer you should use LPRINT
CHR$ (15); to change to a condensed typestyle when
printing at widths greater than 8,0. Use LPRINT
CHR$(18); to return to normal. The IBM 8,0 CPS
Matrix Printer is set up to automatically add a
carriage return if you exceed the maximum line
length.

Specifying a width of 255 disables line folding. This
has the effect of "infinite" width. WIDTH 255 is
the default for communications files.

Changing the width for a communications file does
not change either the receive or the transmit buffer;
it just causes BASIC to send a carriage return
character after every size character.

Changing screen mode affects screen width only
when moving between SCREEN 2 and SCREEN 1
or SCREEN,0. See "SCREEN Statement."

WIDTH
Statement

Example: In this example, line 1.0 stores a printer width of 75
characters per line. Line 2.0 opens file #1 to the
printer and sets the width to 75 for subsequent
PRINT #1, ... statements. Line 6.02.0 changes the
current printer width to 4.0 characters per line.
Notice that the WIDTH value must come before the
OPEN statement.

10 WIDTH ILPT1:",75
20 OPEN ILPT1:" FOR OUTPUT AS #1

6020 WIDTH #1,40

These examples change screen mode and width.

SCREEN 1,0
WIDTH 80
WIDTH 40
SCREEN 0,1
WIDTH 80

ISet to med-res color graphics
IGo to hi-res graphics
IGo back to medium res
IGo to 40x25 text color mode
IGo to 80x25 text color modp

369

WINDOW
Statement

Purpose: Redefines the coordinates of the viewport. (For
BASIC 2.,0 and later releases.)

Versions: Cassette Disk Advanced

Compiler

Format:

370

Graphics mode only.

WINDOW [[SCREEN] (xl,yl)- (x2,y2)]

(xl,yl),{x2,y2)
are programmer-defined coordinates
called world coordinates. These
coordinates are single-precision,
floating-point numbers. They define the
world coordinate space that will be
mapped into the the physical coordinate
space, as defined by the VIEW
statement. See "VIEW Statement."

WINDOW allows you to draw objects in space
("world coordinate system") and not be bounded by
the limits of the screen ("physical coordinate
system"). This is done by specifying the world
coordinate pairs (xl,yl) and (x2,y2). BASIC then
converts world coordinate pairs for subsequent
display within the viewport. To make this
transformation from world space to the physical
space of the screen, BASIC must know what portion
of the unbounded world coordinate space contains
the information you want to be displayed. This
rectangular region in the world coordinate space is
called a window.

WINDOW
Statement

In the physical coordinate system, if you run the
following:

NEW
SCREEN 2

the screen appears with standard coordinates as:

0,0

1
320,0 639,0

y increases

320,100

0,199 320,199 639,199

When the SCREEN attribute is omitted, the screen is
viewed in true Cartesian coordinates. For example,
given:

WINDOW (-1,-1)-(1,1)

the screen appears as:

-1,1 0,1 1,1

y increases

1 0,0

y decreases

-1, -1 0, -1 1,-1

Note that the y coordinate is inverted so that (xJ,yJ)
is the lower-left coordinate and (x2,y2J is the
upper-right coordinate.

371

WINDOW
Statement

372

When the SCREEN attribute is included, the
coordinates are not inverted so that (xl,y 1) is the
upper-left coordinate and (x2,y2) is the lower-right
coordinate. For example:

WINDOW SCREEN (-1,-1)-(1,1)

defines the screen to look like this:

-1,-1 0,-1

Y decreases

1 0,0

y increases

-1,1 0,1

'" 1, -1

1 , 1

It is important to note that WINDOW sorts the x and
y argument pairs, placing the smaller values for x and
y first. For example:

WINDOW (100,100)-(5,5)

becomes:

WINDOW (5,5)-(100,100)

Another example:

WINDOW (-4,4)-(4,-4)

becomes:

WINDOW (-4,-4)-(4,4)

WINDOW
Statement

All possible pairings of x and yare valid. The only
restriction is that xl cannot equal x2 andyl cannot
equaly2.

WINDOW also allows you to "zoom" and "pan."
Using a window with coordinates larger than an
image displays the entire image, but the image is
small and blank spaces appear on the sides of the
screen~ Choosing window coordinates smaller than
an image forces clipping and allows only a portion of
the image to be displayed and magnified. By
specifying small and large window sizes, you can
zoom in until an object occupies the entire screen, or
you can zoom out until the image is just a spot on the
screen.

RUN, SCREEN, and WINDOW with no attributes
disable any WINDOW definitions and return the
screen to physical coordinates.

Examples: The following example shows clipping using
WINDOW.

10 SCREEN 2:CLS
20 WINDOW (-6,-6)-(6,6)
30 CIRCLE (4,4),5,1
40 'the circle is large and only part is visible
50 WINDOW (-100,-100)-(100,100)
60 CIRCLE (4,4),5,1 'the circle is very small
70 END

373

WINDOW
Statement

374

The following example shows the effect of zooming
using WINDOW.

10 KEY OFF:CLS:SCREEN 1,0
r)n. 1
~\O

30 GOTO 160
40 1=====================
50 'procedure display
60 1

70 LINE (X,0)-(-X.0)",&HAA00 Icreate x axis
80 LINE (0,X)-(0,-X)",&HAA00 Icreate y axis
90 1

100 CIRCLE (X/2,X/2),R 'circle has radius r
110 FOR P=l TO 50:NEXT P 'delay loop
120 1
130 RETURN
140 1====================
150 1
160 X=1000:WINDOW (-X,-X)-(X,X):R=20
170 Icreate a graph with large coord range
180 GOSUB 50:FOR P=l TO 1000:NEXT P:CLS
190 1
200 X=60:WINDOW (-X,-X)-(X,X):R=20
210 'smaller coord range increase circle size
220 GOSUB 50:FOR P=l TO 1000:NEXT P:CLS
230 1
240 X=100:WINDOW (-5,-5)-(X,X):R=20
250 'modify window to show only portion of axes
260 GOSUB 50:FOR P=l TO 1000:NEXT P:CLS
270 1

280 PRINT II •••• an examplell:PRINT Ii
• of zooming .. 11

290 FOR P=l TO 1500:NEXT P
300 CLS:T=-50:U=100:X=U
310 FOR 1=1 TO 45
320 T=T + l:U=U - 1:X=X-1:R=20
330 WINDOW (T,T)-(U,U):CLS:GOSUB 50
340 NEXT I
350 END

WRITE
Statement

Purpose: Outputs data to the screen.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

WRITE [list of expressions]

list of expressions
is a list of numeric and/or string
expressions, separated by commas or
semicolons.

If the list of expressions is omitted, a blank line is
displayed. If the list of expressions is included, the
values of the expressions are displayed on the screen.

When the values of the expressions are displayed,
each item is separated from the one before it by a
comma. Strings are delimited by quotation marks.
After the last item in the list is printed, BASIC adds
a carriage return/line feed.

WRITE is similar to PRINT. The difference
between WRITE and PRINT is that WRITE inserts
commas between the items as they are displayed and
delimits strings with quotation marks. Also, positive
numbers are not preceded by blanks.

375

WRITE
Statement
Example: The following example shows how WRITE displays

numeric and string values.

376

10 A=80: 8=90: C$=II.THAT'S ALLII
20 WRITE A,B,C$
RUN
80,90,II.THAT 'S ALLII

WRITE #
Statement

Purpose: Writes data to a sequential file.

Versions: Cassette

Disk

Advanced

Compiler

Format:

Remarks:

WRITE #filenum, list of expressions

filenum is the number under which the file
was opened for output.

list of expressions
is a list of string and/or numeric
expressions, separated by commas or
semicolons.

The difference between WRITE # and PRINT # is
that WRITE # inserts commas between the items as
they are written and delimits strings with quotation
marks. Therefore, it is not necessary for you to put
explicit delimiters in the list. Also, WRITE # does
not put a blank in front of a positive number. A
carriage return/line feed sequence is inserted after
the last item in the list is written.

Example: Let A$=".CAMERA" and B$=".936.04-1 If. The
statement:

WRITE #l,A$,B$

writes the following image to the file.

lIoCAMERAII~II.93604-111

377

WRITE #
Statement

A subsequent INPUT # statement:

INPUT #l,A$,B$

inputs ".CAMERA" to A$ and ".936.04-1" to B$.

378

Appendixes

Contents

Appendix A. Error Messages A-3

Appendix B. Assembly Language Subroutines B-1
Reference Material B-1

Deciding Where In Memory To Load Your
Subroutines B-2

DOS-Loaded Subroutines for BASIC B-2
Features B-3
Considerations B-3

Inside the BASIC Data Segment B-3
Features B-4
Considerations B-4

Beyond the BASIC Data Segment B-5
Features B-5
Considerations B-5

How to Load and Call Your Assembly Language
Subroutines B-6

Poking or Assigning a Subroutine into Memory B-6
Features B-6
Considerations B-7

BLOADing the Subroutine from a File B-I0
Features B-11
Considerations B-11

A Sample Subroutine B-12
Sample Subroutine Explanation B-13

Loading the Subroutine as a Resident Extension of
DOS B-19

Features B-19
Considerations B-19

A-I

How BASIC Interfaces with Assembly
Language Subroutines B-24

The CALL Statement B-26

Memory Map B-29

Appendix C. Communications C-l
Opening a Communications File C-l
Communication 1/0 C-l

GET and PUT for Communications Files . C-2
110 Functions C-2
INPUT$ Function C-3

A Sample Program C-3
Notes on the Program C-5

Operation of Control Signals C-6
Control of Output Signals with OPEN C-6
Use of Input Control Signals C-6
Testing for Modem Control Signals C-7
Direct Control of Output Control Signals C-8
Communication Errors C-9

Appendix O. ASCII Character Codes 0-1

Extended Codes 0-6

Appendix E. Scan Codes E-l

A-2

Appendix A. Error Messages

If BASIC detects an error that causes a program to stop
running, an error message is displayed. You can trap
and test errors in a BASIC program using the ON
ERROR statement and the ERR and ERL variables.
For complete explanations of ON ERROR, ERR, ERL,
ERDEV, and ERDEV$, see those entries in this
manual.

This appendix lists alphabetically all BASIC error
messages with an explanation of each message, as well
as some suggestions for recovering from errors. The
separate BASIC Quick Reference lists all messages in
order by their associated numbers.

Number Message

73 Advanced feature
Your program specified an Advanced BASIC
feature while you are using Disk BASIC.

Start Advanced BASIC and rerun your
program.

54 Bad file mode
You tried to use PUT or GET with a
sequential or a closed file; or to execute an
OPEN with a file mode other than input,
output, append, or random.

Make sure the OPEN statement was entered
and executed properly. GET and PUT
require a random file.

This error also occurs if you try to merge a
file that is not in ASCII format. In this case,

A-3

A-4

make sure you are merging the right file. If
necessary, load the program and save it
again, using the A option.

64 Bad file name
An invalid form was used for the filename
with KILL, NAME, or FILES.

Check "Naming Files" in Chapter 3 of the
BASIC Handbook for information on valid
filenames, and correct the filename in error.

52 Bad file number
A statement specified a file number of a file
that is not open, or the file number is out of
the range of possible file numbers specified
at initialization. Or, the device name in the
file specification is too long or invalid, or the
filename is too long or invalid.

Make sure the file you wanted was opened
and entered correctly in the statement.
Check to see that you have a valid file
specification. See "Naming Files" in
Chapter 3 of the BASIC Handbook for
information on file specifications.

63 Bad record number
In a PUT or GET (file) statement, the record
number is either equal to zero or greater than
the maximum allowed (32767 in BASIC
versions earlier than 2.0). GET and PUT
have subsequently been enhanced to allow
record numbers in the range 1 to 16,777,215
to accommodate large files with short record
numbers.

Correct the PUT or GET statement to use a
valid record number.

17 Can't continue
You tried to use CaNT to continue a
program that:

Halted because of an error

Was changed during a break in execution

Does not exist

Make sure the program is loaded, and use
RUN to run it.

Can't continue after SHELL
You shelled to a child process that
terminated and remained resident. A child
process cannot remain resident because it
prevents BASIC from recovering its
workspace, causing the program to halt.

69 Communication buffer overflow
A communication input statement was
executed, but the input buffer was already
full.

Use an ON ERROR statement to retry the
input when this condition occurs.
Subsequent inputs try to clear this fault
unless characters continue to be received
faster than the program can process them. If
this happens there are several possible
solutions:

Increase the size of the communications
buffer using the IC: option when you
start BASIC.

Implement a "hand-shaking" protocol
with the other computer to tell it to stop
sending long enough for you to catch up.
See the example in Appendix C,
"Communications. "

• Use a lower baud rate to transmit and
receive.

A-5

A-6

25 Device fault
A hardware error indication was returned by
an interface adapter. In Cassette BASIC,
this occurs only when a fault status is
returned from the printer interface adapter.

This message can also occur when data is
transmitted to a communications file. In this
case, it indicates that one or more of the
signals being tested (specified on the OPEN
"COM ... statement) were not found in the
specified period of time.

57 Device 110 error
An error occurred on a device IIO operation.
DOS cannot recover from the error.

When receiving communications data, this
error can occur from overrun, framing,
break, or parity errors. For data with 7 or
less bits, the eighth bit is turned on in the
byte in error.

