
Installed
User
Program

SH20-6168-1

PascalNS
language Reference Manual

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in MVS and
VM/CMS. Originally designed as a high level program
ming language to teach computer programming by
N. Wirth (circa 1968), Pascal has emerged as an
influential and well accepted user language in today's
data processing environment. Pascal provides the user
with the ability to produce very reliable code by perfor
ming many error detection checks automatically.

The compiler adheres to the ~urrently proposed ISO
standard and includes many important extensions.
The language extensions include: separate compilation,
dynamic character strings and extended I/O capabilities.
The implementation features include: fast compilation,
optimization and a symbolic terminal oriented debugger
that allows the user to debug a program quickly and
efficiently.

This manual describes the implementation of the lan
guage by this compiler, and is intended as a reference
guide for the Pascal programmer.

--..- ------ - ---- ~--- -. ------ - - ------_ ... -______ - 9' _

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of six months
notice prior to the discontinuance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without additional charge,
respond to an error in the current unaltered release of the program by issuing known error correction
information to the customer reporting the problem and/or issuing corrected code or notice of avail
ability of corrected code. However, IBM does not guarantee service results or represent or warrant that
all errors will be corrected.

Anyon-site program service or assistance will be provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey A venue
P.O. Box 50020
San Jose, CA 95150
Attention: J. David Pickens
Telephone: (408) 463-4394
Tieline: 8-543-4394

IBM Corporation
.. DPD, Western Region

3424 Wilshire Boulevard
Los Angeles, CA 90010
Attention: Mr. Keith J. Warltier
Telephone: (213) 736-4645
Tieline: 8-285-4645

Second Edition (April 1981)

This is the second edition of SH20-6162, a publication that applies to release 2.0
of the Pasca]jVS Compiler (IUP Program Number 5796-PNQ).

References in thic; publication to IBM products, programs, or services do not imply that
lllM intends to make these available outside the United States.

Publications are not stockcd at the addrcss given below; requests for copies of IDM
publications should be made to your IDM representative or to the IBM branch office
serving your locality.

A form for readers' comments has been provided at thc back of this publication. If
thl" form has been removed, address comments to: The Central Service Location.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981

PREFACE

This document is the reference manual to the Pascal/VS programming language. The
Pascal/VS Programmer's Guide, SH20-6162, is also available from IBM to help write
programs in Pascal/VS.

It is assumed that you are already familiar with Pascal and programming in a high
level programming language. There are many text books available on Pascal; the fol
lowing list of: books was taken from the Pascal User's Group Pascal News, December
1978 NUMBER 13 and September 1979 NUMBER 15. You may wish to check later editions of
Pascal News and your library for more recent books.

• The Design of Well-Structured and Correct Programs by S. Alagic and M.A. Arbib,
Springer-Verlag, New York, 1978, 292 pp.

• Microcomputer Problem Solving by K.L. Bowles, Springer-Verlag, New York, 1977,
563 pp.

• A-2!.ructur~d Programmi ng Approach to Data by D. Coleman, MacMi llan Press Ltd,
Lon~0n, 1978, 222 pp.

• A Primer on Pascal by R.W. Conway, D. Gries and E.C. Zimmerman, Winthrop Pub
lishers Inc., Cambridge Mass., 1976, 433 pp.

• PASCAL: An Introduction to Methodical Programming by W. Findlay and D. Watt,
Computer Science Press, 1978, 306 pp.; UK Edition by Pitman International Text,
197·8.

• Programming in PASCAL by Peter Grogono, Addison-Wesley, Reading Mass., 1978,
357pp.

• Pascal Users Manual and Report by K. Jensen and N. Wirth, Springer-Verlag, New
York, 1978, 170 pp.

• Structured Programming and Problem-Solving with Pascal by R.B. Kieburtz,
Prentice-Hall Inc., 1978, 365 pp.

• Pro~mming via Pascal by J.S. Rohl and Barrett, Cambridge University Press.

• An Introduction to Programming and Problem-Solving with Pascal by G.M.
Schneider, S.W. Weingart and D.M. Perlman, Wiley & Sons Inc., New York, 394 Pp.

• Introduction to Pascal by C.A.G. Webster, Heyden, 1976, 129 pp.

• Introduction to Pascal by J. Welsh and J. Elder, Prentice-Hall Inc., Englewood
Cliffs, 220 pp.

• A Practical Introduction to Pascal by I.P. Wilson and A.M. Addyman,
Springer-Verlag New York, 1978, 145pp; MacMillan, London, 1978.

• ~tematic Programming: An Introduction by H. Wirth, Prentice-Hall Inc.,
Englewood Cliffs, 1973 169 pp.

• A1.gprithms + Data Structures = Programs by N. Wirth, Prentice-Hall Inc.,
Englewood Cliffs, 1976 366 pp.

This reference manual considers ISO/TC 97/SC 5 N595 as the Pascal Standard although
N565 is a proposed standard and subject to further modification.

STRUCTURE OF THIS MANUAL

This manual is divided into the following major topics

Chapter 1 is a summary of the language.

Chapter 2 is a description of the basic units (lexical) of Pascal/VS.

Chapters 3 through 9 are a top-down presentation of the language.

Chapter 10 describes the I/O procedures and functions.

Preface ii;

Chapter 11 describes the predefined procedures and functions.

Chapter 12 describes the compiler directives.

Appendices provide supplemental informat~on about Pascal/VS.

PASCAL/VS SYNTAX Q~~RAHS

The syntax of Pascal/VS will be described with the aid of syntax diaQrams. These
diagrams are essentially 'road maps'; by traversing the diagram in the direction of
the arrows you can identify every possible legal Pascal/VS program.

Within the syntax diagram, the names of other diagrams are printed in lower case and
surrounded by braces ('{}'). When you traverse the name of another diagram you can
consider it a subroutine call (or more precisely a 'subdiagram call'). The names of
reserved words are always in lower case. Special symbols (i .e. semicolons, commas,
operators etc) appear as they appear in a Pascal/VS program.

The diagram traversal starts at the upper left and completes with the arrow on the
right. Every horizontal line has an arrowhead to show the direction of the trav
ersal on that line. The direction of traversal on the vertical lines can be deduced
by looking at the horizontal lines to which it connects. Dashed lines (i .e. ,----')
indicate constructs which are unique to Pasca!/VS and are not found in standard
Pascal.

Identifiers may be classified according to how they are declared. For the sake of
clarity, a reference in the syntax diagram for {id} is further specified with a one
or two word description indicating how the identifier was declared. The form of the
reference is '{id:description}'. For example {id:type} references an identifier
declared as a type; {id:function} references an identifier declared as a function
name.

The convention used in this document is that all changes in the current version from
the previous edition are flagged with a vertical bar in the left margin.

Extensions to Pascal are marked with a plus sign in the margin.

iv Pasca!/VS Reference Manual

TNL SN20-4446 (31 December 81) to SH20-6168-1

SUMMARY OF AMENDMENTS

RELEASE 2.1

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.1.

• A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at the
outermost nesting level of a module has been removed.

• Two net'" opi: ions may be appl i ed to files when they are opened: UCASE and NOCC.

• Rules have been relaxed in passing fields of packed records by var to a routine.

• The "STACK" and "HEAP" run time options have been added to control the amount at
which the stack and heap are extended when an overflow occurs.

• The syntax of a "structured constant" which contains non-simple constituents has
been simpliified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.0.

• Pascal/VS now supports single precision floating point (32 bit) as well as dou
ble precision floating point (64 bit).

• Files may be opened for updating with the UPDATE procedure.

• Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT) so
that I/O may take place directly to the user's terminal without going through
the DDNAME interface.

• The MAIN directive permits you to define a procedure that may be invoked from a
non-Pascal environment. A procedure that uses this directive is not reentrant.

• The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen
trant.

• A new predefined type, STRINGPTR, has been added that permits you to allocate
strings with the NEW procedure whose maximum size is not defined until the invo
cat iI 0 n 0 f NEW.

• A n'~w parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring you to specify the maximum size
of the string on the formal parameter.

• The maximum size of a string has been increased to 32767 characters.

• The Pascal/VS compiler is now fully reentrant.

• Code produced from the compiler will be reentrant if static storage is not modi
fied.

• Pascal/VS programs may contain source lines up to 100 characters in length.

• Files may be accessed based on relative record number (random access).

• Run time errors may be intercepted by the user's program.

• Run time diagnostics have been improved.

• Pascal/VS will flag extensions when the option "lANGlVl(STD)" is used.

Summary of Amendments v

TNL SN20-4446 (31 December 81) to SH20-6168-1

• A mechanism has been provided so that Pascal/VS routines may be called from oth
er languages.

• All record formats acceptable to QSAM are now supported by the Pascal/VS I/O
facilities.

• A procedure or function may now be exited by means of the goto statement.

• You may nOL..J declare an array vari able where each element of the array is a fi Ie.

• You may define a file to be a field of a record structure.

• Files may now be allocated in the heap (~s a dynamic variable) and accessed via a
pointer.

• You may
storage.

now def i ne a subrange of I NT EGER wh i ch i sail ocated to 3 bytes of
Control over signed or unsigned values is determined by the subrange.

• Variables may be declared in the outermost scope of a SEGMENT. These variables
are defined to overlay the variables in the outermost scope of the main program.

• The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

• The PDSOUT procedure opens a member of a library file (partitioned dataset) for
output.

• A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

• The CPAGE percent(%) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

• The MAXLENGTH function returns the maximum length that a string variable can
assume.

• The %CHECK TRUNCATE option enables (or disables) the checking for truncation of
strings.

• The PASCAlVS exec for invoking the compiler under CMS has been modified so that
·the specification of the operands allows greater flexability.

• New compiler options have been added, namely: lINECOUNT, PXREF, PAGEWIDTH, and
lANGLVl.

• The catalogued procedures for invoking Pascal/VS in OS Batch have been simpli
fied.

• The format of the output listing has been modified so that longer source lines
may be accomodated.

• Multiple debugger commands may be entered on
(;) as a separator.

single line by using a semicolon

• The format of the Pascal File Control Block has been modified.

• Support is now pro~ided for ANSI and machine control characters on output files.

• Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

• The debugger now supports breakpoints at the end of a procedure or function.

• The Trace mode in the debugger provides information on when procedures are being
exited.

• The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

• The Equate command of the debugger has been enhanced.

• The debugger will print "uninitialized" when displaying a variable that has not
been assigned.

vi Pascal/VS Reference Manual

CONTENTS

1.0 Introduction to Pascal/VS
1.1 Pascal language Summary

1.1.1 Syntax
1.1.2 Modul~~s••.
1.1.3 Declarations
1.1.4 Data-Types
1.1.5 Parameters
1.1.6 Statements
1.1.7 Expressions
1.1.8 Operands
1.1.9 Special Symbols
1.1.10 Identifiers .
1.1.11 The Not Operator .
1.1.12 Multlplying Operators
1.1.13 Adding Operators
1.1.1 1t Rela~:ional Operators
1.1 .1!; Reser~ved Words
1.1.16 Predefined Constants
1.1.17 Predefined Types
1.1.18 Predefined Variables
1.1.19 Predefined Functions
1.1.20 Predefined Procedures
1.1.21 % Include Statements

2.0
2.1
2.2
2.3
2.4
2.5
2.6

The Base Vocabulary
Idnnti fi er~s . . .
Lexical Scope of Identifiers
Re~5erved ~Iords
Sp~~cial Symbols
Comments
Constants .

+ 2.7 Structured Constants

3.0 structure of a Module

4 .. 0
4.1
4.2
4.3
4.4

+ 4.5
+ 4.6
+ 4.7

Pasca!/VS Declarations
The label Declaration
The Const Declaration
The Type Declaration
n"'H~ Var Declarati on .
The Static Declaration
The Def/Ref Declaration
The Value Declaration

5.0 Types ••••••••
+ 5.1 A Note about Strings

5.2 Type Compcltibi lity
5.2.1 Impl i c::i t Type Conversi on
5.2.2 Same Types•.........
5.2.3 Compatible Types
5.2.4 Assignment Compatible Types

5.3 The Enumerated Scalar
5.4 The Subranqe Sca la r .•..
5.5 Pr(~define({Scalar Types

5.5.1 The Type INTEGER
5.5.2 The Type CHAR
5.5.3 The Type BOOLEAN
5.5.4 The T},pe REAL ..•..
5.5.5 The Type SHORTREAl

5.6 Thc~ Array Type•
5.6.1 Array Subscripting

5.7 The Record Type
5.7.1 Naming of a Field ..•............
5.7.2 Fixed Part
5.7.3 Variant Part
5.7 .4 Packed Records ..•....

+ 5.7.5 Offset Qualification of Fields
5.8 The Set T~rpe
5. 9 Tht~ F i 1 e Type•......
5.10 P redef i nt2d st ructu re Types •

+ 5.10 . .1 The Type STRING•.•.

Contents

1
1
I
2
2
3
3
4
5
5
6
6
7
7
7
8
8
8
8
9
9

10
11

13
13
13
15
16
17
18
20

21

23
23
24
25
26
27
28
29

31
31
31
31
32
32
32
34
35
36
36
38
39
40
41
42
42
44
44
45
45
46
46
48
50
51
51

vii

+ 5.10.2 The Type ALFA
+ 5.10.3 The Type ALPHA

5.1 () .4 The Type TEXT
5.11 The Pointer Type
5.12 The Type STRINGPTR
5.13 Storage, Packing, and Alignment

6.0 Rout;n~s ••••••••••••••
6.1 Routine Declaration
6.2 Routine Parameters

6.2.1 Pass by Value Parameters
6.2.2 Pass by Var Parameters

+ 6.2.3 Pass by Const Parameters
6.2.4 Formal Routine Parameters
6.2.5 Conformant String Parameters

6.3 Routine Composition•.
6.3.1 Internal Routines•......
6.3.2 FORL.JARD Rout i nes •

I 6.3.3 EXTERNAL Routines
+ 6.3.4 FORTRAN Routines

I 6.3.,5 MAIN Procedures.
6.3.6 REENTRANT Procedures
6.3.,7 Examples of Routines

6.4 Function Results
6.5 Predefi ned Procedures and Functi ons

7.0
7.1
7.2
7.3
7.4

8.0
8.1

+ 8.2
8.3

+ 8.4
8.5

+ 8.6
I 8.7

9.0
+ 9.1

9.2
9.3
9.4

+ 9.5
9.6
9.7
9.8
9.9

+ 9.10
9.11
9.12

+ 9.13
9.14
9.15

10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7

+ 10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16

variables .••••
Array Referenci ng
Field Referencing
Pointer Referencing
File Referencing

Expressions
Operators
Constant Expressions
Boolean Expressions
Logical Expressions
Function Call
Scalar Conversions
Set Constructor

statements •••••••••••
The Assert Statement .
The Assignment Statement
The Case Statement .
The Compound Statement
The Cont i nue Statement•...
The Empty Statement
The For Statement
The Goto Statement
The If Statement

The Leave Statement
The Procedure Call
The Repeat Statement
The Return Statement
The While Statement
The With Statement

I/O Facilities
RESET Procedure
REWRITE Procedure
TERMIN Procedure
TERMOUT Procedure
PDSIN Procedure
PDSOUT Procedure
UPDATE Procedure
CLOSE Procedure
GET Procedure

PUT Procedure
SEEK Procedure
EOF Function
READ and READLN (TEXT Files>
READ (Non-TEXT Files>
WRITE and WRITELN (TEXT Files>
WRITE (Non-TEXT Files>

vi i i Pascal/VS Reference Manual

54
55
56
57
58
59

61
62
62
62
62
62
62
62
63
63
63
63
64
64
64
65
65
65

67
67
68
68
68

71
74
76
77
78
79
80
81

83
84
85
86
88
89
90
91
93
94
95
96
97
98
99

100

103
103
104
104
105
105
106
106
107
107
108
108
109
109
111
112
114

10.17
10.18

+ 10.19

rOlN function
PAGE Procedure
eOLS Function

+
+

+
+
+
+
+

+
+

+

+
+

+

+
I
+
+
+
+
+
+
+

I

11.0 Execution Library Fncilities
11.1 Memory Management Routines

11.1.1 MARK Procedure
11.1.2 RELEASE Procedure
11.1.3 NEW Procedure .
11.1.4 DISPOSE Procedure

11.2 Data Movement Routines
11.2.1 PACK Procedure
11.2.2 UNPACK Procedure

11.3 Data Access Routines
11.3.1 LOWEST Function
11.3.2 HIGHEST Function
11.3.3 lBOUND Function
11.3.4 HBOUND Function
11.3.5 SIZEOF Function

11.4 Conversion Routines
11.4.1 ORO Function
11.4.2 CHR Function ...
11.4.3 Scalar Conversion
11.4.4 FLOAT Function
11.4.5 TRUNC Function
11.4.6 ROUND Function
11.4.7 STR Function

11.5 Mathematical Routines
11.5.1 MIN Function
11.5.2 MAX Function
11.5.3 PRED Function
11.5.4 SUCC Function
11.5.5 ODD Function
11.5.6 ABS Function
11.5.7 SIN 'Function
11.5.8 COS Function ..•..
11.5.9 ARCTAN Function
11.5.10 EXP Function
11.5.11 LN Function
11.5.12 SQRT Function
11.5.13 SQR Function
11.5.14 RANDOM Function

11.6 STRING Routines
11.6.1 LENGTH Function
11.6.2 MAXLENGTH Function
11.6.3 SUBSTR Function
11.6.4 DELETE Function
11.6.5 TRIM Function
11.6.6 LTRIM Function
11.6.7 COMPRESS Function
11.6.8 INDEX Function
11.6.9 TOKEN Procedure
11.6.10 READSTR
11.6.11 WRITESTR

11.7 General Routines .
+
+

11.7.1 TRACE Procedure

+
+
+
+

+
+
+
+
+
+
I
+
+

11.7.2 HALT Procedure ..
11.8 System Interface Routines

11.8.1 DATETIME Procedure
11.8.2 CLOCK Function
11.8.3 PARMS Function
11.8.4 RETCODE Procedure

12.0 The % Feature . .
12.1 The %INCLUDE Statement
12.2 The %CHECK Statement
12.3 The %PRINT Statement
12.4 The %LIST Statement .
12.5 The %PAGE Statement
12.6 The %CPAGE Statement
12.7 The %TITLE Statement
12.8 The %SKIP Statement

APPENDIXES

· · . . . ·

· · · .
· . · · ·

·
· .

·

115
115
116

117
118
118
118
119
120
121
121
121
122
122
122
123
123
124
125
125
125
126
126
127
127
128
129
129
129
130
130
131
131
132
132
133
133
134
134
135
135
136
136
136
137
137
138
138
139
139
140
140
141
142
142
142
143
143
143
144
144

145
146
146
146
146
146
146
146
146

147

Contents i x

+ A.O The Space Type 149
+ A.1 The Space Declaration 149
+ A.2 Space Referencing 149

S.O Standard Identifiers in Pasca!/VS 151

c.o syntax Diagrams 153

D.O Index to Syntax Diagrams 165

E.O Glossary 167

Index 169

x Pascal/VS Reference Manual

"The language Pascal was desi gned by
Professor Niklaus Wirth to satisfy two
principal aims:

•

•

to make available a language suit
able for teaching programming as a
systematic discipline based on cer
tai n fundamental concepts clearly
and naturally reflected by the lan
guage.

to define a language whose implemen
tations could be both reliable and
efficient on then available comput
ers."

(Pascal Draft Proposal ISO/TC 97/SC 5
N595, January, 1981)

Pascal/VS is an extensi on to standard
Pascal. The purpose of extending Pascal
is to fac iIi tate appl i cat i on program
ming requirements. Among the extensions
are such features as separately compil
able external routines, internal and
external static data, and varying length
character strings.

Pascal is of interest as a hi gh level
programming language for the following
reasons:
1.1 PASCAL LANGUAGE SUMMARY

•

•

•

•

•

•

•

•

1.0 INTRODUCTION TO PASCAL/VS

It provides constructs for defining
data structures in a clear manner.

It is suitable for applying struc
tured programming techniques .

The language is relatively
machine-independent.

Its syntax and semantics allow
extensive error diagnostics during
compilation .

A program wri tten in the language
can have exten s i ve execut ion time
checks.

Its semantics allow efficient
object code to be generated.

Its syntax allows relatively easy
compilation.

The language is relatively well
known and is growing in popularity.

This section of the manual is meant to be a capsule summary of Pascal/VS. It should
serve as a brief outline to the language. The details are explained in the remainder
of this document.

1.1.1 Syntax

The syntax is described with an example-like format that summarizes the important
features of the item. The following rules are the conventions used.

11
[]

indicates that the item preceding this symbol may be repeated an
arbitrary number of times.

encloses items which are optional.

denote the standard square brackets of Pascal.

item-comma-list indicates that the item may be repeated, separating each occurrence
wi th a comma.

digit-li'st

binary-digits

hex-digits

id

label

directive

refers to a sequence of one or more digits ("0" .. "9").

refers to a sequence of one or more binary digits ("0" or "1").

refers to a sequence of one or more hexadecimal digits ("0" .. "9" or
"A" .. "F").

refers to an identifier.

refers to either an identifier or an integer number in the range
O •• 9999.

refers to anyone of: FORWARD, EXTERNAL, FORTRAN, MAIN, or
REENTRANT.

Introduction to Pascal/VS 1

field-list

1.1.2 Modules

refers to the list of fields that compose the body of a record data
type.

program is a self-contained and independently executable unit of code.

SEGMENT

program id 1 (id-comma-list 1;
declaration ...
compound-statement .

is a shell in which procedures and functions may be separately com
piled.

SEGMENT id ;
declarat ion. .• .

1.1.3 Declarations

label is used to declare a label in a program, procedure or function.

const

type

val'"

def

ref

stat i c:

value

label
label-comma-list

declares an identifier that becomes synonymous with a compile time
computable value.

const
id = constant-expression

i id = constant-expression 1· ..
declares an identifier which is a user-defined data type.

type
id = data-type

i id = data-type

declares a local variable.

val'"

1 ...

id-comma-list : data-type;
i id-comma-list : data-type; 1 ...

declares a variable which is defined in one module and may be refer
enced in other modules.

def
id-comma-list : data-type;

i id-comma-list : data-type; 1 ...

declares a variable which is defined in another module.

ref
id-comma-list : data-type;

i id-comma-list : data-type; 1 ...

declares a variable which persists for the entire execution of the
program.

static
id-comma-list

1 id-comma-list
data-type ;
data-type ; 1 ...

assigns a value to a def or static variable at compile time.

value
variable .- constant-assignment-statement

i variable .- constant-assignment-statement 1 ...

2 Pascal/VS Reference Manual

procedure

function

defines a unit of a module which may be invoked as a statement.

procedure id [(parameter I, parameter]... 1
directive ;-

or
procedure id [(parameter 1; parameterl .. ·) 1

declaration~ ..
compound-statement ;

defines a unit of a module which may be invoked and returns a value.

function id [(parameter 1; parameterl ...
directive;

or

1 id

function id [(parameter 1; parameterl ...) 1 id
declaration ...
compound-statement ;

1.1.4 Data-Ty~es

id is an identifier that was previously declared as a type.

enumeration

subrange

array

record

set

file

pointer

is a list of constants of a user-defined scalar data type.

(id-comma-list

is a continuous range of a scalar type.

1 packed 1 constant .. constant-expression

is a data structure composed of a list of homogeneous elements.

1 packed 1 array [data-type] of data-type

is a data structure composed of a list of heterogeneous fields.

1 packed] record
i id-comma-list : data-type; 1 ...
[case tid :] id of
- constant=comma-list (field-list);
[constant-comma-list : (field-list 1 .. · 1

end

is a collection of zero or more scalar values.

I packed 1 set of data-type

is a sequence of data to be read or written by a Pascal program.

file of data-type

is a reference to a variable that is created by the programmer.

~ id

1.1.5 parameters

value designates a pass-by-value parameter.

var

canst

id-comma-!ist : id

designates a pass-by-reference (read/write) parameter.

var id-comma-list : id

designates a pass-by-reference (read-only) parameter.

canst id-comma-list : id

Introduction to Pasca!/VS 3

procedure

function

is the mechanism whereby a procedure may be passed to the called
procedure (function) and executed from there.

procedure id 1 (parameter 1; parameterl .. ·) 1 ;

is the mechanism whereby a function may be passed to the called pro
cedure (function) and executed from there.

function id 1 (parameter 1; parameterl .•. 1 id

1.1.6 statements

Every statement may be preceded with one label:

1 label: 1 statement

assert

assignment

case

compound

continue

empty

for

goto

if

leave

tests a condition that should be true and if not causes a runtime
error to be produced.

assert bool-expression

assigns a value to a variable.

variable := expression

causes anyone of a list of statements to be executed based upon the
value of an expression.

case expression of
[constant-comma-list : statement
I otherwise
- statement 1 ; statement 1 ... 1

end

1 ...

is a series of statements enclosed within begin/end brackets.

begin
statement 1 ; statement 1 ...

end

resumes execution of the next iteration of the innermost loop. The
termination condition is tested to determine if the loop should con
tinue.

continue

contains no executable code.

is a loop statement that modifies a control variable for each iter
ation of the loop.

for variable := expression to expression do
statement

or
for variable .- expression downto expression do

statement

changes the flow of your program.

gato label

causes one of two statements to be executed based on the evaluation
of an expression.

if bool-expression then
statement

1 else
statement 1

terminates the execution of the innermost loop. Execution resumes
as if the loop termination condition were true.

4 Pascal/VS Reference Manual

call

repeat

return

while

with

leave

invokes a procedure. At the conclusion of the procedure, execution
continues at the next statement.

id 1 (expression-comma-list) 1

is a loop statement with the termination test occurring at the end
of the loop.

repeat
statement [; statement l ...

until bool-expression -

terminates the executing procedure (function) and returns control
to the caller.

return

is a loop statement wi th the termi nati on test occurri ng at the
beginning of the loop.

while bool-expression do
statement

permi ts compl i cated references to fi elds wi thi n a record to be
treated as simple variables within a a statement.

with variable-comma-list do
statement

1.1.7 Expressions

An expression is composed of operands combined with operators. The operators have
the following precedence:

L.1.8 Operands

variable

constant

not operator (highest)
multiplying operators
adding operators
relational operators (lowest)

represents a unit of storage which may be referenced and altered.

simple variable: id
array: variable [expression]
field: variable. id
pointer: variable ~

represents a literal value.

INTEGER

REAL

BOOLEAN
CHAR
string

array

record

digit-list
, hex-di gi ts 'X
, binary-digits 'B

digit-list. digit-list 1E+/- digit-listl
, hex-digits 'XR

FALSE/TRUE
EBCDIC character in single quotes
EBCDIC characters in single quotes

, hex-digits 'XC
id (expression 1: expressionl

[, expression [: expression] 1 ...)
id (expression i, expressionl ...)

set-constructor refers to an operand that describes the values of a set.

[expression 1 .• expression 1
1 , expression 1 .. expression 1 1· .. l

Introduction to Pascal/VS 5

function-call refers to the invocation of a function.

id i (expression-comma-list) 1

parenthesized-expression is used to override the normal precedence of operators.

(expression)

1.1.9 Special Symbols

symbol

...

.-

* / ...

I
&
&&

..
<
<=
:>=
:>
<> or ... -
»
«
II
. -

I'

i .. ,
4) or ->
(
)
[or (.
1 or .)
{ or (*
J or *)
/*
'*/

1.1.10 Identifiers

meaning

addition and set union operator
subtraction and set difference operator
multiplication and set intersection operator
division operator, REAL results only
BOOLEAN not, one's complement on INTEGER

or set complement
BOOLEAN or, logical or on INTEGER
BOOLEAN and, logical and on INTEGER
BOOLEAN xor operator, logical xor on INTEGER

and set exclusive union
equality operator
less than operator
less than or equal operator
greater than or equal operator
greuter than operator
not equal operator
right logical shift on INTEGER
left logical shift on INTEGER
catenation operator
assignment symbol
period to end a module
field separator in a record
comma, used as a list separator
colon, used to specify a definition
semicolon, used as a statement separator
subrange notation
quote, used to begin and end string constants
pointer symbol
left parenthesis
right parenthesis
left square bracket
right square bracket
comment left brace (standard)
comment right brace (standard)
comment left brace (alternate form)
comment right brace (alternate form)

Identifiers are composed of the letters "a" through HZ", the digits "0" through "9"
and the special characters h_" and "$". An identifier must begin with a letter or
"$" and must be unique in the first 16 positions. There is no distinction between
the an upper case letter and its lower case equivalent.

6 Pascal/VS Reference Manual

1.1.11 The Not operator

operator operation

... (not) boolean not ... (not) logical one's
complement ... (not) complement

1.1.12 Multiplying operators

operator

/

div
mod
& (and)
& (and)
* II
«
»

operation

multiplication

real division

integer division
modulo
boolean and
logical and
set intersection
string catenation
logical left shift
logical right

shift

1.1.13 Adding Op~rators

operator operation

+ addition

+ set union
- subtraction

- set difference
I (or) boolean or
I (or) logical or
&& (xor) boolean xor
&& (xor) logical xor
&& (xor) exclusive union

operands

BOOLEAN
INTEGER

set of T

operands

INTEGER
SHORTREAL
REAL
mixed
INTEGER
SHORT REAL
REAL
mixed
INTEGER
INTEGER
BOOLEAN
INTEGER
set of t
STRING
INTEGER
HHEGER

operands

INTEGER
SHORTREAL
REAL
mixed
set of t
INTEGER
SHORTREAL
REAL
mixed
set of t
BOOLEAN
INTEGER
BOOLEAN
INTEGER
set of t

_

result

BOOLEAN
It-HEGER

set of T

result

INTEGER
SHORTREAL
REAL
REAL
REAL
SHORTREAL
REAL
REAL
INTEGER
INTEGER
BOOLEAN
INTEGER
set of t
STRING
INTEGER
INTEGER

result

INTEGER
SHORT REAL
REAL
REAL
set of t
INTEGER
SHORTREAL
REAL
REAL
set of t
BOOLEAN
INTEGER
BOOLEAN
INTEGER
set of t

Introduction to Pascal/VS 7

1.1.14 Relational Operator~

operator operation operands

= compare equal any set, scalar, pointer
or string

<> (... =) not equal any set, scalar, pointer

< less than
<= compare < or =
<= subset
> compare greater
>= compat'e > or =
>= superset
in set membership

1.1.1S Reserved Words

and
array
~ss2rt
begin
case
canst
continue
def
div
do
downto
else

end
file
for
function
gato
if
in
label
leave
mod
nil
not

1.1.16 Predefined Constants

or string
scalar type or
scalar type or
set of t
scalar type or
scalar type or
set of t
t and set of

of
or
otherwise
p~ck:ed
procedure
program
ranga
record
ref
repeat
return
set

t

ALFALEN length of type AlFA, value is 8

ALPHALEN length of type ALPHA, value is 16

string
string

string
string

FALSE constant of type BOOLEAN, FALSE < TRUE

space
static
then
to
type
until
value
var
while
with
xor

MAXINT maximum value of type INTEGER: 2147483647

NININT minimum value of type INTEGER: -2147483648

TRUE constant of type BOOLEAN, TRUE> FALSE

1.1.17 Predefined Types

ALFA packed array[1 .. ALFALEN] of CHAR

ALPHA packed array[1 .. ALPHALEN] of CHAR

result

BOOLEAN

BOOLEAN

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN data type composed of the values FALSE and TRUE

CHAR character data type

INTEGER integer data type

REAL floating point represented in a 64 bit value

8 Pascal/VS Reference Manual

SHORTRE~LL

STRINGPl'R

TEXT

floating point represented in a 32 bit value

is a predefined type that points to a STRING whose maximum length is
determined when the STRING is allocated with NEW

f1 Ie of CHAR

1.1.18 Predefined Variables

INPUT default input file

OUTPUT default output file

1.1.19 Predefined Functions

The following symbols represent parameters in the descriptions
of the predefined functions and procedures.

ABS(x)

ARCTAN(x)

CHfHn)

CLOCK

COlS(f)

COMPRESS(s)

COS (x)

a = an array variable
f = a file variable
n = a positive integer expression
p = pointer valued variable
s = a string expression
v = a variable
x = any arthirnetic expression

computes the absolute value "x"

returns the arctangent of "x"

returns the EBCDIC character whose ordinal value is "n"

returns the number of micro-seconds of execution

returns current column of file "f"

replaces multiple blanks in "s" with one blank

returns the cosine of "x"

DElETE(s,nl,n21 returns "s" with characters "n1" through "n2" removed

EOF(f)

EOlN(f)

EXP(x)

FlOAT(n)

HBOUND (etl, n1)

HIGHEST(x)

INDEX(slL,s2)

lBOUND «~l, n1)

LENGTU(!;)

IN(x)

Lm~EST (X)

LTRIM(s)

MAX(xl,x1··.)

I1AXLENGlrH(s)

tests file "f" for end-of-file condition

tests file "f" for end-of-line condition

computes the base of the natural log (e) raised to to the power "x"

converts "n" to a floating point value

determines the upper bound of array "a"

determi nes the maxi mum value the type of a scalar "x"

returns the location, if present, of "s2" in "sl"

determines the lower bound of array "a"

determines the current length of string "s"

returns the natural logarithm of the "x"

determines the minimum value the type of a scalar "x"

returns "s" with leading blanks removed

determines the maximum value of a list of scalar expressions

determines the maximum length of string "s"

Introduction to Pascal/VS 9

NIN(xI,xl···)

ODD(n)

ORD(x)

PARNS

PRED(x)

RANDor1(n)

ROUND(x)

SIN(x:J

SIZEOF(x)

SQRT ()c)

SQR(x)

STR(a)

determines the minimum value of a list of scalar expressions

returns TRUE if integer "n" is odd

converts a scalar value "x" to an integer

returns the system dependent invocation parameters

obtains the predecessor of scalar expression "x"

returns a pseudo-random number~ "n" is the seed value or zero

converts a floating point value to an integer value by rounding

returns the sine of "x"

determines the memory size of a variable or type

returns the square root of "x"

returns the square of "x"

converts array of characters "a" to a string

SUBSTR(s,n1,n2) returns the substring of "s" from "nl" to "n2"

SUCC(X) obtains the successor of scalar "x"

TRIN(s) returns "s" with trailing blanks removed

TRUNC(x) converts floating point expression "x" to an integer by trunca~ing

1.1.20 Predefined Procedures

CLOSE(f) closes a fi Ie

DATETIHE(a1,a2) returns the current date in "al" and time of day in "a2"

DISPOSE(p) deallocates a dynamic variable

GET(f] advances file pointer to the next element of input file "f"

HALT halts the programs execution

MARK(p) creates a new heap~ "p" designates the heap

NEW(p,l,xl ••• J allocates a dynamic variable from the most recent heap

PACK(a1,x,a2) copies array "al" starting at index tIn" to packed array "a2"

PAGEl(f)1 ski ps to the top of the next page

PDSIN(f,s) opens file "f" for input, "s" designates the open options which must
specify the member name

PDSOUT(f,s)

PUT(fl

opens file Iff" for output, "s" designates the open options which
must specify the member name

advances the file pointer to the next element of output file Iff"

READ(If,1vl,vl •••) reads data from fi Ie "f" into variable "v"

READLN([f,]v[,v] ••• l reads variable "v" and then skips to end-of-line of TEXT file
- - - -"f"

READSTR(s,vl,vl •••) reads data from string "s" into variable "v"

RELEASE(p) destroys one or more heaps, "p" desi gnates the last heap to be
destroyed

opens file "f" for input, "s" designates the optional open options

10 Pascal/VS Reference Manual

TNL SN204446 (31 December 81) to SH20~168-1

RETCODE(nl sets the system return code

REWRITE(fl,sll opens file "f" for output, Us" designates the optional open options

SEEK(f,nl modifies the current position of file "f' so that next GET (or PUTl
reads (or writes) record number "n", where record 1 is the first
record of the file

TERMIN(fl,sll opens file "f"for input from the users terminal, "5" designates the
optional open options

TERMOUT(fl,sll opens fi Ie "fnfor output from the users terminal, "s" designates the
optional open options

TOKEN(s"vl

TRACE(fl

extracts tokens from string "s" updating starting position "v"

writes the procedure and function invocation hi story to fi Ie "f"

UN PAC K (al , a 2 , n 1 cop i e spa c ked a r ray "a 1" t 0 a r ray "a 2 " be gin n i n gat i n d ex "n "

UPDATE(fl,sll ope nsf i 1 12 " f" for u pda t 12 , a PUT i mm 12 d i ate 1 y follow i n gaG E T 0 f a
record of the file replaces that record, "s" designates the optional
open options

WRITE(lf,lxl,xl ••• l wri tes the value of "x" to fi Ie "f"

WRITELN([f,lx[,xl ••• l writes the value of "x" and then writes an end-of-line to TEXT
- - - fi Ie "f"

WRITESTR(s,xl,xl •••) writes the value of "x" to string "s"

1.1.21 % Include stat~ments

%CHECK enables or disables execution time checking features.

