
Elements of Run Time

This manual describes some of the basic concepts used to
provide optimum computer processing of information. These
include simultaneous operations, data channels, channel
interference with the processor, buffers, process-limited
runs, input/output-limited runs, run balance and run timing
as a part of system selection.

C20-1648-1

Analysis

Scientific

This edition, C20-1648-1, includes Technical Newsletter N20-0060-0.

Copies of this and other IBM publications can be obtained through IDM branch

offices. Address comments concerning the contents of this publication to

IDM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601

© International Business Machines Corporation 1966

INTRODUCTION

The purpose of this manual is to describe some of
the basic concepts used to provide optimum computer
processing of information. It is assumed that the
reader has some knowledge of computer systems;
but limited experience in run timing and systems
planning.

The concepts presented include simultaneous
operations, data channels, channel interference
with the processor, buffers, process-limited runs,
input/output-limited runs, run balance and run
timing as a part of system selection.

Familiarity with the concepts in this manual
should enable the reader to (1) evaluate various
methods of run timing and (2) review existing and
planned programs to determine whether they are
using the full capabilities of the data processing
systems.

The performance of a data processing system
depends on the equipment, the programs, and data
characteristics. These are reviewed to provide
answers to questions such as:

• What must be known about the data processing
system, the data, and the programs to produce
a reliable estimate of run time?

• What are concurrent operations?
• What is a data channel? Why are some data

channels different from others?
• What is channel interference?
• What is a process-limited run? An I/O

limited run? A balanced run?
• What are the effects of blocking and buffering

on run time? How can these techniques be
used to improve run balance?

• Why does an apparently balanced run some
times require more or less time than
originally estimated?

• What is the function of run timing in the larger
activity of system selection?

WHAT IS A RUN?

A data processing run is an interaction of machines,
programs, and data. It follows, then, that any
procedure designed to time a run must take into
account t.h.e machines that make up the data proc
essing system, the programs that perform the
processing, and the data involved in the run. The
accuracy desired in the run time estimate de
termines the amount of information required about
each of these elements.

THE FUNCTIONAL PARTS OF A
DA TA PROCESSING SYSTEM

A data processing system can be divided into four
functional parts:

1. A control unit - to direct the sequence of
operations and set up the proper circuits to perform
the program

2. A storage unit - to hold instructions and data
3. A processor - to operate upon data
4. Input/output devices
The part of a computer that is called on most

frequently is the storage unit. The way in which
this part is used and organized has a great deal to
do with the ability to perform simultaneous oper
ations in a data processing system. The parts of
a computer contend for the use of storage. The
control unit must have access to storage for its
instructions. The processor must periodically make
reference to storage either to fetch or to store the
data being processed. The I/O units require the
use of main storage during read and write operations.

1

SIMULTANEOUS OPERATIONS

. A wide variety of IBM data processing equipment is
available with performance characteristics suitable
for all applications. These performance character
istics include speed, capacity, and the ability to
perform more than one operation at one time. To
illustrate simultaneous operations, a data processing
system may be considered capable of performing
three operations: input, processing, and output.
These may be reading a card (input), accumulating
a total (processing), and printing some information
from the card (output). A minimum data processing
system, consisting of one processor and two input/
output devices, could operate in four different ways,
according to the equipment capabilities, the program,
and the job being done:

• No simultaneous operations - the input

/

/

L..

operation must be completed before the processor
can be used, and the printer must wait until the
processing is complete. Operations are
sequential.

CardD

Card. C Card.

/ Reader
Card B

~ /

• Processing done at the same time as one I/O
operation, such as reading a card, then proc
essing the card information while printing the
information from the previously processed card.

• Concurrent input and output operations, followed
by processing, such as reading a card and
printing a line at the same time, then proc
essing the card that was read.

• Concurrent input, processing, and output
operations.

These four modes of operation are shown in
Figure 1 using an input card file and a minimum
data processing system. Again, the mode of oper
ation depends on the capabilities of the data proc
essing system, the programming techniques, and
the job being done. It is apparent from Figure 1
that when several operations are performed at the
same time, job time is reduced.

CardA Data Processing System
~

In~File

Read Card A Process A

Read Card. C Process C

Print B

Read Card B Process B

Print A

Print A

Process B followed by

Read Card C

Figure 1. Concurrent and sequential operations

2

Print A.

Print B

Process C

Read CardD

Sequential Operations

Concurrent processing and
output operations

Concurrent input and
output operations

Concurrent input, output, and

processing operations

TIME UNITS

The units of time used in expre$sing computer
operations are shown in Figure 2. The relationship
between them can be seen in the following example:

750 nanoseconds is equal to
. 750 microseconds, which is equal to

. 000 750 milliseconds (ms), which is equal to
.000 000 750 seconds

Unit Part of a Second Decimal Equivalent

Second One full second 1.0
Millisecond One thousandth .001
Microsecond One millionth .000 001
Nanosecond One billionth .000 000 001

Figure 2. Time units and decimal equivalents

IBM 407 SIMULTANEOUS OPERATIONS

A list-accumulate job on an IBM 407 Accounting
Machine illustrates a data processing run with some
simultaneous operations. The 407 has a card
reading mechanism (input device), a printing mech
anism (output device), and a processor. Consider
the following job specifications:

1. Read 1500 cards. Of these, 900 have an X
punch in column 80, and 600 do not have an X-punch
in column 80 (input).

2. Accumulate 900 numbers, one from each card
with an X-punch in column 80 (processing).

3. Accumulate 500 minor totals (processing).
4. Print 1500 detail lines, one from each card

(output) .
5. Print 500 minor total lines (output).
6. Print one final total line (output).
The rated speed of the 407 - that is, 150 cards

per miIlute and 150 lines per minute - results in a
run time summary as follows:

1500 read operations (1500 cards) 10.0 minutes

1400 processing operations
(900 plus 500) 9.3 minutes

2001 printing operations
(1500 plus 500 + 1) 13.3 minutes

Since the card reading, accumulating, and detail
printing functions can be handled in the time required
for card reading, these could be considered as
simultaneous operations - input, processing, and
output at the rated speed of the machine. A closer
look, however, reveals that the actual simultaneous
operations are (1) reading the card, (2) accumulating,
and (3) positioning the printing mechanism. The
printing operation follows, but is still within the
rated speed. The total of 2001 printing operations

includes 500 minor total lines, and one final total
line. Printing each of these 501 lines is a non
simultaneous operation. The total job time is 13.3
minutes, the time required for 2001 printing oper
ations, since the reading and processing operations
were handled at the same time as 1500 of the printing
operations.