24 Device timeout
BASIC did not receive information from an
input/ output device within a predetermined
amount of time. In Cassette BASIC, this
occurs only while the program is trying to
read from the cassette or write to the printer.

For communications files, this message
indicates that one or more of the signals
tested with OPEN "COM ... was not found in
the specified period of time.

Retry the operation.

68 Device unavailable
You tried to open a file to a device that is not
installed. Either you do not have the
hardware to support the device (such as
printer adapters for a second or third
printer), or you have disabled the device.

(For example, you may have used /C:O in the
BASIC command line to start Disk BASIC.
That would disable communications devices.)

Make sure the device is installed correctly. If
necessary, Return to DOS where you can
reenter the BASIC command line.

66 Direct statement in file
A direct statement was encountered during a
loading or chaining operation to an ASCII
format file. The LOAD or CHAIN is
terminated.

The ASCII file should consist only of
statements preceded by line numbers. This
error may occur because of a line feed
character in the input stream.

61 Disk full
All disk storage space is in use. Files are
closed when this error occurs.

If there are files on the disk that you no
longer need, erase them or use a new disk.
Then retry the operation or rerun the
program.

72 Disk media error
The controller attachment card detected a
hardware or media fault. Usually this means
that the disk has gone bad.

Copy any existing files to a new disk and
reformat the bad disk. If there are problems
during reformatting, the disk should be
discarded.

A-7

A-8

71 Disk not ready
The disk drive door is open or a disk is not in
the drive.

Place the correct disk in the drive and
continue the program.

70 Disk write protect
You tried to write to a disk that is
write-protected.

Make sure you are using the right disk. If so,
remove the write-protect tab; then retry the
operation.

This error can also occur because of a
hardware failure.

11 Division by zero
In an expression, you tried to divide by zero,
or you tried to raise zero to a negative power.

It is not necessary to correct this condition,
because the program continues running.
Machine infinity with the sign of the number
being divided is the result of the division; or,
positive machine infinity is the result of the
exponentiation. This error cannot be trapped
using ON ERROR.

10 Duplicate definition
You tried to define the size of the same array
twice. This can happen in one of several
ways:

• The same array is defined in two DIM
statements.

• The program encounters a DIM
statement for an array after the default
dimension of lOis established for that
array.

• The program sees an OPTION BASE
statement after an array has been
dimensioned, either by a DIM statement
or by default.

Move the OPTION BASE statement to make
sure it is executed before you use any arrays;
or, fix the program so each array is defined
only once.

50 Field overflow
A FIELD statement tried to allocate more
bytes for the record length of a random file
than were specified in the OPEN statement.
Or, the end of the FIELD buffer was
encountered during sequential 110 (PRINT
#, WRITE #, INPUT #) to a random file.

Check the OPEN statement and the FIELD
statement to make sure they correspond. If
you are doing sequential 110 to a random
file, make sure that tqe length of the data
read or writtel1 does not exceed the record
length of th~ random file.

58 File already exists
The filename specified in a NAME command
duplicates an existing filename on the disk.

Retry the NAME command using a different
name.

55 File already open
You tried to open a file for sequential output
or append, and the file is already open; or,
you tried to use KILL on a file that is open.

Make sure you execute only one OPEN to a
file if you are writing to it sequentially.
Close a file before you use KILL.

A-9

A-to

53 File not found
A LOAD, KILL, NAME, FILES, or OPEN
references a file that does not exist on the
disk in the specified drive.

Verify that the correct disk is in the drive
specified, and that the file specification was
entered correctly. Then retry the operation.

26 FOR without NEXT
A FOR was encountered without a matching
NEXT. That is, a FOR loop was active
when the physical end of the program was
reached.

t2 Illegal direct
You tried to enter a statement in direct mode
that is invalid in that mode (such as DEF
FN).

The statement should be entered as part of a
program line.

5 Illegal function call
A parameter that is out of range was passed
to a system function. The error can also
occur as the result of:

• Using a negative or an unreasonably large
subscript

• Trying to raise a negative number to a
power that is not an integer

• Calling a USR function before defining
the starting address with DEF USR

• Using a negative record number on GET
or PUT (file)

• Using an improper argument to a function
or statement

• Trying to list or edit a protected BASIC
program

• Trying to delete line numbers that don't
exist

See "BASIC Commands, Statements, and
Functions" in this manual for information
about the particular statement or function.

Incorrect DOS version
The command you just entered requires a
different version of DOS from the one you
are running.

62 Input past end
This is an end-of-file error. An input
statement was executed for a null (empty)
file, or it was executed after all the data in a
sequential file was already input.

To avoid this error, use the EOF function to
detect the end of a file.

This error also occurs if you try to read from
a file that was opened for output or append.
If you want to read from a sequential output
(or append) file, you must close it and open
it again for input.

51 Internal error
An internal malfunction occurred in BASIC.

Recopy your disk. Check the hardware,
following instructions in the Guide to
Operations and retry the operation. If the
error recurs, note the conditions under which
the message appeared and notify the place of
purchase.

A-II

A-12

23 Line buffer overflow
You tried to enter a line with too many
characters.

If there are several statements on the line,
move some of them to the next line. Also,
use string variables instead of constants
where possible.

22 Missing operand
An expression contains an operator, such as
* or OR, with no operand following it.

Make sure you include all the required
operands in the expression.

1 NEXT without FOR
The NEXT statement doesn't have a
corresponding FOR statement. It may be
that a variable in the NEXT statement does
not correspond to any previously executed
and unmatched FOR statement variable.

19 No RESUME
The program branched to an active
error-trapping routine as a result of an error
condition or an ERROR statement. The
routine does not have a RESUME statement.
(The physical end of the program was
encountered in the error trapping routine.)

Be sure to include RESUME in your
error-trapping routine to continue program
execution. You may want to add an ON
ERROR GOTO 0 statement to your
error-trapping routine so BASIC displays the
message for any untrapped error.

4 Out of data
A READ statement tried to read more data
than is in the DATA statements.

7 Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables,
expressions that are too complicated, or
complex painting.

You can use CLEAR at the beginning of
your program to set aside more stack space
or memory area.

27 Out of paper
The printer is out of paper or is not switched
on.

Make sure that the power is on, verify that
the printer is properly connected, insert
paper if necessary; then, continue the
program.

14 Out of string space
BASIC allocates string space dynamically
until it runs out of memory. This message
means that string variables caused BASIC to
exceed the amount of free memory remaining
after housecleaning.

6 Overflow
A number is too large to be represented in
BASIC's number format. Integer overflow
causes execution to stop. Otherwise,
machine infinity with the appropriate sign is
supplied as the result, and execution
continues. Integer overflow is the only type
of overflow that can be trapped.

To correct integer overflow, use smaller
numbers, or change to single- or
double-precision variables.

A-13

A-14

Note: If a number is too small to be
represented in BASIC's number format,
there is an underflow condition. If this
occurs, the result is zero and execution
continues without an error.

75 Path/ file access error
During an OPEN, RENAME, MKDIR,
CHDIR, or RMDIR operation, you tried to
use a path or filename to an inaccessible file.
For example, you tried to open a directory or
volume identifier; you tried to open a read
only file for writing; or you tried to remove
the current directory. The operation is not
completed.

76 Path not found
During an OPEN, MKDIR, CHDIR, or
RMDIR operation, DOS was unable to find
the path specified. The operation is not
completed.

74 Rename across disks
You tried to rename a file, but you specified
the wrong disk.

The rename operation is not performed.

When you use RENAME, the drive you
specify must be the same for the old filename
and the new filename. The exception to this
is when the DOS ASSIGN command is
active. The drive name can be different, but
the same physical device must be specified.

20 RESUME without error
The program encountered a RESUME
statement without having trapped an error.
The error-trapping routine should be entered
only when an error occurs or an ERROR
statement is executed.

You probably need to include a STOP or
END statement before the error-trapping
routine to prevent the program from "falling
into" the error-trapping code.

3 RETURN without GOSUB
A RETURN statement does not have a
previous unmatched GOSUB statement.

Correct the program. You probably need to
put a STOP or END statement before the
subroutine so the program doesn't "fall
into" the subroutine code.

16 String formula too complex
A string expression is too long or too
complex. Break it into shorter expressions.

15 String too long
You tried to create a string more than 255
characters long. Break it into shorter strings.

9 Subscript out of range
You used an array element either with a
subscript that is outside the dimensions of
the array, or with the wrong number of
subscripts.

Check the usage of the array variable. You
may have put a subscript on a variable that is
not an array, or you may have coded a
built-in function incorrectly.

A-15

A-16

2 Syntax error
A line contains an incorrect sequence of
characters, such as an unmatched
parenthesis, a misspelled command or
statement, or incorrect punctuation.

Or, the data in a DATA statement doesn't
match the type (numeric or string) of the
variable in a READ statement.

Or, a reserved word has been used as a
variable name. See Chapter 3 of the BASIC
Handbook for a list of reserved words.

When this error occurs, the BASIC Program
Editor automatically displays the line in
error. Correct the line or the program.

67 Too many files
You tried to create a new file (using SAVE
or OPEN) when all directory entries on the
disk are full, or when the file specification is
invalid.

If the file specification is correct, use a new
formatted disk and retry the operation.

13 Type mismatch
You gave a string value where a numeric
value was expected, or you had a numeric
value in place of a string value. This error
may also be caused by trying to SWAP
variables of different types, such as single
and double-precision.

8 Undefined line number
A line that doesn't exist in the program was
referred to in a command or statement.

Check the line numbers in your program, and
use the correct line number.

18 Undefined user function
You called a function before defining it with
the DEF FN statement.

Make sure the program executes the DEF
FN statement before you use the function.

Unprintable error
A specific error message is not available for
the error condition that exists. This is
usually caused by an ERROR statement with
an undefined error code.

Check your program to make sure you
handle all error codes.

30 WEND without WHILE
A WEND was encountered before a
matching WHILE was executed.

Correct the program so that there is a
WHILE for each WEND.

29 WHILE without WEND
A WHILE statement does not have a
matching WEND. That is, a WHILE was
still active when the physical end of the
program was reached.

Correct the program so that each WHILE
has a corresponding WEND.

You cannot SHELL to Basic
BASIC cannot be run as a child process.

A-17

A-IS

Appendix B. Assembly Language
Subroutines

This appendix describes how BASIC interfaces with
assembly language subroutines. In particular, it
describes:

• Where in memory to locate your assembly language
subroutines

• How BASIC interfaces with assembly language
subroutines

• How to load and call your assembly language
subroutines

This appendix is intended to be used by an experienced
assembly language programmer.

Reference Material

The following publications contain related material that
you may find useful.

Rector, Russell and Alexy, George. The 8fj86
Book. Osborne/McGraw-Hill, Berkeley, California,
198.0, (includes the 8.088)

Intel Corporation Literature Department. The 8 fj86
Family User's Manual, 98.0.0722. 3.065 Bowers
Avenue, Santa Clara, CA 95.051.

IBM Corporation Personal Computer library.
Macro Assembler. Boca Raton, FL 33432.

IBM Corporation Personal Computer library.
Technical Reference. Boca Raton, FL 33432.

B-1

Deciding Where In Memory To Load
Your Subroutines

BASIC normally uses all memory available from the
starting location of its data area up to a maximum of
64K bytes. This area contains your BASIC program
and data, along with the interpreter work area and
BASrC's stack. You can allocate memory space for
assembly language subroutines either inside or outside
this BASIC 64K data segment. Where you put your
assembly language subroutine depends on three items:

• Total amount of memory in your computer

Size of your BASIC program

• Characteristics of your assembly language program

There are many methods for installing assembly
language subroutines. We recommend these three
places for storing them:

As a resident part of DOS that is loaded before
BASIC is invoked

In an integer array within BASIC's data segment

Beyond BASIC's data segment

DOS-Loaded Subroutines for BASIC

B-2

This is the recommended method for interfacing an
assembly language subroutine from BASIC because it
insures compatibility of your programs with DOS and
BASIC now and in the future. It also reduces the
margin for error when interfacing your subroutines. It
does require additional planning in coding your
subroutines. A sample subroutine later in this chapter
shows you how this is done.

Features

• This method allows for multisegment subroutines,
(up to 64K) and for nonself-relocating subroutines
that would be impossible for BLOAD or DATA
statements to handle properly.

• It safely makes the subroutine a resident part of
DOS with no need to "hide" the subroutine from
BASIC nor to reserve or protect space for the
subroutine from BASIC or DOS.

Considerations

• DOS-loaded subroutines remain resident once they
are loaded. Only rebooting the system removes the
subroutine. In addition to this, multiple copies of
the subroutine can become resident if it is invoked
several times. This is best handled by defining a call
at the end of your application that reboots your
machine by calling the BIOS boot code and, hence,
reinitializes all of memory.

• There is some overhead involved when invoking
subroutines that remain resident through INT 27.
Along with the resident portion of your code, you
will have a copy of the DOS environment, which is a
minimum of 128 bytes, and a PSP (program
segment prefix), which is 256 bytes.

Inside the BASIC Data Segment
For relatively short assembly language programs,
loading your subroutines into an integer array within
BASIC is the easiest and safest way to store them.

B-3

B-4

Features

• Because you are working within BASIC's data
segment, it is not necessary to address an external
segment for your subroutine with the DEF SEG
statement.

