PPl
i

Program Product

SC24-5145-1
File No. S370-30

VSE/VSAM
Programmer’s Reference

Program Number 5746-AM2
Release 2

Second Edition (December 1979)

This edition, SC24-5145-1, is a major revision of SC24-5145-0. It applies to Release 2 of Virtual
Storage Extended/Virtual Storage Access Method (VSE/VSAM), Program Product 5746-AM2,
and to subsequent releases and modifications until otherwise indicated in new editions or
Technical Newsletters. Changes are continually made to the information herein; before using
this publication in connection with the operation of IBM systems, consult the latest /BM
System/370 and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable
and current.

Summary of Amendments
For a list of changes, see page iii.
A change to the text or to an illustration is indicated by a vertical line to the left of the change.

It is possible that this material may contain references to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should be
made to your IBM representative or the the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Programming Publications, Dept.
G60, P.O. Box 6, Endicott, New York, U.S.A. 13760. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979

b mage: - Y

.~ Gilfin S v

s e &

. oot

Summary of Amendments

for VSE/VSAM Programmer’s Reference

Summary of Amendments
for SC24-5145-1
VSE/VSAM Release 2
§C24-5 145-1 contains information about the following line
items:
¢ Dedicated VSAM volume.
e Share option 4 performance improvement.
e DASD sharing.
® Additional space classes.
¢ Dynamic files.
¢ Default volumes.
¢ File disposition parameters.

¢ Default models: Chapter 6 is new; it explains the differ-
ent kinds of models and how to use them, along with
listing which parameters can be modeled under different
circumstances.

Job control simplification: Chapter 4 explains when you
can omit DLBL, EXTENT, and ASSGN statements
from your job control for the catalog and file when run-
ning application programs and Access Method Services
commands.

Where possible, DLBL, EXTENT, and ASSGN state-
ments have been removed from coding examples. Al-
though you may continue to specify full DLBL, EX-
TENT, and ASSGN statements, in most cases it is not
necessary to do so.

VSE/VSAM Space Management for SAM Feature: This
manual contains storage estimates, job control, and file
disposition information for managed-SAM files. For
further information, refer to Using the VSE/VSAM
Space Management for SAM Feature, SC24-5192.

Summary of Amendments iii

iv VSE/VSAM Programmer’s Reference

This manual is for people who provide technical
support for VSE/VSAM users.

This includes the system console operator and sys-

tem programming and planning personnel who are
responsible for system design and maintenance.

The chapters are in modular format to permit you to
insert them into the associated VSE publications
(when applicable) if you wish. The major topics
contained in this manual are:

System generation
Operating procedures
Storage estimates

Job control

Modeling

Catalogs

VSAM labels

ISAM Interface Program
Data interchange
Performance optimization
VSE/VSAM data protection

The operating procedures, system generation, stor-
age estimates, job control, and VSAM labels chapters
contain information about parameters, procedures,
field descriptions, etc. that are unique to VSAM.
They supplement the information in VSE/Advanced
Functions Operating Procedures, SC33-6097,
VSE/Advanced Functions System Generation, SC33-
6096, VSE/Advanced Functions System Control
Statements, SC33-6095, and VSE/Advanced Func-

Preface

tions DASD Labels, SC24-5213, respectively. A
general knowledge of these publications, along with
Using VSE/VSAM Commands and Macros, SC24-
5144, is a prerequisite to this volume; continue to
refer to these manuals for general information about
VSE.

The 1SAM Interface Program (IIP) chapter presents
information to help you determine whether your
existing ISAM programs can use the IIP to process
files that have been converted from ISAM format to
VSAM format.

The performance guidelines chapter is in response to
requests we’ve received for such information. Al-
though great care has been taken to ensure accuracy,
this chapter contains guidelines, not rules, for en-
hancing your system’s efficiency. This kind of in-
formation is difficult to present because of the great
number of variables that exist; not everything will be
true for all installations under all conditions. We do
hope you find this chapter generally useful, but you
should be aware that the material it contains may
require altering, depending on the needs of your
installation.

The vSAM data protection information and some of
the performance optimization material formerly
appeared in DOS/VS Access Method Services User’s
Guide.

Preface v

vi VSE/VSAM Programmer’s Reference

Contents

Chapter 1: SystemGenerationottt 1-1
Supervisor Generation MAcrOSouvitiiniieiietieineentiitrnrineirinrananans 1-1
SU PV R it i e e et e e aas 1-1
20) - 1-1
00 2 7 1-1
VSE/VSAM IDStallationoiuiintiiuiei i it ii it tiriainernennennns 1-2
Chapter 2: Operating Procedurescoiiiiiiiiiiiiiiiiiiniinnnnns 2-1
1 P 2-1
Executing @ JOD StePottt e 2-1
ALLOC (System/370-Mode Only)cooviiiniiiiiiiiiiiiiinneineneneenss 22
Volume MOURLINGovutiiintiiniint ittt tenreeetnenneensennesnnennens 23
Chapter 3: Reserving Storagefor VSE/VSAMoiiiiiiiiiiiiiinnnn, 3-1
General ConSiderationsoouiiietiiiiiiiii it it i i e 3-1
VSAM Data Management Modules (5745-SC-VSM)cciiiiiiiiiiiiinninnnens 3-1
CoreImage LIbraryc.oiuiinniiiniiiiiiiiiiiiiiieiiiineeneenns 3-1
Relocatable Librarycooiiiniiiiiiiiiiiiitiiiiiintriitineeineenesnnss 3-2
Source Statement Libraryciiiiiiiiiiiiii i e 34
VSE/VSAM Space Management for SAMFeaturecooviiiiiiiiinnnennnn, 34
CoreImage Libraryooiiiiiiiiiiiiiii ittt 34
Relocatable Libraryouiitiniuiiniiniiiiiiiiiiiiiiiiiiiiiiiieneneenss 34
ISAM Interface PrOGramootiinintiinttiieriinernnnerneeennennneneeannonns 35
CoreImage Libraryc.ciiiniiininiiiiiiiiiiiiiiineeneeineennennns 35
Relocatable Libraryouiiniiiiiiiiiiiiiii ittt eiinnenes 3-5
VSAM/VTAM Common Macros (5745-SC-VCM)coviiiiinieneininnenennne. 35
Source Statement LIbraryottt 3-5
Access Method Services (5745-SC-AMS)ciiniiiiiiiiiiiiiiiiiiiiiiieas 3-6
CoreImage Librarycoiuiiiiiiiiiiiiiiiiii ittt 3-6
Relocatable Libraryccoiuiiiiiiiiiiiiiiiiiiiiiiiiieiirinreneennanns 3-6
Storage REqUITEMENLSoiuttiittiiiiiiiiiiiiiiit i ineeineeneeineenees 3-7
B 7N 37
VSE/VSAM Space Management for SAMFeaturec.ocviiiiinennnnnnnns 3-8
ISAM Interface PrOGIAM oovueiintinteneeenineronneronennsonnesoneansenns 39
Access Method Serviceso.tiniiiiiiiii ittt 39
Chapter4: JobControlttt ittt 4-1
Use of DLBL, EXTENT, and ASSGN Statementscoiuuveeeineennnnnns 4-1
Catalog Job Control Statementsoviutteeriinnerrnneeeennnsenennenns 4-1
File JobControl Statementsciuiiiiininnrntrneenrneenenncnennannns 43
) 1 44
BXEC .ottt e e e re e aaas 45
%, 4 1 21 1 4-6
File Dispositionouiiuiiniiniiniiiiiiiiiii ittt et eaiaeiineaeians 47
Access Method Services Inputand Qutput Filesccoiviiiiiinnnnnnnnn. 4-10
Magnetic Tape Considerationsc.ccviiiiiiinnineenennennennnnnnsn 4-11
Chapter 5: VSAM Catalogsoiittiiiiiiiit it iieeineeentenneanennnnns 5-1
Specifying a VSAM Catalog’s Job Control Statementscccvviveinnnnnn. 5-2
Specifying the Master Catalog’s Job Control Informationccuunn.. 5-2
Specifying a User Catalog’s Job Control Informationccccvvueenennn.. 5-2
Using @ Job Catalogooeiitiitiiiitt it iieieerenrinraeeneaneneananeanes 5-2
VSAM Hierarchy of Catalogscouviitiitii i iii ittt eiearenennananans 5-4
A Catalog’s Use in Data and Space Managementcocviiiieienenenenn. 5-5
VSAM Volume Ownershipovvivvinninnenn, ettt 5-5
Volume Mounting Requirementscoiuiiiiiniiiniiiernnreneesnennnsns 5-7
Information Contained in the EntriesofaCatalogccovviiinnenninnnnnn. 5-8
Transporting Files Between Systemsouiinueiintinnernnrenreenernnrenennns 5-8
Catalog and File Migrationc0iiitetinntiiie it ennnennrenneennnnneennnnnen 5-8
Defining a Catalogouiniiiiiiiiiiiiii i eriiieriaeenrieieneienaans 5-8
Defining aData SPaCEoititiiiiiie ittt ittt i 5-9
Defining a Non-Unique Cluster or Alternate Indexc.ovvienninennnnannn. 5-9

Defining a Unique Cluster or Alternate Indexccoiiiiiiiiinenn.n.. 5-9

Migrating a Catalog to Another Deviceoviutiiiieininnninnennnenneennss 5-10
Migrating VSAM Files to Another Deviceooiiiiienieinnennnennennnns 5-10
NONVSAM MIGrationccuiuitiiiinteninneneenrenenneneeneroensenennnns 5-11
Space Allocation via Modelingcooiiiiiiiiiii i e 5-11
Chapter 6: How to Use One Object as a Model for Another Object and
Override SystemDefaultscc.iiiiiiiiiiiiiiiiiiiieennen. 6-1
Explicit Allocation Modelsottt it i i, 6-1
Noallocation MOdelsoiiiiiieiiiiiiii ittt iiitietninenarinarnannnes 6-3
Explicit Noallocation Modelsccociiiiiiiiiiiiiiiiiiiiiiiiennennenaen. 6-3
Default Modelsottt ittt ittt rnaeaas 64
How VSAM Determines which ParameterstoUseccoiiiiiiieiinnnnnnnn. 64
Default Volumesottt it et ettt et i eeas 6-7
Chapter7: VSAMMULAabelsottt ittt iiiiieianrnennanns 7-1
Volume LAYOULSotttttiitettnnnerenennneeeeenneeeannnneeeansaennnnnnn 7-2
Label Information ATeaoiiuiiieiiiitiineinitinnereneenneeneraneanns 7-2
VTOC Label ProCesSINgcutiiuitiutinueenneeeneeearoeneennronaeoneranennns 7-2
Gemeral e e e it e et 7-2
VSAMDALE SPACE iuitttiiinttiiietereneneeeseesaeesesnesesennasosannes 7-4
7N 3 L 7-5
Chapter 8: ISAM Interface Programccciiuiiiiiiiienieinnrnnnennenns 8-1
Comparison of VSAM and ISAM ittt iiiiniennneeeannnes 8-1
Differences Between ISAM and VSAMciiiiiiiiiiiieeniienennnannns 8-1
VSAM Functions that gobeyond ISAMcciiiiiiiiiiiiiiiieenneennenns 8-2
Howto Use the ISAMInterfaceocvuiiniiiiieiiiiiiiiiiiieieneenenennes 83
What the ISAM Interface Program Doescciiiiiiiiiieinninnennnnnenenns 8-5
Restrictions in the Use of the ISAM Interface Programcoooviiiiniiiinenn. 8-7
Chapter 9: Optimizing VSAM’s Performanceccoiiiiiiiiiiiineenennn. 9-1
Data Space ClassificBtionociiutiinteinerinernnerenreneeeneeanneaneennns 9-1
MIN-CAMAX-CA ...ttt iittt et ettteentaenesoaroenerosesnasennsonns 9-3
ControlInterval Sizeccvviiiiiiiiiiiiiiiiiiiiiiinennns M eeeereraaeeaa, 9-4
INdex CI SiZEottt it ettt e ettt aaeaes 9-6
Data CI Size and Physical Record Sizeccviuiiiiiiiiiiienneerneennns 9-7
Control ATEB SHZE v ottt ie ittt ittt i i e 9-9
L/ O BUf el SPACEiiiivttttiiineeennneeeeennnaeeronasseensnseesnnnsasennnas 9-10
Buffer Specificationc.iiiiuietiiiiiiit ittt e 9-11
Buffer Allocation (Using Nonshared Resources)c..ovveviiiinieninineeenn 9-12
Buffer Allocation foraPathc.ccoiiiiiiiiiiiiiiiiiiiiiiiiieiieineennns 9-14
Miscellaneous Notes on Buffer Allocationc.coiievinnernerneeenaeenens 9-14
Multiple Volume Supportcoiutiiiiiiitiiiiiitiitiinireetnnareenneeosnnnns 9-15
Suballocation when No Key Rangeis Specifiedcoovviiiiiiint, 9-15
Suballocation when a Key Rangeis Specifiedccovviiiiiiiiiiiinenn, 9-15
UNORDEREDiiiiiiitiiittiittiitieateeneianteenerancsntesnernnannns 9-16
ORDEREDiiitiiittii ittt itie et eetetensesnasanssancsnssnnnsnns 9-16
Allocation of Space on Multiple Volumescoiiiiiiiiiiiiiiiiiieeens 9-16
N 14T 10 9-20
NOALLOCATION ...ttt tenttentrietanteianesntenncsneesnnonns 9-21
Data Security and Integrity Optionscoiitiiiiiriiiiiieeriineeenneeeens 9-22
Distributed Free Spacecceueiiiiiiiiiiiiiiiiitteereerenrotnennnnnnennns 9-23
Loadinga Fileottt ittt ittt niiaeeanns 9-23
(03 770780 7 P 9-25
INAEX OPUOMS . ..o vvt ittt ittt ittt eeaeeensesnnesanesneinnseancnnsenens 9-33
Number of Index Recordsin Virtual Storagecoviiiiiiiineineeniennns 9-33
Index and Data on Seperate VOIUmeSc.covviiiiiiiinniieinneeinneeenns 9-33
Sequence Set Records Adjacent to Control Areasccovvviniiinniiieennnns 9-33
Replication of INdeX RECOTdSciiiuiiiiiiintiinteneiiiinienneinnennns 9-34
Imbedded IndeXx ReCOTdSivii ittt ittt ittt iiiaeeeinaannns 9-35
Performance Measurementccvviiuuterennneeeionneeeesnsseesnnnenns 9-35
Chapter 10: Data Interchange Considerationsccooviiiiae, 10-1
VSE/VSAM ReleASE 2ttt viiettiiineeeneenneeosnneneseenanesssnseeesannnesens 10-1
DASD Sharingouuintiueiuiininuineiieineitonsenessensoieaiennennsns 10-1

viii ~ VSE/VSAM Programmer’s Reference

SHAREOPTIONS(4) Enhancementccoouvuttiiiinneeeeennnneeeannneenns 10-1

Catalog Management Performance Improvementcoovviineiinennnnnns 10-1
Access Method Services CANCEL Commandccovvivinriinnenneinnennns 10-1
Control Area Split Integritycciiiiiiiiiiiiiiiiiiiiiiiieiiineeenennnes 10-2
Dedicated VSAM VOIUMEo iiiiiiiitiiiiietttetnnnneeeesenanscsnnancns 10-2
Additional Classes Of SPACEiviiiiueetrriinierreersensssesssnneennnns 10-2
DynamiC Filesottt it it it i it 10-2
Disposition Parametersfora Fileoiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnn, 10-3
Default MOdelsovtiiiiiitttiiitiiiaetinttiinteineeeneeonsenneennsenns 10-3
Default VolumeSttt iiiiiiiii i iiiiineeeeesennnnseeesssnaneesnnnnseons 10-3
Job Control SImplificationccoueetiiiiiiiieterrernnaeeenennnceennnes 10-3
Partition/Processor Independencecoviiiiiiiiiierreteeeteatetieaaans 10-3
VSE/VSAM Space Management for SAM Feature - « -+« ««cvvevtenrenteieenenneneanens 10-3
VSE/VSAMERelCase |ottt iiint it einntennenneeennenns 10-4
NOIMBED fOr Catalogscovutiiiueennneenneeenneeenessnneenseensennns 10-4
Control Interval Split Integrityovviiintiiiniiiiiiineiieeineenneennss 10-4
Fixed Block Architecture SUPPOItcovetiiiiiiiiinieiiriinneeeennnceenns 10-5
Data Space Classification SUPPOTtccviuetiiiniiinieriierineenneenacanens 10-5
New Physical Record Sizecvviiniiiiiiiiiiiiiiiiiiii ittt iiiieinenns 10-6
New SHOWCAT Operandooiueiiineennneernneeennerenesenessncsnnenns 10-6
Improved EXPORT/EXPORTRA Performanceovviiiiinneeennnnennns 10-6
VSAM-VTAM SImilaritiesovtiuiuuiiiitiiiiteiiieiieeinerineenneineennns 10-6
Chapter 11: Data Protectioncooiteiiiiiiiiiiiiiiiiiiiiiiieennennns 11-1
Data SECUTILYouutiint ittt ittt iitttiitetinneraneeenscennesnncnecnnss 11-1
Passwords to AUthOTIZE ACCESSuvvviutiinetiiieeinneeneersneeeneenacenees 11-1
User Security Verification Routineccoiiiiiiiiiiiiiiiiiiiiiiinnennn, 114
Protecting Shared Datac..outiiiiiiiiitiiiiiiiitieieiineeinieineennns 11-5
Data INtegIitycvvinttiintiittiiettineereneeeeneesoncoenesencoenssnacnnns 11-6
Using the DEFINE SPACE Commandcootiiteuteneeneeneaeeneoneanans 11-7
Using the DEFINE CLUSTER Allocation Subparameterccco0vnuen. 11-7
Using the DEFINE USERCATALOG Command............c..covvvieineenenennens 11-8
Protecting VSAM Filesand Volumescccoiiiiuinneerernnneeeenannceennanns 11-8
VSAM Data Backup Considerationscoviietiiieernrernneennennecnns 11-9
Relationship of Catalog Entries to VSAM Filesand Volumes 11-10
Creating Backup CopiesOf VSAMFilesccoiiiiieinnneiinienneenennnns 11-11
Creating Backup Copiesof Volumesociiiiiiiiiiiiiiiiirenneenananns 11-12
Protecting VSAM Catalogsoutiuiineineritenntineieeenreeeeroneenenaenns 11-12
Creating Backup Copies of Nonrecoverable Catalogscovieeeinnennn. 11-13
Creating Backup Copies of Recoverable Catalogsccovviiuveniinnnnn. 11-14
Guide to VSE/VSAM ReECOVEIYiitiuiiiiiiiiiiiiierenreenneennereneonnanns 11-15
Levels Of RECOVETY . ..ottt ittt tiiittenneeenneronneeeneoenssenssensannes 11-15
VSE/VSAM RecOVETy TOOISovuiutiiiirennntennereeneeenneseneocneannnanas 11-15
LISTCRA: Analysis of Recoverable Catalogsccovieiinnenneeeneennennnns 11-18
LISTCRA Mismatch Messagesovvntiintiniieneeneennenneneaneeeonans 11-19
Catalog Entry Mismatchesccoiiiiiiiiiiiiiriniennneenneeneennennns 11-20
VSAM Recovery Techniquesooviiieiiineinnneeeiereneeenaennneananns 11-21
File Not Properly Closediitiiniiiiiiiiiiiiiiiii it iiiineineiarnennes 11-22
Inaccessible Fileccoiuiiiiiiiiiiiiiii it iiiiiiiieeenneenneanaennnns 11-23
Unusable Catalogoovitiitiit i i iiiiitineeieeieenennennensnnennns 11-24
Inaccessible Volumettt ittt ittt ittt ienreanaanaen 11-27
QUICk ReCOVETY ...ttt ittt ittt it ieiitietneennaeenneenasenneananns 11-30
T PP I-1

Contents ix

X

VSE/VSAM Programmer’s Reference

Chapter 1: System Generation

Supervisor Generation Macros

SUPVR

FopPT

IOTAB

The SUPVR, FOPT, and IOTAB supervisor generation macros have special
considerations for VSE/VSAM users. This section documents only those
parameters that are unique to VSE/VSAM. All other information appears in
VSE/Advanced Functions System Generation.

NPARTS=n

Specify a number from 2-12 if files with the TRKHOLD attribute are to be
processed (FOPT TRKHOLD=n). The default is 3.

DASDSHR= {NO|YES}
If you are using the VSE/Advanced Functions Release 2 DASD Sharing
facility, specify DASDSHR=YES at supervisor generation.

TRKHOLD= {NO|n}
Specify a number from 1-255 representing the number of tracks that can be
held at one time by all tasks in the system.

You must use this parameter for VSE/VSAM Space Management for SAM
Feature files using managed-SAM access when DTF HOLD=YES is specified.

BUFSIZE=n

VSE/Advanced Functions System Generation gives information about how to
calculate the number of buffers to specify for channel program translation.
After you have determined a value, add 40 to it for VSAM blocks. VSAM uses
these copy blocks only during actual 1/0 and frees them immediately after
use.

NRES = (NPARTS*4) +21|n

The NRES value indicates the number of lock table entries. It must be a value
between 3 and 512; the default is (NPARTS#4) + 21. To compute the opti-
mal upper limit for n, use the formula:

n= (2*UCAT + 1)*P + (5*C) + (3*%*0S4) + (2*0S3) +S+P+5

UCAT is the number of user catalogs open concurrently.
P is the number of partitions.
C is the number of catalogs open concurrently.

084 is the number of share option 4 VSAM components (for example, key
component or data component) concurrently open for output.

053 is the number of share option 3 VSAM components concurrently open for
output.

Chapter 1: System Generation 1-1

S is the number of VSAM components that are open but not accounted for by
0s3 and OS4.

All these values should reflect the situation that exists when NRES is at its
maximum value.

The value for NRES (calculated in the above manner) will cause sufficient
space to be reserved for the variable resources to be used. Depending on the
application, however, the number of resources actually required most of the
time might be much lower.

Note: If the value substituted for n is too small and the pool of named resources gets exhausted,
the VSAM partition is canceled with an error message displayed.

VSE/VSAM Installation

For installation procedures for program products, refer to VSE/Advanced
Functions Maintain System History Program (MSHP) User’s Guide.

1-2 VSE/VSAM Programmer’s Reference

IPL

Assigning SYSCAT

Defining the Lock File

Chapter 2: Operating Procedures

This chapter describes only operating procedures that are unique to
VSE/VSAM. Use this information in conjunction with VSE/Advanced Func-
tions Operating Procedures.You may even wish to insert these pages into that
manual. The commands are documented here in the order in which you
should enter them.

During IPL, you can enter the define catalog command if there is no SYSCAT
assignment or to change the SYSCAT assignment. Specify the following:

DEF SYSCAT=cuu

cuu indicates the hexadecimal channel and unit number of the disk device
containing the VSAM master catalog. For a 3340, the device must be ready
before you IPL.

The new SYSCAT assignment is valid until the next IPL.

Note: If you issue the DEF SYSCAT command, it must follow the (optional) SET command
and precede the DPD command.

If you are using the VSE/Advanced Functions Release 2 DASD Sharing
facility, you must define the system lock file by specifying the DLF command
at IPL. Refer to VSE/Advanced Functions Operating Procedures for the
format of the DLF command.

Specifying the Size of the SVA

The system builds the system directory list at IPL and allocates SVA space for
VSAM and system modules and buffers. No user action is required.

Specifying the Size of the Virtual Address Area (System/370 - Mode Only)

VSIZE=nK

Specify VSIZE in response to message 0I03A to define the size of the virtual
address space (including SVA).

n must be a multiple of 2; if you specify an odd number, VSE adds 1 to it. The
maximum value you can specify is 16,384K bytes (16,777,216 bytes) minus the
size of your processor storage. You must code the character K.

Determine n using the following formula:
n=A+B+ U

A is the sum of the size of the partitions. Choose 512K or 100K * NPARTS,
whichever is larger. Up to 497K bytes are required in the partition in which
Access Method Services runs, depending on the function to be performed.
(Refer to “Storage Requirements: Access Method Services Virtual Storage”
in Chapter 3.)

B is the SVA requirement for the system. It is equal to a basic requirement of
180 + (6 * NPARTS). Depending on the supervisor options in your system,
additional storage may be required. VSE/Advanced Functions System
Generation lists the options and their storage requirements.

Chapter 2: Operating Procedures 2-1

U is any special SVA requirements that exist for licensed programs. VSAM
requires approximately 400K bytes of SVA.

Executing a Job Step
‘When you are about to execute a job step, you must enter the EXEC com-
mand, specifying the SIZE operand. (SIZE can be specified in conjunction
with other operands, including the REAL operand, mentioned below. Refer to
VSE/Advanced Functions Operating Procedures for information about them.)

EXEC [progname] ,SIZE={nK|AUTO| (AUTO,nK)}

nK indicates the size of the root phase. Do not specify a number larger than
the size of the partition the program will run in. If you specify an odd num-
ber, the system will use n+1.

AUTO indicates that the size of the program, as calculated by the system from
information in the core image directory, will be inserted into the SIZE value.
For ease of use, specifying SIZE=AUTO is recommended for Access Method
Services.

(AUTO,nK) indicates that nK will be added to the size of the program, and this
value will be inserted into the SIZE value (rounded upward to a multiple of
2K).

You must specify the SIZE operand for all VSAM programs, any ISAM program
that uses the ISAM Interface Program, and SAM files using the VSE/VSAM
Space Management for SAM Feature.

For System/370 users, specifying SIZE (without the REAL parameter) means
that the partition to be used for the job step is divided into two parts. The
lower part (with a size derived from the AUTO and nK parameters) contains
the program to be executed. The upper part serves as a storage pool for the
partition.

The partition in which VSAM processing takes place must allow for a GETVIS
area to accommodate VSAM buffers and control blocks, along with the user
program. For VSAM, the size of the partition GETVIS area depends on the
number of VSAM files being accessed, as well as their control interval sizes.
The partition GETVIS area must be at least 40K for basic buffers and control
blocks for each catalog that is open, plus 12K for each KSDS and 10K for each
ESDS or RRDS (assuming a CI size of 2K or less). Additional space for mo-
dules, buffers, and control blocks is required if you are using any
non-SVA-eligible VSAM phases (for example, ISAM Interface Program) or
Access Method Services. Refer to Chapter 3 in this manual for further
information about VSE/VSAM storage requirements.

ALLOC (System/370 mode only)
The ALLOC command allocates storage to the virtual foreground partitions
(or modifies the amount of storage allocated to the virtual foreground parti-
tions). All of the virtual address area not allocated to virtual foreground
partitions is automatically part of the virtual background partition.

With VSAM, only the address space in the virtual address area not allocated to
the shared virtual area (SVA) can be allocated to foreground partitions with
this command.

ALLOC Fn=mK[,Fn=mK]...

n indicates the partition to which storage is to be allocated; m specifies the
amount of storage.

2-2 VSE/VSAM Programmer’s Reference

Volume Mounting

The partition in which VSAM files are to be processed must allow for a GETVIS
area to accommodate VSAM buffers and control blocks, along with the user
program. The size of the partition GETVIS area depends on the number of
VSAM files being accessed, as well as their control interval sizes. The partition
GETVIS area must be at least 40K for basic buffers and control blocks for each
catalog that is open, plus 12K for each KSDS and 10K for each ESDS or RRDS
(assuming a CI size of 2K or less). Additional space for modules, buffers, and
control blocks is required if you are using any non-SvA-eligible VSAM phases
(for example, ISAM Interface Program) or Access Method Services. Refer to
“Reserving Storage for VSE/VSAM” in Chapter 3 for further information.

Two approaches allow you to mount one or more volumes required to access
vsaM files. If full job control describes the file (DLBL, EXTENT, and ASSGN
statements), the required volume must be mounted on the device specified in
the job control. VSAM will issue a message to inform you if the requested
volume (except for a catalog volume) is not mounted on the requested device
and allow you to correct the situation.

If you take advantage of the job control simplifications supported in
VSE/VSAM Release 2 by not supplying a symbolic unit on an EXTENT state-
ment, VSAM has greater flexibility in providing the required volume. In this
case VSAM is free to use any physical unit — logical unit combination on
which the required volume (as indicated by the VSAM catalog) is mounted or
can be mounted. If the required volume is already mounted on some device,
VSAM attempts to automatically assign that device and avoid the need for
operator intervention. For the automatic assignment to be successful, the
device must be up (DVCUP command, documented in the Operating
Procedures manual) and not reserved (VOLUME cuu, RESERVE|FREE com-
mand, also documented in Operating Procedures). Therefore you should
ensure that devices are up before mounting volumes, and refrain from reserv-
ing devices unneccessarily.

If the required volume is not mounted, VSAM prompts you to mount it. If
possible, VSAM recommends a device and reserves it while the mount is
pending. If you choose to use a device other than the recommended device
(or if vSAM did not recommend one), you must ensure that the device you use
is up and operational and that mounting the required volume does not
interfere with other users in the system. Use the VOLUME cuu, RESERVE
command to hold a device while a mount is pending. When the volume is
mounted, the device becomes ready and the reserved status is reset to free.
Your reply to the mount message allows VSAM to verify the volume mount
and continue processing the file.

Note: VSAM never recommends a shared DASD device. If you want to use a shared device, you
must override any device VSAM recommends.

Chapter 2: Operating Procedures 2-3

24 VSE/VSAM Programmer’s Reference

C

Chapter 3: Reserving Storage for VSE/VSAM

For VSE/VSAM, there are two general areas for storage considerations. First,
Access Method Services must be utilized for file definitions, catalog manipu-
lation, and other VSAM file utility functions. Access Method Services modules
cannot be loaded into the SVA; therefore their partition requirement depends
on the functions required for the current job. Provide a partition GETVIS area
by specifying SIZE=AUTO on the EXEC statement for Access Method Services.
Further information about the EXEC statement appears in the Job Control
chapter in this manual.

Secondly, most VSAM routines are automatically loaded into the SVA during
IPL. Routines that are not reentrant and relocatable (for example, the ISAM
Interface Program) are not eligible for SVA. Therefore they have a partition
GETVIS requirement.

The partition in which vVSAM files are to be processed must allow for a GETVIS
area to accommodate VSAM buffers and control blocks; the user program
resides in the same partition, below the GETVIS area. The size of the partition
GETVIS area depends on the number of VSAM files being accessed, as well as
their control interval sizes. When running routines that use the partition
GETVIS area, the partition GETVIS area must be at least 40K for basic require-
ments for each catalog that is open, plus 12K for each KSDS and 10K for each
ESDS or RRDS (assuming a CI size of 2K or less).

The sections that follow describe more fully the amount of storage required
for VSE/VSAM processing.

General Considerations

This section discusses the four elements necessary to run VSAM: VSAM itself,
VSAM/VTAM common macros, VSAM utilities (Access Method Services), and
the 1SAM Interface Program. VSAM, in combination with the VSAM/VTAM
common macros, may run by itself or with either or both of the other two
programs.

VSAM Data Management Modules (5745-SC-VSM)

Core Image Library

Transients 12
Blocks 13
Phases 33
Blocks 368
Load List Blocks 1
Transients:

$$BACLOS $$BODADE
$$BCLCRA $$BODADS
$$BCVSAM $$BOSMIN
$$BCVS02 $$BOVSAM
$$SBCVS03 $$BOVSO1
$$BCVS04 $$BTCLOS

Chapter 3: Reserving Storage for VSE/VSAM 3-1

Phases loaded into SVA:

IKQFTIND IKQVDNT IKQVNEX
IKQVASMT IKQVDRP IKQVOPEN
IKQVBRP IKQVDTPE IKQVPBF
IKQVCAT IKQVEDX IKQVRBA
IKQVCLC IKQVEOV IKQVRM
IKQVCLIF IKQVGEN IKQVSCAT
IKQVCLOC IKQVJIBS IKQVSHR
IKQVCLOS IKQVLAB IKQVSTM
IKQVCLOV IKQVMSG IKQVTMS
IKQVCLRD
Non-SVA-eligible phases:
Phases Bytes

IKQVDCN 156

IKQVDU 19,664

IKQVDUMP 9,216

IKQVEDA 5,808

IKQVRT 76
SVA Load List:
$SVAVSAM

Relocatable Library
Prefix Modules Blocks

$S 1 5

$$B 11 42

IGGO 70 898

IKQ 120 1,149

Totals 202 2,094

3-2 VSE/VSAM Programmer’s Reference

Modules:

$SVAVSAM
$SBACLOS
$SBCLCRA
$SBCVSAM
$$BCVS02
$SBCVS03
$$BCVS04
$SBODADE
$$SBODADS
$SBOVSAM
$$BOVSO1
$$BTCLOS
IGGOCLAB
IGGOCLAC
IGGOCLAD
IGGOCLAE
IGGOCLAF
IGGOCLAG
IGGOCLAH
IGGOCLAJ
IGGOCLAK
IGGOCLAL
IGGOCLAN
IGGOCLAP
IGGOCLAQ
IGGOCLAR
IGGOCLAS
IGGOCLAT
IGGOCLAU
IGGOCLAV
IGGOCLAW
IGGOCLAX
IGGOCLAY
IGGOCLAZ
IGGOCLAG
IGGOCLA7
IGGOCLAS
IGGOCLBA
IGGOCLBB
IGGOCLBC
IGGOCLBD
IGGOCLBE
IGGOCLBF
IGGOCLBG
IGGOCLBH
IGGOCLBL
IGGOCLBM
IGGOCLBN
IGGOCLBQ
IGGOCLBR
IGGOCLBS

IGGOCLBT
IGGOCLBU
IGGOCLBW
IGGOCLBX
IGGOCLBY
IGGOCLBS
IGGOCLCA
IGGOCLCB
IGGOCLCD
IGGOCLCG
IGGOCLCL
IGGOCLCO
IGGOCLCP
IGGOCLCR
IGGOCLCS
IGGOCLCX
IGGOCLCY
IGGOCLCY
IGGOCLEG
IGGOCLES
IGGOCLET
IGGOCLEX
IGGOCLEZ
IGGOCLFA
IGGOCLFB
IGGOCLFC
IGGOCLFD
IGGOCLFE
IGGOCLFF
IGGOCLFH
IGGOCLFQ
IKQAIX
IKQALLO0O
IKQASNMT
IKQBFA
IKQBFB
IKQBFC
IKQBFD
IKQBLD
IKQBRP
IKQCAS
IKQCIL
IKQCIR
IKQCIS
IKQCIU
IKQCLCAT
IKQCLEAN
IKQCLIF
IKQCLNLK
IKQCLO
IKQCLOCL

Link-Edit Statements:

// OPTION CATAL
INCLUDE IKQVSMLK
INCLUDE IKQSMLNK

// EXEC LNKEDT

IKQCLOVY
IKQCLRDD
IKQDCN
IKQDDR
IKQDNT
IKQDRP
IKQDUMP
IKQDUMPC
IKQDUMPS
IKQEDX
IKQEOV
IKQERH
IKQERX
IKQFTIND
IKQFTI
IKQFT2
IKQFT3
IKQGCI
IKQGEN
IKQGNX
IKQGPT
IKQINT
IKQIOA
IKQIOB
IKQIOC
IKQIOD
IKQIXE
IKQIXF
IKQIXS
IKQJIBSM
IKQJRN
IKQKRD
IKQLAB
IKQLCD
IKQLCN
IKQLCP
IKQLNA
IKQMDY
IKQMTMSG
IKQNCA
IKQNEX
IKQOCMSG
IKQOCSHR
IKQOPN
IKQOPNAB
IKQOPNAI
IKQOPNCT
IKQOPNDO
IKQOPNDS
IKQOPNHC

IKQOPNNC
IKQOPNOV
IKQOPNPV
IKQOPNRD
IKQOPNRP
IKQOPNUC
IKQOPNUS
IKQOPNVC
IKQPBF
IKQPFO
IKQPOP0O
IKQRBA
IKQRCL
IKQRDS00
IKQREN0O
IKQRQA
IKQRQB
IKQRQC
IKQRRP
IKQRTV
IKQSCAT
IKQSCN
IKQSCR00
IKQSFT
IKQSGP
IKQSIN
IKQSLD
IKQSLN
IKQSLP
IKQSMDMB
IKQSMLNK
IKQSMTIN
IKQSPM
IKQSRG
IKQSRT
IKQSRU
IKQSTM
IKQSUP
IKQTMSD
IKQTMSF
IKQUPD
IKQUPG
IKQVDTPE
IKQVEDA
IKQVFY
IKQVRT
IKQVSM
IKQVSMLK
IKQVTCO00
IKQWDS00

Ignore notice “CONTROL SECTIONS OF ZERO LENGTH IN INPUT” given by the

linkage editor at the end of the partition storage map.

Chapter 3: Reserving Storage for VSE/VSAM

3-3

Source Statement Library

VSE/VSAM Space Management for SAM Feature

Core Image Library

Relocatable Library

Number of Macros Number of Blocks
20 1,066
Macros (Edited):
BLDVRP IKQGCB
DLVRP IKQMCB
ENDREQ IKQRPLG
ERASE IKQRPL1
IKQACBG IKQSCB
IKQACBI IKQTCB
IKQCBI POINT
IKQCB2 SHOWCAT
IKQEXLG TCLOSE
IKQEXLI1 WRTBFR

Transients
Blocks

Phases
Blocks

0N INN

Transients:

$$BOSMMW
$$BOSMXT

Phases:

IDCSMO01
IKQSMACL
IKQSMMON

IKQSMOEI
IKQSMSSR
IKQVIMR

Number of Modules

Number of Blocks

42

295

Modules:

IDCSMO1
IDCSM02
IDCSMO03
IKQOCIMR
IKQSMACL
IKQSMGDC
IKQSMLNK
IKQSMMBF
IKQSMMLM
IDQSMMON
IKQSMMRT
IKQSMMS0
IKQSMMS
IKQSMMXI

34 VSE/VSAM Programmer’s Reference

IKQSMOEI
IKQSMSBF
IKQSMSCD
IKQSMSCW
IKQSMSII
IKQSMSMC
IKQSMSMO
IKQSMSO1
IKQSMSSF
IKQSMSSR
IKQSMSW1
IKQSMSXI
IKQSMTMW
IKQSMTXT

IKQSMVAL
IKQSMVBD
IKQSMVBJ

IKQSMVCB
IKQSMVFA
IKQSMVGA
IKQSMVHU
IKQSMVMC
IKQSMVMO
IKQSMVOA
IKQSMVRC
IKQSMVRJ

IKQSMVRX
IKQSMVVM

C

ISAM Interface Program

Core Image Library

Transient
Blocks

Phases
Blocks

00 P | =

Transient:

$$BOCISC

Phases

Bytes

IIPCLOSE
ITPOPEN
ITIPPROC
IIPAMDTF

575
1300
3750

800

Relocatable Library

Number of Modules

Number of Blocks

7

46

Modules:

ITPAMTO00
ITPBMROO
TIPCLS00
IIPITPOO
ITPOPNOO
ITPPRCMR
ITPPRCPR

Link-Edit Statements:

// OPTION CATAL
INCLUDE IIPIIPOO
// EXEC LNKEDT

VSAM/VTAM Common Macros (5745-SC-VCM)

The following macros are shared by VSAM and VTAM.