If a 523 Gang Summary Punch is attached to the
407 as an additional output device, and the job
changed to include punching 500 summary cards
(one for each minor total), the run time is increased.
Since the 523 requires 10.0 minutes for punching
500 summary cards, and the 407 must wait while the
523 is punching, the run time is increased to 23.3
minutes, the sum of the printing and punching output
operations.

It is interesting to note that in both cases, the
runs are I/O-limited: process time is less than
the longest I/O time. By definition, a run is 1/0-
limited when a reduction in the time required for
internal processing does not reduce the run time.

The 407 -523 is a data processing system with
limited potential for simultaneous operations. A
system's potential for simultaneity is limited when
the operation of one component of the system delays
the operation of some other component, or when
several activities of a system all make use of the
same component.

3

A SEQUENTIAL DATA PROCESSING SYSTEM

The IBM 1401 is a good example of a sequential data
processing system. To illustrate, assume the 407
run discussed previously, but with the input medium
changed from cards to magnetic tape and an in
creased amount of internal processing. The job
specifications are now:

1. Read 1500 eighty-character records from
a 729 II tape unit

2. Process each record for 20 ms
3. Print 1500 detail lines
4. Print 500 minor total lines
5 . Print one final total line
The functional summary is:
1. Read 1500 records at

14.52 ms each
2. Process 1500 records

at 20. 00 ms each
3. Print 2000 lines at

100.00 ms each
Total

.36 minutes*

.50 minutes

3.33 minutes
4.19 minutes

In keeping with the idea that the basic 1401 is a
sequential or nonsimultaneous system, run time
may be estimated as the sum of all of the functions
that the system performs (read time plus process
time plus print time), or about 4.19 minutes. This
is a close enough estimate for all practical purposes.

Read Tape Process

Sequential Time Estimate (ms) 14.52 20.00

Interlocked/ Available (ms) 12.42/2.10 20.00/0

Actual Operation (ms) 12.42 20.00

The 1401 main storage must serve both the tape
unit and the printer that are attached to the system.
During a tape read, main storage is busy receiving
each character from the tape unit as it is read.
During the print cycle, main storage is busy with
the transmission of data to the printer. However,
since tape units and printers are mechanical devices,
they do not operate instantaneously. These devices
require some time for starting before data trans
mission begins and some time for stopping after
data transmission ends. On the 1401, main storage
is not busy during the printer or tape unit stop time,
and is therefore available to other parts of the
system.

Tables such as the one following show (1) what
actually happens if the job is programmed in the
most straightforward way and (2) the potential for
concurrent operations that exists in the basic 1401
system. In the run there are two basic sequences
of operations, one sequence in which it is necessary
to print a minor total line and one in which it is not.
The most frequent (no-minor-total) sequence is
shown in Figure 3 and timed in this way:

Overall time

required for

Operation operation

1. Read tape 14.52 ms

2. Process 20.00 ms

3. Print detail 100.00 ms

line

Print

100.00

84.00/16.00

84.00

Next operation Cumulative

can start after

12.42 ms

20.00 ms

84 ms

time

12.42

32.42

116.42

Figure 3. Preliminary estimate and actual timing of tape-to-print operation

*Using the 729 II read timing shown in Tape Input/Output

b.structions, IBM Systems Reference LibraJ.~y (A24-3069),

page 12, as follows:

Start time

Data transfer time

Stop time

Total

4

10. 50 ms per record

1. 92 ms per record (.024 per character)

2. 10 ms per record

14.52 ms

When reading tape or printing, it is possible to
begin the next operation a short time before the print
or read operation is finished during the device stop
time. The 729 II tape unit needs 2.1 ms of the total
14.52 ms to come to a stop after the last character
of a record has been read. This time can be used
to process the record just read. The 1403 Printer
requires 16 ms of its 100-ms cycle to come to a
stop. During this time main storage can be used
for processing. In this example, the 1401 system
can accomplish 134.52 ms of strictly sequential
operations in an elapsed time of 116.42 ms. This
sequence of operations occurs a thousand times
during the execution of the program. Extending the
elapsed time of 116.42 ms per record, a partial
run time of 1.94 minutes is developed.

The other operation sequence, which requires a
minor total to be printed, occurs 500 times and is
illustrated in Figure 4. It is timed like this:

Point of time in the

Time required operation when next

Operation for operation operation can start

1. Read tape 14.52 ms 12.42 IDS

2. Print minor total 100.00 IDS 96.42 IDS

3. Process 20.00 ms 116.42 ms

4. Print detail line 100.00 ms 200.42 IDS

In this case, 234.52 ms of sequential activity is
accomplished in 200.42 ms. Five hundred exe
cutions of the minor total sequence require 1. 67
minutes. Adding the two partial run time estimates
(1.94 minutes plus 1.67 minutes) gives a total of
3.61 minutes as against the original estimate of
4. 19 minutes. For a run of this size, the difference
seems unimportant. It is interesting, however,
that the difference between the first and second
estimates is a reduction in time of almost 14%.
This is significant on a longer run. The difference
on a four-hour job, for example, would be more
than a half hour.

