
Program Product

Licensed Material - Property of IBM
LY24-5213-1
File No. 8370-30

VSE/VSAM
Backup/Restore
Feature Logic

Program Number 5746-AM2

Release 2

--- ----~ - - ---- ---- - ---- - - ------ -- ----·-

Second Edition (July 1981)

This edition, L Y24-52 l3-l, is a major revision of L Y24-5213-0. It applies to Release 2 of
the Virtual Storage Extended/Virtual Storage Access Method (VSE/VSAM)
Backup/Restore Feature, which is part of Program Product 5746-AM2, and to all
subsequent releases and modifications until otherwise indicated in new editions or
Technical Newsletters. Changes are periodically made to the information contained
herein. Before using this publication in connection with the operation of IBM systems,
consult the latest edition of I BM System/ 370 and 4300 Processors Bibliography, GC20-
000 I, for the editions that are applicable and current.

A change to the text or an illustration is indicated by a vertical bar to the left of the
change.

Summary of Amendments

For a list of changes, see page iii.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Programming Publica­
tions, Department G60, P.O. Box 6, Endicott, New York, U.S.A. 13760. IBM may use or
distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply.

® Copyright International Business Machines Corporation 1980, 1981

Licensed Material - Property of IBM

Licensed Material - Property of IBM

Summary of Amendments
for VSE/VSAM Backup/Restore Feature Logic

Summary of Amendments
for L Y24-5213-1
VSE/VSAM Backup/Restore Release 2
VSE/VSAM Backup/Restore Release 2 lets you perform the
following actions:

Backup and restore empty objects

Restore objects to a DASO volume of a different device
type than the backup volume. You can move objects in
the following ways:
- From one CKD device to another CKD device

- From one FBA device to another FBA device

- From a CKD device to an FBA device

- From an FBA device to a CKD device.
Change the allocation size for the data component of an
object at restoration (new DAT A RECORDS parame­
ter).

Change the index CI size at restoration (new
INDEXCISIZE parameter).

A message-to-module cross-reference has been added to this
manual, indicating which Backup/Restore modules could have
issued each message.

Summary of Amendments iii

Licensed Material - Property of IBM

iv VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

This logic manual provides detailed information about
the VSE/VSAM Backup/Restore Feature. It is intended
for persons involved in program maintenance and for
system programmers who are altering the program
design. It is not required for effective operation of the
product.

This manual contains information supplementing
that contained in the following volumes:

• VSE/VSAM VSAM Logic, Volume 1: Catalog
Management, Open/Close, DADSM, /SAM Inter­
! ace Program, and Control Block Manipulation,
LY24-5 l91.

• VSE/VSAM VSAM Logic, Volume 2: Record
Management, L Y24-5 l 92.

• VSE/VSAM Access Method Services Logic,
LY24-5195.

This manual refers to these books when appropriate;
information in them is not duplicated here.

Organization of this Publication
This manual's structure differs from that of the conven­
tional logic manual. Chapters 1, 2, and 7 should be
read completely; chapters 3 through 6 are for reference.

• "Chapter 1: Format of the Backup File" de­
scribes the records and control information pre­
sent on a backup file or volume.

• "Chapter 2: General Concepts" describes
processing internals. Topics include control area
processing, buff er handling, and the use that
BACKUP and RESTORE make of control blocks. A
summary of the major operations of the BACKUP

and RESTORE commands is also included.

• "Chapter 3: Control Block Structure" summa­
rizes the use of the major control blocks used by

Preface

this Feature. The control block fields are not doc­
umented; ref er to program listings for this infor­
mation.

• "Chapter 4: Module Structure" shows the
module-to-module flow for BACKUP and
RESTORE. It also lists all executable and non­
executable modules and their functions.

• "Chapter 5: Phase Structure" lists
BACKUP/RESTORE phases, their functions, and
the modules in each. The phase-to-link book
structure is also shown.

• "Chapter 6: Macro Directory" lists the macros
used by BACKUP and RESTORE and their func­
tions.

• "Chapter 7: Diagnostic Aids" lists dump points,
trace tables, abort codes and a message cross­
reference table. It describes how to find some of
the control blocks, how to determine which mod­
ule was in control at the time of failure, which
condition codes were issued, and which modules
can issue each message.

Prerequisite Publications
You should be familiar with the following manuals
before using this publication:

• Using the VSE/VSAM Backup/Restore Feature,
SC24-5216

• Using VSE/ VSAM Commands and Macros,
SC24-5144

• VSE/ VSAM Programmer's Reference, SC24-5 l45

Preface v

Licensed Material - Property of IBM

vi VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

Contents

Chapter 1: Format of the Backup File ... l-l
Directory ... l- l

Directory Block Header .. l-2
Directory Entries ... l-3

End-of-Tape (EOT) Record ... l-4
Representation of Objects ... l-4

Object Header .. l-5
Object Header Control Portion ... l-6
Dictionaries ... I -7
Catalog Information Area ... l-7

Error Object Header .. l-7
Continuation Header .. 1-8
Data Blocks of an Object ... l-8
Dummy Records ... 1-9

Sequence of Objects on the Backup File .. l-10

Chapter 2: General Concepts .. 2-1
Restoration with File Modifications .. 2-1
Physical-Sequential Processing of Control Areas .. 2-1
Buffers ... 2- l

Common Data Buffers ... 2-1
Index Buffers .. 2-2
Output Buffers for Restoration with File Modification 2-3

Channel Programs per Buffer .. 2-3
Pregenerated Channel Programs for Backup/Restore .. 2-3
Buffer Management Concepts ... 2-3

Lowest-Priority Partition ... 2-4
Highest-Priority Partition .. 2-4

Locate Area ... 2-4
Internal Directory Entries ... 2-6
Volume List .. 2-6
Restore Member List ... 2-6
Index Information Blocks ... 2-8
Backup and Restore Catalog Areas ... 2-9
Major Operations of the BACK UP Command .. 2-9
Major Operations of the RESTO RE Command .. 2- l 0

Chapter 3: Control Block Structure .. 3- l
Backup/Restore Block (BRB) .. 3- l
Directory Block Header (DBH) .. 3-3
Locate Area Block Header (LBH) .. 3-3
Index Information Block (XIB) .. 3-3
Buffer Definition Block (BOB) ... 3-3
Index Buffer Block (XBB) ... 3-3
Volume List Block (VLB) ... 3-3
Restore Member List (RML) .. 3-3
Volume Characteristics Table (VCT) .. 3-3
Backup Catalog Area (BCA) ... 3-3
Restore Catalog Area (RCA) .. 3-3
Function Data Table (FDT) ... 3-3
Global Data Table (GOT) .. 3-3

Chapter 4: Module Structure .. 4- l
Flow of Control ... 4-1
Summary of Executable Modules .. 4-5
Summary of Non-Executable Modules .. 4-7

Chapter 5: Phase Structure ... 5- l
Phase-to-Module Relationship ... 5-l
Phase-to-Link Book Relationship .. 5-2