Source Statement Library

Number of Macros Number of Blocks
11 770
Macros (Edited):
ACB IKQRPL
EXLST MODCB
GENCB RPL
IKQACB SHOWCB

IKQERMAC TESTCB

IKQEXLST

Chapter 3: Reserving Storage for VSE/VSAM

3-5

Access Method Services (5745-SC-AMS)

Core Image Library
Phases 82
Blocks 542
Phases:
IDCALO1 IDCDBO02 IDCIO03 IDCTSDEO
IDCAMS IDCDEO1 IDCLCO01 IDCTSDLO
IDCBIO1 IDCDIO1 IDCLRO1 IDCTSEXO0
IDCCDAL IDCDIO2 IDCMPOI IDCTSIOO0
IDCCDBI IDCDI03 IDCPMO1 IDCTSLCO
IDCCDCL IDCDI04 IDCPRO1 IDCTSLCI1
IDCCDDE IDCDIOS IDCRCO1 IDCTSLRO
IDCCDDL IDCDIO6 IDCRIKT IDCTSLR1
IDCCDLC IDCDIO7 IDCRILT IDCTSMPO
IDCCDLR IDCDIO8 IDCRIOI IDCTSPRO
IDCCDMP IDCDI09 IDCRMO1 IDCTSRCO
IDCCDPM IDCDII0 IDCRPO1 IDCTSRIO
IDCCDPR IDCDII1 IDCRSO01 IDCTSRSO
IDCCDRC IDCDII2 IDCSA04 IDCTSTPO
IDCCDRM IDCDII3 IDCSAO05 IDCTSTP1
IDCCDRP IDCDII4 IDCTP04 IDCTSTP6
IDCCDRS IDCDII5 IDCTPO5 IDCTSUVO
IDCCDVY IDCDLOI IDCTP06 IDCTSXPO
IDCCDXP IDCEXO02 IDCTSALO IDCVYOl
IDCCLO1 IDCEX03 IDCTSBI0O IDCXPO1
IDCDBO1 IDCIO02
Relocatable Library
Number of Modules Number of Blocks
| 106 2,391
Modules:
IDCALO1 IDCDI02 IDCPRO1 IDCTPO1
IDCBIO! IDCDIO3 IDCRCO1 IDCTP04
IDCCDAL IDCDI04 IDCRCO02 IDCTPO5
IDCCDBI IDCDIO05 IDCRCO03 IDCTP06
IDCCDCL IDCDIO6 IDCRC04 IDCTSALO
IDCCDDE IDCDIO7 IKQRIFF IDCTSBIO
IDCCDDL IDCDIO8 IDCRIKT IDCTSDEO
IDCCDLC IDCDI0 IDCRILT IDCTSDLO
IDCCDLR IDCDII10 IDCRIOI IDCTSEXO0
IDCCDMP IDCDIII IDCRI02 IDCTSIOO0
IDCCDPM IDCDII2 IDCRIO03 IDCTSLCO
IDCCDPR IDCDII3 IDCRMO1 IDCTSLCI1
IDCCDRC IDCDII4 IDCRPOI IDCTSLRO
IDCCDRM IDCDII5 IDCRSO01 IDCTSLR1
IDCCDRP IDCDLO1 IDCRSO02 IDCTSMPO
IDCCDRS IDCEXO01 IDCRS03 IDCTSPRO
IDCCDVY IDCEX02 IDCRS04 IDCTSRCO
IDCCDXP IDCEXO03 IDCRSO05 IDCTSRIO
IDCCLOI IDCIOO01 IDCRS06 IDCTSRS0
IDCCMZ1 IDCIO02 IDCRS07 IDCTSTPO
IDCCMZ2 IDCIO03 IDCSAO1 IDCTSTPI
IDCDBOI IDCLCO1 IDCSA02 IDCTSTP6
IDCDBO02 IDCLCO02 IDCSA03 IDCTSUVO
IDCDEO1 IDCLRO1 IDCSA04 IDCTSXPO
IDCDEQ2 IDCLR02 IDCSAOQ5 IDCVYO1
IDCDEO03 IDCMPOI IDCSA08 IDCXPO1
IDCDIO1 IDCPMO1
Link-Edit Statements:
// OPTION CATAL
INCLUDE IDCCMZ1
// EXEC LNKEDT
// OPTION CATAL
INCLUDE IDCCMZ2
// EXEC LNKEDT
3-6 VSE/VSAM Programmer’s Reference

¢

Storage Requirements

VSAM

Working Set

VSAM Access Routines
VSAM runs in SVA. This means that one copy of the vSAM modules is shared
by all partitions. When paging is considered, the working set for these mo-

dules is as follows:

e Basic

22K

e If any file is being loaded or extended, or is causing a lot

of control interval splits, then add

+4K

e If both count-key-data and FBA devices are in use at the

same time, then add

+4K

e If any program is processing a base cluster via an alter-
nate index path (path entry), then add

¢ If any partition is using VSAM Shared Resources (LSR)
to share control blocks among files, then add

+6K

+2K

Partition Requirement for Control Blocks and Buffers
Calculate each partition’s storage requirements in the following manner:

* A basic requirement of 40K for the master catalog.

e If vsaM Shared Resources (LSR) is used to share control blocks among
some files, then the requirement for the VSAM resource pool must be
taken into account. See BLDVRP macro in Using VSE/VSAM Com-
mands and Macros. (When paging is considered, this value applies
whether or not there is a real storage requirement.)

e For each file, add the applicable numbers in one column of the chart
below. The following symbols are used:

u=Number of alternate indexes in the upgrade set.

n=Bufferspace. Depends on the control interval size(s) and on buffer
specifications that can be made in the Access Method Services
DEFINE command, in the DLBL statement, and/or in the ACB macro.
(See “Buffer Specification” in Chapter 9.) If upgrade is being done,
one set of buffers serves for all alternate indexes in the upgrade set.
This set of buffers includes two data buffers and one index buffer.

No LSR No LSR No LSR No LSR LSR LSR LSR LSR
No Path No Path Path Path No Path No Path Path Path
Input Output* Input Output* Input Output* Input Output*
Basic requirement 4K 4K 10K 10K 2K 2K 6K 6K
(minimum)
Upgrade set (minimum) |0 (u+x2K |0 ux2K 0 ux2K 0 (u-1)x2K
BufYers for base cluster n n n n 0 0 0 0
Buffers for alternate 0 0 n n 0 0 0 0
index (path)
Upgrade buffers (if there |0 n 0 n 0 0 0 0
is an upgrade set)

* The file may be opened for output only, or for output and input.

This requirement for each file must be taken into account whether or not

paging is considered.

A file may exceed minimum requirements under any of the following condi-

tions:

Chapter 3: Reserving Storage for VSE/VSAM 3-7

¢ If the file has key ranges associated with it.

e If the file has more than one extent for data or for index.
e If SHAREOPTIONS(4) is used.
e If the length of the key field is very long.

e Ifthe ACB or RPL is not created by GENCB, with the space allocation left
up to VSAM, or if the GENCB requests are not done in the following
sequence:

GENCB ACB
GENCB RPL

e If the file is opened for more than one string (STRNO>1).

Virtual Storage

Consider the following when calculating virtual storage requirements for
VSAM:

e The master catalog requires 40K for basic buffers and control blocks.

¢ During open processing, an additional 6K is required for open control
blocks.

e For each file, the amount of virtual storage required is equal to the
working set.

VSE/VSAM Space Management for SAM Feature
Working Set

SAM Access Routines
The working set is the same as for unmanaged SAM access. VSE/VSAM does
not require additional working storage for managed-SAM access.

Partition Requirement for Control Blocks and Buffers
VSE/VSAM requires you to specify additional working storage for the follow-

ing;
e Control blocks 2K
e Buffer must equal CISIZE
DTFPH

The working set for DTFPH is determined by the user program.

Virtual Storage
The following virtual storage requirements are in addition to those for VSAM.

¢ During open processing, an additional 4K is required for open control
blocks.

e For each file, the amount of virtual storage required is equal to the
working set, except for DTFPH access, in which case the virtual storage
requirement is determined by the user program.

3-8 VSE/VSAM Programmer’s Reference

"

ISAM Interface Program

Working Set

Virtual Storage

Access Method Services

Working Set

Virtual Storage

Add 6K (for interface translation modules) to the working set previously
determined for VSAM record management modules. IIP modules are
non-SVA-eligible and must be loaded into each partition where they are used.

IIP is non-SVA-eligible and runs in the requestor’s partition. In addition to the
storage required for buffers and control blocks the sizes shown below are
required for IIP phases:

IIPOPEN 1,300 bytes
IIPPROC 3,750 bytes
IIPCLOSE 575 bytes
IIPAMDTF 800 bytes

To operate efficiently, the Access Method Services working set requires a
working set of approximately 64K bytes.

In addition to the basic allocation for vSAM, Access Method Services requires
up to 497K bytes of virtual storage in the partition in which it is to run. Unlike
VSAM phases, the Access Method Services modules cannot be loaded into the

SVA.

The root modules, comprising 28K bytes, are loaded into the virtual address
area when the user wants to perform any of the following functions. In
addition to the root modules, the remaining Access Method Services sub-
structure modules plus their required dynamic work areas are required to
perform any function. The total virtual storage requirement for the substruc-
ture (including the root modules) is 118K. In addition, you must provide
virtual storage for the specific Access Method Services commands to be
processed. If you know what your functional mix is in the job stream, you
can calculate a more precise virtual size from the following table.

Chapter 3: Reserving Storage for VSE/VSAM 3-9

3-10

Function Size (bytes)
ALTER 23,300
BLDINDEX 24,000!
CANCEL 2,000
DEFINE 57,500
DELETE 10,000
EXPORT 23,700
EXPORTRA 65,3002
IMPORT 35,5003
IMPORTRA 36,300
LISTCAT 52,400
LISTCRA 39,000
PRINT 8,000
REPRO 17,000
RESETCAT 125,000
VERIFY 2,000
Total 497,000

! This does not include the storage required for sorting re-
cords. Refer to Using VSE/VSAM Commands and Macros.

2 This includes the 20,000 bytes required for the EXPORTRA
command table.

3 This includes the 3,500 bytes required for the IMPORT
command table.

VSE/VSAM Programmer’s Reference

Chapter 4: Job Control

This chapter describes only those job control statements or operands whose
meaning is different for VSE/VSAM than for other access methods. The
information here supplements that contained in VSE/Advanced Functions
System Control Statements.

Use of DLBL, EXTENT, and ASSGN Statements

In many jobs you can omit DLBL, EXTENT, and ASSGN statements from your

job control. The following tables show which statements are required in the
job control for the catalog and the file when you are running VSAM applica-

tion programs and Access Method Services commands.

Catalog Job Control Statements

VSAM Application Programs

All VSAM application programs (including ISAM programs accessing VSAM via
the 11P and SAM programs accessing SAM ESDSs via DTFs) must specify a DLBL
statement for the master catalog; no EXTENT statement is necessary. (The
DLBL statement may be in the job stream or in the partition or standard label
area.) If the program is accessing a file in a user catalog, you must supply
either a job catalog DLBL for that user catalog or VSAM file DLBL(s) with the
CAT=filename parameter pointing to a user catalog DLBL statement. In either
case, you do not need to supply EXTENT and ASSGN statements.

Note that if an application program is accessing files in more than one
catalog, you must specify a user catalog DLBL for all files not in the job’s
default catalog.

Access Method Services Commands

You can always omit EXTENT and ASSGN statements from the job control
you specify to identify the catalog you are using. A DLBL statement may be
required; in several cases, you can omit the DLBL statement only if you
specify the name of the catalog via the catname subparameter to the
CATALOG, WORKCAT, or MODEL parameter (depending on which command
is issued). Figure 4-1 shows when you must specify a DLBL statement for a
job catalog and when applicable, a user catalog (not JSYSUC). 4 DLBL
statement (specifying IJSYSCT) for the master catalog is always required..

Chapter 4: Job Control 4-1

ALTER No job catalog DLBL is required, but you must specify CATALOG (catname) in the command if the catalog to be
referenced is not the master catalog, or if a password is required.
If the index is in the MCAT UCAT1 MCAT UCAT1 MCAT UCAT
If the workfile is in the MCAT MCAT UCAT1 UCAT2 none none
You must specify no job cat |job cat no job cat |job cat no job cat |job cat
DLBL; no |DLBL; DLBL,; DLBL DLBL; no |DLBL; no
BLDINDEX BLDINDEX |BLDINDEX |BLDINDEX [(UCAT1); (BLDINDEX |BLDINDEX
CATALOG |CATALOG |(CATALOG |BLDINDEX [CATALOG [CATALOG
parameter* [(MCAT) (UCAT1) CATALOG |parameter* |parameter*
(UCAT2)
*Unless a password is required, in which case you must specify the CATALOG parameter.
CANCEL A job catalog DLBL is not applicable.
DEFINE AIX, [No job catalog DLBL is required, but you must specify CATALOG (catname) and MODEL (catname) (if
CLUSTER, applicable) in the command whenever the catalog to be referenced is not the master catalog, or if a password is
or PATH required.
DEFINE No job catalog DLBL is required, but you must specify CATALOG (catname) in the command if the catalog to be
NONVSAM, referenced is not the master catalog, or if a password is required.
or SPACE
DELETE No job catalog DLBL is required, but you must specify CATALOG (catname) in the command if the catalog to be
referenced is not the master catalog, or if a password is required.
EXPORT A job catalog DLBL (IUJSYSUC) is required if the catalog to be referenced is not the master catalog.
EXPORTRA A job catalog DLBL is not applicable.
IMPORT No job catalog DLBL is required, but you must specify CATALOG (catname) in the command if the catalog to be
referenced is not the master catalog, or if a password is required.
IMPORTRA No job catalog DLBL is required, but you must specify CATALOG (catname) in the command if the catalog to be
referenced is not the master catalog, or if a password is required.
LISTCAT No job catalog DLBL is required, but you must specify CATALOG (catname) in the command if the catalog to be
referenced is not the master catalog, or if a password is required.
LISTCRA You do not need to specify a user or job catalog DLBL, regardless of whether CATALOG (catname) is specified.
PRINT INFILE in master catalog — Do not specify a user catalog DLBL or a job catalog DLBL.
INFILE in user catalog — Specify either a user catalog DLBL (CAT = parameter) or a job catalog DLBL
(IUJSYSUC).
INFILE is nonVSAM — A user catalog DLBL or a job catalog DLBL statement is not applicable.
REPRO INFILE and OUTFILE in same catalog:
master catalog — Do not specify a user catalog DLBL or a job catalog DLBL.
user catalog — Specify either a user catalog DLBL (CAT = parameter) or a job catalog DLBL (IJSYSUC).
INFILE and OUTFILE in different catalogs:
Specify a user catalog DLBL for each catalog that is not the default catalog.
RESETCAT No job catalog DLBL is required, but you must specify CATALOG (catname) and WORKCAT (catname) in the
command if CATALOG or WORKCAT is not the master catalog, or if a password is required.
VERIFY A job catalog DLBL (IJSYSUC) is required if the catalog to be referenced is not the master catalog, or if a
password is required.

Figure 4-1. Job Catalog and User Catalog DLBL Statement Requirements
(A master catalog DLBL statement is always required.)

4-2 VSE/VSAM Programmer’s Reference

File Job Control Statements

In specifying job control statements for user files, DLBL, EXTENT, and
ASSGN statements may or may not be required. Figure 4-2 indicates when

you should specify these statements.

File Job Control

Type of Processing DLBL EXTENT ASSGN
Required Required Required

Files to be implicitly opened. (For example, accessing a file via an AlX or path |No No No
during which VSAM must open index files without user specification.)
Files to be explicitly opened. (The DLBL filename must match the ACB Yes No No
DDNAME parameter, or the ACB name if DDNAME is omitted, and the file-ID
must be the name of the object being opened.)
ISAM programs accessing VSAM files via the ISAM Interface Program. Yes No No
SAM programs accessing SAM ESDSs via DTFs. (The DLBL filename must Yes No* No
match the DTFxx name field.)
Access Method Services Commands
ALTER No No No
BLDINDEX No No No
CANCEL No No No
DEFINE AIX/CLUSTER UNIQUE Yes Yes No
DEFINE AIX/CLUSTER not unique No No No
DEFINE MASTERCATALOG Yes No No
DEFINE NONVSAM/PATH/SPACE No No No
DEFINE USERCATALOG No No No
DELETE No No No
EXPORT(RA) OUTFILE (SAM file on DASD) Yes Yes Yes
EXPORT(RA) ail other No No No
IMPORT INFILE (SAM file on DASD) Yes Yes Yes
IMPORT OBJECTS FILE UNIQUE unless predefined Yes Yes No
IMPORT all other No No No
IMPORTRA INFILE (SAM file on DASD) Yes Yes Yes
IMPORTRA OBJECTS FILE UNIQUE Yes Yes No
IMPORTRA all other No No No
LISTCAT No No No
LISTCRA No No No
PRINT VSAM file Yes No No
PRINT nonVSAM file (SAM or ISAM file on DASD) Yes Yes Yes
REPRO VSAM file Yes No No
REPRO nonVSAM file (SAM or ISAM file on DASD) Yes Yes Yes
RESETCAT No No No
VERIFY No No No

*Exception: An EXTENT statement is required for the implicit define of an output or work file for which no implicit model exists.

Figure 4-2. File Job Control Statement Requirements

Chapter 4: Job Control 43

DLBL

Refer to the beginning of this chapter to determine when you must specify a
DLBL statement.

If you specify many DLBL parameters, you may need to use a continuation
statement. If so, column 72 (on the first statement) must contain a continua-
tion character. The columns between the last comma and the continuation
character must be blank, and the continuation statement must start in column
16 (no // in columns 1 and 2).

// DLBL filename,['file-ID'],[date], [codes][,DSF]
[,BUFSP=n][,CAT=filename] [,DISP=disposition]
[,RECORDS=n| (n1,n2)][,RECSIZE=n]

filename
For VSE/VSAM, filename (1-7 characters) is identical to the:

¢ dname of the FILE (dname) parameter in an Access Method
Services command, and

¢ DDNAME=filename parameter of the Access Method Control
Block (ACB) in the processing program that identifies the file. If
DDNAME is omitted, the filename must be placed in the symbolic
name field of the ACB.

‘file-ID’
For VSE/VSAM, specify ‘file-ID’ when acccessing a file. The file-ID is
identical to the name of the file that was specified in the DEFINE com-
mand of Access Method Services and listed in the VSAM catalog.

When a new VSAM data space or file is being created (defined), the
file-ID is ignored if it is specified.

date
This parameter is ignored for VSE/VSAM; the date used is that specified
in the Access Method Services DEFINE command. VSAM files (that have
been explicitly defined) or data spaces can only be deleted through the
DELETE command, even though the expiration date has been reached.

codes
Specify the word VSAM.

DSF
This operand is ignored because all vSAM files are data secured.

BUFSP=n
For VSE/VSAM, this operand specifies the number of bytes of storage (0 -
999999) to be allocated as buffer space for the file. It overrides both the
BUFFERSPACE parameter of the Access Method Services DEFINE com-
mand and the BUFSP operand in the ACB macro, if its value is higher.

CAT=filename
This operand specifies the filename (1 through 7 alphameric characters)
of the DLBL statement for the catalog owning this VSAM file. The system
searches only this catalog for the file-ID when the VSAM file is to be
opened. Specify this operand only if you want to override the system’s
assumption that the job catalog or, if there is no job catalog, that the
master catalog owns the file.

The only Access Method Services commands that use the CAT operand
to specify a non-default catalog are the PRINT and REPRO commands.

Job catalogs are discussed under the heading “vSAM Catalogs” in
Chapter 5.

44 VSE/VSAM Programmer’s Reference

EXEC

DISP=disposition
Specify one of the following values for disposition:

NEW
(NEW,KEEP)
(NEW, DELETE)
(NEW,DATE)
OLD
(OLD, KEEP)
(OLD,DELETE)
(OLD,DATE)
(,KEEP)
(,DELETE)
(,DATE)

The DISP parameter describes what is to be done with a reuseable file
during open and close. Further information appears under “File
Disposition” later in this chapter.

NEW indicates that the file is to be reset at open.

oLD indicates that the file is not to be reset at open.

,KEEP indicates that the file is to be kept at close.

,DELETE indicates that the data is to be made inaccessible at close.

DATE indicates that the disposition is the same as for KEEP (if the ex-
piration date has not been reached) or DELETE (if the expiration date
has been reached).

The RECORDS and RECSIZE parameters are used to determine allocation sizes for implicit

file definition during managed-SAM open of a SAM ESDS.

RECORDS=n|(nl,n2) (VSE/VSAM Space Management for SAM Feature only)
If you specify RECORDS=n, n indicates the number of records for pri-
mary allocation of the file.

If you specify RECORDS=(n1,n2), nl indicates the number of records for
promary allocation, and n2 indicates the number of records for second-
ary allocation. If you do not specify a value for n2, 20% of n1 is used.
Do not specify 0 as a value for nl.

If you specify the RECORDS parameter, you must also specify the
RECSIZE parameter.

RECSIZE=n (VSE/VSAM Space Management for SAM Feature only)
n indicates the average record length for the file. Do not specify 0 as a
value for n.

If you specify RECSIZE, you must also specify the RECORDS parameter.

// EXEC {,SIZE=nK|AUTO| (AUTO,nkK)}

SIZE
Specifies how much storage is needed for loading the specified module.

Must be greater than zero and should be a multiple of 2. (If not, the
system rounds the value up to the nearest 2K boundary.)

AUTO
Indicates that the program size, as calculated by the system from in-
formation in the core image directory, is to be taken as the value for
SIZE. For ease of use, specifying SIZE=AUTO is recommended for
Access Method Services.

Chapter 4: Job Control 4-5

EXTENT

(AUTO,nK)
Indicates that job control must take program size plus nK bytes as the
value for SIZE. (If this value is not a multiple of 2, the value is rounded
up.)
You must specify SIZE for VSE/VSAM programs (including IDCAMS), ISAM
programs using the ISAM Interface Program (IIP), and SAM files using the
VSE/VSAM Space Management for SAM Feature. Specifying SIZE (without the
REAL parameter) means that the partition to be used for the job step is
divided into two parts. The lower part (with a size derived from the AUTO
and nK parameters) contains the program to be executed. The upper part
serves as a storage pool for the partition.

The non-svA-eligible VSAM phases and Access Method Services must be
accommodated in the partition GETVIS area. The partition GETVIS area must
contain at least 40K for VSAM buffers and control blocks for each catalog that
is open, plus 12K for each KSDS and 10K for each ESDS or RRDS (assuming a CI
size of 2K or less). Additional space for modules, buffers, and control blocks
is required if you use any non-SVA-eligible VSAM phases (for example, ISAM
Interface Program) or Access Method Services. Exact storage requirements
can be calculated on the basis of the information contained in Chapter 3 of
this manual.

To invoke Access Method Services via job control, specify:

// EXEC IDCAMS,SIZE=AUTO

If you do not specify the SIZE parameter, Access Method Services terminates
your job immediately. SIZE provides information to the system to allow it to
divide the processing partition into a static area and a GETVIS area. When
you execute IDCAMS, only the first load, called the root segment, is loaded
into the static area. The remainder of the partition must be left free for
GETVIS area required by Access Method Services and for the subsequent
modules it loads. The value in the SIZE parameter should be just large
enough to contain the root segment. If you specify an amount greater than
required, the excess is lost to the processing program. When you specify
SIZE=AUTO, the system determines the amount of storage required for the
IDCAMS root segment and leaves the rest of the partition free for the GETVIS
area.

Refer to the beginning of this chapter to determine when you must specify an
EXTENT statement.

// EXTENT [symbolic unit],serial number,[typel,
[sequence number],[relative track|block address],
[number of tracks|number of blocks]

symbolic unit
Specify a six-character field indicating the symbolic unit (SYSxxx) of the
volume for which this extent is effective. VSE/VSAM does not require
this parameter; if you do not specify a symbolic unit, VSAM will assign
one.

serial number
VSE/VSAM users are required to specify from one to six characters
indicating the volume serial number of the volume this extent is on.

type
For VSE/VSAM users, a value of 1 is assumed.

VSE/VSAM Programmer’s Reference

C

| File Disposition

sequence number
This operand is ignored for VSE/VSAM users, but if it is specified incor-
rectly it will be flagged by job control syntax checking.

relative track|block address
This operand indicates the number of the track (CKD) or block (FBA) on
which the extent is to begin. You must specify it when a file with the
UNIQUE option is being created (Access Method Services DEFINE,
IMPORT, or IMPORTRA command). This operand is not required, and it
is ignored if it is specified when a VSAM file is created within an existing
data space. In this case, the space for the file is suballocated by VSAM
from direct access extents it already owns. You are not required to
specify this operand for a VSAM input file because the extents are ob-
tained from the VSAM catalog.

number of tracks|number of blocks
This operand indicates the number of tracks (CKD) or blocks (FBA) to be
allocated to the file or space. You must specify it when a file with the
UNIQUE option is being created (Access Method Services DEFINE,
IMPORT, or IMPORTRA command). This operand is ignored when a
vsAM file is created within an existing data space, because the space for
the file is suballocated by VSAM from direct access extents it already
owns. This operand is also not required for VSAM input files because
the extents are obtained from the VSAM catalog.

For an implicitly defined SAM ESDS that does not specify RECORDS and
RECSIZE (on the DLBL statement), VSAM uses the number of
tracks|number of blocks parameter to determine primary allocation size.
A secondary allocation size equal to 20% of primary is used.

For VSAM access, the options available at open and the disposition of the file
at close depend on the DISP parameter of the DLBL statement or the
MACRF/CLOSDSP parameters of the ACB macro. Options specified for DISP
override those specified for MACRF/CLOSDSP. The default for the DISP
parameter depends on the file being opened or closed. For VSAM access, the
default DISP=(OLD,KEEP).

For managed-SAM access, the options available at open and the disposition
of the file at close depend on the DISP parameter of the DLBL statement and
options specified in the DTF.

Each option of the DISP parameter has a corresponding option in the
MACRF/CLOSDSP parameters that causes the same function to be performed.
The NEW, OLD, RST, and NRS options apply when the file is being opened;
KEEP, DELETE, and DATE apply when the file is being closed. VSE/VSAM
allocates space, resets the file, or implicitly defines a file (for managed-saM
access of a SAM ESDS that is not already defined in the catalog) when the
ACB/DTF for the file is opened. At close, VSE/VSAM keeps, resets, deallocates,
or deletes the file, depending on which function has been specified.

Note: The definitions given below apply to the terminology used in Figures 4-3 through 4-6. For
VSAM access, refer to Figure 4-3 for open disposition and Figure 4-5 for close disposition. For

managed-SAM access, refer to Figure 4-4 for open disposition and Figure 4-6 for close disposi-
tion.

Keep means to retain a file’s data and accessibility.
Reset means to set a file to empty and release its secondary extents.
Deallocate means to set a file to empty and release its primary and secondary

extents.

Chapter 4: Job Control 4-7

Allocate means to provide primary DASD space, as specified by the user at
DEFINE time.

Define means to place information describing the file into the VSAM catalog.

Delete means to remove all references to the file from the catalog, and release
the file’s space.

A file may appear in one of four states when it is opened for output:

Unallocated: A file is unallocated if its catalog records have no information
of suballocated space. This happens for one of two reasons. Either the file
was defined as a dynamic file and it has never been opened, or the file was
defined as a dynamic file and it has been closed with DISP and/or
MACRF/CLOSDSP options that caused deallocation.

All open options cause space to be suballocated for the file, provided enough
space is available. If enough space is not available, the open fails. The ACB
user is informed by an ACB return code; the DTF user’s job is cancelled.

Allocated for Native VSAM Access: The options DISP=NEW and/or
MACRF=RST cause the file to be reset to its primary allocation; its secondary
extents are released. Although the file records are not erased, the file is
considered empty. The options DISP=OLD and/or MACRF=NRS do not cause
the file to be reset to empty and allow updating and extension of the file.

Allocated for Managed-SAM Access of a SAM ESDS: Same as for
“Allocated for Native VSAM Access.”

Undefined for Managed-SAM Access: All options of the DISP parameter
cause the file to be implicitly defined. The native VSAM user cannot implicitly
define a file.

When a file with suballocated space is opened for input, the options
DISP=NEW and/or MACRF=RST are invalid, and the options DISP=OLD
and/or MACRF=NRS cause the file to be opened without resetting the file to
empty. The following figures show the action performed by VSE/VSAM when
you try to open different kinds of files.

Files with REUSE Attribute

OPEN DISP on DLBL /MACRF on ACB
File Status
(ACB) NEW /RST OLD/NRS
Unallocated Allocate space for file. Allocate space for file.
ouT Allocated Reset file. (DISP=NEW prevents access to any |File is not reset. Output operations allow up-
data existing prior to open.) dating and extension of the file.
Undefined Open fails. Open fails.
IN Allocated Open fails. File is not reset. If file is already empty, open
fails.

Figure 4-3. VSAM-Access Open Disposition

4-8 VSE/VSAM Programmer’s Reference

Files with REUSE Attribute
DISP Unspecitied (Default DISP on DLBL*
OPEN (DTF) F"’ Status Value in Parentheses) NEW oLD
Unallocated |Allocate space for file (DISP= |Allocate space for file. Allocate space for file.
SAM ESDS' NEW).
OUTPUT Allocated for |Reset file. Position to begin- Reset file. Position to begin- File is not reset. Position to
SAM ESDS' ning of file (DISP= NEW).? ning of file. end of file for extension.
Undefined Implicitly define a SAM ESDS |Implicitly define a SAM ESDS. |Implicitly define a SAM ESDS.
(DISP= NEW).
Allocated for |File is not reset. Position to Invalid - file is not reset. Open |File is not reset. Position to
INPUT SAM ESDS beginning for input (DISP= fails. beginning for input.
QLD).
Unallocated Allocate space for file (DISP= |Allocate space for file. Allocate space for file.
SAM ESDS' NEW).
Allocated for |Reset file. Position to begin- Reset file. Position to begin- File is not reset. Position to
WORK SAM ESDS', * [ning of file (DISP= NEW). ning of file. beginning of file. (File may be
read.)
Undefined Implicitly define a SAM ESDS |Iimplicitly define a SAM ESDS. |Implicitly define a SAM ESDS.
(DISP= NEW).

' If the file's characteristics do not match those specified in the DTF, the open fails and the file cannot be implicitly deleted. In
particular, the maximum logical block that may be written (DTF BLKSIZE) must not be greater than the maximum allowed in the

file (DEFINE maximum RECORDSIZE).

2 Do not specify the DISP parameter for IJSYSLN (SYSLNK file).

* DISP=NEW prevents access to any data existing prior to open.

Figure 4-4. Managed-SAM-Access Open Disposition

If DTFSD is used, the file must be in Cl format.

The following figures show the action performed by VSE/VSAM when you try
to close different kinds of files.

Files with REUSE Attribute
DISP on DLBL /CLOSDSP on ACB

CLOSE (ACB) DATE

KEEP DELETE

Expired Unexpired

File was explicitly de- |Keep Deallocate Deallocate Keep
fined (NOALLOCATION)
Reusable Keep Reset Reset Keep
(Suballocated)
File was implicitly Keep Reset Reset Keep
defined

Figure 4-5. VSAM-Access Close Disposition

If you specify DELETE at close, VSAM deletes the data via deallocation,
resetting the file, or implicit deletion. The contents of the file are lost. The
next open for INPUT will fail because the file is empty. If any other DTF/ACB
is open for the same file, however, the close is completed, but the file is not
reset, deallocated, or deleted, and the operator and the invoking program are
notified by a return code.

Chapter 4: Job Control 4-9

Flles with REUSE Attribute

DISP on DLBL?
DISP not
CLOSE (DTF DATE
o™ specified KEEP DELETE
Expired Unexpired

Flle was explicitly defined Keep' Keep Deallocate Deallocate Keep
(NOALLOCATION)

Reusable (subaliocated) Keep' Keep Reset Reset Keep

File was implicitly defined Keep' Keep Delete Delete Keep

' DISP is DELETE if TYPEFLE=WORK and DELETFL is unspecified.
? Do not specify the DISP parameter for IJSYSLN (SYSLNK file).

Figure 4-6. Manged-SAM-Access Close Disposition

Additional Considerations

If you request DELETE at close, VSAM deletes the data by deallocation, reset-
ting, or implicit deletion. In order to avoid sharing problems, however, if any
other DTF (or ACB) for the same file is open at the same time, no deletion
occurs, the operator is notified by a message with a warning return code, and
close processing continues. With DELETE specified at close, the contents of
the file are lost. The next open for OUTPUT WORK will write new data. If the
file has been deallocated or reset, an OPEN for INPUT will be successful, but
the first GET will cause control to be passed to the EOFADDR routine because
the file is empty.

¢ Specifying DISP=NEW on the DLBL statement overrides MACRF=NRS in
the ACB, such that the result is as if MACRF=RST were specified. Because
MACRF=RST is mutually exclusive with MACRF=IN and MACRF=LSR,
open fails if DISP=NEW is specified for a file opened via DTF
TYPEFLE=INPUT or ACB MACRF=IN or MACRF=LSR.

e If the close disposition specified for the file results in the resetting or
deallocation of the file, and if the file is password-protected, the ACB
must specify (or the operator will be prompted for) the update- or
higher-level password of the file at open. If the close disposition speci-
fied for the file results in the implicit deletion of the file, there is no
prompting for the entry password because an implicitly defined file
cannot be password-protected. If the catalog itself is password-
protected, the operator is prompted for the master password of the
catalog at close.

Using DISP could eliminate data inadvertently if the wrong parameter is
specified. You may want to use an entry password to protect against
inadvertent destruction of data. A catalog password may also provide
protection for files owned by the catalog. If the file is being accessed via
DTF, the password must be supplied by the operator. If the file is being
accessed via ACB, the password may be supplied in the ACB, by the
operator, or through Access Method Services commands.

Access Method Services Input and Output Files

When a VSAM file is to be opened for access by an Access Method Services
PRINT or REPRO command, you must supply the following job control
information:

// DLBL filename,file-1D’, ,VSAM

The filename identifies the file and matches the dname of an INFILE or
OUTFILE parameter in the command. The file-ID is identical to the name of

4-10 VSE/VSAM Programmer’s Reference

the file (entryname, catname, or newname parameter) specified in the com-
mands of Access Method Services and listed in the VSAM catalog.

Optionally, the BUFSP parameter of the DLBL statement can be specified to
override:

¢ The cataloged BUFFERSPACE parameter (only if the BUFSP parameter is
equal to or greater than the cataloged BUFFERSPACE parameter).

e The buffer space value (in the ACB macro) defaulted to by Access
Method Services.

Note: Because EXPORT, EXPORTRA, IMPORT, and IMPORTRA always default to an
optimum buffer space value (via the ACB macro parameter) VSAM ignores any BUFSP
specification made by you in the DLBL statement associated with these commands. All other
commands use the VSAM default values in their ACB macros.

For more information on buffer space options and defaults, see the ACB
macro in Using VSE/VSAM Commands and Macros.

Use SYS004 for magnetic tape input and SYS005 for magnetic tape output.
Access Method Services supports unlabeled and standard labeled tapes for
magnetic tape input and output. You have the option of rewinding or not
rewinding input and output files.

You must use SYSLST as the output file for listing. Print lines are 121 bytes in
length. The first byte is the ANSI control character. The default parameters of
this file are:

e Record format: Fixed, unblocked with ANSI carriage control
e Logical record length: 121
e Block size: 121

e Printed lines per page: 56. Use the job control SET LINECT command or
the STDJC supervisor generation macro instruction if you want to speci-
fy the value (between 30 and 99) for SYSLST printed lines per page.

The chapter “vSAM Catalogs” describes the job control statements to be used
for vSAM master and user catalogs. The chapter “Using Access Method
Services” in Using VSE/VSAM Commands and Macros describes the job
control statements to be used for VSAM data spaces and files.

Magnetic Tape Considerations for Access Method Services

The following commands support tape files as input or output via the
subparameters of the ENVIRONMENT parameter:

¢ Tape output: EXPORT, EXPORTRA
e Tape input: IMPORT, IMPORTRA, PRINT
e Tape input or output: REPRO.

The NOLABEL and STDLABEL subparameters (of the above commands) allow
you to process an existing tape file or create a new tape file with no tape
labels (NOLABEL) or with EBCDIC standard labels (STDLABEL). VSE/VSAM
does not support American National Standard (ASCII) labels (DTFMT macro,
ASCII=YES) and nonstandard tape labels (DTFMT macro, FILABL=NSTD).
User standard labels (DTFMT macro, LABADDR=xxxxx) are bypassed on input
and not supported on output.

The NOREWIND, REWIND, and UNLOAD subparameters (of the above com-
mands) allow you to control tape positioning for OPEN, CLOSE, and end-of-
volume (EOV) processing.

Chapter 4: Job Control 4-11

* NOREWIND indicates that rewind is never performed. It becomes your
responsibility to ensure that a tape is properly positioned before proc-
essing it with Access Method Services. You must specify NOREWIND if
you wish to create or process multifile tape volumes.

* REWIND indicates that tapes are rewound to load point but not unload-
ed on OPEN, CLOSE, and end-of-volume (EOV) conditions. You should
specify REWIND (or UNLOAD) whenever you wish to create or process
single file tape volumes.

e UNLOAD indicates that tapes are rewound on an OPEN, and rewound
and unloaded on a CLOSE and end-of-volume (EOV) condition. You
should specify UNLOAD (or REWIND) whenever you wish to create or
process single file tape volumes. Specify UNLOAD if you desire de-
mounting when file creation or processing is complete.

You must specify REWIND or UNLOAD to process unlabeled tapes if
VSE/Access Control is installed.

Tape Assignments for Access Method Services

You must assign magnetic tape input files to SYS004 and magnetic tape output
files to SYS00s.

Multivolume File Considerations for Access Method Services
If you are creating or processing a file which may require more than one tape
volume, you must specify (or default to) the STDLABEL option. This is
necessary because Access Method Services cannot distinguish between
end-of-file and end-of-volume on a tape with no label; it therefore always
assumes end-of-file.

Multifile Volume Considerations for Access Method Services

Standard Labels and Input: To process the first file on the tape, ensure that
the tape is at load point (use the // MTC REW,SYS004 command) before
processing and specify STDLABEL and NOREWIND (so that the succeeding file
can be processed next).

To process any other file on the tape: If the previous command (or program)
has processed the previous file and has not rewound the tape, specify
STDLABEL and NOREWIND (this maintains positioning for OPEN and positions
in front of the following file, if any, at CLOSE). If the tape is not positioned at
the beginning of the file, rewind the tape (use the // MTC REW,SYS004 com-
mand) and then use the TLBL statement file-sequence-number parameter to
identify the required file or use the // MTC FSF,SYS004,nn command to posi-
tion to the beginning of the desired file. nn must equal three times the num-
ber of files to be bypassed (for example, to skip past 2 files, specify 6). In the
processing command, specify STDLABEL and NOREWIND (for the reasons
previously given).

Standard Labels and Output: To create the first file on the tape, a standard
volume label (VOL1) should have been previously written as the first record
on the selected tape volume (see VSE/Advanced Functions Tape Labels).
Ensure that the tape is at load point (use the // MTC REW,SYS005 command)
before processing and specify STDLABEL and NOREWIND (positions the tape
for succeeding commands). On the file’s TLBL statement, either omit the
file-sequence-number parameter, or specify decimal 1.

To create any other file on the tape: If the previous command (or program)
has processed the previous file and has not rewound the tape, specify

4-12 VSE/VSAM Programmer’s Reference

C

STDLABEL and NOREWIND (maintains positioning for OPEN and positions for
a following file, if any, at CLOSE). If the tape is not correctly positioned, you
must position the tape just beyond the tapemark following the EOF1 trailer
record of the previous file. First, specify the // MTC REW,SYS005 command
(this rewinds the tape to load point). From load point you can then properly
position the tape by specifying the // MTC FSF,SYS005,nn command. nn is
equal to three times the number of files on the tape preceding the file to be
created. Specify STDLABEL and NOREWIND in the command (maintains
positioning for OPEN and positions for a following file, if any, at CLOSE). You
can, in all cases, omit the file-sequence-number parameter of the TLBL
statement.

Unlabeled Tapes and Input or Output: To create or process the first file on
the tape, ensure that the tape is at load point (use the // MTC REW,SYS004
command for input, and the // MTC REW,SYS005 command for output) before
processing and specify NOLABEL and NOREWIND (allows the succeeding file
to be processed or created next).

To create or process any other file on the tape: If the previous command (or
program) has created or processed the previous file and has not rewound the
tape, specify NOLABEL and NOREWIND (maintains positioning for OPEN and
positions in front of the following file, if any, at CLOSE). If the tape is not
positioned at the beginning of the file, rewind the tape (use the // MTC
REW,SYSxxx command — SYSxxx is SYS004 for input and SYS005 for output).
Next position to the beginning of the desired file with the // MTC
FSF,SYSxxx,nn command (SYSxxx is SYS004 for input and SYS005 for output).
For files created with Access Method Services, nn must equal the number of
files to be bypassed (Access Method Services uses the DTFMT macro
TPMARK=NO option). For each file to be bypassed, but created with the
DTFMT macro TPMARK=YES specification, add two to nn.

Chapter 4: Job Control 4-13

4-14 VSE/VSAM Programmer’s Reference

Chapter 5: VSAM Catalogs

A master catalog must be defined in your system,; this is the first job that
you run, after you have installed VSE/VSAM in your system. You can
have more than one master catalog at your installation; however, only
one can be connected to the system at a time.

An optional number of user catalogs can be defined in your system.
They are pointed to by the master catalog and have the same structure
and function as the master catalog. User catalogs are used to increase
data integrity and security, improve performance, and provide volume
portability. Figure 5-1 shows the relationship between master and user
catalogs, as well as their relationships with VSAM and nonVSAM files.

VSAM catalog(s) are central information points for files and volumes;
they contain the information VSAM needs to allocate space for files,
verify authorization to gain access to them, compile usage statistics on
them, and relate relative byte addresses (RBAs) to physical locations.
Each VSAM catalog also contains entries that describe itself.

The master catalog volume must always be mounted whenever a VSAM
file or catalog is to be processed. If the VSAM file to be processed is
defined in a user catalog, the user catalog volume must be mounted
also.