Interlock Time + Available Time Total Time

MACHINE FEATURES ENABLING
SIMULTANEOUS OPERATIONS

It can be seen that the 1401 system is able to out
perform a 407 on a read and print operation by
almost four to one. The printer on the 1401 is four
times faster than the 407 and, in the example, the
729 II tape unit achieves a reading rate 200 times
that of the 407. A realistic comparison of internal
processing speed is more difficult to make; however,
a 407 can perform as many as 18 six-digit additions
during its 150-ms cycle, while a 1401 can execute
about 650 in the same time. This is a ratio of 36
to 1 in favor of the 1401.

These great differences in speed will not usually
exist when comparing two computer systems. It is
more likely that one computer will perform more
efficiently than another because of its ability to do
several things at the same time. This, in turn,
depends largely on the amount of storage in the
system and the way in which it is organized and used.

BUFFERS

A buffer is a small storage unit used to relieve
main storage of the task of directly serving I/O
devices. Generally speaking, buffering becomes
more important as the difference in speed between
main storage and the I/O device increases. For
example, every time a line is printed, the 1401 main
storage is kept busy for 84 ms transmitting data to the
1403 Printer. The 1401 main storage can transmit
almost 87, 000 characters per second; the 1403 can
achieve a maximum data rate of 1320 characters
per second. With this disparity in speed, a buffer
(Print Storage option) for the 1403 allows better
utilization of 1401 main storage.

Print Storage is a core storage buffer large
enough to hold one line of information for 1403
printing. Print Storage can be filled from main
storage in 2 ms. Then, during the actual printing
operation, main storage is accessible to the other
components of the system. The addition of Print Activity

Read Tape

Print Minor Total

Process

Print Detail line

12.42

84.00

20.00

84.00

2.10
16.00

None
16.00

14.52 ms.

100.00 ms.

20.00 ms.

100.00 ms.

Read Tape

Print Minor Total

Process

Print Detail line

200.42

Next Operation Can Start

Figure 4. Minor total sequence

34.10 234.52

12. 42~ '-___ 8_4_. OO ___ +,fZu.~"""---'
[L....::.20.;;...~OO~l~ _-_-_-_ -_ -_ -~~_-_-_-_-r.:~rmt

. 84.00 ~
[£

5

Storage to a 1401 system makes an additional 82
ms of processing time available on every print cycle
taken by the 1403 and increases the potential for
concurrent processor and printer operations from
16% to 98%.

CHANNELS

Logically, a channel is a data path from main storage
to an I/O device. Every data processing system,
therefore, must have at least one channel. The
physical expression of a channel may take many
forms. In the 1401, for example, all data move
ment in or out of the main storage is by way of
registers that are integral parts of the processor.
The processor in this case is also the data channel,
which means that I/O operations cause processing
to be suspended unless special features are installed
to permit simultaneity.

In practice, however, the word "channel" has
come to mean, more specifically, a group of
components that provide a data path in and out of
main storage without unnecessarily interfering with
the operation of the processor. Channels vary
widely in capability; the more powerful ones are
actually small computers with the ability to address
the main storage of the parent system. Such a
channel will contain several registers capable of
performing operations very similar to those that
take place in the CPU, including a limited amount
of arithmetic. Typical channel functions include:

1. Controlling I/O devices, usually through some
intermediate I/O synchronizer such as the 2841
Control Unit.

2. Addressing locations in main storage for the
purpose of fetching or storing data.

3. Incrementing or decrementing the channel's
registers as the channel handles data transfers under
count control.

4. Providing status information to the processor
and the program control unit as I/O operations are
started or completed.

CHANNEL INTERFERENCE WITH THE CPU

Channels designed to perform numerous operations
for themselves interfere very little with the CPU.
A channel of this kind contains and executes a stored
program of its own, interfering with internal proc
essing only when it requires a main storage cycle
at the same instant as the processor. When such a
conflict occurs, processing is suspended momentarily,
and the channel takes precedence.

The more powerful channels are able to perform
functions that the processor would otherwise be
required to do. Data chaining (the rearrangement
of data as it is fetched from or inserted into main

6

storage) and command chaining (issuing a series of
commands to an I/O device) are examples.

It is comparatively easy to predict the effect of
channel operations on the processor of a machine
like the IBM 1410, because:

1. All data is stored or fetched by the 1410 main
storage one character at a time.

2. All internal operations are done by the 1410
in a storage-to-storage mode. Therefore, any
arithmetic or logical operation requires the use of
main storage.

3. The 1410 channels are limited in that they
operate only upon contiguous locations in storage.
and cannot by themselves execute a series of
commands.

For each character transmitted by a 1410 channel,
one storage cycle is required; and since the proc
essor is always working with data in main
storage, every storage cycle used by a channel is
taken at the expense of internal processing. How
ever, the 1410 channel, being unable to chain data
or commands, never needs to refer to core storage
for anything but its object data. Therefore, channel
interference for any I/O operation is one storage
cycle (4.5 microseconds) for each character in the
block of data being read or written.

Such a precise calculation of channel interference
is not always possible in other machines, notably
the IBM System/360. Some of the variables are:

1. The width of the data path. The Model 40 has
2. 5-microsecond access to two bytes of data. This
means that the channel must make only one reference
to core storage for each two bytes fetched or stored,
thus reducing interference for data transfer to a
little more than one-half a storage cycle per byte.

2. The amount of local storage available to the
processor. If the processor can work from registers
during some of its more lengthy arithmetic and
logical operations, it may continue to compute for
some time without requiring access to the main
storage and thus reduce the number of times that
the processor and a channel are contending for the
same storage cycle.