Chapter 6: Macro Directory ... 6- l

Contents vii

Licensed Material - Property of IBM

Chapter 7: Diagnostic Aids .. 7-1
Trace Tables .. 7-1

Trace Point to Module Cross Reference .. 7-1
Dump Points .. 7-1
Abort Codes .. 7-1
How to Find the Backup/Restore Block ... 7-2
How to Find the GDT and FDT from the BRB ... 7-2
How to Find the Inter-Module Trace Table .. 7-2
How to Determine the Active Module ... 7-2
How to Determine the Position in the Function Tree .. 7-2
How to Determine the Last Message .. 7-2
How to Determine the Last and the Maximum Condition Codes 7-2
Message-to-Module Cross Reference .. 7-4

Index .. 1-1

viii VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

Chapter 1: Format of the Backup File

The BACKUP command creates a labeled or unlabeled Volume 1 Volume 2 Volume 3

tape file, depending on whether or not STDLABEL was

~ VOL1 ~ [~ [~] specified.
HDR1 HDR1 HDR1

The backup file is a single-volume or multi-volume
file consisting of several smaller subfiles that are sepa- TM TM TM

rated by tape marks and do not contain their own sets
of labels. The tape marks allow skipping individual Directory Directory Directory
files during restoration without reading and bypassing
the individual blocks of the files to be skipped. Instead,

TM TM TM
Forward Space File commands, which free the tape
channel for the duration of the skip operation, are used
to skip from tape mark to tape mark. Because of the VSAM

interspersed tape marks, labeled backup files cannot VSAM Object 3

Object 1 Part 3

share a tape volume with other labeled files. The bac-
kup file, whether labeled or unlabeled, always starts at

TM
the beginning of a tape volume. Figure I- I illustrates
the physical layout of the backup file. TM

The VOLL HOR I. EOV I. and EOF 1 labels are present
on~y if the STD LABEL parameter for the BACKUP com- en en c. VSAM c.
mand was specified (that is, the backup file is labeled). E Object 3 E VSAM

ca ! Object 4 Part 2 en en
Cl) Cl)

E E

Directory
VSAM I- I-
Object 2 Cl) Cl)

Each volume of the backup file contains a directory
E E
~ ~

that contains two time stamps, some general informa- 0 0 TM
> >

tion concerning the backup file, and a list of all objects
included in the backup file. EOT Record

The directory consists of one or more fixed-size I TM TM I blocks that are subdivided into a header, called the
directory block header, and a set of directory entries.

~ EOF1

~ The last directory block may only be partially filled
with directory entries. The number of objects of the VSAM I I Object 3 TM
backup file is identical to the number of directory en- Part 1
tries unless the creation of the backup file was prema- TM
turely terminated, in which case there may be more
directory entries than objects on the backup file. The

TM TM
premature end of the backup file is determined from
the EOT (end-of-tape) record on the last backup vol-

EOT Record EQT Record ume, assuming that an EOT record was written.-(An
EOT is written if the BACK UP was prematurely termi-
nated by an error other than a tape 110 error and was I TM I TM I
not canceled.)

~
EOV1

~ ~
EOV1

~ The number of directory entries determines the
number of directory blocks since each directory block I TM I I TM I
has a fixed size of 1680 bytes on tape. The directory is
preceded and followed by one tape mark. Figure 1-1. Format of the Backup File

Chapter I: Format of the Backup File I - I

The layout of the directory is shown in Figure 1-2.

Directory Block Header
(DBH)

Directory Entry 1

Directory Entry 2
Directory Block 1

Directory Entry n

Directory Block Header
(DBH)

Directory Entry (n+1)

Directory Entry (n+2)
Directory Block 2

Directory Entry (2n)

Directory Block Header
(DBH)

Directory Entry (m-1)

Directory Entry m Directory Block p

Free Space

Figure 1-2. Layout of the Directory

Directory Block ·Header
Each directory block of the backup file starts with a
48-byte directory block header (DBH). The primary
purpose of the directory block header is to control the
space of the directory block to which it belongs. In
addition, the first directory block contains information
pertaining to the whole backup file and two time
stamps:

1 - 2 VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

- The time stamp indicating when the backup file
was created (backup file creation time stamp),
and

- The time stamp indicating when the particular
backup volume was created (backup volume cre­
ation time stamp).

The volume creation time stamp of a backup vol­
ume other than the first is identical to the volume ter­
mination time stamp (the time when volume backup
was completed) contained in the EOT record of the
preceding backup volume.

The backup file creation time stamp is used when
random mounting is performed in order to verify that
the newly mounted volume belongs to the backup file
being processed.

The backup volume creation time stamp is used
when an object crosses backup volumes in order to
verify that the newly mounted backup volume is the
exact successor of the previously mounted volume and
was not tampered with.

The format of the directory block header is as fol­
lows:

Offset
0

4

8

14

18

24

28

30
32

Length
4

4

6

4

6

4

2

2
4

Contents
CL4 'DBHb'

identifies this block as a directory block.

First directory block:
volume sequence number of backup vol­
ume.

Subsequent directory blocks:
binary zeros.

First directory block:
creation date of backup file (mmddyy or
ddmmyy).

Subsequent directory blocks:
binary zeros.

First directory block:
backup file creation time of day in time
units (TUs).

Subsequent directory blocks:
binary zeros.

First directory block:
creation date of backup volume
(mmddyy or ddmmyy).

Subsequent directory blocks:
binary zeros.

First directory block:
backup volume creation time of day in
time units (TUs).

Subsequent directory blocks:
binary zeros.

First directory block:
number of dummy blocks provided for
read ahead on RESTORE.

Subsequent directory blocks:
binary zeros.

Reserved (binary zeros).

First directory block:
total number of directory blocks for di­
rectory.

Subsequent directory blocks:
binary zeros.

Licensed Material - Property of IBM

36 4

40 4

44 2

46 2

First directory block:
total number of entries in directory.

Subsequent directory blocks:
binary zeros.

Number of this directory block (l for first
directory block, 2 for second directory
block. etc.).

Offset of free space in this directory block
plus 8. (The increment of 8 is caused by the
fact that directory blocks in virtual storage
are preceded by 4-byte forward and back­
ward chain pointers.)

Length of remaining free space in this direc­
tory block.

Directory Entries
The directory block header of each directory block is
immediately followed by directory entries.

In general, all directory blocks except the last are
completely filled with directory entries. However, this
is not a necessity. The free space offset and the free
space length in the directory block header completely
control the space utilization of the corresponding direc­
tory block and must be used in order to determine
where directory entries are in a directory block. Do not
assume that a directory block is completely filled with
data.

Each object of the backup file has an entry in the
directory. The directory entry gives the name of the
object and contains, for those objects that reside or
start on earlier volumes of the backup file than the
volume containing the directory in question, additional
information about the object:

- The type of object,

- The relational level of the object,

- The starting volume sequence number of the
object,

The starting volume serial number of the object
(labeled tapes only), and,

The number of volumes occupied by the object, if
the particular backup volume does not contain
any part of the object.

The directory entries are used by RESTORE to deter­
mine if a specified object is on the backup file and to
allow efficient selective restoration of objects with ran­
dom volume mounting.

The format of directory entries (58 bytes each) is as
follows:

Offset

0

44

45

46

48

52

Length
44

2

4

6

Contents

Name of object. left-adjusted and padded
with blanks.

Object type (decimal):
0 - Object type has not yet been estab­

lished.
4 - Invalid object. The directory entry

was reserved during initial creation
of the directory for an object which
later proved not to be a KSDS,
ESDS, RRDS. SAM ESDS in Cl­
format. an AIX. or a path.