The master catalog volume is connected to the system at IPL (initial
program load) by the DEF SYSCAT=cuu command. It is always on a
logical unit named SYSCAT. A user catalog volume(s) can be on any
programmer logical unit. Each catalog exists on a single volume which
is owned by the catalog.

The filename of a master catalog must be IJSYSCT.

All vsaM files (except implicitly defined SAM ESDSs) must be defined
(have an entry) in a catalog; use the Access Method Services DEFINE
command. A file does not exist in VSAM until it has been defined in a
catalog. Most uses of Access Method Services involve doing something
to a VSAM catalog. For example, establishing a file involves creating an
entry in the catalog; deleting a file involves removing an entry from the
catalog; and moving a file from one system to another involves moving
an entry from one system’s catalog to another system’s catalog.

A volume is owned by or can be controlled by one catalog only; there-
fore all vSAM files on a specific volume must also be cataloged (have an
entry) in that same catalog. If a VSAM file is located on several volumes,
each of the volumes must be owned by that same catalog.

A large number of requests for information from a catalog may result in
some of the requests being answered more slowly than they would be if
several catalogs contained parts of the information. If the master
catalog primarily contains pointers to user catalogs, which in turn
contain entries for most files and volumes, catalog search time can be
reduced, and the effect of an inoperative or unavailable catalog is
minimized.

Chapter 5: VSAM Catalogs 5-1

Specifying a VSAM Catalog’s Job Control Statements

One important point about VSAM catalogs needs to be understood; VSAM
either uses a catalog to access a file (as in the PRINT command, where VSAM
locates the file to be printed via the catalog), or it accesses the catalog infor-
mation only and does not access a file (as in the ALTER command, where VSAM
changes an entry in the catalog). The following discussion (except where
noted) pertains to the accessing of a file.

Specifying the Master Catalog’s Job Control Information

To define a master catalog you must supply a master catalog DLBL statement
and specify extent information, either in the form of an EXTENT statement or
by DEFINE command parameters.

// DLBL IJSYSCT, 'MASTCAT', ,VSAM

If you place the master catalog’s DLBL statement in the system or partition
standard label area by preceding it with one of the following job control
statements, you can omit the master catalog’s DLBL statement from the job
stream.

// OPTION STDLABEL or
// OPTION PARSTD

The DLBL statement in the above example identifies:
e The filename: must be IISYSCT.

¢ The file-ID: MASTCAT. This can be any name you choose (it must match
the NAME parameter in the DEFINE MASTERCATALOG command).

e The access method: VSAM.

One other way of referring to the master catalog (after its initial specification)
is by coding the cAT=filename parameter in a VSAM file’s DLBL statement. A
further explanation of the CAT=filename parameter follows.

Specifying a User Catalog’s Job Control Information

Using a Job Catalog

To define a user catalog you supply a DLBL statement for the master catalog
only. But to access files in a user catalog, specify a user catalog DLBL state-
ment. (Refer to Figure 4-1 for user catalog DLBL requirements for Access
Method Services commands.) No EXTENT statement is required.

VSAM additionally provides you with the capability to designate one, and
only one, of your user catalogs as a job catalog. When you specify a job
catalog, VSAM will always use that one catalog for all catalog and file access
in the current job, unless it is specifically overridden by:

e The CAT=filename parameter of a VSAM file’s DLBL statement.

e The CATALOG or WORKCAT parameter of an Access Method Services
command.

You specify a job catalog by coding the filename, IJSYSUC, in the DLBL
statement that specifies the user catalog (see the following example).

// DLBL IJSYSUC, 'JOBCAT', ,VSAM

The following example makes use of the REPRO command (data is to be
copied from one file to another) to show how you use a job catalog. It is
assumed that the input file, PAY, and the output file, PAYROLL, were already

| defined (cataloged) in the job catalog. It is also assumed that the DLBL

5-2 VSE/VSAM Programmer’s Reference

C

statement for the master catalog has been placed in the system or partition
standard label area and so need not be included (in the example).

// JOB Specify a job catalog
() // DLBL IJSYSUC, 'USER1', ,VSAM
() // DLBL VSAMIN, 'PAY', ,VSAM
(¢) // DLBL VSAMOUT, ' PAYROLL', ,VSAM
// EXEC IDCAMS,SIZE=AUTO
REPRO INFILE(VSAMIN) OUTFILE(VSAMOUT)
/t
/8

In this example, VSAM finds a DLBL statement with a filename of IISYSUC (a).
VSAM interprets this to mean that files PAY (b) and PAYROLL (c) have their
respective entries in the job catalog. It therefore searches the job catalog to
locate the entry for input file PAY and output file PAYROLL.

What happens when you want to process a file that is not cataloged in the job
catalog? vsAM provides two different ways of overriding the job catalog; you
can use the DLBL CAT=filename parameter or the CATALOG parameter of an
Access Method Services command.

Explicit Catalog Specification (With a VSAM File’s DLBL CAT Parameter)

The following example directs VSAM to search a catalog other than the job
catalog (specified in the previous example). Assume that the input file PAY
was defined in job catalog USER1 as before, but output file PAYROLL was
defined in user catalog USER2. Also assume, as before, that the DLBL state-
ment for the master catalog has been placed in the system or partition stan-
dard label area.

// JOB Using the DLBL CAT parameter
(a) // DLBL IJSYSUC, 'USER1', ,VSAM
() // DLBL VSAMIN, 'PAY', ,VSAM
(¢) // DLBL VSAMOUT, ' PAYROLL', ,VSAM, CAT=PRIVCAT
(d // DLBL PRIVCAT, 'USER2', ,VSAM

// EXEC IDCAMS ,SIZE=AUTO

REPRO INFILE(VSAMIN) OUTFILE(VSAMOUT)
/*
/&

VSAM will once again encounter the filename 1JSYSUC in a DLBL statement (a)
but it also finds the CAT=PRIVCAT parameter in a file’s DLBL statement. The
CAT=PRIVCAT parameter directs VSAM to search catalog USER2 (d) to locate
PAYROLL’s file entry instead of searching the job catalog. (Filename PRIVCAT
links the CAT parameter to the appropriate DLBL user catalog statement.)

vsaM will locate the entry of file PAY (b) in the job catalog, as before, because
in this case you have not overriden the job catalog specification.

The DLBL CAT=filename parameter is used with the PRINT and REPRO
commands. (Each of these commands is used to access data.) The DLBL
CAT=filename parameter can also be used for VSAM application program
access.

Explicit Catalog Specification (With the Access Method Services CATALOG Parameter)

If you are using Access Method Services and specify the CATALOG parameter
in a command, no DLBL statement is needed for a user catalog. Only a master
catalog DLBL is required. (The master catalog DLBL statement may be sup-
plied in the job stream or in the partition or standard label area.) The format
of the CATALOG parameter is:

Chapter 5: VSAM Catalogs 5-3

CATALOG (catname[/password])

VSAM Hierarchy of Catalogs J

From the preceding, you can see that VSAM follows a certain order in search-
ing for a file’s catalog. The established hierarchy that determines the specific
catalog to be searched is as follows:

1. Explicit user or master catalog. This is the catalog that is specified by
the Access Method Services CATALOG parameter or by the
CAT=filename parameter of a VSAM file’s DLBL statement.

2. Job catalog. If the above catalog is not specified, the job catalog
(ISYSUC) specified as the filename of a DLBL statement is searched.

3. Master catalog. If the above catalogs are not specified, the master
catalog (IJSYSCT) is searched.

The following table shows which catalog is searched, depending on your
DLBL specification.

// DLBL IJSYSUC DLBL CAT=filename CATALOG Catalog to

Specified? Parameter be Searched
Specified?

Yes None No Job Catalog

Yes Filename of User Catalog DLBL No User Catalog

Yes ‘IISYSCT’ No Master Catalog

Yes TISYSuUC No Job Catalog

Yes None Yes CATALOG (catname)

No None No Master Catalog

No Filename of User Catalog DLBL No User Catalog

No ‘IJSYSCT’ No Master Catalog

No ‘IJsysuc’ No Master Catalog*)

No None Yes CATALOG (catname)

* VSAM defaults to the master catalog in this case because you specified the filename for the job catalog (in the
DLBL CAT= parameter) but you did not specify a job catalog.

Master
Catalog

-7

Optional User Optional User

VSAM and VSAM Catalog Catalog
Other Files Files

[4 | |

0 |

)y | Files and

7 | Volume Records |

/Files and | I

d |

Volume Records

VSAM and VSAM VSAM
Other Files Files Files

Figure 5-1. Catalog Relationships

54 VSE/VSAM Programmer’s Reference

C

A Catalog’s Use in Data and Space Management

The information contained in VSAM catalogs is extensive enough to enable
VSAM to suballocate and deallocate space for files on the available volumes
without these volumes being mounted on a device of the system. (The only
exceptions are volumes containing a unique file and recovery volumes. Both
are subsequently discussed.) Consequently, the management of files is less
dependent on job control information or information specified in processing
programs.

You use Access Method Services to define VSAM data space(s) on a volume.

A VSAM data space is owned entirely by the VSAM catalog in which it is
defined, and you use Access Method Services to suballocate one or more
VSAM files from the data space. The space is identified in the volume’s VTOC
(volume table of contents). (You can also define nonvSAM files in a VSAM
catalog defined without the RECOVERABLE attribute, but no nonvSAM files
may be allocated within a VSAM data space.) When you define a VSAM data
space, use DEFINE SPACE command parameters to actually allocate the space
and to identify the volumes that will contain VSAM files. These volumes
should be mounted.

All vsAM files of an installation must be cataloged in a VSAM catalog. You
catalog a file by defining it with the Access Method Services command
DEFINE CLUSTER. Access Method Services enters the file’s name and other
characteristics into the catalog.

When you define VSAM files, you normally do not need any DLBL and
EXTENT statements, because VSAM automatically allocates space for them
from existing data spaces. However, when you define a file with the UNIQUE
attribute to enable the file to be allocated a space of its own, you do not
define the data space beforehand, but provide extent information (via DLBL
and EXTENT statements) in the Access Method Services job stream that
defines that file. The data space is then set up at the same time as the entry
for the file is created. The volume(s) must be mounted, as in defining a data
space.

Except for unique files, VSAM can allocate and deallocate space for files on
cataloged volumes that are not mounted. However, if there is not enough
unused data space to contain a file, you must mount a volume or volumes to
allocate new data space or assign to the file other volumes that contain
unused data space. In addition, if the catalog is recoverable, the volume
containing the catalog recovery area for the file being defined must be
mounted.

VSAM Volume Ownership

The direct-access space occupied by VSAM files is recorded in a catalog. Asa
result a catalog controls (owns) not only the volume on which it resides, but
any other volumes that contain part or all of any VSAM cluster, alternate
index, or data space that is cataloged in the catalog.

VSAM’s ownership and usage of space on a volume are indicated by label
entries in the volume’s VTOC. The “data secure file bit” in the format-1 VTOC
(identifier) label of each VSAM data space on the volume is set to indicate
both read and write protection. The “ownership bit” in the format-4 VvToc
label is set to 1 if the volume is owned by a catalog (if the volume contains a
VSAM data space or if the volume is a candidate volume for a VSAM object).
The ownership bit indicates that the volume is owned by a catalog, but does
not identify the owning catalog. Each catalog contains a volume entry for
each volume it owns. The volume entry describes the direct-access volume’s

Chapter 5: VSAM Catalogs 5-5

characteristics, each extent of the volume’s VSAM data space, and each VvSAM
object that uses the volume’s space. Volumes with duplicate volume serial
numbers cannot be owned by the same catalog.

In order for you to remove the volume’s ownership from a catalog, you must
delete all VSAM objects and data spaces on the volume. When you are unable
to use the DELETE command because Access Method Services can no longer
access the volume (due to the damage that resulted from a system or hard-
ware failure), you can reset the ownership bit by using the IKQVDU program.
For more information on the IKQVDU program, see VSE/VSAM VSAM
Logic, Volume 1.

When you list the volume’s VTOC, when you reinitialize the volume, or when
you dump the volume to a magnetic tape, you want to be able to recognize
VSAM names in the volume’s VTOC. The VTOC contains the VSAM-generated
name of each VSAM data space on the volume and (for unique files) contains
names for the data and index components of a cluster or alternate index (the
format-1 vToC label is identified with the object’s entry name).

The names generated by VSAM have the following format:

¢ For a data space containing suballocated VSAM objects, the
VSAM-generated name is Z999999n.VSAMDSPC.Taaaaaaa. Tbbbbbbb

where:

n=2 if no catalog resides in the data space

n=4 if a user catalog resides in the data space
n=6 if the master catalog resides in the data space
aaaaaaabbbbbbb is the time stamp value

¢ For a unique data space (defined as a data space that cannot contain
more than one cataloged VSAM object), the VSAM-generated name is

VSAMDSET.DFDyyddd.Taaaaaaa. Tbbbbbbb
where:

yyddd is the date (year and Julian day)
aaaaaaabbbbbbb is the time stamp value

When you define a VSAM file with the UNIQUE attribute, VSAM creates a
unique data space. If you specify a name for the data and/or index compo-
nent, VSAM places the name you specify in the format -1 VTOC label rather
than generating a name.

To relate the vsAM-generated name with a VSAM cluster, alternate index,
catalog, or data space, you list the catalog that owns the volume. You issue a
LISTCAT command to list the catalog’s contents. The LISTCAT output listing
relates the vSAM-generated names with user-assigned entry names for cata-
loged objects.

Some of the implications of VSAM volume ownership are:

e All vSAM clusters, alternate indexes, and data spaces on a volume must
be cataloged in the catalog that owns the volume. Only one catalog can
own the volume.

® VSAM volume ownership does not affect nonvsAM files that reside on
the volume. NonVSAM files can exist on a volume owned by a catalog
but can be cataloged as nonVSAM entries in a catalog that doesn’t own
the volume. (NonvsAM files do not have to be defined in a VSAM
catalog.)

5-6 VSE/VSAM Programmer’s Reference

¢ In order to release a volume from ownership by a catalog, you must
delete all VSAM objects that reside on the volume. The catalog also
contains a volume entry, which describes the volume and its VSAM data
spaces. After deleting the VSAM objects, you must issue the DELETE
SPACE command. The DELETE SPACE command deletes the VSAM data
spaces on the volume, removes the volume entry from the catalog,
deletes the format-1 label, and revises the format-4 label in the vTOC.

Each volume owned by a catalog contains a time stamp that is written in the
vTOC when the volume is first cataloged. Both the time stamp in the VTOC
and the time stamp in the volume entry in the catalog are updated whenever
the catalog is updated in response to the following Access Method Services
commands:

DEFINE SPACE

DEFINE CLUSTER (with UNIQUE attribute)

DEFINE ALTERNATEINDEX (with UNIQUE attribute)

DELETE SPACE

DELETE CLUSTER (with UNIQUE attribute)

DELETE ALTERNATEINDEX (with UNIQUE attribute)

EXPORT PERMANENT a cluster or alternate index with the UNIQUE attri-
bute. (The cluster or alternate index is deleted.)

IMPORT(RA) a cluster or alternate index with the UNIQUE attribute. (Any
old copy, if present, is deleted, and a new version is defined.)

If the volume’s time stamp is earlier than the catalog’s time stamp, the vol-
ume is considered down-level. Access Methods Services will not open a file
on a down-level volume.

The following fields in the format-4 VTOC label time stamp are cleared only
when VSAM volume ownership is relinquished:

Offset Length Description

77 8 VSAM timestamp 1 is set to the system’s time of day when VSAM
acquires volume ownership in a catalog. This timestamp is modified
whenever physical space allocated to VSAM is acquired either by alloca-
tion of an extent or any time VSAM physical space is returned to the
VTOC by VSAM catalog management routines.

85 3 VSAM indicators:
Byte 1
BitOsettol = a VSAM catalog owns the volume.
Bitlsettol = nosignificance for VSE.
Bits 2-7 = reserved (set to binary zeros).
Bytes 2-3 = relative track or block location of the catalog

recovery area on the volume. These bytes are set
only if a recoverable catalog owns the volume; other-
wise, the bytes are set to binary zeros.

88 8 VSAM time stamp 2 is the VSAM-only timestamp. Set only for OS/VS
compatibility and not used by VSE.

Volume Mounting Requirements
Volumes must be mounted in the following cases:

¢ In all cases of a recoverable catalog where new catalog entries are made
or old entries are modified (for example, ALTER, DEFINE, DELETE,
EXPORT, IMPORT), the recovery volume must be mounted. In these cases
the CRA of the recovery volume is opened and updated by VSAM.

¢ In all cases where files are actually accessed (for example, VSAM appli-
cation programs,PRINT, REPRO, DELETE ERASE, workfiles, EXPORT,
IMPORT), volumes must be mounted.

Chapter 5: VSAM Catalogs 5-7

¢ In all cases where a VTOC update is necessary (for example, DEFINE or
DELETE SPACE, DEFINE or DELETE a UNIQUE file, ALTER NEWNAME
NONVSAM, ALTER NEWNAME UNIQUE), the volume(s) for the affected
VTOC(s) must be mounted.

¢ The owning VSAM catalog must always be mounted.

¢ In the case where a path defined in a recoverable catalog is to be delet-
ed, only its recovery volume must be mounted.

Information Contained in the Entries of a Catalog
The VSAM catalog is a key-sequenced file composed of a data part and an
index part. The data of the catalog consists of entries describing files and of
entries describing direct-access volumes in terms of the allocation of data
spaces and the location of available space. The index of the catalog allows
VSAM to find the file entry through its 44-byte name (file-ID) or the volume
entry through the volume serial number.

File entries contain the information VSAM requires to properly access a file,
verify access authorization, if required, and provide statistics on operations
performed on a file.

Volume information in a catalog enables VSAM to keep track of data spaces
and free storage areas.

Transporting Files between Systems

Since all vSAM files must be cataloged, moving a file from one system (or set
of systems if in a DASD sharing environment) to another requires that catalog
information be moved along with it or that the copy of the file being moved
be cataloged in the receiving system. You can move individual files and user
catalogs from one VSE system to another VSE system or to an OS/VS system by
using the EXPORT and IMPORT commands. When you move a user catalog
from one system (or set of systems) to another, its VSAM volume ownership
moves along with it. Thus, a VSAM volume (or volumes) is portable between
systems together with all VSAM data spaces and files contained in the
volume(s).

The entire VSAM master catalog and the VSAM volumes owned by the master
catalog can be moved from one VSE system (or set of systems) to another VSE
system or to an OS/VS system. To use a VSAM master catalog from another
VSE system or from an OS/VS system, you need only assign it by use of the
DEF SYSCAT=cuu command during initial program load. All VSAM volumes
owned by that catalog are then available to the receiving VSE system. In
addition, a DLBL statement for the master catalog must be provided either in
the job stream or in the label area.

Catalog and File Migration

This section provides information useful to a person migrating VSAM catalogs
and files from one device type to another (for example, from CKD volumes to
fixed block volumes). Note that a catalog on a fixed block device can own
CKD volumes (and their VSAM files), and a CKD catalog can own FBA vol-
umes.

Defining a Catalog

This section applies to both master and user catalogs.

VSAM defines a VSAM data space from which the catalog (and catalog re-
covery area) is suballocated. This is done on CKD devices using the

5-8 VSE/VSAM Programmer’s Reference

Defining a Data Space

DEDICATE, ORIGIN, CYLINDERS, TRACKS, or RECORDS subparameters of
DEFINE MASTERCATALOG|USERCATALOG. Fixed block devices require the
same process, except that the DEDICATE, ORIGIN, BLOCKS or RECORDS sub-
parameters must be specified. (CYLINDERS or TRACKS is not accepted.)
Therefore, you must convert a CYLINDERS|TRACKS value to a BLOCKS or
RECORDS quantity.

If you specified DEDICATE for the CKD device, no conversion is necessary.

Convert the number of tracks or cylinders into the number of bytes, using
LISTCAT to determine the number of bytes per track and tracks per cylinder.
Divide the number of bytes by 512 to determine the BLOCKS value. Adjust it
accordingly, if you want more or less space allocated.

The beginning-block-number specification in the ORIGIN parameter depends
on where you want the data space to be on the volume. Use the LVTOC utility
program to determine what space is available on the volume. The catalog will
be located at the beginning of the defined data space, and the catalog re-
covery area (if applicable) will immediately follow it. The CRA size is always
equal to the max-CA value for the particular fixed block device type. (See the
LISTCAT volume entry for special fields BLKS/MAX-CA described in “Using
VSE/VSAM Commands and Macros,” Appendix B.)

You may wish to change other subparameters of MCAT|UCAT (for instance,
the volume serial number), but there are no special considerations for fixed
block devices.

Specify the actual space to be suballocated for your catalog using the BLOCKS
or RECORDS subparameters of DATA and INDEX. Do not try to directly
convert a CKD catalog size definition to a fixed block definition. Instead,
calculate the desired values using the instructions in “Defining a Catalog” in
this chapter. To avoid an overly small, inefficient control area size, make the
secondary allocation value at least as large as the desired control area size.

The considerations for data space definition are essentially the same as for
catalog definition. Differences are:

* A catalog is not suballocated from the data space.

® A CRA is suballocated only if this is the first space defined on a volume
owned by a recoverable catalog.

If CANDIDATE is specified with DEFINE SPACE, fixed block data space defini-
tion is the same as CKD data space definition.

Defining a Non-Unique Cluster or Alternate Index

Because these files (or their components) are suballocated from VSAM data
spaces, there are no job control considerations for fixed block devices. For
FBA devices, you must convert the TRACKS or CYLINDERS subparameters to
BLOCKS or RECORDS. (The RECORDS subparameter does not require conver-
sion.) This conversion is the same as described above for catalog conversion.

Defining a Unique Cluster or Alternate Index

If a cluster or alternate index contains both a non-unique component and a
unique component, conversion considerations for the non-unique component
are as described above.

For each unique component (data and, if present, index) you must convert
EXTENT statement parameters and the TRACKS|CYLINDERS subparameters.
Both conversions are required because a unique component occupies its own

Chapter 5: VSAM Catalogs 5-9

VSAM data space.If the component is to be on more than one volume, specify
a new EXTENT statement for each volume.

Migrating a Catalog to Another Device
For information about converting an imbedded catalog to a non-imbedded
catalog, or converting a catalog to a fixed-head data space, refer to “Chapter
10: Data Interchange Considerations.”

Moving a Master Catalog to Another Volume
1. Using EXPORT or EXPORTRA, create portable copies of all files and user
catalog entries (EXPORTRA only) that are to be in the new catalog
(procedure described below). For EXPORT, DISCONNECT any user
catalogs to be reconnected to the new catalog.

2. IPL with the master catalog assigned to the new volume, using the IPL
DEF SYSCAT=cuu command.

Define the new master catalog (procedure described above).

4. Define any vSAM data spaces required for the volumes. (For old vSAM
volumes, any files and data spaces that belonged to another catalog
must have already been deleted.) Note that the define catalog operation
has already defined a data space on the catalog volume. Any space to
be occupied by unique files should be left unallocated.

5. Using IMPORT or IMPORTRA, copy VSAM files and user catalog entries
(IMPORTRA only) to volumes belonging to the new catalog. (The next
section describes new device type considerations.) If IMPORT was used,
you can IMPORT CONNECT user catalogs.

Moving a User Catalog to Another Volume
1. Using EXPORT or EXPORTRA, create portable copies of all files that are
to be in the new catalog (procedure described below).

2. Delete or disconnect the previous user catalog entry unless it is owned
by a different master catalog.

Define the new user catalog (procedure described above).

4. Define any VSAM data spaces required for the volumes. (For old VSAM
volumes, any files and data spaces that belonged to another catalog
must have already been deleted.) Note that the define catalog operation
has already defined a data space on the catalog volume. Any space to
be occupied by unique files should be left unallocated.

5. Using IMPORT or IMPORTRA, copy VSAM files to volumes belonging to
the new catalog. (The next section describes new device type considera-
tions.)

Migrating VSAM Files to Another Device
There are three ways to move VSAM files from one volume to another. They
may or may not require moving from one catalog to another.

DEFINE/REPRO: To move files between two volumes owned by different
catalogs, DEFINE each file on the new volume, using its old name. REPRO
each file onto the new volume, and delete it from the old one.

To move files between two volumes owned by the same catalog, DEFINE each
file on the new volume, using a temporary name that is not already in the
catalog. REPRO each file onto the new volume, and delete it from the old

5-10 VSE/VSAM Programmer’s Reference

http:space.lf

C

NONYVSAM Migration

volume. Rename the new copy, using the name the file had on the old
volume.

In both cases, alternate indexes can be copied. You must redefine all paths
for the new copy.

EXPORT/IMPORT: With EXPORT/IMPORT, each file to be migrated is first
exported to a temporary SAM file (tape or DASD). For EXPORT PERMANENT,
this frees space (and volumes if all files on them are exported) that is poten-
tially reusable during the IMPORT phase.

To assure the desired space allocation, DEFINE the files before importing
them. If files are imported but not defined, too much or too little space may
be allocated to them. Then IMPORT the files.

Unique files require extent values specified on an EXTENT statement. Path
definitions are implicitly transferred.

EXPORTRA/IMPORTRA (recoverable catalogs only):
EXPORTRA/IMPORTRA is similar to EXPORT/IMPORT, the key difference being
that files cannot be defined before IMPORTRA. This can produce significant
problems when changing device types because the CKD device allocations
(tracks or cylinders) will be used on the new fixed block device, with a track
mapping to a minimum control area unit, and a cylinder mapping to a
maximum control area unit. This may result in too much or too little space
being allocated.

EXPORTRA/IMPORTRA does allow multiple files to be handled on a single
command execution. Path definitions are implicitly transferred.

Catalog entries can be moved into catalogs on fixed block devices (as de-
scribed above) via DEFINE NONVSAM and DELETE, but they cannot have fixed
block specified as their device type.

Space Allocation via Modeling

If a user catalog, cluster, or alternate index being migrated from one device
type to another had its space allocation defined by modeling, you should
consider changing to explicit specification, or modeling it on a catalog,
cluster, or alternate index on the new device type. Otherwise, you will
allocate space based on the track and/or cylinder capacity of the CKD device
type rather than the fixed block device type. This can cause wasted space,
excessive secondary allocation, and inefficient or even invalid control area or
control interval sizes.

For further information about modeling, refer to Chapter 6.

Chapter 5: VSAM Catalogs 5-11

5-12 VSE/VSAM Programmer’s Reference

Chapter 6: How to Use One Object as Model for Another Object and
Override System Defaults

You can use the entry of an already-defined alternate index, catalog, cluster,
or path as a model for the definition of another object of the same type.
When one entry is used as a model for another, its attributes are copied as the
new entry is defined.

Modeling permits you to set your own parameter defaults to override system
defaults. Once defaults are established, you need not respecify them each
time new objects are defined. An explicit parameter specification, however,
overrides defaults established by you (through modeling) and by the system.

The normal Access Method Services DEFINE CLUSTER or AIX procedure is
greatly simplified by reducing the numbers of parameters required. This in
turn can reduce the number of errors that are likely to occur and the number
of parameters to which the average user needs to be exposed. At the same
time, it permits application- and installation-associated standards.

There are three kinds of models, two of them explicit, in that you must specify
the name of the model you wish to use. For the third kind, an implicit model,
VSAM chooses a default model based on the kind of object you are trying to
define.

Explicit Allocation Models

Example A:
Establishing the Model Using the Model
DEFINE CLUSTER DEFINE CLUSTER
NAME (entryname) .
[] []

. MODEL (entryname)
]

Example A shows a conventional (pre-VSE/VSAM Release 2) model that
occupies data space and can be used as a normal VSAM object. You must
explicitly specify the entryname subparameter of the MODEL parameter to
identify the object to be used as a model. This is the only form of modeling
valid for paths and user catalogs. If MODEL is specified as a parameter of
PATH:

1. The attributes of the model are used for the path being defined.

2. Any attributes explicitly specified as parameters of the defined path are
defined and override those of the model.

Figure 6-1 shows MODEL specified as a parameter of CLUSTER (that is, at the
cluster level) but not specified as a subparameter of the DATA or INDEX
parameter (this is the usual case). This figure illustrates how parameters are
merged from a model (cluster X) and a DEFINE CLUSTER command. The
result is a new list of cluster parameters, which VSAM uses to create a cluster.

1. The non-propagating cluster level attributes (entryname, passwords,
AUTHORIZATION, ATTEMPTS, CODE, OWNER, TO, FOR, and allocation
attributes) of the model are used for the user catalog, cluster or alternate
index being defined.

2. Any non-propagating cluster level attributes explicitly specified as
parameters of the defined object are applied to and override those of the
model.

Chapter 6: How to Use One Object as a Model for Another Object and Override System Defaults 6-1

6-2

3. The attributes of the model are used for the data and index components
of the alternate index, cluster, or user catalog.

4. Attributes explicitly specified at the cluster level are propagated to the
cluster’s data and index components.

S. Attributes explicitly specified for the object’s data and index compo-
nents (that is, specified as subparameters of the DATA or INDEX parame-
ter) are defined.

Attributes specified for each step override the attributes specified by the
previous step.

If MODEL is specified as a subparameter of the DATA or INDEX parameter
(not applicable to a user catalog):

1. Attributes explicitly specified at the cluster level are propagated to the
object’s data and index components.

2. Attributes of the model specified for the data or index component are
defined (that is, the model specified with the MODEL subparameter of
the DATA or INDEX parameter).

3. Attributes explicitly specified for the data and index components are
defined (that is, the attributes specified with subparameters of the DATA
or INDEX parameter).

Attributes specified for each step override the attributes specified by the
previous step.

The MODEL parameter is designed to let you easily define files that are
identical except for their names and security attributes. When you use the
MODEL parameter, you should take care to ensure that your job is not termi-
nated because of allocation problems when you explicitly do any of the
following:

e Specify a different type of device with the VOLUMES parameter.
¢ Change the length or position of the keys with the KEYS parameter.

¢ Change the size of records, buffer space, or control intervals with the
RECORDSIZE, BUFFERSPACE, or CONTROLINTERVALSIZE parameters.

¢ Change the type of cluster (that is, entry-sequenced, key-sequenced, or
relative-record), the type of alternate index (that is, key-pointer or
RBA-pointer), or the allocation-type of the object (that is, unique or
nonunique).

¢ Change the unit of allocation with the BLOCKS, TRACKS, CYLINDERS, or
RECORDS parameters.

When you explicitly specify any of the above parameters for your to-be-
defined object, you might have to make corresponding changes to other
related parameters.

VSE/VSAM Programmer’s Reference

Model Cluster Explicit Specification
DEFINE CLUSTER
Cluster X Command
CLUSTER Level //®\ /@\ CLUSTER Level
MODEL (X)
DATA Component DATA Component
Level* Level*

New|Cluster

C|LUSTER Level

DATA Component
Level*

- *The DATA and INDEX
L1, component levels have
| similiar rules; for sim-
plicity, only the DATA
component is shown
here.

Ea

Figure 6-1. Specifying the MODEL Parameter at the CLUSTER Level Only

Noallocation Models
Using explicit noallocation and default models, the defined object exists only
as a model; no space is suballocated to it. The model is represented by entries
in the VSAM catalog,.

Explicit Noallocation Models

Example B:
Establishing the Model Using the Model
DEFINE CLUSTER DEFINE CLUSTER
NAME (entryname) .
L[] L]
. MODEL (entryname)
NOALLOCATION

Example B is an explicit model because you must specify MODEL (entryname)
for the cluster you wish to use as a model. It is a noallocation model because
no storage is allocated to it.

Chapter 6: How to Use One Object as a Model for Another Object and Override System Defaults 6-3

Default Models
The third kind of model is a default model. It is an implicit model because J
you do not have to specify the name of the model in order to reference it. It is
a noallocation model because no storage is suballocated to it. When you
define the model, specify the entryname subparameter of the NAME parameter

as one of the following:
DEFAULT.MODEL.KSDS (key-sequenced file)
DEFAULT . MODEL . ESDS (VSAM entry-sequenced file)
DEFAULT .MODEL.ESDS . SAM (managed-SAM file)
DEFAULT .MODEL .RRDS (relative-record file)
DEFAULT.MODEL.AIX (alternate index) -

Each catalog may have five implicit models, one of each type. As shown
below, you need only specify INDEXED, NONINDEXED,

RECORDFORMAT(...)NONINDEXED, NUMBERED, or AIX for VSAM to locate the)
appropriate model.
Example C:
Establishing the Model Using the Model
DEFINE CLUSTER DEFINE CLUSTER
NAME (DEFAULT . MODEL .KSDS) NAME (entryname)
L]]
L[] L]
NOALLOCATION INDEXED
DEFINE CLUSTER DEFINE CLUSTER
NAME (DEFAULT . MODEL . ESDS) NAME (entryname)
L] L[]
[] L]
NOALLOCATION NONINDEXED
DEFINE CLUSTER DEFINE CLUSTER
NAME (DEFAULT .MODEL . ESDS . SAM) NAME (entryname)
L]]
. RECORDFORMAT(. . .)
NOALLOCATION NONINDEXED
DEFINE CLUSTER DEFINE CLUSTER
NAME (DEFAULT . MODEL . RRDS) NAME (entryname)
] L]
L] L]
NOALLOCATION NUMBERED
DEFINE ALTERNATEINDEX DEFINE ALTERNATEINDEX
NAME (DEFAULT .MODEL.AIX) NAME (entryname)
L] L]
] L]
NOALLOCATION

How VSAM Determines which Parameters to Use

VSAM goes through the following sequence in determining which parameter
to use in the definition of a cluster or alternate index.

1. Did you explicitly specify a parameter in the define? If yes, VSAM uses
it. (If you explicitly specify a space allocation parameter (CYLINDERS,
TRACKS, BLOCKS, or RECORDS) at any level of DEFINE CLUSTER/AIX,
the space allocation parameter(s) in your model are ignored.) J

2. Did you specify MODEL parameter in the define (Example A above)? If
yes, go to step 4; VSAM creates a file using the parameters specified in
MODEL (entryname).

64 VSE/VSAM Programmer’s Reference

Restrictions

3.

4.

Did you specify the NOALLOCATION parameter with a
DEFAULT.MODEL.Xxxx in a previous DEFINE command, thereby creating
a default model (Example C above)? If yes and the file organization
matches the entryname, VSAM uses the parameters specified in the
default model.

If none of the above apply, VSAM uses the system default (if one exists).

The following restrictions exist for modeling of VSAM objects.

If you specify DEFINE CLUSTER or DEFINE ALTERNATEINDEX and the
cluster name begins with DEFAULT.MODEL., VSAM assumes that you are
establishing a model. The rest of the name must be KSDS, ESDS,
ESDS.SAM, RRDS, or AIX. It is not possible to open a file or component
whose name begins with DEFAULT.MODEL.. DEFINE CLUSTER/AIX
ignores user-specified DATA and INDEX component names for clusters
that have the DEFAULT.MODEL. prefix. Instead these components are
implicitly assigned a name constructed from the cluster or alternate
index name with the additional qualifier of DATA or INDEX. A message
will tell you any data/index names that have been generated in this
way.

If space parameters (CYLINDERS, TRACKS, RECORDS, or BLOCKS) are
specified at any level of DEFINE CLUSTER/AIX, they override any mod-
eled defaults.

To model USECLASS for a cluster or alternate index, do one of the
following:

- Specify space parameters (CYL, TRK, REC, BLK) at levels correspond-
ing to where modeling is to apply (cluster, data, index).

- Do not specify space parameters at any level. (Both USECLASS and
space specifications are modeled.)

You cannot rename (via ALTER NEWNAME or IMPORT NEWNAME) any
catalog entry such that the name is being changed to or from
DEFAULT.MODEL.xxxXx. An attempt to do so causes the command to
terminate with an error message.

Figure 6-2 lists the various DEFINE parameters and indicates whether each
can be modeled explicitly (MODEL (entryname) specification) and implicitly
(DEFAULT.MODEL XXXX).

Chapter 6: How to Use One Object as a Model for Another Object and Override System Defaults 6-5

Modeling System
Parameter lPa .r'al::lo‘t'e'r Notes
Explicit Implicit Not Modeled
ATTEMPTS Yes Yes Yes Not propagated to other levels.
AUTHORIZATION Yes Yes* No Not propagated to other levels.
BLOCKS Can model only if not explicitly No Propagated via algorithm from cluster or
specified at any level. data levels.
BUFFERSPACE Yes No Yes
CLASS No No Yes Refer to USECLASS parameter.
CODE Yes Yes* No Not propagated to other levels.
CONTROLINTERVALSIZE Yes No Yes
CYLINDERS Can model only if not explicitly No Propagated via algorithm from cluster or
specified at any level. data levels.
DEDICATE No No No
DEFAULTVOLUMES No No Yes
ERASE Yes Yes Yes Propagated to data level only; NOERASE is
the default.
EXCEPTIONEXIT Yes Yes No
FILE No No No
FOR Yes Yes Yes Specified at cluster level only; propagated
to data or index.
FREESPACE Yes Yes Yes (0 0) is the default.
IMBED Yes Yes Yes NOIMBED is the defaulit.
INDEXED See note No Yes KSDS is created if nothing or INDEXED is
specified.
KEYRANGES Yes Yes No
KEYS (AIX) Yes Yes Yes
KEYS (cluster) Yes Yes Yes Not specified or modeled for INDEX.
NOALLOCATION Yes No Yes SUBALLOCATION is the default.
NOERASE Yes Yes Yes NOERASE is the default.
NOIMBED Yes Yes Yes NOIMBED is the default.
NONINDEXED See note No Yes Refer to INDEXED parameter.
NONSPANNED Yes Yes Yes NONSPANNED is the default.
NONUNIQUEKEY Yes Yes Yes NONUNIQUEKEY is the default.
NOREPLICATE Yes Yes Yes NOREPLICATE is the default.
NOREUSE Yes Yes Yes NOREUSE is the default.
NOTRECOVERABLE (cat) Yes No Yes
NOUPGRADE Yes Yes Yes UPGRADE is the default.
NOWRITECHECK Yes Yes Yes NOWRITECHECK is the default.
NUMBERED See note No Yes Refer to INDEXED parameter.
ORDERED Yes Yes Yes UNORDERED is the defaulit.
OWNER Yes Yes No Not propagated to other levels.
Passwords Yes No No No propagation from cluster level, but lower
level password is propagated to master if
no master password is specified.

* To implicitly model this parameter, the object must be defined with at least one password, and the master catalog password
must be specified in the CATALOG parameter.

Figure 6-2. Modeling of DEFINE Parameters (Part 1 of 2)

6-6 VSE/VSAM Programmer’s Reference

Modeiing System
Parameter P[::::':tie'r Notes
Explicit Implicit Not Modeled
RECORDFORMAT Yes NA Yes For SAM ESDS models only.
RECORDS Can model only if not explicitly No Propagated via algorithm from cluster or
specified at any level. data levels.
RECORDSIZE Yes No Yes
RECOVERABLE (cat) Yes No Yes
RECOVERY Yes Yes Yes
RELATE No No NA
REPLICATE Yes Yes Yes NOREPLICATE is the default.
REUSE Yes Yes Yes NOREUSE is the default.
SHAREOPTIONS Yes Yes Yes
SPANNED Yes Yes Yes NONSPANNED is the default.
SPEED Yes Yes Yes
SUBALLOCATION Yes No Yes SUBALLOCATION is the default.
TO Yes Yes Yes Specified at cluster level only; propagated
to data and index.
TRACKS Can model only if not explicitly No Propagated via algorithm from cluster or
specified at any level. data levels.
UNIQUE Yes No Yes SUBALLOCATION is the default.
UNIQUEKEY Yes Yes Yes NONUNIQUEKEY is the default.
UNORDERED Yes Yes Yes UNORDERED is the default.
UPGRADE Yes Yes Yes UPGRADE is the default.
USECLASS Only if space parms are Yes
specified at same level, or if no
space parms are specified.
VOLUMES Yes Yes No
WRITECHECK Yes Yes Yes NOWRITECHECK is the default.

Figure 6-2. Modeling of DEFINE Parameters (Part 2 of 2)

Default Volumes

Default volume lists are derived from the volumes list of a default model that
is of the same type as the object being defined. For example, if a VSAM ESDS
cluster is defined without a VOLUMES parameter, an ESDS default model
(DEFAULT.MODEL.ESDS.DATA) is used to build the volumes list for the ESDS.
Because volume selection from the default volume list is done randomly for
each component, the data and index components of a KSDS or AIX could
reside on different volumes and even different device types. You can elimi-
nate the possiblilty of different device types by including devices of only one
type when defining the KSDS or AIX model.

When a file is defined implicitly (via managed-SAM) and if you have not
provided volume information in an EXTENT statement, VSAM attempts to
construct a volumes list from a managed-SAM ESDS default model
(DEFAULT.MODEL.ESDS.SAM). No other information is used (from the SAM
ESDS default model) for an implicit define.