3. The self sufficiency of the data channel.
Some data channels not only use an occasional
storage cycle, but also interfere with the CPU
directly; that is, they use CPU circuitry to incre
ment or decrement counts and to perform I/O
operations.

4. The kind of I/O operation in progress and the
type of I/O device on which the operation occurs.
A System/360 channel is a stored-program device
and, as such, takes its commands from the main
storage just as the processor does.

If a series of commands is executed in a chan
nel program, the channel must make references to
main storage for each command. Command chaining

has the effect of reducing the capacity of the channel
to transmit data. Some I/O devices, notably disk
drives and data cells, are normally operated in this
fashion. A single channel command, however, can
control the transfer of more than 65,000 bytes of
data from or to contiguous locations in storage. In
addition to command chaining, the channel may be
doing a data chaining operation. Data chaining is
transmitting data in or out of noncontiguous areas
of main storage. System/360 channels operate
under a count control in the channel command word
(CCW) . When a channel has transferred the requisite
number of bytes and data chaining is indicated, it
must obtain the next CCW from main storage and
continue the data transfer to or from a new storage
area. This, like command chaining, increases the
probability that the processor and the channel will
contend for the use of main storage.

5. The kind of program being executed by the
processor. Channel operations will interfere less
with a program that makes extensive use of local
storage - fixed-and floating-point registers -
than with one that consists mostly of data move
ments and decimal (storage-to-storage) arithmetic.

A channel is not only more or less independent
of the processor, but also independent of any other
channels that may be attached to the system. Theo
retically, as many I/O operations may be performed
along with internal processing as there are channels
on the system. With several high-speed data
channels operating at once, however, it is possible
to exceed the capacity of main storage to transmit
data. To illustrate, consider an IBM 1410 with a
storage cycle of 4.5 microseconds and 729 VI tape
drives attached. A 729 VI has a data rate of 90,000
characters per second. With a storage cycle of 4.5
microseconds, data can be transferred at a rate of
about 222,000 characters per second. Two channels
of 729 VI tape can be operating simultaneously (90KC
+ 90KC = 180KC), but not three, since the aggregate
data transfer rate of three 729 VI tapes drives is
270KC, a rate that requires a storage cycle faster
than 4.5 microseconds.

Two channels on such a system would be feasible;
however, with both operating at once,' the processor
would not have access to main storage for computing.

CHANNEL SIGNALS

If a data proceSSing system is tc achieve any sub
stantial amount of simultaneity, some means must
be found to make internal proceSSing more or less
independent of input and output operations. To
illustrate why this is so, suppose that a system is
capable of reading a record, performing internal
processing, and writing a record, all at the same
time. If the program is written in a strictly

sequential manner (read record A, process record
A, write record A, read record B, process record
B, write record B, etc.), none of the potential
simultaneity of the system is realized. Obviously,
processing cannot begin until the record is read,
and writing cannot begin (except to start an I/O
device moving) until processing has been completed.

If an input unit, an output unit, and the processor
are all to be employed Simultaneously, each must
be busy with a different record. It is then possible
to be simultaneously writing record A (previously
processed), processing record B (previously read) ,
and reading record C (to be processed next). This
is shown in Figure 5.

Internal processing and I/O operations are now
independent, in the sense that each component of
the system operates upon a different record, and
no component is forced to wait for any other to
complete a task.

This type of operation is highly efficient and
tp.erefore much to be desired, but it presents some
difficulties. When I/O operations and internal proc
eSSing are performed in an independent fashion,
there is a need for a control program to schedule

Input Device

ChaDllell

~----,
~-~-c~--c----------?:J

Main Stonge Cenaal Vri-r-, "T,-r-I"..~-c~-B--
ProceSlOl' ~ ~

'----r--J ~.

Output Device

Figure S. Simultaneous reading, writing, and internal processing

7

and coordinate the two types of activity. In general,
the idea behind such a control program is that the
data channels ought to be kept busy whenever
possible; as soon as a channel completes one I/O
operation, it should be set to work on another. In
order to do this, some means of determining
channel status is essential, and the most efficient
way is to have the channels themselves keep the
control program informed of the status of I/O
operations.

Some machine features that facilitate maximum
use of data channels are variously called "priority
processing", "trapping", and "automatic inter
ruption". Regardless of the name, the function is
always the same: The data channel supplies signals
to the control program when some event requires
a service routine. The event is usually the com
pletion of an I/O operation, although any of several
error conditions might also requite a service
routine. The channel signal received by the control
program causes a transfer of control to the ap
propriate routine for whatever condition has occurred.
When the data channel has been serviced, control is
passed back to the mainline program.

STANDARD PROGRAMMING TECHNIQUES
THAT AFFECT SYSTEM PERFORMANCE

Data processing equipment requires good
programming if its full potential is to be realized.
This is particularly true for the portion of the
program that coordinates input/output activity with
the process routines. In general, when a run is
timed, it should be assumed that such welllmown
techniques as record blocking and use of multiple
I/O areas will be employed. These techniques are
standard features of IBM input/output control
systems (IOCS).

8

In run timing the effect of operating systems
should be considered. Every computer installation
spends significant amounts of time in loading each
program into storage before running it. Tape and
disk labels are checked, and storage is cleared
before loading programs. Checkpoints are taken
and portions of programs are loaded, overlaid,
a...Tld reloaded.

Programs may be relocated to make optimum use
of storage. Also, to allow the computer to use any
input/ output device of the proper capacity that
happens to be available, the assignment of data
files to input/output units may be accomplished just
before the program is executed.

All of these can be done automatically by an
operating system, and the speed at which they can
be done by computer is often much greater than the
speed at which they can be done (if they can be done
at all) with operator intervention. The fact remains,

however, that they do involve significant amounts
of time. -Specific figures and the methods for cal
culating these factors cannot be covered in an
introductory manual such as this. Where operating
system features are used extensively, further
refinement of run times is necessary.