• By loading the subroutine inside BASI C's data
segment and into a data area allocated and
maintained by BASIC, there is no danger of your
program stepping onto critical space inside or
outside BASIC, or code outside BASIC stepping on
your data.

Considerations

• If your BASIC application uses most of the
available data space within BASIC's data segment,
this is not the best method since you will be using
additional data space by assigning the subroutine to
an integer array.

• In certain configurations, this method is your only
option. You must calculate how much free memory
you have in your machine before you choose your
method. Factors you must consider are: the size of
DOS, the size of BASIC, whether your application
needs Disk BASIC or Advanced BASIC, and the
size of any resident routines such as MODE,
PRINT, or GRAPHICS.

The sizes of DOS and BASIC vary depending on the
level of code you are using. On a small system,
when you invoke BASIC, there may not be any free
space in the top of memory. In this case, use the
integer array method.

The assembler code must be self-relocatable; that is,
it must not contain any references to a paragraph
number of a segment whose value depends on where

the subroutine was loaded. This means that all
offsets must be expressed in relative terms so that
your subroutine is able to resolve all references
within itself.

Beyond the BASIC Data Segment
You must have at least 128K in your system to use this
procedure. Also, you may be required to do some of
your own memory management to ensure the integrity
of your program. For these reasons, loading
subroutines beyond the BASIC data segment is the
least desirable method for assembly language interface.

Features

• You do not have to use space within BASIC's data
segment for your routines.

• With systems that have a large amount of memory,
you can load subroutines that are too large to fit
within the BASIC data segment.

Considerations

When you load a subroutine outside BASIC's data
segment, you are responsible for managing the area of
memory occupied by your subroutine. To ensure the
integrity of your program:

• You can restrict the size of BASIC's total
addressable space with the CLEAR statement or the
1M: switch from the BASIC command line. This
ensures that none of BASIC's data overlays your
subroutine.

• You must calculate within your program the new
segment ID, which you will pass to the DEF SEG
statement.

B-5

• When calculating the amount of available memory,
you must allow for any routines that are resident at
the time your subroutine is called (PRINT, MODE,
or a virtual disk program, for example).

How to Load and Call Your Assembly
Language Subroutines

The following are offered as examples of how assembly
language subroutines are loaded into memory. There
are essentially three ways:

• Poking or assigning it into memory from your
BASI C program.

• BLOADing it from a file on disk or cassette.

• Loading it from a file on disk as a resident part of
DOS.

Poking or Assigning a Subroutine into Memory

B-6

You can POKE or assign assembly language
subroutines directly into memory from your program.
In this way the subroutine actually becomes a part of
your BASIC program.

Features

• You do not need an assembler to use this method.

• All code is contained in one file. You need not be
concerned with the creation and maintenance of two
or more separate files.

Considerations

• Coding each statement of your subroutine in
hexadecimal can become a very tedious and
error-prone procedure. This method is most useful
for very short subroutines.

If you poke your subroutine into a memory area
outside of BASIC's data segment, you must perform
any memory management necessary to reserve or
protect subroutine space from BASIC or DOS, in
order to ensure the integrity of your program.

Assigning a Subroutine into Memory

This is the procedure you use to assign machine code to
an integer array and invoke the subroutine:

1. Determine the machine code for your subroutine.
See "DEBUG" in Disk Operating System (DOS)
manual under the "Assemble" option.

2. Din1ension an integer array to the size you need.
Remember, an integer uses 2 bytes of memory, so
the size of your array is one-half the number of
bytes in your subroutine.

There are several reasons for using an integer array
(2 bytes per element) instead of a single-precision
(4 bytes per element) or a double-precision array (8
bytes per element). When you assign the subroutine
to an integer array, you will never leave nl0re than 1
byte of meiTIOry unused; with a double-precision
array, you could waste 7 bytes. A fundamental
reason for the integer array method is that you
perform WORD assignment to the array elements
rather than byte assignment, and a WORD happens
to be 2 bytes. It would be easy to make a mistake if
you were assigning four words to each array element
since the CPU in the systelTI expects to see the
machine code in a low-byte; high-byte format. The

B-7

B-8

example that follows shows how the machine code
in the assignment statements is switched from the
order of the bytes as they appear in the assembled
listing.

3. Define all scalars to be used in the application.
After an array is dimensioned, any scalar created
pushes or relocates the array farther up in memory.
See the memory map in Appendix D for related
information.

4. Assign the machine language code to the array
elements, one word at a time. Remember that your
system reads bytes expecting the low byte first, so
store your data low-byte, high-byte.

5. Determine the offset of the subroutine within
BASIC's data segment by using the V ARPTR
function.

6. Invoke the subroutine with the CALL statement or
the USR function.

Example:

10 DEFINT A-Z: OPTION
20 DATA &HCD55
30 DATA &H5D05
40
50 DATA &H90CB

BASE 1: DIM ARRAY (3)
:REM 55H Push BP
:REM CD05H INT 5
:REM 5DH POP BP
:REM 90H NOP

70 FOR I - 1 TO 3: RE!\D II D D II V (T \. ~I ~ Y T
1\1,\.,\'\1 \ J. J. 1'tL-/\ I

80 PRINT "This is an example of how II
90 PRINT Iia BASIC routine can cause II
100 PRINT lIa hard copy to be dumped II
110 PRINT lito a printer by using the II
120 PRINT IIshift-print screen function II
130 PRINT IIcalled via an assembly language II
140 PRINT IIsubroutine that is built into II
150 PRINT lIa BASIC integer array"
160 SUBRT = VARPTR(ARRAY(l)): CALL SUBRT

Notice that the data statement reads data into the
array a WORD at a time. The assembled listing would
list the bytes in the order that they appear in the
commented section of the program, yet the program
switches the order of the bytes in the words as they
are assigned to the array elements since the format of
a word is low-byte, high-byte.

It is a recommended practice to always put V ARPTR
and CALL in the same line so CALL is never
performed without locating the array containing the
subroutine.

Poking a Subroutine into Memory

This next example uses the same assembly language
subroutine, but the BASIC POKE statement IS used to
POKE the bytes into the array. The POKE statement
takes care of the byte order for you, so you do not
have to the order of the bytes as they would appear in
an assembled listing.

B-9

10 DEFINT A-Z:OPT10N BASE 1:P=0:1=0:J=0:
DIM ARRAY(3)

20 DATA &H55 :REM 55H Push BP
30 DATA &HCD, &H05 :REM CD05H 1NT 5
40 DATA &H5D :REM 5DH POP BP
50 DATA &HCB :REM CBH RET FAR
60 :REM 90H NOP
70 P=VARPTR(ARRAY(1)):FOR 1=0 TO 4:READ J:

n r. 1/ r (niT \ ,. 11.1 r v T T
iV"C\iT1J,U."LI\I 1

80 PRINT "This is an example of how II

90 PRINT "a BASIC routine can cause II

100 PRINT "a hard copy to be dumped II

110 PRINT lito a printer by using the II

120 PRINT "shift-print screen function II

130 PRINT "called via an assembly language II

140 PRINT "subroutine that is built into II

150 PRINT "a BASIC integer array"
160 SUBRT = VARPTR(ARRAY(1)): CALL SUBRT

POKE can be used to put data anywhere in memory.
To POKE this routine into another segment, line
7 fJ would be:

DEF SEG = SEGMENT: FOR 1=0 TO 4: READ J:
POKE(I,J): NEXT

Because the subroutine is placed in an area other than
BASIC's data segment, there is no V ARPTR reference
to obtain the offset of the subroutine.

BLOADing the Subroutine from a File

You use the BASIC BLOAD command to load a
memory image file directly into memory. The file can
be a memory image file that was saved using the
BASIC BSA VE command; or it can be an assembly
language subroutine that was assembled with a
BLOAD header, linked and converted to a .COM file
using EXE2BIN. See Disk Operating System (the

DOS manual) for information on EXE2BIN.
Assembly language subroutines can be BLOADed into
an integer array or beyond BASIC's data segment.

Features

• When a subroutine is loaded into BASIC's data
segment, BASIC performs all memory
management. You are not responsible for the
integrity of your subroutine once it is under the
control of BASIC.

• By loading subroutines outside of BASIC's data
segment it is possible to construct a program larger
than BASIC's normal 64K limit.

Considerations

• An assembler is necessary in order to use this
method.

• For an assembly language subroutine to be
BLOADed into memory, it must appear to have
been created by BSA VE. This is done by including
a 7 -byte BSA VE header that is linked as the first
segment of the subroutine. These 7 bytes function
as a loader that BLOAD looks at and then
discards. The beginning of your routine in memory
is the first byte following this header.

The example that follows shows how a subroutine is
BLOADed into an integer array within BASIC and
then is called from BASIC. The subroutine adds the
contents of the first and second parameters and puts
the results into the third parameter.

This also illustrates self-relocating code. A
step-by-step explanation of the procedure follows.

B-11

1. Assemble and link your subroutine.

2. Convert the file to a .COM file via EXE2BIN.

3. From BASIC, dimension an integer array to the
size needed. (Remember, size of the array
subscript is 1/2 the number of bytes in your
subroutine.)

4. Declare all scalars used in your application. This
includes any parameters you may pass on through
the CALL statement.

5. Obtain the offset of the array within BASIC's data
space using the V ARPTR function.

6. BLOAD the subroutine into the array.

7. Call the subroutine with this offset.

A Sample Subroutine

B-12

The function of this subroutine is to add the contents
of the first and second parameters and put the results
into the third parameter. It shows a unique way to
pass parameters to a subroutine that is located inside
an integer array. Parameters are passed by storing
them as elements of an array into which the subroutine
has been BLOADed.

The comments inserted in the program listing are
intended to help you understand the most important
points of the operation and structure of this
subroutine. A more detailed analysis follows the
listing.

AAAA SEGMENT PARA PUBLIC 'CODE'
DB 0FDH ;BSAVE id
OW 0,0
OW TRAILER-HEADER ;Module size

AAAA ENDS
PAGE
BASDATSEG SEGMENT BYTE PUBLIC 'CODE'
ASSUM~ CS:~A~UAI~tG,U~:~A~UAI~tG

HEADER t~U
SUBRT PROC

NOP

CALL
,
BASE:

t
FAR

SKI

;Start of memory image

;Adjusts for proper
boundary also allows
replacement by 0CCH,
the INT 3, which is
DEBUG's breakpoint.

;This pushes offset
of 'BASE' into stack

;local workarea
WORKA OW 0 ;First input parameter,

BASIC's ARRAY(3) ,
WORKB OW (0
,
WORKC OW 0
SKIP: POP

;Second input parameter,
BASIC's ARRAY(4)

;Result, BASIC's ARRAY(5)
BX ;Now BX knows at what

A++~A+ ~n+A DACTr'~
v I I ...J \-.... I II t..v ut"\..,J ~ V ~

data space is' BASE'
MOV AX~WORKA - RASFrRXl ~r,pt l~t rHrm
ADO AX,WOkK~ - ~ASE[~xJ ;Add ~nd parm

to ACC
MOV WORKC-BASF[BX],AX ;Pass to 3rd parm
RET

SUBRT ENOP

BASDATSEG ENDS
END

B-13

Sample Subroutine Explanation

B-14

This example generates a header that looks as if it
were created by BSA VE. It must be linked to the
beginning of the load module by using a segment name
that comes first alphabetically.

AAAA

AAAA

DB
OW
OW
ENDS
PAGE

SEGMENT PARA PUBLIC 'CODE'
0FDH
0,0

nrllllr ~.J

;D,)I-\VC IU

TRAILER-HEADER ;Module size

This value for module size, divided by 2, is the value
to be substituted for N in the BASIC program below.

The BYTE alignment of the following SEGMENT
statement is needed so the memory image will be
loaded as the next byte following the dummy BSA VE
header with no alignment padding bytes in between.

BASDATSEG SEGMENT BYTE PUBLIC 'CODE'

This code is to be loaded into a BASIC integer array
in BASIC's data segment. The offsets shown by the
assembler listing are relative to the start of the
subroutine, not to the start of BASIC's data segment,
which is what CS and DS really point to. The
subroutine must do its own offset fixup by finding
where in BASIC's data segment it is loaded, and then
modifying the assembler's offsets by this base amount.

ASSUME CS:BASDATSEG,DS:BASDATSEG
HEADER EQU $;Start of memory image
SUBRT PROC FAR

NOP

CALL
,
BASE:

SKI

;Adjusts for proper
boundary also allows
replacement by 0CCH,
the INT 3, which is
DEBUG's breakpoint"

;This pushe.s offset
of 'BASE ' into stack

;local workarea
WORKA OW 0 ;First input parameter,

BASIC's ARRAY(3)
WORKB OW 0
,
WORKC OW 0
SKIP: POP

;Second input parameter,
BASIC's ARRAY(4)

;Result, BASIC's ARRAY(5)
BX ;Now BX knows at what

offset into BASIC's

MOV
ADD

data space is 'BASE '
AX,WORKA - BASE[BX] ;Get 1st parm
AX,WORKB - BASE[BX] ;Add 2nd parm

to ACC

Note how local storage is to be addressed. Adding
the BX performs the needed self-relocation, changing
local offsets to offsets from DS (BASIC's data
segment).