DEFAULTVOLUMES forces a default model to override an explicit model for
purposes of determining the volumes list. There are three sources of volumes
lists:

1. Explicit specification (VOLUMES parameter)

Chapter 6: How to Use One Object as a Model for Another Object and Override System Defaults 6-7

2. Explicit model (MODEL parameter)
3. Default model (DEFAULT.MODEL.XxxX plus VOLUMES parameter)

These sources are listed in order of precedence. 1 overrides 2, and 3 takes
effect if 1 and 2 are missing. If only 2 and 3 are present, however, specifying
DEFAULTVOLUMES causes the volumes list in 2 to be bypassed in favor of the
volumes list in 3. You cannot specify the DEFAULTVOLUMES parameter to
bypass 2 if 3 does not exist. (At least one of these options (1,2, or 3) must be
specified or modeled.)

DEFAULTVOLUMES cannot be explicitly modeled because it is not retained as
an attribute in the catalog. Do not try to use default volume lists with
KEYRANGES because VSE/VSAM does not order the volumes in any way when
allocating space to them.

6-8 VSE/VSAM Programmer’s Reference

Chapter 7: VSAM Labels

VSAM maintains identifying information for its files in a central location that
is separate from the internal DASD labels that describe files of other access
methods. This location is a DASD file called the VSAM catalog. Volumes that
contain VSAM files have the same internal labels as other volumes. Most of
the identifying information for VSAM files, however, is in the VSAM catalog.

VSAM volumes use the volume label and the format-1, format-3, and format-4
labels. A brief description of each of these labels follows. They are described
in greater detail later in this chapter. vSAM does not support user-standard
labels.

¢ The volume label (VOL1) is generally written when the disk pack is
received at an installation. At that time a permanent volume serial
number (volser) is assigned to the volume. The volser is written on the
volume as part of the label to provide permanent identification of the
volume.

e The VSAM format-1 label describes direct access space; the characteris-
tics of the logical files that occupy that space are described in the VSAM
catalog. There is a format-1 label for each VSAM data space on the
volume. Each data space consists of one or more separate extents. Up
to three extents are described in the format-1 label, and additional
extents are described in a format-3 label (pointed to by the format-1
label).

You do not usually name a VSAM data space; the 1 - 44-byte key area con-
tains a name assigned by VSAM. If you allocate a data space to contain the
data or the index of only one specific VSAM file (called a unique file), the
44-byte key area will contain the name given to the data or the index when
you define it.

When a new VSAM data space is created (Access Method Services DEFINE
command), existing format-1 labels are read and checked, and new labels are
created by the catalog and space management routines.

¢ A format-3 label is written whenever a VSAM data space occupies more
than three separate areas (extents) of a volume. It is used to supply the
limits (starting and ending addresses) of the additional extents. Thir-
teen separate extents can be defined by one format-3 label. This label is
pointed to by the format-1 label.

When a new VSAM data space is created (via the Access Method Services
DEFINE command), existing format-3 labels are read and checked, and new
labels are created by the catalog and space management routines.

* A format-4 label defines the Volume Table of Contents (VTOC) (the area
where the format-1 and format-3 labels are stored) and identifies the
volume as a VSAM volume if it contains VSAM spaces. The format-4
label is always the first record in the vToc. It is written when you
initialize your disk pack by using the Initialize Disk program.
Open/close routines refer to this label to determine the extent of the
VTOC.

For VSAM, the VTOC is essentially a directory of all direct access space owned

by VSAM on the volume. The catalog is the directory to all vsAM files on the
volume.

Chapter 7: VSAM Labels 7-1

Volume Layouts

Label Information Area

VTOC VTOC
Data _//
Space : Dat. .

1 W S:age File E1

N { VSAM Catalog 3 N SDFie A

Data Unallocated DA File
Space™

2

File A
W Qy

VvTOC
Format t] Format| Format|Format Format |Format
4 1 1 1 1 1
1. 1-Data Space 2 (File A, Unique) tSD File
Data Space 1 (2 Extents) DA File
VSAM Catalog Data Space 3 (2 Extents)
Notes:

1. This figure shows two volumes that contain VSAM data spaces and the contents of the
VTOC for each volume. The VTOC describes data spaces owned by VSAM; files are
described in the VSAM catalog.

2. Data Space 2 is occupied by File A, which is Unique. No other file can be suballocated
space in Data Space 2 and File A cannot be extended to any other data space.

3. The 44-byte name field of the label for Data Space 2 contains the name (file-ID) of
File A. The 44-byte name fields of the labels of the other data spaces contain a VSAM-
generated data space name.

4. VSE does not use the format-5 VTOC label, but space is reserved for it for OS/VS
compatibility.

Figure 7-1. Volume Layout of VSAM Files

VSE/VSAM file label information, as well as standard labels for a user catalog,
can be submitted under both //OPTION STDLABEL and //OPTION PARSTD.
VSAM searches the partition temporary user label area (USRLABEL), the
partition standard label area (PARSTD), and the standard label area
(STDLABEL), in that order. Thus, it is possible to override permanent label
sets for a single job by submitting the new label set under //OPTION
USRLABEL. //OPTION USRLABEL is the default and can be omitted.

Refer to VSE/Advanced Functions DASD Labels for the layout of the label
information area.

VTOC Label Processing

General

VSAM Data Spaces: The format-1 and format-3 labels describe VSAM data
spaces. A data space consists of one or more extents on a single volume
allocated to VSAM and controlled by a VSAM catalog. VSAM files are written
in data spaces.

7-2 VSE/VSAM Programmer’s Reference

Even if it does not contain any files, a data space is owned by VSAM and is not
available for files of other access methods.

Label processing is done when data spaces (including catalogs and uniques)
are created or deleted during RESETCAT processing, and during ALTER
NEWNAME for UNIQUE.

The format-1 and format-3 labels are created and checked (for overlap or
duplicate name) only when data spaces are created (including data spaces for
unique files). If data spaces are deleted, their format-1 and format-3 labels
are removed from the vTOC. Labels are also altered during RESETCAT proc-
essing if the data in the label and the catalog do not agree. When VSAM files
are processed, the file-I1D must be supplied through the DLBL statement, but
the VSAM catalog is used for checking the location and characteristics of the
files.

VSAM Files: VTOC label processing takes place only for UNIQUE VSAM
files that are being defined, deleted, or renamed.

VSsAM files are normally defined after data spaces have been defined. The
direct access space for the files is suballocated by VSAM from one or more
data spaces. You may select the volume or volumes the file will reside on.
You tell vSAM how much space to suballocate to the file initially and, option-
ally, how much additional space to suballocate when the file must be extend-
ed. vsAM decides which data spaces or portions of data spaces to suballocate
to a file.

You can, however, specify the size and exact location of the file when you
define it. In this case, the file is called unique and occupies its own data space
which is defined as the file is defined. No other files can occupy that data
space. If the file extends across more than one volume, it occupies one data
space on each volume. The format-1 and format-3 labels still describe the
data space(s) occupied by the unique file. A key-sequenced unique file
requires separate data spaces for the data and the index components.

The file-ID parameter of the DLBL statement indicates the file you want to
process. It is the same as the name of the file, stored in the catalog, which was
specified in the NAME (entryname) parameter of the DEFINE statement. For
VSAM data spaces, the format-1 label contains a VSAM-generated data space
name. :

VTOC Labels for FBA Devices: The physical block is the basic unit of
storage on an FBA device. A DASD address is a physical block number relative
to the beginning of the volume.

An FBA VTOC is divided into control intervals of the VSAM relative record
format; the vTOC labels reside in these control intervals. There is a slot for
the VTOC label and its corresponding RDF in the control interval. The control
interval size is a multiple of FBA physical blocksize; a control interval always
starts on a block boundary. Specify vTOC size via the Initialize Disk Utility
program.

The voLl label contains the VTOC control interval size, the number of blocks
per CI, and the number of labels per CI. VTOC labels are referenced according
to relative record number (beginning with 1).

For information about individual fields in the vOL1 and vTOC labels, refer to
VSE/Advanced Functions DASD Labels.

Chapter 7: VSAM Labels 7-3

VSAM Data Space

VOL1 Label Processing ‘)
The vSAM VOL1 label fields are the same as for the other access methods.

The standard volume label (VOL1) must be on cylinder 0, track 0, record 3
(CKD) or in physical block 1, called the volume label block (FBA). If it is not,
the job is canceled.

The VOL1 label, written by the IBM-supplied Initialize Disk utility program,
contains a permanent volume serial number (volser).

VSAM determines the location of the vTOC from the vOL1 label.

If any additional volume labels follow the VOL1 label, VSAM ignores them.

Format-1 Label Processing for UNIQUE Files

You must supply one DLBL statement when creating a unique file and one
EXTENT statement for each separate extent on the volume that the data space
will occupy. A multivolume unique file requires only one DLBL statement,
even though it occupies a data space on each volume.

DLBL Statement: The DLBL statement for defining a data space under
VSAM requires only the filename parameter and the VSAM code. DLBL
filename is identical to the dname specified via the FILE parameter of the
DEFINE command.

The file-ID parameter is not required and is ignored if you specify it. The

date parameter can be specified but it has no real function; VSAM data spaces

and files can be deleted only by using the DELETE command of Access J
Method Services.

EXTENT Statement: An EXTENT statement defines a continuous extent of
the volume that is to be allocated to VSAM. There can be up to 16 extents in a
data space, and a data space is contained entirely on one volume. The
EXTENT statement provides the starting address (relative address) and the
number of tracks (CKD) or blocks (FBA), which indirectly give the ending
address. The EXTENT statement also provides the order in which this extent
should be processed in a multi-extent unique file.

VSAM validates the EXTENT specifications by checking the extent limits

against the limits of the format-4 label and each format-1 and format-3 label

already written in the VTOC. If the new extent overlaps an existing extent, .
VSAM issues a message to the operator. If the overlapped extent is part of a

file of another access method (expired or unexpired), the operator can delete

the file or terminate the job. If the overlapped extent is part of a VSAM data -
space (or unique file), the operator can only cancel the job. VSAM data spaces

or files (expired or unexpired) can only be deleted through the Access

Method Services DELETE command.

If all extents of the new unique file are valid, VSAM writes one (or two, for a
KSDs) format-1 label, and (if necessary) the format-3 label into an available
location in the vTOC.

For the data or the index of a unique file, you may specify a data space name

in the DEFINE command. If specified, this name is entered in the catalog and

in the label. Remember that even though the name of a unique file is entered J
in the labels of the data space it occupies, the information describing the file

is in the catalog.

74 VSE/VSAM Programmer’s Reference

C

C

Format-3 Label Processing

Format-4 Label Processing

VSAM Files

Defining a File: Suballocation

Bytes 45-60, 63-75, 83-84, and 94 are written in the format-1 label for VSAM.
This information is for compatibility with the format-1 labels of other access
methods; during processing, VSAM uses the catalog, rather than using inform-
ation from the vTOC.

Bytes 106-115 define the first (or only) extent allocated to the unique file
component. If there is more than one extent, bytes 116-125 define the second
extent, and bytes 126-135 define the third extent. These fields are written
from the EXTENT statements you supply.

If you have included more than three EXTENT statements, VSAM writes a
format-3 label and writes the address of that label in the pointer field (bytes
136-140) of the format-1 label.

If the unique file is deleted, the format-1 label (and if present, the format-3
label) is removed from the VTOC.

The vSAM format-3 label fields are the same as for the other access methods,
but a VSAM data space can have only one format-3 label.

If more than three extents are required for the data space (or unique file),
VSAM sets up a format-3 label for the additional extents. A data space can
consist of up to 16 extents, so only one format-3 label is allowed. VSAM
processes the extent fields of the format-3 labels in the same manner as those
of the format-1 label.

If the data space is deleted, the format-3 label is removed from the VvTOC,
along with the format-1 label.

The format-4 label describes the VTOC, not the files or data spaces of individ-
ual access methods. However, a VSAM indicator field (bytes 77-87) is written
in the format-4 label of any volume that contains VSAM files or data spaces.
This field (volume timestamp) indicates the date and time the most recent
VSAM data space was added to or deleted from the volume. For 0S/VS com-
patibility reasons, this timestamp is repeated in bytes 88 - 95.

The same date and time are entered in the catalog. VSAM open routines check
to see if the volume timestamp matches the timestamp for it in the catalog. If
they do not match, processing continues, but an error code is issued to indi-
cate that the vToC might not agree with the data space information in the
volume’s catalog entry.

Bit 0 of byte 85 indicates that this volume is owned by a VSAM catalog. The
ownership is established normally by defining the first data space on the
volume, but it can also be established by using the CANDIDATE parameter of
the Access Method Services DEFINE SPACE command.

If the volume belongs to a recoverable catalog, bytes 86 - 87 indicate where
the catalog recovery area is.

If all vsAM data space is deleted from a volume, the VvSAM indicator field
(bytes 77-87) is erased. The volume can then be used by another VSAM
catalog. The deleted space can also be used by other VSE access methods.

When a non-unique file is defined, the space for it can be suballocated from
one or more existing data spaces on one or more volumes. This is illustrated

Chapter 7: VSAM Labels 7-5

Defining a File: Unique

in Figure 7-3. vTOC label processing is not performed for the following
reasons:

¢ Information needed to set up the file is in the DEFINE command.

¢ Information about data spaces to be suballocated to the file is in the
VSAM catalog.

The resulting description of the file is entered in the catalog. DLBL and
EXTENT statements are not required; they are ignored if specified for a
non-recoverable catalog. The volume containing the catalog must be mount-
ed, but the volumes on which the file is defined need not be mounted. Addi-
tional information about volume mounting requirements appears in Chapter
5.

If the catalog in which the file is defined is recoverable, the recovery volume
must be mounted for the DEFINE operation (see Figure 7-4).

You indicate the volume(s) on which the file will reside, the amount of space
to be initially suballocated to the file and, optionally, the amount of space to
be suballocated if the file must be extended. VSAM selects the extent(s) on the
volume on which to write the file. If you specify more volumes than neces-
sary for the primary space, the additional volumes can be used when the file
is extended, if they contain free data space. If none of the volumes contains
free data space, new data spaces must be defined, or volumes with free data
space can be made available to the file through the ALTER command of
Access Method Services. You can indicate in which order the volumes should
be used. You can also decide to place certain portions of the file (key ranges)
on certain volumes. If the file must be extended, VSAM can use only the
volumes you indicated. If there is no free space on those volumes, you will
have to define more data space or make other volumes available to VSAM
through the ALTER command. Additional information appears in the
“Multiple Volume Support” section in Chapter 9 of this manual.

Loading a file is a separate step from defining it. Records can be loaded into
a file by a VSAM processing program, using the PUT macro, or by the REPRO
command of Access Method Services.

A unique file, like those of other access methods, occupies space described in
the vroc through DLBL and EXTENT statements. The data space for a unique
file is defined (implicitly) in the same DEFINE command as the file itself.

Characteristics of the file, such as logical record length, are specified in the
DEFINE command, just as with a suballocated file. Space and volume inform-
ation is taken from DLBL and EXTENT statements instead of from the DEFINE
command.

The data and index of a unique key-sequenced file or alternate index require
separate data spaces, and hence, separate DLBL and EXTENT statements.

Label processing is performed for the data spaces of a unique file as described
in the previous section “vSAM Data Space.” The only difference is that the
44-byte names of the data and index are placed in the labels as well as in the
file’s catalog entry. The data spaces of unique files are described in the VSAM
catalog as well as in the vTOC.

A unique file cannot be extended. The extents of the file are the same as the
extents of the data spaces and, since they are described in the VTOC, cannot
be changed without deleting the file. See Figure 7-5 for defining a unique
file.

7-6 VSE/VSAM Programmer’s Reference

9

C

Processing a File

Job Stream Examples

When a previously defined file is processed by a VSAM application program
or by a PRINT or REPRO command, a DLBL statement is required for the file.
It is retrieved by VSAM open from the label area. Open obtains the DLBL
statement from the filename given in the Access Method Control Block (ACB)
in the processing program. All the information required to process the file is
in the VSAM catalog or the label area; no VTOC processing is performed (see
Figure 7-6).

DLBL Statement: The DLBL statement is used to find the 44-byte name of
the file in the catalog. The 44-byte name matches the file-ID parameter. For
PRINT and REPRO and VSAM application programs, the CAT operand is
required only if you want to override the system’s assumption that the job
catalog, or, if there is none, the master catalog, owns the file. The function of
the job catalog is explained under “Using a Job Catalog” in Chapter 5.

The BUFSP operand can be used to increase the amount of buffer space to be
allocated for the file (see Figure 7-6).

Volume Mounting: If the volumes allocated to the file are not mounted,
messages are issued to the operator to mount the required volumes or termi-
nate the job. A file can span a maximum of 16 volumes. If a multivolume file
is opened for direct or keyed-sequential processing, all volumes must be
mounted. If it is opened for addressed-sequential processing, only one
volume at a time need be mounted.

You can extend a suballocated file if:
* Secondary space allocation was specified when the file was defined.

¢ A volume that contains or can contain part of the file has unused data
space of the required class.

Use the ALTER command of Access Method Services to make more volumes
available to the file after it has been defined.

The VOLI label is checked to verify that the correct volume is mounted
(volume serial number), and the format-4 label is checked to verify that the
catalog is at the proper level (volume timestamp). Processing for these labels
is described under “vsaM Data Space” above.

Figures 7-2 through 7-6 show examples of the job streams you must supply
to:

1. Define a data space.

2. Define a file into a non-recoverable catalog.
3. Define a file into a recoverable catalog.

4. Define a unique file.

5. Process a file.

Figure 7-2 shows examples of the job streams you must supply to define data
spaces. It shows allocation of an entire volume to VSAM (as a single data
space) and allocation of a data space that is smaller than a single volume.
The third and sixth examples show allocation of data spaces on different
volumes of the same device type. DEFINE command parameters supply the
data space information.

A DLBL statement for the master catalog is required. In the following exam-
ples, it is assumed to be in the label information area.

Chapter 7: VSAM Labels 7-7

7-8

// JOB ALLOCATE A VOLUME TO VSAM
* VOLUME IS OWNED BY MASTER CATALOG
* ALL UNALLOCATED SPACE IS GIVEN TO VSAM
// EXEC IDCAMS,SIZE=AUTO
DEFINE SPACE (DEDICATE-
VOLUMES(333001))

/*

/&

// JOB DEFINE A VSAM DATA SPACE ON A 3330 VOLUME
* VOLUME IS OWNED BY MASTER CATALOG

// EXEC IDCAMS,SIZE=AUTO

DEFINE SPACE (ORIGIN(760) TRACKS(570)-
VOLUMES(333002))
/*

/&

// JOB DEFINE VSAM DATA SPACES ON SEVERAL 3330 VOLUMES
* VOLUMES ARE OWNED BY USER CATALOG MYUCAT
// DLBL IJSYSUC,'MYUCAT',, VSAM
* DEFAULT ORIGIN USED FOR DATA SPACE ALLOCATION
// EXEC IDCAMS , SIZE=AUTO

DEFINE SPACE(TRACKS(190)-

VOLUMES (333003 ,333004))

/t

/8

// JOB ALLOCATE A 3310 VOLUME TO VSAM
* VOLUME IS OWNED BY MASTER CATALOG
* ALL UNALLOCATED SPACE IS GIVEN TO VSAM
// EXEC IDCAMS,SIZE=AUTO
DEFINE SPACE (DEDICATE-
VOLUMES(331001))

/*

/&

// JOB DEFINE A VSAM DATA SPACE ON A 3310 VOLUME
* VOLUME IS OWNED BY MASTER CATALOG

// EXEC IDCAMS ,SIZE=AUTO

DEFINE SPACE (ORIGIN(960) BLOCKS(2240)-
VOLUMES (331002))
/t

/8

// JOB DEFINE VSAM DATA SPACES ON SEVERAL 3370 VOLUMES
* VOLUMES ARE OWNED BY USER CATALOG MYUCAT
// DLBL IJSYSUC, 'MYUCAT',, VSAM
* DEFAULT ORIGIN USED FOR DATA SPACE ALLOCATION
// EXEC IDCAMS, SIZE=AUTO

DEFINE SPACE (BLOCKS(3100)-

VOLUMES(337001,337002))

/*

/&

Figure 7-2. Examples of Job Streams to Create (Define) VSAM Data Spaces

VSE/VSAM Programmer’s Reference

Figure 7-3 is an example of the job stream you must submit to define a file
that is suballocated from an existing data space. This file is recorded in the
master catalog.

// JOB SUB-ALLOCATE VSAM FILE
// EXEC IDCAMS, SIZE=AUTO
DEFINE CLUSTER-
NAME (MSTRFIL1)-
VOLUME (333002) TRACKS (285 19))
/l
/&

Figure 7-3. Example of a Job Stream to Create (Define) a VSAM File (with file-ID
MSTRFIL1) that is Suballocated from an Existing Data Space

Figure 7-4 is an example of defining a suballocated file into a recoverable
user catalog. The volume described must be mounted during the DEFINE
operation because the catalog information about the volume is duplicated
into the volume’s catalog recovery area (CRA).

// JOB DEFINE A FILE INTO A RECOVERABLE CATALOG

// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER(NAME (MSTRFIL2)-

VOLUMES (333003) -
TRACKS (100 20))-
CATALOG (MYUCAT)
/*
/&

Figure 7-4. Example of a Job Stream to Create (Define) a VSAM File into a Recoverable
Catalog.

In Figure 7-5, EXTENT statements supply data space information. Access
Method Services requires the VOLUMES and CYLINDERS (BLOCKS, TRACKS, or
RECORDS) parameters in the DEFINE command.

// JOB ALLOCATE A UNIQUE VSAM FILE

// DLBL VDATANM, , ,VSAM

// EXTENT ,333002,1,,1330,380

// DLBL VINDXNM, , ,VSAM

// EXTENT ,333002,1,,1710,190

// EXEC IDCAMS, SIZE=AUTO

DEFINE CLUSTER (NAME (MSTRFIL3)UNIQUE)-

DATA (FILE (VDATANM) VOLUMES (333002) CYLINDERS (20)) —
INDEX (FILE (VINDXNM) VOLUMES (333002) CYLINDERS (10))

/t

/8

Figure 7-5. Example of a Job Stream to Create (Define) a Unique VSAM File (with file-ID
MSTRFIL3).

Chapter 7: VSAM Labels 7-9

7-10

In the example shown in Figure 7-6, the CAT parameter of the DLBL state-
ment indicates the filename of the user catalog in which the file is recorded.
The CAT parameter is written into the label information area. For details on
the use of this parameter, refer to the Job Control Language chapter in this

manual.
// JOB PROCESS A VSAM FILE
// DLBL VFILENM, 'MSTRFILE', ,VSAM,CAT=PRIVCAT
(for the file)
// DLBL PRIVCAT, 'MYUCAT', ,VSAM
// EXEC USERPGM, SIZE=20K
CSECT

.

.

ACB DDNAME=VFILENM,...

.

.

END
/*
/&

Figure 7-6. Example of a Job Stream to Process an Existing VSAM File with an Assembler
Program

Notes:

1. Other parameters are required in the DEFINE command in Figures 7-3, 7-4, and 7-5 to
specify the characteristics, such as logical record length, of the VSAM file. These parame-
ters do not affect space allocation and label processing, so they are not shown.

2. Using VSE/VSAM Commands and Macros describes the DEFINE command and provides
more information about the job control statements required for VSAM.

VSE/VSAM Programmer’s Reference

Chapter 8: ISAM Interface Program

This section is for users of ISAM who are converting to VSAM. It contains
detailed information which you need to decide whether existing ISAM pro-
grams can use the ISAM Interface Program (IIP) to process files that have been
converted from ISAM format to VSAM format. Specifically, the ITP minimizes
your conversion costs and scheduling problems by permitting ISAM programs
to process VSAM files. ISAM programs can process ISAM files and VSAM files
concurrently through the IIP.

Comparison of VSAM and ISAM

In most cases you can get better performance with VSAM while achieving
essentially the same results that can be achieved with ISAM; VSAM can also
achieve results that cannot be achieved with ISAM. The extent to which you
can use your existing ISAM processing programs to process key-sequenced
files relates to the similarities between ISAM and VSAM, as well as to limita-
tions of the 11P. The following sections describe the similarities and differ-
ences between VSAM and ISAM in the areas that you are familiar with from
using ISAM, and indicate the functions of VSAM that have no counterpart in
ISAM.

Differences Between ISAM and VSAM

Index Structure

Relation of Index to Data

A number of things that ISAM does are done differently or not at all by VSAM,
even though similar results are achieved. The areas in which VSAM and ISAM
differ are described in the following paragraphs.

Both a VSAM key-sequenced file and an indexed-sequential file have an index
that consists of levels, with a higher level controlling a lower level. In ISAM,
either all or none of the index records of a higher level can be kept in storage.
VSAM keeps individual index records in storage during processing, the num-
ber depending on the amount of buffer space provided.

The relation of a VSAM index to the direct access storage space whose records
it controls is quite different from the corresponding relation for ISAM, in
particular with regard to overflow areas for record insertion.

ISAM keeps a two-part index entry for each primary track on which a file is
stored. The first part of the entry indicates the highest-keyed record on the
primary track. The second part indicates the highest-keyed record from that
primary track that is in the overflow area, and gives the physical location in
the overflow area of the lowest-keyed overflow record from that primary
track. All the records in the overflow area from a primary track are chained
together, from the lowest-keyed to the highest-keyed, by pointers that ISAM
follows to locate an overflow record. Overflow records are unblocked, even if
primary records are blocked.

VSAM does not distinguish between primary and overflow areas. A control
interval, whether used or free, has an entry in the sequence set, and after
records are stored in a free control interval, it is processed in exactly the same
way as other used control intervals. Data records are blocked in all control
intervals and addressed, without chaining, by way of an index entry that
contains the key (in compressed form) of the highest-keyed record in a
control interval.

Chapter 8: ISAM Interface Program 8-1

Defining and Loading a File

Deletion of Records

All vsaM files are defined in a catalog. Records are loaded into a file with
Access Method Services or with the processing program, in one execution or
in stages. When loading new records into an empty key-sequenced file, the
index is built automatically. Access Method Services does not merge input
files. For a key-sequenced file, however, input records are merged in key
sequence with existing records of the output file.

With ISAM, records cannot be deleted until the file is reorganized; you must
mark the records you want to delete. VSAM automatically reclaims the space
in a key-sequenced file and combines it with any existing free space in the
affected control interval. VSAM’s use of distributed free space for insertions
and deletions requires less file reorganization than ISAM does.

VSAM Functions That Go beyond ISAM

VSAM Functions Available via ITP

Secondary Allocation of Storage Space: When you define a VSAM file, you
can specify the amount of direct access storage space that is to be allocated
automatically, when required, beyond the primary space allocation. You can
specify the amount of secondary space in number of data records or in
number of blocks (FBA), tracks, or cylinders (CKD).

Automatic File Reorganization: VSAM partially reorganizes a key-sequenced
file by splitting a control area when it has no more free control intervals and
one is needed to insert a record. VSAM allocates a new control area and gives
it the contents of approximately half of the control intervals of the old control
area; about half of the control intervals of each control area are then free.

Keyrange Allocation: With a multi-volume key-sequenced file, you can
assign data to various volumes according to the ranges of key values in the
data records. For a file that resides on three volumes, you might assign keys
A-E to the first volume, F-M to the second volume, and N-Z to the third.

Automatic Close: Because it is essential for the integrity of a file that it be
closed properly, VSAM attempts to close all open VSAM files within the parti-
tion at both normal or abnormal termination of the job step. It also restores
control blocks to their status before the file was opened, and frees storage that
open routines used for VSAM control blocks.

Job Control: ASSGN or EXTENT statements are not required for file access.
The 11P supports disposition processing (DISP parameter on DLBL statement)
for reuseable and dynamic files.

VSAM Functions Requiring Conversion from ISAM

If you convert your ISAM programs to VSAM, these additional VSAM functions
become available to you.

Addressed Sequential Access: You can retrieve and store the records of a
key-sequenced file by RBA, as well as by key. With ISAM you can position by
physical address, but you must retrieve in a separate request.

8-2 VSE/VSAM Programmer’s Reference

Direct Retrieval by Generic Key: With VSAM, you can retrieve a record
directly, not only with a full-key search argument, but also with a generic
search argument. ISAM can only position a record by generic argument; you
must retrieve the record separately.

Concurrent Request Processing: A processing program can issue concurrent
requests for a single ACB. The requests can be sequential or direct, or both,
for the same part or different parts of the file. VSAM maintains a position in
the file for each concurrent request.

No Abnormal Terminations by Open: The VSAM open routine does not
abnormally terminate the user program, but returns an explanatory message
in all cases where it cannot carry out a request to open a file.

Alternate Indexes for Key-Sequenced and Entry-Sequenced Files: Instead
of only one index, you can build several indexes, called alternate indexes, for
a single data file. Each index can access the file in a different way so that you
need not keep multiple copies of the same information organized differently
for different applications.

Variable-Length and Spanned Records: In addition to fixed-length records,
VSAM supports variable-length and spanned records.

Skip Sequential Access: You can process a key-sequenced file sequentially
and skip records automatically, as though you were using direct access.

How To Use The ISAM Interface

To use the IIP, you must convert the ISAM files of your programs to VSAM
files. You must also change the job control statements for your ISAM pro-
grams to meet the requirements of VSAM. In addition, you must ensure that
your existing ISAM programs comply with the restrictions as indicated under
“Restrictions in the Use of the ISAM Interface Program” later in this chapter.
If they do, there is no need to reassemble or re-linkedit these programs.

Converting an ISAM File to a VSAM File

To convert an ISAM file to a VSAM file, you must first use the Access Method
Services DEFINE command to define a key-sequenced VSAM file. The VSAM
file may be defined on a volume that already contains enough free vSAM data
space for it, or data space may be defined along with the file (unique file).
The use of the DEFINE command is fully explained in Using VSE/VSAM
Commands and Macros.

Some of the information given in the DTFIS parameters must, for VSAM, be
specified in the DEFINE command. These parameters and the corresponding
DEFINE command options are:

Chapter 8: ISAM Interface Program 8-3

DTFIS parameter VSAM DEFINE option

HOLD=YES SHAREOPTIONS(4).
KEYLEN=n and KEYS (length, offset)
KEYLOC=n length should always be set to KEYLEN;

offset should be set to KEYLOC-1 if
DTFIS RECFORM=FIXBLK, or to 0 if
RECFORM=FIXUNB.

RECSIZE=n RECORDSIZE (average, maximum). The
average and maximum values must be equal.
If RECFORM=FIXBLK in the DTFIS,
RECORDSIZE should be set to RECSIZE. 1If
RECFORM=FIXUNB, RECORDSIZE should be set
to RECSIZE + KEYLEN.

VERIFY=YES WRITECHECK.

If you have a file that will require rebuilding, initially specify the REUSE
parameter on the Access Method Services DEFINE command; specify
DISP=NEW on the DLBL statement when reloading the file.

The BUFFERSPACE parameter in the DEFINE command specifies how much
space VSAM will have for 1/0 buffers. If you do not specify the BUFFERSPACE
parameter, the default is at least two data buffers and one index buffer. For
better performance, however, you can specify space for more than two data
buffers and one index buffer.

The following DTFIS parameters are used by the IIP; all other parameters are
ignored:

ERREXT=YES (see Figure 8-2 for a description of the
ERREXT parameter list with IIP)

IOAREA=name (used when IOROUT=LOAD)

IOAREAS=name (used if SETL BOF is issued)

IOREG=(r)

IOROUT=LOAD, ADD, RETRVE, ADDRTR

KEYARG=name

RECFORM=FIXUNB, FIXBLK

WORKL=name

WORKR=name

WORKS=YES

After you have defined your VSAM file, you must load the vsAM file by
copying the ISAM file into it. You may use your ISAM load program, by way
of the IIP, or you may use the Access Method Services REPRO command. The
REPRO command is described in Using VSE/VSAM Commands and Macros.
If you have records marked for deletion in the ISAM file and do not want
them copied into the VSAM file, you should use your ISAM load program
because the REPRO command will copy all records from the ISAM file, includ-
ing those marked for deletion.

Note: REPRO of a fixed, unblocked ISAM file creates records consisting of the original record
preceded by its key. The IIP strips this leading key when a program specifying fixed unblocked
ISAM is executed, and returns only the original record to you. The leading key is returned with
the record, however, when the file is accessed in native VSAM mode.

Figure 8-1 summarizes the steps required to convert indexed sequential files
to key-sequenced files and processing them either with programs that have
been converted from ISAM to VSAM or with programs that still use ISAM.

Changing ISAM Job Control Statements

The job control statements for ISAM must be replaced by VSAM job control
statements. An example of VSAM job control statements used with an ISAM
program is shown below:

84 VSE/VSAM Programmer’s Reference

// JOB PROCESS A VSAM FILE
// DLBL IFN,'MSTRFILE',,VSAM
// EXEC ISAMPGM,SIZE=nK
CSECT

IFN DTFIS . .

END
/ *
/%

One DLBL statement is required for the file; it connects the ISAM filename
(IFN) to the VSAM cluster name (MSTRFILE) stored in the catalog. The DLBL
type code parameter (VSAM) causes the ISAM Interface Program to be called.
The same VSAM job control statements are required regardless of the type of
ISAM program.

What the ISAM Interface Program Does

When a processing program that uses ISAM opens a VSAM file, the VSE open
routine detects the need for the ISAM Interface Program by the type code
VSAM in the DLBL statement. It calls the IIP open routine to build control
blocks required by VSAM, to load the ISAM command processor, and to flag
the DTFIS for the IIP to intercept ISAM requests.

Chapter 8: ISAM Interface Program 8-5

Existing ISAM Programs

Indexed ISAM Access

Sequential Interface > Unmodified
Files
1 Modified to
Interpret Meet Restrictions
Each
Request

Access ISAM Programs
VSAM > Converted to
VSAM Programs

Key-Sequenced | Access
Files
with Indexes

New Files

(To take advantage of additional
functions of VSAM)

Figure 8-1. Using the ISAM Interface: Most existing programs that use ISAM can process
VSAM files through the interface with little or no change.

The IIP intercepts each subsequent ISAM request, analyzes it to determine the
equivalent keyed VSAM request, which it defines in the RPL constructed by
OPEN, and then initiates the request.

The IIP interprets VSAM’s return codes and, if the VSAM condition corre-
sponds to an ISAM condition, turns on the respective bit in the filenameC byte
in the DTFIS. For irrecoverable errors that cannot be posted in the filenameC
byte, the IIP prints a message, closes the VSAM file (by the VSAM close rou-
tine), and ends the job. If a physical 1/0 error occurs and ERREXT=YES was
specified in the DTFIS, the IIP transfers additional error information to the
processing program.

Figure 8-2 shows the format of the ERREXT parameter list, and Figures 8-3
and 8-4 show the formats of the filenameC byte for ISAM processing through
the IIP.

Bytes Bits Contents

0-3 DTF address

4-15 Not supported by the IIP
16 Data

VSAM sequence set
VSAM index set

Not used

Read operation

Write operation

Not supported by the ITP

PN W —O
W

17

Figure 8-2. ERREXT parameter list for ISAM programs with IIP.

Bit Cause in ISAM Cause in [IP/VSAM

0 DASD error DASD error

1 Wrong length record Not set

2 End of file End of file

3 No record found No record found

4 Illegal ID specified Not supported by IIP

5 Duplicate record Duplicate record

6 Overflow area full No more VSAM data space available
7 Overflow Not set

Figure 8-3. FilenameC with IIP when IOROUT=ADD, RETRVE, or ADDRTR

8-6 VSE/VSAM Programmer’s Reference

Bit

NAAUVMAWN=O

Cause in ISAM Cause in ITP/VSAM

DASD error DASD error

‘Wrong length record Not set

Prime data area full No more VSAM data space
Cylinder index area full No more VSAM data space
Master index full No more VSAM data space
Duplicate record Duplicate record

Sequence check Sequence check

Prime data area overflow Not set

If there is no more VSAM data space, bits 2 through 4 are set.

Figure 8-4. FilenameC with IIP when IOROUT=LOAD

Restrictions in the Use of the ISAM Interface Program
Most programs that use ISAM require little or no modification when using the
IIP to process VSAM files. Following is a list of ISAM functions for which there
is no VSAM equivalent or which cannot be simulated by the 11p.

The program must run successfully under ISAM. I1P does not check for
parameters that are invalid for ISAM.

The program must use standard ISAM interfaces.

Record ID processing of ISAM cannot be used because VSAM does not
use the record ID functions.

VSAM does not return device-dependent information or the storage or
DASD address of the record containing the error in the ERREXT parame-
ter list.

The ISAM program cannot open a DTF while another ISAM DTF or VSAM
ACB is already open for the same file unless VSAM SHAREOPTIONS(3) or
SHAREOPTIONS (4) was specified for the file in the DEFINE or ALTER
command. If you select SHAREOPTIONS (3), you must accept the respon-
sibility of maintaining file integrity.

Files defined with SHAREOPTIONS(4) cannot be shared between IIP users
in different systems because IIP always opens a file for output.

Chapter 8: ISAM Interface Program 87

8-8 VSE/VSAM Programmer’s Reference

Chapter 9: Optimizing VSAM’s Performance

This chapter contains guidelines, not rules, for enhancing your system’s
efficiency. This kind of information is difficult to present because of the great
number of variables that exist; not everything will be true for all installations
under all conditions. We do hope you find this chapter generally useful, but
you should be aware that the material it contains may require altering,
depending on the needs of your installation.

This section explains VSAM options that affect performance and requirements
for virtual storage and direct access storage: the classification of data space,
the size of control intervals, control areas, and 1/0 buffers; the percentage of
distributed free space; the division of key-sequenced data into key ranges;
and the handling of indexes and user catalogs. These options are specified in
the DEFINE command when a file is created and in the ACB or GENCB macro
when a processing program prepares to open a file. This section also discuss-
es file statistics that VSAM makes available.

Data Space Classification

VSAM data space can be classified (assigned a value) in order to direct the
suballocation of data space to VSAM objects and thus maximize performance.
You assign a value to a data space with the CLASS (value) parameter of the
DEFINE SPACE, DEFINE MASTERCATALOG, and DEFINE USERCATALOG
commands.

After you have assigned a value to a data space, you can request that it be
available for suballocation to an alternate index or cluster (or their compo-
nents) through the USECLASS parameter of the DEFINE CLUSTER, DEFINE
ALTERNATEINDEX, IMPORT, or IMPORTRA commands.

You can assign a data space to any one of eight performance classes (0 is the
default):

¢ 0- General use. (Data spaces defined under DOS/VS Release 34 and
prior releases, and 0S/VS are treated as class-0 data spaces.)

¢ 1 - High performance (suggested for fixed-head areas specifically).

' e 2-7 - User-defined classes (for example, data space in the middle of a
volume).

Figure 9-1 illustrates the classification of data space and the use of classified
data space.

Chapter 9: Optimizing VSAM’s Performance 9-1

9-2

DEFINE CLUSTER(—
NAME(CLUST1) —
VOLUME(222222) —

L]

.
.
DATA(— (3)

(1) DEFINE SPACE — USECLASS(1) —
VOLUME(222222) - Class-1 Space °
CLASS(1) M. . °

] RLL LT vemaamanat® .]
[] L]
. v .
[
[
[]

N\ moEx(- (@)
USECLASS(7) —

(2) DEFINE SPACE —

VOLUME(222222) — { \ Class-7 Space .
CLASS(7) e aaane .
Y []
Y [)
] v
DEFINE CLUSTER(— (5)

____/ NAME(CLUST1) —
VOLUME(222222) —

no USECLASS specified

Notes: (1) Class-1 data space defined.
(2
(3
(4) Class-7 data space suballocated to the index component of CLUST1.
(5

Class-7 data space defined.

Class-1 data space suballocated to the data component of CLUST1.

This DEFINE command fails because the default class (0) is not available on
volume 222222,

Figure 9-1. Classification of Data Space

Since the definition of VSAM catalogs involves the implicit allocation of data
space and the suballocation of some (or all) of that data space to the catalog
itself, you need only specify the CLASS parameter if you want to assign a
catalog’s data space to a certain performance class. You do not have the
option of specifying the USECLASS parameter. The catalog is automatically
suballocated from the same data space and the same performance class.

A new class can be requested via the IMPORT or IMPORTRA commands
(USECLASS parameter) when an object is implicitly defined through those
commands.

The following restrictions apply:
e Classes other than 0 are not permitted for unique objects.

¢ In the case of imbedded sequence sets, the sequence set is suballocated
from space of the same class as the data component.

For the DEFINE command, USECLASS must be specified concurrently (at the
same level) with the space parameters (TRACKS, BLOCKS, etc.). For example,
USECLASS specified at the data level of DEFINE CLUSTER is ineffective unless
CYLINDERS, TRACKS, BLOCKS, or RECORDS is also specified at the data level.
Following are the three possible combinations of levels at which space may
be specified for DEFINE CLUSTER or DEFINE ALTERNATEINDEX:

(a) CLUSTER|ALTERNATEINDEX level only
(b) DATA level only
(¢) DATA and INDEX levels

VSE/VSAM Programmer’s Reference

Min-CA, Max-CA

Therefore these are also the levels that are effective for USECLASS.