8 - Erroneous object (an object that
could not be backed up successfully).

12 - Skipped object. During backup, this
object was skipped due to an error
condition for the base cluster or the
path entry cluster (upon which the
object is based) or because the
object's base or path entry cluster
was skipped.

16 - The object is a KSDS.
20 - The object is an ESDS.
24 - The object is a RRDS.
28 - The object is an AIX.
32 - The object is a path.
36 - The object is a SAM ESDS in control

interval format.

Relational level of object on the backup file.

Level numbers are used to express if the
represented object is a dependent object
(alternate index or path) of the preceding
object of the backup file. A level number of
I indicates that the object is not a dependent
object of any other object of the backup file.

A level number of 2 or 3 indicates that the
object is a dependent object of the preceding
object.

A KSDS. ESDS. RRDS, or SAM ESDS
always has the relational level I. An AIX
has the relational level I if its base cluster is
not a member of the backup file. It has the
level number 2 if its base cluster was also
specified for backup.

A path has the relational level 2 if it is im­
mediately based on a cluster. or if its path
entry AIX has been specified for backup
without its base cluster.

A path has the relational level 3 if directory
entries are present for both its path entry
AIX and the base cluster for the path entry
AIX.

Volume count (number of volumes occu­
pied by the object. if known). ·

Starting volume sequence number of the
object. A volume sequence number of zero
indicates that the object resides on this or a
fater volume of the backup file.

Starting volume serial number of the object.
(Only if labeled backup file and if the object
starts on an earlier backup volume: binary
zeros otherwise.)

Chapter 1: Format of the Backup File 1 - 3

End-of-Tape (EOT) Record
Each volume of the backup file is terminated with an
EOT record preceded and followed by a tape mark. For
a labeled backup file, the trailing tape mark is followed
by an EOVI or EOFt label. On the last volume of the
backup file, an additional tape mark follows either the
trailing tape mark (for an unlabeled backup file) or the
EOFl/tape mark combination (for a labeled backup
file). See Figure 1-1.

The presence of an EOT record indicates that proc­
essing of the mounted backup volume is complete.

The EOT record contains an identifier, an indication
whether or not this is the last volume of the backup
file, and the volume termination time stamp of the
mounted backup volume. The volume termination
time stamp is used on RESTORE whe·n sequential tape
mounting is performed. It must be identical to the
volume creation time stamp contained in the first direc­
tory block header of the next sequential backup vol­
ume.

The format of the EOT record is as follows:

Offset Length Contents

0 4 CL4 'EOTO'
identifies this block as an EOT record.

4 Type of EOT record:
C'F' - End of backup file (last volume

of the backup file).
CV' - End of backup volume (not the

last volume of the backup file).
Reserved (binary zeros).

6 6 Backup volume termination date (mmddyy
or ddmmyy).

12 4 Termination time of day for backup volume
in time units (TUs).

16 8 Reserved (binary zeros).

Representation of Objects
Each part of an object on the backup file is preceded
and followed by tape marks and starts with a header
record.

The tape marks allow you to skip objects whose
restoration is not desired by means of Forward Space
File commands; you do not have to read and bypass
the individual blocks of the skipped data sets. Thus,
the tape channel can be freed for the duration of the
skip operation.

The header record describes which object or which
part of the object follows.

The first or only part of an object whose backup
could be successfully started is preceded by an Object
Header (OHD) which basically contains the name and
the catalog information for the object.

The second or any later part of an object starts with
a Continuation Header (CHD) which indicates that the

I - 4 VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

subsequent data blocks (until the next tape mark) be­
long to an object that started on an earlier backup vol­
ume.

An object that was recognized as invalid, for which
an error occurred before its backup could be started, or
whose backup was skipped, is represented by an Error
Object Header followed by no data at all. An Error
Object Header is a special form of an Object Header
and allows RESTORE to recognize invalid, skipped, or
erroneous objects before any restoration for them is
attempted. Note that obje'cts for which an error occur­
red in the midst of the backup process are preceded by
a regular Object Header and not by an Error Object
Header. The premature termination of their backup is
recognized by the unexpected encounter of dummy
records (see "Dummy Records'' below) which are not
followed by an EOT record.

As mentioned before, an invalid, skipped, or early­
recognized erroneous object is represented by an Error
Object Header (which is preceded and followed by a
tape mark). In the same way, a path object or empty
object (which does not include any data) is simply rep­
resented by an Object Header (preceded and followed
by a tape mark) that names the path and contains the
pertinent catalog information for the path.

Parts for objects with data start with an Object
Header (first part) or a Continuation Header (second
or later part). The header is followed by data blocks
containing the actual data of the object backed up. The
data blocks in turn are followed by dummy records.
The dummy records, which are "short blocks," are
added to each object part of a data object (KSDS. ESDS.
RRDS. SAM ESDS. or AIX) to facilitate buffering and
read-ahead during restoration. If they were not provid­
ed, no read-ahead of tape blocks could be done during
restoration, because otherwise, at the end of a tape
volume, the tape could run off the tape reel.

Figures l-3 through 1-5 summarize the representa­
tion of the individual object types on the backup file.

Tape Mark

Object Header

Tape Mark

Figure 1-3. Representation of a Path or Empty Object

Licensed Material - Property of IBM

Tape Mark

Error
Object
Header

Tape Mark

naming the object and
identifying it as invalid,
skipped, or erroneous
object

Figure 1-4. Representation of an Invalid, Skipped, or Early­
Recognized Erroneous Object

Tape Mark

Header
Record

Data Block 1

Data Block 2

Data Block n

Dummy Record 1

Dummy Record 2

Dummy Record m

Tape Mark

-I ~ __, 1---i .

Object Header with
atalog information

j~

I f first part of object

i
.._.

Continuation Header
f second or later

part of object

>A ctual Data

Du mmy records
ne

>on
eded for buffering
RESTORE

(as
spe

many as buffers
citied for BACKUP)

Figure 1-5. Representation of a Part of a Data Object

Object Header
The first part of each object of the backup file that is
not invalid, that has not been skipped, or that has not
been recognized as erroneous before its backup, is pre­
ceded by an object header.

The purpose of the object header is to identify the

object and to provide the information necessary to
redefine the object in the VSAM catalog when the object
is restored.

<As shown in Figure 1-6, the object header is logical-
ly broken into three parts:

- object header control portion
- dictionaries
- catalog information area

The individual items are described in the subsequent
sections. Physically, the object header is subdivided
into one or more fixed tape blocks of 1280 bytes each.
The last tape block is padded with binary zeros if nec­
essary. The physical mapping is transparent to the
logical layout of the object header.

Object
Header
Control
Portion

Cluster
Component

L.........-J Dictionary
----+-D-;t;- - - _,

r- +- - - - I- Component
I Dictionary
I ----~
1 Index
I ,. • • • • ··I- Component
I : Dictionary
I I

I I

I
I
I
I:.---~
I I

I :
I :
1----- r-
1 :
I I

L_;. ___ f--

I

Catalog
Information
Area

~-··· .. r-
1
I

:. ~

Figure 1-6. Object Header

Backup File

•

B
I
0

>c
k

1

B
I

>0
c
k

2

Chapter I: Format of the Backup File I - 5

Object Header Control Portion
The Object Header Control Portion contains:

Information about the physical mapping of this
particular object header (block size, number of
physical blocks on tape, actual length of the ob­
ject header).