%CPAGE n sk ips to the next page if less than "n" lines rema; n on the current
page

%INCLUDE includes source code from a library.

%LIST ON/OFF

%MARGINS n m

%PAGE

%PRINT ON/OFF

%SKIP n

%TITLE

enables or disables the pseudo-assembler listing.

resets the left margin of the source program to "n" and the right
margin to "m".

forces the source listing to start on a new page.

enables or disables the source listing.

inserts "n" blank lines into the source listing.

specifies a title for the listing.

Introduction to Pascal/VS 11

2.0 THE BASE VOCABULARY

2 .. 1 IDENTIFIERS

S'Yntax:
t---------------------------------------.. --------. -----

r--->
r-->{digit} >1-

--->{letter}--~-----r--->{letter} > >1 l< .---> {underscore}-->

where:
{letter} is 'A', 'B',
{digit} 1S '0', '1',
underscore is' ,

... , 'Z','a','b', 'z' or '$' ... , , 9 '

'"--__ . ______ ~ _~ _______ ~ _ __J

Identifiers are names given to vari
ables, data types, procedures, func
tions, named constants and modules.

correct:

I
K9
Ne J York
AMOUNT$

incorrect:

5K
NEW JERSEY

Valid and Invalid Identifiers

Pascal/VS permits identifiers of up to
16 characters 1 n length. You may use
longer names but Pascal/VS will ignore
the portion of the name longer than 16
characters. You must assure identifiers
are unique within the first 16
positions.

There is no distinction between lower
and upper case letters within an identi
fier name. For example, the names
'ALPHA', 'alpha', and 'Alpha' are equiv
alent.

There is an implementation restrictions
on the naming of external variables and

external routines. You must make sure
that identifiers used as external names
are unique in the first 8 characters.

2.2 LEXICAL SCOPE OF IDENTIFIERS

The area of the module where a partic
ular identifier can be referenced is
called the lexical scope of the identi
fier (or simply scope).

In general, scopes are dependent on the
structure of routine declarations.
Since routines may be nested within oth
er routines, a lexical level is associ
ated ~.Jith each routine. In addition,
record definitions define a lexical
scope for the fields of the record.
Within a lexical level, each identifier
can be def i ned on 1 yonce. A program
module is at level 0, routines defined
wi thi n the module are at level 1; in
general, a routine defined in level i
would be at level (i+1). The following
diagram illustrates a nesting
structure.

The Base Vocabulary 13

program M (level 0)

procedure A (level 1)

procedure B (level 2)

type
R =

record
R 1 : •••
R2: •••

end;

I function C I
(level 3)

[procedure D (level 2)]

function X (level 1)

[procedure Y (I evel 2)]

[procedure Z (level 2)]

The scope of an identifier is the entire
routine. (or module) in which it was
declared; this includes all routines
defined within the routine. The follow
ing table references the preceding dia
gram.

14 Pascal/VS Reference Manual

identifiers
declared in:

Module M
procedure A
procedure B
type R
function C
proc€dure D
function X
procedure Y
procedut'e Z

are accessible in:

M,A,B,C,D,X,Y,Z
A,B,C,D
B,C
B,C
C
D
X,Y,Z
Y
Z

If an identifier is declared in a rou
tine wh i ch i s nested in the scope of
another identifier with the same name,
then the new identifier will be the one
recognized when its name appears in the
routine. The first identifier becomes
inaccessible in the routine. In other
words, the i dent i fi er declared at the
inner most level is the one accessi ble.

The scope of a field identifier defined
within a record definition is limited to
the record itself. The scope of a
record may be accessed by either field
referencing (see "Field Referencing" on
page 68) or with the with-statement (see
"The With Statement" on page 100).

The Pascal/VS compiler effectively
inserts a prelude of declarations at the
beginning of every module it compiles.
These declarations consist of the prede
fi ned types, constants, and routi nes.
The scope of the prelude encompasses the
entire module. You may re-declare any
i dent if i er that i s predef i ned. if you
would like to use the name for another
purpose.

2.3 RESERVED WORDS

............. -.-.--..... ~ ..-_ ...
Reserved Words

--,------"------
and end of + space
arl"ay file or + st<2tic

+ as!iert for + otherwise then
begin function packed to
case go to procedure typg
const if progr<2m until

+ continue in + range + value
+ def label record var"

div + leave + ref while
do mod repeat with
downto nil + return + xor
else not set

note: those words marked by ,+, are not reserved in standard Pascal

Pascal/VS reserves the identifiers
shown above for expressing the syntax of
the language. These reserved words may
never be declared by you. Reserved
words must be separated from other
reserved words and identifiers by a spe-

cial symbol, a comment, or at least one
blc;mk.

A lower case letter is treated as equiv
alent to the correspondi ng upper case
letter in a reserved word.

The Base Vocabulary 15

+
+

+
+
+

+
+

2.4 SPECIAL SYMBOLS

symbol

+
-
*
/

...
I
&
&&

=
<
<=
>=
>
<> or ... -
»
«
II
. -

,
:
;
.. ,
{ or ->

(
)
[or (.
1 or .)
{ or (*
} or *)

I /*
:'U

Special Symbols

meaning

addition and set union operator
subtraction and set difference operator
multiplication and set intersection operator
division operator, REAL result only

BOOLEAN not, one's complement on INTEGER or set complement
BOOLEAN or, logical or on INTEGER
BOOLEAN and, logical and on INTEGER
BOOLEAN xor operator, logical xor on INTEGER

and set exclusive union

equality operator
less than operator
less than or equal operator
greater than or equal operator
greater than operator
not equal operator

right logical shift on INTEGER
left logical shift on INTEGER
catenation operator

assignment symbol
period to end a module
field separator in a record
comma, used as a list separator

colon, used to specify a definition
semicolon, used as a statement separator
subrange notation
quote, used to begin and end string constants
pointer symbol

left parenthesis
right parehthesis
left square bracket
right square bracket

comment left brace (standard)
comment right brace (standard)
comment left brace (alternate form)
comment right brace (alternate form)

.;::.S..£.y...:..:m.:..;:b~o::;..l=--____ ..:..:R~e:..:s~e::..r~v. ed Wo r d
Speci.31 symbols used by Pascal/VS are
listed above. Several special symbols
may also be written as a reserved word.
These symbols are shown in the following
table.

I
&
&&

not
or
and
XOI'"

16 Pascal/VS Reference Manual

2.5 COMMENTS

Pascal/VS supports two forms of
comments: '{ ... }' and '/M ••• M/'. The
curved braces are the standard comment
symbol in Pascal. The symbols '(M' and
'M)' are considered by the compiler to
identical to left and right braces. The
form of comment using '/M' and 'M/' is
considered to be distinct from the form
usi ng br'aces.

When the compiler encounters the symbol
'{', it will bypass all characters,
including end-of-line, until the symbol
, } , i s encountered. L i kewi se, all
charactc~rs following '/M' will be
bypassed until the symbol 'M/' is detec
ted. A:s a result, ei ther form may be
used to enclose the other; for example
/M ••• { ••• } ••• M/ is one comment. One use
of these two forms of comments is to use

one for ordi nary comments and use the
other to block out temporary sections of
code: a '/M ... M/' comment could be used
to indicate a temporary piece of code,
or perhaps debugging statements.

A comment may be placed anywhere ina
module where a blank would be
acceptable.

/M

if A = 10 then { this statement is
for program
debugging }

WRITE('A IS EQUAL TO TEN');
M/

Example of a nested Comment

The Base Vocabulary 17

+
+
+
+

+
+

+
+

2.6 CONSTANTS

._---------,-----------,
Syntax:

unsigned-integer:

-r---r--->{diglt}--~----------------------------~Ir---------------------------> I L< _____ --J

,---> ' ---l~==:~~~~~~~-~~~~~:===J---> 'B --->1
L ___ > ' ---l~==:~~:~=~~~~~~===J---> 'x ------>~

real-number:

unsigned-number:

~>{unslgned-integer}--->TJ--->
L--->{real-number} >

str Los.:.

-I> ' L< __ {c ha r act e r } < =:J --> ' ----------,,----------------->
L ___ > '

---l~==:~~:~=~~~~~:===J---> 'XC ------>~

unsigned-constant:

~~>{UnSigned-nUmber}~l ~~~~~~~~~>

>{string} >

>{id:constant}---->

> nil >

constant:

~~>{un5igned-constant}--------------]~---------------->
I > + J >{unsigned-number}---> L---> ____ >

wher"e:
{binary-digit} is '0' or '1'.
{digit} is '0' through '9';
{hex-digit} is '0' through '9' and 'A' through 'F';
{character} is any EBCDIC character.

Con stant s can be d i vi ded ; nto severa 1
categories according to the predefined
type to which they belong. An unsigned
number will conform to either a REAL or
an INTEGER. Strings will conform to the
type STRING or p~cked arr~y[l .. n] of
CHAR. In addition, if the string is one
character in length, it will conform to
the type CHAR.

18 Pascal/VS Reference Manual

If a single quote is to be used within a
string, then the quote must be written
twice. Lower case and upper Clse let
ters are distinct within string con
stants. String literals are not
permitted to extend past the end of line
of a source line. Longer strings can be
formed by catenating shorter strings.

Nil is of a special type which will con
form to any pointer type. It represents
a unique pointer value which is not a
va lid address.

The constants TRUE and FALSE are prede
fi ned in the language and are of the
standard type BOOLEAN.

+ Integer hexadecimal constants are
+ enclosed in quotes and suffixed with an
+ 'X' or 'x'. Integer binary constants
+ are enclosed in quotes and suffixed with
+ a 'B' or 'b'.
+
+ Hexadecimal constants may be used in any
+ context where an integer constant is
+ approprlate. If you do not specify 8
+ hexadecimal digits (i .e. 4 bytes), Pas
+ cal/VS assumes that the digits not sup
+ plied are zeros on the left. For
+ examplep 'F'x is the value 15.
+
+ Floating point hexadecimal constants
+ are enclosed in quotes and suffixed with
+ an 'XR' or 'xr'. Such constants may be
+ used in any context where a real con
+ stant is appropriate. If you do not
+ specify 16 hexadecimal digits (i .e. 8
+ bytes), Pascal/VS assumes that the dig
+ its not supplied are zeros on the right.
+ For example, '4110'xr is the same as
+ '411000000000000'xr.
+
+ String hexadecimal constants are
+ enclosed in quotes and suffixed with an
+ 'XC' or' 'xc'. Such constants may be
+ used in any context where a string con
+ stant is appropriate. There must be an

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ even number of digits within a hexadeci
+ mal string constant; that is, you must
+ specify each character fully that is to
+ be in the string.

The symbol 'E' or 'e' when used in a
real-number expresses 'ten to the power
of' .

+ Pascal/VS permits constant expressions
+ in places where the Pascal standard only
+ permits constants. Constant expres
+ si ons are evaluated and replaced by a
+ si ngle result at compi Ie time. See
+ "Constant Expressions" on page 76 for a
+ description of constant expressions.

constant mqtches standard type o '''':''=:=---':I~N7-::T E G E::"':"R""::;--"'-L~

-500 INTEGER
1.0 REAL
314159E-5 REAL
OEO REAL
1.0EI0 REAL
TRUE BOOLEAN
'FF'X INTEGER
'A' CHAR
'ABC' STRING
'CIC2C2'xc STRING
'4E800000FFFFFFFF'xr REAL
'abc' STRING , ,
, , , ,
, ,

, T ha t s' 's all '

STRING
CHAR
CH.ll.R
STRING
STRH~G

Examples of Constants

The Base Vocabulary 19

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 2.7 STRUCTURED CONSTANTS
+
+
+
+ Syntax:
+
+
+
+

structured-constant:

+
+
+
+

----T--->{record-structure}---J--->
--->{array-structure}--->

+ record-structure:
+
+
+
+
+

---->{id:type}---> (---T---1===:~~~~~~~~~=~~~~:==;J---T--->) ------------->
L<____________ , < _____________ j

+
+ array-structure:
+
+
+
+
+
+
+
+
+

--->~~~~!~~~~===:-~-::::J
[--T--T-->{constant-expr}--1==:-~-~~:~:!~!~~~::;J--T--T--->) ---------->

I L ___ >j I
L<___________________ , < __________________________ j

+ ~etition:
+
+ --->{constant-expr}-->
+
+ note: must evaluate to positive integer.
+
+
+
+
I Structured constants are constants
+ whi ch are of a structured type. The
+ type of th~ constant is determi ned by'
+ the type identifier which is used in its
+ definition. These constants may be used
+ in constant declarations, value decla-
+ rations or in executable statements.
+

I There are two kinds of structured con
stants: one is used for arrays and the

+ second is used to specify records.
+
+ Array constants are specified by a list
+ of constant expressions where each
+ expressi on defi nes one element of the
+ array. See "Constant Expressi ons" on
+ page 76 for a descri pti on
+ of constant expressions. You may omit
+ an element of the array within the list
+ in which case the value of that element
+ is not defined. Elements may be omitted
+ at the end of the array in whi ch case
+ the value of those elements are also not
+ defined. You may follow the constant
+ expression with a colon and a repetition
+ expression; this is used to specify that
+ the first constant expression is to be
+ repeated.

I The second kind of structured constant
+ is used to specify records. Record con
+ stants are specified by a list of con
+ stant expressions where each expression

defines one field of the record in the
order declared. You may omit a field of
the record within the list by specifying
nothing between two commas, in which

+ case the value of thc:d: fi eid is not
+ defined.
+

Values within the list may correspond to
fields of a retord's vari~nt part. In
order for the compi ler to knoL-J whi ch
variant is being referenced, the tag
field value must be specified immediate
ly prior to those values which are to be
assigned to the variant fields. (See the
examples below.) The tag field must be
specified even if it does not exist as a
field. (This occurs when only a tag type
i s spec if i ed.) 1

The type identifier that begins a struc
tured constant may be omi tted if the
structured constant is imbedded wi thi n
another structured constant. This sim
plifies the syntax for structured con
stants which are multidimensional

If the tag field is a "refer-back" type (see "Variant Part" on page 45) then
it will need to be specified twice in the list: once to be assigned a value,
and again to identify the variant being referenced.

20 Pascal/VS Reference Manual

+
+
+
+
+

+
+
I
+
+
+
+
+
+
+

I
+
+
+
+
+
+
+
+
+

3.0 STRUCTURE OF A MODULE

Syntax:

---r--->{program-moduleJ----~Jr--->
L--->{segment-moduleJ--->

E..C.2..9..!:.am-module:

~<

>]
; <--------------------------------~-

t-<-->{deClaratiOnJ--->]

--->{compound-statementJ--->

declaration:

----~·--->{label-dclJ------->

--->{constant-dcIJ---->

--->{type-dcIJ-------->-

--->{var-dcIJ---------->

--->{def-dcl}--------->

--->{static-dcl}------>-

--->

t--->{ValUe-dClJ------->1

--->{routine-dcl}----->~--------------------------------------"---------------->

segment-module:

---> SEGMENT --->{idJ---> ; --->1

r<----------------------T----J

t--->{constant-dcIJ---->1

t--->{type-dcIJ-------->1

t--->{var-dcl}--------->1

t--->{def-dclJ--------->1

t--->{static-dcIJ------>1

t--->{value-dcIJ------->1

t--->{routine-dcIJ----->J
L ___ > • __ >

A module is an independently compl1able
un 1 t of code. There are two types of
modules in Pascal/VS: the program module
and the segment module.

The program is the module whi ch gai ns
initial control when the compiled pro
gram is invoked from the system loader.
It is effectively a procedure that the
loader invokes. The body of a program

structure of a Module 21

module is i dent i cal to the body of a
procedure.

+ A segment module may be compi led as a
+ unit independent of the program module.
+ It consists of routines that are to be
+ linked into the final program prior to
+ execut ion. Data is passed to rout i nes
+ through parameters and external vari
+ abIes. Segments are useful in breaking
+ up large Pascal/VS programs into smaller
+ units.

The global automatic variables of the
program module may be accessed in a seg
ment module. See "The Var Declaration"
on page 26 for an explanation.

The identifier follOloJing the reserved
word "program" must be a unique external
name. The identifier following the word
"SEGMENT" may be the same as one of the
EXTERNAL routines in the segment or may
be a un i que externa I name. Thu s t a
function called SIN could be in a seg
ment called SIN. An external name is an
identifier for a program, segment, def
or ref variable, EXTERNAL routinet MAIN
procedure or a REENTRANT procedure.

Pascal/VS program

The optional identifier list following
the program i denti fi er is not used by
Pascal/VS. The identifiers will be
ignored.

A program is formed by linking a program
module with segment modules (if any) and
with the Pascal/VS execution library and
libraries that you may supply.

+ Pascal/VS allows declarations to be giv
+ en in any order. This is an extension
+ to Pascal and is provided primarily to
+ permit source that is INCLUDEd during
+ compi lat i on to be independent of any
+ ordering already established in the mod
+ ule. The standard ordering for
+ declarations is shown in the diagram for
+ declarations. (For a description of the
+ INCLUDE facility see "The %INCLUDE
+ Statement" on page 146.)

Every identifier must be predefined or
declared by you before it 1S used.
There is one exception to this rule: a
definition of a pointer may refer to an
identifier before it is declared. The
identifier must be declared later or a
compi Ie-time' diagnosti c wi 11 be
produced.

modules

r--s-e..Lg-m-e-n-t---m-o-d-u-l-e-s--"'~ program-module

program EXAMPLE;
val'

I : INTEGER;
begin

for 1:=0 to 1000 do
if I mod 7 = 0 then

WRITELN(1:5,

execution-library

, IS DIVISIBLE BY SEVEN')
end.

Example of a Program Module

22 Pascal/VS Reference Manual

SEGMENT COSINE;
function COSINE

(X : REAL) REAL; .EXTERNAL;
function COSINE;
val'S: REAL;
begin

S := SIN(X);
COSINE := SQRT(I.0 - s*S)

end;

Example of a Segment Module

+

4.0 PASCAL/VS DECLARATIONS

Pascal/VS provides you wi th 10 types of + • def
declarations: +

+ • ref
• label +

+ • static
• const +

+ • value
• type

• procedure
• var'

• function

4.1 THE LABEL DECLARATIO~

Syntax:
f--.--.-.-----------I

---> label ---~>{label~---~-->
<---- , <

----------------->

>

Note: the values of the unsigned integer must be in the subrange O .. 9999.

A label declaration is used to declare
labels which will appear in the routine
and will be referenced by a goto state
ment within the routine. All labels
defined l·Jithin a routine must be
declared in a label declaration within
the routine.

A label ;l:ay be either an un signed i nte
ger or an identifier. If the value is
an uns'igned integer it must be in the
range 0 to 9999.

label
10,
label_A,
1 ,
2,
Error_exit;

A Label Declaration

Pascal/VS Declarations 23

4.2 THE CONST DECLARATION

Syntax:

+ --> canst --~[-<=~_>_{_i_d_}_-_-_-__ > __ = __ -_-_-_>_{_c_o_n __ s_t_a_n_t_-_e_x_p_r_}_-_-_-__ > ____ ~-~~----------------->

A constant declarat i on allows you to
+ assign identifiers that are to be used
+ as synonyms for constant expressi ons.

The type of a constant i dent i fi er is
determined by the type of the expression
in the declaration.

24 Pascal/VS Reference Manual

canst
BLANK
BLANKS

= , ';
=' , ;

FIFTY = 50;
A = FIFTY;
B = FIFTY * 10/(3+2);
C SQUARED = A*A + B*B;
ORD OF A = ORD('A');
PI - - = 3.14159265358;
MASK = '8000'X I '0400'X;
AlFALEN = 8;
ALPHALEN = 16;
LETTERS = ['A' .. 'Z','a' .. 'z']
MAXREAL = '7FFFFFFFFFFFFFFF'xr;

Constant Declarations

4.3 THE TYPE DECLARATION

Syn1:ax:

~·dcl:

-). type --~--->{id}---> = --->{typel---> --~--------------------------> l< _____ ----'

A type declaration allows you to define
a data type and associate a name to that
type. Once declared, such a name may be
used in the same way as a predefi ned
type name.

type

{ all of the following types }
{ are predefined in Pascal/VS 1

INTEGER = MININT .. MAXINTi
BOOLEAN = (FALSE,TRUE);
ALFA = p~cked array[l .. ALFALENl

of CHAR;
ALPHA = p~cked array[l .. ALPHALENl

of CHAR;
TEXT = file of CHAR;

Type Declarations

Pascal/VS Declarations 25

4.4 THE VAR DECLARATION

Syntax:

--> val' [< ___ [_<~~~>_{_!_d_~_-_-_-_~_-_-_-_> ____ ~~~_>_{_t_y_p_e_}.:-.:-_-_> ____ ~~~~------------------>

The var declaration is used to declare
automatic variables. Automatic vari
ables are alTocatedwhen the routine is
invoked, and are de-allocated when the
co rrespond i ng retu rn i s made. I f the
routine is invoked a second time, before
an initial invocation completes (a
recursive call), the local automatic
variables will be allocated again in a
stack-like manner. The variables allo
cated fo r the first i nvocat i on become
inaccessible until the recursive call
completes.

Commas are used in the declarati on to
separate two or more i dent i fi ers that
are bl~ing declared of the same type.
Thi sis a shorthand notati on for two
separate declarations.

val'"
I
SYSIN
X,

INTEGER;
TEXT;

y,
Z
CARD

: REAL,

record
RANK
SUIT

end;

1 .. 13;
(SPADE,HEART,DIAMOND,ClUB)

Example of a Var Declaration

Variables which are to be accessed
across modules should be declared as d~f
variables (see "The Def/Ref
Declaration" on page 28), but if
reentrancy is required, then a mechanism
is required that does not rely on static
storage.

The global automat i c vari abIes of the
ma in program! may be accessed from a
segment module. The storage for auto
matic variables declared in the outer
most level of a segment are mapped
direct I y on top of the ma in program
global variables. Therefore, to access
the main program globals, a segment mod
ule must have an identical copy of the
main program's variable declarations.
This mechanism is not as safe 2 and as
convenient as using def variables.

If the variables of the main program are
to be accessable across modules then the
%INClUDE facility should be used so that
identical copies of the variable's dec
larations can be included in all
modules. (See "The %INClUDE Statement"
on page 1{t6).

program MAIN,
val'

I
X,
Y
J

INTEGER;

REAL;
INTEGER;

{remainder of program module}

SEGMENT SEG;
val'"

I
X,
Y
J

INTEGER;

REAli
INTEGER;

{remainder of segment module}

Example of a Var Declarations
Shared between Programs and Segments

That is, those variables declared with the val' construct in the outermost
nesting level of the main program.

2

26

That is, unpredictable errors can occur when the variables declared in a
segment do ndt match those in the associated main program. The compiler has
no way of checking the integrity.

Pascal/VS Refer~nce Manual

+ 4.5 THE STATIC DECLARATION
+
+
+
+ Syntax:
+
+

static-dcl:

TNL SN204446 (31 December 81) to SH20-6168-1

+
+
+
+
+
+
+

---> static ---T---l--->{idJ---r---> : --->{type}---> ; ---T--------------->
<--- , ----

I I L< __ J

+
+
+
+ The static declaration is used to
+ declare static variables. The variables
+ declared in this way are allocated prior
+ to program execution and exist for the
+ life of the program's execution.
+
+ Static variables can be referenced
+ according to the lexical scoping rules.
+ Two static variables in different scopes
+ are different variables even though they
+ have the same name.
+

+ Static variables may be initialized at
+ compile-time by tho usa of a value dec
+ laration.
+

I Programs whi ch modi fy stati c vari abIes
are not reentrant.

+
+
+ static
+ SYSPRINT
+ X,Y:

TEXT;
REAL;

+ Data in static variables that are local +
+ to a routine will be preserved over sep- +
+ arate invocations of the routine. Such +
+ a routine called recursively will access +
+ the same instance of each static vari-

Example of a Static Declaration

+ able.

Pascal/VS Declarations 27

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 4.6 THE DEF/REF DECLARATIO~
+
+
+
+ Syntax:
+

+
+
+
+
+
+

---1---> def ----J---T---l--->{idJ---J---> : --->{typeJ---> ; ---T--------->
---> ref ---> <--- , ----

I I
L< _______ ~----------------------------------J

+
+
+
+ The def/ref declarat ions are used to
+ declare external variables. External
+ variables are allocated prior to exe
+ cuti on and can be accessed from more
+ than one module. All i denti fi ers that
+ are to be used as external names must be
+ unique in the first eight characters.
+
+ If an external variable with a partic
+ ular name is declared in several
+ modules, a single common storage
+ location will be associated with each
+ such variable. An external variable
+ must be declared with identical types in
+ each module; the programmer is responsi
+ ble for assuring that the types are the
+ same.
+
+ The def declaration specifies that the
+ program loader is responsible for gener
+ ating the common storage for the vari
+ able. The ref declaration specifies
+ that storage for the variable is defined
+ in another module (or in the runtime
+ envi ronment). Ref declared variables
+ will remain unresolved until the encom
+ passing module is compiled and linked
+ with a module in which the variable is
+ declared as a def variable or defined in
+ a non-Pascal CSECT or in an assembly
+ language COM. The expected use of ref
+ vari abIes is to access external data
+ declared in non-Pascal/VS programs such
+ as those written in assembly language.

+ same storage; however, the variables X
+ declared in segment P and procedure 0
+ each refer to storage that is separate
+ from the external variable X.
+
+ Def variables may be initialized at com
+ pile-time by the use of a value declara
+ tion.
+

I Programs which modify def, ref, or stat
i c var i abIes are not reentrant.

+
+
+ SEGMENT M;
+ procedure A;
+ def X: REALi { same as X in B J
+ begin
+
+ end;
+
+ procedure B;
+ daf X: REALi { same as X in A J
+ beg;n
+
+ end; .
+
+
+
+
+
+

SEGMENT Pi
static X: REAl;{ local to P
procedure C;

J

+ ref X: REAL; { same as X inA, BJ
+ begin

+ +
+ A def or ref variable may be declared +
+ local to a routine; the same scope rules +
+ apply as for any other declared identi- +
+ fier. However, if the name of the vari- +
+ able is declared in another scope (even +
+ in another module) as a def or ref vari- +
+ able, both occurrences of the variable +

end;

procedure 0;
var X: REAL; { local to 0 }
beg;n

end; .
+ will reference the same storage. +
+ +
+ In the following example, the variable X +
+ in procedures A, B, and C references the +

28 Pascal/VS Reference Manual

Examples of Def and Ref Declarations

+ 4.7 THE VALUE DECLARATION
+
+
+
+ Syntax:
+
+

TNL SN204446 (31 December 81) to SH20-6168-1

---> value ---t---{value-assignment}---> ; ---r----------------------------> <------------------------------
value-assignment:

+
+
+
+
+
+
+
+
+
+

--->{variable}---> := ---I--->{constant-expression}----y------------------->
--->{structured-constant}--->

+ note: If the variable contains subscripts, the subscripts are limited
+ to constant expressions.
+
+
+
+
+ The value declaration is used to specify
+ an initial value for static and def var
+ iables. The declaration is composed of
+ a list of value-assi gnment statements
+ separated by semicolons. The assignment
+ statements in a value declaration are of
+ the same form as the assignment state
+ ments :j n the body of a rout i ne except
+ that all subscripts and expressions must
+ be able to be evaluated at compile time.
+
+
+
+ type
+ COMPLEX = record
+ RE,IM: REAL
+ end;
+ VECTOR = array[I .. 7] of INTEGER;
+
+ static
+ C: COMPLEX;
+ V: VECTOR;
+ VI: VECTOR;
+
+ def
+ I: INTEGER;
+ Q: array[I .. 10] of COMPLEX;
+
+
+
+
+
+
+
+
+
+
+
+
+

{ the 'followi ng assignments will
{ take place at compile time
value

C · - COMPLEX(3.0,4.0);
V · - VECTOR(I,0:5,7);
VI · - VECTOR(, I ,4);
V[2] · - 2;
V[3] · - 3*4-1;
I · - 0;
Q[IJ.RE · - 3.1415926 / 2;
Q[I].IM · - 1.414;

}
}

+ Example of a Value Declaration
+
+

+ If a def variable is initialized with a
+ value declaration in one module, you may
+ not use a value declaration on that var
+ iable in another module. The compiler
+ will not check this violation, however a
+ diagnostic will be generated when you
+ combine the modules into a single load
+ module by the system lo~der.
+
+
+

I
+
+
+

type
CUBE = array[1 .. 10,1 .. 10,1 .. 10]

of REAL;

static
BLOCK CUBE:

+ {the following assignments will}
+ {take place at compile time }
+ value
+ BLOCK .-
I CUBE(((0.0:10):10):10);
+
+
+
+
+

Example of Intializing
a 3 Dimensional Array

Pascal/VS Declarations 29

5.0 TYPES

Syntax:

~

----r,--->{id:type}-->

~'--->{enumerated-scalar-type}-->

-----> {subrange-scalar-type}--->

-----> {array-type}-->

-----> {record-type}--->-

-,---> {set-type}--->

-,--->{file-type}-->

L--->{pointer-type}-->~---->

A data type determines the kind of val
ues that a variable of that type can
assume. Pascal/VS allows you to define
new data types with the type
declaration. The data type mechanism is
a very important part of Pascal/VS.
With it you can describe your data with
great clarity.

There are several mechanisms that can be
used to defi ne a type; each mechani sm
allows the new data type to have certain
properties. All data types can be clas
sified as either scalar, pointer, or
structur'ed.

You define the data type of a variable
when the variable is declared. A previ
ous type declaration allows an identifi
er to be associated with that type. Such
an i denti fi er can be used wherever a
type definition is needed: in a variable
declaration (var, static, def, or ref),
as a parameter, in a procedure or func
tion, in a field declaration within a
record definition, or in another type
declarat: ion.

Throughout this manual the term "string"
shall refer to an object of the prede
fined type STRING.

5.2 TYPE COMPATIBILITY

Pascal/VS supports strong typing of
data. The strong typing permits
Pascal/VS to check the validity of many
operations at compile time; this helps
to produce reI i able programs at exe
cution time. Strong typing puts strict
rules on what data types are ccnsidered
to be the same. These rules, called
type compatibility, requires you to
carefully declare data.

5.2.1 Implicit Tvpe Conversion

In general, Pascal/VS does not perform
implicit type conversions on data. The
only implicit conversions that
Pascal/VS permits are:

+ 5.1 A NOTE ABOUT STRINGS
+

1. An INTEGER wi 11 be converted to a
REAL (SHORTREAl) when one operand of
a binary operation is an INTEGER and
the other is a REAL (SHORT REAL).

+
Standard Pascal defines the term
"string" as a variable or constant which
has an associ ated type of
"p~cked array[1 .. n] of CHAR", where n is
a positive integer constant.

Pascal/VS supports varying length
strings; that is, strings which have
lengths that vary at execution time. A
vari abl e may be declared as a varyi ng
length string with the predefined type
5 TRING i(see "The Type 5 TRING" on page
51 >.

2. An INTEGER will be converted to a
REAL (SHORTREAl) when assigning an
INTEGER to a REAL (SHORTREAl) vari
able.

3. An INTEGER wi 11 be converted to a
REAL if it. is used in a floating
point divide operation ('/').

Types 31

4. An I NT EGER will be converted to a
REAL (SHORTREAL) if it is passed by
value or passed by const to a param
eter requlrlng a REAL (SHORTREAL)
value.

5. A SHORTREAL will be converted to a

5.2.3 Compatible Types

Operations can be performed between two
values that are of compatib-le types.
Two types are said to be compatible if:

REAL when one operand of a bi nary • the types are the same;
operat ion is a SHORTREAL and the
other is a REAL. • one type is a subrange of the other

or they are both subranges of the
same type; 6. A SHORTREAL will be converted to a

REAL when assigning a SHORTREAL to a
REAL variable. • both types are strings;

7. A SHORTREAL will be converted to a +. one value is a stri ng 1 i teral and
the other is a 'packed array[1 .. n]
o·f CHAR';

REAL ; fit is passed by value or +
passed by const to a parameter +
requiring a REAL value.

+ 8. A stri ng wi 11 be converted to a
+ 'packed array[l .. n] of CHAR' on

• one value is a string literal of one
character and the other is a CHAR;

+ assignment. The string will be pad- • they are set types with compatible
base types; + ded with blanks on the right if it

+ is shorter than the array to which
+ it is being assigned. Truncation • or, they are both

'packed array[1 .. n] of CHAR' with
the same number of elements.

+ will raise a runtime error if check-
+ ingisenabled.
+
+ 9. A stri ng bei ng passed by value or
+ passed by const to a formal parame-
+ te.r that requi res a
+ 'PClcked array[1 .. n] of CHAR' t..Jill
+ be converted. The str i ng will be
+ padded with blanks on the right if
+ it is shorter than the· array to
+ whi ch it is bei ng passed. T run-
+ cation will raise a runtime error if
+ checking is enabled.
+

5.2.2 Same Types

Two variables are said to be of the same
~ if the declaration of the
variables:

• refer to the same type identifier;

• or, refer to different type identi
fi ers wh; ch have been de'f; ned as
equivalent by a type definition of
the form:

type T1 = T2

32 Pascal/VS Reference Manual

Furthermore, any obj ect whi ch is of a
set type ; s compati ble wi th the empty
set. And, any object which is a pointer
type is compatible with the value nil.

A value may be assigned to a variable if
the types are SLssign~e.nt compatible. An
expressi on E is sa; d to be assi gnment
compatible with variable V if:

•

•

•

•

the types are same type and neither
isafiletype;

V is of type REAL and E ;s compat
ible with type INTEGER;

V is a compatible subrange of E and
the value to be assigned is within
the allowable subrange of V;

V and E have compati ble set types
and all members of E are permi ssi ble
members of V; or,

• V is a 'packed array[1 .. n] of CHAR'
and E is a string.

type

X = array[1 .. 10] of
INTEGER;

DAYS = (MaN, TUES, WED, THURS,
FRI, SAT, SUN);

WEEKDAY = MaN .. FRli

var

A array[1 .. 10
INTEGER;

B array[1 .. 10
INTEGER;

C,
D array[1 •. 10

CHAR;
E : X;
F : X;
WI: DAYS;
W2: WEEKDAY

is compatible
w;th

A A
B B
C C, D
o 0, C
E E, F
F F, E
WI 1tJ!, W2
W2 W2, WI

] of

] of

] of

Examples of Compatibility

Types 33

5.3 THE ENUMERATED SCALAR

Syntax:

enumerated-scalar-type:

--> ([>{id}-~~~-» --->
<-- , <

An enumerated scalar is formed by list
ing each v~lue that is permitted for a
variable of this type. Each value is an
identifier which is treated as a
self-defining constant. This allows a
meaningful name to be associated with
each value of a variable of the type.

t~'pe
DAYS

MONTHS

val"
SHAPE

REC

MONTH

= (MON, TUES, WED, THURS,
FRI, SAT, SUN);

= (JAN, FEB,
MAY, JUN,
SEP, OCT,

MAR, APR,
JUL, AUG,
NOV, DEC);

(TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);

record
SUIT: (SPADE, HEART,

DIAMOND, CLUB);
L~EEK: DAYS

end;

MONTHS;

Enumerated Scalars

An enumerated scalar type definition
declares the identifiers in the enumer
at; on Ii st as constants of the scalar

34 Pascal/VS Reference Manual

+
+

+
+

type being defined. The lexical scope
of the newly defi ned constants is the
same as that of any other i dent i fi er
declared explicitly at the same lexical
level.

These constants are ordered such that
the first value is less than the second,
the second less than the thi rd and so
forth. In the first example, MON < TUES
< WED < ••• < SUN. There is no value
less than the first or greater than the
last.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more
details):

Function Pa.,.9..g
ORO 125
MAX 129
MIN 129
PRED 130
SUCC 130
LOWEST 122
HIGHEST 122

Notes:

1. Two enumerated scalar type defi
nitions must not have any elements
of the same name in the same lexical
scope.

2. The standard type BOOLEAN is defined
as (FALSE, TRUE).

+

+

+
+

+
+

TNL SN204446 (31 December 81) to SH20-6168-1

5.4 THE SUBRANGE SCALAR

Syntax:

subrange-scalar-type:

~~==~-~~:~~~-===~]
I >{constant}---> .. --->{constant-exprl-----------------------------~I-------->

L ___ > range --->{constant-exprl---> .. --->{constant-exprJ--->J

The subrange type is a subset of consec
utive values of a previously defined
sca la r type. Any operat ion wh i ch i s
permi ssi ble on a scalar type is also
permissible on any subrange of it.

A subrange is defined by specifying the
minimum and maximum values that will be
permi tted for data declared wi th that
type. Fo r subranges that a re packed,
Pascal/VS will assign the smallest num
ber of bytes requ i red to represent a
value of that type.