In case (a), the USECLASS specified (or defaulted to) is also applied to the data
and index components.

In case (b), the USECLASS specified, defaulted to, or modeled for the data
level is also applied to the index level. This permits you to apply the same
class of data space to both components while leaving the calculation of the
index allocation to VSAM.

In case (c), the data and index components may be assigned (or modeled or
defaulted) to a separate or to the same class of data space, depending on the
values chosen.

See Appendix A of Using VSE/VSAM Commands and Macros for examples
of assigning classes of data space.

The terms “tracks” and “cylinders” as used for CKD (count-key-data) devices
are not necessarily meaningful for an FBA (Fixed Block Architecture) device
because an FBA device stores data on “blocks”. FBA uses a linear addressing
scheme whereby blocks are not necessarily associated with physical charac-
teristics, such as cylinders or tracks. The following new terms that are com-
mon to both CKD and FBA devices are being introduced into the documenta-
tion to describe VSAM’s use of the track and cylinder concepts to optimize
performance and to control allocation, while incorporating FBA device
support (in which there is no dependency on the physical characteristics of a
device).

Min-CA replaces the former term “track”; it represents minimum control area
size for both CKD and FBA devices. Max-CA replaces the former term
“cylinder”; it represents maximum control area size for both CKD and FBA
devices. Min-CA and max-CA are units of allocation. The size of these units
of allocation depends upon the device being used (see Figure 9-2). Note that
the CKD devices have more than one min-CA and max-CA value listed; this is
because the min-CA (formerly track) and max-CA (formerly cylinder) sizes for
CKD devices are dependent upon the size and number of physical records
contained in them (a function of the control interval size selected). Refer to
Figure 9-4 to determine the appropriate min-CA or max-CA size for a particu-
lar control interval size. For example (referring to Figure 9-4), a 3340 with a
control interval size of 6K bytes uses 7.5K bytes of track space; therefore, it has
a min-CA of 7.5K bytes.

Chapter 9: Optimizing VSAM’s Performance 9-3

Control Interval Size

Device Type J Min-CA and Max-CA values

FBA Devices
3310 Min-CA 32 blocks (16K bytes)
3310 Max-CA 352 blocks (176K bytes)
3370 Min-CA 62 blocks (31K bytes)
3370 Max-CA 744 blocks (372K bytes)
CKD Devices

2314/2319 Min-CA (trk) 5.5K, 6K, 6.5K, or 7K bytes
2314/2319 Max-CA (cyl) 110K, 120K, 130K, or 140K bytes

3330 Min-CA (trk) 10K, 10.5K, 11K, or 12K bytes

3330 Max-CA (cyl) 190K, 199.5K, 209K, or 228K bytes

3340 Min-CA (trk) 6K, 6.5K, 7K, 7.5K, or 8K bytes

3340 Max-CA (cyl) 72K, 78K, 84K, 90K, or 96K bytes

3350 Min-CA (trk) 13.5K, 15K, 16K, 16.5K, 17.5K, or 18K bytes
3350 Max-CA (cyl) 405K, 450K, 480K, 495K, 525K, or 540K bytes

Figure 9-2. Table of Min-CA and Max-CA Values

A file’s control-interval size affects performance. The CI is VSAM’s unit of
transmission between DASD and main storage. Using large CIs permits more
data to be transferred at once, resulting in less system overhead. As a general
rule, the larger the data control interval the better the sequential perfor-
mance, for a number of reasons:

¢ Fewer index records required for a key-sequenced file.

e Fewer control-interval accesses (significant only for sequential or skip
sequential access).

¢ More efficient distribution of free space in a key-sequenced file.

Note that EXPORT(RA)/IMPORTA(RA) is a sequential application. If you use
them frequently, take this into account when selecting data CI size.

Control interval size, which can be specified for entry-sequenced, key-
sequenced, and relative-record files, as well as for alternate indexes, also
affects record-processing speed and requirements for main and direct access
storage, as follows:

e As the size of your nonspanned data records increases, you may need
larger data control intervals.

e As data and index control interval size increases and record size re-
mains unchanged, more buffer space is required in storage for each
control interval.

* As data control interval size increases, fewer 1/0 operations (control
interval accesses) are required to bring a given number of records into
storage; fewer index records must be read. This is usually significant
only for sequential and skip sequential access.

e Free space will probably be used more efficiently (fewer control interval
splits and less wasted space) as data control interval size increases
relative to data record size, especially with variable-length records.

(Free space in a nonspanned data control interval isn’t used if there isn’t
enough for a complete data record. In any event, free space in the last

9-4 VSE/VSAM Programmer’s Reference

control interval of a spanned record is never used for any other record,
even if there is room enough to hold a complete data record.)

Direct processing is less sensitive to data CI size. Smaller data CIs generally
improve performance because unused records don’t have to be transferred.
An exception to this case occurs if you are processing presorted input. VSAM
checks its buffers for data before reading the DASD, so in this case large data
CIs may be beneficial.

If you have a choice between a large index CI or a large data CI (during direct
processing), choose the combination that yields the smallest buffer space
value. This combination requires the least amount of active storage and the
least amount of data transfer time.

You can let Access Method Services select the size of a control interval for a
data or index component or you can request a particular control interval size
in the DEFINE command. Control interval size should be specified at the
DATA and INDEX levels; if it is specified at the CLUSTER or ALTERNATEINDEX
level, the size applies not only to the data component, but to the index com-
ponent as well. The size you specify must, however, fall within acceptable
limits determined by Access Method Services, or the DEFINE will fail. These
limits depend on the maximum size for nonspanned records or the average
size for spanned records, which you specify by the RECORDSIZE parameter of
the DEFINE command.

The size of a control interval must always be a multiple of 512 bytes, because
a control interval is a whole number of physical records. Physical record size
for the data component includes all multiples of 512 bytes up to 8,192 bytes.
Figure 9-4 illustrates the relationship of control interval sizes to physical
record sizes for the data component for the different types of CKD devices.

The size of a control interval in the INDEX component can be any multiple of
512, up to 8,192 bytes.

The size of a control interval in the DATA component of a cluster can be any
multiple of 512, up to 32,768, except that if it is over 8192 bytes, it must be a
multiple of 2048:

512, 1024, 1536, ...,
8192, 10240, 12288, ..., 32768.

If you specify a control interval size that is not a proper multiple, Access
Method Services increases it to the next multiple. For example, 2050 is
increased to 2560.

For nonspanned records, the size of a control interval in a data component
must be large enough to hold a data record of the maximum size specified in
the RECORDSIZE parameter. Control information requires seven bytes;
therefore, the control interval must be at least seven bytes larger than the
largest record in the data component.

For spanned records, the size of a control interval in a data component must
be as large as the average size specified in the RECORDSIZE parameter.
Control information requires ten bytes for each control interval that the
spanned record contains; therefore, the control interval must be at least ten
bytes larger than the average record in the data component.

Chapter 9: Optimizing VSAM’s Performance 9-5

Index CI Size

Pick the smallest index CI you can. Generally a 512-byte index CI is adequate

¢ The number of data CIs per control area is small;
The full key size is not too large; and

¢ The key compresses well (usually the case when the data CI is 4K or
greater).

To determine whether a 512-byte index CI size is sufficient, do the following
experiment using your chosen data CI size and a 512-byte index CI. Allow no
freespace, and load enough records to equal one control area. At the end of
the run, perform a LISTCAT; if there is only one level of index, a 512-byte
index CI is large enough. For n control areas, there should be two levels of
index with the number of index CIs equal ton + 1.

A smaller data CI may require a large index CI. The sequence set index CI
contains pointers to the data CIs in a control area. If the data CI is made
smaller (when the control area stays the same size), there will be more data
CIs per control area, and therefore more entries in the sequence set. As an
example, assume a one cylinder control area size on a 3340. Using 4096-byte
data CIs, one control area can contain 24 data Cls. If the data CI size were
changed to 1024 bytes, the control area could contain 84 data CIs. The
sequence set would now require 84 pointers instead of 24.

For a key-sequenced file, after control interval size has been set, Access
Method Services determines the number of bytes to be reserved for free
space, if any. For example, if the control interval size is 4096, and the per-
centage of free space in a control interval is twenty, 820 bytes are reserved
(4096 x 20% = 820.)

If you don’t specify a size for data control intervals, Access Method Services
uses 2048, if possible. If you don’t specify a size for index control intervals,
Access Method Services uses 512, if possible. After Access Method Services
determines the number of control intervals in a control area (see “Control
Area Size”), it estimates whether one index control interval is large enough to
handle all of the data control intervals in a control area. If the index control
interval is not large enough, its size is increased, if possible. If it is not
possible, the number of control intervals in a control area is decreased.

To find out what values are actually set in a defined file, you can issue the
Access Method Services LISTCAT command or, while your program is being
executed, the SHOWCB macro.

For example, for a file without an index, if control interval size space is not
specified and the maximum record size is specified to be 200 bytes, Access
Method Services sets data control interval size to 2048 bytes. For a key-
sequenced file, Access Method Services additionally sets index control
interval size to 512 bytes.

If spanning is not specified and the maximum data record size specified in
RECORDSIZE is 2500 bytes, and 2500 is also specified for the data control
interval size, the system adjusts the 2500-byte control interval size to the next
higher multiple of 512: 2560.

9-6 VSE/VSAM Programmer’s Reference

C

Data CI Size and Physical Record Size

Figure 9-3 shows how VSAM computes physical record size, using DEFINE
attributes and device type.

(VSAM picks the r BLOCKS)
|

smallest non-zero | CYLINDERS
value of these three | RECORDS (primary, secondary) I
to choos)e the control | TRACKS | device's max-CA
area size ! (cylinder) size

b e — I DU

L / y

(These three
values deter - RECORDSIZE CONTROLINTERVALSIZE
mine control ((average, maximum) (size) control area size

interval size) @ — @T @

Control interval size (for the data component)

BUFFERSPACE
(size) device type
‘ A y y
Space for 1/0 buffers @ Physical record size

@ Maximum record size can be specified as 1 through 32761 bytes; the default is 4089 bytes.
RECORDSIZE (maximum) plus 7 must be less than or equal to control interval size.

(@ The data component’'s CONTROLINTERVALSIZE can be specified as 512 through
32768 bytes. The default is:

® 2048 if RECORDSIZE is specified.
® 4096 if RECORDSIZE is not specified.
The control area size, chosen by VSAM, is never larger than 1 max-CA (cylinder).

O]®)

BUFFERSPACE (size) must be enough space to contain two data control intervals and, if
key -sequenced, one index control interval. This is also the default, |f you specify a value
less than the default, the command is terminated.

@ The physical record size, chosen by VSAM, depends on the device type being used and the
control interval size. VSAM chooses the following:

® For FBA devices - - always 512.
® For CKD devices - - 512 to 8192 in multiples of 512.

Figure 9-3. VSAM’s Determination of Physical Record Size

Figure 9-4 shows the physical record size VSAM uses for a data I, depending

on the device and the specified CI size, and the number of K bytes of user data
that can be accommodated on the track. Given a 6K control interval size on a
3350, vSAM chooses a physical record size of 6K that results in 18K bytes (plus
overhead) of data on a 19,069-byte track.

Control interval size affects space utilization because of the way VSAM
chooses physical record sizes on CKD devices. (There are no similar consider-
ations for FBA devices.) For a given CI size, VSAM chooses the physical record
size that results in the most efficient use of track capacity.

Chapter 9: Optimizing VSAM’s Performance 9-1

Physical Record Size Track Space Used
Cl Size 2314/ | 3340 | 3330 | 3350 | 2314/ | 3340 | 3330 | 3350
05 |os 0.5 0.5 0.5 55 |6 10 13.5
1 1 1 1 1 6 7 11 15
15 |[1.5 1.5 15 15 6 7.5 105 |165
2 2 1 2 2 6 7 12 16
25 |os 2.5 25 2.5 55 |75 10 17.5
3 3 1.5 3 1.5 6 7.5 12 16.5
35 |os 3.5 3.5 3.5 55 |7 10.5 [17.5
4 2 4 4 4 6 8 12 16
45 |15 1.5 15 45 6 7.5 105 |18
5 1 25 1 25 6 7.5 11 17.5
55 |55 0.5 5.5 5.5 55 |6 11 16.5
6 6 1.5 6 6 6 7.5 12 18
65 |6.5 6.5 0.5 0.5 65 |65 10 13.5
7 7 7 1 3.5 7 7 11 17.5
75 |15 7.5 1.5 2.5 6 7.5 105 |17.5
8 2 8 4 8 6 8 12 16
10 2 25 2 25 6 7.5 12 17.5
12 6 4 6 6 6 8 12 18
14 7 7 2 3.5 7 7 12 17.5
16 2 8 4 8 6 8 12 16
18 6 1.5 6 6 6 7.5 12 18
20 2 4 4 2.5 6 8 12 17.5
22 2 1 2 5.5 6 7 12 16.5
24 6 8 6 6 6 8 12 18
26 6.5 1 2 2 65 |7 12 16
28 7 4 4 3.5 7 8 12 17.5
30 6 7.5 6 6 6 7.5 12 18
32 2 8 4 8 6 8 12 16

Figure 9-4. Relationship of Control Interval Size to Physical Record Size for Data Component
(Numbers in K Bytes). Applies only to CKD Devices.

Note: A file with a data physical record size or index CI size other than .5, 1, 2, or 4K cannot be
directly processed by OS/VS. (File portability between VSE/VSAM and OS/VS via
EXPORT/IMPORT (or EXPORTRA/IMPORTRA) is not impacted by data physical

record size, but it does require an OS/VS-compatible CI size.

Key Compression

9-8

VSAM increases the number of entries that an index record can hold by key
compression. Compression makes an index smaller by reducing the size of
the keys in the index entries. VSAM eliminates from the front and back of a
key those characters that are not needed to distinguish it from the adjacent
keys. For example, the keys in the sequence 1110, 1230, 1450 would com-
press to 11, 23, 45 repectively.

Front compression works best when the keys of the last records of each CI run
in a series (for example, 100, 101, 102, 106, etc.). When several high keys
have the same leading characters, those characters can be compressed.

Rear compression works best when adjacent keys have large differences at
the back of the key.

If keys compress poorly, more room is required in the index CI to store the
compressed key. The index CI may be too small for the data. If it is too small,

VSE/VSAM Programmer’s Reference

Control Area Size

more control areas are needed. When VSAM has no more room to insert
compressed keys from the data CIs into the index CI, it continues to load data
into the next control area, using its associated sequence set CI. The previous
control area contains fewer “filled” data CIs than if the index CI had been
adequate.

Poor key compression can occur under the following conditions:
¢ The key is comprised of multiple fields.

¢ Changes occur in the front of the key and the back of the key, but not in
the middle.

¢ Ifthe number of keys in a group is less than the number of keys in a
data cI, the high key in each data CI does not repeat the high-order
characters. Therefore, front compression is almost non-existent.

e Ifthe last field of the key is long and very dense, poor rear compression
results.

Single field keys do compress well. Larger keys (20 - 30 bytes) can compress
to 8 or 9 bytes (including control information). Smaller key (5 - 15 bytes) can
compress to 3 - 5 bytes (including control information).

Example of a Key that Compresses Poorly
NNNO0000000000SS

NNN changes every 4 or 5 records; there are more than 4 or 5
records per data CI.

SS changes in every record.

0000000000 changes rarely.

The key would compress well if:
e NNN changed every 20 - 25 records;
e ssseldom changed;

® sS were located next to NNN (NNNSS0000000000) and changed frequently;
or

e The entire key was one field and the bytes changed randomly.

For a key-sequenced file the size of a control area depends on the size of
control intervals in the index component. Control area size has significant
performance implications. When a whole number of control areas occupies a
max-CA (cylinder), performance is better than when control areas cross
max-CA (cylinder) boundaries. If you allocate space in a DEFINE command
using the CYLINDERS parameter, or if a CKD file is defined as unique (the
only one in its data space), Access Method Services sets the control area size
to one max-CA (cylinder). If a control area is smaller than a max-CA
(cylinder), its size will be an integral multiple of min-CAs (tracks), and it can
cross max-CA (cylinder) boundaries. However, a control area can never cross
the extent boundaries of a file; that is, an extent of a file is made up of a
whole number of control areas.

Aside from specifying space in terms of max-CAs (cylinders) or defining a
CKD file as unique, you don’t have a direct way of specifying that a whole
number of control areas will occupy a max-CA (cylinder). But you can
provide values in the DEFINE command that will influence the control area
size as computed by Access Method Services.

Chapter 9: Optimizing VSAM’s Performance 9-9

I/0 Buffer Space

Sequential Processing

Access Method Services checks the smaller of the primary and secondary
space values against the specified device’s max-CA (cylinder) size. If the
smaller space quantity is less than or equal to the device’s max-CA (cylinder)
size, the size of the control area is set equal to the smaller space quantity. If
the smaller space quantity is greater than the device’s max-CA (cylinder) size,
the control area size is set equal to the max-CA (cylinder) size.

You specify space in number of tracks, cylinders, blocks or records; the
system preformats space in control areas (except for DEFINE CLUSTER/AIX
SPEED). By calculating the size of a control area as it does, Access Method
Services is able to meet your primary and secondary space requirements
without overcommitting space for this file.

An index record must be large enough to address all of the control intervals
in a control area. The more control intervals an index record addresses, the

fewer reads for index records are required for sequential access. Generally,

the greater the size of the control area, the better the performance and space
utilization.

Figure 9-5 shows vSAM data capacities of the various DASD devices.

Min-CAs
Max-CAs/ |per Bytes per Bytes per
3:3::2" vo:,"'d'::isce cylinders |max-CA or |min-CA/track |min-CA/track
pe per volume |tracks per |(data) (index)
cylinder
2314 5,632- 5,632-
2319 8 200 20 7.168* 6.144°
3310 1 360 11 16,384 16,384
3330-1
10,240- 10,240-
33302 8 404 19 12,288* 12,288*
10,240~ 10,240-
3330-11 8 808 19 12.288* 12.288*
6,144- 6,144
3340 2 696 12 8.192° 7.680*
13,824~ 13.824-
3350 8 555 30 18,432* 16,384
3370 2 750 12 31,744 31,744
* Dependin_g_ on number of physical records (see Figure 9-4).

Figure 9-5. Disk Storage Capacity Table for VSAM

1/0 buffer space is important because VSAM transmits the contents of a
control interval to a buffer in main or virtual storage; therefore, control
interval size affects the use and size of 1/0 buffers and the amount of storage
space for 1/0 buffers.

If you do not specify buffer space, VSAM allocates buffer space for two data
control intervals and (if the file is indexed) one index control interval. You
may not specify less space, but to optimize performance, you may want to
provide additional buffer space.

Increasing the space to hold three data control intervals generally improves
performance due to I/0 command chaining, but it does not allow for 1/0
overlap with processing. To achieve both command chaining and overlap
with processing, specify enough space for four or more data control intervals.
More than four or five data buffers may cause excessive paging.

9-10 VSE/VSAM Programmer’s Reference

If there is an index component, buffer space must be large enough to hold an
index control interval also. An index control interval is generally 512 or 1024
bytes. Because VSAM rounds buffer space to a 2K boundary, you can often
provide space for the index control interval by simply allowing normal
rounding beyond the space provided for data control intervals.

Direct Processing
Any remaining buffer space beyond that required for two data control
intervals is used for index control intervals. To optimize performance, specify
enough buffer space to accommodate one index control interval for each level
of index. If the index control interval size or the number of index levels is not
known, specify 2K of buffer space for the index (default BUFFERSPACE,
which rounds to a 2K boundry, may in some cases accomplish this for you),
and check the result with LISTCAT output. Make adjustments with ALTER, if
necessary.

Buffer space can be specified in the Access Method Services DEFINE com-
mand, the ACB macro, and the DLBL statement. The buffer space entry in the
catalog was either specified or defaulted to when the cluster was defined or
modified with the ALTER command.

Buffer Specification

DEFINE:

Using DEFINE, you can specify the BUFFERSPACE parameter at the cluster or
data level, but not both. The default buffer space allocation is two data
buffers and one index buffer (key-sequenced data sets only). For ESDS and
RRDS, the default is two data buffers.

ACB:
You can specify buffer space values or cause a default buffer space through
the ACB macro.

ACB

BUFSP=n
BUFNI=n
BUFND=n

To use the ACB buffer space, the value selected must be larger than the
catalog entry buffer space. The use of ACB parameters is explained under
“Buffer Allocation” later in this chapter.

DLBL:

Another way of specifying buffer space is through the use of the DLBL state-
ment:

// DLBL filename,'file-ID',,VSAM,BUFSP=size

To be effective, the value specified for the DLBL buffer space must be larger
than both the catalog entry buffer space and the ACB buffer space.

At execution time you may require more than the buffer space specified in
the catalog, DLBL, or ACB. The minimum requirements for execution time
buffers are as follows. (Default STRNO=1.)

data buffers = ACB STRNO + 1
index buffers = ACB STRNO

Chapter 9: Optimizing VSAM’s Performance 9-11

If STRNO =2 (that is, you require concurrent file positioning), the minimum
buffer space required for output is three data CIs and two index Cis.

If the amount of buffer space specified is greater than the minimum required,
VSAM uses the remainder for additional index buffers (direct processing) or
additional data buffers (sequential or skip sequential processing).

Buffer Allocation (Using Nonshared Resources)

This discussion explains how VSAM allocates buffer space according to ACB
specification. The following ACB parameters relate to buffer allocation:

ACB MACRF=(IN|OUT,SEQ|DIR]|SKP)
STRNO=n
BUFSP=n
BUFND=n
BUFNI=n

Minimum Buffer Allocation

Data buffers:
MACRF=(...,IN,...)

The number of data buffers for ESDS and RRDS is the greater of BUFND or
STRNO; for KSDS, the number of data buffers is the greater of BUFND or
STRNO + 1.

MACRF=(...,OUT,...)

The number of data buffers is the greater of BUFND or STRNO + 1.

Index buffers:
The number of index buffers is the greater of BUFNI or STRNO.

OPEN calculates:
Remainder =BUFSP - ((NDB*DCI) +(NIB*ICI))
NDB = number of data buffers
DCI = size of a data CI
NIB = number of index buffers
ICI = size of an index CI

If the remainder =< 0, then OPEN allocates the number of data buffers and
index buffers and increases BUFSP to hold them.

If the remainder > 0, go to the next step (below) to calculate additional
buffers.

No indication is given that the BUFSP used for the minimum allocation is
greater than that specified in DEFINE, DLBL, or ACB.

Remainder > 0
1. MACRF=(..,,SEQ,...)

VvSAM allocates data buffers until there is a remainder that is less than the
data CI size; then it allocates more index buffers. (This is only possible when
the index CI size is less than the data CI size. If the index CI size is larger, see
item 2 below.)

9-12 VSE/VSAM Programmer’s Reference

Example:
BUFSP=13824
data CI size=4096
index CI size=512

STRNO=1
MACRF=(...,SEQ,OUT,...)
Cumulative Totals
Minimum allocation = 2 data buffers 8192
1 index buffer 512 8704

Additional allocation = 1 data buffer 4096 12800
(resulting from 2 index buffers 1024 13824
MACREF specification)
2. MACRF=(...,DIR,...)

VSAM allocates more index buffers until there is a remainder that is less than
the size of one index CI; then it allocates more data buffers. (This is possible
only when the data CI size is less than the index CI size.)

Example:
BUFSP=13824
data CI size=4096
index CI size=512
STRNO=1
MACRF=(...,DIR,OUT,...)

Cumulative Totals
Minimum allocation = 2 data buffers 8192
1 index buffer 512 8704
Additional allocation = 10 index buffers 5120 13824
(resulting from MACRF
specification)

3. MACRF=(...,SEQ,DIR,...)

VSAM increases the number of index buffers to twice STRNO. (If this is not
possible, VSAM uses the procedure described in item 2 above.) If there is still
a remainder, VSAM uses the procedure described in item 1 above to allocate
the remainder.

Example:
BUFSP=13824
data CI size=4096
index CI size=512
STRNO=1
MACRF=(...,SEQ,DIR,OUT,...)

Cumulative Totals
Minimum allocation = 2 data buffers 8192
1 index buffer 512 8704
Additional allocation = 1 index buffer 512 9216
(resulting from MACRF 1 data buffer 4096 13312
specification) 1 index buffer 512 13824

Later modifications of RPLs does not change buffer allocations.

Chapter 9: Optimizing VSAM’s Performance 9-13

Buffer Allocation for a Path

Path Entry for AIX

If the path entry is not a member of the upgrade set, buffers are allocated in
the same manner as for a normal KSDS. Your ACB is used for the path entry.

If the path entry is a member of the upgrade set, then buffers are allocated as

fora

normal KSDS, but minimum allocations are increased by one for both

the number of data buffers and the number of index buffers. Your ACB is
used for the path entry.

Buffer Allocation for Path Entry when the Base Cluster is a KSDS
Buffers are allocated in the same manner as for a normal KSDS with the
following ACB specifications:

BUFND=0
BUFNI=0
STRNO=number of strings specified in the ACB

You can influence buffer allocation only via the BUFFERSPACE parameter of
DEFINE CLUSTER.

If you open the path for input only, the base cluster uses MACRF=(...,.DIR,IN,...).
If you open the path for output, the base cluster uses MACRF=(...,.DIR,0UT,...).

Buffer Allocation for an Upgrade Set

The buffer allocation is always two data buffers and one index buffer. You
cannot influence buffer allocation for the upgrade set.

Miscellaneous Notes on Buffer Allocation

9-14

VSE/VSAM Programmer’s Reference

Data and index buffers are acquired and allocated only at open time.
Buffer space is freed at close time.

Buffer space is aligned on page boundaries. Data buffers are allocated
first, then the index buffers.

Writing a buffer does not free buffer space. The ClI is still in storage, so
if you again reference that CI, VSAM does not reread the CI. Because
VSAM checks to see if the CI is in storage, processing directly in a limited
key range may increase throughput if extra data buffers are provided.

The POINT macro does not cause read ahead because its purpose is to

position for subsequent sequential retrieval. It fills only one data
buffer.

When processing directly, VSAM reads only one data CI. It does not
reread data or index CIs if they reside in storage, except when
SHAREOPTIONS(4) is specified. VSAM will immediately write a data
buffer if PUT (UPD,DIR) or PUT (NUP,DIR) was issued. VSAM will write
immediately for a sequential PUT if PUT (SEQ) follows GET (DIR) for the
same RBA.

Although vSAM does not read index buffers ahead, the effect is similar.
Index buffers are loaded when referenced. If multiple index buffers are
provided, index CIs are not reread because there is room for the CIs in
storage. VSAM reuses buffers on a least-recently-used basis.

For SHAREOPTIONS(4) processing, VSAM usually reads data and
sequence-set CIs on each request. Exceptions are:

- Consecutive retrievals, not for update, from the same CI do not cause
a reread in sequential or skip-sequential mode.

C

Consecutive inserts or retrievals for update, in sequential or skip-
sequential mode, do not cause rereads, unless the SHAREOPTIONS(4)
lock has been held for a period longer than approximately 0.5 sec-
onds. (The SHAREOPTIONS(4) lock is for a control area.)

High level index CIs are not reread unless they have gotten out of date.

Read-ahead is not done under SHAREOPTIONS(4); therefore extra data
buffers are of no benefit.

Multiple Volume Support

The records of a key-sequenced file, including alternate indexes, can be
grouped on volumes according to key ranges. A payroll file, for example,
could have employee records beginning with A, B, C, and D on one volume; E,
F, G, H, and 1 on a second volume; etc. Each portion of a multivolume file can
be on a separate volume. Each key range of a file, as well as the end of the
file, is preformatted.

Multiple volume support is affected by the following DEFINE parameters:
VOLUMES, ORDERED|UNORDERED, CYLINDERS|RECORDS|TRACKS|BLOCKS,
and KEYRANGES.

The first allocation made on every volume is always the primary allocation.
To place the index and data on separate volumes, specify the VOLUMES
parameter for both data and index components.

Your use class specification in the DEFINE command can affect suballocation.
Refer to “Data Space Classification” in this chapter for further information.

Suballocation when no Key Range is Specified

Primary space is acquired from the first volume at define time. If VSAM needs
more space during loading or processing of the file, and if secondary alloca-
tion was specified, VSAM uses the secondary extents on the first volume.
When VSAM has acquired all the secondary space it can on the first volume
and still needs more space, then primary space from the second volume is
acquired. If more space is needed, secondary space is acquired on the second
volume.

If no secondary allocation is specified, the file cannot be extended.

Suballocation when a Key Range is Specified

Primary space is acquired from each volume at define time. Each key range
is assigned to a volume. There is a primary allocation for each key range. If
there are fewer volumes than key ranges, the extra key ranges are grouped
together on the last volume. If there are more volumes than the number of
key ranges, the excess volumes become overflow volumes. A key range is
associated with the primary allocation volume and can extend to any over-
flow volumes.

A key range is extended first by acquiring secondary extents on its volume of
primary allocation, next by acquiring primary allocation on the first overflow
volume, then secondary extents on the first overflow volume. Primary alloca-
tion is then acquired on the second overflow volume, followed by acquiring
secondary extents on the second overflow volume. If there is not enough
room on an overflow volume to acquire primary space for that key range,
VSAM does not acquire any secondary space for that key range. VSAM just
skips that overflow volume and goes to the next overflow volume to try to
obtain primary space.

Chapter 9: Optimizing VSAM’s Performance 9-15

VSAM searches for space on volumes in the order they were specified in the
VOLUMES parameter. This does not mean that the volumes are allocated or
suballocated in that order; that depends upon whether ORDERED or
UNORDERED was specified.

UNORDERED

If no key range was specified:

UNORDERED means VSAM must find a primary allocation (or the DEFINE
command will fail), but not necessarily on the first volume listed in the
VOLUMES parameter. If there is no room for a primary allocation on the first
volume, successive volumes are checked for primary space.

If key range was specified:

UNORDERED means that vSAM must find room for a primary allocation for
each key range, but not necessarily the first key range on the first volume, the
second key range on the second volume, etc.

ORDERED

ORDERED means VSAM must suballocate space on the volumes in the order in
which the volumes are listed in the VOLUMES parameter.

If secondary allocation is specified, space for a component can be expanded
to include a maximum of 123 extents. Each primary and each secondary
allocation can be made up of up to five non-contiguous areas (extents).

Allocation of Space on Multiple Volumes
The following examples show various combinations of
ORDERED|UNORDERED, VOLUMES, and secondary vs. no secondary alloca-
tions.

Example 1:
VOLUMES(A B C)
ORDERED
CYLINDERS (50 5)
SUBALLOCATION

e
— - NS P
— = _—

*-extended at execution time
Figure 9-6. Example 1.

Volume A is the primary volume; volumes B and C are overflow volumes.
Fifty cylinders of primary space must be available on volume A, or the
DEFINE command will fail.

If the file is extended, a 5-cylinder secondary allocation is made on volume A,
if volume A has enough available VSAM space of the required class. Other-
wise, an allocation of 50 cylinders (primary amount) is made on volume B. If
volume B does not have enough data space for this allocation, the request for
extension is rejected.

9-16 VSE/VSAM Programmer's Reference

If volume B has 50 cylinders for allocation (primary amount) and the file
needs to be extended further, secondary allocations are made from volume B.
Volume B must have enough space available of the required class. Otherwise,
a 50-cylinder allocation is made on volume C.

Example 2:
VOLUMES (A B C)
UNORDERED
CYLINDERS (50 5)
SUBALLOCATION

A,BorC A,BorC A,BorC

— = (- II
= —_— _—

* -extended at execution time

Figure 9-7. Example 2.

Fifty cylinders of primary allocation must be made on one volume. It may be
either A, B, or C. If all 50 cylinders cannot be allocated on a single volume,
the DEFINE fails.

Volumes are searched in the order specified. If both A and B have 50 cylin-
ders available, allocation is made on A because it was specified first.

When the file is extended, VSAM attempts to make the S-cylinder secondary
allocations on the same volume the primary allocation was made on. This
continues until all data space of the required class is used.

To further extend the file, VSAM searches the volumes for space in the same
order specified for primary allocation. If VSAM cannot acquire the primary
amount of space (50 cylinders), an error code is issued.

Example 3:
VOLUMES (A B C)
KEYRANGES ((00 30) (31 65) (66 99))

ORDERED
CYLINDERS (50 5)
SUBALLOCATION
00-30
31-65
00-30 31-65 66-99 66-99
Yy oy £ £
&5—/ ¥5/ s ’ \5/ %) \—5.—/
5 50) *
5 5
N — N—
5
\—/ 50

N—— ~ U~

*-extended at execution time

Figure 9-8. Example 3.

A primary allocation of 50 cylinders is made for each key range. The first key
range is on volume A, the second on volume B, the third on volume C. If 50

Chapter 9: Optimizing VSAM’s Performance 9-17

9-18

cylinders cannot be allocated on each volume, the DEFINE fails. The 5-
cylinder secondary allocations are made as needed.

A key range can be extended only on the volume it occupies or on an over-
flow volume. If volume D were added to the VOLUMES list, all key ranges
would be extended on volume D (first a primary allocation amount of 50
cylinders for a key range on volume D, then secondary allocations of 5
cylinders) if the appropriate volume initially assigned to the key range is full.

Example 4:
VOLUMES (A B)
KEYRANGES((00 30) (31 65) (66 99))
ORDERED
CYLINDERS(50 5)
SUBALLOCATION

31-65
00-30 66-99

" s
L. ||
— =

*-gxtended at execution time

Figure 9-9. Example 4.

If only volumes A and B are specified, the first key range is allocated on
volume A, and the second and third key ranges are allocated on volume B.
Volume A has one 50-cylinder primary allocation, and volume B has two
50-cylinder primary allocations. This can occur only for a file with the
SUBALLOCATION attribute specified. If both UNIQUE and KEYRANGES are
specified, each key range must reside on a separate volume.

Example 5:
VOLUMES (A B A)
KEYRANGES ((00 30) (31 65) (66 99))
ORDERED
CYLINDERS (50 5)
SUBALLOCATION

00-30
66-99 31-65

* -extended at execution time

Figure 9-10. Example 5.

A primary allocation of 50 cylinders is made for each key range. The second
key range is on volume B; the first and third key ranges are on volume A.

This can occur only for a file with the SUBALLOCATION attributed specified.
If both UNIQUE and KEYRANGES are specified, each key range must reside on
a separate volume.

VSE/VSAM Programmer’s Reference

Example 6:
VOLUMES (A B C)
KEYRANGES ((00 30) (31 65) (66 99))

UNORDERED
CYLINDERS (50 5)
SUBALLOCATION
00-30
31-65
00-30 31-65 66-99 66-99
50 A
50 50 50 s
__/ _—/ % » v \——/ > "
5 . 5 5 . 50
5 5 A 50
A,B,CorD A,B,CorD A,B,CorD A,B,CorD

*-extended at execution time

Figure 9-11. Example 6.

A primary allocation of 50 cylinders is made for each key range. VSAM
attempts to put one key range on each volume. If volume A does not have 50
cylinders available, the first key range is put on volume B, and the second and
third key ranges are put on volume C. If neither A nor B has 50 cylinders, all
three key ranges are placed on volume C.

VSAM first extends a key range on the volume it is on before trying to extend
it on any overflow volume. If volume D were added to the VOLUMES list, each
key range would be extended on volume D, if no more spaces were available
on the volume of its primary allocation.

If volume D were listed in the VOLUMES parameter, it would not necessarily
be an overflow volume. If 50 cylinders of primary allocation were available
on A, B, and C, then D would be an overflow volume. If A doesn’t have 50
cylinders available, but B, C, and D have 50 cylinders each, the first key range
is put on volume B, the second on volume C, and the third on volume D.
Volume A becomes the overflow volume.

Exercise:

You have a 600-cylinder file that you want to reside on two 3330 volumes,
with 400 cylinders on volume A and 200 cylinders on volume B. How do you
specify this allocation requirement in the DEFINE command?

Do not specify VOL(A B)
CYL(600)

This request would be rejected because the amount of primary space to be
allocated on each volume is greater than that available on one volume (404
cylinders on a 3330).

Do not specify vOoL (A B)
CYL(400,200)

This request would obtain 400 cylinders of primary allocation on volume A
and 400 cylinders of primary allocation on volume B.

Do specify voL(a B)
CYL(200,200)

Chapter 9: Optimizing VSAM’s Performance 9-19

This request obtains 200 cylinders primary allocation on volume A,
200 cylinders secondary allocation on volume A,
200 cylinders primary allocation on volume B.

The mounting requirements with multiple volumes are simple. All volumes

must

be mounted (except with sequential KSDS, ESDS, and RRDS). A primary

allocation amount will be acquired on every volume.

Allocation

9-20

The CYLINDERS|RECORDS|TRACKS|BLOCKS parameters of the DEFINE com-
mand determine how VSAM allocates space. Considerations in choosing
allocation parameters are:

You may specify allocation at the CLUSTER/AIX level, DATA level, DATA
and INDEX levels, and CLUSTER/AIX and DATA levels.

If you specify allocation at the CLUSTER/AIX level only, the amount
needed for the index is subtracted from the specified amount. The
remainder of the specified amount is assigned to data.

If you specify allocation at the DATA level only, the specified amount is
assigned to data. The amount needed for the index is in addition to the
specified amount.

If you specify allocation at both the DATA and INDEX levels, the speci-
fied data amount is assigned to data, and the specified index amount is
assigned to the index.

If you specify secondary allocation at the DATA level, secondary alloca-
tion must be specified at the INDEX level unless you specify allocation at
the CLUSTER level. .

A control area can never cross an extent boundary. A cluster extent
consists of a whole number of CAs.

A CA is never larger than one cylinder (CKD) or one max-CA (FBA).
Optimum performance is obtained when an integral number of CAs
occupy a cylinder (or max-CA).

Access Method Services checks the smaller of primary and secondary
space allocation values against the specified device’s cylinder (or
max-CA for FBA devices) size. If the smaller quantity is greater than the
device’s cylinder (or max-CA) size, the CA is set equal to the cylinder (or
max-CA) size. If the smaller quantity is less than or equal to the device’s
cylinder (or max-CA) size, the size of the CA is set equal to the smaller
space quantity. For FBA, this value is then rounded up to a multiple of
min-CA size.

For example:

CYL(5 10) results in a 1-cylinder CA;
TRK(100 3) results in a 3-track CA;
REC(2000 5) results in a 1-track CA (assuming 10 records

per track—--minimum CA is 1 track);

TRK(3 100) results in a 3-track CA;

VSE/VSAM Programmer’s Reference

NOALLOCATION

For a device with 32 blocks per min-CA and 352 blocks per max-CA:

BLK (444 365) results in a 352-block CA;
BLK(350 210) results in a 224-block CA;
BLK (96 20) results in a 32-block CA.

For CKD to force Access Method Services to select cylinder CAs, specify
CYLINDERS or UNIQUE. When defining using the RECORDS|TRACKS parame-
ters, specify the smaller of primary or secondary allocation as a value of at
least one cylinder.

¢ If you specify IMBED, the data allocation includes the sequence set.
More room must be given for data allocation than if you specify (or
default to) NOIMBED.

¢ If you specify secondary allocation, space for a component can be
expanded to a maximum of 123 extents (if there is sufficient data space)
with a limit of 16 extents per volume if REUSE is specified.

® A UNIQUE file can have a maximum of 16 extents per volume, but it
cannot be extended; no secondary allocations are permitted for UNIQUE
files.

e A spanned record cannot be longer than a CA minus the control inform-
ation (10 bytes per CI). Don’t specify large spanned records with small
primary or secondary allocation.

® VSAM acquires space in increments of control areas. For example, if the
allocation amount is 20 tracks and the device is a 3330, the CA size is
one cylinder; two cylinders of space (two CAs) are allocated (a 3330 has
19 tracks per cylinder).

® LISTCAT gives information in increments of control area size. If you
specify either TRACKS or RECORDS and the allocation is less than one
cylinder, LISTCAT reflects the allocation as TRACKS. If the specification
results in a one-cylinder CA, LISTCAT reflects the allocation as
CYLINDERS. If you specify BLOCKS, the allocation is given in multiples
of blocks.

NOALLOCATION allows you to define a file into a catalog without suballocat-
ing any space to it. This parameter can be useful in two different ways:

e Creating default models. (See Chapter 6 for a discussion of default
models.)

¢ Creating “dynamic” files for which space is not actually suballocated
until the file is opened.

Formerly, files that were used for brief periods of time (for example, work-
files) occupied disk space from the time they were defined until they were
deleted. If they were required again, they had to be redefined.