MOV WORKC-BASECBX],AX ;Pass to 3rd parm
RET

SUBRT ENDP
TRAIlER F~II ;Fnd of me.mory image
BASDATSEG ENDS

END

B-15

B-16

The calling routine from BASIC would be as follows:

10 OPTION BASE 1
20 DEFINT A-Z
30'Define scalars before DIM
40 SUBRT = 0
50 DIM ARRAY(10)
60'Load subroutine into array
70 BLOAD "SUB2.BLO",SUBRT
80'Pass parameters into array
90 ARRAY(3)=2: ARRAY(4)=3
100'Find where array starts
110 SUBRT=VARPTR(ARRAY(l))
120'Parms are in the array
130 CALL SUBRT
140'Display result
150 PRINT ARRAY(5)

The next example performs the same function as the
previous example. However, parameters are passed by
putting variables names in the parenthesized list in the
CALL statement.

10 OPTION BASE 1
20'Define scalars before DIM
30 SUBRT%=0: PARMC%=0
40 DIM ARRAY%(12)
50'Find start of array
60 SUBRT%=VARPTR(ARRAY%(l))
70'Load routine into array
80 BLOAD "SUB1.BL0", SUBRT%
90'Pass parms to subroutine
100 PARMA% = 2: PARMB% = 3
110'Locate subroutine
120 SUBRT% = VARPTR(ARRAY%(l))
130'Parms in CALL
140 CALL SUBRT%(PARMA%, PARMB%, PARMC%)
150'Display results
160 PRINT PARMC%

The subroutine named SUBl.BLO is as follows:

PARM
SAVEBP
RETOFF
RETSEG
PARMC
PARMB
PARMA
PARM

AAA

AAA

STRUC
OW
OW
OW
OW
DW
OW
ENDS

SEGMENT
DB
OW
OW
ENDS

;oescription of parameter list
0 ;Saves BASICls BP register
0 ;Offset of where to RET to
0 ;Segment to return to
0 ;Offset to third parameter
0 ;Offset to second [Jd r'drrleter
0 ;Offset to first parameter

PARA
0FoH
0,0
TRAILER-HEADER

;BSAVE 10

;Module size

BASoATSEG SEGMENT BYTE PUBLIC ICODE 1

ASSUME CS:BASDATSEG,DS:BASoATSEG

HEADER EQU
SUBRT PROC

NOP

PUSH
i~OV

MOV
MOV
MOV
MOl!
MOV
MOV
POP
RET

SUBRT ENoP

$;Start of memory image
FAR

;For debugging, can be
replaced by 0CCH (INT 3)
which is the DEBUG
breakpoint

BP ;Save BASICls BP reqister
BP,SP ;Set addressdbility to

parm area on stack
SI~[BPJ.PARMA ;Get offset to parml
AX,[SIJ ;Get value of parmI
SI,[BPJ.PARMB ;Get offset to parm2
AX,[SIJ ;Add value of parm2 to ace
DI,[BPJ.PARMC ;Get of set to parm3
[DIJ,AX ;Pass result to parm3
BP ;Restore BASIC's BP
6 ;Return to BASIC,

throwing away the 3 parms

TRAILER EQU $;End of memory image
BASDATASEG ENDS

END

Load your assembly language program into this
external data area using the BASIC BLOAD
command. You can also POKE the subroutine into
memory. Load your subroutine beginning at offset .0

B-17

B-18

of the first paragraph after the BASIC data segment.
This segment ID can be calculated by adding to the
value of BASIC's segment ID the maximum number of
paragraphs that BASIC can address.

BASIC is not necessarily located in the same segment
on every machine, so calculate where to BLOAD your
subroutine using the following procedure:

• Set the current segment at segment ,0 with the
DEF SEG statement. The segment ID of BASIC's
data segment is located in low memory, segment .0,
offsets &H51.0 and &H511. This memory area is
mapped in the IBM Personal Computer Technical
Reference manual in Section 3 under "Low
Memory Maps."

• PEEK at these two values and assign the result to a
variable.

• Add to this value the maximum number of
paragraphs that BASIC will address. By default,
this is 4,096 or &Hl.0,0.0. This value can be
modified by the CLEAR statement or the 1M:
switch.

• Declare this value as your new segment ID with the
DEF SEG statement.

• BLOAD your subroutine at offset .0 into this
segment.

The BASIC code for this is:

10 OEF SEG = 0 'Look at low memory
'20 IGet segment 10
30 V = PEEK(&H510) + (256 * PEEK(&H511))
40 SEG10 = V + &H1000 1 Add 4096 paragraphs
50 'Oef seg to next segment after basic
60 OEF SEG = SEG10
70 'Load into this segment at offset 0
80 BLOAO "SUBROUT.COM II

, 0

Loading the Subroutine as a Resident
Extension of DOS

You can load your assembled subroutine under DOS
as though it were a command. BASIC can then call
your subroutine when it is needed.

Features

• The area containing your subroutine is protected
by DOS. You are not required to perform any
memory management to ensure the integrity of
your program.

• Your assembled code need not be self-relocatable.

• You can load very large modules with this method.
DOS allocates the portion of memory necessary to
load itself and its extensions before it allocates
space to BASIC.

• Because your subroutine remains resident when
loaded by DOS, you can write one subroutine that
can be used by various programs. The subroutine
need be loaded only once.

Considerations

• An assembler is necessary in order to use this
method.

• DOS-loaded subroutines remain resident until the
system is rebooted. If memory space is critical,
you must code your application so that a reboot is
performed when the application completes.

B-19

B-20

The DOS-loaded module (your assembled subroutine)
consists essentially of two parts: the BASIC
subroutine and the loader portion. Invoke the module
as a DOS external command (type the filename with
no extension). The following steps must happen in the
load portion of your assembly language subroutine:

• Store in low memory the double-word vector
pointing to the subroutine.

• Tell DOS how much of the module is to remain
resident (just the BASIC subroutine portion, not
the loader portion).

• Return to DOS through INT 27H, which leaves the
subroutine resident.

A problem with the DOS-loaded module is that you
must let BASIC know where the subroutine is now
that it has been loaded. A vector in the first 1 K of
memory that is reserved for users can be selected. The
intra-application communication area (16 bytes at
&H4F,0 - 4FF in segment ,0) can also be used to
contain the 4-byte vector that points to the
subroutine. See the IBM Personal Computer Technical
Reference in Section 3 under the "Low Memory
Maps" tables.

The loader should store both the offset and the
segment ID of the subroutine in a fixed location in
segment.0. BASIC can then execute a DEF SEG = .0
and a PEEK at the 4 bytes following offset &H4F.0 to
find where the subroutine is. This is similar to finding
the value of BASIC's default DEF SEG mentioned
earlier.

To avoid multiple copies of the subroutine becoming
resident, define a .BAT file that invokes the
subroutine to load it and invokes BASIC and its
application. Upon completion, the application should
call the BIOS boot code to reboot the system and
therefore avoid leaving the subroutine in memory.

The .BAT file should appear as follows:

subroutine-name
BASIC application-name

The loader portion of the subroutine sets up the
intra-application communication area pointer and
leaves the subroutine resident:

SEGZERO SEGMENT AT
OR"G 4 F0H

COMAREA OFF OW ?
COMAREA-SEG OW ?

SEGZERO ENDS

o
;Intra-application

communication area
;Vector pointing to
;permanent resident
BASIC subroutine.

GRP GROUP AAAA,ZLOAOER

AAAA SEGMENT ICOOE I ;Identifies the start
of load module

AAAA ENDS ;Forces class "code"
to load before "data II.

SUBOAT SEGMENT PARA PUBLIC IDATAI
;Insert local data to be used by subroutine here
SUBDAT ENDS

B-21

B-22

SUBSEG SEGMENT PARA PUBLIC 'COOE'

SUBRT

;
;Insert

;
SUBRT
SUBSEG

ASSUME
PROC
PUSH
MOV

PUSH

M()II
'"'VV

CS:SUBSEG
FAR ;BASIC entry point
BP ;Save BASIC's registers
BP ,SP ;Get

addressabil i ty
to parms on stack

ES ;Save BASIC'S
registers

flV C:llonflT nl\,-.Juuun,

MOV ES,AX ;Set
addressabil i ty
to 1 oca 1 data

ASSUME ES:SUBOAT ;OS still points
to BASIC's data area

the
POP
POP
RET

ENOP
ENOS

BASIC subroutine here
ES ;Restore BASIC's
BP ;Registers
n ;Return to BASIC,

discard parms
from stack

ZLOAOER SEGMENT BYTE 'ZLOAD'
ASSUME CS:ZLOADER,SS:ZSTACK

ENDRES EQU

LOADER PROC
PUSH

XOR

Stack not available
to subroutine

$;End BASIC subroutine.
The rest
of this subroutine
does not stay resident

FAR ;Entry from DOS
ES ;Set up stack to

contain vector so
AX ,AX ; 'RET' wi 11 return

to INT 27H
instruction at
offset 0 in PSP.

,

PUSH AX
MOV BYTE PTR ES:1,27H

Change INT 20H
to INT 27H at start
of PSP

XOR AX,AX ;Clear a register
MOV "ES,AX ;Set extra segment

L0 0
ASSUME ES.SEGZERO

;Seg reg points to
low memory

MOV COMAREA OFF, OFFSET SUBRT
Pass offset to entry
point of subroutine

MOV COMAREA-SEG,SEG SUBRT
Pass subroutine
segment

MOV DX,OFFSET GRP:ENDRES+100H

RET

Pass offset of end
of resident code.
At exit, CS will
point to the PSP
which has the exit
instruction 27H.
This spts nx to the
offset from the CS
that is the end of
(rle (es i dent code.

;Return to DOS, via
INT 27H in PSP
leaving subroutine
resident.

LO!\DER E~!DP
ZLOAOER ENDS
ZSTACK SEGMENT PARA STACK 'STACK '

DB 16 OUP ("STACK")

ZSTACK ENDS
END LOADER

;Stack used during
procedure only

The subroutine with its loader is assembled and
linked. It is then ready for execution as an .EXE
external DOS command.

Once the BASIC application is loaded, it can find the
subroutine by:

B-23

20 DEFINT A-Z
30 DEF SEG=0 'Look at low memory at
40 'inter application communication area.
50 SUBOFF=PEEK(&H4F0)+(256*PEEK(&H4F1))
60 SUBSEG=PEEK(&H4F2)+(256*PEEK(&H4F3))

It can then call the subroutine by:

100 DEF SEG = SUBSEG
110 CALL SUBOFF(PARMA,PARMB,PARMC)
120 DEF SEG

When finished with execution, the application can
reboot the system, thus removing the subroutine, by:

1000 DEF SEG = &HF000: SUBOFF =
CALL SUBOFF

&HFFF0:

How BASIC Interfaces with Assembly
Language Subroutines

B-24

BASIC provides two interfaces for calling assembly
language subroutines from your application. They are
the CALL statement and the USR function. The
CALL statement is the recommended procedure and
all examples use this interface. See "USR Function"
in the BASIC Reference.

When you invoke your subroutine the following is
true:

• At entry, the segment registers DS, ES, and SS are
set to the same segment value, the segment ID of
BASIC's data segment. This is the default value
for DEF SEG.

• At entry, the CS register contains the segment ID
of the latest value specified for DEF SEG. By
default, this is BASIC's segment ID.

• At entry, the stack pointer register (SP) indicates
that you have a minimum of eight words available
on the stack for use by your subroutine. Other

space is provided on the stack for use by interrupts
(such as TIMER) and DOS or BIOS calls invoked
by the assembler subroutine. If your subroutine
needs more stack space, create your own stack
with a minimum of 128 bytes reserved for system
usage above the requirements of the subroutine
itself. Upon returning to BASIC, the stack
segment (SS) and the stack pointer (SP) registers
must have the same values as when the subroutine
was called from BASIC. Care must be taken to
preserve these values if you set up your own stack.

If the input parameter is a string, the value passed is
the offset in BASIC's data segment of a 3-byte area
called the string descriptor.

Byte fJ contains the length of the string (,0 to 255)

Byte 1 contains the lower 8 bits of the offset of the
string in the string space area of BASIC's
data segment.

Byte 2 contains the higher 8 bits of the offset of the
string in the string space area of BASIC's
data segment.

Warning: The subroutine must not change the
contents of any of the 3 bytes of the string
descriptor.

The subroutine can change the content of the string
itself, but not its length.

If the subroutine changes a string, this may modify
your program. The following example may change the
string "TEXT" in the BASIC program.

A$ = "TEXT"
CALL SUBRT(A$)

However, the next example does not change the
program, because the string concatenation causes

B-25

BASIC to copy the string into the string space where it
can be safely changed without affecting the original
text.

A$ = IIBAS I C II + 1111

CALL SUBRT(A$)

To return from your subroutine, you must:

• Enable any interrupts disabled by the subroutine.

• Use an intersegment RET instruction since any
subroutine call from BASIC is a FAR call.

• Restore all segment registers and the stack pointer
(SP). All other registers and flags can be altered.

The CALL Statement

B-26

Execution of a CALL statement causes the following
to occur:

• For each parameter in the variable list, the
variable's location is pushed onto the stack. The
location is specified as a 2-byte offset into
BASIC's data segment. You can return values to
BASI C through the parameters by changing the
values of the variables pointed to by the parameter
list.