- The type of the object and the offset to the name
of the object within the catalog information area
of the object header.

Control information about the other parts of the
object header.

- The buffer size that was used for backup (and
which must be used for the restoration as well).

- The basic physical data set characteristics that
prevailed when the backup was performed and
which must be preserved on restoration.

- The data set high-used RBA as it was when the
backup operation was performed.

- The data set statistics that applied when the ob­
ject was backed up and which must be transport­
ed on the backup file because they cannot be rec­
reated during restoration without the information
saved in the Object Header Control Portion.

The layout of the Object Header Control Portion
(112 bytes) is shown below.

Offset Length Contents

0 4 CL4 'OHDh'
identifies this block as an object header.

4 Type of object being described by this ob-
ject header:
C'C' - object header for a cluster

(KSDS, ESDS, RRDS, or SAM
ESDS).

C'G' - object header for an alternate in-
dex.

C'R' - object header for a path.
Other type codes are used to differentiate an
error object header (the object header for an
erroneous, invalid, or skipped object) from a
regular object header.. These error type
codes are described under the heading
"Error Object Header" below.

5 Object header flags indicating special condi-
tions for the object:
Bit 0 = I: The passwords for the object were

suppressed during backup be-
cause the specified password was
not the master password; the
backup file does not contain the
passwords for the object.

Bit 0 = 0: The passwords were not sup-
pressed and are contained on the
backup file (assuming passwords
existed).

Bits I through 7 are reserved and set to zero.

6 2 Release indicator; set to zero.

1 - 6 VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

Offset Length Contents

,8 4 Actual (used) length of Object Header. Pad-
ded bytes in the final Object Header block
are not included.

12 4 Size of Object Header blocks (1280 bytes).

16 4 Number of blocks for this Object Header.

20 4 Offset, relative to the beginning of the Ob-
ject Header. of the 44-character name of the
object represented by the Object Header.

24 4 Offset of the first dictionary for the object
(the dictionary containing pointers to the
catalog information of the C-type. G-type.
or R-type catalog record that is included in
the catalog information area of the Object
Header).

28 4 Offset of the catalog work area (in the ca ta-
log information area) for the component
pertaining to the first dictionary.

32 4 Offset of the second dictionary (the data
component dictionary) for the object ifthe
object has a data component: otherwise
zero.

36 4 Offset of the catalog work area containing
the data component catalog information:
zero ifthe object has no data component.

40 4 Offset of the third dictionary (the index
component dictionary) for the object. This
field is zero if the object does not have an
index component.

44 4 Offset of the catalog work area containing
the index component catalog information
for the object; zero if the object does not
have an index component.

48 4 Buffer size used for backup.

52 4 VSAM physical record size for the data
component of the object at backup.

56 4 Data control interval size of the object at
backup.

60 4 Data control area size of the object at
backup (set to zero for a SAM ESDS).

64 4 Index control interval size of the object at
backup.

68 4 Data set high-used RBA of the object at
backup.

72 4 Number of logical records of the object at
backup.

76 4 Number of deleted records before backup.

80 4 Number of inserted records before backup.

84 4 Number of updates before backup.

88 4 Number of record retrievals before backup.
92 4 Reserved (must be zero).

96 4 Number of control interval splits before
backup.

100 4 Number of control area splits before bac-
kup.

104 4 Number of EXCPs for the data component
before backup.

108 4 Number of EXCPs for the index component
before backup.

Fields that are not applicable to an object are initial­
ized to zero. All offsets are relative to the beginning of
the Object Header.

Licensed Material - Property of IBM

Dictionaries
Up to three dictionaries are provided in the Object
Header (see Figure l-6). The Object Header Control
Portion specifies where these dictionaries are located in
the Object Header.

The purpose of the dictionaries is to identify the
individual pieces of catalog information in the catalog
information area of the Object Header.

The first dictionary refers to the catalog information
for the c-type cluster catalog record of a KSDS. an ESDS.
an RRDS. or a SAM ESDS: to the catalog information for
the G-type record of an alternate index; or to the cata­
log information for the R-type record of a path.

The second dictionary refers to the catalog informa­
tion for the data component of the object, whereas the
third dictionary applies to the index component catalog
information. These dictionaries are only present if the
object has data and index components.

The entities identified by dictionary entries are those
retrieved by field or combination names through cata­
log Locate operations during backup. The same enti­
ties and field/combination names are used during res­
toration in order to redefine the object and its compo­
nents in the VSAM catalog.

For each entity of catalog information for a compo­
nent, the component dictionary has a "dictionary
entry" of the following format:

Offset

0

4

Length
4
4

Contents

Length of catalog information.

Offset of catalog information relative to the
beginning of the component's catalog work
area pointed to by the Object Header Con­
trol Portion.

Each dictionary has the same set of dictionary en­
tries. If the corresponding catalog information does not
exist or is not applicable to the component, both the
length and the offset fields of the dictionary entry are
zero. The order of dictionary entries in a dictionary is
fixed and is in the order of the catalog field and combi­
nation names listed below:

Dictionary Entry Number

0
I
2
3
4
5
6
7
8
9

IO
II
12
13
14

Field/Combination Name

EN TYPE
ENTNAME
DSATTR
OWNERID
DSETCRDT
DSETEXDT
BUFSIZE
LRECL
SPACPARM
PASSWALL
LOKEYV
HIKEYV
VOLS ER
AMDSBCAT
EXCPEXIT

15
16

RGATTR
Name of base cluster or
path entry cluster

17 Master password of base cluster
or path entry cluster

For the last two dictionary entries, no catalog field
name or combination name exists.

The catalog information represented by the diction­
ary entries is the one located under the associated cata­
log field or combination name.

Catalog Information Area
The catalog information area (see Figure 1-6) contains
the catalog information for all components of the ob­
ject as it was retrieved by means of catalog Locate op­
erations during backup and as it is used during restora­
tion for the definition of the object in the VSAM catalog.

The catalog information for a component is stored
consecutively and corresponds to the contents of the
"catalog work area" provided for and filled by the
appropriate catalog Locate operation for the compo­
nent. The information includes both the work area
length provided to Locate and the required length re­
turned by Locate. For an alternate index or a path, the
information is augmented by the name and the master
password of the base cluster or the path entry cluster.

For all objects except paths, the space allocation
parameters retrieved via Locate are converted to
device-independent units (RECORDS). In order to do
this conversion, constants such as physical record size,
blocks per track, and tracks per control area are re­
trieved for the data component. Because these con­
stants are only required for conversion of allocation
units at backup, they are not saved as part of the cata­
log information area in the backup file.

Figure 1-7 shows the interaction of Object Header
Control Portion, dictionary, and catalog information
area.

Error Object Header
The Error Object Header constitutes a special form of
an Object Header.

Because an Error Object Header represents either an
invalid object, an object whose backup was skipped, or
an object that was early recognized as erroneous
(because it represents an object that was never re­
stored), it is not necessary to carry the catalog informa­
tion for such an object or any information that would
normally be needed for restoration.

The Error Object Header merely indicates that an
attempt was made to back up such an object.