Using the DEFINE CLUSTER command with NOALLOCATION and REUSE
parameters makes it possible to define a file for which no space is suballocat-
ed until the file is to be opened; this file is called a “dynamic” file. The
catalog entry for a dynamic file contains only the allocation size specified at
define. Information about the suballocated space is added to the catalog
when the file is opened.

When you try to delete a dynamic file, VSAM determines if space is currently
allocated to it. If it is, VSAM deletes it as if it were a normal VSAM cluster. If
space is not allocated, only the catalog entry of the file is removed.

Chapter 9: Optimizing VSAM’s Performance 9-21

Dynamic files may be entry-sequenced (including SAM ESDS supported by the
VSE/VSAM Space Management for SAM Feature), key-sequenced, or relative-
record files.

Restrictions

The following restrictions apply to dynamic files:

A path (but not an alternate index) may be built over a dynamic file,
except for a SAM ESDS.

A dynamic file that does not have space allocated to it cannot be print-
ed (PRINT), copied (REPRO), or exported via EXPORT. EXPORT only
supports non-empty dynamic files, but EXPORTRA is valid for an empty
dynamic file. To allow catalog recovery, you can EXPORTRA an empty
dynamic file or model. Dynamic files are recorded in the CRA of the
first volume of the volume list associated with the index component
(XSDS, AIX) or data component (non-indexed clusters).

A default model cannot be opened. If you specify NOALLOCATION, you
must also specify REUSE if you plan to open the file.

The CYLINDERS, TRACKS, USECLASS, etc. parameters normally control
space allocation, but for noallocation models (other than reusable files)
these attributes are recorded only for modeling purposes.

If you specify the VOLUMES parameter when you define a file as
NOALLOCATION, VSAM records those volumes in the catalog as candi-
date volumes.

The NOALLOCATION attribute exists in the catalog entry, but it cannot
be implicitly modeled. It can be explicitly modeled (MODEL parameter
of DEFINE).

You cannot specify NOALLOCATION on the ALTER command.

You cannot ALTER REMOVEVOLUMES for the recovery (CRA) volume or
the last existing volume on the candidate list for NOALLOCATION files.

Data Security and Integrity Options

When considering performance, you must also consider the Data Security
and Integrity options you are using. VSAM performance is affected by the
following:

9-22

Share options—See “Protecting Shared Data” for more information.

Write check. If you specify WRITECHECK on your DEFINE command, it
means you wish to have your records checked as they are written. After
a record is written, it is then read without data transfer to test for a data
check condition. If NOWRITECHECK is specified (and this is the default),
a record is written but no checking occurs. It follows, therefore, that
you will get better performance with the NOWRITECHECK option.

Speed vs Recovery. If you specify RECOVERY on your DEFINE com-
mand, it means that space allocated to the data component is prefor-
matted during initial loading. SPEED means space will not be prefor-
matted. Performance is better during initial loading if you specify
SPEED. However, specifying RECOVERY enables you to recover from
certain system failures during initial load.

If you specify SPEED in a file’s DEFINE command, and a system failure occurs,
the file must be deleted, redefined, and reloaded. RECOVERY is only useful if
you have a recovery procedure that allows you to resume loading the file
after a system failure. RECOVERY formats each CA before loading records

VSE/VSAM Programmer’s Reference

J

into it. It allows you to find the software end of file if an abnormal termina-
tion occurs during initial creation. After the initial creation of the file,
RECOVERY is always in effect.

RECOVERY works in conjunction with the Access Method Services VERIFY
command. If a system failure occurs before a file is closed (CLOSE or
TCLOSE), VERIFY can prevent your having to reload the file by updating the
catalog with the current high RBA. This ensures that your data will not be
overwritten inadvertently at a later time, and that you may continue the load
at the point of interruption (load-extend). If the SPEED option was in effect
while the file was being loaded, VERIFY cannot help because no preformat-
ting was done and no high RBA exists until the file is closed.

Distributed Freespace

Loading a File

Freespace can occur in files either as a result of the DEFINE specification, or
due to a CI1/CA split. Later in this section are examples of CI and CA splits
resulting from record inserts during both sequential and direct processing.

Freespace can be specified for a KSDS or alternate index only. CI freespace
should be as large as the design insertion level. Determine the freespace
required by estimating the percentage of additions to be made between file
reorganizations. If there are to be no additions, or if records will not be
lengthened, there is no need for freespace.

¢ You specify free space for both the control interval and the control area
as a percentage of the total space for the respective unit. For example,
FREESPACE (20 10) indicates that 20% of the space in each control
interval is to be initially empty and 10% of each control area is to be
initially empty, If you specify the minimum free space (1 1), you will be
given enough free space for one logical record in each control interval
and free space for one control interval in each control area. The system
default for free space is (0 0).

¢ Freespace may be altered after the file is loaded. To take full advantage
of mass insertion, ALTER freespace to (0 0) after the load.

e If additions will occur only in a specific part of the file, load those parts,
which will not be added to, with a freespace specification of (0 0). Alter
the freespace to (n n) to load those parts of the file that will receive the
additions. If SPEED is specified, it is in effect for loading the initial
portion only. Any subsequent portions are loaded with RECOVERY,
regardless of the DEFINE specification.

e If additions will occur throughout the file, but will be unevenly distrib-
uted, specify a small amount of freespace when you define the file.
Then increase the percentage after loading the file. As new CIs and CAs
are required, they will be created with the increased freespace specifica-
tion. Additional splits (after the first split) in the part of the file with the
most growth will be minimized. CIs that have little or no growth will
contain only a small amount of unneeded freespace.

e If there will be few additions to the file, consider a freespace specifica-
tion of (0 0) for loading the file and subsequent processing. When
records are added, new CAs will be created to provide room for addi-
tional insertions. In this case, unused freespace will not be provided.

¢ Specify freespace that is at least as large as one record and preferably
large enough to hold multiple full records.

Chapter 9: Optimizing VSAM’s Performance 9-23

9-24

For direct insertions, make the CI freespace larger than the CA freespace.

The greater the freespace specification, the more DASD space is re-
quired. For sequential processing, more I/0 operations (with more
system overhead) are required to process the same number of records.
A bad combination of CI size/record size/freespace can cause poor
sequential performance if much of the freespace is unusable.

Too much freespace could increase the number of index levels, which
could increase run time for direct processing.

Too little freespace can cause an excess of (time-consuming) CI/CA
splits. After a split, extra time is required for sequential processing
because the records are not in physical sequence. For direct processing,
CA splits can increase seek time. Another factor is the additional vSAM
overhead required to do the split. Use LISTCAT or the ACB JRNAD exit
to monitor CA splits; reorganize the file when they become prevalent. If
insertions are truly random, ideally all CAs would split at approximately
the same time.

Records are loaded or mass inserted at the end of a CI until the frees-
pace threshold is passed. The freespace threshold is the point at which
freespace becomes less than the amount specified in the DEFINE com-
mand.

VSAM ensures that at least one record (or one segment of a spanned
record) is placed into a CI. Also if the CA freespace specified in the
DEFINE command is not zero, but less than one CI, the result is one free
Cl in the CA.

If a CI can contain four logical records and (25 0) freespace is specified,
the CI would contain three logical records and 25% freespace. If (20 0)
freespace is specified, the result is three logical records and 25% frees-
pace. If (33 0) freespace is specified, the result is two logical records and
50% freespace. If (80 0) freespace is specified, the result is one logical
record and 75% freespace.

Remember that a CI contains logical records, freespace, and control
information (CIDF and RDFs). A 4K CI cannot contain four 1K logical
records. A 4K CI with (25 0) freespace specified will contain at least 1K
of freespace; only two 1K fixed length logical records could be loaded
into the CI. Only one more 1K logical record could be added before a CI
and/or CA split would be required.

If ten ClIs fit into one CA and (0 5) freespace is specified, the CA will have
one free CI.

When using the ERASE macro, the deleted record’s space is returned to
the freespace. Sequence set entries are not changed at the time of the
erase. If a CI is emptied by ERASE, it can be reclaimed later as a free CI
if it is needed.

Note: Space that becomes free within a control interval because of some (but not all) records
being deleted or shortened can remain unused even though the space is available. This situation

occurs
match

in the cases where new records to be added to the file do not have key-field values that
the range of the freed area within the control interval. For example, a record with

key-field value 250 cannot be inserted between records with key-field values 22 and 70. You may
(depending on the amount of unuseable space) have to reorganize the file to make the available
free space useable.

VSE/VSAM Programmer’s Reference

9

C

C1/CA Splits

The rules for CI and CA splits are as follows.

Sequential processing

cI split: If the insert is in the middle of the CI, the records with higher keys
are moved to the free CI. The insert and the records with lower keys remain
in the old CI. If the insert is at the logical end of the CI, the inserted record
goes to the free CI.

CA split: If the insert is not in the last logical CI, all CIs after the split CI are
moved to the new CA. If the insert is within the last logical CI, that CI is
moved to the new CA. If the insert is at the end of the last logical CI, the
inserted record is placed into the new CA.

Direct processing

CI split: Half the records (those with the higher keys) in the CI are moved into
the new CI. The new record is inserted (in key sequence) into the CI to which
it belongs.

CA split: Half the CIs (those with the higher keys) are moved to the new CA.
Insertion then occurs through regular CI split processing, using the newly-
created freespace CIs.

Updates can cause CI/CA splits when:

e The record length is increased, and there is not enough freespace in the
CI or

e The record length is decreased and additional RDFs are required. If the
space required for the RDFs is more than the amount by which the
record is shortened, and there is insufficient free space, the CI must be
split.

Following are some examples of CI/CA splits.

Chapter 9: Optimizing VSAM’s Performance 9-25

9-26

Figure 9-12 shows the CA after direct insertion of records 025 and 101.

040 175 e Fs
Sequence Set (before)
010 015 020 040
099 100 150 175
190 200
Control Area (before)
40 175 iy Fs
Sequence Set (after)
010 015 020 025 040
099 100 101 150 175
190 200

Control Area (after)

Figure 9-12. CA After Direct Insertion of Records 25 and 101.

VSE/VSAM Programmer’s Reference

Figure 9-13 shows the CA after direct insertion of record 026, causing a CI
split.

I 020 I 175 J] High FS ||

Sequence Set (before)

[[o0][o5 [o020 [o5 |[o0 ||

099 I 100] 101 150 | 175

| [190 [[200 J
|

Control Area (before)

o [« [][& 1

Sequence Set (after)

(o][o [] |
1z | | - | Iz |
1 - |
Tz | . |

Control Area (after)

Figure 9-13. CA After Direct Insertion of Record 26.

Chapter 9: Optimizing VSAM’s Performance 9-27

Figure 9-14 shows a CA split and CI split caused by the direct insertion of
record 168.

I 020 H 040 | 175 U ",{'3;‘ |

Sequence Set (before)

”010”015 H020—| |
| rogg] | 100 || 101 H 150]' 175 | |
|| 190 | | 200 | |

|_| 025 “ 026 || os0 | |

Control Area 1 (before)

IERIERIENIEEN oo [[s 118 1[&]

Sequence Set (after) Sequence Set

|| o1o*|| 015 Hozoj | || 150 || 168 || 175 |

| | [][z]

| | H 099 100 || 101

|_[025||026 | [os0 | | |

Control Area 1 (after) Control Area 2

Figure 9-14. CA Split and CI Split After Direct Insertion of Record 168.

9-28 VSE/VSAM Programmer's Reference

Figure 9-15 shows the CA after sequential insertion of records 20 and 101.

== =1 =1
Sequence Set (before)

o o = | |
= 1w [w [=] |
[][] |
| |
Control Area (before)

I e :cm e

Sequence Set (after)

= 1= 1= 1= [= |
o | . S | | |

I | 191

=]

L

Control Area (after)

Figure 9-15. CA After Sequential Insertion of Records 20 and 101.

Chapter 9: Optimizing VSAM’s Performance

9-29

Figure 9-16 shows the CA after sequential insertion of records 12, 13, and 14.
Record 12 causes a new CI split. Note that the key associated with the old C1
is one number less than the low key in the new CI. This permits mass inser-
tion to take advantage of the newly-created freespace.

| 60 175 Eg‘ FS l

Sequence Set (before)

|| 0 J[e [= | s || e

|) 100 101 147 j 175

[[o [20 | J

Control Area (before)

l 18 60 175 ELQY“ |

Sequence Set (after)

Lo Q[e [s [ve]

|| 99 jr 100 H 101 || 1@ —|| 175

Ir 191 H 200 |

e Q[=]

N
(&)

e]

e e e

Control Area (after)

Figure 9-16. CA After Sequential Insertion of Records 12, 13, and 14.

9-30 VSE/VSAM Programmer’s Reference

Figure 9-17 shows a CA split and CI split caused by the sequential insertion of
record 144. Note that the key associated with the old CI is one less than the
low key in the new CI. This permits mass insertion into the newly-created
freespace.

High |
I 18 60 175 Key

Sequence Set (before)

Lo 1[w2 1 v][v] |

| 99 100 101 147 175 |

[] |
A== 1r=] |

Control Area 1 (before)

W[e Q[e][v][s] (& 10 e Q[s [e |

Sequence Set (after) Sequence Set

| e O SO T |

| 99 100 | 101]| 144 | | |

L [s | ||

e [[20 J[2 [e] |

Control Area 1 (after) Control Area 2

Figure 9-17. CA Split and CI Split After Sequential Insertion of Record 144.

Chapter 9: Optimizing VSAM's Performance 9-31

Figure 9-18 shows a CA after a sequential insertion of records 205, 210, 223,
and 228, during load extend processing. Note that the freespace is preserved.

Ly 1 e 1 e][s]

Sequence Set (before)

|r 191 [[200]

Control Area (before)

ey e 1]
| 210 Key FS FS

Sequence Set (after)

|| 199 || 200 || 205 [[210 |

I 223 228

|

Control Area (after)

Figure 9-18. CA After Sequential Insertion of Records 205, 210, 223, 228.

9-32 VSE/VSAM Programmer's Reference

Index Options

‘ The following options influence performance and storage requirements for
the use of the index of a key-sequenced file or alternate index:

¢ Number of index records in virtual storage
¢ Index and data on separate volumes
¢ Sequence set records adjacent to control areas

¢ Replication of index records

Number of Index Records in Virtual Storage
For keyed access, VSAM needs to examine the index of a file, and it is obvious
that performance improves if a large number of index records can be held in
virtual storage.

Before the processing program begins to process the file, it must specify,
either explicitly or by default, the amount of space VSAM can use to buffer
index records. Enough space for one index record is the minimum; but, when
the space is large enough for only one or two index records, an index record
may be continually deleted from virutal storage to make room for another
and then retrieved again later when it is required anew. Ample space in
which to buffer index records can improve performance by preventing this
situation, provided that the buffer allocation does not cause excessive paging
by VSE. Remember that VSAM searches only the sequence set for sequential
access but every index level for direct access.

You can ensure that an acceptable number of index records will be in virtual
storage by specifying enough space for 1/0 buffers for index records through
t the BUFFERSPACE parameter of the DEFINE CLUSTER command for a file, or
through the BUFNI and BUFSP parameters of the ACB, or through the BUFSP
parameter of the DLBL statement when you begin to process the file. VSAM
keeps as many index set records in virtual storage as the space will hold.

Whenever an index record must be retrieved to locate a record, VSAM makes
room for it by deleting another index record from the space.

Index and Data on Separate Volumes

When you define a key-sequenced file or alternate index, you can place the
entire index or the index set alone on a separate volume from the data, either
on the same or on a different type of storage device. Data and index of a
cluster (file) are defined separately and the volume that is to contain each is
specified in the VOLUMES parameter of the DEFINE command. Only the
index set is placed on the separate volume if the sequence set is imbedded
with the data as described below.

Using different volumes enables VSAM to gain access to an index and to data
at the same time. Additionally, the smaller amount of space required for an
index makes it economical to use a faster storage device for it than for the
data.

Sequence Set Records Adjacent to Control Areas

When you define a key-sequenced file, alternate index, master catalog, or
user catalog, you can specify that the sequence set index record for each
control area is to be on the first min-CA (track) of the control area. This
t reduces disk-arm movement because it is not necessary to do separate seeks
to locate both the sequence set index record and the data record. One arm
movement enables VSAM to retrieve or store both the index record and the
contents of the control interval in which the data record is stored. When this

Chapter 9: Optimizing VSAM’s Performance 9-33

option is used, sequence set records are replicated to reduce rotational delay

(that is, as many copies of the sequence set as will fit on the min-CA (track)
are written on the min-CA (track)).

Figure 9-19 illustrates replication of a sequence set record that has been

placed adjacent to its control area; the advantages of this option are further
discussed below.

First Sequence-Set
Min-CA Record > Copy LP Copy Copy | | Copy
Second Control Interval Control Interval Control Interval
Min-CA
i Control

H;:?CA Control Interval Control Interval Control Interval Area
Fourth
Min-CA Control Interval Control Interval Control Interval

. .

. .

. .

Figure 9-19. Sequence Set Record Imbedded (For CKD devices, a min-CA is equal to a track.)

Replication of Index Records

9-34

You can specify that each index record be replicated (written on a) min-CA
(track) of a direct-access volume as many times as it will fit). Replication
reduces the time lost waiting for the index record to come around to be read
(rotational delay). Average rotational delay for a nonreplicated index record
is half the time it takes for the volume to complete one revolution. Replica-
tion of a record reduces this time; for example, if ten copies of an index
record fit on a min-CA (track) of a 3330, average rotational delay is only
one-twentieth of the time it takes for the volume to complete one revolution.

This option costs direct access storage space; it requires a full min-CA (track)
of storage for each replicated index record. If the entire index set is not being
held in storage and there is significant direct processing, replication is a good
choice. To decide whether to replicate, you have to weigh the relative values
of direct access storage space and processing speed. You should also consider
the DASD device involved. Some devices such as the 3340 have more than one
logical min-CA (track) to a physical min-CA (track). Consequently, replica-
tion will not reduce rotational delay as much on a 3340 as it will on a 3330.

After you have defined a file with replication, you should ensure that the
index is not allocated on any defective tracks or blocks, in which case alter-
nate tracks or blocks would be assigned. The assignment of alternate tracks
or blocks defeats the gain of replication.

The possible combinations of sequence set and index set are:

e Sequence set records separated from index set records and only se-
quence set records replicated (IMBED, NOREPLICATE).

¢ Sequence set records separated from index set records, and both se-
quence set records and index set records replicated (IMBED, REPLICATE).

e Sequence set records and index set records together, and all index set
records replicated (NOIMBED, REPLICATE).

VSE/VSAM Programmer’s Reference

9

9

Imbedded Index Records

e Sequence set records and index set records together, and no index set
records replicated (NOIMBED, NOREPLICATE)

In summary, IMBED reduces seek time when processing both directly and
sequentially. REPLICATE has its greatest effect when insufficient buffer space
is available to hold the index set during direct processing.

The IMBED option places the lowest level of index physically adjacent to the
data it references. This resuts in less seek time than would result when not
using the IMBED option. The imbedded index CI is also replicated on the first
min-CA of the control area it references. That is one min-CA of each control
area is used for the index. In some situations, this may be judged as too much
space for index in relation to the data. For example, assuming a control area
size of one cylinder on a 3340, this would be 1/12 of the data space, whereas
on a 3330, it is only 1/19 of the data space.

On a 3340, it may be better to separate the index from the data, placing them
on different volumes, and specifying NOIMBED. In this case, also specify
NOREPLICATE because the space saved by not imbedding would not be
realized if REPLICATE were chosen. Because of the physical characteristics of
the 3340, replication is less helpful than for a 2314, 3330, 3350, 3310, or 3370.

Specifying IMBED reduces seek arm movement during direct or sequential
processing.

Performance Measurement

VSAM keeps statistical information about a file in its catalog record. Some
statistics, such as number of extents in a file, number of records retrieved,
added, deleted, and updated, and number of control interval splits, can help
you decide when to take action, such as reorganizing a file or altering the type
of processing, to improve performance.

You can list the entire catalog record, the statistics, and the parameters
selected when the file was defined, by using the LISTCAT command. (See
“Appendix B: Interpreting LISTCAT Output” in Using VSE/VSAM Com-
mands and Macros for an explanation of the output produced by the LISTCAT
command.) You can use the SHOWCB and TESTCB macros in a processing
program to display or test one or more file statistics and parameters. These
statistics and parameters include:

¢ Control interval size

¢ Percentage of free control intervals per control area

¢ Number of bytes of available space at the end of the file.
¢ Length and displacement of the key

¢ Maximum record length

¢ Number of buffers

¢ Number of records*

e Password

e A timestamp that indicates if either the data or the index has been
processed separately

e Number of levels in the index
e Number of extents
¢ Number of records retrieved, inserted, deleted, and updated*

* VSAM does not update these statistics when a file is processed with user-supplied buffers
(MACRF=UBF in the ACB). See the ACB macro for more information.

Chapter 9: Optimizing VSAM’s Performance 9-35

¢ Number of control-interval splits in the data and in the sequence set of
the index

e Number of EXCPs that VSAM has issued for access to a file

Notes: When a cluster or alternate index is exported, that is, named in an EXPORT command,
the statistics are reset in the exported catalog record due to the redefinition of the imported
cluster or alternate index in another catalog.

SAM ESDS statistics are not updated when the file is accessed via DTF.

9-36 VSE/VSAM Programmer’s Reference

Chapter 10: Data Interchange Considerations

VSE/VSAM Release 2

DASD Sharing

VSE/VSAM Release 2 provides the following enhancements to previous
releases.

Compatibility with Previous Releases:

The sharing of VSAM files across VSE systems does not affect VSAM file or
catalog format and therefore has no impact on previous release data compati-
bility. Note that the validity of VSAM files and catalogs is only ensured if all
systems accessing the shared DASD devuces are using VSE/VSAM Release 2.

Compatibility with OS/VS VSAM:

Beginning with VSE/VSAM Release 2, two values can still be specified with the
SHAREOPTIONS parameter; the first value specified is now used to indicate the
way a file can be shared across both partitions and systems in VSE. The
second SHAREOPTIONS value is the same as before; it is allowed for compati-
bility with Os/vs.

The sharing of VSAM files across VSE systems does not affect VSAM file or
catalog format and therefore has no impact on 0S/VS data compatibility.
Note that validity of VSAM files and catalogs is only ensured if all systems
accessing the shared DASD devices are using VSE/VSAM Release 2.

SHAREOPTIONS(4) Enhancement

Compatibility with Previous Releases:

The new SHAREOPTIONS(4) support prevents a SHAREOPTIONS(4) key-
sequenced file from being opened for output (MACRF=0UT) with keyed
(MACRF=KEY) and addressed (MACRF=ADR) or keyed (MACRF=KEY) and
control interval (MACRF=CNV) access. Any previous programs to be proc-
essed using VSE/VSAM Release 2 must be changed to conform to this restric-
tion.

Compatibility with OS/VS VSAM:
The new SHAREOPTIONS(4) support does not impact file or volume portability
to OS/VS.

Catalog Management Performance Improvement

Compatibility with Previous Releases:
No change from compatibility as currently available to the user.

Compatibility with OS/VS VSAM:
No change from compatibility as currently available to the user.

Access Method Services CANCEL Command

Compatibility with Previous Releases:
The command is not supported by previous releases.

Chapter 10: Data Interchange Considerations 10-1

Compatibility with OS/VS VSAM:
The command is not supported by 0S/VS VSAM.

Control Area Split Integrity

Dedicated VSAM Volume

Compatibility with Previous Releases:

Duplicate records caused by a failure during a control area split on Release 2
of VSE/VSAM may cause a processing failure if the applicable file is processed
by DOS/VS VSAM prior to being re-processed by VSE/VSAM. (VSE/VSAM
Release 1 is able to process the file.)

Compatibility with OS/VS VSAM:

Duplicate records caused by a failure during a control area split on VSE/VSAM
may cause a processing failure if the applicable file is processed by 0s/vs
VSAM prior to being re-processed by VSE/VSAM (unless the appropriate PTF is
installed on the 0s/VS system).

Compatibility with Previous Releases:
A volume allocated to VSAM with the new DEDICATE parameter can be
processed with any prior release of VSE/VSAM and DOS/VS VSAM.

Compatibility with OS/VS VSAM:
The DEDICATE parameter is not supported by 0S/Vs, but a volume allocated
to VSAM with the DEDICATE parameter can be processed by 0s/Vs.

Additional Classes of Space

Dynamic Files

Compatibility with Previous Releases:

Files specifying new space classes may be moved (along with their catalog
records) to a previous release of VSE as long as a secondary allocation of the
file (requiring a new class) is not needed. Files that call for a new USECLASS
cannot be successfully transferred to a prior release via the IMPORT and
IMPORTRA commands.

Compatibility with OS/VS VSAM:

Space class specifications are not supported by 0s/vs, but a file, data space,
or volume established with space classes under VSE/VSAM can be processed
by 0S/VS VSAM.

0S/VS VSAM files can be transported to VSE/VSAM volumes defined with
special classes.

Compatibility with Previous Releases:
Files created by this function cannot be processed by prior releases.

Compatibility with OS/VS VSAM:
Files created by this function cannot be processed by 0s/vs.

10-2 VSE/VSAM Programmer’s Reference

Disposition Parameters for a File

Default Models

Default Volumes

Compatibility with Previous Releases:
This function creates no data incompatibilities.

Compatibility with OS/VSAM:
This function creates no data incompatibilities.

Compatibility with Previous Releases:
Default models are not supported by previous releases; however, the resultant
file and catalog data can be processed by previous releases.

Compatibility with OS/VS VSAM:
Default models are not supported by 0S/vS VSAM; however, the resultant file
and catalog data can be processed by 0S/Vs.

Compatibility with Previous Releases:
The command functions are not supported; however, the resulting file and
catalog data can be processed by previous releases.

Compatibility with OS/VS VSAM:
The command functions are not supported; however, the resulting file and
catalog data can be processed by 0s/vs.

Job Control Simplification

Compatibility with Previous Releases:
Unpredictable results.

Compatibility with OS/VS VSAM:
Not applicable.

Partition/Processor Independence

Compatibility with Previous Releases:

Not supported by previous releases; however, the resultant file and catalog
data can be processed.

Compatibility with OS/VS VSAM:

Not applicable to 0S/VS VSAM; however, the resultant file and catalog data
can be processed by 0S/Vs.

VSE/VSAM Space Management for SAM Feature

Compatibility with Previous Releases:
SAM ESDSs and their catalog entries cannot be processed.

Compatibility with OS/VS VSAM:
SAM ESDSs and their catalog entries cannot be processed by 0s/Vs.

Chapter 10: Data Interchange Considerations 10-3

VSE/VSAM Release 1

NOIMBED For Catalogs ‘)

Compatibility with DOS/VS VSAM: Catalogs defined with the disk-space
optimization enhancements (NOIMBED) cannot be processed on DOS/VS
VSAM. A conversion process (described below) can be used, however, to
allow processing on DOS/VS VSAM.

Compatibility with OS/VS VSAM: Catalogs defined with the disk-space
optimization enhancement (NOIMBED) carinot be processed on 0S/VS. A
conversion process can be used, however, to make the catalogs suitable for
processing by 0S/VS. -

Converting an Imbedded Catalog

Master or user catalogs defined under DOS/VS Release 34 or earlier releases
are constructed with the sequence set imbedded in the data component. To
convert an imbedded catalog to a non-imbedded catalog, perform the follow-
ing steps:

1. Export all files that are to be carried over to the new catalog. Use the
EXPORT PERMANENT option to delete the files from the catalog.

2. Delete any other files using the DELETE command.

3. Delete all vSAM data space owned by the catalog by issuing the DELETE
SPACE command for all volumes owned by the catalog.

4. EXPORT DISCONNECT any user catalog entries from the master catalog. J

5. Clean up the catalog volume by issuing the DELETE
MASTERCATALOG|USERCATALOG command.

6. Redefine the catalog, specifying the NOIMBED attribute (in addition to
the other options you desire).

7. Redefine all necessary data space with DEFINE SPACE for all applicable
volumes.

8. IMPORT all previously exported files.
9. Redefine any nonvsAM and/or user catalog entries.

10. For the master catalog, IMPORT CONNECT any user catalogs that were
EXPORT DISCONNECTed.

Control Interval Split Integrity

Compatibility with DOS/VS VSAM:

Duplicate records caused by a failure during a control interval split on
VSE/VSAM may cause a processing failure if the applicable file is processed by
DOS/VS VSAM prior to being re-processed by VSE/VSAM.

Compatibility with OS/VS VSAM:

Duplicate records caused by a failure during a control interval split on

VSE/VSAM may cause a processing failure if the applicable file is processed by)
0S/VS VSAM prior to being re-processed by VSE/VSAM (unless the appropriate

PTF is installed on the 0S/VS system).

104 VSE/VSAM Programmer’s Reference

Fixed Block Architecture Support

Compatibility with DOS/VS VSAM:

Files on a Fixed Block Architecture device cannot be processed by DOS/VS
vsaM. This does not affect the processing of catalog entries or files for a
non-Fixed Block Architecture device.

Files on a Fixed Block Architecture device can be transferred (via EXPORT
and IMPORT) from VSE/VSAM to a CKD device that is using DOS/VS VSAM.
Conversely, files can be transferred from DOS/VS VSAM to a Fixed Block
Architecture device.

Compatibility with OS/VS VSAM:

Files on a Fixed Block Architecture device cannot be processed by 0S/VS.
This does not affect the processing of catalog entries or files from a non-Fixed
Block Architecture device.

Files on a Fixed Block Architecture device can be transferred (via EXPORT
and IMPORT) from VSE/VSAM to a CKD device on an 0S/VS system. Convers-
ly, files can be transferred from a CKD device on 0S/VS to a Fixed Block
Architecture device.

Data Space Classification Support

Compatibility with DOS/VS VSAM:

Space class specifications are not supported by DOS/VS, but a file, data space,
or volume established with space classes under VSE/VSAM can be processed
by DOS/VS VSAM.

DOS/VS VSAM files can be transported to VSE/VSAM volumes detined with
special classes.

Compatibility with OS/VS VSAM:

Space class specifications are not supported by 0S/Vs, but a file, data space,
or volume established with space classes under VSE/VSAM can be processed
by 0S/VS VSAM.

0s/Vs files can be transported to VSE/VSAM volumes defined with special
‘classes.

Conversion of Catalog to Fixed Head Data Space

All data space defined under DOS/VS Release 34 or earlier is considered
class-0, with no additional specification necessary. Release 34 or earlier job
streams define class-0 space and request class-0.

To assign files from previous releases to classes other than class-0:

¢ Define the new space with the desired class specification.

e Rename the old file using the ALTER command.

e Define a new file, using the old file name and specifying the desired
USECLASS.

e REPRO the old file to the new location (new space class).
You can also use EXPORT/IMPORT to assign new data space classes:
® EXPORT the old file to a portable file (permanent).

¢ Redefine the space of the required classes.

Chapter 10: Data Interchange Considerations 10-5

New Physical Record Size

® IMPORT the file specifying the USECLASS desired as an OBJECTS subpar-
ameter.

To change the classification of a previously defined space, you must delete
the space and redefine it. If this space contains files, the files may be pre-
served using EXPORT|EXPORTRA and IMPORT|IMPORTRA.

Compatibility with DOS/VS VSAM:
No change from compatibility as currently available to the user.

Compatibility with OS/VS VSAM:

A file created by VSE/VSAM with a new physical record size cannot be directly
processed by 0s/VS. File portability between VSE/VSAM and 0S/VS via
EXPORT, EXPORTRA, IMPORT and IMPORTRA is not impacted by the new
physical record size enhancement, as long as the index CI size is equal to .5, 1,
2, or4K.

New SHOWCAT Operand

Compatibility with DOS/VS VSAM:
The operand is not supported by DOS/VS VSAM.

Compatibility with OS/VS VSAM:
The operand is not supported by 0S/VS VSAM.

Improved EXPORT/EXPORTRA Performance

Compatibility with DOS/VS VSAM:

Files from DOS/VS VSAM, when transferred (via IMPORT or IMPORTRA) into
VSE/VSAM, automatically take advantage of the IMPORT or IMPORTRA
command’s I/0 buffering performance enhancement. Files from VSE/VSAM,
when transferred (via EXPORT or EXPORTRA) into DOS/VS VSAM, automatical-
ly take advantage of the EXPORT or EXPORTRA command’s 1/0 buffering
performance enhancement.

DOS/VS VSAM does not support CIMODE processing. Specify RECORDMODE if
the portable file will be processed by DOS/VS.

Compatibility with OS/VS VSAM:

Files from 0S/VS VSAM, when transferred (via IMPORT or IMPORTRA) into
VSE/VSAM, automatically take advantage of the IMPORT or IMPORTRA
command’s 1/0 buffering performance enhancement. Files from VSE/VSAM,
when transferred (via EXPORT or EXPORTRA) into OS/VS VSAM, automatically
take advantage of the EXPORT or EXPORTRA command’s I/0 buffering perfor-
mance enhancement.

0S/VS VSAM does not support CIMODE processing. Specify RECORDMODE if
the portable file will be processed by 0S/Vs.

VSAM-VTAM Similarities

10-6

The Virtual Telecommunications Access Method (VTAM) is an access method
for teleprocessing. There is considerable similarity between the two access
methods with regard to control block names and fields, control block manip-
ulation, and general approach to request handling.

VSE/VSAM Programmer’s Reference

Both access methods use an ACB. The VSAM ACB represents the file. In VTAM,
however, the ACB essentially represents an application program. Both types
of ACBs are objects of the OPEN macro instruction, and VSAM and VTAM ACBs
can be opened with one macro instruction.

Both types of ACBs can contain pointers to an exit list. Both VSAM and VTAM
exit lists contain addresses of routines to be entered when error conditions
occur (LERAD and SYNAD exit routines) and addresses of routines to be
entered when special situations occur.

Both access methods follow the same general 1/0-request procedure. An I/0
macro instruction is issued that indicates an RPL. The RPL in turn contains
information about the request, such as the location of the 1/0 work area or
whether the request is to be handled synchronously or asynchronously.

Finally, both access methods use the same macro instructions (GENCB,
MODCB, TESTCB, and SHOWCB) to generate and manipulate their respective
ACB, EXLST, and RPL control blocks.

To make control blocks unique, a special operand is used when the control
block is generated. By specifying AM=VTAM on the ACB, EXLST, or RPL macro
instruction, the control block is generated in VTAM form. Omitting this
operand causes a VSAM control block to be built. A VSAM control block will
also be built if AM=VSAM is specified. If an installation uses both of these
access methods, it may be desirable to have AM=VSAM specified in VSAM
programs for documentation purposes.

Chapter 10: Data Interchange Considerations 10-7

10-8

VSE/VSAM Programmer’s Reference

Data Security

Chapter 11: Data Protection

The protection of data includes data security, the safety of data from theft or
intentional destruction, and data integrity, the safety of data from accidental
loss or destruction. All security options and some integrity options are
specified for a file and its components in the DEFINE command. Some
integrity provisions can be implemented through commands rather than
through command options. The protection of data also includes recovery
commands and backup tools. Methods and procedures about the use of these
tools are included in this chapter.

VSAM provides options to protect files against unauthorized use and loss of
data. These options, specified when a file or catalog is defined using Access
Method Services, include passwords that can be altered, a user-written
security verification routine, and controls over file sharing among partitions
or among subtasks in a partition.

Passwords to Authorize Access

You can optionally define passwords for clusters, alternate indexes, compo-
nents (data and index), paths, and catalogs, which a program or operator
must provide to gain access to the protected objects. Password levels differ
for various degrees of security. These levels are (from low to high):

® Read access (READPW parameter). This is the read-only password,
which allows you to retrieve data records and catalog entries, but not to
add, update, or delete them, nor to see password information in a
catalog entry.

e Update access (UPDATEPW parameter). This password authorizes you to
retrieve, update, add, or delete records in a file. Specifying a catalog’s
update password authorizes you to define files in it.

¢ Control-interval access (CONTROLPW parameter). This password author-
izes you to retrieve and store the entire contents of a control interval
(rather than a logical record).

e Full access (MASTERPW parameter). This is the master password, which
allows you to perform all operations (retrieving, updating, adding, and
deleting) on a file and on the catalog entry or any index associated with
it. Using this password to gain access to a catalog entry allows you to
delete an entire file and to alter any catalog information (including
passwords) about data, index, or catalog. The master password allows
all operations and bypasses any additional verification checking by the
user security verification routine.

Each higher-level password allows all operations permitted by lower levels.
Any level may be null (not specified), but if a low-level password is specified,
the master level password must also exist. The DEFINE and ALTER commands
accomplish this by propagating the value of the highest password specified to
all the higher password levels. For example, if you specify only a read-level
password, that password becomes the update, control-interval, and master
level passwords as well. If you specify a read password and a control-interval
password, the control-interval password becomes the master level password
as well. However, the update level password is not affected. (It remains null.)

Chapter 11: Data Protection 11-1

A password, if required, is normally supplied by the processing program in a
field pointed to by the ACB or through Access Method Services parameters. If
neither of these are supplied, the password must be supplied by the operator.

Two options can be specified in the DEFINE command for use when the
operator supplies a password: the ATTEMPTS option and the CODE option.

e The ATTEMPTS option specifies how many times, 0 through 7, the
operator can attempt to supply the correct password. If 0 is specified,
passwords cannot be supplied by the operator. If ATTEMPTS is not
specified in the DEFINE command, the default (2) allows the operator to
attempt to supply the password twice.

¢ The CODE option specifies a one-to-eight character name, other than the
name (file-ID) of the file, to which the operator responds with a pass-
word. This prompting code helps keep data secure by not allowing the
operator to know both the name of the file and its password. If the
CODE option is not specified, the name of the job and the name (file-ID)
of the file are supplied to the operator.

If the processing program omits the password or supplies the wrong pass-
word, and the operator cannot supply the correct password in the allowed
number of attempts, OPEN is terminated. An error code is set in the ACB
indicating that the file cannot be opened because the correct password was
not supplied.

Catalogs are, themselves, VSAM files and may have passwords. If you define
passwords for any files in a catalog, you must also define passwords for the
catalog in order for the file passwords to have effect. If you do not define
passwords for the catalog, no password checking takes place during opera-
tions on the file’s catalog entry. For some operations (for example, listing all
of a catalog’s entries with their passwords or deleting catalog entries), the
catalog’s passwords may be used instead of the entry’s passwords. Thus, if
the master catalog is protected, its update or higher-level password is required
when defining a user catalog because all user catalogs have an entry in the
master catalog. When deleting a protected user catalog, the user catalog’s
master password must be specified.

Operations on a catalog may be authorized by the catalog’s appropriate
password or, in some cases, by the appropriate password of the file whose
definition in the catalog is being operated on. For example:

¢ Ifyou want to define a file in a password-protected catalog, you must
specify the catalog’s update (or higher) password.

e If you want to delete a protected file from a password-protected catalog,
you must specify the catalog’s or file’s master password.

¢ If you want to alter a file definition in a password-protected catalog,
you must specify the catalog’s or file’s master password.

s If you want to list a file’s catalog definition in a password-protected
catalog (and the file is password-protected also), you must specify the
catalog’s or file’s read (or higher) password. If you want to list the
passwords themselves, you must provide the master password.

o If you want to list a file’s catalog definition in a password-protected
catalog (and the file is not password-protected), you do not have to
specify a password.

Because a user catalog defines itself, it may be password-protected without
the master catalog being password-protected. To delete an empty user

VSE/VSAM Programmer’s Reference

R J

catalog, you must give its master password, whether the master catalog is
password-protected or not.

Some Access Method Services operations may involve more than one pass-
word authorization. For example, importing a file involves defining the file
and loading records into it. If the catalog into which the file is being import-
ed is password-protected, its update (or higher) password is required for the
definition; if the file is password-protected, its update (or higher) password is
required for the load. In these cases, the master password of the catalog
satisfies both requirements.

Every VSAM file is represented in a catalog by two or more entries: a cluster
entry and a data entry or, if the file is a key-sequenced file, a cluster entry, a
data entry, and an index entry. Of the two or three entries, the cluster entry is
the controlling entry. Each of the two or three entries can have its own set of
four passwords; the passwords you assign need have no relationship to one
another. One reason for this separate password protection is to prevent access
to the index of a key-sequenced file, since an index can be opened independ-
ently of the cluster. For example, if you password-protect a cluster but do not
password-protect the cluster’s data component, another user could issue
LISTCAT to determine the name of your cluster’s data component, then open
the data component and access records in it even though the cluster itself is
password-protected.