The CALLed subroutine must know how many
parameters were passed. Parameters are
referenced by adding a positive offset to BP after
the called subroutine moves the current stack
pointer into BP. The first instruction in your
subroutine should be:

PUSH BP
MOV BP, SP

;SAVE BP
;MOVE SP TO BP

The offset into the stack of anyone parameter is
calculated as follows:

OFFSET from BP = 2 *(N - M) + 6

where N is the total number of parameters passed
and M is the position of the specific parameter in
the parameter list on the CALL statement. M can
range from 1 to N.

In the Macro Assembler, the "STRUC" pseudo-op
is a conventional way of defining the contents of
the stack, showing the location of parameters.

FRAME STRUC
SAVE BP OW ? ;Saved BASIC's bp
RET OFF OW ? ;Offset to RET to BASIC
RET SEG OW ? ;Seg to RET to BASIC
PARMN OW ? ;Offset to Nth parameter

PARMI OW ? ;Offset to first parameter
FRAiviE ENDS

PARMSIZE EQU O~~SET ~ARMI-O~~SET RETSEG
(Tn be used as operand on RET)

Warning: You must make sure that the
parameters in the CALL statement match in
number, type, and length the parameters expected
by the subroutine; for instance, double-precision
(8-byte) values.

Control is transferred to the assembly language
subroutine using the segment specified in the first
DEF SEG statement and the offset specified in the
CALL statement.

• The return segment ID specified in the CS register
and the offset are pushed onto the stack.

• When you call a subroutine using a CALL
statement that specifies parameters, the subroutine
must return with a RET N, where N is twice the

B-27

B-28

number of parameters in the list. This adjusts the
stack to the condition at the start of the calling
sequence.

• The CALL statement does not always have
parameters. Also, if your routine is located in an
integer array, it is possible to pass parameters in
the array itself instead of through the CALL
statement.

Memory Map

0000:0000

START OF
USER AREA

TOP OF CS

TOP OF
DS,ES,SS

AOOO:OOOO

8000:0000

F400:0000

This is a memory map for Disk and Advanced BASIC. DOS and the BASIC
extensions are not present for Cassette BAS IC. Addresses are in the
hexadecimal form SEGMENT:OFFSET.

SYSTEM INTERRUPT VECTORS

DOS

DOS WORKAREA

BASIC EXTENSIONS
Allocation of space in
this area is
determined by the IF:,

- } IS:, and Ie: switch INTERPRETER WORKAREA settings when BASIC
File Buffers is invoked. Presence
COM Buffers of RS232 code adds
RS232 Code approximately 1500

YOUR BASIC PROGRAM bytes. Boundaries of
buffers and RS232

! code are dynamic.

6
4 These areas are
K allocated dynamically

during program
M execution. Each area
A expands in the
X indicated direction.
I When string space
M and array space meet,
U there is no free
M memory.

Stack size is 512
bytes unless set by
CLEAR command.

SPACE FOR USER-INSTALLED
MEMORY EXPANSION

SYSTEM

SCREEN BUFFER

READ-ONLY MEMORY -BIOS

B-29

B-30

Appendix C. Communications

This appendix describes the BASIC statements
required to support RS232 asynchronous
communication with other computers and peripherals.

Opening a Communications File
Iii

OPEN "COM ... allocates a buffer for input and
output in the same fashion as OPEN for disk files. See
"OPEN "COM

Communication 1/0
Since each communications adapter is opened as a file,
all input/output statements that are valid for disk files
are also valid for communications.

Communications sequential input statements are the
same as those for disk files. They are:

INPUT #
LINE INPUT #
INPUT$

Communications sequential output statements are also
the same as those for disk files, and are:

PRINT #
PRINT # USING
WRITE #

See "INPUT" and "PRINT" for details of coding
syntax and usage.

C-l

C-2

GET and PUT for Communications Files

GET and PUT are only slightly different for
communications files than for disk files. They are
used for fixed length I/O from or to the
communications file. Instead of specifying the record
number to be read or written, you specify the number
of bytes to be transferred into or out of the file buffer.
This number cannot exceed the value set by the LEN
option on the OPEN "COM ... statement. See "GET"
and "PUT."

I/O Functions

The most difficult aspect of asynchronous
communication is processing characters as fast as they
are received. At rates of 12.0.0 bps or higher, it may
be necessary to suspend character transmission from
the other computer long enough to "catch up." This
can be done by sending XOFF (CHR$(19)) to the
other computer and XON (CHR$(17)) when you are
ready to resume. XOFF tells the other computer to
stop sending, and XON tells it to start sending again.

Note: This is a commonly used convention, but it
is not universal. Whether it is valid depends on the
protocol implemented between you and the other
computer or peripheral.

Disk BASIC and Advanced BASIC provide three
functions that help determine when an "overrun"
condition is likely to occur. These are:

LOC(f)
LOF(f)
EOF(f)

Note: A Communication buffer overflow can occur
if a read is attempted after the input buffer is full
(that is, when LOF(f) returns .0).

INPUT$ Function

The INPUT$ function is preferred over the INPUT #
and LINE INPUT # statements when reading
communications files, since all ASCII characters may
be significant in communications. INPUT # is least
desirable because input stops when a comma or
carriage return is seen. LINE INPUT # stops when a
carriage return is seen.

INPUT$ allows all characters read to be assigned to a
string. INPUT$(n,j) returns n characters from the #/
file. The following statements are efficient for reading
a communications file:

10 WHILE NOT EOF(l)
20 A$=INPUT$(LOC(l),#l)

(process data returned in A$)

100 WEND

When there are characters in the buffer, line 2.0
assigns them to A$, and they are processed. If there
are more than 255 characters in the buffer, only 255
are returned at a time to prevent String overflow. Since
EOF(1) is false, input continues until the input buffer
is empty. This procedure is simple, concise, and fast.

To process characters quickly, avoid examining every
character as you receive it. If you are looking for
special characters (such as control characters), you
can use the INSTR function to find them in the input
string.

A Sample Program

The following program allows the IBM Personal
Computer to be used as a conventional "dumb"

C-3

C-4

terminal in a full duplex mode. This program ·assumes
a 3,0.0 bps line and an input buffer of 256 bytes (the
IC: option was not used in the BASIC command).

10 REM dumb terminal example
20 'set screen to monochrome text mode
30' and set width to 40
40 SCREEN 0,0: WIDTH 40
50 'turn off key display; clear screen
60 i make sure all files are closed
70 KEY OFF: CLS: CLOSE
80 'define numeric variables as integer
90 oEFINT A-Z
100 'define true and false
110 FALSE=0: TRUE=NOT FALSE
120 'define the XON, XOFF characters
130 XOFF$=CHR$(19): XON$=CHR$(17)
140 lopen communications to file number 1,
150 I 300 bps, EVEN parity, 7 data bits
160 OPEN ICOMl:300,E,7" AS #1
170 luse screen as a file, just for fun
180 OPEN "SCRN: II FOR OUTPUT AS #2
190 I turn cursor on
200 LOCATE ,,1
400 PAUSE=FALSE: ON ERROR GOTO 9000
490 I

500 'send keyboard input to com line
510 B$=INKEY$: IF B$<>"" THEN PRINT #1,B$;
520 'if com buffer is empty, check key in
530 IF EOF(I) THEN 510
540 'if buffer more than 1/2 full, then
550 I set PAUSE flag to say input suspended,
560 'send XOFF to host to stop transmission
570 IF LOC(I»128 THEN PAUSE=TRUE
575 PRINT #1,XOFF$

580 Iread contents of com buffer
590 A$=INPUT$(LOC(l),#l)
600 Iremove linefeeds to avoid double spaces
610 Iwhen input displayed on screen
620 LFP=0
625 11 ook for 1 i nefeed
630 LFP=INSTR(LFP+1,A$,CHR$(10))
G 40 I F L F P :-- 0 Tn E N j,iI D $ (A $, L F F , 1) -' II II

645 GOTO 630
650 Idisplay com input, and check for more
660 PRINT #2,A$;: IF LOC(1»0 THEN 570
670 lif transmission suspended by XOFF,
680 Iresume by sending XON
690 IF PAUSE THEN PAUSE=FALSE
695 PRINT #l,XON$;
700 Icheck for keyboard input again
710 GOTO 510
8999 lif error, print its number and retry
9000 PRINT "ERROR NO. II ;ERR: RESUME

Notes on the Program

• "Asynchronous" communication implies character
I/O as opposed to line or block I/O. Therefore,
all PRINTs (either to communications file or to
screen) are ended with a semicolon. This stops the
carriage return normally issued at the end of the
list of values to be printed.

• Line 9.0, where all numeric variables are defined as
integers, is coded because any program looking for
speed optimization should use integer counters in
loops where possible.

• Note in line 51,0 that INKEY$ will return a null
string if no character is pending.

C-5

Operation of Control Signals

The output from the Asynchronous Communications
Adapter conforms to the Electronic Industries
Association (EIA) RS232-C standard for interface
between Data Terminal Equipment (DTE) and Data
Communications Equipment (DCE). This standard
defines several control signals that are transmitted or
received by your IBM Personal Computer to control
the interchange of data with another computer or
peripheral. These signals are DC voltages that are
either ON (greater than +3 volts) or OFF (less than
-3 Volts). See the IBM Personal Computer Technical
Reference.

Control of Output Signals with OPEN

When you start BASIC on your IBM Personal
Computer, the RTS (Request To Send) and DTR
(Data Terminal Ready) lines are held off. When an
OPEN "COM ... statement is performed, both of these
lines are normally turned on. However, you can
specify the RS option in the OPEN "COM ...
statement to suppress the R TS signal. The lines
remain on until the communications file is closed (by
CLOSE, END, NEW, RESET, SYSTEM, or RUN
without the R option). Even if the OPEN "COM ...
statement fails with an error (as described below), the
DTR line (and RTS line, if applicable) is turned on
and stays on. This allows you to retry the OPEN
without having to execute a CLOSE.

Use of Input Control Signals

C-6

Normally, if either the CTS (Clear To Send) or DSR
(Data Set Ready) lines are off, then an OPEN
"COM ... statement does not execute. After one
second, BASIC returns a Device timeout error (error

code 24). The Carrier Detect (sometimes called
Receive Line Signal Detect) can be either on or off; it
has no effect on the operation of the program.

However, you can specify how you want these lines
tested with the RS, CS, DS, and CD options on the
OPEN "COM ... statement. See "OPEN"COM ...
Statement. "

If any of the signals being tested are turned off while
the program is executing, I/O statements associated
with the communications file do not work. For
example, when you execute a PRINT # statement after
the CTS or DSR line is turned off, a Device fault (code
25) or Device timeout (code 24) error occurs. The
R TS and DTR remain on even if such an error occurs.

You can test for a line disconnect by using the INP
function to read the bits in the MODEM Status
Register on the Asynchronous Communications
Adapter. See the following section, "Testing for
Modem Control Signals" for details.

Testing for Modem Control Signals

Four input control signals are picked up by the
Asynchronous Communications Adapter. These
signals are CTS and DSR (described previously)
Carrier Detect (sometimes called Received Line Signal
Detect) (pin 8), and Ring Indicator (pin 22). You can
specify how you want to test the CTS, DSR, and CD
lines with the OPEN "COM ... statement. Ring
Indicator is not used at all by the communications
function in BASIC.

If you need to test for any of these signals in a
program, you can check the bits corresponding to
these signals in the MODEM Status Register on the
Asynchronous Communications Adapter. To read the
8 bits in this register, use the INP function;
INP(&H3FE) to read the register on an unmodified
communications adapter; and INP(&H2FE) to read it

C-7

on a modified communications adapter. See the
"Asynchronous Communications Adapter" section of
the IBM Personal Computer Technical Reference
manual for a description of which bits in the Status
Register correspond to which control signals. You can
also use the Delta bits in this register to determine if
transient signals have appeared on any of the control
lines. Note that for a control signal to have meaning,
the pin corresponding to that signal must be connected
in the cable to your modem or to the other computer.

You can also test for bits in the Line Status Register
on the Asynchronous Communications Adapter. Use
INP(&H3FD) to access this register on an unmodified
communications adapter, and INP(&H2FD) to access
it on a modified communications adapter. Again, the
bits are described in the IBM Personal Computer
Technical Reference. These bits can be used to
determine what types of errors have occurred on
receipt of characters from the communications line or
whether a break signal has been detected.

Direct Control of Output Control Signals

C-8

You can control the RTS or DTR control signals
directly from a BASIC program with an OUT
statement. The onloff states of these signals are
controlled by bits in the MODEM Control Register on
the Asynchronous Communications Adapter. The
address of this register is &H3FC on an unmodified
communications adapter and &H2FC on a modified
communications adapter. The IBM Personal
Computer Technical Reference describes which of
these bits correspond to which signals.

You can also change bits in the Line Control Register
on the Asynchronous Communications Adapter. Be
careful in modifying these bits because most of them
have been set by BASIC when an OPEN statement is
executed and changing a bit can cause
communications failure. The Line Control Register is

at address &H3FB on an unmodified communications
adapter and at address &H2FB on a modified
communications adapter.

When changing bits in either the MODEM Control
Register or the Line Control Register, first read the
register (with an INP function), and then rewrite the
register with only the pertinent bit or bits changed.

A bit you may wish to control in the Line Control
Register is bit 6, the Set Break bit. This bit permits
you to produce a Break signal on the communications
send line. A Break is often used to signal a remote
computer to stop transmission. Typically a Break lasts
for 1/2 second. To produce such a signal, you must
turn on the Set Break, wait for the desired time of the
Break signal, and then turn the bit off. The following
BASI C statements produce a Break signal of about
1/2 second duration on an unmodified
communications adapter.