The format of an Error Object Header is described
below. Some fields have the same meaning as for the
regular Object Header described above.

Chapter I: Format of the Backup File I - 7

Object Header Control Portion

Component
Dictionary

Catalog
Information

L....--"'----.L-..---1..------'-----' Area

Catalog Work Area
for Component

Figure 1-7. Interaction of Object Header Control Portion, Diction­
ary, and Catalog Information Area

Offset
0

4

5
6

8
12

16

20

24
112

Length
4

I

2
4

4

4

4

88
44

Contents
CL4 'OHDb'
identification as Object Header.
Type of object being described:
X'FF' - Object Header for an invalid ob­

ject.
X'FE' - Object Header for an erroneous

object.
X'FD' - Object Header for an object

whose backup was skipped.
Reserved (binary zeros).
Release indicator: set to zero.
Actual (used) length of Error Object Header
Block size of Error Object Header (1280
bytes).
Number of blocks for this Error Object
Header.
Offset, relative to the beginning of the Error
Object Header, of the 44-character name of
the invalid, erroneous, or skipped object
within the Error Object Header
Reserved (binary zeros).
Name of invalid, erroneous, or skipped ob­
ject (left-adjusted and padded with blanks
as necessary).

Continuation Header
The continuation header precedes the sec0nd or any
later part of an object that spans backup volumes. The
continuation header indicates that the subsequent data
blocks until the next tape mark belong to an object that
started on an earlier backup volume.

The continuation header allows non-consecutive
mounting of backup volumes on RESTORE and allows
the user to mount any volume other than the first one
as initial volume during restoration. If continuation
headers were not provided, the first data block of an
object that is continued on the mounted backup vol­
ume could be mistaken for an Object Header. Note
that the data blocks of an object contain user data

I - 8 VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

(which may be anything) and do not have a special
identification as data blocks.

The format of the continuation header (24 bytes) is
as follows:

Offset
0

4

Length Contents
4 CL4 'CH Db'

identification as a continuation header.
20 Reserved (binary zeros).

Data Blocks of an Object
For data sets (KSDS, ESDS, RRDS, SAM ESDS. AIX), the
Object Header is followed by data blocks, that is,
blocks that contain the data of the object that was
backed up.

With VSE/VSAM/Backup/Restore, the emphasis is
placed on fast trarisfer of VSAM data sets (data objects)
to the backup file and back to disk storage, taking into
account that the restoration is normally onto the same
medium as the data set was backed up from and that
the basic structural data set characteristics (physical
record size, control interval size, and control area size)
are preserved.

In contrast with the Access Method Services
EXPORT /IMPORT facility, BACKUP/RESTORE transfers
the physical records of a control area (which is, as the
basic allocation unit, a physically consecutive disk­
storage area) in physical sequential order from disk to
the backup file (with the BACKUP command) and back
(with the RESTORE command). Control intervals are
not recognized, either during the transfer or on the
backup file. Physical records, however, are recognized
in the transfer process. In other words, the backup
function basically creates a physical image copy of each
control area on the backup file.

Because of the physical-sequential retrieval during
the backup process, it is not necessary to step through
the individual index entries of a sequence-set record.
Because of spanned records, however, it is not possible
to reconstruct the logical sequence of the control inter­
vals of a KSDS from the image copy of the control areas
alone. Therefore, the sequence-set record of each con­
trol area is also copied onto the backup file and reins­
tated by the restoration operation, thereby modifying
the base and horizontal relative byte addresses, the
only location-dependent variables in a sequence-set
record.

The data blocks of an object on the backup file con­
tain the user data as well as the sequence-set records of
a KSDS. All data blocks of an object have the same
fixed size. The size is equal to the buffer size recorded
in the Object Header Control Portion for the object.
The size is determined from the user's BLOCKSIZE spec-

Licensed Material - Property of IBM

ification on the BACKUP command and is always cho­
sen so that:

It is an integral multiple of the physical record
size of the data component of the object; and

- It is not smaller than the index control interval
size of the index component of the object.

Data component data and sequence-set control in­
tervals are not mixed in the same data block. A
sequence-set record on the backup file occupies a
whole data block, the remainder of which is padded
with zeros.

The last data block of a control area is partially
padded with zeros if the control area size is not an inte­
gral multiple of the block size (buffer size). SAM entry­
sequenced data sets form an exception because they do
not have control areas. For them, the whole data com­
ponent is consecutively stored so that all data blocks
(except the last) are completely filled with data.

Each data block with data from the data component
of the object consists of an integral number of physical
records of the data component.

In contrast with the physical-sequential processing
of the physical records of a control area, the individual
control areas as a whole are processed in logical se­
quence, that is, the sequence is determined by the hori­
zontal relative-byte addresses of the sequence-set rec­
ords for a KSDS. Because control areas are, in general,
a cylinder in size, the transition from one control area
to another is not a frequent operation. Therefore, for
the backup procedure it is not necessary to replace the
logical retrieval of control areas with a physical retriev­
al. In addition, logically sequential control areas are
also normally stored in physical sequence, because
control area splits, which would disturb the physical
sequence, occur less often than control interval splits.

The ability to reorganize control areas as a whole
during restoration would be lost if control areas were
not backed up in their logical sequence. After the res­
toration, the physical and logical sequence of the con­
trol areas coincide, thus preventing arm movements on
subsequent sequential processing.

Figures 1-8 and 1-9 summarize the mapping of data
objects onto the backup file.

Dummy Records
Each part of a data object (KSDS, ESDS. RRDS. SAM

ESDS, or AIX) on the backup file is terminated by a set
of dummy records. The dummy records are "short
blocks" and are provided to facilitate buffering and
read-ahead during restoration. Recognition of the

Sequence Set Record 1
L..-------(s_s_1_) _______ -

Control Area 1
(CA1)

Sequence Set Record 3
(SS3)

Control Area 3
(CA3)

, Sequence Set Record 2
(SS2)

Control Area 2
(CA2)

VSAM KSDS

Figure 1-8. VSE/VSAM Backup/Restore Mapping

Backup
File

CA1

CA2

CA3

dummy records signals the end of the current part of
the data set being restored and causes the mounting of
the subsequent backup volume.

The number of dummy records is equal to the num­
ber of buffers specified (or defaulted to) on the
BACKUP command. This number is recorded in the
Directory Block Header of the first Directory Block on
each backup volume.

The number of buffers that is allocated during resto­
ration is never larger than the number of dummy rec­
ords, and VSE/VSAM Backup/Restore never has more
outstanding 1/0 requests for the backup file than there
are buffers. Accordingly, each outstanding 1/0 request
can be matched with a tape block so that the tape will
not run off the tape reel.

The format of the dummy records (24 bytes each) is
as follows:

Chapter I: Format of the Backup File I - 9

I
Data
Block 1
Data
Block 2
Data
Block 3

vi ·V
Data
Block n

SS Data
~ Block (n+1) I\

1- --Control--- Data
Area ~ Block {n+2)

--------r---
Data 1
Block m

VSAM Decomposition
Data Set into Data Blocks

~----
TM

Object Header

Data
Block 1
Data
Block 2
Data
Block 3

Data
Block n

DR1

DR2

DR3

TM

EOT Record

TM

EOV1

TM

VOL1

HOR 1

TM

Directory

TM

Continuation
Header

Data
Block (n+1)

Data
Block (n+2)

Data
Block m

DR1
DR2
DR3
TM

L....--._--.--'

Representation
on Backup File

Figure 1-9. Transformation onto Backup File

Offset Length Contents

0 4 CL4 'DRDt'>'

Backup
Volume

1

Backup
Volume

2

identifies this block as dummy record
4 20 Reserved (binary zeros)

Sequence of Objects on the Backup
File
The sequence of dependent objects on the backup file
is important to ensure that all desired objects are actu­
ally restored and to avoid restoring objects twice.