The following protection considerations and precautions should be observed
when using commands that refer to a catalog without using the files defined
by the catalog:

e To gain access to passwords in a catalog (for example to list or change
passwords), you must specify the master password of either the entry or
the catalog. If both the password of the entry and the password of the
catalog are supplied, the password of the catalog is used. Similarly, a
master password must be specified with the DEFINE command if you
want to model the entry’s passwords (with the MODEL parameter).

e To delete a protected file entry from a catalog requires the master
password of the entry or the master password of the catalog containing
the entry. To delete a nonempty VSAM data space, the master password
of the catalog is required, if the catalog is password protected; to delete
an empty VSAM data space, the update password of the catalog is suffi-
cient. When a catalog entry is created (with a DEFINE command), the
catalog’s update or higher-level password is required.

* You can list catalog entries that are password protected by specifying
the read passwords of the entries or the catalog’s read password. You
can list unprotected entries without specifying the catalog’s read pass-
word. If you wish to list the passwords associated with a catalog entry,
you must specify either the master password of the entry or the master
password of the catalog.

¢ If the proper password is not specified with an Access Method Services
command, a password prompt occurs. Unless you have specified the
CODE parameter on either the DEFINE or ALTER command, the prompt
includes the file-1D of the file; if you specify CODE, the prompt includes
the code name you specified. In some circumstances, more than one
prompt occurs. For example, when an ALTER or DELETE request is
processed, the catalog must be referred to twice, once to locate the
information, and again to perform the requested function. Again,
incorrect password specification when you want to list catalog entries
may cause numerous prompts. To avoid unnecessary prompts, specify

Chapter 11: Data Protection 11-3

the catalog’s master password, which allows access to all entries con-
tained in that catalog.

¢ Specification of a password where none is required is always ignored.

The following protection considerations and precautions should be observed
when using commands that cause access to a VSAM file:

¢ To access a VSAM file by using its cluster name instead of a data or
index name, you must specify the proper level password for the cluster.
The proper level password for the cluster is required even if the data or
index passwords are null (that is, no password was assigned).

e To access a VSAM file by using its data or index name instead of its
cluster name, you must specify the proper level data or index password.
If cluster passwords are defined, however, the master password of the
cluster may be specified instead of the proper data or index password.

e Ifa cluster is not password protected, you can access the file using the
cluster name without specifying passwords. This is true even if the data
and index entries of the cluster have passwords defined. This allows
unrestricted access to the VSAM file as a whole, but protects against
unauthorized modification of the data or index as separate components.

¢ An update password is required at open for MACRF=IN files when DLBL
DISP or ACB CLOSDSP is DELETE or DATE.

User Security Verification Routine

114

If you specify password protection when you define a file (or catalog), you
can also supply your own routine to double-check the authority of a process-
ing program to access the file. To use this routine, specify the name of your
USVR (user security verification routine) in the AUTHORIZATION parameter of
the DEFINE or ALTER command.

The verification routine must reside in the core image library (either system
of private). VSAM transfers control to the verification routine only after the
program trying to open the file gives a correct password other than the master
password. (The verification routine is always bypassed whenever a correct
master password is specified.) The authorization option can also include a
maximum of 255 bytes of information which will be passed to the authoriza-
tion routine when it is called. When the authorization routine gets control
from VSAM, the registers are set as follows:

Register Contents

0 Unpredictable

1 Address of a parameter list

2-13 Unpredictable

14 Return address to VSAM

15 Entry point to verification routine

The parameter list has a 44-byte file-ID, an 8-byte prompting code (from the
CODE option) or zeros, an 8-byte file owner ID (from the OWNER parameter of
DEFINE), and an authorization string of up to 255 bytes.

When the authorization routine returns to VSAM, register 15 should be set to
zero if the processing program is authorized to access the file or catalog. If
register 15 is not zero, VSAM does not allow the processing program to open
the file.

VSE/VSAM Programmer’s Reference

Protecting Shared Data

Files can be shared among partitions, among tasks in a partition, or among
VSE systems. File sharing is controlled by (1) the use of the SHAREOPTIONS
parameter in the DEFINE command and (2) the type of processing (input or
output) for which the file was opened.

For sharing among systems, you must establish the DASD sharing environ-
ment via the correct system generation and IPL commands. You are also
responsible for ensuring that the volume containing the file is mounted on a
shared device.

In determining the level of sharing you intend to allow, you must evaluate the
consequences of a loss of read integrity (reading the correct information) to
the processing program and a loss of write integrity (writing the correct
information) to the file owner.

The degree of sharing to be allowed for the file is specified, when the file is
defined, in the SHAREOPTIONS parameter of the DEFINE command. The
SHAREOPTIONS parameter can be changed by the ALTER command (if the file
is not concurrently open for another program). A file cannot be deleted or
reset if it is currently open for another program, regardless of the sharing
option specified.

During the initial load of a file (regardless of the share option values speci-
fied), VSAM treats the share option specification as if it were (1). After the file
is loaded and sucessfully closed, VSAM uses the original share option value.

One of the following file sharing options can be specified:

e Sharing option 1: The file may be opened by any number of programs
for input processing (retrieve records) or it can be opened by one pro-
gram for output processing (update or add records). This option ensures
full (read and write) integrity.

¢ Sharing option 2: The file may be opened by more than one program
for input processing and, at the same time, it may be opened by one
program for output processing. This option ensures write integrity but,
since the file might be modified while records are being retrieved from
it, each user must ensure his own file’s read integrity.

¢ Sharing option 3: The file can be opened by any number of programs
for both input and output processing. VSAM does nothing to ensure
either the integrity of information written in the file or the integrity of
the data retrieved from the file. vSAM does ensure, however, that an
open file is not deleted or reset.

e Sharing option 4: A key-sequenced or relative-record file can be opened
by any number of programs for both input and output processing by
users in the first system requesting the file. Once a file has been opened
for output by one system, VSAM accepts only open for input requests
from another system.

VSAM ensures write integrity by using the VSE LOCK facility. Read
integrity is ensured by VSAM only when records are being retrieved for
update. If records are not being retrieved for update, some records in
control intervals being updated concurrently by more than one program
may be missed or skipped by VSAM because each program might re-
trieve a different copy of the control interval. If one task makes multi-
ple requests (through two or more ACBS) to the same file, VSAM cannot
resolve the integrity conflict and issues an error code. The requestor
must resolve the conflict and retry the request.

Chapter 11: Data Protection 11-5

Cross-Systems Sharing

Data Integrity

Note:
If you specify sharing option 4 for an ESDS, VSAM treats the specification as share
option 2.

If a file cannot be shared for the type of processing you specify, your request
to open a file is denied.

If a file is fully sharable (sharing options 3 and 4), more than one program
can open it at the same time to update or add records. If the file is not shara-
ble, only one program at a time can open it to update or add records. With
sharing options 2, 3, or 4, any number of programs can retrieve records from
the file regardless of whether it is sharable or not. With sharing option 1, data
retrieval is prevented by the OPEN macro if the file is already opened for
output.

If an alternate index is defined with the UPGRADE attribute and sharing
option 1 or 2, keep in mind the restrictions on the number of users who can
open it for input and/or output processing. For example, if sharing option 2
is specified for an alternate index that is a member of an upgrade set, once an
update path over the base cluster is opened for output you cannot open
another update path over the base cluster, or the base cluster itself, for output
because this option does not allow a file to be opened twice for output.

Cross-systems sharing permits files and catalogs to be shared among several
VSE systems. You do not need to invoke cross-systems sharing support when
opening VSAM files and catalogs. Catalogs are automatically shared if they
reside on shared devices (as defined to the supervisor at IPL). File sharing is
supported for all files owned by a shared catalog. Both the catalog and the
file must reside on shared devices.

VSE does not support cross-systems SHAREOPTIONS (4) (concurrent output
processing by two processors). Specifying SHAREOPTIONS (4[,n]) results in
sharing option 4 support across partitions and sharing option 2 support across
systems.

You may wish to have a nonshared master catalog on each system with
shared user catalog(s) connected to each master catalog. To do this, define
the user catalog under one master catalog, then IMPORT CONNECT the user
catalog to another master catalog. The shared (user) catalog(s) must contain
entries for all shared files.

Access Method Services has both commands and command options for VSAM
data integrity. Also, VSAM and VSE utility programs will aid you in protecting
data. The following list indicates what the integrity and protection tools are:

1-6 VSE/VSAM Programmer’s Reference

R J

C

Integrity Commands and Command Options

DEFINE CLUSTER allocation option

DEFINE CLUSTER RECOVERY/|SPEED option
DEFINE CLUSTER DATA WRITECHECK option
DEFINE CLUSTER WRITECHECK option
DEFINE USERCATALOG command

DEFINE SPACE command

DELETE SPACE FORCE option
EXPORT/IMPORT commands
EXPORTRA/IMPORTRA commands

LISTCAT command

LISTCRA command

REPRO command

RESETCAT command

VERIFY command

VSAM and VSE Utility Programs

FAST COPY DISK (CKD)
FAST COPY DISK (FBA)
VTOC Utility IKQVDU) VSAM

These commands, options, and programs are also listed later in this chapter
in the section “Guide to VSAM Recovery” with a brief explanation of how
each is used. The list shows where to find a more detailed explanation and
backup and recovery procedures that use integrity and protection tools.

You can use the commands DEFINE SPACE, DEFINE USERCATALOG, and
DEFINE CLUSTER to your advantage for data integrity. Although these
commands and options are not designed specifically for integrity, they can be
used to improve data integrity.

Using the DEFINE SPACE Command

The DEFINE SPACE command DEDICATE parameter can be used to easily
dedicate an entire volume or group of volumes to VSAM by defining a space
that occupies the whole volume. Other volumes can be used exclusively for
nonVSAM files. This allows recovery on a volume basis to be strictly VSAM or
nonVSAM. If the volumes are mixed, two different approaches are needed for
integrity. For example, a copy of the data on tape is needed to back up the
nonVSAM data, but several exports may be all that is necessary for VSAM files.
Both the COPY and EXPORT commands are necessary on the mixed volumes.
If the volumes are segregated, only one of the integrity measures is necessary.

Using the DEFINE CLUSTER Allocation Subparameter

Secondary allocation that occurs after the last catalog backup results in new
catalog records that are not available to the backup catalog. The allocation
subparameter of the DEFINE CLUSTER command can be used to improve file
integrity and reduce this exposure by eliminating or minimizing secondary
allocation. An entry-sequenced file is extended only by adding new control
areas to the end of the file. Thus, the effect of addition is predictable and the
problem is eased. If it is impractical to allocate enough primary space to
accommodate additions, the secondary allocation quantity should be large
enough so that extension is infrequent. When secondary allocation does
occur, a new backup of the catalog or file (or both) can be made. By monitor-
ing the file statistics in the catalog, either by way of a LISTCAT command or
by way of a SHOWCB macro against an open ACB (to inspect the number of
bytes of available space), you can predict when secondary allocation will
occur. You can determine if a secondary allocation took place with a
SHOWCB or TESTCB for the RPL feedback information after each PUT request.

Chapter 11: Data Protection 11-7

For a key-sequenced file the problem is much more complicated. If existing
records are not lengthened and all additions are made to the logical end of
the file, the situation is similar to that of an entry-sequenced file, except that
the index must also be checked. The other patterns of insert and update
activity are limitless. Some of them are specific and dictate specific backup
strategies, but discussion here assumes a random distribution of activity
against the file.

There are reasons, other than recovery, to design a key-sequenced file to
minimize extensions. A control-area split takes a relatively long time. For
many online systems this can be a serious disruption. A characteristic of
key-sequenced files is that, assuming a random insert pattern, all control
areas tend to split at roughly the same time. Because each split results in two
control areas being created from the original one, the file’s physical size
doubles in a short period of time.

For these reasons it is advisable to design free-space percentages to minimize
the probability of a split for a given insert level, rather than to allow extra
primary allocation for expansion. The file should be reloaded (reorganized)
when its insert level approaches the design point. For further information,
refer to “Distributed Free Space” in Chapter 9.

Using the DEFINE USERCATALOG Command

The DEFINE USERCATALOG command can be used to create many user
catalogs (as many as one per volume) and reduce the number of files per
catalog. If a catalog becomes unusable and has, for example, only ten files
cataloged in it, access to only those ten files has to be recovered. Further, if
the data is segregated, with a particular catalog having only VSAM entries or
only nonVSAM entries, the recovery can be accomplished using only one
method:

Catalogs with only VSAM entries can have the RECOVERABLE attribute and
the data recovered using EXPORTRA/IMPORTRA. This would recover current
data, or access to current data could be regained using RESETCAT.

Once a catalog defined without the RECOVERABLE attribute has been de-
stroyed, the data it controls can no longer be accessed. Thus, if a system
contains only one (master) catalog and that catalog is destroyed, the resources
of the whole system are lost and must be restored by the use of backup copies.
The catalogs with nonvVSAM entries can be backed up with the Fast Copy
Disk Volume utility program. After the volume is restored only those jobs
that updated the files since the backup was made would have to be rerun.

When several user catalogs are involved only the resources controlled by the
destroyed catalog are affected, and it can be rebuilt while processing on other
data continues. Since user catalogs, like the master catalog, are self-
describing, even with the destruction of the master catalog, only the master
catalog and the resources directly connected to it need be rebuilt. No files in
a user catalog connected to that master catalog can be accessed until the user
catalog is again connected to a master catalog.

Protecting VSAM Files and Volumes

11-8

You must plan in advance how much and what kind of protection you need.
You must consider such questions as: Does it take less time and effort, or
expense, to recreate lost data than to maintain backup copies? Should I
segregate VSAM and nonVSAM files and make maximum use of recoverability,
or is it sufficient to use the Fast Copy Disk Volume utility program plus the

VSE/VSAM Programmer’s Reference

file update reruns necessary to make the file current? The next section,
“vSAM Data Backup Considerations,” will help you answer these questions.
The “Guide to VSE/VSAM Recovery” section (later in this chapter) lists and
describes the protection and integrity functions available.

VSAM Data Backup Considerations

In choosing methods of backup and recovery, several factors you must
consider, other than the physical methods of accomplishing the job, are: the
need for backup, operational characteristics, and security and integrity of the
backup medium.

Necessity for backup: If the file can be recreated from the original input
or from records or journals kept, perhaps you have no need for backup.
Considering the time required for regular backup procedures and the
relative infrequency of recovery, many files may fit into this category.

Operational Factors: You should consider frequency of backup and
possible frequency of recovery, time required for backup and recovery,
and the ease or difficulty of the backup and recovery technique used.

Frequency Factors: Frequency of backup and the frequency of possible
recovery usually interact with the time required in your consideration of
best method of backup and recovery. You may find some methods are
considerably easier to use than others but may require more time to
accomplish. Thus, a method that might be suitable for one file because
of its relative infrequency of backing up might be unacceptable for
another file that must be backed up frequently.

Time Required Factor: The time required for backup and recovery may
be a deciding factor in the choice of method, particularly for real-time
systems where recovery must be accomplished quickly. A method that
takes longer may have other characteristics that are more desirable.
Time required for recovery may also necessitate that a backup tech-
nique be used that takes longer.

Ease of Use: The alternatives for backup and recovery vary widely in
relative ease of use. Complicated methods that are difficult to use may
cause errors, which makes recovery much more time consuming than
estimated. If recovery is infrequent, a difficult method may require
more time to reason out than another method would require to do the
actual recovery.

Physical Security and Integrity: Security and integrity of the backup
medium are often neglected. Measures used while data is on the system
are of no use for a backup copy that is stored elsewhere. Security and
integrity factors may also need to be reviewed as the nature of data
changes in an installation.

Chapter 11: Data Protection 11-9

Relationship of Catalog Entries to VSAM Files and Volumes

The VSAM catalog contains information essential to accessing and controlling
its files and volumes.

11-10

All vsaM files must be cataloged. Because the physical and logical
description of a file is contained in its catalog entries, VSAM requires
up-to-date catalog entries to be able to access files.

A volume containing VSAM files or data spaces can be owned by only
one catalog. All vSAM files on a volume must be cataloged in the same
VSAM catalog. With multivolume files, all current and candidate vol-
umes must be owned by the same catalog,.

Logical and physical mapping information is contained in the catalog
entries. For files defined in nonunique VSAM data spaces, the catalog
contains the only record of the physical extents allocated to the file. For
unique files, entries in the VTOC also contain a record of physical ex-
tents. In both cases, only the catalog contains the logical-to-physical
mapping information (the relationship of the RBA ranges of the file to
the physical extents).

If a catalog is recoverable (created with the RECOVERABLE option), a catalog
recovery area (CRA) is created on each volume owned by the catalog. The
CRA duplicates the file and volume information contained in the catalog
about that volume. Figure 11-1 identifies by object type the volume whose
CRA contains the duplicate information. However, accessing the volume via
the CRA can be done as an integrity function only by:

Using EXPORTRA/IMPORTRA to recover the data by moving it physically
and defining the moved file in a catalog.

Using LISTCRA to list the CRA’s contents or with the COMPARE option to
match CRA entries to catalog entries. Mismatch messages indicate
volumes out of synchronization with the owning catalog.

Using RESETCAT to make the information in the CRA and the catalog
identical. This is done by setting the catalog information equal to the
CRA information. If the CRA has no information for an entry in the
catalog, the catalog entry is deleted. H there is no catalog information
for a CRA entry, the CRA entry will be added to the catalog. The volume
information in the catalog will be compared with the vTOC labels. If the
space header in the volume record refers to a non-existent format-1
VTOC label, the space header is deleted. If the format-1 label does not
match a space header, the label is scratched. No data is moved by using
RESETCAT.

All other types of data access must use catalog information.

VSE/VSAM Programmer’s Reference

C

Type of entry

Volume entry

Volume whose catalog recovery area contains a
copy of the catalog entry

Its own volume

Key-sequenced cluster entry and its data and The volume that contains the (first part of the)

index entries

cluster’s index component

Alternate index entry and its data and index The volume that contains the (first part of the)
entries, when the alternate index is for a key- alternate index’s base cluster’s index component
sequenced cluster

Path entry, when the path is related to a key- The volume that contains the (first part of the)

sequenced cluster

path’s base cluster’s index component

Entry-sequenced cluster’s entry and its data ~ The volume that contains the (first part of the)

entry

cluster’s data component

Alternate index entry and its data and index The volume that contains the (first part of the)

entries, when the alternate index is for an

alternate index’s base cluster’s data component

entry-sequenced cluster

Path entry, when the path is related to an
entry-sequenced cluster

Relative-record cluster entry and its data

The volume that contains the (first part of the)
path’s base cluster’s data component

The volume that contains the (first part of the)

entry cluster’s data component

NonVSAM file The volume that contains the nonVSAM entry’s
catalog

User-catalog connector entry in the master The volume that contains the master catalog

catalog

Catalog’s self-describing entries These entries are not duplicated in any catalog

recovery area

Figure 11-1. Catalog Recovery Area Contents

Creating Backup Copies of VSAM Files
Several methods of backup and recovery can be used for VSAM files. It is
usually not possible to use one method for all files in an installation. You
should consider individual data sets or groups of data sets and determine the
most suitable method for each.

The EXPORT command is used to create an unloaded, portable copy of
the file. The operation is simple, there are options that offer protection,
and most catalog information is exported along with the data, easing the
problem of redefinition. You can prevent the exported file from being
updated until the IMPORT command reestablishes its accessibility. (See
“Using EXPORT/IMPORT: Transporting or Backing Up Files” in Using
VSE/VSAM Commands and Macros for more information and exam-
ples.)

The REPRO command is used to create either a SAM or a duplicate VSAM
file for backup. An advantage over EXPORT is the accessibility of the
backup copy. A DEFINE command is required before reloading, but this
is a relatively minor inconvenience, particularly if the original DEFINE
statements can be used. (See “Loading Records into a File” in Using
VSE/VSAM Commands and Macros for more information and exam-

ples.)

User-written programs for backup are usually most attractive when
there is some characteristic of the data that makes backup or recovery
easier for you, but which cannot be taken advantage of by a generalized
backup method. Files for which not all records have to be saved for
backup might fit into this category. Also, keyed sequential files which
have to be processed sequentially on a regular basis, could be backed up
by creating a sequential file as a by-product.

Chapter 11: Data Protection 11-11

You must keep in mind that any backup procedure that does not involve an
image copy of the file (for example, the EXPORT and REPRO commands do
not provide an image copy of the file) will result in data reorganization and
the re-creation of the index for a key-sequenced file. Therefore, any absolute
references by way of RBA may become invalid.

Creating Backup Copies of Volumes

You can use the Fast Copy Disk Volume system utilities to create a backup
copy of an entire volume and to restore that copy on a volume. The use of
these utilities in a VSAM environment requires special considerations because
both the volume VTOC and the catalog contain space mapping information
about the volume that has to be synchronized to insure accessibility and to
avoid damage to data. If the volume being restored is a recoverable volume
(a volume owned by a recoverable catalog), use RESETCAT to synchronize the
catalog with the volume (See the chapter “Using RESETCAT: Resetting
Catalog Entries” in Using VSE/VSAM Commands and Macros). See
VSE/Advanced Functions System Ultilities, for details on how to use Fast
Copy Disk Volume. The section “vSAM Recovery Techniques” later in this
chapter outlines how to solve out-of-synchronization catalog and volume
problems.

Protecting VSAM Catalogs

Because of the importance of the VSAM catalog, you should consider backup
for the catalog as well as for files and volumes. If all of the files owned by a
catalog are backed up individually, it is possible to recover from destruction
of the catalog by carrying out recovery procedures for each of the files. This
may be reasonable. The probability of losing an entire catalog is very low.
However, to speed recovery or minimize exposure in the case of catalog
damage or destruction, three backup methods are available:

e REPRO can be used to unload the catalog to a nonvSAM, or a VSAM file.
It can be used to create a backup copy of either a master or user catalog
and to re-establish that backup copy as a catalog. This set of functions
is referred to as catalog unload and reload. The REPRO command
requires no special operands to perform the function. The unload
function is triggered when the REPRO source is a catalog and reload is
triggered when the REPRO target is a catalog. When a new catalog is
defined an unloaded catalog file may be reloaded into the newly de-
fined catalog, or the unloaded catalog can be reloaded into a version or
the original catalog. The section “Reloading a Catalog” in “Using
REPRO: For Catalog Backup and File Reorganization” in Using
VSE/VSAM Commands and Macros should be studied carefully before
using REPRO unload/reload as your catalog recovery method.

* The entire catalog volume may be backed up by using the VSE Fast
Copy Disk Volume utility program.

e Defining your catalog(s) with the RECOVERABLE attribute allows
recovery through the catalog recovery areas that reside on each volume
owned by the recoverable catalog. Catalog entries may be recovered
using the EXPORTRA/IMPORTRA, and RESETCAT commands.

REPRO and the VSE utilities can be used to backup both nonrecoverable and
recoverable catalogs. File, volume, and catalog recovery will be discussed
from nonrecoverable and recoverable standpoints.

11-12 VSE/VSAM Programmer’s Reference

Creating Backup Copies of Nonrecoverable Catalogs

VSAM nonrecoverable catalogs should be protected by backup procedures
from the following two types of accidental loss:

L.

The data is lost. The actual volume or file information can no longer be
read.

The only way to safeguard yourself from loss of the data is to have a
copy of the data in another form or place. The usual method for doing
this is to use the VSE Fast Copy Disk Volume utility program to copy
the volume to tape or another disk volume.

When you restore a volume several problems must be overcome:

* First, the information on the restored volume is downlevel. That is,
if your original volume has been updated since the backup was
made, these updates must be applied to the restored level of the
volume to bring it to the level of the original volume.

* Second, if the volume is not the catalog volume, you have informa-
tion about the volume in the catalog that may not match what is
actually on the volume. It would be helpful to have a LISTCAT listing
of the catalog at the time you created the backup copy to compare
with a present listing. The data spaces and file extents may be differ-
ent if any file updates have been done since the backup was made.
See the section “Inaccessible Volume™ later in this chapter for com-
plete recovery procedure.

e Third, if the volume is the catalog volume, all of the volumes owned
by the catalog may have file and data space extents that do not
match the catalog information. Again, LISTCAT listings of the backup
copy and the original catalog help. Each volume must be handled as
if the volume was just restored. See the section “Inaccessible
Volume” later in this chapter.

If you have lost a file, an IMPORT command would be the usual way to
recover. If you do not have a copy created by the EXPORT Command to
use with the IMPORT command, either redefine the file and rerun the
initial load and all updates to recreate the file or restore a backup level
of the volume that contains a downlevel copy of the file, use the EXPORT
command to create a portable copy, use the IMPORT command to re-
store the copy to your present volume and rerun the updates run since
the backup was taken.

If no data has been lost, but the catalog is partially or totally unusable,
use a backup copy of the catalog.

The REPRO Command can be used to take periodical backups of the
nonrecoverable catalog(s). The REPRO commands unloaded version
(copy in backup form) can be reloaded directly into the inaccessible
catalog (if the damage was not a physical problem). Then all the files
could be removed from the volume using the EXPORT command (if
there were entries for them in the unloaded copy). Then the volumes
cleared of data spaces, data spaces redefined and files redefined in the
catalog by the IMPORT command. This procedure can be used to re-
cover the current files.

If a REPRO unload copy is not available, then a volume backup must be
restored and volume recovery procedures followed. See the section
“Inaccessible Volume” later in this chapter.

Chapter 11: Data Protection 11-13

Creating Backup Copies of Recoverable Catalogs

VSAM catalogs can be defined with the RECOVERABLE attribute, which makes
it possible to recover VSAM files and their catalog entries if the catalog is
damaged or destroyed. Recovery is made possible by recording catalog
information about an owned volume on that volume in a catalog recovery
area (CRA). Recovery information is recorded on each volume owned by the
catalog. Space for the CRA that contains this information is automatically set
aside when you define the first data space on a new volume and also when
you define the catalog, itself. There is no separate catalog entry for the CRA:
VSAM records its physical disk address in the volume’s format-4 vTOC label.

11-14

The recovery information in the CRA is updated immediately when parallel
information in the catalog is changed by VSAM catalog management. The
affected volume(s), as determined by the operation to be performed (data
space, cluster, path), must be mounted.

Note: If the catalog is changed by the REPRO reload command or restored using a VSE utility,
the CRAs owned by the catalog on volumes other than the catalog volume are unchanged. The

catalog volumes CRA is restored using the VSE utility and is unchanged by REPRO. A

LISTCRA using the COMPARE option of the restored catalog reflects CRA-catalog mismatch-

es.

Recoverable catalogs cannot be used with nonVSAM entries, so if you are
planning to put nonVSAM entries into a VSAM catalog, read the section

“Creating Backup Copies of Nonrecoverable Catalogs” in this chapter. You
might consider putting just the nonVvSAM file entries into one catalog and
VSAM entries in another. Then recovery can be used and nonVvsAM files can
be cataloged as well.

If you should discover that your recoverable catalog is damanged and its
entries are inaccessible, downlevel, or contain erroneous information, you
have the option of chosing one of two methods to restore your catalog to a
usable condition.

EXPORTRA/IMPORTRA: You can use this method to selectively
recover specific catalog entries. Reorganization of your catalog and
data is a by-product of this method since it involves the movement of
data. You may use the following procedure to restore accessibility to
your catalog:

Issue the EXPORTRA command. EXPORTRA uses the information in the
CRA, rather than the catalog, to gain access to the VSAM files and pro-
duce a copy. The copy can be introduced into the system by means of
the IMPORTRA command. (See the section “Using
EXPORTRA/IMPORTRA: Recovering Catalog Entries and Data” in Using
VSE/VSAM Commands and Macros.

RESETCAT: If you don’t want your data to be moved and if you wish
to confine all updating to the catalog (and CRAs), you can use
RESETCAT. RESETCAT does not permit selective reset of specific catalog
entries. An entire volume’s worth of catalog entries are reset. You
would use RESETCAT if a catalog or one or more of its owned volumes
becomes inaccessible:

First, if a catalog is inaccessible, the REPRO command can be used to
reload the catalog or a volume restore may be done. Then the
RESETCAT command can be used to synchronize the catalog’s entries to
the level of its owned volumes. If the inaccessible volume is not the
catalog volume the volume can be restored and the RESETCAT com-
mand used. (Also see the sections “Inaccessible Volume” and
“Unusable Catalog” later in this chapter.)

VSE/VSAM Programmer’s Reference

Guide to VSE/VSAM Recovery

Levels of Recovery

VSAM Recovery is the process of regaining access to lost VSAM data. If access
to VSAM data is lost, Access Method Services, VSAM and VSE utility programs
can be used in combination to regain access to the data. Some of the utility
programs can only recover data that is not current downlevel and further
processing must be done to make the file, volume, or catalog current.

Other tools are used to organize the VSAM data so it can be more easily
recovered. These tools are used mostly to back up data if files are damaged.
Protecting data in this way must be done before data is lost. (See “Protecting
vSAM Files and Volumes” and “Protecting VSAM Catalogs” in this chapter.)

Two types of VSAM data recovery in terms of the currency of the recovered
data are: current and downlevel.

The current type of data recovery operation restores addressibility and access
to the most recent version of the data. Operations that recover current data
are generally used to correct problems such as read and write errors associat-
ed with the data itself or with the data description.

The downlevel type of data recovery operation restores addressibility and
access to a version of the data other than the most recent. Operations that
recover downlevel data are generally used to correct logical problems such as
a programming error or faulty transactions. This is the most common type of
recovery, probably because of the types of problems encountered and the
level of data available for recovery. An example of a downlevel recovery is
the restore of a volume.

VSE/VSAM Recovery Tools

The following chart contains Access Method Services recovery tools and
other integrity options as well as backup programs and commands. In the
chart, several of the column headings are not self-explanatory and are ex-
plained here:

TOOL TYPE indicates where the tool is supported: Access Method Services,
VSAM program, or VSE utility program.

LEVEL indicates what level of data the command or program recovers or
helps recover: CUR is current data, no further processing is required after
the data is recovered. DOWN is downlevel data, usually means a backup
copy is needed to recover data and then further processing to make the
data current. ANLY is used to indicate this is an analysis tool and is used
to determine level and synchronizationof file or volume, with its catalog.

FILE TYPE indicates what is being recovered: FILE is VSAM file, VOL is volume,
and CAT is VSAM catalog.

TOOL CLASS indicates VSAM the command or program class: REC is com-
mand designed for recoverable catalogs, BKP is a backup command or
program other than recovery, and INT is any tool that is a VSAM integrity
option, other than recovery-type tools.

Chapter 11: Data Protection 11-15

11-16

tribute when you define the catalog. When
this is done, a catalog recovery area (CRA)
is created on each volume owned by the cat-
alog. All catalog entries are duplicated in
the CRA of the volume where the entry is
pertinent. Loas of any or all catalog entries
can be recovered via the CRA and the CRA
processing tools: EXPORTRA, IMPOR-
TRA, LISTCRA, and RESETCAT.

File Tool
Recovery Tool Name Tool Type |Level Type Class Application Where Discussed
FAST COPY DISK VOLUME VSE Utility DOWN VOL BKP Use the Fast Copy Disk Volume system ® VSE/Advanced Functions Sys-
utility to create a backup copy of an entire tem Utilities
volume and to restore that copy on a vol-
ume. The use of these utilities in a VSAM
N a special L
due to the fact that both the volume VTOC
and the catalog contain space mapping in-
formation about the volume which has to be
ynch d to insure ibility and to
avoid damage to data.
EXPORT/IMPORT Access Method | DOWN FILE BKP Use the EXPORT command to create bac- | ¢ “Using EXPORT/IMPORT:
Services kup copies of data and iated log Transporting or Backing Up
entries. The catalog entries can be reestabl- Files” in Using VSE/VSAM
ished in the catalog from which they were Commands and Macros
extracted or into a different catalog using ¢ “Creating Backup Copies of
IMPORT command. The data file is rees- VSAM Files” and
tablished by IMPORT without redefining “Creating Backup Copies of
it. Nonrecoverable Catalogs” in
this volume
EXPORTRA/IMPORTRA Access Method | CUR FILE REC Use the EXPORTRA command to recover | ¢ “Using
Services data independent of the status of the cata- EXPORTRA/IMPORTRA:
log. The recovered data can then be import- | Recovering Catalog Entries and
ed into the system and catalog using IM- Data” in Using VSE/VSAM
PORTRA. Commands and Macros
« “Creating Backup Copies of
Recoverable Catalogs” in this
volume
LISTCAT Access Method | ANLY FILE,VOL, | REC Use the LISTCAT command to list the con- | ¢ “Catalog Entry Mismatches” in
Services CAT tents of a nonrecoverable catalog after a this volume
recovery op Visually pare this |e “Using LISTCAT: Listing Cat-
list with a copy of the LISTCAT list most alog Entries” in Using
recently done before the recovery.See the VSE/VSAM Commands and
section “Catalog Entry Mismatches” which Macros
describes the out-of-synchronization condi-
tion you may find.
LISTCRA Access Method | ANLY FILE,CAT, | REC Use the LISTCRA command to list the con- | « “LISTCRA: Analysis of Re-
Services VOL tents of a catalog recovery area (CRA) and, coverable Catalogs” in this vol-
if desired, to pare the of the ume
CRA with the catalog. The COMPARE
option is useful in detecting potential cata-
log problems and in checking the validity of
a log that was blished by means of
the REPRO command or a volume restore.
You can use the LISTCRA command with
the COMPARE option to identify the level
of VSAM recovery required by inaccessible
files, bl logs, and i ibl
volumes. The chart in the section
“LISTCRA Mismatch Messages” aids in
analysis of LISTCRA output.
RECOVERABLE attribute for Access Method | CUR VOL.CAT |REC The bl log is d by in- o “Relationship of Catalog En-
catalogs Services cluding the optional RECOVERABLE at- tries to VSAM Files and

Volumes” in this volume

¢ “Creating Backup Copies of
Recoverable Catalogs” in this
volume

Figure 11-2. Recovery Tools and Integrity Options (Part | of 3)

VSE/VSAM Programmer’s Reference

File Tool
Recovery Tool Name Tool Type |Level Type Class Application Where Discussed
REPRO Access Method | DOWN CAT BKP The REPRO command is used to createa | ¢ “Using REPRO: Catalog Backup
Services backup copy of the catalog. The unloaded and File Reorganization” in Using
or backup copy can be reloaded into a new- VSE/VSAM
ly defined catalog or a version of the origi- Commands and Macros
nal if the backed up catalog becomes unusa- | “Creating Backup Copies of Nonre-
ble. coverable Catalogs” in this volume
RESETCAT Access Method |CUR FILE,VOL, | REC Use the RESETCAT command to syn- e “Using RESETCAT: Resetting Cat-
Services CAT chronize the catalog with its owned vol- alog Entries” in Using VSE/VSAM
umes. The CRASs are merged with the cata- Commands and Macros
log entries on a volume basis (a single vol- | “Creating Backup Copies of Re-
ume may be selected) and the log entry ble Catalogs” in this volume
is reset to the level of the volume entry.
VERIFY Access Method |CUR FILE INT Use the VERIFY command to correct the |¢ “Verifying a File's Accessibility” in
Services catalog information in an attempt to regain Using VSE/VSAM Commands and
access to a file that was improperly closed. Macros
e “File Not Properly Closed” in this
volume
VTOC Utility (IKQVDU) VSAM Utility |CUR or VoL BKP Use the VSAM VTOC utility program ® VSE/VSAM VSAM Logic,
Program DOWN IKQVDU to initialize a VSAM-owned vol- Volume I or 2
ume when the owning catalog is not avail-
able. VSAM volume ownership can be giv-
en up and VSAM space can be returned to
the VTOC as available space. All data in
that space is lost.
Caution: The owning catalog is not modi-
fied.
DEFINE SPACE Access Method VOL,CAT |INT Use the DEFINE SPACE command to ded- | ¢ “Data Integrity " in this volume
Services icate use of volumes for VSAM filesinor- | “Defining a VSAM Data Space” in
der to segregate VSAM and nonVSAM re- Using VSE/VSAM Commands and
covery. You can dedicate a volume by de- Macros
fining a VSAM data space that occupies the
whole volume, or by specifying the DEDI-
CATE parameter.
DEFINE USERCATALOG Access Method VOL,CAT [INT Use DEFINE USERCATALOG command [¢ “Using DEFINE: Defining Objects
Services to maximize the use of user catalogs and to in a Catalog” in Using VSE/VSAM
limit the use of the master catalog. Com- Commands and Macros
pare the effect of the loss of a catalog when |¢ “Defining a Catalog” in Chapter 5
10 files are cataloged in each of 10 catalogs, of this volume
and 50 files are cataloged in each of two
catalogs. The fewer the catalogs the greater
the di of daily op in the
event of loss of a log.
DEFINE option WRITECHECK | Access Method | CUR FILE INT Use the optional WRITECHECK parame- |¢ “Defining a VSAM File (Cluster)”
Services ter of the DEFINE command to verify each in Using VSE/VSAM Commands
write operation when writing data to auxil- and Macros
iary storage. (Refer to the WRITECHECK | ¢ “DEFINE CLUSTER" in Using
p for an explanation.) VSE/VSAM Commands and Macros

Figure 11-2. Recovery Tools and Integrity Options (Part 2 of 3)

Chapter 11: Data Protection

11-17

Recovery Tool Name

Tool Type

Level Type Class Application Where Discussed

DELETE SPACE FORCE

Access Method

VoL INT Use the DELETE SPACE FORCE com- * “Specifying Information That De-
mand to remove information from both the letes an Entry” in Using

VTOC and the catalog. When space is de- VSE/VSAM Commands and Macros
leted by using FORCE option, the VTOC's
VSAM volume ownership is given up,
VSAM space is returned to the VTOC, the
space definition in the catalog for that vol-
ume is deleted, and VSAM files on that vol-
ume are marked as ble in the log.
If you want to redefine the files, you must
first delete them.

DEFINE CLUSTER
RECOVERY/|SPEED

Access Method
Services

CUR FILE INT ‘When you define a cluster, you can indicate | » “Defining a8 VSAM File (Cluster)”
that VSAM is to preformat each control in Using VSE/VSAM Commands
area as records are loaded into the cluster and Macros

(RECOVERY) or is not to preformat them
in interest of performance (SPEED). As
records are loaded into a preformatted area,
there is always a following end-of-file indi-
cator that indicates how far loading has
progressed. If an ervor occurs that prevents
loading from continuing, you can readily
identify the last successfully loaded record
and resume loading from that point.

DEFINE CLUSTER All

Mathnd

Access

Services

FILE INT Minimize or eliminate secondary alloca- o “Using the DEFINE CLUSTER Al-
tions for files to overcome the difficulty in location Subparameter.” in this

! s Y i g from d Yy b
extents.

Figure 11-2, Recovery Tools and Integrity Options (Part 3 of 3)

LISTCRA: Analysis of Recoverable Catalogs

You can use the LISTCRA command either to list the contents of the CRA
before you do selective recovery or to list the entries in the recovery area that
are different from those in its associated catalog. (See
“EXPORTRA/IMPORTRA: Recovering Catalog Entries and Data” in Using
VSE/VSAM Commands and Macros for more information and examples.)

See Figure 11-1 for the contents of CRAs and information about how catalog
entries are placed in CRAs.

The LISTCRA command with the COMPARE option can be used to analyze the
following conditions:

¢ File not properly closed
¢ Inaccessible file

e Unusable catalog

¢ Inaccessible volume

You can use the LISTCRA command with the COMPARE option to identify the
level of recovery that is required for the latter three conditions. (This com-
mand is usable only with recoverable catalogs.) The mismatches detected by
LISTCRA vary in their degree of seriousness. The following list (ordered by
severity) shows the type of mismatch, why it may have occurred, and the
action required to recover data. Only the most serious mismatch is identified.
Subsequent sections tell how to recover.

11-18 VSE/VSAM Programmer’s Reference

LISTCRA Mismatch Messages

CATALOG VOLUME RECORDS
MISCOMPARES

Message Type

DATA SPACE EX- Mismatched data
TENTS space group

DATA SET DIREC- Mismatched data set
TORY directory

VSAM OBJECT RECORDS

CATALOG ENTRY Mismatched name
HAS DIFFERENT

NAME

VOLUME OR KEY- Mismatched volume

RANGE or key range.

EXTENTS Mismatched extents

HIGH USED RBA Mismatched high
used relative byte ad-
dress

STATISTICS Mismatched statistics

OTHER Mismatch of some-
thing other than the
above fields, e.g.
passwords.

Cause

A difference in the num-
ber, size, and/or location
of VSAM data spaces.

A difference in the num-
ber and/or location of
extents for one or more
files.

Space has been extended
or deleted.

A difference in the
names and/or number of
files associated with this
volume.

The catalog was restored,
or the volume containing
the file was restored. As
a result the record in the
catalog pointed to by the
CRA record is no longer
for the same object.

The catalog was restored,
or the volume containing
the file was restored. As
a result the object’s vol-
ume locations or key-
ranges in the CRA do
not match those in the
catalog.

File was not properly
closed, the catalog was
restored, or the volume
containing the file was
restored.

Same as for mismatched
extents.

Same as for mismatched
extents.

Same as for mismatched
extents.