MULTIPLE I/O AREAS IN MAIN STORAGE

If a data processing system is to accomplish
simultaneous processing and I/O operations, it is
necessary to have more than one record within
main storage at all times. This practice is sometimes
called "buffering", but this programmed buffering
within the main storage of the computer should not
be confused with buffering accomplished by machine
features like the 1401 Print Storage feature mentioned
earlier.

The use of multiple I/O areas in the main storage
of a data processing system makes it possible for
I/O and processing operations to be carried out in
a logically independent and simultaneous fashion.
Most IBM -provided input/output control systems
furnish several programmer options as to the
number and type of areas that may be specified.

RECORD BLOCKING

A certain amount of access time is associated with
any mechanical I/O or storage device. Record
blocking is a widely used technique for the minimi
zation of access time. The idea is a simple one -"
the combination of several logical records into one
physical record so that all may be read or written
with only one access to a device. The IBM 7330
tape unit affords a good illustration of the use of
this technique. This device requires an average of
20.7 ms for starting and stopping each time it is
called upon by the program. The average time
required to read or write a record at high density
may be calculated by the formula 20.7 + . 050N,
where N is the number of characters in the record. *
For an SO-character record, this is 24.7 ms.

Now, suppose that five SO-character logical
records are grouped together to form one physical
record on the tape. The file is said to have a
blocking factor of five, or be "blocked five". This
tape block of 400 characters can be read or written
in an average time of 40.7 ms. Average access
time to one logical record is thus reduced from
24.7 to just over S ms. A higher blocking factor
will further reduce average access time. With the
file blocked ten, average access time to one record
becomes a little more than 6 ms. This increase in

*IBM 729, 7330, and 727 Magnetic Tape Units, IBM Systems

Reference Library (A22-6589).

efficiency provides a time advantage, but more main
storage space is required. rn practice, the amount
of record blocking that can be done depends on the
amount of main storage available for the larger I/O
areas that are required to accommodate long
physical records. If a file is used in several runs,
the run with the least amount of storage available
for record blocking will determine the block size
for all the other runs.

The following table shows the effect of record
blocking on file passing time. The file contains
20, 000 eighty-character records. The r/ a device
being used is 7330 tape; density is 556 characters
per inch.

A verage time
Blocking Block to read or Number A verage file
factor length write a block of blocks --- pass time

80 ch. 24.7 ms 20,000 8.23 min.
2 160 ch. 28.7 IDS 10,000 4.78 min.
S 400ch. 40.7 IDS 4,000 2.71 min.

10 800 ch. 60.7 IDS 2,000 2.02 min.

One other advantage of blocked records should be
mentioned. Although blocked records require more
space in the main storage of the computer, they
require much less space on a magnetic tape or disk.
This is because blocking reduces the number of inter
record gaps and consequently increases the amount
of space used for data. The interrecord gap on the
7330 tape averages. 75 inches in length. For a
record length of 80 characters at 556-cpi density,
the amount of blank space on the tape reel exceeds
the amount of recorded space until the file is
blocked five, at which point the two are about equal.
A 2400 -foot reel of tape can contain about 32, 000
eighty-character records unblocked; if the records
are blocked ten, it can contain about 130,000.

RUN BALANCE

Record blocking and the use of multiple I/O areas
each have a different purpose. Record blocking
increases the efficiency of an r/o operation. The
use of multiple r/o areas is necessary for concurrent
processing and I/O operations. Both techniques are
often used together in order to achieve a balanced
run.

Record blocking will always improve the per
formance of a system that cannot perform simul
taneous operations; it will often improve the
performance of a system with this ability. On a

sequential system - without the ability to do
simultaneous r/o and processing - run time is the
sum of all I/O plus all processing. It follows, then,
that in a sequential system any reduction in either
I/O time or processing time will be directly and
completely reflected in the time required for the run.

When a data processing system has the potential
for simultaneous operations, the benefits of record
blocking are less certain. A reduction in I/O time
does not necessarily cause a corresponding reduction
in total run time. The minimum time for a run
performed on a system with the ability to do
simultaneous operations is internal processing
time plus all channel interference time. Therefore,
if the time required for r/o operations is brought
below this minimum, further record blocking will
have no effect. The run is then process-limited.
By definition, a run is process-limited when a
reduction in the time required for I/O operations
does not reduce the total run time. When the time
required for r/o operations is approximately equal
to the sum of internal processing time plus channel
interference time, a run is considered to be balanced.

To illustrate how record blocking and multiple
I/O areas may be used together to bring a run into
near balance, assume that:

1. 10,000 eighty-character records are to be
read, processed, and written.

2. 12 ms is the average processing time required
for each record.

3. A two-channel 1410 with 7330 tapes is the data
processing system.

4. 1600 positions of core storage are available
for r/ a areas.

rn one approach, the file might be blocked ten -
as highly as possible with the storage available -
and simultaneous reading and writing (but not
processing) performed. The sequence of operations
would be:

1. Perform an initial read of one 800-character
tape block (10 logical records) into one of the I/O
areas.

2. Process for 120 ms (10 records x 12 ms per
record) the data records in the tape block just read.

3. Modify the program so that for the next loop
the other I/O area is used for processing.

4. a. Start writing the block just processed.
b. Start reading the next block into the

other I/O area.
5. Wait 60.7 ms for I/O operations to be

completed - that is, 20.7 + (800 ch. x .050 ms)
and then return to step 2. Note that the two r/o
areas are used alternately as process areas.