10 IC%=INP(&H3FB)
20 I qet contents of modem reqister
30 IZ%=IC% OR &H4040 I turn ON the Set Break bit
50 OUT &H3FB,IZ%
60 ltransmit to modem control register
70 FOR I=l TO 500: NEXT I
80 'delay half a second
90 OUT &H3FB,IC% I turn Set Break bit OFF in register
100 I turn Set Break bit OFF in register

Communication Errors
Errors occur on communication files in the following
order:

1. When opening the file-

a. Device timeout if one of the signals to be tested
(CTS, DSR, or CD) is missing.

2. When reading data-

C-9

C-IO

a. Com buffer overflow if overrun occurs.

b. Device I/O error for overrun, break, parity, or
framing errors.

c. Device fault if you lose DSR or CD.

3. When writing data-

a. Device fault if you lose CTS, DSR, or CD on a
Modem Status Interrupt while BASIC was
doing something else.

b. Device timeout if you lose CTS, DSR, or CD
while waiting to put data in the output buffer.

Appendix D. ASCII Character Codes

The following table lists all the ASCII codes (in
decimal) and their associated characters. These
characters can be displayed using PRINT CHR$(n),
where n is the ASCII code. The column headed
"Control Character" lists the standard interpretations
of ASCII codes .0 to 31 (usually used for control
functions or communications).

Each of these characters can be entered from the
keyboard by pressing and holding the Alt key, then
pressing the digits for the ASCII code on the numeric
keypad. Note, however, that some of the codes have
special meaning to the BASIC Program Editor. It uses
its own interpretation for the codes and may not
display the special character listed here.

D-l

ASCII Control ASCII
Value Character Character Value Characte

000 (null) NUL 032 (space)
001 Q SOH 033
002 • STX 034
003 • ETX 035 #
004 • EOT 036 $
005 • ENG 037 %
006 • ACK 038 &
007 (beep) BEL 039
008 a BS 040
009 (tab) HT 041
010 (I ine feed) LF 042 *
011 (home) VT 043 +
012 (form feed) FF 044
013 (carriage return) CR 045
014 n SO 046
015 <t Sl 047 /
016 • OLE 048 0
017 DC1 049 1
018

*
DC2 050 2

019 ! ! DC3 051 3
020 qr DC4 052 4
021 § NAK 053 5
022 - SYN 054 6
023 i ETB 055 7
024 t CAN 056 8
025 ~ EM 057 9
026 SUB 058
027 ESC 059
028 (cursor right) FS 060 <
029 (cursor left) GS 061
030 (cursor up) RS 062 >
031 (cursor down) US 063 ?

D-2

ASCII ASCII

Value Character Value Character

064 @ 096
065 A 097 a
066 B 098 b

067 C 099 c

068 0 100 d

069 E 101 e

070 F 102
071 G 103 9
072 H 104 h

073 I 105
074 J 106 j

075 K 107 k

076 L 108
077 M 109 m

078 N 110 n

079 0 111 0

080 P 112 p

081 Q 113 q

082 R 114
083 S 115
084 T 116
085 U 117 u

086 V 118 v

087 W 119 w

088 X 120 x

089 y 121 y

090 Z 122 z

091 [123
092 \ 124
093] 125
094 1\ 126
095 127 Q

D-3

ASCII ASCII
Value Character Value Character

128 C; 160
129 u 161
130 e 162 6
131 a 163 u
1~'l a 164 n I v£.

133 a 165 N
134 a 166 ~

135 Y 167 ~

136 '" 168 e

137 e 169 r-

138 e 170 ----,

139 I 171 %

140 172 %

141 173
142 A 174 «
143 A 175 »
144 E 176
145 CE 177 ::::::::

146 ,.£ 178 :;:;:;:;:;:

147 '" 179 0

148 0 180 -1
149 0 181 ==j

150 '" 182 --11 u

151 U 183 II

152 y 184 ===<

153 a 185 ::;1
154 U 186
155 ¢ 187 :::;,

156 £ 188 ~

157 l 189 ---1J

158 Pt 190 d

159 f 191 -,

D-4

ASCII ASCII
Value Character Value Character

192 L 224 Q

193L 225 {3
194 I 226 I'
195 ~ 227 7r

196 228 L
197 + 229 a-
198 ~ 230 jJ

199 I~ 231 T

200 l!: 232 Q

201 rr= 233 -&

202 c:::!..k 234 n
203 -,r 235 6
204 IF 236 00

205 237 0
206 ...JL 238 (-'r

207 ~ 239 n
208 ..lL 240 -

209 =r 241 ±

210 --n- 242 ~

211 LL 243 ~

212 ~ 244 r
213 F 245 J

214 rr 246
215 it 247 ::::::

216 ~ 248
0

217 -.J 249
218 r 250
219 • 251 V
220 - 252 n

221 I 253
222 I 254 •
223 - 255 (blank 'F F/)

D-5

Extended Codes

D-6

For certain keys or key combinations that cannot be
represented in standard ASCII code, an extended code
is returned by the INKEY$ system variable. A null
character (ASCII code 000) will be returned as the
first character of a two-character string. If a
two-character string is received by INKEY$, go back
and examine the second character to determine the
actual key pressed. Usually, this second code is the
scan code of the primary key that was pressed. The
ASCII codes (in decimal) for this second character
and the associated key(s) are listed on the next page.

Second
Code

3
15
16-25
30-38
44-50
59-68

71
72
73
75
77
79
80
81
82
83
84-93
94-103
104-113
114
115
116
117
118
119
120-131
132

Meaning

(null character) NUL
(shift tab) --<-:--:-
Alt- Q, W, E, R, T, Y, U, I, 0, P
Alt- A, S, D, F, G, H, J, K, L
Alt-Z,X,C,V,B,N,M
Function keys F 1 through FlO (when
disabled as soft keys)
Home
Cursor Up
PgUp
Cursor Left
Cursor Right
End
Cursor Down
PgDn
Ins
Del
F11-F20 (Shift- F1 through FlO)
F21-F30 (Ctrl- F1 through FlO)
F31-F40 (Alt- F1 through FlO)
Ctrl-Prtsc
Ctrl-Cursor Left (Previous Word)
Ctrl-Cursor Right (Next Word)
Ctrl-End
Ctrl-Pg Dn
Ctrl-Home
Alt- 1,2,3,4,5,6,7,8,9,0,-,=
Ctrl-Pg Up

D-7

D-8

Appendix E. Scan Codes

Key Scan code Key Scan code
in hex in hex

ESC 01 I+- OF
-+1

! 1 02 Q 10
@2 03 W 11
#3 04 E 12
$4 05 R 13
% 5 06 T 14
1\ 6 07 y 15
&7 08 U 16

* 8 09 I 17
(9 OA 0 18
) 0 OB P 19

- oe { [lA
+= OD }] IB
+- OE Ie

E-l

Key Scan code Key Scan code
in hex in hex

Ctrl ID : \ 2B
A IE Z 2C
S IF X 2D
D 20 C 2E
F 21 V 2F
G 22 B 30
H 23 N 31
J 24 M 32
K 25 <, 33
L 26 >. 34
.. 27 ?/ 35 . ,
" , 28 aRight 36
",' 29 PrtSc * 37
aLeft 2A Alt 38

E-2

Key Scan code Key Scan code
in hex in hex

Sp bar 39 7 Home 47
Caps 3A 8t 48

Lock
F1 3B 9 PgUp 49
F2 3C - 4A
F3 3D 4+- 4B
F4 3E 5 4C
F5 3F 6--. 4D
F6 40 + 4E
F7 41 1 End 4F
F8 42 2+ 50
F9 43 3 PgDn 51
FlO 44 o Ins 52

Num 45 53
Lock Del
Scroll 46
Lock

E-3

E-4

Glossary

absolute coordinates In computer graphics, a pair of
values that specify the location of a point with respect
to the origin of the coordinate system. Contrast with
relative coordinates.

access mode A technique used to get a specific logical
record from, or put a logical record into, a file.

accuracy The quality of being free from error. On a
machine, this is actually measured and refers to the
size of the error between the actual number and its
value as stored in the machine.

active page On the Color/Graphics Monitor Adapter,
the part of the screen buffer that has information
written to it. It can be different from the part of the
screen buffer whose information is being displayed.

adapter A mechanism for attaching parts.

address (noun) The location of a register, a particular
part of memory, or some other data source or
destination. (verb) To refer to a device or a data item
by its address.

addressable point In computer graphics, any point in a
display space that can be addressed. Such points are
finite in number and form a discrete grid over the
display space.

algorithm A set of well-defined rules for the solution
of a problem in a finite number of steps.

allocate To assign a resource, such as a disk file or a
part of memory, to a specific task.

alphabetic character A letter of the alphabet.

Glossary-l

Glossary-2

alphameric or alphanumeric Pertaining to a character
set that contains letters and digits.

application program A computer program that
accomplishes a specific task, such as word processing
or processing payroll data.

argument A value that is passed from a calling
program to a function.

arithmetic overflow Same as overflow.

array An arrangement of elements in a table format.

ASCII American National Standard Code for
Information Interchange. The standard code used for
exchanging information among data processing
systems and associated equipment. The ASCII set
consists of control characters and graphic characters.

asynchronous Without regular time relationship;
unpredictable with respect to the execution of a
program's instructions.

attribute A property or characteristic of one or more
items.

background The area that surrounds the subject. In
particular, the part of the display screen surrounding a
character.

backup A system, device, file, or facility that can be
used as an alternative in case of a malfunction or loss
of data.

baud A unit of signaling speed equal to the number of
discrete conditions or signal events per second.

binary Pertaining to a condition that has two possible
values or states. Also, refers to the Base 2 numbering
system.

bit A binary digit.

blank A part of a data medium in which no characters
are recorded. Also, the space character.

blinking An intentional regular change in the intensity
of a character on the screen.

boolean value A numeric value that is interpreted as
"true" (if it is not zero) or "false" (if it is zero).

bootstrap An existing version, perhaps a primitive
version, of a computer program that is used to
establish another version of the program. Can be
thought of as a program that loads itself.

bps Bits per second.

bubble sort A technique for sorting a list of items into
sequence. Pairs of items are examined, and exchanged
if they are out of sequence. This process is repeated
until the list is sorted.

buffer An area of storage that is used to compensate
for a difference in rate of flow of data, or time of
occurrence of events, when transferring data from one
device to another. Usually refers to an area reserved
for I/O operations, into which data is read or from
which data is written.

bug An error in a program.

byte The representation of a character in binary.
Eight bits.

call To bring a computer program, a routine, or a
subroutine into effect, usually by specifying the entry
conditions and jumping to an entry point.

Glossary-3

Glossary-4

carriage return character (CR) A character that causes
the print or display position to move to the first
position on the same line.

channel A path along which signals can be sent; for
example, a data channel or an output channel.

character A letter, digit, or other symbol that is used
as part of the organization, control, or representation
of data. A connected sequence of characters is called
a character string.

character device A device that is designed to do
character I/O in a serial manner, like CON, AUX, and
PRN.

clipping See line clipping.

clock A device that generates periodic signals used for
synchronization. Each signal is called a clock pulse or
clock tick.

code (verb) To represent data or a computer program
in a symbolic form that can be accepted by a
computer; to write a routine. (noun) Loosely, one or
more computer programs, or part of a program.

comment An explanatory statement in a program.
Comments include information that can be helpful in
running the program or reviewing the output listing.

communication The transmission and reception of
data.

complement An "opposite" number. In particular, a
number that can be derived from a given number by
subtracting it from another given number.

compression The moving of fragmented data into a
contiguous region of memory, leaving other regions
free for other data.

concatenation The operation that joins two strings
together in the order specified, forming a single string
with a length equal to the sum of the lengths of the
two strings.

constant A fixed value or data item.

control character A character whose occurrence in a
particular context starts, modifies, or stops a control
operation. A control operation is an action that
affects the recording, processing, transmission, or
interpretation of data; for example, carriage return,
font change, or end of transmission.

control data See control character.

coordinates Numbers that identify a location on the
display.

current directory The default directory for each drive
on a computer system. This is the directory that
BASIC searches if you enter a filename without a path
specification.

cursor A movable marker on the display screen that
indicates where the next character will be entered,
replaced, or deleted.

debug To find and eliminate mistakes in a program.

default A value or option that is assumed when none
is specified.

delimiter A character that groups or separates words
or values in a line of input, such as commas, colons,
semicolons, and blanks.

device driver A program that interfaces input/output
to a device.

diagnostic Pertaining to the detection and isolation of
a malfunction or mistake.

Glossary-5

Glossary-6

directory A table of identifiers and references to the
corresponding items of data. For example, the
directory for a disk contains the names of files on the
disk (identifiers), along with information that tells
DOS where to find the file on the disk. See also
tree-structured directories.

disabied A state that prevents the occurrence of
certain types of interruptions.