Chapter 11: Data Protection

Action

Requires volume
recovery

Requires volume
recovery

Requires volume
recovery

Requires volume
recovery

Requires file
recovery.

Requires file
recovery.

Requires file
recovery.

Requires use of the
VERIFY com-
mand to correct the

high RBA.

No recovery action
is required; mis-
matched statistics
do not affect the
accessibility of
data.

Same as for mis-
matched statistics

11-19

Catalog Entry Mismatches
Whenever a catalog is used out of synchronization with the volumes it owns,
there is the possibility that the information in the catalog does not match the
physical characteristics of the volumes or files that it describes. Catalog entry
mismatches may indicate that the data is inaccessible, partially accessible or
completely accessible.

The descriptions of catalog-CRA mismatches are meant to help guide you
through a visual comparison of two LISTCAT listings. One listing taken of a
catalog prior to the catalog being restored and the other taken after the
catalog is restored. If an entry difference is noted, consult “Appendix B:
Interpreting LISTCAT Output Listings” in Using VSE/VSAM Commands and
Macros for the LISTCAT field descriptions, then use this section to determine
what mismatch has occurred. A recommended course of action is located for
the mismatch in the section “LISTCRA Mismatch Messages” in this chapter.

This method is for the analysis of nonrecoverable catalogs for out of syn-
chronization conditions that may occur when the nonrecoverable catalog is
restored to a previous level.

Determination of Catalog Mismatch

Recoverable Catalogs: The COMPARE option of the LISTCRA command can
be used to determine whether a backup catalog mismatches a volume that it
owns. The COMPARE option compares the catalog recovery area on the
volume with the entries in the catalog and lists the fields that don’t match.

Non-recoverable catalogs: There is no information on the volume about
VSAM objects in the catalog; however, by comparing the LISTCRA runs that
were made when the catalog was backed up with runs made when the catalog
is restored, critical changes may be detected.

Volume Mismatches

Mismatched Space Map: This mismatch indicates that the catalog does not
correctly reflect the tracks (min-CAs) on the volume occupied by VSAM files.
Files wholly contained in space correctly indicated as allocated can be ac-
cessed if their data set descriptions in the catalog are correct.

Mismatched Data Space Group: This mismatch indicates that the catalog
does not correctly reflect the VSAM files on the volume. Files wholly con-
tained within data spaces that are accurately described are accessible if their
data set descriptions in the catalog are correct.

Mismatched Data Set Directory: This mismatch indicates that the catalog
does not correctly reflect the data sets on the volume. Data sets that are
known from the data set directory are accessible if their data set descriptions
are correct.

Data Set Mismatches

Mismatched Statistics: These mismatches do not affect accessing of a file.

Mismatched High RBA: This mismatch indicates that the catalog does not
correctly reflect the end of data in a file. This condition can be corrected by
running VERIFY against the file.

11-20 VSE/VSAM Programmer’s Reference

Mismatched Extents: This mismatch indicates that the file has acquired
additional extents that are not reflected in the catalog. The data contained in
the extents that are correctly identified may be accessed; for a key-sequenced
file it may be necessary to treat the data portion as an entry-sequenced file in
order to access the data.

Mismatched Volume or Key Range: This mismatch indicates that either the
file was extended to a volume that the file record in the catalog does not
know about or that the file on the volume has the same name as but is not the
same file that is described in the catalog. If the file was extended to a volume
not known in its catalog record the extents of the file on that volume are not
accessible; the extents of the file on known volumes may be accessible.

Actions that Cause Catalog Mismatches

There are several actions that cause mismatches from a backup catalog.
Some of these are overt actions such as the use of the DEFINE and DELETE
commands to create files or data spaces; others are automatic system actions,
such as acquiring additional extents.

Define/Delete/Extend Data Space: Any of these actions cause the data
space group set of fields for a data space to be invalid in a backup catalog.

Define/Delete Files: Either of these actions cause the data set directory in
the volume record and some of the file entries to be invalid in a backup
catalog. The use of the EXPORT command may cause a deletion. The use of
the IMPORT command always causes an entry definition.

ALTER ADDVOLUMES/REMOVEVOLUMES: The ALTER command is
used to add a volume to a file as a candidate or remove a volume from a file
as a candidate.

File Extension via Suballocation: Extension causes the volume space map
in the backup catalog to be invalid as well as the entry for the file.

Minimization of Catalog Mismatches

The possible catalog mismatches described above, which cause files to be
wholly or partially inaccessible, are all caused by the DEFINE, DELETE, and
ALTER commands, or by the extension of VSAM files or data spaces. Since
DEFINE, DELETE, and ALTER are always known to you, a backup copy of the
catalog can be made each time one of these commands is used. The only
thing, then, that invalidates a backup catalog without you being aware is the
extension of space. Thus, the minimization of space extension tends to
minimize critical catalog changes. Further, you have the ability to define
VSAM objects with no secondary extent value and thus prevent any VSAM
object from extending. As long as a VSAM object does not extend, it remains
totally accessible from a backup copy of the catalog.

VSAM Recovery Techniques

These step-by-step procedures are used to analyze and recover from the
following conditions:

¢ File not properly closed
¢ Inaccessible file
¢ Unusable catalog

¢ Inaccessible volume

Chapter 11: Data Protection 11-21

The explanations given in the sections on creating backup copies of files,
volumes, and catalogs should be read as well because the two areas, backup
and recovery, overlap.

Several of the following recovery procedures use volume restore. If this is
indicated, one or the other of the following must be true:

* The volume being restored does not contain multivolume files.

¢ If a volume does contain a portion of a multivolume file, all volumes
that contain portions of those multivolume files are treated as a single
unit; that is, if a volume is required, the entire set is restored.

File Not Properly Closed

Cause of Failure: VSAM files are not properly closed when they are opened
for output and a system failure occurred, or abnormal termination was
entered. This condition is reflected in the catalog and is communicated to the
next program that does an OPEN of the file. There is a possibility that the
failure occurred after the load or update of the file was complete, then the file
itself and the file’s catalog entry are correct.

Error Conditions:
e Incorrect high RBA in catalog
¢ Incomplete write to direct access device
¢ Duplicate data

Recovery for Incorrect High RBA in Catalog: This is the error most likely
to occur. If you are running in RECOVERY mode, correct the error by using
the VERIFY command to scan a given file starting from the indicated high
RBA in the catalog to the end of the file. The resultant high RBA is then used
to update the catalog.

Recovery for Incomplete Write to a Direct Access Device: The file must be
restored from a backup copy. You can use either an exported or sequential
backup copy created by the REPRO command.

Use the IMPORT command to put a previously exported copy into the catalog,
or.

1. Delete the file that failed.
2. Redefine the file with the DEFINE command.

3. Load the new file with the sequential backup file by using the REPRO
command.

The restored file is downlevel and all updates since the backup was taken
must be reapplied to make the file current.

Recovery for Duplicate Data in a Key-Sequenced File, Alternate Index, or
Catalog: This can result from a failure during a control interval or control

area split. One of two possible situations can exist for a duplicate data error
conditions, depending on the type of processing being done.

For addressed or control interval (CNV) processing, you correct the error
condition by using the REPRO command to copy the current version of data to
a temporary file and then copy it back into the original file. This gives you a
reorganized file without duplicate data.

11-22 VSE/VSAM Programmer’s Reference

Inaccessible File

For keyed or sequential processing, VSAM automatically detects and corrects
the duplicate data condition (VSAM erases the original versions of the copied
records.) Duplicate records caused by a failure during a control interval split
in VSE/VSAM may cause an error if the file is processed by DOS/VSs.

Summary: The warning “data set not properly closed” may indicate an error
in a VSAM file. This condition can generally be corrected by using the VERIFY
command.

If other errors are encountered or suspected, they can generally be corrected
by using either the IMPORT command or the REPRO command.

Cause of Failure: A vsAM file may become inaccessible due to damage to
the file itself, damage to related information in the catalog, or both. Depend-
ing on the extent of damage and prior actions, it may be possible to gain
access to either the current or a downlevel version of the data.

Error Conditions:
e The file cannot be opened
¢ The file is partially unreadable (but can be opened)
e The file is totally unreadable (but°can be opened)

Recovery for the File That Cannot be Opened: This is probably due to
catalog damage. Determine the extent of this damage. If the damage is
relatively minor (that is, relatively few catalog file entries are affected):

1. Use an analysis tool to determine the extent of damage.

a. Use LISTCRA (with the COMPARE option) to determine how many file
entries are affected and if there is damage to the volume information.
If mismatches occur see the “LISTCRA Mismatch Messages” section
for suggested action. LISTCRA can only be used for recoverable
catalogs.

b. Use LISTCAT if the catalog is not recoverable. This can be done by
comparing a previous list of LISTCAT with a list of the damaged
catalog. See the section “Catalog Entry Mismatches” in this chapter
if entry mismatches are detected.

2. In a nonrecoverable catalog, if an exported copy of the file is available,
you can import it to gain access to a downlevel copy of the file.

3. In arecoverable catalog, you can use RESETCAT or
EXPORTRA/IMPORTRA depending on whether you want to reset the

catalog entry to the level of the volume or move and reorganize the
file(s).

a. If you desire to gain access to current data and not move the data, the
RESETCAT command can accomplish this. The volume’s CRA inform-
ation replaces non-matching information.

or

a. The EXPORTRA command uses the volume’s CRA to gain access to the
data and move it into a temporary sequential file.

Chapter 11: Data Protection 11-23

b. The IMPORTRA command deletes the entry of the damaged file in the
catalog and redefine the file(s) it moves to the receiving volume. This
move also reorganizes the moved files.

Recovery for the File That is Partially Unreadable: The problem is either
confined to the file itself or an entire physical extent of the file is not reada-
ble.

1. Use an analysis tool as indicated in “Recovery for the File That Cannot
Be Opened” (above) to determine if there is a mismatch in the number
of extents. If the catalog indicates one or more extents than are on the
volume, it may be caused by a volume being restored independent of
the catalog.

2. Ifthere is a mismatch between the catalog and the CRA, you can use
EXPORTRA/IMPORTRA or RESETCAT, or, for a nonrecoverable catalog,
you can import a previously exported copy. See “Recovery for the File
That Cannot Be Opened” (above) for use of these tools.

3. If no catalog mismatch, a backup copy of the file must be restored,
using EXPORT/IMPORT or REPRO.

Recovery For the File That is Completely Unreadable: Either the file has
been destroyed or the catalog and volume are not synchronized. Using the
procedures outlined for other types of file recovery:

¢ Analyze the catalog with LISTCRA or LISTCAT to determine if the
damage is in the file or in the catalog.

e Ifthe damage is in the catalog and the catalog is recoverable, you can
use EXPORTRA/IMPORTRA or RESETCAT to gain access to current data.

e If the damage is to the file or if the catalog damage is to a nonrecover-
able catalog use IMPORT or REPRO to restore the file. This gives you
access to a downlevel copy of the data.

Summary: The inaccessibility of a VSAM file can be analyzed, using the
LISTCAT or LISTCRA commands and the extent of file damage determined.
Recovery of data can be affected, based on the analysis, using
EXPORTRA/IMPORTRA, RESETCAT, IMPORT, and REPRO.

Unusable Catalog

Cause of Failure: A catalog may become unusable because of physical
damage to the catalog. Depending on the extent of the damage and prior
actions, it may be possible to gain access to current level catalog entries or to
downlevel catalog entries.

Error Conditions:
e Catalog can be opened, but many VSAM files cannot be opened.
e The catalog cannot be opened.
¢ The catalog volume is unusable

Recovery for the Catalog that Can be Opened, But Many VSAM Files
Cannot: A problem with the catalog probably exits. This can be determined
by using an analysis tool. If 1/0 errors are encountered or mismatches are
detected, some form of catalog recovery is required. If not, the problem is
confined to the files themselves and the procedures given for “Recovery for
the File Cannot Be Opened” (above) can be used. (See “Inaccessible File.)

11-24 VSE/VSAM Programmer’s Reference

1.

Use an analysis tool to determine if a problem exists in the catalog.

a. Use LISTCRA (with the COMPARE option) to determine how many file
entries are affected and if there is damage to the volume information.
If mismatches occur see the “LISTCRA Mismatch Messages” section
in this chapter for suggested action. LISTCRA can only be used for
recoverable catalogs.

b. Use LISTCAT if the catalog is not recoverable. This can be done by
comparing a previous list of LISTCAT with a list of the suspect cata-
log. See the section “Catalog Entry Mismatches” in this chapter if
entry mismatches are detected.

If the problem is with the catalog, recovery depends on the availablility
of backup copies of the catalog, volumes, and files, and whether the

catalog has been defined with the RECOVERABLE attribute. Nonrecover-
able catalogs are discussed first:

a. Delete each of the VSAM files that cannot be opened.

b. Redefine these files in the catalog, or use the IMPORT command to
load backup copies created by the EXPORT command.

c. If backup copies created by the EXPORT command are not available,
load the files with backup REPRO copies, if available.

or

a. Restore all affected volumes with backups (that were created at the
same time), to volumes other than the current level volumes.

b. Use REPRO or EXPORT to move downlevel copies of affected files to
temporary files.

c. Use IMPORT command or the REPRO command to put these tempo-
rary files into the current catalogs volumes. The current files are
unaffected.

For Recoverable Catalogs: If an unloaded copy of the catalog built by
using the REPRO Command or a backup copy of the catalog volume is
available, you can do the following:

a. Restore the catalog volume or reload the catalog into the previous
version.

b. Use LISTCRA (with the COMPARE option) to identify mismatched
volumes and files.

c. Use RESETCAT to reset the catalog entries to the level of its owned
volumes.

If you prefer to move and reorganize files rather than reset catalog
entries with RESETCAT, you can use the following
EXPORTRA/IMPORTRA procedure:

a. Restore the catalog volume or reload the catalog.

b. Use LISTCRA (with the COMPARE option) to identify volume and file
mismatches.
The three mismatch situations are:

e The catalog volume entry is mismatched.
¢ A volume entry other than the catalog volume is mismatched.

¢ Files are mismatched on volumes that are not mismatched.

Chapter 11: Data Protection 11-25

The Catalog Volume Entry is Mismatched: If the catalog volume entry is
included as a mismatched volume (that is, a data set directory or a data space
group mismatch), the catalog and its owned volume are out of synchroniza-
tion. (This condition does not occur if the catalog volume was restored.)

You can do the following steps to reestablish the catalog and its files:
1. Recover all files on all owned volumes, using the EXPORTRA command.
2. Use the VSAM VTOC utility (IKQVDU) to clean up all owned volumes.

3. If the unusable catalog is a user catalog, use the EXPORT command with
the DISCONNECT subparameter to delete the user catalog pointer from
the master catalog and avoid a conflict in catalog names during rede-
fine.

4. Define a new catalog and space on all owned volumes, using the
DEFINE command.

5. Use the IMPORTRA command to reestablish the files.

A Volume Entry Other Than the Catalog Volume Mismatched: This means
a data set directory or a data space group mismatched. You can recover all
files on the mismatched volumes using the following procedure:

1. Recover all files on the mismatched volumes with the EXPORTRA
command.

2. Use the DELETE command (with the FORCE option) to clear the volume
of vsAM data spaces. This may cause file entries to be marked unusable
in the catalog, these should be deleted.

3. Define space on the volumes.

4. Use the IMPORTRA command to reestablish the files recovered with the
EXPORTRA command.

Files Are Mismatched On Volumes That Are Not Mismatched: If the
mismatches are mismatched RBAs, use the VERIFY command to update the
RBAs. Other mismatches should use this procedure:

1. Recover the mismatched files with EXPORTRA.
2. Use IMPORTRA to reestablish the files recovered by EXPORTRA.

Recovery for the Catalog That Cannot Be Opened: You must have a
backup copy of the volume created by the REPRO command or a VSE utility to
regain access to a nonrecoverable catalog. The recoverable catalog can be
rebuilt with current data, if all volumes and files can be accessed by
EXPORTRA. First, nonrecoverable procedures:

1. Restore the volume or reload the backup copy into the previous version
of the catalog.

2. Use LISTCAT listings of backup files and current files to determine if
there are mismatches. See the section “Catalog Entry Mismatches” in
this chapter if entry mismatches are detected.

3. For those files with other than a RBA or general mismatch, delete the
file and reestablish with a backup copy of the file created by the
IMPORT command or the REPRO command.

To recover with a recoverable catalog:
1. Use EXPORTRA to recover all files on all volumes.
2. Use IKQVDU to clear all volumes.

11-26 VSE/VSAM Programmer’s Reference

Inaccessible Volume

3. Redefine the catalog and all data spaces.
Use IMPORTRA to reestablish all files.
or
1. Use EXPORTRA to recover all files on the catalog volume.

2. Restore the catalog volume or reload into a previous version of the
catalog.

Use RESETCAT to reset the catalog to the level of its volumes.
4. Use the IMPORTRA command to reestablish the files.

Recovery For the Catalog Volume That is Unusable: For nonrecoverable
catalogs see the procedure for “Recovery for the Catalog That Cannot Be
Opened” (above). The recoverable catalog can be recovered as above, except:
1) The catalog volume must be restored. 2) The EXPORTRA/IMPORTRA
commands used to recover those downlevel files on the catalog volume or the
files must be recovered from backup copies created by the EXPORT command
or the REPRO command.

Summary: An unusable catalog can be reestablished provided certain backup
procedures made possible by the system copy utility and the REPRO com-
mand are followed. This provides a downlevel version recovery when a file
or volume is damaged or unusable. Current level recovery is possible when a
recoverable catalog is damaged, but the volumes and files are not damaged.
The amount of work required to recover to the current level base depends on
how recent the backup data was taken and how easily intermediate updates
can be reapplied. Factors which affect the timeliness of backup data are
activities such as altering the amount of space controlled by the catalog,
defining and deleting files, and suballocating space to a VSAM file.

Cause of Failure: A given volume may become wholly or partially unusable
because of physical damage to the volume or because the catalog that owns
the volume was restored to a state that is not synchronized with the volume.
If the problem is because of a catalog restore operation, the procedure
outlined under “Unusable Catalog” (above) can be used to correct the
condition. If the problem is because of physical damage to the volume,
recovery depends on the availability of backup copies of the catalogs, vol-
umes, and files, and whether the catalog to which the volume belongs was
defined with the RECOVERABLE attribute.

If the catalog is recoverable, then a catalog recovery area (CRA) on the
volume contains duplicate catalog information for each file on it. Within this
context, this section first discusses recovery of volumes without CRAs, then
volumes with CRAs.

Error Conditions:
¢ Nonrecoverable volume is totally unusable.
¢ Nonrecoverable volume is partially unusable.
e Recoverable volume is totally unusable.

¢ Recoverable volume is partially unusable.

Recovery for Nonrecoverable Volume That is Totally Unusable: Recovery
can only be effected if you have a volume backup and a catalog volume

Chapter 11: Data Protection 11-27

11-28

backup created at the same time (that is, at the same level), or copies of the
files created by the REPRO command or by the EXPORT Command. If you
have backup volumes:

1. Restore the damaged volume(s).

2. Using a backup level LISTCAT listing, compare it with a current level
listing for possible mismatches. See the section “Catalog Entry
Mismatches” in this chapter if entry mismatches are detected.

3. Use the EXPORT command or the REPRO command to move the down-
level copies recovered to temporary files.

4. Initialize the volume and reestablish nonvsAM files.

If there is a volume mismatch which requires the use of EXPORT com-
mand or the REPRO command, use the DELETE command FORCE with
the option to clean up the volume and remove the volume entry from
the catalog (file entries are marked unusable), then define space on the
volume.

6. Use the IMPORT command or the REPRO command to reestablish the
files. These files are downlevel and any update applied after the backup
was taken has to be reapplied to make the file current.

7. Ifreestablished nonvSAM files are cataloged, delete and redefine the
nonvSAM entries.

If you do not have volume backup, but do have file backup:
1. Initialize the volume and reestablish the nonVSAM files.

2. Use DELETE FORCE to clean up the volume of VSAM ownership and data
spaces. This will also remove the volume entry from the catalog and
mark file entries unusable.

3. Ifcopies created by the EXPORT command of VSAM files are available,
use the IMPORT command to reestablish them.

4. If backup files created by the REPRO command exist, delete the
unusable files and redefine them using the DEFINE command and then
load the backup copies into the newly created files with the REPRO
Command.

5. Ifreestablished nonvSAM files were cataloged, delete and redefine the
nonvsAM entries.

Recovery for Nonrecoverable Volume That is Partially Unusable: If the
VSAM files are partially or totally unusable, but the nonvSAM files are accessi-
ble, use the above procedure. If the VSAM files are accessible, but the
nonVSAM files are not:

1. Recover the VSAM files on the volume using the EXPORT command.
2. Initialize the volume and reestablish the nonvSAM files.

3. Using the IMPORT command, reestablish the VSAM files.
4

If the reestablished nonvsAM files were cataloged, delete and redefine
the nonVSAM entries.

Recovery for Recoverable Volume That is Totally Unusable: You can
recover if a copy of the volume is available. There are two ways to recover,
by using the EXPORTRA/IMPORTRA commands to move and reorganize data,
or by using the RESETCAT command to reset the catalog entries equal to the
entry information in the volume CRA.

VSE/VSAM Programmer’s Reference

Using RESETCAT:

L.
2.

Restore the damaged volumec(s).

Use the LISTCRA command (with the COMPARE option) to indicate if
there are mismatches which may require further processing.

Use RESETCAT to reset the catalog entries of the affected volume entry
and its files entries to the level of the CRA information on the volume.

Using EXPORTRA/IMPORTRA:

L.
2.

Restore the damaged volume.

Use LISTCRA (with the COMPARE option) to see if the volume entry is
mismatched, or if there are file mismatches.

If there are file mismatches only, use the VERIFY command for those
files which have mismatched RBAs and EXPORTRA for those with more
serious mismatches.

If there is a volume mismatch other than a general mismatch, all files on
the volume must be recovered using the EXPORTRA command.

If there was a volume mismatch which required the use of EXPORTRA,
use DELETE (with the FORCE option) to clean up the volume and then
use a DEFINE SPACE on the volume. Keep in mind that a DELETE
(FORCE) results in the loss of all VSAM data on that volume.

Use the IMPORTRA command to reestablish the files recovered by means
of the EXPORTRA command.

Recovery for Recoverable Volume That is Partially Unusable: You must
have volume or file backup for the inaccessible files. Again, you may use
EXPORTRA/IMPORTRA or RESETCAT to recover access to the downlevel data
from the backup copy, first using RESETCAT for the downlevel portion:

L.

Recover the accessible VSAM files on the volume by using the
EXPORTRA command.

2. Restore the volume.

3. Use RESETCAT to reset the catalog volume and file entries to the level in
the volume CRA.

4. Use IMPORTRA to reestablish the current files.

Using EXPORTRA/IMPORTRA:

1. Recover the accessible VSAM files on the volume by using the
EXPORTRA command.

2. Restore the volume
Use an EXPORTRA command to recover the previously inaccessible
VSAM files that were restored.

4. Use a DELETE command with the FORCE option to clean up the volume
and then use a DEFINE SPACE on the volume.

5. Reestablish the recovered files using the IMPORTRA command.

Summary: A given volume that is wholly or partially unusable can be rees-
tablished if backup copies of the data are available. In certain cases, the
current version of the data can be extracted from the unusable volume and
reestablished in the system.

Chapter 11: Data Protection 11-29

Quick Recovery
There are some applications, such as online teleprocessing systems which
require that file recovery be done as quickly as possible. In this type of
situation, normal VSAM recovery procedures may be too time consuming to
be of much use. There are, however some restrictions which can be placed on
VvsAM files which allow for much quicker recovery. These restrictions are
ones which will not allow the backup catalog to become out of synchroniza-
tion with the files that it controls.

The procedure is as follows:

1. Define all files in such a manner that they can acquire no additional
extents.

2. Use the REPRO command to back up the catalog whenever any file is
defined, deleted, or altered.

3. If the catalog controlling these files is lost, do the following:
a. REPRO the backup catalog into the existing catalog.

b. Run VERIFY against all files controlled by the catalog.
4. If a volume is lost, do the following:
a. Restore the lost volume to the backup copy.

b. REPRO the corresponding backup catalog into the existing catalog, if
the volume is the catalog volume.

c. Run VERIFY against all files on the volume or all files if the volume is
the catalog volume.

d. Update restored files from journalled records.

The restriction that files can acquire no additional extents does not mean that
control area splits will not be allowed. As long as there is sufficient unused
space in the current extent, control area splits can still occur. For any VSAM
data set an overallocation of, for example, 20 cylinders will allow at least 20
control area splits to occur. Be sure to overallocate for the index, also, be-
cause at least one new index record will be created whenever a control area
split occurs. This requirement is, of course, lessened if the file was defined
with the IMBED subparameter of the DEFINE CLUSTER command. It should
also be noted that the above procedures minimizes the need for the catalog to
be recoverable.

11-30 VSE/VSAM Programmer’s Reference

L ACB MACRF/CLOSDSP 4-7 through 4-10
Access Method Services storage requirements 3-6, 3-9
ALLOC operator command 2-2
allocating space

by range of key values 9-15 through 9-21
allocation

noallocation 9-21

of free space 9-15, 9-20, 9-23

of I/0 buffers 9-10 through 9-14
analysis of recoverable catalogs 11-18
ASSGN statement 4-1 through 4-3
authorization to process file

passwords 11-1

user-security-verification-routine 11-4

back up
catalogs 11-12 through 11-14
files 11-8 through 11-12
volumes 11-8 through 11-12
buffer, I/0
allocation 9-10 through 9-14
effect on control area size 9-9
effect on control interval size 9-4 through 9-9
effect on performance 9-10 through 9-14
for data control intervals 9-6, 9-10 through 9-13
for index control intervals 9-7, 9-10 through 9-13
for paths 9-14
index records resident in virtual storage 9-33
specifying size and number 9-10 through 9-14
BUFSIZE parameter 1-1
BUFSP operand, in DLBL statement 4-4

CANCEL 10-1
CAT operand in DLBL statement 4-4, 5-2 through 5-4
catalog (see also job catalog, master catalog, and
user catalog)
assigning 2-1
back up and recovery 11-9, 11-15 through 11-30
backingup a 11-12 through 11-14
conversion to fixed head 10-5
conversion to imbedded 10-4
defininga 5-1, 5-2, 5-8
defining a file in a recoverable 5-5
defining a master 5-2, 5-8
defining a user 5-2, 5-8, 11-8
fixed head 10-5
imbedded 10-4
hierarchy 5-4
information contained in the entries of a 5-8
information on 5-1 through 5-11
integrity 11-6
job control information 4-1 through 4-2, 5-1 through 5-5
migration 5-8, 5-10
nonimbedded 10-4
protecting the 11-12
recoverable 11-10, 11-14
relationships 5-1 through 5-5, 11-10
specifying information that defines a 5-1 through 5-5
transporting 5-8, 5-10
unusable 11-24
use in data and space management 5-5
user 5-2
volume informationina 5-6
catalog entries, information contained in 5-8
catalog entry mismatches 11-20
catalog password protection 11-1
catalog recovery area (CRA) 11-10, 11-11, 11-14

catalog use 5-1 through 5-5
+ indata and space management 5-5

Index

cataloging (see also catalog)

user catalogs 5-2 through 5-5
classifying data space 9-1, 10-2, 10-5
CLOSDSP 4-7 through 4-10
close disposition 4-7 through 4-10
compatibility

DOS/VS 10-1

OS/VS 10-1

VTAM 10-6
compression, key 9-8
considerations for

DOS/VS 10-1

0OS/VS 10-1

VTAM 10-6
control area

size 9-9

split 9-25 through 9-32, 10-2
control interval 9-4

data 9-7

index 9-6

relationship to physical record size 9-6

size 9-4

split 9-25 through 9-32, 10-4
control level password 10-1
conversion 10-1 through 10-7
core image library

Access Method Services 3-6

ISAM Interface Program 3-5

VSAM 3-1

VSE/VSAM Space Management for SAM Feature 3-4
creating backup copies 11-11 through 11-14
cross-partition sharing 11-5
cross-system sharing 11-5,11-6

DASD sharing
compatibility 10-1
DASDSHR 1-1
IIP 8-7
lock file 2-1
protection 11-5
system generation 1-1
transporting files 5-8
volume mounting 2-3
data
and catalog integrity 11-6
backup 11-9
portability 5-8, 5-10
protection 11-1
data buffer, specifying space for 9-10 through 9-14
data CI size 9-7
data integrity 9-22, 11-6
data interchange considerations 10-1 through 10-7
data protection 11-1
data security
authorization routine 11-4
options 9-22
passwords 11-1
data set mismatches 11-20
data space
allocation on multiple volumes 9-16
classification 9-1 through 9-3, 10-2, 10-5
definition 5-9,7-7,7-8
examples 7-7,7-8
DEDICATE
catalog definition 5-9
compatibility 10-2
recovery 11-7
dedicated volume (see DEDICATE)
default models 6-4, 10-3
default volumes 6-7, 10-3

Index I-1

defining

alternate index 5-9

catalog 5-8

cluster 5-9

lock file 2-1

VSAM data space 5-9
determination of catalog mismatch 11-20
direct accessing 9-11
DISP 4-4 through 4-5, 4-7 through 4-10, 10-3
disposition (see DISP)
distributed free space 9-23
DLBL statement

catalogs 4-1, 4-2, 5-1 through 5-5

file disposition 4-7 through 4-10

files 4-1,4-3,4-10

format 4-4

passwords 11-4

unique files 7-3 through 7-5, 7-7, 7-9

when to use 4-1 through 4-3
DOS/VS, considerations for 10-1
dynamic files 9-21

EXEC

command 2-1

statement 4-5
EXPORT/EXPORTRA performance 10-6
EXTENT statement

catalogs 4-1,4-2

files 4-1,4-3

format 4-6

unique files 7-4 through 7-9

when to use 4-1 through 4-3

file

backup and recovery 11-8, 11-30

catalog entry 11-10

cataloging 5-1

close disposition 4-7 through 4-10

copying 11-11

defining 7-6, 7-8

defining into a recoverable catalog 5-5, 5-7

disposition 4-7 through 4-10

dynamic 9-21

inaccessible 11-23

information in catalogs 7-7, 11-10

input 4-10,4-13

job stream examples 7-7 through 7-10

labels 7-2

loading a 9-23

migrating 5-8, 5-10

modeling 5-11, 6-1 through 6-8

multivolume 4-12

not properly closed 11-22

open disposition 4-7 through 4-10

output 4-10, 4-13

portable 5-8,5-10

processing 7-7,7-10

reuseable 4-7 through 4-10, 9-21

sharinga 11-5

statistics fora 9-35

suballocated 7-6

transporting a 5-8, 5-10

unique 5-5, 5-9, 7-4, 7-6
fixed block architecture 9-3, 9-9, 10-5
fixed head data space 9-1, 10-5
FOPT macro 1-1
format-1 VTOC label 7-1, 7-
format-3 VTOC label 7-1,7-6
format-4 VTOC label 7-1, 7-6
free space, distributed 9-4, 9-23

GETVIS area 2-2, 3-1

I-2 VSE/VSAM Programmer’s Reference

IDCAMS 4-6
imbedded catalog 10-4
imbedded index records 9-35
independence, partition/processor 10-3
index Cl size 9-6
index I/0 buffers 9-10
index options
index and data on separate volumes 9-33
index records imbedded 9-34
index records, number of 9-33
placement 9-33
replication of index records 9-34
input and output files 4-10, 4-13
input files 4-10, 4-13
installation 1-2
integrity of data and catalog 11-6

catalog backup and recovery 11-12 through 11-14

data recovery 11-15 through 11-30
file backup and recovery 11-8
secondary allocations for files 11-7
user catalogs 11-8
1/0 buffer
default size 9-10
defining minimum space 9-11
effect on control-interval size 9-11
effect on performance 9-11 through 9-14
for data control intervals 9-11
for index control intervals 9-11
index records resident in virtual storage 9-33
space 9-10
specifying size 9-10 through 9-14
IOTAB macro 1-1
IPL procedures 2-1
ISAM and VSAM comparison 8-1 through 8-3
ISAM Interface Program 8-1 through 8-7
storage requirements 3-5, 3-9
ISAM to VSAM conversion 8-3 through 8-5

job catalog 4-1 through 4-2, 5-2 through 5-4
job control
catalog 4-1, 4-2, 5-1 through 5-5
compatibility 10-3
effect on file sharing 11-5
IIP 8-2,8-4

requirements 4-1 through 4-3, 4-7 through 4-10
using with Access Method Services 4-1 through 4-3,

4-10 through 4-13

key
allocating space on volumes for range 9-15
compression 9-8

key ranges 9-15

label information area 7-2
labels
tape 4-11 through4-13
VSAM 7-1 through 7-5
LISTCRA mismatch messages 11-19
loading a file 9-23
loading VSAM files 9-23
lock file 2-1
lock table 1-1

MACRF 4-7 through 4-10

magnetic tape considerations 4-11 through 4-13
making a user catalog available 5-1
managed-SAM (see Space Management for SAM)

master catalog (see also job catalog and user catalog)

cataloging nonVSAM files 5-5
information in catalog records 5-8
job control 4-1

order of catalog search 5-4

.

protecting the 11-12
relation to user catalogs 5-1, 5-5, 11-10
master password 11-1
max-CA 9-3
measurement, performance 9-35
migration
catalog and file 5-8 through 5-11
compatibility 10-1 through 10-7
password 11-1
min-CA 9-3,9-4
minimization of catalog mismatches 11-21
mismatches, catalog 11-19
MODEL parameter
to define a cluster 6-1
modeling 6-1 through 6-8
allocation models 6-1
default models 6-4, 10-3
default parameters 6-6
default volumes 6-7, 10-3
noallocation models 6-3, 9-21
space allocation 5-11
mounting, volume 2-3, 7-7
moving user catalogs and files between systems 5-8
multiple volume support 9-15
multifile volumes 4-12

noallocation 6-3, 9-21
NOIMBED for catalogs 10-4
normal output file 4-10
NPARTS parameter 1-1
NRES parameter 1-1

open options 4-7 through 4-10
operator
commands 2-1through 2-2
entering passwords 11-1
optimizing performance 9-1 through 9-36
OPTION statement 5-2
order of catalog search 5-4
ORDERED subparameter 9-16
OS/VS considerations 10-1
output files 4-10, 4-13

partition storage requirement 3-7 through 3-10
passwords
control 11-1
given by operator 11-1
levels of authorization 11-1
master 11-1
migration of 11-1
precautions in use of 11-3
read 11-1
update 11-1
performance, optimizing 9-1
measurement 9-35
through control area size 9-9
through control interval size 9-4
through data security and integrity options 9-22
through distributed free space 9-23
through index options 9-33
through I/0 buffer space 9-10
physical record size 9-7, 9-8, 10-6
placement of index 9-33
prompting codes for operator entering passwords 11-2
protecting
catalog 11-12
data 11-1
files 11-8
shared data 11-5
volumes 11-8
protection parameters 11-5
in ALTER command 11-5

quick recovery 11-30

read integrity 11-6
read password 11-1
record

length 9-7

maximum size 9-7
RECORDS 4-4 through 4-5, 4-7
recovering catalog entries and data 11-12, 11-24
RECOVERY 9-22
recovery, data 11-12, 11-15 through 11-21
recovery techniques (see also integrity) 11-21
RECSIZE 4-4through 4-5, 4-7
relocatable library

Access Method Services 3-6

ISAM Interface Program 3-5

VSAM 3-2

VSE/VSAM Space Management for SAM Feature 3-4
reserving

free space 9-23
reuseable files 4-7 through 4-10, 9-21

SAM space management (see Space Management for SAM)
searching catalogs 5-4
secondary allocations for files 11-7
security
authorization routine 11-4
data 11-1
passwords 11-1
verification routine 11-4
sequence set
placement 9-33
record imbedded (figure) 9-34
records adjacent to control areas 9-33
relation to control areas 9-33
replication of 9-34
sequential processing 9-10

shared DASD
compatibility 10-1
DASDSHR 1-1
1P 8-7

lock file 2-1
protection 11-5
system generation 1-1
transporting files 5-8
volume mounting 2-3
shared virtual area (SVA)
load list 3-2
phases 3-2
size 2-1,3-7
SHAREOPTIONS parameter
at system generation 1-1
buffer processing 9-14
compatibility 10-1
1P 8-7
interaction 11-5
protection 11-5
sharing data
across partitions 11-5
across systems 11-5
among tasks 11-4
SIZE operand
in EXEC command 4-5
in EXEC statement 2-2
source statement library
VSAM 34
VSAM/VTAM common macros 3-5
space, data
classes 9-1through 9-3, 10-2, 10-5
secondary allocations 11-7
space allocation in a catalog’s data space 5-8
Space Management for SAM
close disposition 4-7 through 4-10

Index

compatibility 10-3 creating a 5-2 through 5-5, 11-8

core image library 3-4 defining 5-2, 5-8
file disposition 4-7 through 4-10 jobcatalog 5-2 through 5-3
open options 4-7 through 4-10 job control information 4-1 through 4-2, 5-1
performance 9-36 protecting 11-12
RECORDS 4-5,4-7 recovery 11-12 through 11-14
RECSIZE 4-5,4-7 relationship to master catalog 5-1, 11-10
relocatable library 3-4 using passwords to authorize access to data 11-1
storage requirements 2-2, 3-4, 3-8 user security verification routine 11-4
system generation 1-1
SPEED 9-22 ;
splits, CI/CA 9-25 through 9-32, 10-2, 10-4 viswalstonage 013
statistics file 9-35 size 3-8 through 3-10
storage requirements 3-1 through 3-10 volume
control areas 9.9 default 6-7,10-3
control intervals 9-4 inaccessible 10-26

index options 9-33
1/0 buffers 9-10
supervisor generation macros 1-1 through 1-2

information in catalogs 5-8, 7-1 through 7-5, 11-10
mismatches 11-20
mounting requirements 2-3, 5-7, 7-7

SUPVR macro 1-1 multifile 4-12
Sva multiple 4-12, 9-15 through 9-20

load list 3-2 ownership 5-5, 5-6

phases 3-2 tape 4-11 through 4-13

size 2-1,3-7 VOLI label 7-4
SYSCAT assignment 2-1 VSAM and ISAM comparison 8-1 through 8-7
SYSLST output file 4-11 VSAM catalog (see also job catalog, master catalog,
system generation macros -1 through 1-2 and user catalog)

SYS004 4-11,4-12

information i 5-8
SYS005 4-11.4.12 information in a catalog record

protecting 11-12
VSAM labels 7-1 through 7-5

tape options 4-11 through 4-13 VSAM storage requirements 3-1 through 3-4, 3-7 through 3-8
timestamp 5-6, 5-7 VSAM’s performance measurement 9-35
transporting files between systems 5-8, 5-10 optimization 9-1
TRKHOLD parameter 1-1 VSAM/VTAM
common macro storage requirements 3-5

unique file similarities 10-6

label processing 7-3 through 7-5 x’i‘&zﬁ P;'gmﬂ.g 2-1
UNORDERED sub ter 9-16 =9
update subparameter VTOC label processing 7-1 through 7-5

access 11-1

password 11-1 write integrity 11-6

USECLASS 9-1through 9-3, 10-2, 10-5
user catalog (see also job catalog and master catalog)

4 VSE/VSAM Programmer’s Reference

SC24-5145-1
=== =
A S S v —®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591

1BM World Trade Europe/Middile East/Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601

1-GPLG¥ZIS 'V'S'N Ul paiulld (0€-0LES "ON 8lid) 8ouaia)ay s Jawwelbold WYSA/ISA

3

[4

L]

VSE/VSAM READER’S
Programmer’s Reference COMMENT
SC24-5145-1 FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate
your views about this publication. They will be sent to the author’s department for
whatever review and action, if any, is deemed appropriate. Comments may be written
in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your
locality.

Yes No
U Does the publication meet your needs? O O
. Did you find the material:
Easy to read and understand? O O
Organized for convenient use? O (]
Complete? O O
Well illustrated? O O
Written for your technical level? O O
. What is your occupation?
° How do you use this publication:
As an introduction to the subject? O As an instructor in class? O
For advanced knowledge of the subject? O As a student in class? O
To learn about operating procedures? O As a reference manual? O

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this
form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

S$C24-5145-1

Reader’s Comment Form

Fold and Tape

Please Do Not Staple

Fold and Tape

UM BUOIY PIOH 10 IND) = = — = = = —

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department G60

P.O.Box 6

Endicott, New York 13760

If you would like a reply, please print:

Your Name

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

(0E-0LES "ON 23l!4) 8dualajay s, Jawwelbold WVSA/ISA

Company Name Department
Street Address
City
State Zip Code

IBM Branch Office serving you

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U. S. A. 10591

1BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. Y., U. S. A. 10601

L-GY1G-¥2¢IS "V'S'N ul pelulld

A - bf-i