9

If each file is on a different channel, almost
complete simultaneity of reading and writing can be
achieved (see Figure 6). Since records are blocked
to the limit of the storage available, I/O operations
have been made as efficient as possible. Storage
interference is not a factor in the run timing
calculation, since no processing takes place during
the read -write operation.

This, however, is not the best way to design the
run. None of the processing is being overlapped.
The program performs I/O for about 60.7 ms, then
processes for about 120 ms, and so on. Run time
will be about 181 seconds:

1000 blocks x (120 ms + 60.7 ms)
1000 ms per second = 180.7 sec.

This run can be changed to make more efficient
use of the 1600 positions of storage that are available
for I/O operations. If the blocking factor is reduced
to 5, an additional area in core storage can be
provided for each file, making a total of four I/O
areas for the two files, two input areas, and two
output areas. Now the I/O and processing can
proceed simultaneously. When the records in an
input area have all been processed, the channel can
be set to work to refill it. In the meantime, records
in the alternate area can be processed. When an
output area'is filled with processed records, it can

immediately be written out, and the alternate area
made available to the program for the assembly of
a new output tape block. It is now possible to
perform simultaneous reading, writing, and proc
essing. With simultaneous operations being per
formed, storage interference becomes a factor in
the calculation of run time. Each time a block of
400 characters is read or written, 400 storage
cycles are made unavailable to the pr'ocessor. This
is equal to 1. 8 ms (400 x .0045 ms). A table of
operations can be constructed that will show time
for one process cycle, that is, time required to
write one tape block, process a second, and read
a third:

Read one tape block
Write one tape block

(simultaneous operation)
Perform internal Pl'9cessing

40.7 IDS

40.7 IDS

(simultaneous operation) 40.7 IDS

Do additional processing (60.0 IDS - 40. 7 ms) 19. 3 ms
Storage interference 2(400 x .0045 IDS) 3. 6 ms

Total 63. 6 IDS

The total, multiplied by 2000 tape blocks, equals
127 .2 seconds, a substantial improvement over the
180 seconds estimated for the first design. This
run time cannot be improved by further record
blocking, for it is already process-limited (see
Figure 7).

~-- 1~.7~.

Read

Process

Figure 6. Simultaneous reading and writing, blocked 10.

10

14----------- 63.6 IDS. ---------..-1

Read (40.7 "".)

Write (40.7 ms.)

Proce .. (60.0 ma. plus 3.6 mi. stonge illteriereDCe)

Figure 7. Simultaneous reading, writing, and processing, blocked 5

Process time for a block of five records is 60 ms,
but input and output for the block total only 40. 7 ms.
When 3. 6 ms of storage interference is deducted
from the 40. 7 ms available during r/ 0, it is evident
that the processor can actually accomplish only
37.1 ms of the 60.0 ms of processing required.
Therefore, a somewhat lower blocking factor could
be used without increasing run time. As a matter
of fact, this run is approximately balanced between
I/O and processing when the files are blocked three.
Blocked three, a tape block is 240 characters.
Average time for rio is 20.7 + (240 x .050), or
32. 7 ms. Storage interference when one block is
being read and another written is (2 x 240 x .0045 ms),
or 2.16 ms. Therefore, while r/o operations are
being carried out, available process time is 32.7 ms
minus 2. 16 ms storage interference, or 30.54 ms.
Since 36 ms are/required to process the three
records, the job is still process-limited when the

file is blocked three, although not by much - only
5.46 ms per block. When a blocking factor of three
is used, the table of operations looks like this:

Read one tape block

Write one tape block

(simultaneous operation)

Perform internal processing

(simultaneous operation)

Do additional processing

(36.00 ms - 32. 70 ms)
Storage interference 2(240 x .0045 ms)

Total

32.70 ms

3.30 ms
2.16 ms

38.16 ms

32.70 ms

32.70 ms

This total, multiplied by 3333 tape blocks, again
equals 127 . 2 seconds. Decreasing the blocking
factor has not changed the estimated run time,
because the run is still process-limited.

When the blocking factor is further reduced to
two, however, the run becomes tape-limited. In
this case, not only will all processing be performed
during I/O operations, but the processor will be
idle for about 3.26 ms per tape block (see Figure 8).
Estimated run time is the time required to read the
file - that is, 5000 blocks x 28. 7 ms, or about
143.5 seconds.

- 28.7 ms. ------I_=__~ -
Read

Write

Process

Figure 8. Simultaneous reading, writing and ~cessing, blocked 2

11

DATA CHARACTERISTICS THAT AFFECT RUN TIME

The characteristics of the data in a run constitute an
important determinant of run time. Some data
characteristics have already been mentioned: file
volumes and record lengths obviously are necessary
inputs to any run timing procedure. However, when
several files are present in a run, some secondary
data characteristics become operative. Secondary
data characteristics consist of the relationships
among the files - the way in which one file interacts
with another or with several others. These re
lationships are not always easily known, and even
when known, they are likely to vary from one
execution of a run to another.

SKEWED AC TIVITY WITHIN A FILE

When, during a run, an item in a file is changed,
that item is said to be active. Activity is usually
expressed as a percentage of the number of records
in a file. For example, if an inventory master fi~e
contains 100, 000. items, and if, during some period
of time, the status of 20,000 of those items is
altered by some business activity such as sales,
purchases, or manufacturing, the file is said to be
20% active. It is important to know the percentage
of activity, and also to realize that within that
overall percentage, the exact pattern of activity
across the file will affect the amount of time
required for processing.

An uneven pattern of activity across a master file
is sometimes called file skew. This condition can
upset the balance between internal processing and
I/O operations, which the deSigner of the run has
apparently achieved. Suppose that a block of ten
records requires 60.7 ms for reading or writing,
and that the entire file is known to be 20% active.
With an even distribution of activity, any block of
ten records is likely to contain two records which
are active. If each inactive record requires 1 ms
for routine processing, and each active record
requires 25 ms, the run is well balanced between
I/O and internal processing. Process time for a
block equals 8 ms for the eight inactive records:
plus 50 ms for the two active records, for a total
of 58 ms.