If the reserved word range is used in
the subrange definition, then both the
minimum and maximum values may be any
expression that can be computed at com
pile time. If the range prefix is not
employed then the minimum value of the
range must be a simple constant.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more
details):

Func·t ion Page
ORD 126
r-1AX 130
Mlt~ 130
PRED 131
SUCC 131
LOloJEST 123
HIGHEST 123

Notes:

1. A subrange of the standard type REAL
is not permitted.

2. The number of values in a subrange
of type CHAR is determi ned by the
collating sequence of the EBCDIC
chat'acter set.

3. The lower bound of a subrange defi
nit;i on that is not prefi xed wi th

'range' must be a simple constant
instead of a general; zed constant
expression.

const
SIZE

type
DAYS

MONTHS

UPPER CASE
ONE_HUNDRED
CODES

INDEX

var
WORK DAY
SUMnER
St1ALLINT
YEAR

=

=
=

=
=
=
=

1000;

(SU, MO, TU, WE,
TH, FR, SA) ;

(JAN, FEB, MAR, APR,
MAY, JUN, JUL .. AUG,
SEP, OCT, NOV, DEC) ;

, A ' .. ' Z' ;
0 .. 99;

range
CHR (0) .• CHR (255) ;

pilcked 1 .. SIZE+1i

MO •• FR;
JUN .. AUG;
packed 0 .. 255;
1900 •. 2000;

Subrange Scalars

The following example illustrates that
two subrange types may be defined over
the same base type. Operati ons are per
mitted between these two variables
because they have the same base type.

var
NEG
POS

: MININT .. -1;
: 1 .. MAXINITi

Subranges with the Same Base Type

Types 35

TNL SN20-4446 (31 December 81) to SH20-6168-1

+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
I

5.5 PREDEFINED SCALAR TYPE~

5.5.1 The Type INTEGER

The following table describes the oper
ations and predefined functions that

apply to values which are the standard
type I NT EGER.

operation form

+ unary
+ binary
- unary
- binary

* binary
/ binary

div binary
mod binary

= binary
<> or ... - binary
< binary
<:: binary
>"" binary
> binary

.... unary
I binary
& binary
&& binary
« binary

» binary

CUR(x) function
PRED(x) function
SUCC(x) function
ODD(x) function
ABS(x) function
SQR(x) function
FLOAT(x) function
MIN() function
MAX() function
LOWEST(x) function

HIGHEST(x) function

SIZEOF(x) function

INTEGER

description

returns the unchanged result of the operand
forms the sum of the operands
negates the operand
forms the difference of the operands
forms the product of the operands
converts the operands to REAL and produces

the REAL quotient
forms the integer quotient of the operands
forms the integer modulus of the operands

(same as remainder if the arguments are positive)

compares for equality
compares for inequality
compares for less than
compares for less than or equal to
compares for greater than or equal to
compares for greater than

returns one's complement on the operand
returns 'logical or' on the operands
returns 'logical and' on the operands
returns 'logical xor' on the operands
returns the left operand value shifted

left by the right operand value
returns the left operand value shifted

right by the right operand value

returns a CHAR whose EBCDIC representation is x
returns x-I
returns x+l
returns TRUE if x is odd and FALSE otherwise
returns the absolute value of x
returns the square of x
returns a REAL whose value is x
returns the minimum value of two or more operands
returns the maximum value of two or more operands
returns MININT or the minimum value of the range

if x is a subrange of INTEGER
returns MAXINT or the maximum value of the range

if x is a subrange of INTEGER
returns the number of bytes required for a value

of the type of x, which is always 1, 2, 3, or 4

The type INTEGER is provided as a
pre-defined type in Pascal/VS. This
type represents the subset of whole num
bers as defined below:

whose value is 2147483647. That is, the
predefi ned type INTEGER represents 32
bit values in 2's complement notation.

type
INTEGER = MININT .. MAXINTi

where MININT is a predefi ned INTEGER
constant whose value is -2147483648 and
MAXI NT is a predefined INTEGER constant

36 Pascal/VS Reference Manual

Type definitions representing integer
subranges may be prefixed with the
reserved word "packed".' For vari abIes
declared wi th such a type, Pascal/VS
will assign the smallest number of bytes
requ i red to represont a value of that
type. The following table defines the

number of bytes required for different
ranges of integers. For ranges other
than those listed, use the first range
that encloses the desired range. Given
a type definition T as:

type T = packed i .. j ;

Range of Size in Alignment
'i .. j bytes

IJ. .255 1 BYTE

-128 .. 127 1 BYTE

-32768 .. 32767 2 HALFWORD

0 .. 65535 2 HALFL.JORD

-8388608 .. 8388607 3 BYTE

0 .. 16777215 3 BYTE

otherwise 4 FULLWORD

TNL SN204446 (31 December 81) to SH20-6168-1

Notes:

1. The operati ons of div and mod are
defined as:

A div B = TRUNCCA/B), B<>O

A mod B = A-B*(A div B), A>=O,B>O
A mod B = B-abs(A) mod B, A<O,B>O

B=O when doing a div operation or
B<=O when doing a mod operation
is defi ned as an error and wi 11
cause a runtime error message to
be produced.

2. The followi ng operators perform
logical operations:

« shift left logical
» shift right logical

l's complement
I log i cal i:1 c 1 u s i ve 0 r
& log; cal and
&& logical exclusive or

The operands are treated as unsi gned
strings of binary digits. See "Logical
Expressions" on page 78 for more details
on log;cal expressions.

Types 37

TNL SN20-4446 (31 December 8,1)toSH20-6168-1

+
+
+
+
+
+
+
+
+

5.5.2 The Type CHAR

The following table describes the oper
ations and predefined functions that
apply to the standard type CHAR.

CHAR
~--------------r-----------~--'-----------------~

operation

=
<> or --
<
<=
>=
>

ORD(x)

PRED(x)

SUCC(x)

S TR(x)
MltH)

MAX()

LOWEST(x)

HIGHESTex)

SIZEOF(x)

form

binary
binary
binary
binary
binary
binary

function

function

function

function
function
function
function

function

function

description

compares for equality
compares for inequality
compares for left less than right
compares for left less than or equal to right
compares for left greater than or equal to right
compares for left greater than right

converts operand to an INTEGER based on ordering
sequence of underlying character set.

returns the preceding character
in collating sequence

returns the succeeding character
in collating sequence

converts the operand to a STRING
returns the minimum value of two or more operands
returns the maximum value of two or more operands
returns the minimum value of the range of the

character x
returns the maximum value of the range of the

character x
returns the number of bytes required for a value

of the type of a CHAR, which is always 1

CHAR is a scalar type that consists of
all of the values of the EBCDIC charac
ter set. Variables of this type occupy
one byte of memory and will be aligned
on a byte boundary.

variable C to the EBCDIC code for the
letter A.

val' C: CHAR;
begin

A single-character string constant will
be regarded as a CHAR constant if the
context so dictates. For example, the
assi gnment statement shown beloloJ sets

38 Pascal/VS Reference Manual

C:= 'A'i

end

+

+
+
+
+
+
+

TNL SN20-4446 (31 December 81) to SH20-6168-1

5.5.3 The Type BOOLEAN

The following table describes the oper
ations .3nd predefined functions that
apply to the standard type BOOLEAN.

BOOLEAN

operation form description

- unary returns TRUE if the operand is FALSE,
otherwise it r~turns FALSE

& binary returns TRUE if both operands are TRUE
I binary returns TRUE if either operand is TRUE
&& binary returns TRUE if either, but not both operands are TRUE

= binary compares for equality
<> or -- binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right

ORD(:><) function returns 0 if x i 5 FALSE and 1 if x is TRUE
MIN() function returns TRUE ; f all operands are TRUE
MAXe) function returns FALSE if all operands are FALSE
LOWEST(x) function returns the FALSE by definition
HIGHEST(x) function returns the TRUE by definition
SIZEOFex) function returns the number of bytes required for a value

of the type of a BOOLEAN, which is always 1

Binary Operaticins on BOOLEAN

FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE Name

= TRUE FALSE FALSE
<> FALSE TRUE TRUE
< Ff\LSE TRUE FALSE
<'-,- TRUE TRUE FALSE
>'-,- TRUE FALSE TRUE
> FALSE FALSE TRUE
& FALSE FALSE FALSE
I FALSE TRUE TRUE
&& FALSE TRUE TRUE

The type BOOLEAN is de~ined as a scalar
whose values are FALSE and TRUE as
though declared with the following type
declarat'j on:

type
BOOLEAN=(FALSE,TRUE);

Variables of this type will occupy one
byte of memory and will aligned on a
byte boundary. The relational operators

TRUE Equivalence
FALSE Exclusive Or
FALSE
TRUE Implication
TRUE
FALSE
TRUE And
TRUE Inclusive Or
FALSE Exclusive Or

form valid boolean functions as shown in
the table of binary operations.

Pascc;l/VS will optimize the evaluation
of BOOLEAN expressions involving '&'
(and) and 'I' (or) such that t,",e ri ght
operand expression will not be evaluated
; f the resul t of the operat i on can be
determined by evaluating the left oper
Clnd. For more detai Is see "Boolean
Expressions" on page 77.

Types 39

TNL SN20 .. 4446 (31 December 81) to SH20-6168 .. 1

+
+
+
+

5.5.4 The Type REAL

The following table describes the oper
ations and predefined functions that
apply to the standard type REAL.

REAL
~----'----------r-----------~--.-----"----

oper'at ion

+
+

* /

=
<> or ... -
<

TRUNC(x)
ROUND(x)
ABS(x)
SIN (x)
COS(x)
ARCTAN(x)
Ul(x)
EXP(x)
SQRT(x)
SQR(x)
MIN ()
MAX()
SIZEOF(x)

form

unary
binary
unary
binary
binary
binary

binary
binary
binary
binary
binary
binary

function
function
function
function
function
function
function
function
function
function
function
function
function

dElscription

returns 'the value of the opElrand
forms the sum of the operands
negates the operand
forms the difference of the operands
forms the product of the operands
forms the REAL quotient of the operands

compares for equality
compares for inequality
compares for left les5 than right
compares for left le~s than or Elqual to right
compares for left greater than or equal to right
compares for left greater than right

returns the operand value truncated to an INTEGER
returns the operand v~lue round~d to an INTEGER
returns the absolute value of the operand
returns the trigonometric sine of x (in radians)
returns the trigonometric cosine of x (in radians)
returns (in radians) the arc tangent of x
returns the natural logarithm of x
returns natural log base raised to the x power
returns square root of x
returns the square of x
returns the minimum value of the operands
returns the maximum value of the operands
returns the number of bytes required for a value

of the type of a REAL, which is always 8

The type REAL represents floating point
data. Variables of this type will occu
py eight bytes of memo"y and will be
aligned on a double Nord boundary. All
RE,~L arithmetic is done using double
precision floating point. See "Implicit
Type Conversion" on page 31.

The type REAL has restrictions that oth
er scalar types do not have. You may
not take a subrange of REAL nor index an
array by REAL. The predefined functions
SUCC, PRED, ORD, HIGHEST and LOWEST are.
not defined for type REAL.

40 Pascal/VS Reference Manual

5.5.5 The Type SHORTREAL

The following table describes the oper
at ions and predefi ned funct ions that
apply to the standard type SHORTREAL.

operation

+
+

* /

=
<> or ~
<
<=
>=
>

TRUNC(x)
ROUND(x)
ABSex)
SINex)
COSex)
ARCTAN(x)
LNex)
EXpex)
SQRT(x)
SQRex)
MIN()
MAXe)
SIZEOFex)

form

unary
binary
unary
binary
binary
binary

binary
binary
binary
binary
binary
binary

function
function
function
function
function
function
function
function
function
function
function
function
function

SHORTREAL

description

returns the value of the operand
forms the sum of the operands
negates the operand
forms the difference of the operands
forms the product of the operands
forms the SHORTREAL quotient of the operands

compares for equality
compares for inequality
compares for left less than right
compares for left less than or equal to right
compares for left greater than or equal to right
compares for left greater than right

returns the operand value truncated to an INTEGER
returns the operand value rounded to an INTEGER
returns the absolute value of the operand
returns the trigonometric sine of x (in radians)
returns the trigonometric cosine of x (in radians)
returns (in radians) the arc tangent of x
returns the natural logarithm of x
returns natural log base raised to the x power
returns square root of x
returns the square of x
returns the minimum value of the operands
returns the maximum value of the operands
returns the number of bytes required for a value

of the type of a SHORTREAL, which is always 4

The type SHORTREAL represents floating
point data. Variables of this type will
occupy four bytes of memory and will be
aligned on a word boundary. All
SHORTREAL arithmetic is done using sin
gle preClslon floating point
instructions.

a function or procedure that expects its
parameter to be of type REAL if the
parameter passing mechanism for that
parameter is value or const. See "Im
plicit Type Conversion" on page 31.

The type SHORTREAL has restrictions that
other scalar types do not have. You may
not take a subrange of SHORTREAL nor
index an array by SHORTREAL. The prede
fined functions SUCC, PRED, ORO, HIGHEST
and LOl.JEST are not defi ned for type
SHORTREAL.

Operations between data of type REAL and
SHORTREAL will be performed using double
precision floating point instructions.
The SHORTREAL operand will be implicitly
converted to a value of type REAL. A
SHORTREAL may be passed as an operand to

Types 41

5.6 THE ARRAY TYPE

Syntax:

-E> packed ~
~------> ~rray [--~--->{index-type}----~-->] of --->{type} L<_______ , < __________ ~ -------->

index-~

E >{enumerated-scalar-type}--->]
--- > {i d: scalar-type} >]+--------------------------->

> {subrange-scalar-type}----->

The array type defines a list of homoge
neous elements; each element is paired
with one value of the index. An element
of the array is selected by a subscript.
The number of elements in the array is
the number of values potentially
assumable by the index. Each element of
the array is of the same type, which is
called the element type of the array.
Entire arrays may be assigned if they
are of the same type.

Pascal/VS uses square brackets, '[' and
']', in the declaration of arrays.
Because these symbols are not directly
available on many I/O devices, the sym
bols t(.' and '.)' may be used as an
equivalent to square brackets.

Pascal/VS will align each element of the
array, if necessary, to make each ele
ment fallon an appropriate boundary. A
packed array will not observe the bound
ary requirements of its elements. Ele
ments of packed arrays may not be passed
as var parameters to routines.

An array which is defined with more than
one index is said to be a
multi-dimensional array. A
multi-dimensional array 1S exactly
equivalent to an array of arrays. In
short, an array definition of the form

arre"lYU ,j, ...] of T

is an c:lbbrev i ated form of

~rray[il of
array[j] of

••• T

where i and j are scalar type defi
nitions. Thus, the first and second
type declarations in the example below
are alternatives to the same structure.

42 Pascal/VS Reference Manual

type

MATRIX = array[1 .. 10, 1 .. 10] of
REAL;

MATRIXO = array[1 .. 10] of
array[1 .. 10] of

REALi

ABLE = array[BOOLEANl of INTEGER;

COLOR = (RED, YELLOW, BLUE);

INTENSITY = packed array[COLORl
of REAL;

ALFA = packed array[1 .. ALFALENl of
CHAR;

Examples of Array Declarations

There are two procedures available for
conversion between a packed array and a
similar but unpacked array. The prede
fined procedures PACK (see "PACK Proce
dure" on page 121) and UNPACK (see
"UNPACK Procedure" on page 121) are pro
vided for this purpose.

5.6.1 Array subscripting

Array subscripting is performed by plac
i ng an expressi on in square brackets
following an array variable. The
express 1 on must be of a type that is
compatible with the index type and eval
uate to one of the values of the index.
See "Compat i ble Types" on page 32 The
index may be any scalar type except
REAL.

var
M
HUE

begin

MATRIX;
INTENSITY;

{ assign ten element array}
M[l] := M[2];

{ assign one element of a two}
{ dimensional array two ways }
M[l,l] := 3.14159;
M[l][l] := 3.14159;

{ this is a reddish orange }
HUE[REO] .- 0.7;
HUE[YEllOW] .- 0.3;
HUE[BLUE] := O.Oj

end

Examples of Array Indexing

Types 43

+

+

+

+
+

s. 7 THE RECORD TYPE

Syntax:

record-type:

----------------------~--> record --->{field-list}---> end
L---> packed _>J

field-list:

------------------>

>]
---T--->{fixed-part}--~---> --~--->{variant-part}--~~--~--·> --~~--> ~ _____________________________ >J ~ ___ ~ ____ >J

fixed-part:

[< ___ l_-_-_-_~_~~-~-~:~~~:_~_~_~_~_~~----~~--~~-~>~J~~~_> ____ -_-_-_>_{_t_y_p_e_}~~~~------------'----~----->

variant-part:

---> case
[----------------->]

---T -_-_ -_>_{_f_i_e_l_d_l._-_ -_ -_> ____ >] > { i d: type 1 > of ->]

~>{rangeJ----r--->
<--- , <-------'

<

field:

--~--->{field-list}--~-->) ~ ____ ~ __ ~ _____ >J -~....----->

; <--------------------------~--~

---,>{id}---~--------------------------->
L ___ > (--->{constant-exprJ--->) ___ >J

range:

---·>{constant-expr}--~~--------------------------------~----------~-------------> L ___ > --->{constant-exprl--->J

A record is a data structure whi ch is
composed of heterogeneous components;
each element may be of a different type.
Components of a record are called
f;elds.

5.7.1 Naming of a Field

A fi eld is referred to by the name of
the field. The scope of the identifiers

44 Pascal/VS Reference Manual

used as names is the record type itself.
That is, every field name within a
record must be unique, even if that name
appears in a variant part.

+ A field of a record need not be named;
+ that is, the field identifier may be
+ missing. In such a case, the field only
+ serves as padding; it can not be refer
+ enced.

type
REC = record

A,
B INTEGER;

CHAR;
C CHAR
end;

1 .. 31;
1 .. 12;

{unnamed}

DATE = record
DAY
MONTH
YEAR
end;

1900 •• 2100

PERSON = record
LAST NAf"1E,
FIRST NAME
f"lIDDLE INITIAL
AGE -
EMPLOYED
end;

ALFA;
CHAR;
O •. 99;
BOOLEAN

Simple Record Decla~ations

5.7.2 Fixed Part

The fixed part of a record is a series
of fields that exist in every variable
that is declared to be of that record
type. The fi xed part, if present, is
always before the variant part.

5.7.3 variant Part

The variant part of a record permits the
defining of an alternative structure to
the record. The record structure adopts
one of the variants at a time.

The variant part of a record is denoted
with the case symbol. A tag fi~ld iden
tifier may follow. This field is a sca
lar value that indicates which variant
is intended to be active.

The tag fi eld is a fi eld in the fi xed
part of the record. When the tag field
is followed by a type identifier, then
the tag field defines a new field within
the record.

+ If the type identifier is missing, then
+ the tag field name must be one which was
+ previously defined within the record.
+ This allows you to place the tag field
+ anywhere in the fixed part of the
+ record.

A variant part of a record need not have
a tag fi eld at all. In thi s case, only a
type identifier is specified in the case

TNL SN204446 (31 December 81) to SH20-6168-1

construct. You still refer to the vari
ant fields by their names but it is your
responsi bi Ii ty to keep track of whi ch
variant is 'active' (i.e. contains valid
data) during execution.

In short, tag fields may be defined in
the following ways:

•

•

•

"caSE! I : INTEGER of" results in I
being a tag field of type INTEGER.

"case INTEGER of" means no tag field
is present, the variants are denoted
by integer values in the variant
declarCltion.

"case I: of n rne.:lns that I is the tag
field and it must have been declared
in the fi xed p,:1rt, the type of lis
as given in the field definition of
I.

The followi ng examples illustrate the
three tag fields in complete record
definitions.

type

SHAPE = (TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);

COORDINATES =
{ fixed part: }

record
X,Y
AREA
case S

REAL;
REAL;
SHAPE of

{ variant part: }
TRIANGLE:

(SIDE: REAL;
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE: REAL);

CIRCLE:
(RADIUS

end;
REAL)

A Record With a Variant Part

The record defined as COORDINATES in the
example above contains a variant part.
The tag fi eld isS, its type is SHAPE,
and its value (whether TRIANGLE, RECTAN
GLE, SQUARE, or CIRCLE) indicates which
variant is in effect. The fields SIDE,
SIDEA, EDGE, and RADIUS would all occupy
the same offset within the record. The
following diagram illustrates how the
record would look in storage.

Types 45

TNL SN20-4446 (31 December 81) to SH20-6168-1

fixed part:
x
y

AREA

tag field: S

variant part:

SIDE SIDEA EDGE I RADIUSI

BASE SIDEB

Each column in the variant represents
one alternative for the variant.

+ If you preferred the tag field to be the
+ first field instead of the fourth, you
+ could define it as follows:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

COORDINATES =
record

S
X,Y
AREA
case S

SHAPE;
REAL;
REALi
of

{ variant part: }
TRIANGLE:

(SIDE: REALi
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB

SQUARE:
(EDGE

CIRCLE:

REAL);

(RADIUS : REAL)

REAL);

+ end;
+
+ Record with Back Reference
+ Tag Field
+
+

If you preferred the tag fi sId to be
absent altogether you could d~fine the
record as follows:

46 Pascal/VS Reference Manual

COORDINATES =
record

X,Y
AREA
case

: REAL;
: REALi

SHAPE of
{ variant part: }

TRIANGLE:
(SIDE: REALi
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE: REAL);

CIRCLE:
(RADIUS: REAL)

end;

Record Variant with No Tag Field

5.7.4 Packed Records

The fields in a record are normally
assigned offsets sequentially, padding
where necessary for boundary alignment.
In packed records, however, no such pad
di ng is done. Thi s may save storage
within the record, but may degrade per
formance of the program. Fields of
packed records may not be passed as var
parameters to a routine.

+ 5.7.5 Offset Quali'fication of Fielq~
+
+
+ Pascal/VS provides you a method of forc
+ i ng the fi elds of a record to begi n at a
+ specified byte offset in the record. A
+ field name may be followed by a integer
+ constant expression enclosed in paren
+ theses which represents the byte offset
+ within the record that the field is to
+ represent. All fields 50 specified must
+ be in consecut i ve order accordi ng to
+ offset s. I f the offset i s not
+ specified, the field will be assigned
+ the next of-fset that is requ i red for
+ boundary alignment. If an offset spec
+ ification attempts to assign en
+ incorrect boundary for a field and the
+ record is not packed, a cOr.1pi Ie time
+ error will be raised.
+
+ As an example of offset qualified fields
+ within a record, consider a large con
+ t r 0 1 b I 0 c k 0 flO 0 by t e 5 1 1 n l.J h ; c h f 0 u r
+ fi elds at vari ous offse·ts need to be
+ referenced.
+

+ byte
+ displacement information
+ ------------ -----------------
+ 0 field A (integer)
+ 36 field B (8 chars)
+ 80 field C (4 flags)
+ 92 field D (integer)

+ The control block might be represented
+ in Pascal/VS as follows:
+
+
+
+ type
+ FLAGS = set of
+ (Fl,F2,F3,F4);
+ PADDING = p~cked a~raY[1 .. 4] of
+ CHAR;
+ CB = packed record
+ A INTEGER;
+ B(36) ALFA;
+ C(80) FLAGS;
+ D(92) INTEGER;
+ PADDING
+ end;
+
+
+

var
BLOCK CB;

+ A lRecord wi th Offset Qual'i fi ed
+ Fields
+
+

Types 47

+
+
+

5.8 THE SET TYPE

Syntax:

set-type:

---~~----------------~----> set of --->{base-scalar-typel---------------------->
L--> packed _>J

base-scalar-type:

E
>{enumerated-scalar-typel--->~

--- >{id:scalar-type} >~-->
> {subrange-scalar-typel----->

A variable whose type is a set may con
ta in any combi nat i on of va lues taken
from the base scalar type. A value is
either in the set or it is not in.

Note: Pascal/VS sets can be used in many
of the same ways as bit strings (which
often tend to be mach; ne dependent).
Each bit corresponds to one element of
the base type and is set to a binary one
when that element is a member of the
set. For example, a set operation such
as intersection (the operator is '*') is
the same as taking the 'boolean and' of
two bit strings.

type
CHARS = set of CHAR;
DAYSOFMON = packed set of 1 .. 31;
DAYSOFWEEK = set of MONDAY .. FRIDAY;
FLAGS = set of

(A,B,C,D,E,F,G,H);

Set Declarations

The following table describes the oper
ations that apply to the variables of a
set type.

Set Operators

opet~at ion form description

.... unary returns the complement of the operand

= binary compares for equality
<> or - binary compares for inequality
<-. _. binary returns TRUE if first operand is subset of

second operand >_ . .. binary returns TRUE if first operand is superset of
second operand ,

in binary TRUE if first operand (a scalar) is a member in
the set represented by the second operand

+ binary forms the union of two sets

* binary forms the intersection of two sets
- binary forms the difference between two sets
&& binary forms an 'exclusive' union of two sets
SIZEOFex) function returns the number of bytes required for a value

of the type

Set union produces a set which contains
all of the elements which are members of
the two operands. Set intersect ion
produces the set that contains only the
elements common to both sets. Set dif
ference produces the set which includes
all elements from the left operand
except those elements which are members
of the ri ght operand. Set exclusi ve
un i on produces the set whi ch conta ins
all elements from the two operands
except the elements which are common to

48 Pascal/VS Reference Manual

of x

both operands. The in operator tests
for membership of a scalar within a set;
if the scalar is not a permissible value
of the set and checking is enabled, then
a runtime diagnostic will result.

The storage and alignment required for a
set variable is dependent on the scalar
type on wh i ch the set isba sed. The
amount of storage required for a packed
set will be the minimum number of bytes
needed so that every member of the set

may be ~ss;gned to a unique bit.
a set definition:

Given

type S = set of BASE;

where BASE is a scalar type which is
not a subrange

the ordinal value of the last member M
which can be contained on the set is:

M == ORD(HIGHEST(BASE»

The following table indicates the map
ping of a set variable as a function of
M.

Ran~~e of Size in Alignment
M Bytes

0 <= M <= 7 1 BYTE

8 <= M <= 15 2 HAlFWORD

16 <= M <= 23 3 BYTE

24 <= M <= 31 4 FUllWORD

32 <= M <= 255 (M+7) BYTE
div 8

Unpacked sets based upon integer (or
subranges of integers) wi 11 occupy 32
bytes. The maximum value of a member of
a set of integer may not exceed 255.

The storage is the same for all unpacked
sets of subranges of a base scalar type.
The following illustrates this point.

Given:
type

T = set of ti
S = set of s;

Where:
t is a subrange of s.

The types T and S have identical storage
mappings.

Types 49

5.9 THE FILE TYPE

Syntax:

file-type:

---> file of --->{type}-->

All input and output in Pascal/VS use
the file type. A file is a structure
consisting of a sequence of components
where each component i s of the same
type. Variables of this type reference
the components with pointers called fi Ie
pointers. A file pointer could be
thought of a s a po inter into an
input/output buffer.

The association of a file variable to an
actual file of the system is implementa
tion dependent and will not be described
in this manual. Refer to the Program
mer's Guide for this information.

type
TEXT = file of CHARi
LINE = file of

packed array[1 .. 80] of
CHARi

PFILE = file of
record

NAf'lE: packed
array[1 .. 2510f

CHAR;
PERSON NO:INTEGERi
DATE EHpLOYED:DATEi
WEEKIy SALARY : I~TEGER

end; -

File Declarations

You access the file through predefined
procedures and functions (see "I/O
Facilities" on page 103). They are:

• GET (see "GET Procedure" on page
107)

• PUT (see "PUT Procedure" on page
108)

• EOF (see "EOF Function" on page 109)

• EOLN (see "EOLN function" on page
115)

50 Pascal/VS Reference Manual

•

•

•

•

•

RESET (see "RESET Procedure" on page
103)

REWRITE (see "REWRITE Procedure" on
page 104)

READ (see "READ and READLN (TEXT
Files)" on page 109)

WRITE (see "WRITE and WRITELN (TEXT
Files)" on page 112)

TERMIN (see "TERMIN Procedure" on
page 104)

• TERMOUT (see "TERMOUT Procedure" on
page 105)

•

•

•

•

PDSIN (see "PDSIN Procedure" on page
105)

PDSOUT (see "PDSOUT Procedure" on
page 106)

UPDATE (see "UPDATE Procedure" on
page 106)

SEEK (see "SEEK Procedure" on page
108)

+ • COL S (see "COL S Funct i on" on page
116) +

+
+ •
+

PAGE (see "PAGE Procedure" on page
115)

+
+. CLOSE (see "CLOSE Procedure" on page
+ 107)

OUTPUT and INPUT are predefi ned TEXT
files. Pascal/VS enforces the following
restrictions on the file type:

1. A fi Ie may be passed by var o.r
passed by const, but never by value
to a procedure or function.

2. A file may not be contained within a
file.

5.10 PREDEFINED STRUCTURE TYPES

+ 5.10.1 The Type STRING
+
+
+
+
+
+ Syntax:
+
+
+ string-t~~e:
+
+ ---> STRING
+
+
+
+
+
+ The type STRING ; s defi ned as a
+ 'packed ~rray[1 .. n] of CHAR' whose
+ length varies at execution time up to a
+ compile time specified maximum. The
+ length of the array is obtained during
+ execut i on by the LENGTH funct ion (see
+ "LENGTH Function" on page 137). The
+ length is managed implicitly by the
+ operators and functions which apply to
+ STRINGs. The maximum length of the
+ array 'j s obta i ned dur i ng execut i on by
+ the MAXL ENGTH funct ion (see "MAXL ENGTH
+ Functi on" on page 137). The length of a
+ STRING variable is determined when the
+ variable is assigned. By definition,
+ string constants belong to the type
+ STRING.
+

A STRING variable may be subscripted
with an integer expression to reference
individual characters. A subscript of 1
wi 11 reference the fi rst character. The
subscript value must not be less than 1
nor exceed the string's length.

+ The constant expressi on whi ch follows
+ the STRING qualifier in the type defi
+ nit ion is the max i mum length that the
+ string may obtain and must be in the
+ range of '1 .. 32767'.
+
+ Any variable of a STRING type is compat
+ ible with any other variable of a STRING
+ type; that is, the maximum length field
+ of a type definition has no bearing in
+ type compatibility tests.
+
+ Implici'~ conversion is performed when

I assigning a STRING to a variable whose
type i ~I 'packed array[1 .. n] of CHAR'.

+ All other conversion must be done
+ expl i ci ,tly.

TNL SN204446 (31 December 81) to SH20-6168-1

+ The assignment of one string to another
+ may cause a run time error if the actual
+ length of the source string is greater
+ then the maximum length of the target.
+ Pascal/VS will never truncate implicit
+ lYe
+
+
+
+ function GETCHARC
+ canst S : STRING;
+ IDX : INTEGER) : CHARi
+ begin
I { Subscripted string variable}
+ GETCHAR := S[IDX]
+ end;
+
+
+ val"
+ 51: STRINGCIO);
+ 52: STRINGCS);
+ C: CHAR;
+ begin
+ 51:= 'MESSAGE:';
+ C := GETCHARCS1,4)j
+ {C assigned '5' }
+
+
+ S2:= 'FIVE';
+ C .- GETCHARCS2,2)j
+ {C assigned 'I' }
+ endj
+
+
+
+

Usage of STRING Variables

------------_._--------

+ The following table describes the oper
+ ations and predefined functions that
+ apply to the variables of type STRING.

Types 51

TNL SN20-4446 (31 December 81) to SH20-6168-1

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

operation

=
<> or ... -
<
<=
>=
>
II
LENGTH

MAXLENGTH

LBOUND

HBOUND

SUBSTR

DELETE

TRIM

LTRIM

COMPRESS

INDEX

SIZEOF(x)

READSTR

WRITESTR

form

binary
binary
binary
binary
binary
binary
binary
function

function

function

function

function

function

function

function

function

function

function

procedure

procedure

STRING

description

compares for equality*
compares for inequality*
compares for left less than right+*
compares for left less than or equal to right+*
compares for left greater than or equal to right+*
compares for left greater than right+*
catenates the operands
returns the length of the STRING
(see "LENGTH Function" on page 137).

returns the declared length of a STRING
(see "MAXLENGTH Function" on page 137).

returns the value 1, STRINGS always have a lower
bound of one (see "LBOUND Function" on page 124).

returns the declared maximum number of elements of
the string (see "HBOUND Function" on page 124).

returns a specified portion of a STRING
(see "SUBSTR Function" on page 138).

returns a STRING with a portion removed
(see "DELETE Function" on page 138),

returns a STRING with trailing blanks removed
(see "TRIM Function" on page 139).

returns a STRING with leading blanks removed
(see "LTRIM Function" on page 139).

returns a STRING with multiple blanks removed
(see "COMPRESS Function" on page 140).

locates a STRING in another STRING
(see "INDEX Function" on page 140).

returns the number of bytes required for a value
of the type of x

converts a STRING to values by assigning variables
(see "READSTR" on page 142).

produces a STRING by converting the internal
values of a list of expressions
(see "WRITESTR" on page 142).

+ * If two STRINGs being compared are of different lengths, the
+ shorter is assumed to be padded with blanks on the right
+ until the lengths match.
+ + Relative magnitude of two strings is based upon the collating
+ sequence of EBCDIC.
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

STRING Conversions with Relational Operators

L
E
F
T

o
P
E
R
A
N
D

RIGHT OPERAND
packed

al'l'ay[I .. nlof relational
operations CHAR CHAR

CHAR allowed

packed not permitted
al'l'ay[1 .. nlof

CHAR

STRING use STR on
the CHAR

not permitted

okay if the
types are
compatible

use STR on
the array

52 Pascal/VS Reference Manual

STRING

use STR'on
the CHAR

use STR on
the array

allowed

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
of

+
+
+
+
+
+
+
+
+

T

0

STRING Conversions on Assignment

FRO M

packed
array[1 .. nJ of

assignment CHAR CHAR

CHAR allowed not permitted

packed not permitted okay if the
array[l .. n] of types are

CHAR compatible

STRING use STR to use STR to
convert CHAR convert array
to a STRING to a STRING

STRING

use string
indexing to
obtain char

okay, STRING is
converted. If
truncation ; s
required, then
an error results.

allowed

Types 53

+ 5.10.2 The Type AlFA
+
+
+
+ The standard type ALFA is defined as:
+
+ canst
+ ALFALEN = 8;
+
+ type
+ AlFA = packed
+ array[l .. ALFALEN] of
+ CHAR;
+

operation form description

= binary compares for
<> or -- binary compares for
< binary compares for
<= binary compares for
>-' binary compares for
> binary compares for
STR(x) function converts the
SIZEOF(x) function returns the

+ Any 'packed array[l .. n] of CHAR',
+ including ALFA, may be converted to type
+ STRING by the predefined function STR.
+ The following table describes the oper
+ at ion sand predef i ned funct ion s that
+ apply to the variables of the predefined
+ type ALFA.

ALFA

--
equality
inequality
left less than right
left less than or equal to right
left greater than or equal to right
left greater than right
AlFA to a STRING

number of bytes required for a value

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

of the type of an ALFA, which is ah.Jays 8

54 Pascal/VS Refer~nce Manual

+ 5.10.3 The Type ALPHA
+
+
+
+ The standard type ALPHA is defined as:
+

+ Any 'packed array[l .. n] of CHAR',
+ i ncludi ng ALPHA, may be converted to
+ type STRING by the predefined function
+ STR. The following table describes the
+ operations and predefined functions
+ that apply to the variables of the pre
+ defined type ALPHA.

+ const
+ ALPHALEN = 16;
+
+ type
+ ALPHA = packed
+ array[1 .. ALPHALEN] of
+ CHAR;
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

opera'~ ion

=
<> or -=
<
<=
>=
>
STRICx)
SIZEOFex)

form

binary
binary
binary
binary
binary
binary
function
function

ALPHA

description

compares for equality
compares for inequality
compares for left less than right
compares for left less than or equal to right
compares for left greater than or equal to right
compares for le.ft greater than right
converts the ALPHA to a STRING
returns the number of bytes required for a value

of the type of an ALPHA, which is always 16

Types 55

5.10.4 The Type TEXT

The standard type TEXT is defined as!

type
TEXT = file of CHAR;

•

•

In addition to the predefined procedures •
to do input and output, Pascal/VS
defines several procedures which oper- +.
ate only on files of type TEXT. These +
procedures perform character to +
internal representation (EBCDIC) con- +.
versions and gives you some control over
output field lengths. The predefined •
routines that may be used on TEXT files
are:

•
•

GET ("GET Procedure" on page 107)

PUT ("PUT Procedure" on page 108)

• EOF ("EOF Function" on page 109)

•
•

EOLN ("EOLN function" on page 115)

RESET ("RESET Procedure" on page
103)

•

•

•

•

WRITE ("WRITE and WRITELN (TEXT
Files)" on page 112)

WRITELN ("WRITE and WRITELN (TEXT
Files)" on page 112)

PAGE ("PAGE Procedure" on page 115)

CLOSE ("CLOSE Procedure" on page
107)

COLS ("COLS Function" on page 116)

PDSIN ("PDSIN Procedure" on page
105)

PDSOUT ("PDSOUT Procedure" on page
106)

TERMIN ("TERMIN Procedure" on page
104)

TERMOUT ("TERMOUT Procedure" on
page 105)

UPDATE ("UPDATE Procedure" on page
106)

•

•

REWRITE ("REWRITE Procedure" on
pclge 104)

READ ("READ and READLN (TEXT Files)"
on page 109)

Pascal/VS predefines two TEXT variables
named OUTPUT and INPUT. You may use
these fi les without declari ng them in
your program.