I - IO VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

If a cluster has alternate indexes and paths defined
on top of it, the cluster is first on the backup file. It is
followed by its first alternate index which, in turn, is
followed by its paths. Then the second alternate index
and its associated paths follow. Paths that are immedi­
ately defined over a cluster and not over an alternate
index are treated in the same manner as alternate in­
dexes with regard to their sequence on the backup file.
They must follow the base cluster on which they are
defined a11d may not be interspersed between an alter­
nate index and its paths.

Assume that the cluster 'CLUSTER' has the following
associations defined for it and recorded on the backup
file:

alternate
index

I
VSAM.AIX . .u-1

I
path

I
PATH.#11

CLUSTER

alternate
index

I
VSAM.AIX.+r2

I I
path path

I I

I

PATH.#21 PATH.+1'22

I
alternate

index

I
VSAM.AIX.#3

I
path

I
PATH.#31

path

l
PATH.#1

For this cluster, the sequences below are valid:

CLUSTER
VSAM.AIX.# I
PATH.#11
VSAM.AIX.#2
PATH.#21 or
PATH.#22
VSAM.AIX.#3
PATH.#31
PATH.#1

CLUSTER
PATH.#!
VSAM.AIX.# I
PATH.#11
VSAM.AIX.#3
PATH.#31
VSAM.AIX.#2
PATH.#21
PATH.#22

On the other hand, the sequence:

CLUSTER
OTHER.OBJECT
VSAM.AIX.#2
PATH.#!
PATH.#21
PATH.#22
VSAM.AIX.#3
PATH.#31
VSAM.AIX.# I
PATH.#11

where OTHER.OBJECT is another object of the backup
file that is not dependent on CLUSTER, is not valid
because:

• An object not belonging to the associations of
CLUSTER (OTHER.OBJECT) has been interspersed.

• PATH.#l separates VSAM.AIX.#2 from its associa­
tions PATH.#21 and PATH.#22.

Licensed Material - Property of IBM

This chapter discusses some basic general concepts of
VSE/VSAM Backup/Restore.

Restoration with File Modifications
The following file modifications are permitted at
restoration:

• Moving files to a space of a different use class;

• Moving files to a volume of a different device
type;

• Changing the data component allocation size for
a specific file;

• Changing the index control interval size for a
specific file.

Specifying a new use class has no appreciable effect
on the performance of the RESTORE command or on
the file's internal structure. For any of the other file
modifications, however, one or more of the following
attributes of the cluster is likely to change:

• CA size

• Physical record size

• Index Cl size

• Space allocation size

These file modifications can result in degraded per­
formance during RESTORE execution, changed space
allocation sizes due to the new device characteristics,
and additional buffers for output to disk (described
below).

Physical-Sequential Processing of
Control Areas
VSE/VSAM Backup/Restore transfers the physical
records of a control area in physical sequence from disk
to the backup file and back. The unit of transfer is a
buffer consisting of multiple physical records. The
sequence-set records of a KSDS are also copied onto the
backup file. They occupy a complete unit of transfer
(the remainder of which may be padded with binary
zeros) and precede the data blocks for their control
area on the backup file.

The mapping of objects is described in detail in Chap­
ter l.

Buffers
The buffers used by BACKUP and RESTORE when no
file modifications (described above) are made do not
depend on the control interval size and are common for
tape and disk. This means that the size of the DASD

Chapter 2: General Concepts

unit of transfer is equal to the size of the tape block. If
not specified via the BLOCKSIZE parameter in the
BACKUP command, the size of the buffer (which is
equal to the amount of data transferred with a single
disk or tape l/O operation) is determined by
Backup/Restore from the DASO device characteristics
(for example, either half a track or a track), the physi­
cal data set characteristics, and the minimum buffer
size requirements for streaming. Rounding to an inte­
gral multiple of the physical record size of the VSAM

object that is being backed up ensures that an integral
number of physical records is read during a backup
operation. During restoration, the same buff er size as
was used for the corresponding backup is chosen. The
user can influence the buffer size via the BLOCKSIZE

parameter of the BACKUP command, but only if the
specified BLOCKSIZE value is larger than the minimum
assumed by VSE/VSAM Backup/Restore. The buffer
size that is actually used does not necessarily coincide
with the specified BLOCKSIZE value, because it is
rounded to an integral number of physical records.

Using common buffers for tape and disk has the
advantage that expensive data movement can be
avoided and no blocking or deblocking is necessary. The
data read from disk into a buffer is transferred onto the
backup file (or vice versa) from the same buffer with­
out any intermediate data movement. VSE/VSAM

Backup/Restore uses its own specialized buffer and 1/0

management and avoids overhead by choosing a DASO

unit of transfer equal to the tape unit of transfer.

When file modifications are specified during resto­
ration, it is not possible to use common buffers for tape
and disk because the data must be reblocked. When
reblocking is required, RESTORE uses the common data
buffers to handle input from the tape backup file.
RESTORE allocates additional buffers to accommodate
the new file characteristics for the output (to disk) file.

· RESTORE then moves the data from the input buffers to
the output buffers as it reblocks the data.

Common Data Buffers
The number of data buffers allocated by VSE/VSAM

Backup/Restore is controlled via the BUFFERS parame­
ter. Their size is calculated from the BLOCKSIZE pa­
rameter of the BACKUP command or from defaults.

In order to reduce the path length of the basic
backup or restoration cycle, the data buffers pointed to
by the Buffer Definition Blocks (BOB) are chained to­
gether in a loop as shown in Figure 2- l.

Chapter 2: General Concepts 2 - I

Backup/Restore Block (BRB)

Buffer
Pool
Header
(BPH)

J

i--+
t-----~

Buffer
Data Buffer 1 Definition

Block -+--
1

.............. 1------
Buffer
Definition Data Buffer 2

I Block -~
I 2 I
I

i
i....-..+ t------

Buffer
Definition Data Buffer n
Block

...,_...
n

Figure 2-1. Data Buffer Loop

Index Buffers
During backup, index control intervals of a KSDS are
read to determine the logically next control area and
are immediately written onto the backup file for recon­
struction of the sequence set during restoration. There­
fore, no special index buffers are needed or allocated
during backup.

During restoration, however, the index of a KSDS
must be reconstructed, requiring longer availability of
index records or rereading of index records each time
an index entry has to be made.

VSE/VSAM Backup/Restore reduces rereading of
index control intervals by providing three special index
buffers, each of index control interval size. These buff­
ers help to minimize the disturbance of the regular
restoration cycle at the end of a control area. They are
an important factor in achieving streaming during
restoration.

The first index buffer is reserved for sequence set
control intervals. As soon as a sequence set control
interval is read (into a data buffer) from the backup
file, it is copied into the sequence set buffer for further
processing, and backup file 110 is immediately re­
scheduled for the data buffer.