This, however, assumes an even distribution of
activity across the file. It is more likely that many
blocks will be encountered in which three, or perhaps
five, or even all ten of the records are active. When
this occurs, the run becomes process-limited for
that block. On the other hand, any block which has
fewer than two active records will be I/O-limited.

12

If the activity across a file is severely skewed -
that is, if some portions of the file are intensely
active and others hardly active at all - the run
may be process-limited part of the time and 1/0-
limited part of the time, and much of the expected
Simultaneity between processing and I/O functions
may be lost.

BURSTS OF ACTIVITY

A 100, OOO-item master file that is 20% active may
be affected by more than 20, 000 transactions. In
many cases, individual master records are active
several times during the run. Several transactions
all relating to the same master record are some
times called a burst of activity.

Taking the example of a 100, OOO-item master
file known to be 20% active, suppose that it is also
known that the average run will process 60,000
transactions. The designer of the run knows that,
on the average, each active master record will
have three related transactions. This average
figure may be deceptive, for in many applications
some master records are much more active than
others. Inventory is a good example; most inventory
master files contain a large number of items with
very low activity, and a relatively small number of
items with high activity. In fact, a rule of thumb
for the inventory application is that 80% of all the
transactions in a run may be expected to relate to
only 20% of the master file items.

Varying bursts of activity, like skew, can cause
a run to be alternately process- and I/O limited. It
is also possible for long bursts of transactions to
disturb the balance between two I/O devices.
Suppose, for example, that a transaction file is
punched into cards, and that the run is designed
with the idea that the card reader will operate once
for each time that one block of tape records is read
and written. If the card reader is on a separate
channel from the tapes, and process requirements
are such that one card reader cycle is approximately
equal to the time required for a read-process-write
cycle of the master tape, the I/O devices involved
should not interfere with one another, and a large
amount of simultaneity can be achieved between the
several I/O operations. Bu t if, in some cases, the
master file must remain in place while the card
reader reads a burst of 10 or 20 transactions, it is
easy to see that an imbalance will exist and that, in
effect, one data channel will interfere logically with
the operation of other data channels on the system.

DEALING WITH SKEW AND BURSTS OF AC TIVITY
FOR TIMING PURPOSES

For timing purposes, it is important to know that
skew and bursts of activity will affect actual run
time., and that they almost always are present to
some extent: Any timing method that makes use
of averages, such as an average of two active
master records per block, with each active master
having an average of three transactions, automatically
has the effect of smoothing out uneven patterns of
activity and assumes an optimum situation that
rarely exists.

If the actual pattern of activity is known, and
there is a significant amount of skew, the run may
be considered as consisting of several segments,
each segment having different skew characteristics.

As an example of how this might be done, and
how it might affect a timing estimate, assume the
following:

• A System/360, Model 30, that has one selector
channel and several Model 2, 2400 series tapes
attached.

• A master file of 100, 000 eighty-byte records
(blocked four) to be read and written.

• A 20, 000 -card transaction file that is read
from a 2540 card read punch attached to the
multiplexor channel.

• About 15 ms of processing time required for
each active master record.

• About 6 ms of processing time required for
the routine handling of each inactive master
record.

• Just one transaction card for each active
master record.

Functionally, the job looks like this:
Read 20,000 cards at 1000 cpm 20. 00 minutes
Read 25,000 tape blocks at 5.55 minutes

13. 34 ms each
Write 25,000 tape blocks at 5.55 minutes

13. 34 ms each
Process 80,000 inactive records

for 6 ms each
8.00 minutes

Process 20,000 active records 5.00 minutes
for 15 ms each

*Selector channel interference
(16,000,000 bytes at 1. 5 .40 minutes
microseconds per byte)

**Multiplexor channel interference .90 minutes
(2. 7 ms per card)

*With no data or command chaining.

**An approximation, assuming multibyte mode.

The theoretical minimum run time is 14.3 minutes,
the sum of all processing and all memory interference.
The selector channel time is 11.1 minutes - the sum
of all tape reading and writing time for the run.
Multiplexor channel time is 20 minutes - total card
reading time. Since all other operations can ap
parently be accomplished within the time required
for card reading, 20 minutes seems to be a good
estimated run time.

With a reasonably even distribution of active
records across the master tape, this estimate will
be very close to actual run time. But with a severely
skewed activity pattern, the run could take consider
ably longer. Suppose that this is an inventory run,
that 80% of all activity occurs on 20% of the master
records, and that those active master records
belong to the same product line and are grouped
closely together on the master tape. There would
be two activity patterns within the run, one very
high and one very low. The first would look like
this:

Read 16,000 cards (80% of all
transactions)

Read 5000 tape blocks (20%
of all master items)

Write 5000 tape blocks
Process 4000 inactive records

16.00 minutes

1.11 minutes
1.11 minutes

.40 minutes
Process 16,000 active records 4.00 minutes
Selector channel interference

(3,200,000 bytes) .08 minutes
Multiplexor channel interference

(16,000 cards) .72 minutes
The estimated partial run time is 16.00 minutes.

This portion of the run is limited by the card reader.
The times for the second activity pattern would

look like this:
Read 4000 cards (20% of all

transactions)
Read 20,000 tape blocks (80%

of all master items)
Write 20,000 tape blocks
Process 76,000 inactive records
Process 4000 active records
Selector channel interference

4.00 minutes

4.44 minutes
4.44 minutes
7.60 minutes
1.00 minutes

(12,800,000 bytes) .32 minutes
Multiplexor channel interference

(4,000 cards) .18 minutes
The estimated partial run time is 9. 1 minutes,

the sum of all processing and all channel inter
ference time. CPU operations limit this segment
of the run.