• READLN ("READ and READLN (TEXT
Files)" on page 109)

56 Pascal/VS Reference Manual

5.11 THE POINTER TYPE

Syntax:

pointer-type:

---> ~ --->{id:type}-->

Pascal/VS allows variables to be created
during program execution under your
explicit control. These variables,
which are called dynamic variables, are
generat:ed by the predef i ned procedure
NEW. NEW creates a new variable of the
appropriate type and assigns its address
to the argument of NEW. You must
explicitly deallocate a dynamic vari
able; the predefined procedures DISPOSE
and RELEASE are provided for this pur
pose.

+ Dynamic variables are created in an area
+ of storage called a he.£e...:.. A new heap is
+ created with the MARK predefined proce
+ dure; a heap is released with the
+ RELEASE predefined procedure. A initial
+ heap is allocated by Pascal/VS. All
+ variables that were allocated in a heap
+ are d,~allocated when the heap is
+ released. An attempt to use a dynamic
+ variable that has been deallocated (e;
+ ther via DISPOSE or RELEASE) is an
+ error.

Pascal/VS pointers are constrained to
point to a particular type. This means
that on declaration of a pointer, you
mu st spec i fy the type of the dynam i c
variable that will be generated by NEW
or referenced.

Pascal/VS defines the named constant nil
as the value of a pointer which does not
point 'to any dynamic variable (empty
pointer). Nil is type compatible to
every pointer type.

The only operators that can be applied
to var i abIes of po inter type are the

test for equality and inequality. The
predefined function ORO may be applied
to a pointer variable; the result of the
functi on is an integer value whi ch is
equal to the address of the dynamic var
iable referenced by the pointer. There
is no function in Pascal/VS to convert
an integer into a pointer.

type
PTR = 0) ELEMENT;
ELEMENT = record

PARENT
CHILD
SIBLING:

end;

PTR;
PTR;
PTR

A Pointer Declaration

Thi s example illustrates a data types
that can be used to build a tree. With
this structure the parent node contains
a pointer to the eldest child, the
eldest po i nts to the next si bl i ng who
points to the next, and so forth.

In the above example type ELEMENT was
used before it was declared. Referenc
ing an identifier prior to its declara
tion is generally not permitted in
Pascal/VS. However, a type identifier
which is used as the base type to a
pointer declaration is an exception to
this rule.

Types 57

5.12 THE TYPE STRINGPTR

Variables of type STRING have two
lengths associated with them:

• The current length which defines the
number of characters in the string
at any instant in time.

• The maximum length which defines the
storage required for the string.

The predefined type STRINGPTR defines a
pointer to a string which has no "maxi
mum length" assoc i ated with it unt i 1
execution time. The procedure NEW is
used to allocate storage for this type
of po t nter; an integer expressi on is
passed to the procedure that specifies
the maximum length of the allocated
stri ng. See "NEW Procedure" on page
119.

58 Pascal/VS Reference Manual

var
P
Q
I

begin

STRINGPTR;
STRINGPTRi
0 .. 32767;

I .- 59;
NEW(P,(I+l) div 2);
WRITElN(MAXlEN~TH(P));

{writes '30' to output}
NEW(Q,5);
Q~ .- '1234567890';

end

{causes a truncation }
{error at execution }

Using the Predefined type STRINGPTR

5.13 STORAGE, PACKING, AND ALIGNMENT

For each variable declared with a par
ticular type, Pascal/VS allocates a spe
cific amount of storage on a specific
alignment boundary. The Programmer's
Guide describes implementation
requirements and defaults.

Pascal/VS provides the packed record
feature in which all boundary alignment

is suppressed. Fields of a packed
record are allocated on the next byte,
ignoring alignment requirements.

Packed data occupies less space and is
more compact but may increase the exe
cution time of the program. Moreover, a
field of a packed record or an element
of a packed array may not be passed by
read/write reference (var) to a routine.

Types 59

+
+
+
+
+
+
+

6.0 ROUTINE~

Syntax:

routine-dcl:

---,---> {procedure-headi ng} »l
L-->{function-heading}---------------------- I
<------------------- ; <----------------------~
~---->{directive}---> ;

·--->{compound-statementJ---> ;

procedure-heading:

---> p ocedure --> {i d}---> {formal-parameters}---------------------------->

function-heading:

--> function -->{id}--->{formal-parameters}--> : -->{id:type}----------->

di rec'c i ve:

----> FORWARD -->~------------------>

.---> EXTERNAL -------------------------------------->

----> FORTRAN --------------------------------------->

----> MAIN -->
----> REENTRANT ------------------------------------->

formal-parameters:

L-> (

formal:

[>{formal}--~I---»
<----- ; <----~ --->-]~-------------------------------------->

I
[> val' -----~lr----~L----{id}-~--~--> : --->{id:type}----------~---->
r---> canst -->1>J <---, <---J

,-> (p roc edu r e - hea din g) ------------------------------------>

[-> {fu n c t ion - hea din g} ----------------------------~----->

There are two categories of routines:
procedun~s and functi ons. Procedures
should be thought of as adding new
statements to the language. These new
statements effectively increase the
language to a superset language contain
ing statements tailored to your
special]zed needs. Functions should
also be thought of as i ncreasi ngthe

flexibility of the language: functions
add to your abi Ii ty to express data
transformation in expressions.

Routines can return data to the caller
by al ter i ng the var parameters or by
assigning to variables that are common
to both the invoker and the invoked rou
tine. In addition, functions also

Routines 61

+

I

return a value to the invoker upon
return from the function.

6.1 ROUTINE DECLARATION

Routines must be declared prior to their
use. The routine declaration consists
of the routine heading, declarations and
one compound statement.

The heading defines the name of the rou
tine and binds the formal parameters to
the routine. The heading of a function
declaration also binds the function name
to the type of value returned by the
function. Formal parameters specify
data that is to be passed to the routine
when it is invoked. The declarations
are descri bed in chapter 4. The com
pound statement wi 11 be executed when
the routine is invoked.

6.2 ROUTINE PARAMETERS

formal parameters are bound to the rou
tine when the routine is defined. The
formal parameters defi ne what kind of
data may be passed to the routine when
it is invoked. These parameters also
specify how the data will be passed.

When the routine is invoked, a parameter
list is built. At the point of invoca
tion the parameters are called the actu
al par~meters. -----

Pascal/VS permits parameters to be
passed in following ways:

• pass by value

• pass by read/write reference (val')

• pass by read only reference (const)

• pass by conformant string (val' or
const)

• formal routine parameter

6.2.1 Pass by Value parameter~

Pass by value parameters can be thought
of as local variables that are initial
ized by the caller. The called routine
may change the value of thi ski nd of
parameter but the change is never
reflected back to the caller. Any
expression, variable or constant (ex
cept of fi Ie type) may be passed wi th
thi s mechani sm.

62 Pascal/VS Reference Manual

6.2.2 Pass by Val' Param~ters

Pass by Var (variable) is also called
pass by reference. Parameters that are
passed by var reflect modifications to
the parameters back to the caller.
Therefore you may use thi s parameter
type as both an input and output parame
ter. The use of the val' symbol ina
parameter indicates that the parameter
is to be passed by read/write reference.
Only variables may be -E.Q.?sed by this
mechanis~xpres5ions and constants
may not. Also, fields of a packed
record or elements of a packed array may
not be passed as var parameters.

+ 6.2.3 Pass by Const par~meters
+
+
+ Parameters passed by const may not be
+ altered by the called routine. Also you
+ should not modify the actual parameter
+ value while the call to the routine has
+ not yet completed. If you attempt to
+ alter the actual parameter while it is
+ being passed by const, the result is not
+ defi ned. Thi s method could be called
+ ~!? by read only ref~..r:.g.!l.£SL.. The param
+ eters appear to be constants from the
+ called routine's point of view. Any
+ expression, variable or constant may be
+ passed by const (fi elds of a packed
+ record and elements of a packed array
+ may al so be passed). The use of the
+ "canst" reserved word ina parameter
+ i ndi cates that the parameter is to be
+ passed by this mechanism. With parame
+ ters which are structures (such as
+ stri ngs), passi ng by const is usually
+ more efficient than passing by value.

6.2.4 Form~l Routine Parameters

A procedure or function may be passed to
a routine as a formal parameter. Within
the called routine the formal parameter
may be used as if it were a procedure or
function.

6.2.5 Conformant String Parameters

It 1S often desirable to call a proce
dure or funct i on and pass ina stri ng
whose declared length does not match
that of the formal parameter. The
conformant string parameter is used for
thi s purpose.

The conformant stri n9 parameter is a
pass by const or pass by val' parameter
with a type specified as STRING without
a length qual i fi er. Stri ngs of any
declared length will conform to such a
parameter. You can use the MAXLENGTH

+
+
+
+
+
+
+

parameb~r. You can use the MAXL ENGTH
function to obtain the declared length.
See "MAXLENGTH Function" on page 137.

procedure TRANSLATE
(var S : STRING;
const TABLE: STRING);

var
I O .• 32767;
J : 1 .. 0RD(HIGHEST(CHAR»+1;

begin
for I :: 1 to LENGTHeS) do

begin

end;

J :: ORD(S[I])+l;
if J > LENGTHeTABLE) then

Sri] .- , ,
else

SrI] :: TABLE[J];
Emd;

Example of a Conformant Strings

6.3 ROUTINE COMPOSITION

There are six kinds of routines:

• i ntE~rnal

• FORWARD

• EXTERNAL

• FORTRAN

• REENTRANT

• MAIN

The directive used to identify each kind
of declarat ion is shown in upper case
above.

Note:

• A routine must be declared before it
can be referenced. This allows the
compiler to assure the validity of a
call by checking parameter compat
ibility.

6.3.1 Internal Routines

An internal routine may be invoked only
from within the lexical scope that con
tains the routine definition.

6.3.2 FORWARD Routines

A routine declared FORWARD is the means
by whi ch you can declare the rout i ne

TNL SN20-4446 (31 December 81) to SH20-6168-1

headi ng before declar i ng the declara
tions and compound statement. The rou
tine heading is declared followed by the
symbol 'FORWARD'. Thi s allows you to
have a call to a routine prior to defin
ing the routine's body. If two routines
are to be mutually recursive and are at
the same nesting level, one of the rou
tines must be declared FORWARD.

To declare the body of the FORWARD rou
tine, you declare the routine leaving
off the formal parameter definition.

6.3.3 EXTERNAL RO.!J_lin~~

An EXTERNAL routine is a procedure or
function that can be invoked from out
side of its lexical scope (such as,
another module). The EXTERNAL directive
is used to specify the heading of such a
routine. While many modules may call an
EXTERNAL routine, only one module will
actua 11 y contai n the body of the
routine. The formal parameters defined
in the EXTERNAL routine declaration must
match those in the module where the rou
tine is defined. An EXTERNAL routine
declarat i on may refer to a Pascal/VS
routine which is located later in the
same module or located in another module
or it may refer to code produced by oth
er means (such as assembler code).

The following example illustrates two
modules (a program module and a segment
module) that share a single EXTERNAL
rout i ne. Both modu 1 es may invoke the
routine but only one contains the defi
nition of the routine.

program TEST;
function SQUAREeX : REAL)

. EXTERNAL;
begin

WRITELNe SQUARE(44»;
end .

SEGMENT S;
function SQUARE(X

EXTERNAL;
function SQUARE;
begin

SQUARE .- X * X
end; .

REAL)

REAL;

REAL;

Example of an EXTERNAL Function

The body of an EXTERNAL routine may only
be defined in the outermost nesting lev
el of a module; that is, it must not be

+ nested within another routine.

Routines 63

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 6.3.4 FORTRAN Rout;nes
+
+
+ A FORTRAN routine is similiar to an
+ EXTERNAL routine in that it specifies a
+ routine that is defined outside the mod
+ ule being compiled. In addition, it
+ specifies that the routine is a FORTRAN
+ subprogram and therefore the con
+ venti ons of FORTRAN are to be used. A
+ FORTRAN routine is never defined within
+ a Pascal/VS module. If you pass a
+ literal constant to a FORTRAN subprogram
+ by CONST, then you must assure that the
+ FORTRAN subprogram does not al ter the
+ contents of parameter. In order to meet
+ the requ i rements of FORTRAN you must
+ obey the following restrictions:
+
+ •
+
+
+ •
+
+
+

All parameters may be only var or
const parameters.

If the routine is a function, it may
only return a scalar resul t (thi s
includes REAL and SHORTREAL).

+. Routines may not be passed.
+
+. Multi-dimensional arrays are not
+ r"~mapped to conform to FORTRAN
+ indexing, that is, an element of an
+ array A[n,mJ in Pascal will be ele-
+ ment A(m,n) in FORTRAN.
+
+
+
+ 6.3.5 MAIN Procedures
+
+
+ The MAIN directive is used to identify a
+ Pascal procedure that may be invoked as
+ if it were a main program. It is some
+ times desirable to invoke a Pascal/VS
+ procedure from a non-Pascal routine, for
+ example FORTRAN or assembler language.
+ In this case it is necessary for certain
+ initializing operations to be performed
+ prior to actually executing the Pascal
+ procedure. The MAIN directive specifies
+ that these actions are to be performed.
+
+ There are several restri cti ons on the
+ use of the MAIN directive.
+
+. only procedures may have the MAIN
+ directive;

64 Pascal/VS Reference Manual

+. a procedure that is declared to be
+ MAIN must have its body located in
+ the same module;
+
+. the execut i on of a MAIN procedure
+ will not be reentrant;
+
+. the MAIN directive may only be
+ applied to procedures in the outer-
+ most nesting level.
+
+ Consult Pascal/VS Programmer's Gui de,
+ order number SH20-6162 for further
+ details on using MAIN.
+
+
+
+ 6.3.6 REENTRANT Procedures
+
+
+ The REENTRANT directive is used to iden
+ ti fy a Pascal procedure that may be
+ invoked as if it were a mai n program
+ like a MAIN procedure. In addi ti on,
+ invocations of these procedures will be
+ reentrant.
+
+ In order to achieve this addition fea
+ ture, some help is requ i red from you.
+ The first parameter of a procedure
+ defined with the REENTRANT directive
+ must be an INTEGER passed by var. Prior
+ to the very first call from a
+ non-Pascal/VS program you must initial
+ ize this variable to zero (0). On
+ subsequent calls you must pass the same
+ variable back unaltered (Pascal/VS sets
+ the variable on the first call and needs
+ that value on th~ subsequent
+ invocations). You need not call the
+ same procedure each time, you may call
+ different procedures - just continue to
+ pass thi s vari able on each call.
+
+ Consult Pascal/VS PrOClrcmmer's Guide,
+ order number SH20-6162- for further
+ details on using REENTRANT.
+
+ Note: All Pascal/VS internal procedures
+ and functions are reentrant. The REEN
+ TRANT di recti ve is used to speci fy a
+ procedure that is both reentrant and
+ invokable from outside the Pascal/VS
+ execution environment.

6.3.7 Examples of Routines

static
C: CHAR;

function GETCHAR:CHAR;
EXTERNAL;

procedure EXPR(var VAL: INTEGER);
EXTERNAL;

procedure FACTOR(var VAL: INTEGER);
EXTERNAL;

procedure FACTOR;
begin

C := GETCHAR;
if C = '(' then

begin
C := GETCHAR;
EXPR(VAl)

lend
else

end;

procedure EXPR {var VAL: INTEGER};
begin

FACTOR(VAL);

end;

Examples of Routine Declarations

function CHAR FOUND
(const S: STRING;

C: CHAR): BOOLEAN;
vear I: 1 .. 255;
begin

for I := 1 to LENGTH(S) do
if SrI] = C then

begin
CHARFOUND := TRUE;
return

end;
CHARFOUND := FALSE;

end;

Example of Const Parameter

6.4 FUNCTION RESULTS

A value is returned from a function by
assigning the value to the name of the
function prior to leaving the function.
This value is inserted within the

expression at the point of the call.
The value must be assignment conformable
to the type of the function.

I f the funct i on name is used on the
right side of an assignment, it will be
interpreted as a recursive call.

funct;on FACTORIAL
(X: INTEGER): INTEGER;

begin
if X <= 1 then

FACTORIAL .- 1
else

FACTORIAL := X * FACTORIAL(X-1)
end;

Example of Recursive Function

Standard Pascal permi ts a functi on to
r~turn only a scalar value. Pascal/VS
prov ides f'Dr a funct i on to return any
type except a file. This means that you
can write a Pascal/VS function that
returns a record structure as its result
(such as you might wish to do for imple
menting a complex arithmetic library).
A functi on may also return a stri ng,
however you must spec i fy the max i mum
length of the string to be returned.

type
COMPLEX = record

R,I REAL
end

function CADD
(const A,B : COMPLEX)
var

C : COMPLEX;
begin

C.R := A.R + B.R;
C.I := A.I + B.I;
CADD := C

end;

COMPLEX;

Example of a Function Returning a Record

6.5 PREDEFINED PROCEDURES AND FUNC-
TIONS ..

Pascal/VS predefines a number of proce
dures and funct ions that you may find
valuable. Details of the predefined
procedures and functi ons are gi ven in
section titled "I/O Facilities" on page
103.

Routines 65

+
+
+

Syntax:

variable:

-->{id}-->
<

-> [[>{expr}
<-- ,

-> -->{id:field}

-> 0')

Pascal/VS divides variables
classes depending on how
declared:

into five
they are

• automatic (var variables)

• dynamic (pointer-qualified vari-
ables)

• static (static variables)

• external (def/ref variables)

• parameter (declared on a routine
declaration)

A variable may be referenced in several
ways depending on the variable's type.
You may always refer to the entire vari
able by specifying its name. You may
refer -to a component of a structured
variable by using the syntax shown in
the syntax diagram.

If you simply specify the name of the
variable, then you are referring to the
entire variable. If that variable is
declared as an array, then you are
referring to the entire array. You may
assign an entire array. Similarly, you
may also deal with record and set vari
ables a:s units.

I >

TNL SN20-4446 (31 December 81) to SH20-6168-1

7.0 VARIABLES

not~s:

] ---> subscripted variable

val'
LINE1,

>

>.

field reference

pointer reference

LINE2 : packed
array[1 .. 80] of

CHARi

{ assign all 80 characters }
{ of the array }
LINEl .- LINE2;

>

Using Variables in their entirety

7.1 SUBSCRIPTED VARIABLE

An element of an array is selected by
placing an indexing expression enclosed
within square brackets, after the name
of the array. The indexing expression
must be of the same type as declared on
the corresponding array index defi
nition.

A multi-dimensional array may be refer
enced as an array of arrays. For exam
ple, let variable A be declared as
follows:

A: array [a .. b,c .. d] of T

As explained in "ThQ Array Type" on page
42, this declaration is exactly equiv
alent to:

A: array [a .. b] of
array [c .. d] of T

Variables 67

TNL SN20-4446 (31 December 81) to SH20-6168-1

A reference of the form A[I] would be a
variable of type:

array [c .. dl of T

and would represent a si ngle row in
array A. A reference of the form
A[I][J] would be a variable of type T
and would represent the Jth element of
the Ith row of array A. Thi slatter
reference would customarily be abbrevi
ated as

A[I,J]

Any array reference w; th two or more
subscript indicies can be abbreviated by
writing the subscripts in a comma sepa
rated list. That ;s, A[I][JJ. .. could
be written as A[I,J, ...].

If the. '%CHECK SUBSCRIPT' option is ena
bled, the index expression will be
checke.d at execution time to make sure
its value does not lie outside of the
subscript range of the array. An exe
cution time error diagnostic will occur
if the value lies outside of the pre
scribed range. (For a description of
the CHECK feature see "The %CHECK State
ment" on page 148.)

A variable of type STRING may be sub
scripted with an integer expression to
reference individual characters. The
value of the subscript must not be less
than 1 or greater than the length of the
string. String subscripts are checked
at run time if %CHECK SUBSCRIPT is ena
bled.

A[12]
A[I]
A[I+J I
DECK[CARD-FIFTY I
MATRIX[ROW[I], COLUMN[JI]

Subscripted Variables

7.2 FIELD REFERENCING

A field of a record is selected by fol
lowing the record variable by a period
and by the name of the field to be ref
erenced.

68 Pascal/VS Reference Manual

----_._----_. __ .. ----_ .. _._---

var
PERSON:

record
FIRST NAME,
LAST NAME: STRING(15);

end; -

DATE:
record

DAY: 1 .. 31;
MONTH: 1 .. 12;
YEAR: 1900 .. 2000

end;

DECK:
ilrray[I .. 5210f

record
CARD: 1 .. 13;
SUIT:

end;

(SPADE, HEART,
DIAMOND, CLUB)

PERSON.LAST NAME := 'SMITH';
DATE.YEAR :: 1978;
DECK[I I.CARD := 2;
DECK[I J.SUIT := SPADE;

Field Referencing Examples

7.3 POINTER REFERENCIN~

A dynami c vari able is created by the
predefined procedure NEW or by an imple
mentation provided routine which
assi gns an address to a po inter
variable. You may refer either to the
pointer or to the dynamic variable; ref
erenci ng the dynami c vari able requi res
using the pointer notation.

For example

var P : 0) R;

P refers to the pointer
Po) refers to the dynamic variable

If the '%CHECK POINTER' option is ena
bled, any attempt to reference a pointer
that has not been assigned the address
of an allocated variable will result in
an execution time error diagnostic.
(For a description of the CHECK feature
see "The %CHECK Statement" on page 148.)

If the '~CHECK POINTER' option is ena
bled, any attempt to reference a f1 Ie
pointer which has no value will result
in an execution time error diagnostic.
(For a description of the CHECK feature
see "The ~CHECK Statement" on page 146.)

var
INPUT
OUTPUT
LINE!

TEXT;
TEXT;
array [1 .. 80] of CHAR;

{ scan off blanks }
{ from a file of CHAR }
GETCINPUT);
while INPUT~ = , , do

GETCINPUT);

{ transfer a line to the }
{ OUTPUT file }
for I := 1 to 80 do

begin
OUTPUT~ := LINE1[I];
PUT(OUTPUT)

end;

File Referencing Examples

+

+
+
+

+

8.0 EXPRESSIONS

r-------.---"--------------------------,
Syntax:

constant-expr:
expr:.

--> {s i mpl e-expre ss i on} --..---------------------
> = ~>{Simple-expreSSion}--->J
> <> -->

simple-expression:

> < -->
> <= -->.
> >= -->
> > -->
> in -->

--->

~~~~->---+--~~~>-j~--rl--->{term}----~r---------------------- --------> 

---> - --> ~~ ~& --~~ 
<_----.-..1_ 

term:, 

--> {facto r} ----,r-----------------------.-.---- -----------------> 
> * ---> 
> / ---> 
> div --> 
> mod --> 

---> » ----> 
---> « ----> 
---> I I ----> 

> & ----> 
<----------------------------~ 

factoJ:..:.. 

-->{function-call}------------------------------ --------> 

--->{variable}------------------------------ _._._-" ~> 

-->{set-constructor}--------------------------- -~-> 

---> ( -->{expr}--> _ .. _->. 

--->{structured-constant}--------------------------------> 

---> not -->{factor}--------------------------- -> 

-->{unsigned-constantJ----------------------

Pascal/VS expressions are similar in 
function and form to expressions found 
i n oth4~r hi gh level programmi ng lan
guages. Expressions permit you to com
bine data according to specific 
computational rules. The type of compu
tat i on to be performed is di rected by 
operators whi ch are grouped into four 
classes according to precedence: 

the not operator (highest) 
- the multiplying operators 

the adding operators 
- the relational operators (lowest) 

An expression is evaluated by performing 
the operators of highest precedence 
first, operators of the next precedence 
second and so forth. Operators of equal 
precedence are performed ina left to 
right order. If an operator has an 
operand which is a parenthesized sub-

Expressions 71 



expression, the 
evaluated prior 
operator. 

sub-expression 
to applying 

is 
the 

The operands of an express; on may be 
evaluated in either order; that 1S, you 
should not expect the left operand of 
dyadic operator to be evaluated before 
the right operand. If either operand 
changes a global variable through a 
function call, and if the other operand 

72 Pascal/VS Reference Manual 

uses that value, then the value used is 
not specified to be the updated value. 
The only exception is in boolean expres
sions involving the logical operations 
of 'and' (&) and 'or' CI)i for these 
operations the right operand will not be 
evaluated if the resul t can be deter
mi ned from the left operand. See 
"Boolean Expressions" on page 77. 



TNL SN204446 (31 December 81) to SH20-6168-1 

Examples of Expressions 
~------------------------------------------------------------------------------------------------------------------------------------------------"---------

Assume the following declarations: 

const 
ACME = 'acme'; 

type 
COLOR 
SHADE 
DAYS 
MONTHS 

= (RED, YEllOW, BLUE); 
= set of COLOR; 
= (SUN, MON, TUES, WED, THUR, FRI, SAT); 
= (JAN, FEB, MAR, APR, MAY, JUH, 

JUl, AUG, SEP, OCT, NOV, DEC); 

val' 
A COLOR -A SET 
BaOl 
MON 
I, 
J 

I 
15 
(HE8+J) 
[ RED ] 
[ ] 
ODD(HEJ) 
not BOOl 
COlOR( 1 ) 
ACME 

terms: 

I 
I * J 
I div J 

: COLOR; 
: SHADE; 
: BOOLEAN; 
: MONTHS 

: INTEGER; 

ACME II ' TRUCKING' 
A SET * [ RED ] 
1-& 'FFOO'X 
BOOl & 000(1) 

simple expression: 

I * J 
I + J 
I I '80000000 'X 
A SET + [ BLUE ] 
--I 

variable 
unsigned constant 
parenthetical expression 
set of one element 
empty set 
function call 
complement expression 
scalar type converter 
constant reference 

factor 
multiplication 
integer division 
catenation 
set intersection 
logical and on integers 
boolean and 

term 
addition 
logical or on integers 
set union 
unary minus on an integer 

~-------------------------------------------------------------------------------------.---------------------------------------'"--
expression: 

I + J 
RED = A COLOR 
RED in A_SET 

simple expression 
relational operations 
test for set inclusion 

Expressions 73 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

8.1 OPERATORS 

Multiplying Operators 

+ 

+ 
+ 
+ 
+ 
+ 

+ 

+ 
+ 
+ 

operator operation 

* multiplication 

/ real division 

div integer division 

mod modulo 

& (and) boolean and 

& (and) logical and 

* set intersection 

II string catenation 

« logical left shift 

» logical right shift 

Adding 

operator operation 

+ addition 

- subtraction 

- set difference 

I (""r) boolean or 

I (or) logical or 

+ set union 

&& (xor) exclusive or 

&& (xor) 'exclusive' union 

74 Pascal/VS Reference Manual 

operands 

It-HEGER 
REAL 
REAL, INTEGER 
SHORTREAl 
SHORTREAL, INTEGER 
SHORTREAl, REAL 

INTEGER 
REAL 
REAL, INTEGER 
SHORTREAL 
SHORTREAl, INTEGER 
SHORTREAL, REAL 

INTEGER 

INTEGER 

BOOLEAN 

INTEGER 

set of t 

STRING 

INTEGER 

INTEGER 

Operators 

operands 

INTEGER, INTEGER 
REAL, REAL 
REAL, INTEGER 
SHORTREAl, SHORTREAL 
SHORTREAL, INTEGER 
SHORTREAL, REAL 

INTEGER, INTEGER 
REAL, REAL 
REAL, INTEGER 
SHORTREAL, SHORTREAl 
SHORTREAl, INTEGER 
SHORTREAl, REAL 

set of t 

BOOLEAN 

INTEGER 

get of t 

INTEGER 

set of t 

result 

INTEGER 
REAL 
REAL 
SHORTREAL 
SHORTREAl 
REAL 

REAL 
REAL 
REAL 
SHORTREAL 
SHORTREAL 
REAL 

INTEGER 

INTEGER 

BOOLEAN 

INTEGER 

set of t 

STRING 

INTEGER 

INTEGER 

result 

INTEGER 
REAL 
REi\L 
SHORTREAL 
SHORTREAL 
REAL 

INTEGER 
REAL 
REAL 
SHORTREAl 
SHORTREAl 
REAL 

set of t 

BOOLEAN 

INTEGER 

S!!t of t 

INTEGER 

s~t of t 



+ 
+ 

operator 

... (not) 

.... (not) 

.... (not) 

operator 

= 

<> ( .... =) 

< 

<= 

<= 

> 

>= 
>= 

in 

The Not 

operation 

boolean not 

logical one's 
complement 

set complement 

Relational 

operation 

compare equal 

compare not equal 

compare less than 

compare < or = 

subset 

compare greater 

compare > or = 
superset 

set membership 

TNt SN204446 (31 December 81) to SH20-6168-1 

Operator 

opera 

BOOLEAN 

INTEGER 

set of T 

nd result 

BOOLEAN 

INTEGER 

set of T 

-.. ---.-.----- -~------

Operators 
-..,...., -~-... "-- _-____ 0_- -

operands result 
-'" - -"''''_ .... "--, ,. 

any set, scalar type, BOOl.EAN 
pointer or string 

any set, scalar typa, BOOLEAN 
pointer or string 

scalar type or string BOOLEAN 

scalar type, string BOOLEAN 

set of t BOOLEAN 

scalar type, string BOOLEAN 

scalar type, string BOOLEAN 

set of t BOOLEAN 

t and set of t BOOLEAN 

Expressions 75 



TNL SN204446 (31 December 81) to SH20-6168-1 

+ 8.2 CONSTANT EXPRESSIONS 
+ 
+ 
+ Constant expressions are expressions 
+ which can be evaluated by the compiler 
+ and replaced wi th a result at compi Ie 
+ time. By its nature, a constant expres
+ si on may not conta ina reference to a 
+ variable or to a user-defined function. 
+ Constant expressions may appear in con
+ stant declarations. 
+ 
+ The following predefined functions are 
+ permitted in constant expressions: 
+ 
+ Function Page 
+ 
+ ABS 132 
+ CHR 126 
+ HIGHEST 123 
+ LENGTH 137 
+ LOWEST 123 
+ MAX 130 
+ MAXLENGTH 137 
+ MIN 130 
I ODD 132 
+ ORO 126 
+ PRED 131 
+ scalar conversion 
+ functions 127 
+ SIZEOF 125 
+ SUCC 131 

76 Pascal/VS Reference Manual 

+ 
+ 
+ constant 
+ expression type 
+ 
+ 
+ OROC'A') INTEGER 
+ SUCCCCHRC'FO'X» CHAR 
+ 256 div 2 INTEGER 
+ 'TOKEN'llsTRCCHRCO» STRING 
+ '8000'X I '0001'X INTEGER 
+ ['0' .. '9'] set of CHAR 
+ 32768*2-1 INTEGER 
+ 
+ Examples of Constant Expressions 
+ 
+ 



8.3 BOOLEAN EXPRESSIONS 

You should recognize that Pascal assigns 
the operat 1 ons of "&" (and) and "I" a 
hi gher precedence than the relat i onal 
operators. This means that the expres
sion: 

A<B & C<D 

will be. evaluated as 

(A < (B&C» < D 

Thus, it is advisable to use parenthesis 
when writing expressions of this sort. 

Pascal/VS will optimize the evaluation 
of BOOLEAN expressions involving '&' 
(and) and' I' (or) such that the right 
operand of the expressi on wi 11 not be 
evaluated if the result of the operation 
can be determined by evaluating the left 
operand. For example, given that A, B, 
and C are boolean expressions and X is a 
boolean variable, the evaluation of 

X : = A or B or C 

would be performed as 

if A then 
X := TRUE 

else 
if B then 

X := TRUE 
else 

X := C 

The evaluation of 

X : = A and Band C 

would be performed as 

if , .. A then 
X := FALSE 

else 
i of -'B then 

X := FALSE 
e.lse 

X := C 

The evaluati on of the expressi on wi 11 
always be left to right. 

The following example demonstrates log
ic which depends on the conditional 
evaluation of the right operand of the 
"and" operator. 

type 
RECPTR = Q)REC; 
REC = record 

var 

NAME: ALPHA; 
NEXT: RECPTR; 

end; 

P RECPTR; 
LNAME : ALPHA; 

begin 

while (P<>nil) and 
(PQ).NAME <> LNAME) 

do 
P := PQ).NEXT; 

end; 

Example of a BOOLEAN Expression 
that Depends on Order of Evaluation 

Notes: 

• If you use a function in the right 
operand of a boolean expression, 
then you must be aware that the 
function may not be evaluated. Fur
ther, you should note that relying 
on side-effect s from funct ion sis 
considered a bad programming prac
tice. 

• Not all Pascal compilers support 
this interpretation of BOOLEAN 
expressions. If you wish to assure 
portabi Ii ty between Pascal/VS and 
other Pascal implementations you 
should write the compound tests in a 
form that uses nested 
if-statements. 

Expressions 77 



+ 8.4 LpGICAL EXPRESSIONS + • 
+ + 
+ + 
+ Many of the integer operators provided +. 
+ in Pasca!/VS perform logical operations + 
+ on their operands; that is, the operands + 
+ are treated as unsigned strings of bina- + 
+ ry digits instead of signed arithmetic + 
+ quantities. For example, if the integer +. 
+ value of -1 was used as an operand of a + 
+ logical operation, it would be viewed as + 
+ a string of binary digits with a + 
+ hexadecimal value of 'FFFFFFFF'X. + 
+ 
+ The logical operations are defined to 
+ apply to 32 bit values. Such an opera
+ tion on a subrange of an INTEGER could 
+ yi eld a result outs; de the subrange. 
+ 
+ The following operators perform logical 
+ operations on integer operands: 
+ 
+. '&' (and) performs a bit-wise and of 
+ two integers. 
+ 
+. 'I' (or) performs a bit-wise inclu-
+ s i ve 0'''. 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ + 
+. '&&' (xor) performs a bit-wise + 
+ exclusive or. 

78 Pascal/VS Reference Manual 

' ... ' (not) performs a one's comple
ment of an integer. 

,«, shifts the left operand value 
left by the amount indicated in the 
right operand. Zeroes are shifted in 
from the right. 

'»' shifts the left operand value 
right by the amount indicated in the 
right operand. Zeroes are shifted in 
from the left. 

257 & 'FF'X 
2 I 4 I 8 
4 « 2 
-4 « 1 
8 » 1 
-8 » 1 
'FFFF'X » 
... 1 & 'FF'X 
... 0 
'FF'X && 8 

yields 
yields 
yields 
yields 
yields 
yields 

3 yields 
yields 
yields 
yields 

1 
14 
16 
--8 
4 
'7FFFFFFC'X 
'lFFF'X 
'FE'X 
-1 
'F7'X 

Examples of logical Operations 



+ 

8.5 FUNCTION CALL 

Syntax: 

function-call: 

--->{id:functionJ--->{actual-parameters}---------------------------------------> 

actual-parameters: 

A function returns a value to the 
invoker'. A call to a funct i on passes 
the actual parameters to the correspon
ding formal parameters. Each actual 
parameter must be of a type that is 
conformable to the corresponding formal 
parameter. You may not pass a field of 
a packed record as a var parameter. You 
also may not pass an element of a packed 
array as a var parameter. 

The parenthesis list may be dropped if 
the function requires no parameters. 
However', if you wish to draw attent ion 
to a function call that has no parame
ters and make it appear different from a 
variable reference, you can follow the 
function name with an empty set of 
parenthesis. 

~J-------------> 

va~ A,B,C: INTEGER; 

function SUM 
(A,B: INTEGER): INTEGER; 

begin 
SUM := A+B 

end; 

be9tn 
C := SUMCA,B) * 2 

end; 

Function Example 

Expressions 79 



+ 8.6 SCALAR CONVERSIONS 
+ 
+ 
+ Psscal/VS predefi nes the funct; on ORO 
+ that converts any scalar value into an 
+ integer'. The scalar conversi on func
+ tions convert an integer into a speci
+ fied scalar type. An integer expression 
+ is converted to another scalar type by 
+ enclosing the expression within paren
+ theses and prefi xi n9 it wi th the type 
+ identifier of the scalar type. If the 
+ operand is not in the range 0 
+ ORDCHIGHEST(5calar type», then a sub
+ range error will result. The conversion 
+ is performed in such a way as to be the 
+ inverse of the ORD funct ion. See 
+ "Scalar Conversion" on page 126. 
+ 
+ The defi nit i on of any type ; dent i fi er 
+ that specifies a scalar type (enumerated 
+ scalars or subranges) forms a scalar 

80 Pascal/VS Reference Manual 

+ conversion function. By definition, the 
+ expression CHARex) is equivalent to 
+ CHRex)j INTEGERex) is equivalent to Xi 
+ and ORDetypeex» is equivalent to x. 
+ 
+ 
+ 
+ type 
+ WEEK = 
+ (SUN,MON,TUE,WED,THU,FRI,SAT); 
+ va ... 
+ DAY: WEEK; 
+ 
+ 
+ {The following sssigns SAT to DAY} 
+ DAY:= WEEK(6)j 
+ 
+ Scalar Conversion Functions 
+ 
+ 
+ 



8.7 SET CONSTRUCTOR 

Syntax: 

set-contructor! 

-> [ 
--~----r[<-_---->-{-e-x-p--r-}====c:======->-,--<~~~:~~->~-{_-e~x~p~_r~}--~=-_==>~~----~·--:r---> ] 

-----> 

A set constructor ;s used to compute a 
value of a set type within an 
expression. 

The set: constructor is list of comma 
separated expressions or expression 
pal rs wi th; n square brackets. An 
expression pair designates that all val
ues from the fi rst expressi on through 
the last expression are to be included 
in the resulting set; the evaluation of 
the first expression must produce a val
ue les~i than or equal to the value 
computed by the second expression. Each 
expresslon must be of the same type; 
this type becomes the base scalar type 
of the set. If the set specifies INTE
GER valued expressions, then there is an 
implementation restriction of 256 ele
ments permitted in the set. 

type 
DAYS = set of 

(SUN,MON,TUES,WED,THU,FRI,SAT); 
CHARSET= set of CHARi 

var 
l!jORKDAYS, 
WEEKEND: DAYS 
NONlETTERS: CHARSET; 

WORKDAYS .- [MON .. FRI]; 
WEEKEND .- - WORKDAYS; 

NONlETTERS := 
... ['a' .. 'z','A' .. 'Z']; 

Set Constructor 

Expressions 81 





+ 

+ 

+ 

+ 

9.0 STATEMENTS 

SyntclX: 
~.-----------------------~~------------------------.------------------------------~ 

statement: 

---->{label}--> : -.->, <--------------' 
--->{assert-statementJ-------------------------------------> 

~---->{assignment-statementJ-----------------------------------> 

----> {case-statementJ-----------------------------------------> 

----> {compound-statementJ----------------------------------------> 

--->{continue-statement}-----------------------------------> 

----> {empty-statementJ-----------------------------------------> 

----> {for-statementJ--------------------------------------------> 

---->{goto-statementJ--------------------------------~--------> 

~--->{if-statementJ----------------------------------------------> 

--->{leave-statement}--------------------------------------> 

~--->{procedure-call}-------------------------------------------> 

~-->{repeat-statementJ-----------------------------------> 

--->{return-statement}-------------------------------------> 

r--->{while-statementJ-------------------------,-----------------> 

~-->{with-statementJ-------------------------------------------->~----------> 

Statements are your directions to per
fo rm SP(~c if i c operat ion s ba sed on the 
data. The statements are simi lar to 

those found in most high level program
m i ng languages. 

Statements 83 



+ 9.1 THE ASSERT STATEMENT 
+ 
+ 
+ 
+ Syntax! 
+ 
+ 
+ assert-statement: 
+ 
+ ---> assert --->{expr}-----------------------------------------------------> 
+ 
+ 
+ 
+ 
+ The c}ssert-statement is used to check + 
+ for ci speci fi c condi ti on and si gnal a + 
+ runtime error if the condition is not + Example: 
+ met. The condition is specified by the + 
+ expression which must evaluate to a + assert A >= B 
+ BOOLEAN value. If the condition is not + 
+ TRUE then the error is raised. The com- + The Assert statement 
+ piler may remove the statement from the + 
+ program if it can be determined that the + 
+ asserti on is always true. + 
+ 

84 Pascal/VS Reference Manual 



9.2 TH~ ASSIGNMENT STATEMENT 

--.----------------------------------------------------------.----------------------------~ 
Syntax: 

assignment-statement: 

-----r--->{varlableJ----------Jr----> .- --->{expr}-----------------------------------> 
L--->{id:function}---> 

The assignment-statement is used to 
assign a value to a variable. This 
statement is composed of a reference to 
a variable follOl"ed by the assignment 
symbol (':='), followed by an expression 
which when evaluated is the new value. 
The variable must be conformable to the 
expressi on. The rules for expressi on 
conformc:)bility are given in "Type Com
patibility" on page 31. 

You may make array assignments (assign 
one array to another array) or record 
assignments (assign one record to anoth
er). When doing this, the entire array 
or record ;s assigned. 

A result is returned from a function by 
assigning the result to the function 
name prior to leaving the function. See 
"Funct i em Resul ts" on page 65 

Pascal/VS will not permit the assignment 
of a value to a pass by const parameter. 

Example: 

type 
CARD = record 

SUIT : (SPADE, 
HEART, 
DIAMOND, 
CLUB); 

RANK 1 .. 13 
end; 

var 
X, y, Z : REAL; 

LETTERS, 
DIGITS, 
LETTER OR DIGIT 

: set of CHARi 

I, J, K : INTEGER; 

DECK: array[ 1 .. 52 ] of 
CARD; 

X := Y*Z; 
LETTERS 
DIGITS 
LETTER OR DIGIT 
DECK[ I l-:-SUIT 
DECK[ J 1 

.- [ 'A' .. 'Z' ]; 

.- [ '0' .. '9' ]; 

.- LETTERS + DIGITS; 

.- HEART; 

.- DECK[ K ]; 

Assignment Statements 

Statements 85 



+ 
+ 
+ 

9.3 THE CASE STATEMENT 

Syntax: 

case-statement: 

----> c:se ---->{expr}----> of ---->] 

< 
_

___ L ____ l_<~~~>~{~r_a_n_,g __ ~_~~~~~~------->----~~~>~{_s_t_a_t_e_m_e_n __ t_} ________ ~>l <------------------------- ; <------------------~ -
l<_ . <=-:J , 

---> otherwise ---I~==:~:~~t~m~~~:===J--->l < _________________________________________ J 

-> end ---------------------------------------------------------------------> 

The case-statement provides you with a 
mul t i pIe branch based upon the evalu
ation of an expression. This statement 
consi sts of an expressi on called the 
selector and a list of statements. The 
selector must be of scalar type (except 
type REAL). Each statement is prefixed 
with one or more ranges of the same type 
as the selector; each range is separated 
by a comma. Each range designates one 
or more values called case labels. 

Pascal/VS evaluates the expression and 
executes the statement whose case label 
equals the value of the expression. If 
no case label equals the value of the 
express; on, then the otherwi se state-

+ ment i s executed if it i s present; if 
+ there is no otherwise statement and the 
+ %CHECK CASE option is on, then a runtime 
+ error will result. If the checking is 
+ not enabled the results will not be pre
+ dictable. 

The range values of a case-statement may 
be written in any order. However, you 
may not designate the same case label on 
more than one statement. 

86 Pascal/VS Reference Manual 

Example: 

type 
SHAPE = (TRIANGLE, RECTANGLE, 

SQUARE, CIRCLE); 
COORDINATES = 

record 
X,Y : REAL; 
AREA : REAL; 
case S : SHAPE of 

end; 
var 

COORD 

TRIANGLE: 
(SIDE: REAL; 
BASE: REAL); 

RECTANGLE: 
(SIDEA,SIDEB : REAL); 

SQUARE: 
(EDGE: REAL); 

CIRCLE: 
(RADIUS: REAL) 

COORDINATES; 

with COORD do 
case S of 
TRIANGLE: 

AREA := 0.5 * SIDE * BASE; 
RECTANGLE: 

AREA := SIDEA * SIDEB; 
SQUARE: 

AREA := SQR(EDGE); 
CIRCLE: 

AREA .- 3.14159 * SQR(RADIUS) 
end; 

The Case Statement 



Exampl,e: 

type 
RANK = (ACE, TWO, THREE, FOUR, 

FIVE, SIX, SEVEN, EIGHT, 
NINE, TEN, JACK, QUEEN, 
KING); 

SUIT = (SPADE,HEART,DIAMOND,CLUB); 
CAR)) = record 

R RANK; 
S : SUIT 
end; 

var 
POINTS : INTEGER; 
A_CARD : CARD; 

case A CARD.R of 
ACE:-

POINTS := 11; 
TWO .. TEN: 

POINTS := ORD(A_CARD.R)+l 
+ othslrw i se 
+ POINTS .- 10 

end; 

The Case Statement with otherwise 

Statements 87 



9.4 THE COMPOUND STATEMENT 

Syntax: 

comec)und-statement: 

--> begin -~--->{statement}--~---> end l<_______ i <------~ ------------------------------------> 

The compound-statement serves to brack
et a series of statements that are to be 
executed sequentially. The reserved 
words "begin" and "end" delimit the 
statement. Semicolons are used to sepa
rate each statement in the list of 
statements. 

Example: 

88 Pascal/VS Reference Manual 

if A > B then 
begin { swap A and B } 

TEMP = Ai 
A = B; 
B = TEMP 

end 

Compound Statement 



+ 9.5 THE CONTINUE STATEMENT 
+ 
+ 
+ 
+ Syntax: 
+ 
+ 
+ continue-statement: 
+ 

TNL SN204446 (31 December 81) to SH20~168-1 

+ ---> continue ----------------------------------------------------------.---> 
+ 
+ 
+ 
+ 

The continue statement causes a jump to 
the loop-continuation portion of the 
inner-most enclosing for, while, or 
repeat statement. In other words, it is 
a goto to the end of the loop. 

The followi ng examples illustrate how 
the continue statement functions in each 
of the loop constructs. 

while expr do begin 

continue 

C*continue jumps to here*) 
end 

for i := exprl to expr2 do 
begin 

continue 

(*continue jumps to here*) 
end 

repeat 

continue 

(*continue jumps to here*) 
until exprj 

Statements 89 



TNL SN20-4446 (31 December 81) to SH20~168-1 

9.6 THE EMPTY STATEMENT 

Syntax: 

~y-statement: 

-------------------------------------------------------------------------------------> 

The empty-statement is used as a place 
holder and has no effect on the exe
cution of the program. This statement 
is often useful when you wish to place a 
label in the program but do not want it 
attached to another statement (such as, 
at the end of a compound-statement). 
The empty-statement is also useful to 
avoid the ambiguity that arises in nest
ed if-statements. You may force a 
single else-clause to be paired with the 

90 Pascal/VS Reference Manual 

outer nested if-statement (see page 94 ) 
by using an empty-statement. 

if bl then 
if b2 then 

s1 
else 

else 
s2 

{ empty-statement } 



9.7 THE FOR STATEMENT 

Syntax: 

for-!:itatement: 

--) for -->{id}--> .- --->{expr}--~~----» to J 
L-- down to -> 

> {expr}-->] 

~[<--------------> do -->{statement}----------------------> 

The for-statement repeatedly executes a 
statement while the control variable is 
assigned a series of values. The value 
of the control vari~ble is incremented 
(to) or decremented (downto) for each 
iteration of the loop. The increment 
(decrement) is computed by the SUCC 
(PRED) function. That is, the control 
variable is changed to the succeeding 
(preced i ng) va I ue of the type of the 
control variable. 

The for-statement initializes the con
trol variable to the first expression. 
Prior to each execution of the component 
statement, the control variable is com
pared less than or equal to (to), or 
greater than or equal to (downto) the 
second expressi on. Pascal/VS computes 
the value of the second expressi on at 
the beginning of the for-statement and 
uses the result for the duration of the 
statement. Thus the endi ng value 
expression is computed once and can not 
be changed during the for-statement. 

The control variable must be an automat
i c vari able whi ch is declared in the 
immediately enclosing routine. Also, it 
may not be·subscripted, field qualified 
or referenced through a po inter. The 
type of the control variable must be a 
scalar type. 

The executed statement must not al ter 
the control vari able. If the control 
variable is altered within the loop, the 
resultant loop execution is not predict
able. The value of the control variable 
after the for-statement is executed is 
undefi nE~d (you should not expect the 
control variable to contain any partic-

. ular value). 

Given the following statement 

for I := expr! to expr2 do stmt 

where I is an automatic scalar variable; 
expr! and expr2 are scalar expressions 
whi ch are type-compati ble wi th I; and 

'stmt' is any arbitrary statement. The 
followi ng compound statement is func
tionally equivalent: 

begin 
TEMP! .- expr!; 
TEMP2 .- expr2; 
if TEMP! <= TEMP2 then 

begin 

end 

I : = TEMP!; 
repeat 

stmt; 
if I = TEMP2 then 

leave; 
I := SUCC(I) 

until FALSE; {forever} 
end 

where 'TEMP!' and 'TEMP2' are compiler 
generated temporary variables. 

And given the following statement 

for I := expr! downto expr2 do stmt 

where I is an automatic scalar variable; 
expr! and expr2 are scalar expressions 
which are type-compatible with Ii and 
'stmt' is any arbitrary statement. The 
followi ng compound statement is func
tionallyequivalent: 

begin 
TEMP! .- expr!i 
TEMP2 .- expr2j 
if TEMP! >= TEMP2 then 

begin 

end 

I : = TEMP!; 
repeat 

stmti 
if I = TEMP2 then 

leave; 
I := PRED(l) 

until FALSE; {forever} 
end 

where 'TEMPI' and 'TEMP2' are compiler 
generated temporary variables. 

Statements 9! 



Examples: 

{ find the maximum INTEGER in } 
{ an array of INTEGERs } 
MAX ::: A[l]; 
LARGEST := 1; 
for I := 2 to SIZE OF A do 

if A[Il < MAX then 
begin 

LARGEST := Ii 
MAX := A[I] 

end 

{ matrix multiplication: C<-A*B } 

for I := 1 to N do 
for J:= 1 to N do 

begin 
X := 0.0; 
for K := 1 to N do 

X := A[I,Kl * B[K,Jl + Xi 
C[I,Jl := X 

end 

{ sum the hours worked this week} 

SUM := 0; 
for DAY := MON to FRI do 

SUM := SUM + TIMECARD[ DAY] 

The For Statement 

92 Pasca!/VS Reference Manual 



9.8 THE GOTD STATEMENT 

r-----.------------------------------- --- --~----,-- ---_. 
Syntax: 

~---.---------------------------~----------

goto-statement: 

------> gato --->{label}--------------------------------------------------> 

~---.------------------------------------------------------------------~ 

The goto-statement changes the flow of 
control within the program. 

Example!:i: 

goto 10 
gota ERROR_EXIT 

The Goto Statement 

The label must be declared wi thi n the 
routine that contains the 
goto-statement. 

The following restrictions apply to the 
use of the goto statement: 

• You may not branch into a compound 
stat:ement from a goto-statement 
whi ch is not contai ned wi thi n the 
statement. 

• You may not branch into the then
clause or the el se-clause from a 
goto-statement that is outside the 
if-statement. Further, you may not 
bran~h between the then-clause and 
the else-clause. 

• You may not branch into a case-al
ternative from outside the 
eaSEl-statement or between case-al
ternative statements in the same 
easEl-statement. 

• You may not branch into a for, 
rePE!at, or whi Ie loop from a goto 
statement that is not contained 
within the loop. 

• 

• 

You may not 
with-statement 
goto-statement 
... ,Ii th-statement. 

branch into a 
from a 

outside of the 

For a goto-statement that specifies 
a label that is defined in an outer 
routine, the target label may not be 
defined within a compound statement 
or loop. 

The following example illustrates legal 
and illegal goto-statements. 

procedure GOTO_EXAMPlE; 
label 

LI, l2, l3, L4 

procedure INNER; 
begin 

goto L4; { permitted 
goto l3; { not permitted 

end; 
begin 

gata l3; { not permitted 
begin 

L3: 
goto L4; { permitted 
gato L3; { permitted 

end; 
l4: if expr then 

LI: gata L2 { not permitted 
else 

l2: goto II { not permitted 
end; 

Goto Target Restrictions 

} 
} 

} 

} 
} 

} 

} 

Statements 93 



9.9 THE IF STATENENT 

Syntax: 

if-statement: 

--> if -->{exprJ--> then -->{statementJ--~----------------------------1------> 

~> else -->{statementJ-->J 

The if-statement allows you to specify 
that one of two statements is to be exe
cuted depending on the evaluation of a 
boolean expression. The if-statement is 
compo sed of an express i on and a then
clause and an optional else-cl~ 
Each clause contains one statement. 

The expression must evaluate to a 
BOOLEAN value. If the result of the 
expression is TRUE, then the statement 
in the then-clause is executed. If the 
expression evaluates to FALSE and there 
is an else-clause, then the statement in 
the else-clause is executed; if there is 
no else-clause, control passes to the 
next statement. 

Example: 

if A <= B then 
A:= (A+l.0)/2.0 

if 000(1) then 
J:::J+l 

else 
J:::J div 2 + 1 

The If Statement 

Nesting of an if-statement within an 
if-statement could be interpreted with 
two different meanings if only one 
statement had an else-clause. The fol
low; n9 example illustrates the condi
t i on that produces the ambi gu i ty. 
Pascal/VS· always assumes the first 
interpretation. That is, the 
else-clauses are paired with the inner
most if-statement. 

94 Pascal/VS Reference Manual 

The following line could be 
interpreted two ways. 

if bl then if b2 then stmtl else stmt2 

Interpretation I 
(assumed by Pascal/VS) 

if bl then 
begin 

if b2 then 
stmtl 

else 
stmt2 

end 

Interpretation 2 
(incorrect interpretation) 

if bl then 
begin 

if b2 then 
stmtl 

end 
else 

stmt2 

If the second interpretation is desired 
you could code it as shown or you could 
take advantage of the empty-statement. 

if bl then 
if b2 then 

stmtl 
else 

else 
stmt2 

{ empty statement } 



+ 9.10 THE LEAVE STATEMENT 
+ 
+ 
+ 
+ Syn1:ax: 

TNL SN204446 (31 December 81) to SH20-6168-1 

+ -----.---------~ 

+ 
+ leave-statement: 
+ 
+ ---> leave ----------------------------------------------------------------> 
+ 
+ 
+ 
+ 

The leave statement causes an immediate, 
unconditional exit from the inner-most 
enclosi ng for, whi Ie or repeat loop. 
For example, the following two code seg
ments are functionally equivalent: 

while expr do 
begin 

l.eave 
end; 

wh i Ie! expr do 
begin 

goto lab; 
encl; 

lab: j 

+ 
+ 
+ Example: 
+ 
+ P:=FIRST; 
+ while P<>nil do 
+ if P~.NAME = 'JOE SMITH' then 
+ leave 
+ else 
+ P:=P~.NEXT; 
+ {P either points to the desired} 
+ {da tao r j s " i 1 } 
+ 
+ 
+ 
+ 
+ 

The Leave Statement 

Statements 95 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

9.11 THE PROCEDURE CALL 

S~mtax : 

procedure-call: 

---->{id:procedure}-----r--------------------------------------------------------~~--------·--------> 
L_> L > {expr}---.--1-» __ >J 

< __ , <-I 

The procedure-statement causes the 
invocation of a procedure. When a pro
cedure is invoked, the actual parameters 
are subst i tuted for the correspondi ng 
formal parameters. The actual parame
ters must be conformable to the formal 
param~~ters. The rules for expressi on 
conformability are given in "Type Com
patibility" on page 31. 

Parameters which are passed by 
read/write reference (var) may only be 
variables, never expressions or con
stants. Also, fields of a packed record 
may not be passed by var. Parameters 
passed by value or read-only reference 
(const) may be any expression. 

A procedure invocation that requires no 
parameters does not use the li st of 
operands. 

96 Pascal/VS Reference Manual 

Example: 

TRANSPOSECAN ARRAY, 
NuFi':"OF ROWS, 
NUM-OF:COLUMNS); 

MATRIX ADD(A ARRAY, 
- B-ARRAY, 

C-ARRAY, 
N:-M) ; 

XYZCI+J, K*L) 

Procedure Invocations 



9.12 THE REPEAT STATEMENT 

Syntax: 

--> repeat -------r--->{statement}---T---> until -->{expr}------------------> l<______ ; < ______ ~ 

The statements contained between the 
statem"mt del i mi ters repeat and unt i 1 
are executed until the control expres
sion e.valuates to TRUE. The control 
expression must evaluate to type 
BOOLEAN. Because the termination test 
is at the end of the loop, the body of 
the loop ; s always executed at least 
once. The structure of the 
repeat-statement allows it to act like a 
compound statement in that it encloses a 
list of statements. 

Example: 

repeat 
K := I mod J; 
I : = J; 
J : = K 

until J = 0 

The Repeat Statement 

Statements 97 



+ 9.13 THE RETURN STATEMENT 
+ 
+ 
+ 
+ Syntax! 
+ 
+ 
+ return-statement: 
+ 
+ ---> return ---------------------------------------------------------------> 
+ 
+ 
+ 
+ 
+ The return-statement permits an exit 
+ from a procedure or function. This 
+ statement is effect i vely a goto to an 
+ imaginary label after the last statement 
+ within the routine being executed. If 
+ the %CHECK FUNCTION option is enabled, 

98 Pascal/VS Reference Manual 

+ Pascal/VS will insure that a function 
+ has been assigned a value prior to the 
+ return from the funct ion. If a value 
+ has not been assigned, a runtime error 
+ will occur. 



9.14 THE WHILE STATEMENT 

Syntax: 

whi lc;!-statement: 

----> while --->{expr}----> do ---->{statement}--------------------------------------> 

The while-statement allows you to speci
fy a statement that i s to be executed 
while a control expression evaluates to 
TRUE. The control expression must eval
uate to type BOOLEAN. The expression is 
evaluated prior to each execution of the 
statemEmt. 

Example: 

{ Compute the decimal size of N } 
{ assume N >= 1 } 
I . - 0; 
J . - 1 ; 
while N > 10 do 

begin 
I · - I + 1 ; 
J · - J * 10; 
N · - N dtv 10 

end 
{ I is the power of ten of the } 
{ original N } 
{ J is ten to the I power } 
{ 1 <= N <= 9 } 

The While Statement 

Statements 99 



9.15 THE WITH STATEMENT 

Syntax: 

with-statement: 

--> with --~--->{variable}--~---> do --->{statement}---------------------> L<____ , < ______ ~ 

The with-statement is used to simplify 
references to a record variable by elim
inating an addressing description on 
every reference to a fi eld. The 
loJi th-statement makes the f1 elds of a 
record available as if the fields were 
variables within the nested statement. 

The with-statement effectively computes 
the address of a record var i able upon 
executing the statement. Any modifica
tion to a variable which changes the 
address computation will not be 
ref I ected in the pre-computed address 
during the execution of the with state
ment. The following example illustrates 
this point. 

val' A al'l'ay[ 1 .. 10 ] of 
record 

FIELD : INTEGER 
end; 

1:=1; 
with A[ I ] do 

begin 
K := FIELD; 
I : = 2; 
K := FIELD; 
end; 

{K:=A[11.FIELO} 

{K:=A[ll.FIELO} 

The Address of A is Computed 
on Entry to the Statement 

The comma notation of a with-statement 
is an abbreviation of nested 
with-statements. The names within a 
with-statement are scoped such that the 
last wi th statement wi 11 take 
precedence. A local var i able wi th the 
same name as a field of a record becomes 

100 Pascal/VS Reference Manual 

unava i lable ina wi th statement that 
specifies the record. 

Example: 

type 
EMPLOYEE = 

val' 

record 
NAME 
MAN_NO 
SALARY 
10 NO 

end;-

STRING(20); 
O •. 999999; 
INTEGER; 
O •• 999999 

FATHER : ~ EMPLOYEE; 

with FATHER~ do 
begin 

NAME .- 'SMITH'; 
MAN NO .- 666666; 
SALARY .- WEEKLY SALARY; 
10 NO .- MAN_NO-

end -

is equivalent to: 

begin 
FATHER~.NAME 
FATHER~.MAN NO 
FATHER~.SALARY 
FATHER~.IO NO 

end -

: = 'SMI TH' ; 
:= 666666; 
:= WEEKLY SALARY; 

:= FATHER~.MAN_NO 

Note: The variable FATHER is of type 
pointer to EMPLOYEE, thus the pointer 
notation must be used to specify the 
record pointed to by the pointer. 

The With Statement 



Exampl,e: 

V : Irecord 
V2 : INTEGER; 
VI : record A 
A : INTEGER 

REAL end; 

end; 
A : CHAR; 

with V,V1 
be~Jin 

V2 · -
A · -
V.A · -

end; 
A . - , A ' ; 

do 

1 ; 
1.0; 
1 

{ V.V2 . - 1 } 
{ V.Vl.A . - 1.0 } 
{ V.A . - 1 } 
{ CHAR A is not } 
{ available here} 

{ CHAR A is now } 
{ available } 

With statements Can Hide a Variable 

Statements 101 





Input and output are done using the file 
data structure. The Pascal/VS Program
mer's Guide provides more detail on how 
to use the I/O facilities in a specific 
operating system. Pascal/VS provides 
predefined routines which operate on 
variables of a file type. The routines 
are: 

• RESET 

• REWRITE 

• READ 

• WRITE 

• GET 

• PUT 

• EOF 

+ • CLOSE 

• UPDATE 

• TERMIN 

• TERMOUT 

• PDSIN 

• PDSOUT 

• SEEK 

To facii 1 i tate input and output oper
ati ons that requl re conversi on to and 
from a character representation, the 
predefined file type TEXT is provided. 
The type TEXT is predefined as a file of 
CHAR. Each GET and PUT transfers one 
CHAR of i nformat ; on. There are addi
tional predefined routines that may be 
executed on variables of type TEXT that 
perform the required conversions. 

• READLN 

• WRITELN 

• EOlN 

• PAGE 

+. COL'S 

10.0 I/O FACILITIE, 

10.1 RESET PROCEDURE 

Open a File for Input 

Definition: 

procedure RESET( 
F filetype; 

canst S : STRING); 

Where: 

F is a variable of a file type 
S is an optional string value that 

specifies options 

RESET positions the file pointer to the 
beginning of the file and prepares the 
fi Ie to be used for input. After you 
invoke RESET the file pointer is point
i ng to the fi rst data element of the 
file. If the file is associated with a 
termi nal, the termi nal user would be 
prompted for data when the RESET is exe
cuted. This procedure can be thought of 
as: 

1 . C los i n g the f i 1 e (i f ,0 pen) . 

2. Rewinding the file. 

3. Openi ng the fi Ie for input. 

4. Getting the first component of the 
file. 

The string parameter is used to specify 
any special file dependent options to be 
used in opening the file. Consult the 
Pascal/VS Programmer's Guid~, order 
number SH20-6162 which describes the 
opt ions that are ava i lable. 

I/O Facilities 103 



10.2 REWRITE PROCEDURE 

Open a File for Output 

Definition: 

procedure REWRITE( 
F : filetype; 

canst S : STRING); 

Where: 

F is a variable of a file type 
5 is an optional string value that 

specifies options 

REWRITE posi t ions the fi Ie po inter to 
the beginning of the file and prepares 
the fi Ie to be used for output. Thi s 