The second index buffer is reserved for second-level
index control intervals. In this second-level index
buffer, the index entries for the current second-level

2 - 2 VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

index control interval are constructed. In general, the
second-level index buffer is not written before it has
been completely filled with index entries. Format-write
requirements for nonimbedded, non-keyrange KSDSs
on CKD devices, however, may require an initial writ­
ing when the first sequence set control interval, repre­
sented by the second-level index record, is to be writ­
ten.

The third index buff er is reserved for all higher­
than-second-level index operations. Index control in­
tervals are read into this buffer and written out as re­
quired. As long as the data set does not have more than
three index levels, VSE/YSAM Backup/Restore will not
perform any index read operations. The current third­
level index control interval is kept in the third index
buffer and written only if filled or if format-write con­
siderations on CKD devices require an initial writing.
Note that third-level index operations are infrequent
and higher-than-third-level operations are rare.

By providing the three index buffers, YSE/YSAM
Backup/Restore minimizes index 1/0 operations.

The index buffers are controlled by Index Buffer
Blocks (XBB), as shown in Figure 2-2.

Backup/Restore Block (BRB)

Buffer
Pool
Header
(BPH)
.........

J I
[

1st-level
index Index Buffer
buffer for
block Sequence Set
(XBB1)

2nd-level
index

Index Buffer for buffer
block second index level

(XBB2)

3rd-level
Index Buffer for index

buffer third and higher

block index levels

(XBBn)

Figure 2-2. Index Buffer for RESTORE

Licensed Material - Property of IBM

Output Buffers for Restoration with File
Modification
Restoration with file modification (described above)
requires up to three additional buffers. These buffers
are used only for output to disk; consequently, they
have no associated tape channel programs. The prefor­
mat buffer is used for KSDS, ESDS, and RRDS to write
"empty" control intervals to fill out control areas that
are not full. For a KSDS, these empty Cls are used to
restore the CA free space percentage to the file. An
empty control interval for an RRDS is a control interval
with empty record slots. For other files, an empty con­
trol interval consists of all zeros, except for a CIDF ini­
tialized with the length of the free space. No preformat
buffer is used for a SAM ESDS.

The sequential write buff er is used for writing re­
blocked portions of the output file as they are encoun­
tered in ascending sequential order in the input. The
size of the sequential write buffer is determined by
rounding up the size of the common data buffer to an
integral multiple of the new data CI size. This is done
so that no more disk 1;0 operations are required (for
data encountered sequentially) than would be required
for a restoration without file modification.

The random write buffer is used only for a KSDS. It
contains control intervals that must be inserted into the
sequentially written data at a point prior to the current
sequential position in the file.

These output buffers are shown in Figure 2-3.

Channel Programs per Buffer
Each common data buffer has its own set of disk and
tape channel programs to allow complete independ­
ence in the 1/0 scheduling of the individual buffers. In
this way, several tape requests can be present in the
channel queue at the same time, even if another tape
request is still being executed. This allows, for exam­
ple, the EXCP instruction for a second tape buffer to be
issued before the 1/0 interrupt of the first tape buffer
has occurred, and the SIO request for the second tape
buffer can be issued immediately following the inter­
rupt for the first 1/0 operation.

When file modifications are specified, each output
data buffer has its own disk channel program; no tape
channel programs are provided for these buffers.

Pregenerated Channel Programs for
Backup/Restore
In order to reduce the path length between two succes­
sive SIOs for the backup file to a minimum, both the
disk and tape channel programs for the individual
buffers are not built dynamically for each EXCP in-

Backup!Restore Block (BRB·)

Buffer
Pool
Header
(BPH)

1

l,..

Preformat Buffer Prdformat Buffer

Definition Block (not used for
SAM ESDS)

....... ~ ..,.,..

Sequential Write
Buffer Definition Sequential Write Buffer
Block

"'
""7'

Random Write Random Write
Buffer Definition Buffer
Block (KSDS only)

Figure 2-3. Output Data Buffers for RESTORE with File Modifica­
tion

struction, but rather are "pregenerated" when
Backup/Restore begins, (built only once before the
general backup or restoration loop is entered). Only
trivial modifications of the disk channel programs oc­
cur in the loop, such as the updating of the seek ad­
dress. The tape channel programs are never changed.

Buff er Management Concepts
For a time-critical device in a multiprogramming envi­
ronment, partition priorities play a role in buffer man­
agement. The following sections describe the effects of
priorities on the buffer management for backup. Simi­
lar considerations also apply for restoration.

For the subsequent discussion, the following defini­
tions are assumed:

• The lowest-priority partition in the system at any
particular moment is the partition whose process­
ing can be interrupted by all other partitions in
the system, if the resources they are waiting for
become available.

• The highest-priority partition in the system at any
particular moment is the one that can interrupt
any other partition if the resource it is waiting for
becomes available.

Chapter 2: General Concepts 2 - 3

• Reinstruction is the issuing of an SIO instruction
before completion of the previous SIO in order to
facilitate streaming.

Lowest-Priority Partition
Processing of the lowest-priority partition can be inter­
rupted at any time by any other partition. However, if
processing is interrupted, it is very likely that the point
of reinstruction of tjie time-critical device will be
missed, so that streaming may not be achieved. In
addition, if the lowest-priority partition suspends its
processing and waits for the completion of an 1/0 oper­
ation, the whole system remains in a wait state until
either a higher-priority partition or the lowest-priority
partition becomes ready again.

Therefore, the following must be true for VSE/VSAM
Backup/Restore to operate effectively in the lowest­
priority partition:

• The path between two successive EXCP instruc­
tions for a time-critical device.must be as short as
possible in order to reduce the likelihood of an
interruption by a higher-priority partition.

• When the lowest-priority partition gets control, it
must make optimum use of the time it gets by
placing as many 1/0 requests as possible for the
time-critical device into the channel queue. If it is
able to put n 1/0 requests for the time-critical de­
vice into the channel queue during the execution
of one 1/0 operation, the period that lasts until
the next 1/0 request must be put into the channel
queue will be n times the 1/0 time for the data
transfer of one buff er of the time-critical device,
instead of the single 1/0 operation time. Conse­
quently, an interruption by a higher-priority par­
tition may be sustained more easily without miss­
ing the point of reinstruction.

• The disk operation should be completed as fast as
possible so that the time available for issuing the
corresponding tape EXCP request for the buffer is
as large as possible. If the time available for the

·scheduling of the tape request is small, the point
of reinstruction is easily missed if control is lost to
a higher-priority partition or to the Supervisor
(for the handling of interrupts for other parti­
tions).

VSE/VSAM Backup/Restore buffer management
allows the user to specify the number of buffers and
schedules as many tape 1/0 requests as possible in ac­
cordance with that number before a w AIT request is
issued for the completion of a tape 1/0 operation. With
one disk 1/0 operation, only one buff er is read, as des­
cribed in the last bulleted item above.

2 - 4 VSE/VSAM Backup/Restore Feature Logic

Licensed Material - Property of IBM

The path length between two successive EXCP in­
structions is extremely short.

Figure 2-4 illustrates the effectiveness of this buffer
management for four buffers.