DOS Disk Operating System. In this book, refers only
to the IBM Personal Computer Disk Operating
System.

double precision In the representation of numbers, the
degree of accuracy that requires the use of two
computer words. In double precision, numbers are
stored with 17 digits of accuracy and printed with up
to 16 digits. Contrast with single precision.

dummy Having the appearance of a specified thing but
not having the capacity to function as such. For
example, a dummy argument to a function.

duplex In data communication, pertaining to a
simultaneous two-way independent transmission in
both directions. Same as "full duplex."

dynamic Occurring at the time of execution.

echo To reflect received data to the sender. For
example, keys pressed on the keyboard are usually
echoed as characters displayed on the screen.

edit To enter, modify, or delete data.

element A member of a set; in particular, an item in
an array.

enabled A state of the processing unit that allows
certain types of interruptions.

end of file (EOF) A "marker" immediately following
the last record of a file, signaling the end of that file.

environment A set of text strings, less than 32K bytes
total, that conveys various configuration parameters.

event An occurrence or happening. In IBM Personal
Computer Advanced BASIC, refers to the events
tested by ON COM(n), ON KEY(n), ON PEN, ON
PLA Yen), ON STRIG(n), and ON TIMER.

execute To perform a computer instruction or
program.

expression A notation that has a value. Usually, a
combination of variables, constants, and operators,
such as X - 3.

fault An accidental condition that causes a device to
fail to perform in a required manner.

field In a record, a specific area used for a particular
category of data.

file A set of related records treated as a unit.

fixed disk The IBM nonremovable disk drive that has
no drive cover or handle.

flag Any of various types of indicators used for
identification; for example, a character that signals the
occurrence of some condition.

font A family or assortment of characters of a
particular size and style.

foreground The part of the display area that is the
character itself.

Glossary-7

Glossary-8

format The particular arrangement or layout of data
on a data medium, such as the screen or a disk.

form feed (FF) A character that causes the print or
display position to move to the next page.

function A procedure that returns a value that
depends on the value of one or more independent
variables in a specified way.

function keys Keys on the computer keyboard that tell
the system to perform certain commands. The keys
F 1-FlO on the keyboard.

graphic A symbol produced by a process such as
handwriting, printing, or drawing.

half duplex In data communication, pertaining to an
alternate, one way at a time, independent
transmission.

hard copy A printed copy of machine output in a
visually readable form.

hertz (Hz) A unit of frequency equal to one cycle per
second.

hierarchy A structure having several levels, arranged
in a tree-like form. "Hierarchy of operations" refers
to the relative priority assigned to arithmetic or logical
operations that must be performed.

host The primary or controlling computer in a
multiple computer installation.

housecleaning An operation in which BASIC
compresses string space by collecting all its useful data
and frees up unused areas of memory that were once
used for strings.

implicit declaration The establishment of a dimension
for an array without it having been explicitly declared
in a DIM statement.

increment A value used to alter a counter.

initialize To set counters, switches, addresses, or
contents of memory to zero or other starting values at
the beginning of, or at prescribed points in, the
operation of a computer routine.

instruction In a programming language, any
meaningful expression that specifies one operation and
its operands, if any.

integer One of the numbers 0, ± 1, ± 2, ± 3, ...

integrity Preservation of data for its intended purpose;
data integrity exists as long as accidental or malicious
destruction, alteration, or loss of data are prevented.

interface (noun) A shared boundary in which two
systems interact.

interpreter A system program that is used to translate
and execute each source language statement of a
computer program before going on to the next
statement.

interrupt To stop a process in such a way that it can
be resumed.

intra-application communication area A 16-byte area in
low memory starting at address H4FO which is
reserved for use by any application.

invoke To activate a procedure at one of its entry
points.

joystick A computer graphics lever that can pivot in
all directions and is used as a locator device.

Glossary-9

justify To align characters horizontally or vertically to
fit the positioning constraints of a required format.

K When referring to memory capacity, two to the
tenth power (1024 in decimal notation).

keyword One of the predefined words of a
programming language; a reserved word.

leading The first part of something; for example,
leading zeros or leading blanks in a character string.

light pen A light-sensitive device that can be used
instead of the keyboard to select a location on the
screen.

line When referring to text on a screen or printer, one
or more characters output before a return to the first
print or display position. When referring to input, a
string of characters accepted by the system as a single
block of input; for example, all characters entered
before you press the Enter key. In graphics, a series
of points drawn on the screen to form a straight line.
In data communications, any physical medium, such as
a wire or microwave beam, that is used to transmit
data.

line clipping A process in which points referenced
outside a coordinate range become invisible in the
viewing area. Any image crossing the viewing area
(lying partially within and partially without) is cut off
or "clipped" at the viewing area boundaries so that
only points in range appear.

line feed (LF) A character that causes the print or
display position to move to the corresponding position
on the next line.

literal An explicit representation of a value, especially
a string value; a constant.

Glossary-l 0

location Any place in which data can be stored.

logical line A string of text between one Enter and
another. It is treated by BASIC as a single unit.

loop A set of instructions that can be executed
repeatedly while a certain condition is true.

M Mega; one million. When referring to memory,
two to the twentieth power; 1,048,576 in decimal
notation.

machine infinity The largest number that can be
represented in a computer's internal format.

mantissa For a number expressed in floating point
notation, the numeral that is not the exponent.

mapping The translation of coordinate values between
the world coordinate system, as defined by the
WINDOW statement, and the physical coordinate
system of the viewport.

mask A pattern of characters that controls the
retention or elimination of another pattern of
characters.

matrix An array with two or more dimensions.

matrix printer A printer in which each character is
represented by a pattern of dots.

megabyte 1,048,576 bytes. Same as two to the
twentieth power.

menu A list of available operations. You select from
the list the operation you want.

Glossary-II

nest To incorporate a structure into another structure
of the same kind. For example, you can nest loops
within other loops or call subroutines from other
subroutines.

notation A set of symbols, and the rules for their use,
for the representation of data.

null Empty, having no meaning. In particular, a string
with no characters in it.

octal Pertaining to a Base 8 number system.

offset The number of units from a starting point (in a
record, control block, or memory) to some other
point. For example, in BASIC the actual address of a
memory location is given as an offset in bytes from the
location defined by the DEF SEG statement.

on-condition An occurrence that could cause a
program interruption. It can be the detection of an
unexpected error, or of an occurrence that is expected,
but at an unpredictable time.

operand An expression in an instruction that must be
acted upon when the instruction is carried out.

operating system Software that controls the execution
of programs; often used to refer to DOS.

operation A program step undertaken or executed by
a computer.

operator A symbol that represents the action to be
performed in a mathematical operation.

overflow The result of an operation that exceeds the
capacity of the intended unit of storage.

overlay To use the same areas of memory for different
parts of a computer program at different times.

Glossary-12

overwrite To record into an area of storage so as to
destroy the data that was previously stored there.

pad To fill a block with dummy data, usually zeros or
blanks.

page Part of the screen buffer that can be displayed
and/ or written on independently.

palette In computer graphics, a range of colors.

parameter A variable that is given a constant value for
a specified application. Or, a name in a procedure that
refers to an argument passed to that procedure.

parity check A technique for testing transmitted data.
Typically, a binary digit is appended to a group of
binary digits to make the sum of all the digits either
always even (even parity) or always odd (odd parity).

path A specified direction used to find a particular
file. Used with directories and any command or
statement that accepts a file specification.

peripheral device In a computer system, any
equipment that provides the processing unit with
outside communication.

physical coordinate system The logical limits of the
screen. See "View" and "Window" statements in this
manual.

pixel A point or location on a display screen that is
used to form part of an image on the screen. Also, the
bits that contain the information for that point.

port An access point for data entry or exit.

position In a string, each location that can be occupied
by a character and that can be identified by a number.

Glossary-I 3

precIsion A measure of the ability to distinguish
between nearly equal values.

prompt A message or symbol that appears on the
screen, asking for information from the user.

protect To restrict access to or use of all, or part of, a
data processing system.

queue A line or list of items waiting for service; the
first item that goes into the queue is the first item to
be serviced.

random access memory Storage in which you can read
and write to any desired location. Sometimes called
"direct access storage."

range The set of values that a quantity or function can
take.

raster scan A technique of generating a display image
by a line-by-line sweep across the entire display
screen. This is the way pictures are created on a
television screen.

read-only A type of access that allows data to be read
but not modified.

record A collection of related information treated as a
unit. For example, in stock control, each invoice
might be one record.

register A storage device with a specified capacity
such as a bit, a byte, or a computer word.

relative coordinates In computer graphics, a pair of
values that identify the location of a point by
specifying displacements from some other point.

reserved word A word that is defined in BASIC for a
special purpose and cannot be used as a variable name.

Glossary-14

resolution In computer graphics, a measure of the
sharpness of an image, expressed as the number of
lines per unit length.

reverse image Highlighting a character field or cursor
by reversing its color and its background.

root directory The directory that is created on each
disk when it is formatted. Also called the "base" or
"main" directory.

routine Part of a program, or a sequence of
instructions called by a program, that can have some
general or frequent use.

row A horizontal arrangement of characters or other
expressions.

scalar A value or variable that is not an array.

scale To change the representation of a quantity,
expressing it in other units, so that its range is brought
within a specified range.

scaling In computer graphics, the process of
WINDOW mapping world coordinates to physical
coordinates. See "WINDOW Statement" in this
manual.

scan To examine sequentially, part by part. See raster
scan.

scroll To move all or part of the screen material up or
down, left or right, to allow new information to
appear.

segment A particular 64 K -byte area of memory.

sequential access An access mode in which records are
retrieved in the same order in which they were written.
Each successive access to the file refers to the next
record in the file,

Glossary-15

single precision In the representation of numbers, the
degree of accuracy that requires the use of one
computer word. In single precision, seven digits are
stored and up to seven digits are printed. Contrast
with double precision.

stack A method of temporarily storing data so that the
last item stored is the first item to be processed.

statement A meaningful expression that describes or
specifies operations and is complete in the context of
the BASIC programming language.

stop bit A signal following a character or block that
prepares the receiving device to receive the next
character or block.

storage A device, or part of a device, that can retain
data. Memory.

string A sequence of characters.

subdirectory Any directory contained in the root
directory list or within another subdirectory list.

subscript A number that identifies the position of an
element in an array.

syntax The rules governing the structure of a
language.

syntax error An incorrect instruction resulting from a
misspelling, missing or faulty punctuation, a missing or
incorrect character.

table An arrangement of data in rows and columns.

target In an assignment statement, the variable whose
value is being set.

telecommunication Synonym for data communication.

Glossary-16

terminal A device, usually equipped with a keyboard
and display, capable of sending and receiving
information.

toggle Pertaining to any device having two stable
states; to switch back and forth between the two
states.

trailing Located at the end of a string or number. For
example, the number 1000 has three trailing zeros.

trap A set of conditions describing an event to be
intercepted and the action to be taken after the
interception.

tree-structured directory A group of related files and
directories on the same disk organized in a hierarchical
structure, as in a "family tree."

truncate To remove the ending elements from a string.

twos complement A form for representing negative
numbers in the binary number system.

typematic key A key that repeats as long as you hold it
down.

variable A quantity that can assume any of a given set
of values.

vector In computer graphics, a directed line segment.
More generally, an ordered set of numbers, and so, a
one-dimensional array.

viewport In computer graphics, a defined area of the
screen.

window In computer graphics, a defined area in the
world coordinate system.

Glossary-17

world coordinate system A coordinate system not
bounded by any limits - unlimited "space" in graphics.

wraparound The process whereby parts of an object
that are not visible within the window produce
incorrectly drawn images due to the overflow of
internal coordinates.

write To record data in a storage device or on a data
medium.

zooming In computer graphics, causing an object to
appear smaller or larger by moving the WINDOW and
specifying various WINDOW sizes.