procedure can be thought of as: 

1. Closi ng the fi Ie (i f open). 

2. RetoJinding the file. 

3. Opening the file for output. 

The string parameter is used to specify 
any special file dependent options to be 
used in opening the file. Consult the 
Pascal/VS Pr~mmer's Guide, order 
number SH20-6162 which describes the 
options that are available. 

104 Pascal/VS Reference Manual 

10.3 TERMIN PROCEDURE 

Open a File for Input from the Terminal 

Definition: 

procedure TERMINe 
F : TEXT; 

const S : STRING); 

L.Jhere: 

F is a variable of type TEXT 
S is an optional string value that 

specifies options 

TERMIN opens the desi gnated fi Ie for 
input from the users termi nal. The 
string parameter is used to specify any 
spec i a 1 f i 1 e dependent opt ion s to be 
used in opening the file. Consult the 
Pascal/VS PrQ..grammer's Guid~, order 
number SH20-6162 which describes the 
options that are available and operating 
system dependencies on this procedure. 



10.4 TERNOUT PROCEDURE 

Open a File for Output from the Terminal 

Definition: 

procedure TERMOUT( 
F : TEXT; 

const S : STRING); 

F is a variable of type TEXT 
S is an optional string value that 

specifies options 

TERMOUT opens the des; gnated fi Ie for 
output to the users termi nal. The 
string parameter is used to specify any 
spec i a 1 f i 1 e dependent opt ion s to be 
used in opening the file. Consult the 
Pasca!/VS Programmer's Guide, order 
number SH20-6162 which describes the 
options that are available and operating 
system dependencies on this procedure. 

10.5 PDSIN PROCEDURE 

Open a File for Input from a PDS 

Definition: 

procedure PDSIN( 
F : filetype; 

const S : STRING); 

Where: 

F IS a variable of a file type 
S is a string value that specifies 

options 

PDSIN opens a member in a library (par
titioned) file for input. 

The string parameter is used to specify 
any special file dependent options to be 
used in opening the file. Consult the 
Pascal/VS Programmer's Guide1 order 
number SH20-6162 which describes the 
opti ons that are avai lable. 

I/O Facilities 105 



10.6 PDSOUT PROCEDURE 

Open a File for Output to a PDS 

Definition: 

procedure PDSOUT( 
F : filetype; 

const S : STRING); 

Where: 

F is a variable of a file type, 
S is a string value that specifies 

op't ions. 

PDSOUT opens a member in a library (par
titioned) file for output. 

The string parameter is used to specify 
any special file dependent options to be 
used in opening the file. Consult the 
Pascal/VS Programmer's Guide, order 
number SH20-6162 which describes the 
options that are available. 

106 Pascal/VS Reference Manual 

10.7 UPDATE PROCEDURE 

Open a File for Input and Output 

Definition: 

procedure UPDATE( 
F : filetype; 

const S : STRING); 

Where: 

F is a variable of a file type, 
S is a string value that specifies 

options. 

UPDATE opens a file for both input and 
output (updat i ng) . A PUT operat ion 
replaces a file component obtained from 
a precedi ng GET operat ion. The exe
cution of UPDATE causes an implicit GET 
of the first file component Cas in 
RESET). The following program fragment 
illustrates the use of UPDATE. 

val' 
FIlEVAR : file of record 

CNT : INTEGER; 

end; 

UPDATECFIlEVAR); {open and get } 
while not EOFCFIlEVAR) do 

begin 
FIlEVAR~.CNT := FIlEVAR~.CNT+1; 
PUTCFIlEVAR); {update last elem} 
GETCFIlEVAR); {get next elem } 

end; 

The string parameter is used to specify 
any special file dependent options to be 
used in opening the file. Consult the 
Pascal/VS Programmer's Guide, order 
number SH20-6162 which describes the 
options that are available. 



+ 10.8 CLOSE PROCEDURE 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Close a File 

procedure CLOSE( 
F : filetype); 

+ F is a variable of a file type 
+ 
+ 
+ 

+ CLOSE closes a file; all processing to 
+ the fi Ie is completed. You must open 
+ the file prior to using it again. 

10.9 GET PROCEDURE 

Position a File to Next Element 

Definition: 

procedure GET( F filetvpe ); 

Where: 

F is a variable of a file type. 

GET positions the file pointer of a file 
(prev i ously opened for input) to the 
next component in the f i 1 e. Fo r 
example, if the file is defined as an 
array of 80 characters, then each GET 
returns the next 80 character record. A 
GET i nvocat i on on a fi Ie of type TEXT 
returns a single character. 

I/O Facilities 107 



10.10 PUT PROCEDURE 

Position a File to Next Element 

Definition: 

procedure PUT( F filetype ); 

F is a variable of a file type. 

PUT releases the current component of 
the file variable by effectively writing 
the component to the associated physical 
file. A call to PUT with a file of type 
TEXT transfers a single character. The 
fi Ie must have been previ ously opened 
for output. 

108 Pascal/VS Reference Manual 

10.11 SEEK PROCEDURE 

Position a File to a Specified Element 

Definition: 

procedure SEEK( 

Where: 

F filetype; 
N : INTEGER); 

F is a variable of a file type, 
N is an component number of 

the file. 

SEEK speci fi es the number of the next 
fi Ie component to be operated on by a 
GET or PUT operation. File components 
are origined at 1. The SEEK procedure 
is not supported for TEXT fi lese The 
fi Ie speci fi ed in the SEEK procedure 
must have been opened by RESET, REWRITE 
or UPDATE. For more infomation, consult 
the Pascal/VS Programmer's Guide, order 
number SH20-6162. 



10.12 EOF FUNCTION 

Test File for End Of File 

Definition: 

function EOFCF:filetype):BOOLEAN; 

function EOF:BOOLEAN; 

Wher~ 

F is a variable of a file type. 

EOF is a BOOLEAN valued function which 
returns TRUE if the end-of-fi Ie cond
ition is true for the file. This condi
tion occurs in an input file when an 
attempt is made to read past the last 
record element of the file. If the file 
is open for output, this function always 
returns TRUE. 

If the file variable F is omitted, then 
the function assumes the predefined file 
INPUT. 

Example: 

{ The following will read all of } 
{ the records from File SYSIN } 
{ and write then out to SYSOUT } 

type FREC = 
record 

A,B INTEGER 
end; 

val' 
SYSIIH, 
SYSOUT: file of FREC; 

begin 
RESETCSYSIN); 
REWRITECSYSOUT); 
while not EOFCSYSIN) do 

be~:r i n 
SYSOUT~ := SYSIN~; 
PUTCSYSOUT); 
GETCSYSIN) 

end; 
end; 

10.13 READ AND READLN (TEXT FILES) 

Read Data from TEXT File 

Definition: 

procedure READC 
f : TEXT; 
v : see below); 

procedure READLNC 
f TEXT; 
v : see below); 

Where: 

f is an optional text file 
that is to be used for input. 

v is one or more variables, 
each must be one of the 
following types: 
- INTEGER Cor subrange) 
- CHAR Cor subrange) 
- REAL 
- SHORTREAL 
- STRING 
- packed array of CHAR 

The READ procedure reads character data 
from the TEXT fi Ie f. READ converts 
character data to conform to the type of 
the operand. The file parameter is 
optional; the default file is INPUT. 

READLN positions the file at the begin
ning of the next line. You may use more 
than one variable on each call by sepa
rating each with a comma. The effect is 
the same as multiple calls to READ. 

READ(f,vl,v2) 

is equivalent to: 

and 

begin 
READCf,vl); 
READCf,v2) 

end 

READLNCf,vl,v2,v3) 

is equivalent to: 

begin 
READCf,vl); 
READCf,v2); 
READCf,v3); 
READLNCf); 

end 

Multiple Variables on READ or READLN 

I/O Facilities 109 



Reading INTEGER Data 

INTEGER data from a TEXT file is read by 
scanning off leading blanks, accepting 
an optional sign and converting all 
characters up to the first non-numeric 
character or end-of-line. 

Reading CHAR Data 

A variable of type CHAR is assigned the 
next character in the file. 

Reading STRING Data 

Characters are read into a STRING vari
able until the variable has reached its 
maximum length or until the end of the 
line is reached. 

Reading REAL (SHORTREAl) Data 

REAL CSHORTREAl) data is read by scan
n i ng off 1 ead i ng blanks, accept i ng an 
optional sign and converting all charac
ters up to the first non-numeric charac
ter not conformi ng to the syntax of a 
REAL number. 

+ Reading packed array of CHAR Data 
+ 
+ If the variable is declared as a 
+ 'packed array[l .. n] of CHAR', charac
+ ters are stored into each element of the 
+ array. This is equivalent to a loop 
+ rangl ng from the lower bound of the 
+ array to the upper bound, performing a 
+ read operation for each element. If the 
+ end-of-'l i ne condi ti on should become 
+ true before the variable is filled, the 
+ rest of the variable is filled with 
+ blanks. 
+ 
+ Consult the Programmer's Guide for more 
+ deta i 1 s on the use of READ and READlN. 

110 Pascal/VS Reference Manual 

var 
I,J: INTEGER; 
S: STRINGCIOO); 
CH: CHAR; 
CC: packed array[I .. 10] of CHAR; 
F: TEXT; 

READlNCF,I,J,CH,CC,S); 

assume the data is: 

36 24 ABCDEFGHIHKlMNOPQRSTUVWXYZ 

the variables would be assigned: 

I 
J 
CH 
CC 
S 
lENGTHCS) 

36 
24 , , 
'ABCDEFGHIJ' 
'KlMNOPQRSTUVWXYZ' 
16 

The READ Procedure 

Reading Variables with a length 

You may optionally qualify a variable of 
READ with a field length expression: 

READCf,v:n) 

where "v" is the variable being read and 
"n" is the field length expression. 

Thi s express; on denotes the number of 
characters in the input line to be proc
essed for that variable. If the number 
of characters i ndi cated by the fi eld 
length is exhausted during a read opera
tion, then the reading operation will 
stop so that a subsequent read will 
begin at the first character following 
the fi eld. If the readi ng completes 
pri or to processi ng all characters of 
the field then the rest of the field is 
skipped. 



var 
I,J: INTEGER; 
S: S"fRING(lOO); 
CH: CHARi 
CC: packed array[l .. lO] of CHAR; 
F: TEXT; 

READlNCF,I:4,J:l0,CH:J,CC,S); 

assume the data is: 

36 24 ABCDEFGHIKLMNOPQRSTUVWXYZ 

the variables would be assigned: 

I 
J 
CH 
CC 
S 
lENGTHCS) 

36 
4 
, I ' 
'NOPQRSTUVW' 
'XYZ' 
3 

The READ Procedure with Lengths 

10.14 READ (NON-TEXT FILES) 

Read Data from Non-TEXT Files 

DefinitiQ.Q.!. 

procedure READC 

Where: 

f file of t; 
v : t); 

f is an arbitrary file variable. 
v is a variable whose type matches 

the file component type of f 

Each call to READ will read one file 
element from file 'f' and assign it to 
variable 'v'. If the fi Ie is not open, 
the READ procedure will open it prior to 
assigning to the argument. 

READ(f,v) is functionally equivalent to 
the following compound statement: 

begin v : = fO); GET(f) end 

For more detai Is consult the Program
mer's Gu ide. 



10.15 WRITE AND WRITELN (TEXT FILES) 

Write Data to FIle 

Definition: 

procedure WRITE( 
f : TEXT; 
e : see below); 

procedure WRITElN( 
f TEXT; 
e : see below); 

Where: 
-r-rS-an optional TEXT file 

variable. 
e is an expression of one of the· 

fc)llowing types: 
- INTEGER (or subrange) 
- CHAR (or subrange) 
- REAL 
- SHORTREAl 
- BOOLEAN 
- STRING 
- packed array[I .. n] of CHAR 

Pascal/VS accepts a special para
meter format which is only 
allowed in the WRITE routine 
for TEXT files. 
See the following description. 

The WRITE procedure writes character 
data to the TEXT file specified by f. 
The data is obtained by converting the 
expression e into an external form. The 
file parameter is optional; if not spec
ified, the default file OUTPUT is used. 

WRITELN positions the file to the begin
ning of the next line. WRITElN is only 
applicable to TEXT files. You may use 
more than one expression on each call by 
separating each with a comma. The 
effect is the same as multiple calls to 
WRITE. 

112 Pascal/VS Reference Manual 

WRITE(f,el,e2) 

is equivalent to: 

and 

begin 
WRITE(f,el); 
WRITE(f,e2) 

end 

WRITElN(f,el,e2,e3) 

is equivalent to: 

beg;n 
WRITE(f,el); 
WRITE(f,e2); 
WRITE(f,e3); 
WRITElN(f); 

end 

Multiple Expressions on WRITE 

Pascal/VS supports a speci al i zed form 
for specifying actual parameters on 
WRITE and WRITElN to TEXT files. This 
provides a means by which you can speci
fy the length of the resulting output. 
Each expression in the WRITE procedure 
call may be represented in one of three 
forms: 

1. e 

2. e: lenl 

3. e: 1 en 1 : 1 en2 

The express ion e may be of any of the 
types outlined above and represents the 
data to be placed on the file. The data 
is converted to a character represen
tation from the internal form. The 
expressions len1 and len2 must evaluate 
to an INTEGER value. 

The expression lenl supplies the length 
of the fi eld into whi ch the data is 
written. The data is placed in the 
field justified to the right edge of the 

+ field. If lenl specifies a negative 
+ value, the data is justified to the left 

I within a field whose length is 
ABS(lenl). 

The len2 expression (form 3) may be 
specified only if e is an expression of 
type REAL. 

If lenl is unspecified (form 1) then a 
default value is used according to'the 
table below. 



+ 

tyP(~ of 
expre~5si on e 

INTEGER 
REAL 
SHORTREAL 
CHAR 
BOOLEAN 
STRING 

default value 
of len:! 

12 
20 C E notation) 
20 
1 
10 
LENGTHCexpression) 

array of CHAR length of array 

Default Field Width on WRITE 

Writing INTEGER Data 

The expression len1 represents the mlnl
mum wi dth of the fi eld ; n whi ch the 
integer is to be placed. The value is 
converted to character format and placed 
in a field of the specified length. If 
the field is shorter than the size 
requ i reel to represent the value, the 
length of the field will be extended. 

Example~!i : 

Call: Result: 

WRITEC1234:6) 1234' 

WRITEC1234:-6) '1234 

. WRITEC 1234: 1) '1234' 

WRITE(1234) 1234' 

WRITEC1234:-3) '1234' 

Writing CHAR Data 

The value of len1 is used to indicate 

TNL SN204446 (31 December 81) to SH20-6168-1 

len1 is not specified (form 1), the 
result will be in scientific notation in 
a 20 character field. 

If len1 is specified and len2 is not 
(form 2), the result will be in scien
ti fi c notati on but the number of charac
ters in the field will be the value of 
len1. 

If both len1 and len2 are speci fi ed 
(form 3), the data will be written in 
fixed point notation in a field with 
length len1; len2 specifies the number 
of digits that will appear to the right 
of the decimal point. The REAL expres
sion is always rounded to the last digit 
to be printed. 

If len1 is not large enough to fully 
represent the number, it wi 11 be 
extended appropriately. 

Examples: 

Call: Result: 

WRITEC3.14159:10) 
, 3.142E+00' 

WRITEC3.14159) 
, 3.1415900000000E+OO' 

WRITEC3.14159:10:4) 
3.1416' 

Writing BOOLEAN Data 

The expression len1 is used to indicate 
the width of tha field in which the boo

+ lean is to be plac~d. If the width is 
+ less than 6, then either a 'T' or 'F' 
+ will be printed. Other~·Jise, 'TRUE' or 
+ 'FALSE' wi 11 be sent to the fi Ie. The 
+ data is placed in the field and justi
+ fied according to the previously stated 
+ rules. 

the LoJidth of the field in which the Examples: 
character is to be placed. If len1 is 
not specified, a field width of 1 is Call: Result: 
assumed. If len1 is greater than 1 then 

+ the character will be padded on the left WRITECTRUE:10) TRUE' 
+ with blanks; if len1 is negative, then 
+ the character will be padded on the + WRITECTRUE:-10) 'TRUE· 
+ right. + 

Example: 

call: 

WRITE('a':6) 
WRITE('a':-6) 

Writing REAL Data 

Result: 

'a 
a' , 

REAL expressions may be printed with any 
one of the three operand formats. If 

+ WRITECFALSE:2) , F' 

Writing STRING Data 

The second expression is used to indi
~ate the width of the field in which the 
string is to be placed. The data is 
placed in the field and justified 
according to the previously stated 
rules. 

I/O Facilities 113 



TNL SN204446 (31 December 81) to SH20-6168-1 

+ 

+ 

Examples: 

Call: Result: 

WRITE( 'abed' : 6) abed' 

WRITE('abed':-6) 'abed 

WRITEC'abed':2) 'ab' 

WRITE('abed') 'abed' 

Writing Packed Array of CHAR Data 

The second expression is used to indi
cate the width of the field in which the 
array i s to be placed. The data i s 
placed in the field and justified 
according to the previously stated 
rules. 

Examples! 

val' 
A packed 

array[ 1 .. 4] of CHAR; 

A . - 'abcd'; 

Call: 

WRITE(A:6) 

WRITE(A:-6) 

WRITE(A:2) 

WRITE(A) 

Result: 

abcd' 

'abcd 

'ab' 

'abed' 

114 Pascal/VS Reference Manual 

10.16 WRITE (NON-TEXT FILES) 

Write Data to Non-TEXT Files 

Definition: 

procedure WRITE( 

Where: 

f file of t; 
e : t); 

f is an arbitrary file variable. 
e is an expreSS10n whose type 

matches the file component 
type of f 

Each call to WRITE will write the value 
of expression e to file 'f'. 

WRITECf,e) is functionally equivalent 
to the following compound statement: 

begin fO) : = e; PUTCf) end 

Fo r mo re deta i 1 s con su 1 t the P rogram
mer's Guide. 



10.17 EOLN FUNCTION 

Test a File for End of Line 

Definition: 

function EOLNC f: TEXT ):BOOLEAN; 

function EOLN:BOOLEAN; 

Where: 

f is a TEXT file set to 
input. 

The EOLN function returns a BOOLEAN 
result of TRUE if TEXT file f is posi
tioned to an end-of-line character; 
otherwise, it returns FALSE. 

If EOLNCf) is true, then f~ has the val
ue of a blank. That is, when EOLN is 
TRUE the file is positioned to a blank. 
Thi s character is not 1 n the f1 Ie but 
will c:.ppear as if it were. In many 
appl i cat ion s the ext ra blank wi 11 not 
affect the resul t; in those instances 
where the physical layout of the data is 
significant you must be sensitive to the 
EOLN condition. 

If the file variable F is omitted, then 
the function assumes the predefined file 
INPUT. 

10.18 PAGE PROCEDURE 

Force Skip to Next Page 

Definition: 

procedure PAGEC var f: TEXT ); 

Where: 

f is a TEXT file set to 
output. 

This procedure causes a skip to the top 
of the next page when the text-file is 
printed. The file parameter is optional 
and defaults to the standard file vari
abl e OUTPUT. 

I/O Facilities 115 



+ 10.19 COLS FUNCTION 
+ 
+ 
+ Determine Current Column 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

funct;on COlS( 
var f: TEXT) INTEGER; 

+ f is ~ TEXT file set to 
+ out'put. 
+ 
+ 

116 Pascal/VS Reference Manual 

+ This function returns the current column 
+ number (position of the next character 
+ to be written) on the output file desig
+ nated by the file variable. You may 
+ force the output to a speci fi c column 
+ with the following code: 
+ 
+ 
+ 
+ 
+ 

if TAB> COlS(F) then 
WRITE(F,' ':TAB-COlS(F»; 

+ The file name is never defaulted on the 
+ COlS' procedure. 



+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

The runtime library consists of those +. 
routines that are predefined in + 
Pascal/VS. In addition to the routines +. 
describe.d in this chapter, Pascal/VS 
provides routines with which to do input • 
and output. Consult the I/O chapter for 
a description of those routines. The • 
predefined procedures and functions 
are: • 

• ABS Function • 
+ 

• ARCTAN Function + • 
• CHR Function • 

+ 
• CLOCK Function + • 

+ 
• COMPRESS Function + • 

+ 
• COS Function + • 

+ 
• DATETIME Procedure + • 
• DELETE Function • 

+ 
• DISPOSE Procedure + • 
• EXP Function • 

+ 
• FLOAT Function + • 
• INDEX Function • 
• HALT Procedure • 

+ 
• HBOlJND Function + • 

+ 
• HIGHEST Function + • 
• LBOUND Function • 
• LENGTH Function • 

+ 
• LN Function + • 

+ 
• LOWEST Function + • 
• LTRIM Function • 
• MARl< Procedure • 
• MAX Function • 

TNL SN20-4446 (31 December 81) to SH20-6168-1 

11.0 EXECUTION LIBRARY FACILITIES 

MAXLENGTH Function 

MIN Function 

NEW Procedure 

ODD Function 

ORD Function 

PACK Procedure 

PARMS Function 

PRED Function 

RANDOM Function 

READSTR Procedure 

RELEASE Procedure 

RETCODE Procedure 

ROUND Function 

Scalar Conversion 

SIN Function 

S IZEO F Funct ion 

SQR Function 

SQRT Function 

STR Function 

SUBSTR Function 

SUCC Function 

TRUNC Function 

TRIM Function 

TOKEN Function 

TRACE Procedure 

UNPACK Procedure 

WRITESTR Procedure 

Execution Library Facilities 117 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

11.1 MEMORY MANAGEMENT ROUTINES 

These routines provide means by which you can control the allocation of dynamic var
iables. 

+ 11.1.1 MARK Procedure 
+ 

+ 11.1.2 RELEASE Procedure 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Mark Heap 

procedure MARK( 
var P : pointer ); 

P is a pointer to any type 

The MARK procedure allocates a new area 
of memory from where dynamic variables 
are to be allocated. Such an area is 
ca 11 ed a heap.. The predef i ned proce
dure NEW allocates a dynamic variable 
from the most recently created heap. 
The predefined procedure DISPOSE 
de-allocates a dynamic variable from the 
heap. 

RELEASE is the complementary procedure 
which destroys a heap. Heaps are cre
ated and destroyed in a stack-like fash
ion. 

MARK does not allocate dynam;c 
variables. The pointer variable passed 
as parameter P is set to the address of 
the associated heap control block; thus, 
the returned pointer must not be used as 
the base of a dynamic variable. 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Release Heap 

Definition: 

procedure RELEASE( 
var P : pointer ); 

Where: 

P is a pointer to any type. 

RELEASE frees one or more heaps that 
were previously allocated by calls to 
MARK. (See the description of MARK for 
a definition of "heap".) The parameter 
of RELEASE must contain the address 
returned by a previous call to MARK; it 
is through this parameter that the h~ap 
is identified. 

RELEASE frees all heaps that were allo
cated since th~corresponding MARK was 
executed. Thus I heaps are created and 
destroyed in a stack-like manner. 

When a heap is freed, all of the dynamic 
variables which were allocated from the 
heap are also freed. As a result, 
RELEASE is a means for disposing of many 
dynamic variables at one time. 4 

RELEASE sets its parameter variable (P) 
to nil. 

Pointers which reference dynamic variables of a heap are no longer defined 
when the heap is freed. Subsequent uses of such po inter values may cause 
unpredictable results. 

118 Pascal/VS Reference Manual 



+ 
+ 
+ type 
+ MARKP = ~INTEGER; 
+ LINKP = ~LINK; 
+ LINK = record 
+ NAME: STRING(30); 
+ NEXT: lINKP 
+ end; 
+ var 
+ P MARKP; 
+ Ql, 
+ Q2, 
+ Q3 lINKP; 
+ begin 
+ 
+ MARKCP); 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

N EL.J e Q 1) ; 
NEWeQ2); 
NEL.Je Q3) ; 

( Frees Ql, Q2 and Q3 
RELEASE:CP) ; 

+ end; 
+ 

} 

+ Example of MARK and RELEASE 
+ 
+ 

TNL SN204446 (31 December 81) to SH20-6168-1 

Execution Library Facilities 118.1 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

118.,2 Pascal/VS Reference Manual 



11.1.3 NEW Procedure 

Allocate Dynamic Variable 

Definition: 

form 1: 
proc.:!dure NEW ( 

va~ P pointer ); 

form 2: 
procf!dure NEW( 

va~ PI pointer; 
t1,t2 ... : scalar); 

form 3: 
procE!dure NEW( 

var~ SP 
tEN 

Wher'~ : 

STRINGPTR; 
INTEGER; 

P is a pointer to any type 
except a dynamic array. 

PI is a pointer to a record 
type with variants 

SP is a STRINGPTR 
tl,t2 ... are scalar constants 

representing tag fields 
LEN is an integer valued expression 

The NEW procedure allocates a dynami c 
variable from the most recent heap and 
sets the pointer to point to the vari
able. 

form 1 

The fi rst form of procedure NEW allo
cates the amount of storage that is nec
essary to represent a value of the type 
to whi ch the POl nter refers. If the 
type of the dynamic variable is a record 
with a variant part, the space allocated 
is the amount requi red for the record 
when the largest variant is active. 

type 
LINKP = o)LINK; 
LINK = record 

NAME: STRING(30); 
NEXT: LINKP 

end; 
var 

P, 
HEAD LINKP; 

begin 

NEW(P); 
with Po) do 

begin 
NAME := 
NEXT := 

end; 
HEAD := P; 

end; 

, , . , 
HEAD; 

Example of using Simple Form 
of Procedure NEW 

form 2 

The second form is used to allocate a 
vari ant record when it is known whi ch 
variant (and sub-variants) will be 
active, in which case the amount of 
storage allocated will be no larger than 
necessary to contain the variant speci
fi ed. The scalar constants are tag 
field values. The first one indicates a 
particular variant in the record which 
will be active; subsequent tags indicate 
active sub-variants, sub-sub-variants, 
and so on. 

Note: This procedure does not set tag 
fields. The tag list only serves to 
indicate the amount of storage required; 
it is the programmer's responsibility to 
set the tag fields after the record is 
allocated. 

Execution Library Facilities 119 



type 
AGE = 0 .. 100; 
RECP = o)RECi 
REC = 

val' 

I'ecord 
NAME: STRING(30); 
case HOW OLD: AGE of 

O •• 18: -
(FATHER: RECP); 

19 .• 100: 

(l!nd; 

(case MARRIED: BOOLEAN of 
TRUE: (SPOUSE: RECP); 
FALSE: () 

P : RECPj 

begin 

NEW{P,18)j 
with Po) do begin 

NAME := 'J. B. SMITH, JR' 
HOW OLD := 18; 
NEW(FATHER,54,TRUE); 
with FATHERo) do begin 

NAME := 'J. B. SMITH'; 
HOW OLD := 54; 
MARRIED := TRUE; 
NEW(SPOUSE,50,TRUE); 

end {with fatherO)}; 
end {with pO)}; 

end; 

form 3 

Using NEW for Allocating 
Records with Variants 

The thi rd form is used to allocate a 
st ring who se max i mum 1 ength i s known 
only during program execution. The 
amount of storage to be avai lable for 
the string is defined by the required 
second parameter. See "The Type 
STRINGPTR" on page 58. 

120 Pascal/VS Reference Manual 

11.1.4 DISPOSE Procedur@ 

De-allocate Dynamic Variable 

Definition: 

procedure DISPOSE( 
val' P : pointer); 

Where: 

P is any pointer type. 

DISPOSE returns storage for a dynami c 
variable. You may de-allocate a dynamic 
variable from any heap. This procedure 
only returns the storage referred to by 
the po inter and does not return any 
storage which the dynamic variable ref
erences. That is, if the dynamic 
variable is part of a linked list, you 
must explicitly DISPOSE of every element 
of the list. DISPOSE sets the pointer 
to nil. If you have other pointers 
which reference the same DISPOSEd dyna
mic variable, then it is your 
responsibility not to use these pointers 
because the dynamic variable which they 
represented is no longer allocated. 



11.2 DATA MOVEMENT ROUTINES 

These routines provide you with convenient ways to handle large amounts of data 
movement efficiently. 

11.2.1 PACK Procedure 

COpy Unpacked Array to Packed Array 

Definition: 

procedure PACK( 
const SOURCE array-type; 

INDEX index_of_source; 
var TARGET : pack_array_type) 

WherEt!.. 

SOURCE is an array. 
INDEX is an expression which is 

compatible with the index 
of SOURCE. 

TARGET is a variable of type packed 
array. 

Th is procedure fill s the ta rget array 
with elements from the source array 
starting with the index I where the tar
get array\ is packed. The types of the 
elements of the two arrays must be iden
tical. Ttli s procedure operates as: 

Given: 
A : array(m .. n] of T; 
Z : packed array[u .. v] of T; 

Call: 
PACK(A, I, Z); 

Operation: 
k := 1.; 
for j := LBOUND(Z) to HBOUND(Z) do 

begin 
Z[j] := A[k]; 
k ::: SUCC(k) 
end; 

Where: 
j and k are temporary variables. 

It is an error if the number of elements 
in Z is greater than the number of ele
ments in A starting with the Ith element 
to the end of the array. 

11.2.2 UNPACK Procedure 

Copy Packed Array to Unpacked Array 

Definition: 

procedure UNPACK( 
var SOURCE : pack_array_type; 

const TARGET array-type; 
INDEX : index_of_target); 

Where: 

SOURCE is a packed array. 
TARGET is a variable of type array. 
INDEX is an expression which is 

compatible with the index 
of TARGET. 

Thi s procedure fi 11 s the target array 
with elements from the source array 
where the source array is packed. The 
type of the elements of the two arrays 
must be identical. This procedure oper
ates as: 

Given: 
A : array[m .. n] of T; 
Z : packed array[u .. v] of T; 

Call: 
UNPACK(Z, A, I); 

Operation: 
k : = I; 
for j := lBOUND(Z) to HBOUNDCZ) do 

begin 
A[k] := Z[j]j 
k := SUCC(k) 
end; 

Where: 
j and k are temporary variables. 

It is an error if the number of elements 
in Z is greater than the number of ele
ments in A starting with the Ith element 
to the end of the array. 

Execution Library Facilities 121 



11.3 DATA ACCESS ROUTINES 

These routines provide you a means to inquire about compile and run time bounds and 
values .. 

+ 11.3.1 LOWEST Function 
+ 
+ 
+ lowest Value of a Scalar 
+ 

Definition: 

funct i on l Ol.JES T ( 
S 

Where: 

scalar-type) 
scalar; 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

S is an identifier that has been 
declared as a scalar type, or 
a variable which is of a scalar 
type. 

+ This function returns the lowest value 
+ that is in the scalar type. The operand 
+ may be either a type identifier or a 
+ variable. If the operand is a type 
+ identifier, the value of the function is 
+ the lowest value that a variable of that 
+ type may be assigned. If the operand is 
+ a variable, the value of the function is 
+ the lowest value that the variable may 
+ be ass i gned. 
+ 
+ If the argument S refers to a 
+ record-type whi ch has a vari ant part, 
+ and if no tag values are specified, then 
+ the storage required for the record with 
+ the largest variant will be returned. 
+ 
+ 
+ 
+ Example: 
+ 
+ type 
+ DAYS 
+ 

= (SUN, MON, TUES, 
SAT); 

+ SMAll 
+ val" 

THU, FRI, 
= 0 •• 31; 

+ I INTEGER; 
+ J o .. 255; 
+ 
+ 
+ LOWEST(DAYS) is SUN 
+ L Ol-JES T (BOOl EAN) i s FALSE 
+ LOWEST(SMALl) i s 0 
+ LOWEST(I) is MININT 
+ LOWEST(J) is 0 
+ 
+ The LOWEST Function 
+ 
+ 

WED, 

122 Pascal/VS Reference Manual 

+ 11.3.2 HIGHEST Function 
+ 
+ 
+ Highest Value of a Scalar 
+ 

Definition: 

function HIGHEST( 
S scalar-type) 

scalar; 

Where: 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

S is an identifier that has been 
declared as a scalar type, or 
a variable which is of a scalar 
type. 

+ This function returns the highest value 
+ that is in the scalar type. The operand 
+ may be ei ther a type i denti fi er or a 
+ variable. If the operand is a type 
+ identifier, the value of the function is 
+ the highest value that a variable of 
+ that type may be assigned. If the oper
+ and is a vari able, the value of the 
+ function is the highest value that the 
+ variable may be assigned. 
+ 
+ 
+ 
+ Example: 
+ 
+ type 
+ DAYS 
+ 
+ SMALL 
+ val" 
+ I 
+ J 
+ 
+ 

= (SUN, MON, 
THU, FRI, 

= 0 •• 31; 

INTEGER; 
o .• 255; 

TUES, 
SAT) ; 

+ HIGHEST(DAYS) is SAT 
+ HIGHEST(BOOLEAN) is TRUE 
+ HIGHEST(SMALL) is 31 
+ HIGHEST(I) is MAXINT 
+ HIGHEST(J) is 255 
+ 
+ 
+ 
+ 

The HIGHEST Function 

WED, 



+ 11.3.3 LBOUND Function 
+ 
+ 
+ 
+ 

Lower Bound of Array 

Definition: 

function LBOUNDC 
V 
I 

arraytype; 
integer-const) 
scalar; 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

function LBOUNDC 
T 
I 

type-identifier; 
integer-const) 
scalar; 

Where...:.. 

V is a variable which is declared 
as an array type. 

T is an type identifier declared 
as an array. 

I is an positive integer valued 
constant expression and is 
optional. 

+ The LB()UND functi on returns the lower 
+ bound of an index to an array. The 
+ array may be specified in two ways: 
+ 
+ • an identifier which was declared as 
+ an array type via the type 
+ construct; 
+ 
+ • a variable which is of an array 
+ type. 
+ 
+ The value returned is of the same type 
+ as the type of the index. The second 
+ parameter defines the dimension of the 
+ array for which the lower bound is 
+ returned. It is assumed to be "1" if it 
+ is not specified. 
+ 
+ 
+ 
+ Example:: 
+ 
+ type 
+ GRID-· 
+ 
+ val"" 
+ A 
+ B 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

lBOUNIH 
lBOlJND( 
LBOUND( 
lBOUNO( 

al""l""ay[-10 .. 10p-10 .. 10] of 
REALi 

al""l""ay[ 1 .. 100 ] of AlFA; 
al""l""ay[ 1 .. 100 ] of 

of array[ 0 .. 9 ] of CHAR; 

A ) is 1 
GRID p 1) is -10 
Bp 2 ) is 0 
B[I] ) is 0 

The lBOUND Function 

+ 11.3.4 HBOUND Function 
+ 
+ 
+ 
+ 

Upper Bound of Array 

Definition: 

function HBOUNDC 
V 
I 

arraytype; 
integer-const) 
scalar; 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

function HBOUND( 
T 
I 

type-identifier; 
integer-const) 
scalar; 

Where: 

V is a variable which is declared 
as an array type. 

T is an type identifier declared 
as an array. 

I is an positive integer-valued 
constant expression and is 
optional. 

+ The HBOUND funct i on returns the upper 
+ bound of an index to an array. The 
+ array may be specified in two ways: 
+ 
+ • an identifier which was declared as 
+ an array type via the type 
+ construct; 
+ 
+ • a variable which is of an array 
+ type. 
+ 
+ The value returned is of the same type 
+ as the type of the index. The second 
+ parameter defines the dimension of the 
+ array for which the upper bound is 
+ returned. It is assumed to be "1" if it 
+ is not specified. 
+ 
+ 
+ 
+ Example: 
+ 
+ type 
+ GRID = 
+ 
+ 
+ val' 
+ A 
+ B 
+ 
+ 
+ 

array[-lO .. lOp-lO .. lO] of 
REAL; 

GRID; 
array[ 1 .. 100 ] of 

of array[ 0 .. 9 ] of CHAR; 

+ 
+ 
+ 
+ 

HBOUND( A ) 
HBOUND( GRID ) 
HBOUND( Bp 2 ) 
HBOUND( B[I] ) 

is 10 
is 10 
is 9 
is 9 

+ 
+ The HBOUND Function 
+ 
+ 

Execution library Facilities 123 



+ 11.3.5 SIZEOF Function 
+ 
+ 
+ Allocation Size of Data 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

Definition: 

function SIZEOFC 
S 

function SIZEOFC 
S 

tl,t2, ... 

anytype) 
INTEGER; 

recordtype; 
tags) ; 
INTEGER; 

+ S is an identifier that has been 
+ declared as a type, or any 
+ variable. 
+ 
+ 
+ 

124 Pascal/VS Reference Manual 

+ The SIZEOF function returns the amount 
+ of storage in bytes required to contain 
+ the variable or a variable of the type 
+ specified. 
+ 
+ If Sis a record variable or a type 
+ identifier of a record, it may be fol
+ lowed by tag list which defines a par
+ ticular variant configuration of the 
+ record. In this case the function will 
+ return the amount of storage requi red 
+ within the record to contain that vari
+ ant configuration. 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

11.4 CONVERSION ROUTINES 

This section documents predefined rout.nes which preform conversions from one data 
type to another. Refer to "WRITESTR" on page 141 and "READST~\" on page 141 fOI~ char
acter string conversions. 

11.4.1 ORD Function 

Ordinal Value of Scalar 

Definition: 

function ORD( 
S 

Where:.. 

scalar ) 
INTEGER; 

S is may be any scalar type or 
a pl)inter. 

This function returns an integer that 
corresponds to the ordinal value of the 
scalar. If the operand is of type CHAR 
then the value returned is the position 
in the EBCDIC character set for the 
character operand. If the operand is an 
enumerated scalar, then it returns the 
position in the enumeration (beginning 
at zero); for example, if COLOR = (RED, 
YELLOL·J, BLUE), then ORD(RED) is 0 and 
ORDCBLUE) is 2. 

If the operand is a pointer, then the 
function returns the machine address of 
the dynamic variable referenced by the 
pointer. Although pointers can be con
verted to INTEGERs, there is no function 
prov i dad to convt:rt an INTEGER to a 
pointer. 

11. 4 t. 2 CHR r-4D£1.iJ2n 

Integer to Ch~racter Conversion 

Definition: 

function CHR( 
I 

Where: 

INTEGER 
CHAR; 

I is an INTEGER expression that is 
to be interpreted as a character. 

This function is the inverse function to 
ORD for characters. That is, 
'ORDCCHRCI»=I' if I is in the subrange: 

ORD(LOWESTCCHAR» .. ORD(HIGHEST(CHAR») 

If the operand is not within this range 
and checking is enabled then a runtime 
error will result, otherwise the result 
is unpredictable. 

Execution library Facilities 125 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

+ 11.4.3 Scalar Conversion 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Integer to Scalar Conversion 

Definition: 

function type-ide 
I 

Hhere: 

INTEGER) 
scalar-type; 

I is an integer valued expression 
that is to be converted to an 
enumerated scalar. 

+ Every type identifier for an enumerated 
+ scalar or subrange scalar can be used as 
+ a function that converts an integer into 
+ a value of the enumerated scalar. These 
+ functions are the inverse of ORO. 
+ 
+ 
+ 
+ Example: 
+ 
+ type 
+ DAYS 
+ 

= (SUN, MON, TUES, WED, 
THU, FRI, SAT); 

+ 
+ 
+ DAYS(O) is SUN 
+ DAYS(3) is WED 
+ DAYS(6) i s SAT 
+ DAYS(7) i s an error 
+ BOOLEAN(O) is FALSE 
+ BOOLEAN(l) is TRUE 
+ 
+ The Enumerated Scalar Function 
+ 
+ 

126 Pascal/VS Reference Manual 

+ 11.4.4 FLOAT Function 
+ 
+ 
+ 
+ 

Integer to Real Conversion 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

D~finition: 

function FLOAT( 
I 

Where: 

INTEGER ) 
REAL; 

I is an INTEGER valued expression. 

+ This function converts an INTEGER to a 
+ REAL. Pascal/VS will convert an INTEGER 
+ to a REAL implicitly if one operand of 
+ an arithmetic or relation operator is 
+ REAL and the other is INTEGER. Thi 5 
+ function is useful in making the conver
+ sion explicit in the program. 



11.4.5 TRUNC Function 

Real to Integer Conversion 

Definition: 

func't ion TRUNCC 
R 

function TRUNCC 
S 

Whern: 

REAL ) 
INTEGER; 

SHORTREAl ) 
INTEGER; 

R is a REAL valued expression. 
S is a SHORTREAL valued expression. 

This function converts a REAL expression 
to an INTEGER by truncating the operand 
toward zero. 

Examples: 

TRUNCC 1.0) is 1 
TRUNCC 1.1) is 1 
TRUNCC 1.9) is 1 
TRUNCC 0.0) is 0 
TRUNCC-1.0) is -1 
TRUNCC-1.1) is -1 
TRUNCC-1.9) is -1 

11.4.6 ROUND Function 

Real to Integer Conversion 

Definition: 

function ROUNDC 
R 

function ROUNDC 
S 

Where: 

REAL ) 
INTEGER; 

SHORTREAl ) 