13

The estimated total run time is 25.1 minutes -
the sum of both run segments. One segment of the
run is limited by the card reader, and the other by
the CPU. Notice that only the estimated time for
the run has changed. Total card reader time is
still 20 minutes; total processor time (internal
processing plus storage interference) is still 14.3
minutes; and total tape time is still 11.1 minutes.
It is only relationships within the run that have
changed, causing an apparently well balanced run
to become highly unbalanced. This is an extreme
example, causing a difference of almost 25%
between the first and second estimates.

This method of estimating the effects of a skewed
activity pattern is not always completely realistic,
for it ass,umes one line of demarcation between two
physical file segments, one having relatively high
activity and one having relatively low activity. In
an actual case, segments of high and low activity
may well be interspersed throughout the entire file,
and the normal buffering provided by laCS will tend
to mitigate the effect of the skewed activity pattern.
Even if it does not exactly fit the actual case, this
method provides an approximation of the effect of a
ske~ed activity pattern. It will almost always
provide a more realistic estimate of run time than
the assumption of an absolutely even distribution
of activity.

RUN TIMING AS A PART OF SYSTEM SELECTION

Thus far, run timing has been treated as an end in
itself, which, of course, it is not. Run timing is
part of a larger problem called system selection,
which is a four-step iterative process~

1. Design a system approach to the job.
2. Select a likely configuration of equipment.
3. Estimate run time.
4. Evaluate the results.
This process is repeated until it has yielded the

best configuration of data processing equipment for
the job at hand. Out of all of the systems considered,
this "best" system may be the fastest, the least
expensive, or the one tha~ provides the lowest cost
per unit of work. On the other hand, it may not
be any of these. The "best" system can only be
defined as the one that most nearly fulfills all of
the user's requirements. The initial choice of
systems to be studied in more detail must be based
on a thorough knowledge of user objectives and
policy.

14

CONSIDERA TIONS IN RUN DESIGN

Run design is largely a matter of allocating the
facilities of the data processing system to the
elements of the run. System facilities are main
storage, data channels, I/O devices~ and direct
access devices; run elements are programs and
data files.

The designer of the run works with a finite
system; he has a limited number of facilities
available. Within these limits, however, many
design variations are often possible. Data files
may be switched from one I/O device to another;
main storage may be used for long record blocks
or for many I/O areas; or I/O areas may be traded
between the several files in the run. Some general
principles of run design follow:

1. The files that place the greatest burden on
the system should be given priority for the fastest
I/O devices, the largest blocking factors, and the
most I/O areas.

2. The burden that a file places on the system
depends on its size (the number of bytes of data that
it contains), and also on the number of times that
it is processed. A small file appearing in several
runs may be a more important determinant of total
job time than a large file used in only a few runs.

3. A high blocking factor improves performance
for an I/O-limited run; multiple I/O areas improve
performance for a process-limited run. In practice,
however, many runs are both 1/0- and process
limited at different times during the execution of
the run.

4. In general, after having blocked records to
the point of a theoretical balance between I/O
operations and internal processing, the best use of
main storage is to provide more I/O areas, rather
than to increase the blocking factor still further.

5. At times, space on the external storage
medium may be an important consideration, as
when trying to fit a file within a direct access
storage device. When this is so, a high blocking
factor may be essential. However, this high blocking
factor will require more main storage space for
I/O areas.

6. Whe:"l a file appears in several runs, the
blocking factor for that file is fixed by the run that
has the least amount of main storage available for
I/O areas.

CONSIDERA TIONS IN TIMING

When a data processing system has been selected
for detailed timing, and the runs have been designed,
the timing process can begin. Before it is begun,
these questions should be answered:

1. Are job specifications current? (Estimates
of file volumes, ~ercentages of activity, average
number of lines per form, etc., are sometimes
not up to date. The figures gathered when the job
was last studied may no longer be correct.)

2. When will the system be installed? Has an
allowance been made for the expected increase in
volumes during the preinstallation period?

;3 • Will the system handle peak loads ? (Average
volume figures are often deceptive, for volumes
sometimes fluctuate considerably with the season
of the year or the day of the week or month.)

4. Have all likely configurations been considered,
or has the selection process stopped with the first
workable one? (As many iterations of the design
and timing cycle should be performed as are possible
with the time and resources available.)

5. Is it necessary to time out every run in the
job on each system being considered? (Often,
comparative times on one or two important runs
will establish the superiority of one system. The
complete job can then be timed only for the selected
system.)

6. What effect will the use of operating systems
have on the timings? (Although operating systems
can save large amounts of time or core storage, or
prevellt costly operator errors, the time that they

require may be an important factor in run timing.
This is particularly true if some features are used
extensively, as in overlaying program segments for
more efficient use of core storage.)

ACCURACY OF RUN TIME ESTIMATES

A timing estimate, however carefully done, should
never be considered ironclad. This is because the
timing equation is never complete. Some factors
are always operative that cannot be measured
completely and accurately, or cannot be considered
at all. For this reason, estimated run times will
vary somewhat from actual run times. Some of
these hard-to-measure factors are:

1. Efficiency of the problem program. This
depends on the skill of the individual programmer
who does the work.

2. An unusually adverse or unusually favorable
distribution of activity across a master file.

3. A business cycle that causes many exception
routines to be executed.

4. A variance from the expected number of
stepdowns in sequence when a file is _sorted.

Any of these factors can cause estimated run
times to vary from actual run times; often they will
even cause the time required for a run to fluctuate
no~ceably from one execution of that run to another.
But unless the total estimated load on the data proc
essing system is very close to a maximum limit,
these factors should not cause concern.

15

C20-1648-1

TIrn~
®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