Glossary-18

Index

Special Characters

?Redo from start 131
268

A

ABS 4
ABS Function 4
absolute value 4
active page 313
Advanced feature A-3
ampersand symbol 268
animation 282
append 220
arctangent 6
argument 346
arrays 70,89,233
ASC 5
ASC Function 5
ASCII code 310
ASCII codes 5,25, Appendix
D

converting to 5
ASCII format 308
aspect ratio 30, 76
assembly language
subroutines 1 7

assembly language
subroutines. Appendix B

assignment statement 154
ATN 6
A TN Function 6
AUTO 8
AUTO Command 8
automatic line numbers 8

B

background 38,237
Bad file mode A-3
Bad file name A-4
Bad file number A-4
Bad record number A-4
BASIC Program Editor 263

question mark for
PRINT 263

BASIC's data segment 62
BEEP 10
BEEP Statement 10
blinking characters 39
BLOAD 11
BLOAD Command 11
border screen 38
boundary 237, 358
branching 120, 203
BSAVE 15
BSAVE Command 15
burst, screen 3 12

Index-l

c
CALL 17
CALL Statement 17
Can't continue A-4
Can't continue after
SHELL A-5

cassette motor 193
CASI 168
CASl: 308
CDBL 19
CDBL Function 19
CHAIN 20,47
CHAIN Statement 20
change current directory 23
changes v
character set Appendix D
CHDIR 23
CHDIR Command 23
child process 3 1 7
CHR$ 25, D-l
CHR$ Function 25
CINT 27
CINT Function 27
CIRCLE 28
CIRCLE Statement 28
CLEAR 32
CLEAR Command 32
clear screen 36
clear system buffer 295
clearing memory 196
clock 323
CLOSE 34
close disk files 295
CLOSE Statement 34, 295
CLS 36
CLS Statement 36
color 277, 357
COLOR Statement 38,236,
311

COM 46
COM(n) Statement 46

Index-2

comma in formatting
string 270

comments 291
COMMON 20, 47
COMMON Statement 47
Communication buffer
overflow A-5

communications 226,
Appendix C

communications buffer 227
communications trapping 46,

198
compressed binary format 309
computed
GOSUB/GOTO 203

CONT 48
CONT Command 48
converting degrees to

radians 50
converting from numbers for
random files 191

converting from numeric to
octal 197

converting numbers 19
converting numbers from

random files 53
converting radians to degrees 6
converting string to

numeric 352
converting to integer 27
coordinates

physical 370
world 370

coordinates, absolute or
relative form 236, 277

COS 50
COS Function 50
cosine 50
create a directory 189
creating tree structure 189
CSNG 51
CSNG Function 51
CSRLIN 52

CSRLIN Variable 52
cursor position 52, 172, 262
CVI, CVS, CVD 53
CVI, CVS, CVD Functions 53

D

DATA 55,289
data segment 62, 66
DATA Statement 55
DATE$ 57
DATE$ Variable and

Statement 57
decisions 123
declaring arrays 70
declaring variable types 64
DEF FN 59
DEF FN Statement 59
DEF SEG 62
DEF SEG Statement 62
DEF USR 66
DEF USR Statement 66
DEFtype Statements 64
DELETE Command 68
deleting a file 150
deleting a program 196
deleting arrays 89
deleting program lines 68
Device fault A-6
Device I/O error A-6
Device timeout 180, A-6
Device unavailable A-6
DIM Statement 70
dimensioning arrays 70
DIR 102
direct mode 201
Direct statement in file A-7
directory 23
Disk full A-7
disk I/O 309

Disk media error A-7
Disk not ready A-8
Disk write protect A-8
display pages 313
display program lines 163
Division by zero A-8
documentation, internal

program 291
double asterisk 269
double asterisk, dollar sign 270
double dollar sign 270
double precision 19
DRAW Statement 72
DS (BASIC's Data

Segment) 62
Duplicate definition A-8
duration, time 323

E

EDIT 79
EDIT Command 79
elapsed time 344
ELSE 123
encoded binary format 309
END 80
end of file 87
END Statement 80
ending BASIC 339
ENVIRON 81
ENVIRON Statement 81
ENVIRON$ 84
ENVIRON$ Function 84
environment 81, 84
EOF 87
EOF Function 87
ERASE 89
ERASE (DOS) 150
ERASE Statement 89
erasing a file 150

Index-3

erasing a program 196
erasing arrays 89
erasing program lines 68
erasing variables 32
ERDEV 91
ERDEV and ERDEV$

Variables 91
ERL 94
ERR 94
ERR and ERL Variables 94
ERROR 96
error codes 94,96, Appendix
A

error line 94
error messages Appendix A
ERROR Statement 96
error trapping 94,96,201,297
event trapping 148

KEY(n) 148,205
ONPLAY(n) 211
ON TIMER 217
PEN 209,247
STRIG(n) (joystick
button) 214

exchanging variables 338
exclamation point symbol 267
executing a program 306
exit BASIC 339
EXP 98
EXP Function 98
exponential function 98
extended ASCII codes D-6

F

false or true 310
FIELD 99
Field overflow A-9
FIELD Statement 99
File already exists A-9

Index-4

File already open A-9
File not found A-10
file size 175
file, position of 170
FILES Command 102
FILES 102
FIX 105
FIX Function 105
fixed-length strings 182
floor function 138
FOR 106
FOR and NEXT

Statements 106
FOR without NEXT A-10
foreground 38
format, compressed or encoded

binary 309
formatting 267
FRE 111
FRE Function 111
free space 32, 111
frequency 323
frequency table 324
functions 3

G

garbage collection 111
GET (files) 113
GET (graphics) 115
GET Statement (Files) 113
GET Statement

(Graphics) 115
glissando 325
GOSUB 118,203
GOSUB and RETURN
Statements 118

GOTO 120,203
GOTO Statement 120
GRAFTABL Command 314

graphics statements 72, 156
CIRCLE 28

H

COLOR 43
DRAW 72
GET 115
LINE 156
PAINT 236
POINT function 258
PSET and PRESET 277
PUT 281
VIEW 357
WINDOW 370

HEX$ 122
HEX$ Function 122
hexadecimal 122
high-intensity characters 39
housecleaning 111

I

I/O control 139
IF 123
IF Statement 123
Illegal direct A-10
Illegal function call A-10
Incorrect DOS version A-II
increment 8, 293
indent 340
index (position in string) 137
INKEY$ 127, D-6
INKEY$ Variable 127
INP 129
INP Function 129

INPUT 130
INPUT # 133
INPUT # Statement 133
input file mode 220
Input past end A-II
INPUT Statement 130
INPUT$ 135, C-3
INPUT$ Function 135
INSTR 137
INSTR Function 137
INT 138
INT Function 138
integer
Internal error A-II
invisible characters 41
10CTL 139
10CTL Statement 139
10CTL$ 141
10CTL$ Function 141

J

joystick 329
joystick button 214, 334, 336
jumping 120, 203

K

KEY 142
KEY Statement 142
KEY(n) 148
KEY(n) Statement 148
KILL 150
KILL Command 150

Index-5

L

LEFT$ 152
LEFT$ Function 152
left-justify 182
LEN 153
LEN Function 153
length of file 175
length of string 111, 153
LET 154
LET Statement 154
light pen 209,247
LINE 156
Line buffer overflow A-12
line drawing in graphics 156
line feed 222
LINE INPUT 160
LINE INPUT # 161
LINE INPUT # Statement 161
LINE INPUT Statement 160
LINE Statement 156
LIST 163
LIST Command 163
list program lines 166
listing files 102

on disk 102
listing files on cassette 168
LLIST 166
LLIST Command 166
LOAD 167
LOAD Command 167
loading binary data 11
LOC 170
LOC Function 170
LOCATE 172
LOCATE Statement 172
LOF 175
LOF Function 175
LOG 177
LOG Function 177
lo'garithm 177

Index-6

loops 106, 364
LPOS 178
LPOS Function 178
LPRINT 179
LPRINT and LPRINT USING

Statements 179
LPRINT Statement 265
LPRINT USING 179
LPT1: 166, 178, 179
LSET 182
LSET and RSET

Statements 182

M

machine input port status 362
machine language

subroutines 17
memory image 15
memory map B-29
MERGE 20, 184
MERGE Command 184
messages Appendix A
MID$ 186
MID$ Function and

Statement 186
minus sign 269
Missing operand A-12
MKDIR 189
MKDIR Command 189
MKI$, MKS$, MKD$ 191
MKI$, MKS$, MKD$

Functions 191
mode, screen 3 12
MOTOR 193
MOTOR Statement 193
music 250, 324

N

NAME 194
NAME Command 194
NEW 196
NEW Command 196
newnum 293
NEXT 106
NEXT without FOR A-12
No RESUME A-12
notes, sound 324
number of notes in buffer 255

o
OCT$ 197
OCT$ Function 197
octal 197
offset 62, 66
oldnum 293
ON COM(n) 198
ON COM(n) Statement 198
ON ERROR 201
ON ERROR Statement 201
ON KEY(n) 205
ON KEY(n) Statement 205
ON PEN 209
ON PEN Statement 209
ON PLAY(n) 211
ON PLA yen) Statement 211
ON STRIG(n) 214
ON STRIG(n) Statement 214
ON TIMER Statement 217
ON TIMER(n) 217
ON-GOSUB 203
ON-GOSUB and ON-GOTO

Statements 203
ON-GOTO 203

OPEN 220
OPEN "COM ...

Statement 226
OPEN "COM ... 226, C-6
OPEN Statement 220
opening files 220
opening paths 220
OPTION BASE 233
OPTION BASE
Statement 233

OUT 234
Out of data A-12
Out of memory A-13
Out of paper A-13
Out of string space A-13
OUT Statement 234
output file mode 220
Overflow A-13
overlay 20

p

page, active 313
page, visual 313
PAINT 236
PAINT Statement 236
paint tiling 243
palette 43
panning 373
Path not found A-14
Path/file access error A-14
paths 23
paths, opening 220
patterns 243
PEEK 246
PEEK Function 246
PEN 247
PEN OFF Statement 248
PEN ON Statement 248

Index-7

PEN Statement and
Function 247

physical coordinates 370
PLAY 250
PLAY Statement 250
PLAY(n) 255
PLA Y(n) Function 255
plus sign 269
PMAP 256
PMAP Function 256
POINT 258
POINT Function 258
POKE 261
POKE Statement 246, 261
POS 262
POS Function 262
position in string 137
position of file 170
positioning the cursor 172
precision 64
PRESET 277
PRINT 263
PRINT # 273
PRINT # and PRINT # USING
Statements 273

PRINT # USING 273
print formatting 267
PRINT Statement 263
PRINT USING 267
PRINT USING Statement 267
print zones 263
printing 179
program stop 331
protected files 308
protection option 309
PSET 277
PSET and PRESET

Statements 277
punctuation, PRINT

Statement 263
PUT (files) 279
PUT (graphics) 281
PUT Statement (Files) 279

Index-8

PUT Statement
(Graphics) 281

R

random files 99, 113, 220
random numbers 286, 303
RANDOMIZE 286
RANDOMIZE Statement 286
READ 55,289
READ Statement 289
reel setting 220
Redo 131
related publications iv
REM 291
REM Statement 291
remarks 291
removing a directory 301
RENAME 194
Rename across disks A-14
renaming files 194
RENUM 21,94,293
RENUM Command 293
renumber program lines 293
repeating a string 337
RESET 295
RESET Command 295
RESTORE 296
RESTORE Statement 290

296 '
RESUME 297
resume execution 48
RESUME Statement 297
RESUME without error A-15
RETURN 118,299
RETURN Statement 299
RETURN without

GOSUB A-15
reverse image characters 40
RIGHT$ 300

RIGHT$ Function 300
right-justify 182
RMDIR 301
RMDIR Command 301
RND 303
RND Function 303
rounding to an integer 27
RSET 182
RUN 306
RUN Command 306

s
SAVE 308
SAVE Command 308
saving binary data 15
scan codes Appendix E, E-1
SCREEN Function 310
screen shifting 234
SCREEN Statement 312
seeding random number

generator 286
segment of storage 62
sequential files 220
SGN 316
SG N Function 3 16
SHELL 317
SHELL Statement 317
shifting screen image 234
sign of a number 316
SIN 322
SIN Function 322
sine 322
single precision 51
soft keys 142
SOUND 323
SOUND Statement 323
sounds 10,250,323
space 370

SPACES 326
SPACES Function 326
spaces 264
SPC 327
SPC Function 327
SQR 328
SQR Function 328
square root 328
stack space 32
STEP 106
STICK 329
STICK Function 329
STOP 331
STOP Statement 331
STR$ 333

converting from number to
string 333

STR$ Function 333
STRIG 334
STRIG Statement and
Function 334

STRIG(n) 336
STRIG(n) Statement 336
String formula too
complex A-IS

string space 32, 111
String too long A-IS
STRING$ 337
STRING$ Function 337
subroutines 118, 203
Subscript out of range A-IS
subscripts 70, 233
substring 152, 186, 300
summary of changes v
superimpose image 282
SWAP 338
SWAP Statement 338
Syntax error A-16
SYSTEM 339
SYSTEM Command 339
system functions A-IS

Index-9

T

TAB 340
TAB Function 340
TAN 341
TAN Function 341
tangent 341
tempo table 325
terminating BASIC 339
THEN 123
tile painting 243
tiling 237, 238
TIME$ 342
TIME$ Variable and

Statement 342
time, duration 323
TIMER 344
TIMER Function 344
tokenized format 309
Too many files A-16
trace 345
transfer image 282
trapping, communications 46
tree-structured directories

changing 23
triggers, joystick 334
trigonometric functions

arctangent 6
cosine 50

trigonometric sine 322
trigonometric tangent 341
TROFF 345
TRON 345
TRON and TROFF

Commands 345
true or false 310
truncation 105, 138
Type mismatch A-16

Index-to

u

Undefined line number A-16
Undefined user function A-17
underflow A-14
underlined characters 40
Unprintable error A-17
user workspace 32, 111
user-defined functions 59
USR 66,346
USR Function 346

v
VAL 352
V AL Function 352
VARPTR 353
V ARPTR Function 353
V ARPTR$ Function 355
VIEW 357
VIEW Statement 357,370
visual page 3 13
vpage 313

w

WAIT 362
WAIT Statement 362
WEND 364
WEND without WHILE A-17
WHILE 364
WHILE and WEND

Statements 364
WHILE without WEND A-17

WIDTH 366
WIDTH Statement 265,366
WINDOW 357,370
WINDOW Statement 370
workspace 32, 111
world coordinates 370
WRITE 375
WRITE # 377
WRITE # Statement 377
WRITE Statement 375

y

You cannot SHELL to
Basic A-17

z

zones, print 263
zooming 373

Index-tt

Index-12

--- ------ ----- ---- - ---- - - ----------_.-

Reader's Comment Form

BASIC Reference

The Personal Computer
Hardware Reference Library

6361134

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

8J8~ PIO.:::l

81deqs lOU op 8S-e81d

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

8del

---- ------- ----- ---- - ---- - - ------------_.-
®

International Business Machines Corporation

P.o. Box 1328-C
Boca Raton, Florida 33432

6361134

Printed in the United States of America