INTEGER; 

R is a REAL valued expression. 
S is a SHORTREAL valued expression. 

This function converts a REAL expression 
to an INTEGER by rounding the operand. 
This function equivalent to 

if R > 0.0 then 
ROUND .- TRUNCCR + 0.5) 

else 
ROUND .- TRUNCCR 0.5) 

Examples: 

ROUNDC 1.0) is 1 
ROUNDC 1.1) is 1 
ROUNDC 1.9) is 2 
ROUNDC 0.0) is 0 
ROUNDC-1.0) is -1 
ROUNDC-1.1) is -1 
ROUNDC-1.9) is -2 

Execution Library Facilities 127 



+ 11.4.7 STR Function 
+ 
+ 
+ Convert to String 
+ 

+ Definition: 
+ 
+ function STR( 
+ X CHAR or packed 
+ carray[1 .. n] of 
+ CHAR ) 

+ STRING; 
+ 
+ 
+ Wher~ 
+ 
+ X is CHAR Or packed array[l .. n] of 
+ CHAR expression. 
+ 
+ 
+ 
+ 

128 Pascal/VS Reference Manual 

+ This function converts either a CHAR or 
+ packed array[l .. n] of CHAR to a STRING. 
+ Pascal/VS will implicitly convert a 
+ STRING to a CHAR or packed array[1 .. nl 
+ of CHAR on ass; gnment, but all other 
+ conversions require you to explicitly 
+ state the conversion. You may assign a 
+ CHAR to an packed array[l .. n] of CHAR by 
+ either! 
+ 
+ val' 
+ AOC ALPHA; 
+ CH CHAR; 
+ 
+ AOC . - STR(CH); 
+ or 
+ AOC . - , , . AOC[l] . - CH; , 



11.S MATHEMATICAL ROUTINES 

These routines defined various mathematical transformations. 

+ 11.5.1 MIN Function 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

MINimum Value of Scalars 

Definition: 

funct;on MINe 
EO, 

En 

WherE~ : 

scalar-type) 
scalar-type; 

Ei is an expression of a scalar 
type. All parameters must be 
of the same type except where 
noted below. 

+ The MIN funct i on returns the mi n i mum 
+ value of two or more expressions. The 
+ parameters may be of any scalar type, 
+ including REAL. The parameters may be a 
+ mixture of INTEGER and REAL expressions, 
+ in whi(:h case, the result will be of 
+ type REAL. In all other cases, the 
+ parameters must be conformable to each 
+ other. 

+ 11.5.2 MAX Function 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Maximum Value of Scalars 

Definition: 

function MAX( 
EO, 

. 
En 

Where: 

scalar-type) 
scalar-type; 

Ei is an expression of a scalar 
type. All parameters must be 
of the same type except where 
noted below. 

+ The MAX funct i on returns the max i mum 
+ va 1 ue of two 0 r mo re pa rameters. The 
+ parameters may be of any scalar type, 
+ "including REAL. They may be a mixture 
+ of INTEGER and REAL expressions, in 
+ which case, the result will be of type 
+ REAL. In all other cases, the parame
+ ters must be conformable to each other. 

Execution Library Facilities 129 



11.5.3 PRED Function 

Predecessor Value of a Scalar 

Definition! 

function PRED( 
S scalar) 

scalar; 

S is any scalar expression. 

Thi s funct i on returns the predecessor 
value of the parameter expression. The 
PRED of the first element of an enumer
ated scalar is an error. If the option 
%CHECK is ON, a runt i me error wi 11 be 
raised if the PRED of the first element 
i s attempted. I f the check i ng i s not 
performed, the resul ts of the PRED of 
the first value ;s not defined. 
PRED( TRUE) is FALSE and PRED(' B') is 
'A'. The PRED of an INTEGER is equiv
alent to subtracting one. PRED of a 
REAL argument is an error. 

130 Pascal/VS Reference Manual 

11.5.4 SUCC Function 

Successor Value of a Scalar 

Definition: 

function SUCC( 
S 

Where: 

scalar) 
scalar; 

S is any scalar expression. 

This function returns the successor val
ue of the parameter expressi on. The 
SUCC of the last element of an enumer
ated scalar is an error. If the option 
Y.CHECK is ON, a runt i me error wi 11 be 
raised if the SUCC of the last element 
i s attempted. I f the check i ng is not 
performed, the results of the SUCC of 
the last value is not defined. 
SUCC(FALSE) is TRUE and SUCC('B') is 
'C'. The SUCC of an INTEGER is equiv
alent to addi ng one. SUCC of a REAL 
argument is an error. 



11.5.5 ODD Function 

Test for Integer is Odd 

Definition: 

function OODe 
I 

Where:.. 

INTEGER) 
BOOLEAN; 

I is an INTEGER to be tested 
for being odd. 

This function returns TRUE if the param
eter lis odd, or FALSE if it is even. 

11.5.6 ABS Function 

Absolute Value 

Definition: 

function ABse 
I 

function ABse 
R 

Where: 

INTEGER ) 
INTEGER; 

REAL) 
REAL; 

I is an INTEGER expression. 
R is a REAL expression. 

The ABS function returns either a REAL 
value or an INTEGER value depending the 
type of its parameter. The result is 
the absolut!2 value of the parameter. 

Execution Library Facilities 131 



11.5.7 SIN Function 

Compute Sine 

Definition: 

function SIN( 
X REAL) 

REAL; 

X is an expression that evaluates 
to a REAL value. 

The SIN function computes the sine of 
parameter X, where Xis expressed ; n 
radians. 

132 Pasca!/VS Reference Manual 

11.5.8 COS Function 

Compute Cosine 

function cose 
x 

Where: 

REAL) 
REAL; 

x ;s an expression that evaluates 
to a REAL value. 

The COS function computes the cosine of 
the parameter X, where X ;s expressed ;n 
radians. 



11.5.9 ARCTAN Function 

Compute Arctangent 

Definition: 

funct 'Ion ARCTAN ( 
X 

Where ~_ 

REAL) 
REAL; 

X is an expression that evaluates 
to cl REAL value. 

The ARCTAN funct i on computes the 
arctangent of parameter X. The result is 
expressed in radians. 

11.5.10 EXP Function 

Compute Exponential 

Definition: 

function EXP( 
X 

Where: 

REAL) 
REAL; 

X is an expression that evaluates 
to a REAL value. 

The EXP function computes the value of 
the base of the natural logarithms, e, 
raised to the power expressed by parame
ter X. 

Execution Library Facilities 133 



11.5.11 IN Function 

Compute Hatural Log 

Definition: 

function LH( 
X 

Whet'e: 

REAL) 
REAL; 

X is an expression that evaluates 
to a REAL value. 

The LH funct i on computes the natural 
logarithm of the parameter X. 

134 Pascal/VS Reference Manual 

11.5.12 SQRT Function 

Compute Square Root 

Definition: 

function SQRT( 
X 

Where: 

REAL) 
REAL; 

X is an expression that evaluates 
to a REAL value. 

The SQRT funct i on computes the square 
root of the parameter X. If the argu
ment is less than zero, a run time error 
i s produced. 



11.5.13 SQR Function 

Compute Square 

Definition: 

function SQR( 
X : REA L ): REA L ; 

function SQR( 
X : INTEGER): INTEGER; 

Where: 

X is an expression that evaluates 
to a REAL or INTEGER value. 

The SQR function computes the square of 
the argument. If the argument is of 
type REAL, then a REAL resul tis 
returned, otherwise the function 
returns an INTEGER. 

TNL SN20·4446 (31 December 81) to SH20-6168-1 

+ 11.5.14 RANDOM Function 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
I 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Compute a Random Number 
r------------------->-----

Definition: 

function RANDOM( 
S : INTEGER) REAL; 

Where: 

S is an expression that evaluates 
to an INTEGER value. 

+ The RANDOM functi on returns a pseudo 
+ random number in the range >0.0 and 
+ <1.0. The parameter Sis called the 
+ seed of the random number and is used to 
+ specif~ the beginning of the sequence. 
+ RANDOM always returns the same value 
+ when called with the same non zero seed. 
+ If you pass a seed value of 0, RANDOM 
+ will return the next number as generated 
+ from the previous seed. Thus, the gen
+ eral way to use this function is to pass 
+ it a non zero seed on the first invoca
+ tion and a zero value thereafter. 

Execution Library Facilities 135 



TNL SN204446 (31 December 81) to SH20-6168-1 

11.6 STRING ROUTINES 

These ~outines provide convenient means of operating on string data. 

+ 11.6.1 LENGTH Function 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Length of String 

Definition: 

function LENGTH( 
S 

Wher'e: 

STRING) 
O •• 32767; 

S is a STRING valued expression. 

+ This function returns the current length 
+ of the parameter. The value will be in 
+ the range 0 .. 32767. 

136 Pascal/VS Reference Manual 

11.6.2 HAXLENGTH Function 

Max~mum Length of a String 

Definition: 

function MAXLENGTH( 
S STRING) 

O .. 32767; 

Where: 

S is a STRING valued expression. 

This function returns the maximum length 
of the parameter string. The value will 

+ be in the range 0 .. 32767. 



+ 11.6.3 SUBSTR Function 
+ 
+ 
+ Obtain Substring 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

I 
+ 
+ 
I 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

function SUBSTR( 
canst SOURCE STRING; 

START INTEGER; 
LEN : INTEGER): STRING; 

function SUBSTR( 
const SOURCE STRING; 

START: INTEGER): STRING; 

Where: 
SOURCE is a STRING expression from 

which a substring will be 
returned. 

START is an INTEGER expression that 
de.signates the first position 
in the SOURCE to be returned. 

LEN is an INTEGER expression that 
de.fines the number of 
characters to be returned. 

The SUBSTR function returns a substring 
from the specified source string 
(SOURCE). The second parameter (START) 
specifies the starting position within 
the source from where the substring is 
to be e)(tracted. (The fi rst character 
of the source string is at position 1). 
The third parameter (LEN) determines the 
length of the substring. If the length 
is omitted, the substring returned will 
be the remaining portion of the source 
string from position START. 

The value of START+LEN-1 must be less 
than or equal to the current LENGTH of 
the string, otherwise, an error diagnos
tic will be produced at run time. 

+ Examples: 
+ 

SUBSTR('ABCDE',2,3) yields 'BCD' 
SUBSTR('ABCDE',1,3) yields 'ABC' 
SUBSTR('ABCDE',4) yields 'DE' 
SUBSTR('ABCDE',l) yields 'ABCDE' 
SUBSTR('ABCDE',2,S) is an error 

TNL SN204446 (31 December 81) to SH20-6168-1 

+ 11.6.4 DELETE Function 
+ 
+ 
+ Delete Substring 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

I 
+ 
+ 
+ 
+ 
I 
+ 
+ 
I 
+ 
+ 
I 
+ 
+ 
+ 
+ 

r------------------------------------------~ 

Definition: 

function DELETE( 
canst SOURCE STRING; 

START INTEGER; 
LEN : INTEGER): STRING; 

function DELETE( 
const SOURCE STRING; 

START: INTEGER): STRING; 

Where: 

SOURCE is a STRING expression from 
which a portion will be 
deleted. 

START is an INTEGER expression that 
designates the first position 
in the SOURCE to be deleted. 

LEN is an INTEGER expression that 
defines the number of 
characters to be deleted. 

The DELETE function returns the source 
string (SOURCE) "'11th a portion of the 
stri ng removed. The second parameter 
(START) specifies the starting position 
within the source where characters are 
to be deleted. (The first character of 
the source string is at position 1). 
The third parameter (LEN) specifies the 
number of characters to be deleted. If 

·the length parameter is omitted, all 
remaining characters are deleted; more 
precisely, the string is truncated 
beginning at position START. 

An attempt to delete a portion of the 
source beyond its length is an execution 
time error. 

+ Examples: 
+ 

DELETE('ABCDE',2,3) yields 'AE' 
DELETE('ABCDE',3) yields 'AB' 
DELETE('ABCDE',3,1) yields 'ABDE' 
DELETE('ABCDE',l) yields " 

Execution Library Facilities 137 



TNL SN20-4446 (31 December 81) to S"20-6168-1 

+ 11.6.5 TRIM Function 
+ 
+ 
+ Remove Trailing Blanks 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

function TRIM( 
const SOURCE 

Wher£L:. 

STRING) 
: STRING; 

SOURCE is the STRING to be trimmed. 

+ 11.6.6 LTRIM Function 
+ 
+ 
+ Remove Leading Blanks 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

function LTRIM( 
const SOURCE : STRING) 

: STRING; 

Where: 

SOURCE is the STRING to be trimmed. 

+ + 
+ + 
+ + 

+ The TRIM function returns the parameter + The LTRIM function returns the parameter 
+ value with all trailing blanks removed. + value with all leading blanks removed. 
+ + 
+ Example: + Example: 
+ + 
+ TRIM(' A B ') yields' A B' + LTRIM(' A B ') yields 'A B 
+ TRIM(' ') yields " + LTRIM(' ') yields " 
+ + 

138 Pascal/VS Reference Manual 



+ 11.6.7 COMPRESS Function 
+ 
+ 
+ Remove Multiple Blanks 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

function COMPRESS( 
const SOURCE : STRING) 

: STRING; 

Where: 

SOURCE is a the STRING expression 
to be compressed. 

TNL SN204446 (31 December 81) to SH20~168-1 

-I- 11.6.8 :i ~·mEX r·~I:J..{lct j en: 
+ 
+ 
+ lookup String 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

function INDEX( 
const SOURCE 
const LOOKUP 

Where: 

---,---------

STRING; 
STRING) 
O .. 32767; 

SOURCE is a STRING that contains 
the data to be compared against. 

LOOKUP is the data to be looked 
up in the SOURCE. 

+ The COMPRESS function replaces multiple + 
+ blanks with a single blank. 
+ + The INDEX function compares the second 
+ Example: + parameter against the first and returns 
+ + the starting index of the first instance 
+ COMPRESS('A B CD ') yields 'A B CD' + where LOOKUP begins in SOURCE. If there 

+ are no occurrences, then a zero is 
+ returned. 
+ 
+ Examples: 
+ 
+ val' 
+ S 
+ 

STRING; 

+ S:= 'ABCABC': 
+ 
+ INDEX(S,'BC') yields 2 
+ INDEX(S,'X') yields 0 

Execution Library Facilities 139 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

+ 11.6.9 TOKEN Procedure 
+ 
+ 
+ Find Token 

+ trailing blanks are ignored. If there 
+ is no token in the string, POS is set to 
+ lENGTHCSOURCE)+1 and RESUL Tis set to 
+ all blanks. 

+ 

+ Definition: 
+ 
+ procedure TOKEN( 
+ var POS : INTEGER; 
+ canst SOURCE : STRING; 
+ v~r RESULT: ALPHA); 
+ 
+ 

POS is the starting index in SOURCE 
of where to look for a token, it 
is set to the index of where to 
resume the search on the next 
use of TOKEN. 

SOURCE is a STRING that contains 
the data from which a token 
is to be extracted. 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

I 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

A 

• 

• 

• 

token is defined to be. any of: 

Pascal/VS identifier 1 to 16 
alphanumeric characters, '$ , or an 
unde.rscore. The first letter must 
be alphabet i c or a '$' . 

Pascal/VS unsigned integer see 
page 18. 

The following special symbols: 

+ * / -> OJ ¢ 
= <> < <= >= > 

) [ ] n, r. 
& && II "'I- I 
; . - , 

{ } (* *) /* */ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

RESULT is the variable which will 
be returned with token found. + Example: 

+ 
+ + 
+ + 

+ 
+ The TOKEN procedure scans the SOURCE + 
+ string looking for a token and returns + 
+ it as an ALPHA. The starting position + 
+ of the scan is passed a!. the first + 
+ parameter. This parameter is changed to + 
+ reflect the position which the scan is + 
+ to be resumed on subsequent calls. + 
+ Leading blanks; multiple blanks and 

140 Pascal/VS Reference Manual 

I : = 2; 
TOKENCI,', Token+', RESULT) 

I is set to 8 
RESULT is set to 'Token 

TOKEN would return the same if 
I were set to 3, that is, 
leading blanks are ignored. 



+ 11.6.10 READSTR 
+ 
+ 
+ Read Data from a STRING 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

procedure READSTR( 
const s STRING; 

v : see below); 

Where=-

s is a STRING expression that 
is to be used for input. 

v is a list of one or more 
variables, each must be one 
of the following types: 
- INTEGER (or subrange) 
- CHAR (or subrange) 
- REAL 
- SHORTREAL 
- STRING 
- packed array of CHAR 

+ The READSTR procedure reads character 
+ data from a source string into one or 
+ more variables. The actions of READSTR 
+ are i de!nt i cal to that of READ except 
+ that the source data is extracted from a 
+ string expression instead of a text 
+ file. See "READ and READLN (T EXT 
+ Files)" on page 109. 
+ 
+ As in the READ procedure, variables may 
+ be qualified with a field length expres
+ sion. See the example below. 
+ 
+ 
+ 
+ 
+ var 
+ 
I 
+ 
+ 
of 

+ 
+ 

I 

I, J : INTEGER; 
S STRING(100); 
51 STRING(100); 
CH CHARi 
CC packed array[1 .. 10] of 

S := t36 245ABCDEFGHIJK'; 
READSTRCS,I,J:3,CH,CC:5,Sl); 

CHAR; 

+ the variables would be assigned: 
+ 
+ 

+ 
+ 
+ 

I 
J 
CH 
CC 
Sl 
LENGTH(Sl) 

36 
24 
, 5' 
'ABCDE 
'FGHIJK'; 
6 

The READSTR Procedure 

TNL 8N204446 (31 December 81) to 8H20-6168-1 

+ 11.6.11 WRITESTR 
+ 
+ 
+ Write Data to a STRING 
+ 

+ 
+ 
+ 
I 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

procedure WRITESTR( 
var s STRING; 

e : see below); 

Where: 

s is a STRING variable 
e is an expression of one of the 

following types: 
- INTEGER (or subrange) 
- CHAR (or subrange) 
- REAL 
- SHORTREAL 
- BOOLEAN 
- STRING 
- packed array[l .. n] of CHAR 

+ Pascal/VS accepts a special para-
+ meter format which allows you. 
+ to specify a length of the result. 
+ 
+ 

+ The WRITESTR procedure converts expres
+ sions into character data and stores the 
+ data into a string variable. The seman
+ tics of WRITESTR are identical to WRITE, 
+ except that the target of the data is to 
+ a STRING rather than to a text fi Ie. 
+ See "WRITE and t.JRITELN (TEXT Fi les>" on 
+ page 112. 
+ 
+ As in the case of WRITE, the expressions 
+ being converted may be qualified with a 
+ field length expression. 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

var 
I,J: INTEGER; 
S STRING(100); 
R REAL; 
CH CHARi 

I := 10; J := -123; 
R := 3.14159; 
CH : = '*'; 
WRITESTR(S,I:3,J:5,'ABC',CH, 

R:5:2)j 

the variable S would be assigned: 

, 10 -123ABC* 3.14' 

The WRITESTR Procedure 

Execution Library Facilities 141 



TNL SN20-4446 (31 December 81) toSH20-6168-1 

11.7 GENERAL ROUTINES 

These routines provide several useful features of the Pascal/VS runtime environment. 

+ 11.7.1 TR~~E Procedure 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Routine Trace 

procedure TRACE( 
var F TEXT); 

Wher'e: 

F 1S the file that will receive 
the trace listing 

+ This procedure displays the current list 
+ of procedures and funct 1 ons that are 
+ pending execution (i .e. save chain). 
+ Each line of the listing contains the 
+ name of the routine, the statement num
+ ber where the call took place, the 
+ return address in hexadecimal and the 
+ name of the module that contained the 
+ calling procedure. 
+ 
+ The file F is the TEXT file to which the 
+ information is to be written. 

142 Pascal/VS Reference Manual 

+ 11.7.2 HALT Procedure 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

Halt Program Execution 

Definition: 

procedure HALT; 

+ This routine halts execution of an Pas
+ cal/VS program. That is, thi s can be 
+ considered to be a return from the main 
+ program. 



11.8 SYSTEM INTERFACE ROUTINES 

These routines provide interfaces to system facilities: in general they are depend
ent on the implementation of Pascal/VS. 

+ 11.8.1 DATETIME Procedure 
+ 
+ 
+ Get Date and Time 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

procedure DATETIME( 
var DATE, 

TIME: ALFA); 

where;! : 

DATE is the returned date. 
TIME is the returned time. 

+ This procedure returns the current date 
+ and time of day as two ALFA arrays. The 
+ format of the resul tis placed in the 
+ first and second parameters respective
+ ly: 
+ 
+ 
+ 
+ 
+ where: 
+ mm 
+ 
+ dd 
+ yy 
+ 
+ HH 
+ 
+ MM 
+ S5 
+ 

mm/dd/yy 
HH:MM:55 

is the month expressed as a two 
digit value. 
is the day of the month. 
is the last two digits of the 
year. 
is the hour of the day expressed 
in a 24 hour clock. 
is the minute of the hour. 
is the second of the minute. 

+ 11.8.2 CLOCK Function 
+ 
+ 
+ Get Execution Time 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

Definition: 

function CLOCK INTEGER; 

+ The value returned is the number of 
+ microseconds the program has been run
+ ning. Note: In an MV5 system: the time 
+ is "TASK" time; and in a CMS system: the 
+ time is "CPU virtual" time. 

Execution Library Facilities 143 



+ 11.8.3 PARMS Function 
+ 
+ 
+ Get Execution Parameters 
+ 

+ 
+ 
+ 
+ 
+ 

function PARMS STRINGJ 

+ 11.8.4 RETCODE Procedure 
+ 
+ 
+ Set Program Return Code 
+ 

+ 
+ 
+ 
+ 
+ 

procedure RETCODE( 
RETVALUE : INTEGER); 

+ + where: 
+ 

+ The PARMS function returns a string that + 
+ was associated with initial invocation + 
+ of the Pascal/VS main program. + 

RETVALUE is the return code to be 
passed to the caller of the 
Pascal/VS program. The value 

144 Pascal/VS Reference Manual 

+ 
+ 
+ 
+ 

is system dependent. 

+ The value of the operand will be 
+ returned to system when an exit is made 
+ from the main program. If this routine 
+ is called several times, only the last 
+ value specified will be passed back to 
+ the system. 



+ 
+ 
+ 
+ 
+ 

TNL SN20-4446 (31 December 81) to SH20-6168-1 

12.0 THE % FEATURE 

+ --
+ Synt,ax: 
+ 
+ 
+ include-statement: 
+ I ---> % ---> INCLUDE ---1===~_~~_; ~~ :_==================;r---------> 

+ check-statement: 

---> % ---> CHECK 

l
===;-POINTER-=====;!---t===~ g~F-===;r---------> 
---> SUBSCRIPT ---> 
---> SUBRANGE ----> 
---> FUNCTION ----> 
---> CASE --------> 
---> TRUNCATE ----> 

print-statement: 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

---> % ---> PRINT ---1===~ g~F-===;r--------------------------------> 

list-statement: 

---> % ---> LIST ---1===~ g~F-===;r---------------------------------> 

~statement: 

---> % ---> PAGE ---------------------------------------------------> 

~-statement: 

+ ---> % ---> CPAGE ---> unsigned-integer ----------------------------> 
+ 
+ title-statement: 
+ 
+ -~-> % ---> TITLE ---> any-character-string ------------------------> 
+ 
+ skip-statement: 
+ 
+ ---> % ---> SKIP ---> unsigned-integer --------------------,---------> 
+ 

margins-statement: 

I ---> % ---> MARGINS ---> unsigned-integer unsigned-integer --------> 

+ 

+ The % feature of Pascal/VS is used to 
+ enable or disable a number of compiler 
+ options and features. The compiler 
+ treats a % command as a trigger symbol 

+ which caus~s the compiler to ignore all 
+ text between the statement and the 
+ end-of-line. 

The % Feature 145 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

+ 12.1 THE 'INCLUDE STATEMENT 
+ 
+ 

+ • 
+ 
+ 

assignment of :a v.t11uE! I'Jh1Ch is not 
in the proper r'al"lg~; for'che. tar~)et 
variable (SUBRANGE1. 

The INCLUDf statement causes source from + 
a library file to be inserted into the +. 
input stream immediately after the cur- + 
rent line. More precisely, the compiler + 
is directed to begin reading its input + 
from a library file; when the end of the + 
file is reached, the compiler will + 
resume reading from the previous source. +. 

use of the pred~fined functions PRED 
or SUCC where the resul t of the 
function is not a value in the type, 
i . e . un de r flo L.J \') r 0 v e r flo l-J 0 f the 
value range (SUBRANGE). 

the value of a CAS= statement selec
tor which is not equal to any of the 
CASE labels (CASE). 

+ 
There are two forms of the INCLUDE + 
statement: + 

• 
• 

%INCLUDE library-name(member-name) 

%INCLUDE member-name 

The first form references a library file 
and a specific member in the fi1e. s 

The second form references a speci fi c 
member from a default library. 

program ABC; 
const 

~n nelude CONSTS 
type 

%include TYPES 
var 

%inelude VARS 
%inc1ude LIBl(PROCS) 
begin 

end. 

Example of %INCLUDE statement 

+ 12.2 THE %CHECK STAYEMENT 
+ 
+ 
+ The CHECK statement gives you the abi1i
+ ty to enable or di sable the runtime 
+ checking features of Pascal/VS. The 
+ checking may be enabled for part or all 
+ of the program. The compiler will check 
+ the f()llowing: 
+ 
+ • 
+ 
+ 
+ • 
+ 
+ 
+ 
+ • 
+ 
+ 

use of a pointer whose value is NIL 
(POINTER) . 

use of a subscript which is out of 
range for the array index 
(SUBSCRIPT). 

lack of an assignment of a value to 
a function before exiting from the 
function (FUNCTION). 

+ • 
+ 

the value of a string will be 
checked to be sure lt will fit into 
the target string on an assignemnt 
(TRUNCATE). 

+ 
+ 
+ 
+ If the check option is missing, then all 
+ of the above checks w~ 11 be assumed 
+ applicable. For example, '%CHECK OH' 
+ activates all of the checks. '%CHECK 
+ POINTER OFF' will disable the check on 
+ pointer references. The default is: 
+ 
+ 
+ 

% CHECK ON 

+ The %CHECK statement, 1 i ke the other 
+ statements in this section, is a direc
+ t ion to the com p i 1 e r . Its effect i s 
+ based on where it appears in the text 
+ and i s not subj ect to any structur i ng 
+ established by the program. 
+ 
+ 
+ 
+ 12.3 THE %PRINT STATEMENT 
+ 
+ 
+ The PRINT statement is used to turn on 
+ and off the printing of ~ource in the 
+ listing. The default is: 
+ 
+ 
+ 
+ 
+ 

% PRINT ON 

+ 12.4 THE %LIST STATEMENT 
+ 
+ 
+ The LIST statement is used to enable or 
+ disable the pseudo-assembler listing of 

I 
the Pascal/VS compiler. This option 
only has affect if the LIST compiler 
options is enabled. 

It is often required to view the 
pseudo-assembler listing for only a 
s~all section of a module, and to have 
i t suppressed el seL.Jhere.' Th i s can be 
done as follows: 

1. Insert a line at the beginning of 
the module that consists of 

%LIST OFF 

I ' Under VM/CMS, OS, and MVS/TSO operating environments, the specified library 
name is actually the "DD name" of a partitioned data set (which may be con
catenated). If the library name is omitted, the default is SYSlIB. 

146 Pascal/VS Reference Manual 



At the beginning of each section of 
code for which an assembler listing 
is requ ired, insert 

%LIST ON 

3. A t the end of each code sect ion 
insert 

4. 

%LIST OFF 

Compile the module with the LIST 
option. 

+ 12.5 THE %PAGE STATEMENT 
+ 
+ 
+ The PAGE statement is used to force a 
+ sk i p to thE~ next page on the output 
+ listing of the source program. 
+ 
+ 
+ 
+ 
+ 12.6 THE %CPAGE STATEMENT 

TNL SN204446 (31 December 81) to SH20-6168-1 

+ page skip. The title is printed as spe
+ c if i ed on the statement, there i s no 
+ change from lower case to upper case. 
+ The default is no title. 
+ 
+ 
+ 
+ 1'-.8 THE %SKIP STATEMENr 
+ 
+ 
+ The SKIP statement is used to force one 
+ or more blank lines to be inserted into 
+ the source listing. 

12.9 THE %MARGINS STATEMENT 

The MARGINS statement redefines the left 
and right margins of the compiler input. 
The compiler skips all characters that 
lie outside the margins. The statement 
has the form 

%MARGINS m n 

+ where "m" is the new left margi nand "n" 
+is the new right margin. 
+ The CPAGE statement is used to force a 
+ page eject if there are less than a spe
+ cified number of lines left on the cur
+ rent page of the output listing. This 
+ is useful to make sure there is suffi
+ cient room for a unit of code, thereby 
+ not hav i ng it spl it across two pages. 
+ Example: 

+ 
+ 
+ 
+ 
+ 

% CPAGE 30 

+ 12.7 THE %TITLE STATEMENT 
+ 
+ 
+ The TITLE statement is used to set the 
+ title in the listing. It also causes a 

If the MARGINS statement appears ina 
1 i brary member whi ch is bei ng "i ncluded" 
by the %INCLUDE statement, the new mar
gins will have affect for the duration 
of the member only. When the end of the 
member is reached and the previous 
source is resumed, the margin settings 
will revert back to their previous con
dition. 

The % Feature 146. 1 



l'NL SN204446 (31 December 81) to SH20-6168-1 

146.2 Pascal/VS Reference Manual 



APPENDIXES 

• "The Space Type" on page 149 

• "Standard Identifiers in Pasca!/VS" on page 151 

• "Syntax Diagrams" on page 153 

• "Index to Syntax Diagrams" on page 165 

• "Glossary" on page 167 

APPENDIXES 147 





+ 
+ 
+ 
+ 
+ Apl THE SPACE DECLARATION 
+ 
+ 
+ 
+ 
+ Syntax: 
+ 
+ 
+ space-type: 
+ 

A.O THE SPACE TYPE 

+ ---> space ---> [ --->{constant-exprJ---> ] ---> of --->{typeJ-------------> 
+ 
+ 
+ 
+ 
+ The need arises to represent data within 
+ storage areas which do not have the same 
+ fixed offset within each instance of the 
+ area. Examples of this include entries 
+ within a directory, where each entry may 
+ be of vari able length, and process; ng 
+ variable length records from a buffer. 
+ To solve thi s problem, Pascal/VS pro
+ vides the space structure. 
+ 
+ A variable declared with the space type 
+ has a component which is able to 'float' 
+ over a storage area in a byte oriented 
+ manner. Space variables are accessed by 
+ followi ng the vari able's name wi th an 
+ integer index expression enclosed in 
+ square brackets. The index represents 
+ the offset (in bytes) within the space 
+ storage where the data to be accessed 
+ resides. The offset is specified with 
+ an origin of zero. 
+ 
+ The constant expressi on whi ch follows 
+ the space qual i f1 er in the type defi
+ nition represents the size of the stor
+ age area (in bytes) associated with the 
+ type. 
+ 
+ The component type of the space may be 
+ of any type except a file type. 
+ 
+ An element of a space may not be passed 
+ as a var parameter to a routine. Howev
+ er, an element may be passed as a const 
+ or value parameter. 
+ 
+ 
+ 
+ A.! SPACE REFERENCING 
+ 
+ 
+ A component of a space is selected by 
+ placi n~~ an index expressi on, enclosed 

+ within square brackets, after the space 
+ variable (just as in array references). 
+ The indexing expression must be of type 
+ INTEGER (or a subrange thereof). The 
+ value of the index is the offset within 
+ the space at which the component is to 
+ be accessed. The unit of the index is 
+ the byte. The index i s a !ways ba sed 
+ upon a zero orlgln. The component will 
+ be of the space base type. 
+ 
+ If the 'Y.CHECK SUBSCRIPT' option is ena
+ bled, the index expression will be 
+ checked at execution time to make sure 
+ that the computed address does not lie 
+ outside the storage occupied by the 
+ space. An execution time error diagnos
+ tic will occur if the value is invalid. 
+ (For a description of the CHECK feature 
+ see "The Y.CHECK Statement" on page 146). 
+ 
+ 
+ 
+ val'" 
+ S: space[lOO] of 
+ I"'ecol"'d 
+ A,B: INTEGER 
+ end; 
+ 
+ begin 
+ {base record begins 
+ at offset 10 within 
+ space J 
+ S[lOl.A·- 26; 
+ S[10].8:= 0; 
+ end; 
+ 
+ 
+ 
+ 

Space Referencing Examples 

The Space Type 149 





+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 

I 
+ 
+ 

B.O STANDARD IDENTIFIERS IN PASCAL/VS 

A standard identifier is the name of a 
constant, type, variable or routine that 
is predefined in Pascal/VS. The name is 
declared i n ever~' module pri or to the 
start of your program. You may redefine 

the name if you wish; however, it i s 
better to use the name according to its 
predefined meaning. 

The identifiers that are predefined are: 

identifier 

ABS 
ALFA 
ALFALEN 
ALPHA 
ALPHALEN 
ARCTAN 
BOOLEAN 
CHAR 
CHR 
CLOCK 
CLOSE 
COLS 
COMPRESS 
COS 
DATETIME 
DELETE 
DISPOSE 
EOF 
EOLN 
EXP 

FALSE 
FLOAT 
GET 
HALl 
HBOlJND 
HIGHEST 
INDEX 
INPUT 
INTEGER 
LBOLJND 
LENGTH 
LN 
LOWEST 
LTRIM 
MARK 
MAX 
MAXINT 
MAXl.ENGTH 
MIN 
MININT 
NEW 

form 

function 
type 
constant 
type 
constant 
function 
type 
type 
function 
function 
procedure 
function 
function 
function 
procedure 
function 
procedure 
function 
function 
function 

constant 
function 
procedure 
procedure 
function 
function 
function 
variable 
type 
function 
function 
function 
function 
function 
procedure 
function 
constant 
function 
function 
constant 
procedure 

Standard Identifiers 

description 

compute the absolute value of an INTEGER or REAL 
array of 8 characters, indexed 1 .. ALFALEN 
HBOUND of type ALFA, value is 8 
array of 16 characters, indexed 1 .. ALPHALEN 
HBOUND of type ALPHA, value is 16 
returns the arctangent of the argument 
data type composed of the values FALSE and TRUE 
character data type 
convert an integer to a character value 
returns the number of micro seconds of execution 
close a file 
returns current column on output line 
replaces multiple blanks in a string with one blank 
returns the cosine of the argument 
returns the current date and time of day 
returns a string with a portion removed 
deallocate a dynamic variable 
test file for end of file condition 
test file for end of line condition 
returns the base of the natural log (e) 

raised to the power of the argument 
constant of type BOOLEAN, FALSE < TRUE 
convert an integer to a floating point value 
advance file pointer to next element of input file 
halts the programs execution 
determine the upper bound of an array 
determine the maximum value of a scalar 
looks up one string in another 
default input file 
integer data type 
determine the lower bound of an array 
determine the current length of a string 
returns the natural logarithm of the argument 
determine the minimum value of a scalar 
returns a string with leading blanks removed 
routine to create a new heap 
determine the maximum value of a list of scalars 
maximum value of type INTEGER 
determines the maximum length of a string 
determine the minimum value of a list of scalars 
minimum value of type INTEGER 
allocate a dynamic variable from most recent heap 

Standard Identifiers in Pascal/VS 151 



+ 

I 
+ 

+ 

+ 

+ 

+ 

+ 
+ 
+ 

I 
+ 

+ 
+ 
+ 

identifier 

ODD 
ORD 
OUTPUT 
PACK 
PAGE 
PARf'lS 
PDSIN 
PDSOUT 
POINTER 
PRED 
PUT 
RANDOM 
READ 
READlN 
READSTR 
REAL 
RELEASE 
RESET 
RETCODE 
REWRITE 
ROUND 
SEEK 
SHORT REAL 
SIN 
SIZEOF 
SQRT 
SQR 
STR 
STRING 

STRINGPTR 

SUBSTR 
SUCC 
TERMIN 
TERMOUT 
TEXT 
TOKEN 
TRACE 
TRIM 
TRUE 
TRUNC 
UNPACK 
UPDATE 
WRITE 
WRITELN 
WRITESTR 

form 

function 
function 
variable 
procedure 
procedure 
function 
procedure 
procedure 
type 
function 
procedure 
function 
procedure 
procedure 
procedure 
type 
procedure 
procedure 
procedure 
procedure 
function 
procedure 
type 
function 
function 
function 
function 
function 
type 

type 

function 
function 
procedure 
procedure 
type 
procedure 
procedure 
function 
constant 
function 
procedure 
procedure 
procedure 
procedure 
procedure 

Standard Identifiers Continued 

description 

returns TRUE if integer argument is odd 
convert a scalar value to an integer 
default output file 
copies an array to a packed array 
skips to the top of the next page 
returns the system dependent invocation parameters 
open a file for input from a partitioned data set 
open a file for output from a partitioned data set 
type to permit passing arbitrary pointers a routine 
obtain the predecessor of a scalar 
advance file pointer to next element of output file 
returns a pseudo-random number 
routine to read data from a file 
routine to read the end of line character of TEXT file 
converts a string to values assigned to variables 
floating point represented in 370 long floating point 
routine to destroy one or more heaps 
open a file for input 
sets the system dependent return code 
open a file for output 
convert a floating point to an integer by rounding 
positions an opened file at a specific record 
floating point represented in 370 short floating point 
returns the sine of the argument 
determine the memory size of a variable or type 
returns the square root of the argument 
returns the square of the argument 
convert an array of characters to a string 
a type for an array of char whose length varies during 

execution up to a maximum length 
a type for dynamically allocated strings of an 

execution determined length 
returns a portion of a string 
obtain the successor of a scalar 
open a file for input from the terminal 
open a file for output from the terminal 
file of CHAR 
extracts tokens from a string 
writes the routine return stack 
returns a string with trailing blanks removed 
constant of type BOOLEAN, TRUE> FALSE 
convert a floating point to an integer by truncating 
copies a packed array to an array 
opens a file for both input and output 
routine to write data to a file 
routine to write end of line to a TEXT file 
converts a series of expressions into a string 

152 Pascal/VS Reference Manual 



+ 

+ 
+ 
+ 
+ 
+ 
+ 

c.o SYNTAX DIAGRAMS 

actual-parameters: 

I [ >{expr~----'----Y-I-» 
<-- I < L ____________________ >J ---r-J---> 

arr;9y-structure: 

) ----------> 

array-type: 

I~< > packed ==-t 
I~~~~> array [ --~~-->{index-type}----~---> ] of -->{type} l<____ , < ________ ~ ------> 

assert-statement: 

+ ---> assert --->{expr}-----------------------------------------------------> 

+ 
+ 
+ 

assignment-statement: 

----.--->{variable}--------Jr---> .- --->{expr}-----------------------------~> 
L--->{id:function}--> 

base-scalar-tvpe: 

--t
--->{enumerated-scalar-type}-->~ 
--->{id:scalar-type} >+--------------------------------------------> 
--->{subrange-scalar-type}----> 

case-statement: 

---> c:se ---->{expr}--> of --->] 

[ >{range~---~--> <--- , < 
<--------------~~~--~ 

--->{statement}--~~-->l 

i <----~--~--------~ _ 
<----~----------~-----r[-<===--;--<-=:=J---r----~--~--------~ 

---> otherwise ---l~:::~:~~t~m~~~::::J--->l < _________________________________________ J 

> end ------------------~-----------------------------------------------> 

Syntax Diagrams 153 



check-statement: 

---> % ---> CHECK 
--1===;-POI~TE~-=====;f---1===~ g~F-===;r----------------> 

---> SUBSCRIPT ---> 
---> SUB RANGE ----> 
---> FUNCTION ----> 
---> CASE --------> 
---> TRUNCATE-----> 

cpage-statement: 

---> % ---> CPAGE ---> unsigned-integer -----------------------------------> 

compound-statement: 

--> begin -~--->{statement}--~---> end l<_______ ; < ______ ~ -----------------------------------> 

con:stant: 

---r--->{uns;gned-constant}------------------~Jr-------------------------------> 
I > + J >{unsigned-number}---> 1---> ___ > 

constant-dcl: 

+ ---> const --~--->{id}---> = --->{constant-expr}---> --~----------------~ l< ________________________________ ---' J 

continue-statement: 

+ ---> continue -------------------------------------------------------------> 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

154 

declaration: 

>{label-dcll > 

> {constant-dcl}----> 

> {type-dcl}--------> 

> {var-dcl}---------> 

--->{def-dcl}---------> 

--->{static-dcl}------> 

t--->{ValUe-dCl}------->1 

>{routine-dcl}----->~-------------------------------------------------> 

de-f-dcl: 

----1---> def ----r---T---1--->{idl---r---> : --->{typel---> ; ---T---------> 
---> ref ---> <--- , ----

I I L< __________________________________________ ~ 

Pascal/VS Reference Manual 



+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

+ 

directive: 

> FORWARD ------------------------------------------>~---------------------> 

---> EXTERNAL --------------------------------------> 
---> FORTRAN ---------------------------------------> 
---> MAIN ------------------------------------------> 
---> REENTRANT -------------------------------------> 

empty-statement: 

------------------------------------------------------------------------------> 

enumerated-scalar-type: 

--> ( [ >{idl-~~~-» < __ , <----l -------------------------------------------------> 

expr: 
COn!5tant-expr: 

--->{s;mple-expressionl--~-------------------------------------------r---------> 

> = [>{SimPle-expreSSionl---> 
> <> --> 
> < --> 
> <= --> 
> >= --> 
> > --> 
> ;n --> 

factor: 

--->{function-call}------------------------------------------~------------> 

--->{variablel-----------------------------------------------> 

--->{set-constructorl---------------------------------------> 

---> ( --->{exprl--> ) ------------------------------------> 
·--->{structured-constantl-------~------------------------> 

---> not --->{factorl---------------------------------------> 

--->{unsigned-constantl-------------------------------------> 

field: 

--->{id}--~--------------------------------------~--------------------------> 
l ___ > ( --->{constant-exprl---> ) ___ >J 

field-list: 

---r->{fixed-partl--..r...--> 
>] 

--~--->{variant-part}--~-----~--> ; 
>J 

--.."..--> a..-____ >J 

Syntax Diagrams 155 



+ 

+ 

file-type: 

---> file of --->{type}-----------------------------------------------------> 

fixed-part: 

~. l ___ ~~ __ :~:~~~~~-_-__ -_~_-_->~J---> --->{type}--~-------------------------> 

l<____________________ ; < ________________________ ~ 

for-statement: 

--~. fa ... --> {i d}---> .- --->{expr}--~~---» to J 
L-- downto-> 

> {Qxpr}--->] 

r~< _____________ > do --->{statement}---------------------> 

> va ... ----~J--~l----{id}-~--~--> : --->{id:type}-----------~----> 
---> canst --> <--- , <~ 

{id}::::J > ------->{id:type}---------------------- > 
<--- , < 

>{procedure-heading}--------------------------------------------> 

>function-heading}----------------------------------------------> 

formal-parameters: 

[ >{formal}--~---» <_____ ; < ___ -.I --->~]-----------------------------------> 

function-call: 

--->{id:function}--->{ectuel-parameters}--------------------------------------> 

function-heading: 

--> funct t on ---> {; d}---> {formal-pararnetersJ---> --->{id:type}----------> 

goto-statement: 

--------> goto --->{label}--------------------------------------------------> 

156 Pascal/VS Reference Marual 



+ 

+ 

TNL SN204446 (31 December 81) to SH20-6168-1 

r----------------------------------------------------------> 
>{digit} >j-

--->{underscore}--> 
--->{letter}--~------r--->{letter} > >1 

if-statement: 

--> if -->{expr}--> then -->{statement}--~------------------~·--------~~-----> 

L> else --> {statement}->J 

include-statement: 

---> % ---> INCLUDE ---> id ---t:::;-c-:::;-id-:::;-;-:=:;r----------------> 

index-type: 

~
--->{enumerated-scalar-type}-->~ 
--->{id:scalar-type} >+---------------- ------------------> 
--->{subrange-scalar-type}-----> 

label.:. 

---r::=~~~~}~~~~~:~~~~~~~~-->] 

label-del: 

-> label [ >{label~---~-->; 
<---- , < 

leave-statement: 

------------------> 

-----------------------------------------> 

+ ---> leave ----------------------------------------------------------------> 

1 i st'-statement: 

---> X ---> LIST ---t:::~ g~F-:::;r-------------------·---------------------> 

margins-statement: 

---> X ---> MARGINS ---> unsigned-integer unsigned-integer ---------------> 

module: 

--.-->{program-module} J 
L--->{segment-module}---> 

----------------------> 
+ 

Appendix C. Syntax Diagrams 157 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

+ 
+ 

+ 
+ 

+ 
+ 
+ 

paoe-statement: 

---> % ---> PAGE ----------------------------------------------------------> 

E.Q..inter-type: 

--> ~ -->{id:type}----------------------------------------------·-------------> 

.P...Cint-statement: 

---> % ---> PRINT ---1:::~ g~F-:::;J-----------------------------·----------> 

EJ:..Qcedure-call: 

--->{id:procedure}----~--------------------------------------~-----------------> 
L-> [ >(expr~-----'r---» _>J 

<-- , < 

EJ:..Qcedure-heading: 

---> procedure --> {i d}--> {formal-parametersl------------------------------> 

program-module: 

_.> program --> {; d}----,---> ( > {; d} » 
l___ _ ____ :~:::_:_~::::___ _ ___ >J >] 

j <---------------------------------c= ~>{dQClaratiOnJ-->] 
> {compound-statementl--> -------------------------------------------> 

ran~ 

---->{constant-exprl--~----------------------------------r----------------------> 
l ___ > --->{constant-exprl--->J 

real-number: 

> 

record-structure: 

---->{id:type}---> ( ---I---1:::~~~~~:~:~~:~~~~~::;J---I---> ) -------------> 

<------------ , <-------------
158 Pascal/VS Reference Manual 



record-type: 

-r----------------~---> record --->{fie!d-listJ---> end 
L-> packed _>J 

reReat-statement: 

------------------> 

---:> repeat -------r--->{statementJ--~---> until --->{exprJ------------------> l<______ ; < ______ ~ 

.r:..gQ~i.Lt ion: 

+ --->{constant-exprJ--------------------------------------------------------> 

return-statement: 

+ ---> return ---------------------------------------------------------------> 

I 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

I 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

routine-dcl: 

---r--->{procedure-headingJ »~ 
L--->{function-heading}--------------------- I 
<------------------- ; <----------------------~ 

>{directiveJ---> ; 

<----------------------~ 
>{declarationJ--->J 

> {compound-statementJ---> 

segment-module: 

---> SEGMENT --->{idJ---> ; --->1 

r<----------------------T----J 

t--->{constant-dc!J---->1 

t--->{type-dc!J-------->1 

t--->{var-dc!J--------->1 

t--->{def-dC!J--------->1 

t--->{static-dC!J------>1 

t--->{va!ue-dc!J------->1 

t--->{routine-dclJ----->J 
L ___ > . ________________________________________________________________ > 

set-constructor: 

-> [ --~----r--->{exprJ--~~----------------------~----r---~----> ] 

l L-> --->{expr}--->J J 
<------------------ 1 <--------------------~ L-----_____ > 

-------> 

Syntax Diagrams 159 



+ 

~------------------~--> set of --->{base-scalar-typel----------------------> 
L_> packed _>J 

simple-expressl0n: 

~==~->--+--===->'j----Tl--->{terml--~t===r---------------------------------------------> 

---> - ---> <--------------~--------~--~_&------~~~ 
skip-statement: 

---> Y. ---> SKIP ---> unsigned-integer --------------------------.----------> 

space-type: 

+ ---> space ---> [ --->{constant-exprJ---> ] ---> of --->{typeJ---·----------> 

+ 

+ 

+ 

+ 

+ 
+ 

+ 

160 

statement: 

-< -> {labell---> : --->, 

--->{assert-statementl-------------------------------------> 

---->{assignment-statementl--------------------------------------> 

--->{case-statementJ----------------------------------------------> 

--->{compound-statementl-----------------------------------------> 

--->{continue-statementJ-----------------------------------> 

--->{ernpty-statementl-------------------------------------------> 

--->{for-statementl---------------------------------------------> 

--->{goto-statementJ--------------------------------------------> 

--->{if-statementl------------------------------------------------> 

,--->{leave-statementl--------------------------------------> 

--->{procedure-callJ--------------------------------------------> 

--->{repeat-statementJ-----------------------------------------> 

,---> {return-statementJ-------------------------------------> 

-> h ... h 1 1 e- sta t emen t} ---------------------------------------> 

--->{with-statementJ-------------------------------------------->~-----------> 

static-dcl: 

---> static ---T---T--->{idl---r---> : --->{typel---> i ---T---------------> 
<--- , ----

I I L< __________________________________________ ~ 

Pascal/VS Reference Manual 



+ 
+ 

+ 
+ 

+ 
+ 

+ 

+ 

+ 

+ 
+ 
+ 

-I> ' l<---{character}<:::J >' ---------r,--------------------------> 
L ___ > ' 

---l~:::~~:~:~~~~!::::J---> 'xc ______ >J 

str,; ng-type: 

st~uctured-constant: 

---I--->{record-structure}---r---------------------------------------------> 
--->{array-structure}---> 

subrange-scalar-type: 

-r::~-~~~>~{~c~on-:s:ta:-n>]t}--> I 
.. --->{constant-expr}----------------------~-~----> 

L ___ > range --->{constant-expr}---> .. --->{constant-expr}--->J 

>{factor}--~---------------------------------
> * ---> 
> / ---> 
> div --> 
> mod --> 

» ----> 
« ----> 
I I ----> 

> & ----> 
<------------------------------~ 

title-statement: 

-----------------> 

---> Y. ---> TITtE ---> any-character-string -------------------------------> 

~~ 

> {i d: type} > 

>{enumerated-scalar-type} > 

>{subrange-scalar-type} > 

>{array-type} > 

>{record-type} > 

>{set-type} > 

>{file-type} > 

It--> {poi nter-type} > > 

Syntax Diagrams 161 



+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 

type-del: 

-) type --~--->{idl---> = --->{typel---> ---,---------------------------> l< _____ ____ 

unsigned-constant: 

1
>{UnSi gned-numberl---,--------------------------------------------------> 

--->{string} »>j 
--->{id:eonstant}------

> nil 

unsigned-integer: 

---,--~--->{digit}---,----------------------------~r---------------·------------> 
I L< I 
t---> ' ---T~==~~~~~~~~-~~~~~~===J---> 'B --->1 

L ___ > ' ---T~:=~~~~~=~~~~~~==:J---> 'x ------>~ 

un s ;..9!Led-number : 

---,---> {unsi gned-i ntegerl--->JT ------------------------------------------------> 
--->{real-number} > 

value-assignment: 

--->{variable}---> .- ---I--->{eonstant-exp ression}----r-------------------> 
--->{struetured-eonstantl---> 

value-del: 

---> value ---I---{value-assi g nment>---> ; ---r----------------------------> 
<------------------------------

Y..S!.!:.:' del : 

--> var 

l 

[ >{idl---~ ,--> --->{typel---> ---T------------------,> 
<__ , ------I 

<-------' 

162 Paseal/VS Reference Manual 



+ 

variable: 

-->{id}--> 
<-------------------------------------.~ 

> [ l 
>{expr}--~---> ] -----> 

<--- , -----' 

> . --->{id:fieldl-----------------> 

--------------------------------> 
~-----------------------------------------------------------------> 

variant-part: 

--> case 
r----------------->] 

---,-:-_-_-_>_{ f_l_" e_l_d_l_-_ -_ -_> ____ >] > { i d: type 1 > of -->] 

~>{rangel-~----> 
<-- , <-------' 

< 

whl1e-statement: 

( -----,---->{field-list}--~--> ) ~ ________________ >J ---,----> 

; <---------------------------------

-----> while --->{expr}----> do --->{statement}-------------------------------> 

with-statement: 

--> with --~---->{variable}-~---> do --->{statement}---------------------> L<______ , < ______ ~ 

Syntax Diagrams 163 





actual-parameters ........... 79 
array-structure ............. 20 
array-type .................. 42 
assert-statement ............ 84 
assignment-statement ........ 85 

base-scalar-type ............ 48 

case-statement .............. 86 
check~statement ............. 145 
compound-statement .......... 88 
constan1:. . . . . . . . . . . . . . . . . . .. 18 
constant-del ................ 24 
constant-expr ............... 71 
continue-statement .......... 89 
cpage-statement ............. 145 

declaration ................. 21 
def-dc I . . . . . . . . . . . . . . . . • . • .• 28 
directive ................... 61 

empty-statement ............. 90 
enumerated-scalar-type ...... 34 
expr .....................•.. 71 

factor ...................... 71 
fi eld ....................... 44 
field-list .................. 44 
fi Ie-type ................... 50 
fi xed-part .................. 44 
for-statement ............... 91 
formal ...................... 61 
formal-paramaters ........... 61 
function-heading ............ 61 
function-call ............... 79 

goto-statement .............. 93 

i d. . . . . . . . . . . . . . . . . . . . . . . . .. 13 
if-statement ................ 94 
include-statement ........... 145 
index-type ................. 42 

label ....................... 23 
label-del ................... 23 
leave-statement ............. 95 
list-statement .............. 145 

margins-statement ........... 145 
module ....................... 21 

TNL SN20-4446 (31 December 81) to SH20-6168-1 

page-statement .............. 145 
pointer-type ................ 57 
print-statement ............. 14 5 
procedure-call .............. 96 
procedure-heading ........... 61 
program-module .............. 21 

range. . . . . . . . . . . . . . . . . . . . . .. 44 
real-number ................. 18 
record-structure ............ 20 
record-type ................. 44 
repeat-statement ............ 97 
repetition .................. 20 
return-statemen~ ............ 98 
routine-del ................. 61 

segment-module .............. 21 
set-constructor ............. 81 
set-type. . . . . . . . . . . . . . . . . . .. 48 
simple-expression ........... 71 
skip-statement .............. 145 
space-type .................. 149 
statement. . . . . . . . . . . . . . . . . .. 83 
static-del .................. 27 
string ...................... 18 
string-type .....•........... 51 
structured-constant ......... 20 
subrange-scalar-type ..•..... 35 

term .......................• 71 
title-statement ............. 145 
type ............•.....•..... 31 
type-del. . . . . . . . . . . . . . . . . . .. 25 

unsigned-constant ........... 18 
unsigned-integer ............ 18 
unsigned-number .......•...•. 18 

value-assignement ........... 29 
value-del ................... 29 
var-dcl ..................... 26 
variable .................... 67 
variant-part ..............•. 44 

with-statement ........•. ~ ... 100 
while-statement ............. 99 

Appendix D. Index to Syntax Diagrams 165 





Actual parameter specifies what is to be 
passed to a routine. 

Array t~ is the structured type that 
consists of a fixed number of elements, 
each element of the same type. 

Assignment compatible is the term used 
to indicate whether a value may be 
assigne.d to a variable. 

Automatic variable is a variable which 
is allocated on entry to a routine and 
is deallocated on the subsequent return. 
An automatic variable is declared with 
the var declaration. 

Base scalar type is the name of the type 
on which another type is based. 

Bit is one binary digit. 

Byte is the unit of addresability on the 
System/370, its length is eight bits. 

Compati!?J!.!L-1~ is the term whi ch is 
used to indicate that operations between 
values of those types are permited. 

Component is the name of a value in a 
structured type. 

Constant is a value whi ch is ei ther a 
literal or an identifier which has been 
associated with a value in a const dec
laration. 

Constant expression is an expression 
which can be completely evaluated by the 
compiler at compile time. 

Dynamic variable is a variable which is 
allocated under programmer control. 
Explicit allocates and deallocates are 
required; the predefined procedures NEW 
and DISPOSE are provided for this pur
pose. 

Element is the component of an array. 

Entry routine is a procedure or function 
whi ch may be invoked from outs; de the 
module in which it is defined. The rou
tine i!) called entry in the module in 
which is defined. An entry routine may 
not be imbedded in another routine; it 
must be defined on the outermost level 
of a module. 

Enumerated scalar type is a scalar that 
is defined by enumerating the elements 
of the type. Each element is repres
ented by an identifier. 

External routine is a procedure or func
tion which may be invoked from outside 
the module in which the routine is 
defined. 

F i el d i~) the component of a record. 

File type ; s 
mechanism to 
Pascal/VS. 

E.O GLOSSARY 

a data type which is the 
do input and output in 

Fi xed part is that part of a record 
which exists in all instances of a par
ticular record type. 

Formal parameter is a parameter as 
declared on the routi ne headi ng. A 
formal parameter is used to specify what 
is permitted to be passed to a routine. 

Function is a routine, invoked by coding 
its name in an expression, which passes 
a result back to the invoker through the 
rout i ne name. 

I dent if i er is the name of a declared 
item. 

Index is the selection mechanism applied 
to an array to identify an element of 
the array. 

Internal routine is a routine which can 
be used only from wi thi n the lexi cal 
scope in which it was declared. 

lexical scope identifies the portion of 
a module in which a name is known. An 
identifier declared in a routine is 
known within that routine and within all 
nested rout i nes. I f a nested rout i ne 
declares an item with the same name, the 
outer item is not available in the 
nested rout i ne. 

Module is 
Pascal/VS. 

the compi lable uni t in 

Offset is the selection mechanism of a 
space. An element is selected by plac
i ng an integer value in parenthesi s. 
The origin of a space is based on zero. 

Packed record tY£g is a record structure 
in whi ch fi elds are allocated in the 
minimum number of bytes. Implementation 
defined alignment of data types will not 
be preserved in order to pack the 
record. Packed records may not be 
passed by read/write reference. 

Pass by read only reference is the 
parameter passing mechanism by which the 
address of a variable or temporary is 
passed to the called routine. The 
called routine is not permitted to modi
fy the formal parameter. If the actual 
parameter is an expression, a temporary 
will be created and its address will be 
passed to the called routine. A tempo
rary is also created for fields of 
packed records. 

Pass bv read/write reference is the 
parameter passing mechanism by which the 
address of a variable is passed to the 
called routine. If the called routine 
modifies the formal parameter, the cor-

Glossary 167 



responding actual parameter is changed. 
Only variables may be passed via thi s 
means. Fi elds of packed records wi 11 
not be. permi tted to be passed in thi s 
way. 

Pass by value is the parameter passing 
mechanism by which a copy of the value 
of the actual parameter is passed to the 
called routine. If the called routine 
modifies the formal parameter, the cor
responding actual parameter is not 
affected. 

Pointer type is used to define variables 
that contain the address of dynamic var
iables. 

Proc~~ure is a routine, invoked by cod
ing its name as a statem~nt, which does 
not pass a result back to the invoker. 

Pr09Dru" module is the name of the com
pilable unit which represents the first 
unit executed. 

Record~ is the structured type that 
contains a series of fields. Each field 
may be of a type different from the 
other fields of the record. A field is 
selected by the name of the field. 

Reserved word is an identifier whose use 
is restricted by the Pascal/VS compiler. 

Routine is a unit of a Pascal/VS program 
that may be called. The tl-JO type of 
routines are: procedures and functions. 

Scalar type defines a variable that may 
contain a single value at execution. 

~egmen~mpdule is a compilable unit in 
Pascal/VS that is used to contain entry 
routines. 

Set ty.J?.g is used to defi ne a vari able 
that represents all combinations of ele
ments of some scalar type. 

168 Pascal/VS Reference Manual 

Space type is used to define a variable 
whose components may be posi t i oned at 
any byte in the total space of the vari
able. 

Statement is the executable un it ina 
Pascal/VS program. 

Stri n9 represents an ordered list of 
characters whose size may vary at exe
cution time. There is a maximum size 
for every string. 

string constant is a string whose value 
is fixed by the compiler. 

Structured ty..e§ is anyone of several 
data type mechanisms that defines vari
ables that have multiple values. Each 
value is referred to generally as a com
ponent. 

Subrange scalar type is used to define a 
variable whose value is restricted to 
some subset of values of a base scalar 
type. 

Tag field is the field of a record which 
defi nes the structure of the vari ant 
part. 

.!Y£.g defi nes the permi ssi ble values a 
variable may assume. 

Type definition is a specification of a 
data type. The specification may appear 
in a type declaration or in the declara
~ion of a variable. 

Type identifier is the name given to a 
declared type. 

Variant part is that portion of a record 
which may vary from one instance of the 
record to another. The variant portion 
consi sts of a seri es of var i ants that 
may share the same physical storage. 



~)eCial Characters I 
< operator 36, 37, 39, 40, 41, 52, 54, 

55 
« operator on INTEGERs 36, 78 
<> operator 36, 37, 39, 40, 41, 48, 52, 
54, 55 

<= operator 36, 37, 39, 40, 41, 48, 52, 
54, 55 

+ operator 36, 40, 41, 48 
I operator 36, 39 
II operator 52 
& operator 36, 39 
&& operator 36, 39, 48 * operator 36, 40, 41, 48 
~ operator 36, 39, 48 
- operator 36, 40, '41, 48 
/ operator 36, 40, 41 
~ statements 145 

CHECK 146 
CPAGE 146 
INCLUDE 146 
LIST 146 
PAGE 146 
PRINT 146 
SKIP 146 
TITLE 146 

> opere' tor 36, 37, 40, 41 
> operator 39, 52, 54, 55 
» operator on INTEGERs 36, 78 
>= operator 36, 37, 39, 40, 41, 48, 52, 
54, 55 

= operator 36, 37, 39, 40, 41, 48, 52, 
54, 55 

~I 
ABS function 36, 37, 40, 41, 131 
adding operators 74 
ALFA operators 54 
ALFA predefined type 54 
ALPHA operators 55 
ALPHA predefined type 55 
and operator on INTEGERs 78 
ARCTAN function 40, 41, 133 
array referencing 67 
array structured constants 20 
array subscripting 42 
array type 42 
assert statement 84 
assignment of compatible types 32 
assignment of function value 85 
assignment statement 85 

binary integer constants 18 
BOOLEAN expressions 77 
BOOLEAN operators 39 
boolean predefined type 39 

case statement 86 
CHAR operators 37 
char predefined type 38 
CHECK compiler directive 146 
CHR function 36, 125 
CLOCK function 143 
CLOSE procedure 107 
COLS function 116 
comments 17 
COMMON (FORTRAN) 28 
compatible types 32 
compile time initialization 29 
compound statement 88 
COMPRESS function 52, 139 
conformant STRING parameters 62 
const declaration 24 
constant declaration 24 
constant expression 71, 76 
constant expressions 18 
constants 18 
continue statement 89 
conversions 31 
conversions on a string 52, 53 
COS function 40, 41, 132 
CPAGE compiler directive 146 

data alignement 59 
data storage requriements 59 
DATETIME procedure 143 
declaration 21, 23 
declaration order 22 
def variable declaration 28 
DELETE function 52, 137 
directives 61 
DISPOSE procedure 57, 120 
divoperator 36 
div operator defined 37 
downto in the for statement 91 
dynamic variables 57, 68 

EBCDIC 38 
empty statement 90 
enumerated scalar 34 
EOF function 109 
EOLN function 115 
example of 

array declarations 42 
array indexing 43 
assert statement 84 
assignment statement 85 
BOOLEAN expressions 77 
case statement 86 
compound statement 88 
COMPRESS function 139 
conformant strings 63 
const declaration 24 
const parameter 65 

Index 169 



constant expressions 76 
constants 19 
continue statement 89 
def declaration 28 
DELETE function 137 
enumerated scalar 34 
EOF procedure 109 
expressions 73 
EXTERNAL function 63 
fields in a record 68 
file decalarations 50 
for statement 92 
function 79 
function returning a record 65 
goto statement 93 
HBOUND function 123 
HIGHEST function 122 
if statement 94 
INDEX function 139 
initializing an array 29 
label declaration 23 
LBOUND function 123 
leave statement 95 
logical expressions 78 
LOWEST function 122 
LTRIM function 138 
MARK and RELEASE 118 
nested comments 17 
NEW procedure 119, 120 
offsets in a record 47 
otherwise in a case statement 87 
procedure invocations 96 
procedures and functions 65 
program module 22 
READ procedure 10~, 110, 111 
READSTR procedure 140 
record declarations 45 
recursive function 65 
ref declaration 28 
repeat statement 97 
ROUND function 127 
scalar function 126 
SEGMENT module 22 
set decalaration 48 
space type 149 
static declaration 27 
structured constants 20 
subrange 5~~lar 35 
subscripting an array 68 
SUBSTR function 137 
TOKEN procedure 140 
TRIM function 138 
TRUNC function 127 
type compatibility 33 
type declaration 25 
UPDATE procedure 106 
using a file 69 
using pointers 68 
using STRINGPTR 58 
using STRINGs 51 
using variables 67 
value declaration 29 
var declaration 26 
variant record 45, 46 
while statement 99 
with statement 100, 101 
WRITE procedure 112, 113 
WRITESTR procedure 141 

execution time string allocation 58 
EXP function 40, 41, 133 
expression 71 

170 Pascal/VS Reference Mar-ual 

EXTERNAL directive 61 
EXTERNAL routines 63 
external variable 28 

factor 71 
field 44, 46 
field list 44 
field referencing 68 
file referencing 68 
fi Ie type 50 
fixed part of a record 44, 45 
FLOAT function 36, 126 
for statement 91 
formal parameter 62 
formal parameter list 61, 62 
FORTRAN directive 61 
FORTRAN routines 63, 64 
FORWARD directive 61 
FORWARD routines 63 
function calls 79 
function declarartion 61, 62 
function heading 61 
function parameters 62 
function results 65 
functions in constant expressions 76 

GET procedure 107 
goto statement 93 

HALT procedure 142 
HBOUND function 52, 123 
heap 57 
hexadecimal integer constants 18 
hexadecimal real constants 18 
hexadecimal string constants 18 
HIGHEST function 36, 37, 39, 122 

identifiers 13 
if statement 94 
implicit conversions 31 
in operator 48 
INCLUDE compiler directive 146 
INDEX function 52, 139 
initialization 29 
initializing the Pascal runtime envi-
ronment 64 

INTEGER operators 36 
INTEGER predefined type 36 
INTEGER storage mapping 36, 37 
interlanguage communication 64 
internal routines 63 



GJ 
label declaration 23 
label format 23 
lBOUND function 52, 123 
leave statement 95 
LENGTH function 51, 52, 136 
lexical level 13 
lexical scope 13 
LIST compiler directive 146 
lN function 40, 41, 134 
logical expressions on INTEGERs 78 
logical operations on integers 31 
lOWEST function 36, 31, 39, 122 
LTRIM function 52, 138 

~J 
MAIN directive 61 
MAIN routines 63, 64 
MARK procedure 51, 118 
MAX function 36, 31, 39, 40, 41, 129 
MAXINT 36 
MAXLENGTH function 51, 52, 136 
MIN function 36, 31, 39, 40, 41, 129 
MININT 36 
mod operator 36 
mod operator defined 31 
module 21 
module, structure 21 
multi-dimensional array 42 
multi-dimensional arrays 67 
multiplying operators 14 
mutually recursive routines 63 

~] 
NEW procedure 57, 119 
not operator 14 
not operator on INTEGERs 78 

ODD function 36, 37, 131 
offset quailfication 46 
operat i ()ns on 

ALFA 54 
ALPHJ\ 55 
BOOLEAN 39 
CHAR 38 
INTE(;ER 36 
REAL 40 
set 48 
SHORl'REAL 41 
STRIf',IG 52 

operator precedence 11 
operator's 74 
or operator on INTEGERs 78 
ORO function 31, 39, 125 
order of evaluation of BOOLEAN expres
sions 77 

order of evaluation of expressions 71 

PACK procedure 121 
packed array 42 
packed record 46 
packed set 48 
packed subrange 35 
PAGE compiler directive 146 
PAGE procedure 115 
paramater 62 
parameters 61 
parenthasized expression 71 
PARMS function 144 
pass by const parametars 62 
pass by read-only reference 
parameters 62 

pass by reference parameters 62 
pass by value parametars 62 
pass by var parameters 62 
PDSIN procedure 105 
PDSOUT procedure 106 
pointer referencing 68 
pointer type 57 
PRED function 36, 37, 130 
PRINT compilar directive 146 
procedure call statement 96 
procedure declaration 61 
procedure heading 61, 62 
procedure parameters 62 
program module 21 
PUT procedure 108 

RANDOM function 135 
READ procedure 109, 111 
Reading 

CHAR Data 110 
INTEGER Data 110 
packed array of CHAR Data 110 
REAL (SHORTREAL) Data 110 
STRING Data 110 
Variablas with a Length 110 

READLN procedure 109 
READSTR procedure 52, 140 
real constants 18 
REAL operators 40 
real predefined type 40 
record structured constants 20 
record type 44 
REENTRANT directive 61 
REENTRANT routines 63, 64 
ref variable declaration 28 
relational operators 74 
RELEASE procedure 57, 118 
repeat statement 97 
reserved words 15 
RESET procadure 103 
restrictions on a goto statement 93 
restrictions on file type 50 
restrictions on routines 63 
restrictions using the MAIN 
directive 64 

restrictions using the REENTRANT direc-
tive 64 

RETCODE procedure 144 
return statement 98 
revision codes iv 
REWRITE procedure 104 
ROUND function 40, 41, 127 

Index 171 



routine declarartion 61, 62 
routine parameters 62 

same type 32 
scalar conversion functions 80, 126 
scope 13, 44 
SEEK procedure 108 
SEGMENT module 21 
seprate compilation 63 
set operators 48 
set type 48 
short circuiting of BOOLEAN 
expressions 77 

SHORTREAL operators 41 
shortreal predefined type 41 
simple expression 71 
SIN function 40, 41, 132 
SIZEOF function 36, 37, 39, 40, 41, 48, 

52, 54, 55, 124 
SKIP compiler directive 146 
space declaration 149 
space element referencing 149 
special symbols 16 
SQR function 36, 40, 41, 135 
SQRT function 40, 41, 134 
statements 83 
static variable declaration 27 
storage mapping for a set 48 
storage mapping of a record 46 
STR function 37, 54, 55, 128 
STRING 58 
string constants 18 
STRING operators 52 
STRING parameters 62 
string type 51 
strings 31 
structured constants 20 
subrange scalar 35 
SUBSTR function 52, 137 
SUCC function 36, 37, 130 

tag field 45 
term 71 
TERMIN procedure 104 
TERMOUT procedure 105 
TEXT predefined type 56 
TITLE compiler directive 146 

172 Pascal/VS Reference Manual 

to in the for statement 91 
TOKEN procedure 140 
TRACE procedure 142 
TRIM function 52, 138 
TRUNC function 40, 41, 127 
type compatibility 31 
type conversions 31 
type declaration 25 
type identifier 25 
type matching 32 
types 31 
types of routines 63 

UNPACK procedure 121 
unsigned-integer constants 18 
UPDATE procedure 106 
user definfed types 31 

value declaration 29 
var declaration 26 
variable declaration 26 
variable identifier 26 
variables 67 
variant part of a record 44, 45 

while statement 99 
with statement 100 
WRITE procedure 112, 114 
WRITELN procedure 112 
WRITESTR procedure 52, 141 
Writing 

BOOLEAN Data 113 
CHAR Data 113 
INTEGER Data 113 
Packed Array of CHAR Data 114 
REAL Data 113 
STRING Data 113 



+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

I 
+ 
+ 
+ 
+ 
+ 

I 
+ 
+ 
+ 
+ 

arrays or records wi th structured 
fields. 

type 
COMPLEX = record 

VECTOR 
CARRAY 
TETRA 

const 

RE,IM: REAL 
end; 

= array[1 .. 7] of INTEGER; 
= arrayeO .. 9] of COMPLEX; 
= array [1 .. 3,1 .. 2,1 .. 4] 

of INTEGER; 

{ Structured Constants } 
THREEFOUR = COMPLEX(3.0,4.0); 
VECTOR 1 = VECTOR(7,0:5~1); 
VECTOR-2 = VECTOR(2,3,,4); 
ZEROTET'RA = 

TETRA( 
( (0:4):2 ), 
( (0:4),(0:4) ), 
«0,0,0,0),(0,0,0,0) ); 

{the following two declarations 
are equivalent } 

VECTOR_3 = CARRAY( 
COMPLEX(1.0,O.0), 
COMPLEX(1.0,1.0):8, 
COMPLEX(O.O,l.O»; 

VECTOR_4 = CARRAY( 
(1.0,0.0), 
(1.0,1.0) :8, 
(0.0,1.0»; 

+ Examples of Structured Constants 
+ 
+ 

TNL SN204446 (31 December 81) to SH20-6168-1 

type 
FORM = (FCHAR,FINTEGER,FREAl, 

FSTRING)j 
KONST = 
record 

SIZE: INTEGER; 
case F: FORM of 

FCHAR: (C: CHAR); 
FINTEGER: (I: INTEGER); 
FREAl: (R: REAL); 
FSTRING: ( 

case BOOLEAN of 
TRUE: ( 

LEN: packed 0 .. 32767; 
A : ALPHA); 

FALSE:(S: STRING(16»; 
end 

const 
A = KONST(l,FCHAR,'A'); 
PI = KONST(8,FREAL,3.14159)j 
BLANK = 

KONST(l,FSTRIHG.FALSE,' '); 
STARS = 

KONST(4,FSTRING,TRUE,4,'****')j 

Structured constants with 
variant record fields 

The Base Vocabulary 20.1 



TNL SN20-4446 (31 December 81) to SH20-6168-1 

20.2 Pascal/VS Reference Manual 



§ : ::§.~ {eChnical Newsletter ~/TE 

PASCAL/VS 
Language Reference Manual 

Program Number: 5796-PNQ 

This Newsletter No. SN20-4446 

Date 31 December 1981 

Base Publication No. SH20-6168-1 
File No. 

Prerequisite Newsletters None 

This Technical Newsletter provides replacement pages for the subject publication. 
Pages to be replaced are listed below. 

Cover 
v/vi 
11/12 
19/20 
20.1/20.2 
27/28 
29/30 
35 - 40 
45/46 
51/52 
63/64 
67/68 
73/74 
75/76 
89/90 
95/96 
113/114 
117/118 
118.1/118.2 
125/126 
135/136 
137/138 
139-142 
145/146 
146.1/146.2 
157/158 
165/166 

Note: File this cover page at the back of the manual to provide a record of changes. 

IElM Corporation, Marketing Publications, Dept. 825,1133 Westchester Ave., White Plains, N.Y. 10604 

Printed in U.S.A. 



PROGRAM SERVICES 

Central Service will be provided until otherwise notified. Users will be given a minimum of 
six months notice prior to the discontinuance of Central Service. 

During the Central Service period, IBM through the program sponsor(s) will, without addi
tional charge, respond to an error in the current unaltered release of the program by issuing 
known error correction information to the customer reporting the problem and/or issuing 
corrected code or notice of availability of corrected code. However, IBM does not guarantee 
service results or represent or warrant that all errors will be corrected. 

Any OIl-site program service or assistance will be provided at a charge. 

WARRANTY 

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WAR· 
RANTY OF ANY KIND EITHER EXPRESS OR IMPLIED. 

Central Service Location: IBM Corporation 
555 Bailey Avenue 
P.O. Box 50020 
San Jose, CA. 95150 
Attention: Mr. Larry B. Weber 
Telephone: (408) 463·3159 
Tieline: 8-543-3159 

IBM Corporation 
DPD, Western Region 
3424 Wilshire Boulevard 
Los Angeles, California 9QOI0 
Attention: Mr. Keith J. Warltier 
Telephone: (213) 736-4645 
Tieline: 8-285-4645 

Second Edition (April 1981) 

This is the second edition of,SH20-6168 , a publication that applies to release 2.0 
of the Pasca1/VS Compiler (IUP Program Number 5796-PNQ). 

References in this publication to IBM products, programs, or services do not imply 
that IBM intends to make these available in all countries in which IBM operates. 

Publications are not stocked at the address given below; requests for copies of IBM 
publications should be made to your IBM representative or to the IBM.branch office 
serving your locality. 

A form for readers' comments has been provided at the back of this pUblication. If 
the form has been removed, address comments to: The Central Service Location. 
IBM may use or distribute any of the infonnation you supply in any way it believes 
appropriate without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1980, 1981 



PASCAL/VS 
Language Reference Manual 

Program Number: 5796-PNQ 

This Newsletter No. SN20-4451 
Date 19 Feb 82 

Base Publication No. SH20-6168-1 
File No. 

Prerequisite Newsletters SN20-4446 

This Technical Newsletter provides replacement pages for the subject publication. 
Pages to be replaced are listed below. 

Cover - Inside Cover 

Note: File this cover page at the back of the manual to provide a record of changes. 

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plains, N.Y. 10604 

Printed in U.S.A. 



Q) 
+-' o 
Z 

Pascal/VS: 5796-PNQ 
Language Reference Manual 

SH20-6168-1 

READER'S 
COMMENT 
FORM 

You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you 
supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, is 
deemed appropriate. Comments may be written in your own language; use of English is not required. 

Note: Copies of IBM publications are not stocked at the location to which this fomz is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 
Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

Number of latest Newsletter associated with this pUblication: ----------------------------
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the title page.) 



SH20·,6168-1 

Reader's Comment Form 

Fold and tape Please Do Not Staple fOld and tape 

I 
............................................................................................................................................................................................................... I 

Fold and tape 

==..= =CIi) - -------- ---- - - ----------_.-

IIIII 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department 6ay 
P.O. Box 2750 
225 John W. Carpenter Freeway, East 
Irving, Texas 75062 -

Please Do Not Staple 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

"tI 
Q) 
II) 
(") 
Q) 

.::::: 
< en 

r
Q) 

:::3 
co 
C 
Q) 
co 
(1) 

::0 
(1) -(1) 

@ 
~ 
(") 
(1) 

s: 
Q) 

~ 
c 
~ 



S H20-6l6B-l 

--- -(R, ----------- --.. _ .... -- - - ---

." 
Q) 
en 
(") 
Q) 

.::::::. 
< 
CJ) 

r 
Q) 

::J 
co 
C 
Q) 
co 
(1) 

::x:J 
(1) -(1) 

""" (1) 

::J 
(") 
(1) 

~ 
Q) 

::J 
C 
~ 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118.0
	118.1
	118.2
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146.00
	146.1
	146.2
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	20.1
	20.2
	_1
	_2
	_3
	replyA
	replyB
	xBack