Highest-Priority Partition
The buffering strategy described in the preceding sec­
tion must be reevaluated for the highest-priority parti­
tion. Unlike the lowest-priority partition, the highest­
priority partition obtains control whenever it needs it
and does not wait for 1;0 completion or for the availa­
bility of a shared resource. If the highest-priority parti­
tion uses extensive buffering as described above, the
speed of the slowest device (the tape device, in the case
of a backup operation to tape) becomes the limiting
factor, so that, eventually, all buffers for the slowest
device become scheduled and can be refilled only one
by one as they become available after the completion
of the 1/0 operations scheduled for the slowest device.

Because the highest-priority partition automatically
receives control when an 1/0 operation that it is being
waited for is completed, it is generally not necessary to
provide more buffers (for the highest-priority partition)
than are absolutely necessary to meet the time-critical
condition. However, an imbalance in the 1/0 usage by
lower-priority partitions may require additional buffers
to be used for the highest-priority partition.

The buffer management for VSE/VSAM
Backup/Restore allows the user to specify the number
of common data buffers so that he can tune the space
requirements for buffers in accordance with the priori­
ty of the partition in which he runs his VSE/VSAM
Backup/Restore.

Restoration with file modification is not considered
as performance-critical as normal restoration. There­
fore, RESTORE does not consistently reinstruct time­
critical devices in the required time. Buffer manage­
ment is also more limited in that there is no flexibility
in the number of special output data buffers when file
modifications are required.

Locate Area
As described before, each volume of the backup file
contains a directory listing all objects that will be con­
tained on the backup file. The directory must be con­
structed before the first object is backed up. Generic
names must be expanded to the set of entrynames they
represent, and a determination must be made of which
alternate indexes and paths must be backed up
(automatically) because their base clusters or path
entry AIXes are backed up.

In order to determine the set of objects for a generic
name or to find the automatically backed up associa-

Licensed Material - Property of IBM

Tape 1/0

Disk 1/0

Wait

P1

Event

P2

Legend:

81 B2

1--., r---, r---i r-, r- ----., r--, r.,
I I I I I I I I I I I I I
I I : : : : : I I II I I
I I I I I II I I I I I I
I : I 11 I ! I I : : : :

1l11J11L 1J,
\. 0102 0104 TI02 TI03 1

y

®

buffer n
disk 1/0 request for buffer n
tape 1/0 request for buffer n

B3 B4 B1 B2

I B2 I B3 I B4 1
B1

r-.., r-, ,..-, !""'I,_...,
I I I I I I I I I
I I I I I II I I
I I I II I II I
I I I I I 11 I I
I I I I I I II I

rui 111
:0102@ 0104 JIOt 01011

: ©:

Bn
DI On
TI On
Pl
P2

the partition in which the VSAM backup operation is performed
a second partition

Explanation:

A: Initial filling of buffers with VSAM data and subsequent writing.

B: If an empty buffer is available, a disk 1/0 request is issued before the tape 1/0 request for the preceding buffer.

C: lfno empty buffer is available, the tape 1/0 request for the preceding buffer is issued before the completion of a previous tape request.

Figure 2-4. VSE/VSAM Backup/Restore Buffer Management

tions of an object, it is necessary to retrieve at least the
cluster (type c), alternate index (type G), or path (type
R) catalog re~ords of the objects being backed up be­
fore the first object is backed up. This catalog informa­
tion is required later when the object header that pre­
cedes the object on the backup file is to be constructed.

In order not to have to locate the catalog informa­
tion for an object twice, VSE/VSAM Backup/Restore
keeps the catalog information for the object in the
locate area (see Figure 2-5). The locate area is an area
in virtual storage consisting of multiple blocks that are
chained together by forward and backward chain
pointers.

The individual blocks of the locate area are allocat­
ed on an as-needed basis. If only one block is required,
only one is allocated. VSE/VSAM Backup/Restore lim­
its the total size for the locate area to 32K bytes. The
size, however, can be arbitrarily changed by changing
the field LCHMLS in the locate area control header
(LCH) which is part of the Backup/Restore Block, the
major control block for VSE/VSAM Backup/Restore.

If the locate area becomes full during directory con­
struction, construction of the directory continues, but
only the absolutely necessary catalog information is
retrieved for the remaining objects to be backed up.
Their catalog information must be located again when

Backup/Restore Block (BAB)

Locate
Area
Control
Header
(LCH)

J l

l
Locate Area Block
Header (LBH) 1-------- l ···-

Locate Area Block
Header (LBH)

First Locate !--------
Locate Area Block

Area Block
~~~i:..J'=!!H) - _, 

Second Locate 
Area Block 

v nth Locate 

Catalog ~ Area Block 

Information 
for Objects 

Figure 2-5. Locate Area 

space is available in the locate area or when the infor­
mation is needed to construct the object header. 

After all entries with catalog information in the 
locate area have been backed up, the locate area is 
reset to "empty" (marked as available but not freed), 

Chapter 2: General C0MCPl5 2 - 5 



and the locate area is filled with catalog information 
for the next set of objects to be backed up. This process 
is repeated until all objects have been backed up. 

Internal Directory Entries 
As described in the previous section, catalog informa­
tion for an object (directory entry) is retrieved when 
the directory is constructed and is kept in the locate 
area if space is available. Otherwise, the object's cata­
log information must be located again when locate area 
space becomes available. 

In order to not have to reread the catalog high-key­
range record for an object when its catalog information 
is read to construct the object header, VSE/VSAM 
Backup/Restore keeps the control interval (Cl) number 
of the low-keyrange record for the object in the internal 
directory entry for the object. The internal directory 
entries are extensions of the external directory entries 
that are recorded on the backup file. The internal di­
rectory entries are not written onto the backup file 
because they only contain information that is relevant 
for the backup operation for the object but is neither 
characteristic of the object nor relevant to the restora­
tion of the object. 

In virtual storage, the external and internal directory 
entries are allocated as shown in Figure 2-6. 

The internal directory entry contains the control 
interval number of the c-type, G-type, or R-type cata­
log record for the object represented by the external 
directory entry. It also contains the address of the asso­
ciated catalog information in the locate area, if present, 
and a pointer to the password to be used when locating 
the catalog information for the object. 

Volume List 
At the end of BACKUP command execution, VSE/VSAM 
Backup/Restore prints the Backup Volume Cross Ref­
erence (BVCR) and the Backup Object Cross Reference 
(BOCR) listings. Both listings contain the volume se­
quence numbers and, for labeled backup files, the vol­
ume serial numbers of the individual backup volumes. 

The volume sequence numbers are in ascending 
order, as assigned by VSE/VSAM Backup/Restore for 
reference purposes and in messages during restoration. 
The first backup volume has the volume sequence 
number one. 

In order to print the volume serial numbers in the 
cross reference listings, VSE/VSAM Backup/Restore 
must gather the volume serial numbers as the individu­
al backup volllmes are mounted during backup and 
must keep them until the cross reference listings are 
printed. 

2 - 6 VSE/VSAM Backup/Restore Feature Logic 

Licensed Material - Property of IBM 

Backup/Restore Block (BRB) 

Directory 
Control 
Header 

(OCH) 

1 

1 
jo] 

DBH 

"External" 
Directory 11 Entries 

DBH 

"Internal" 
External 

Directory 
Entry n 

Entries External 
Entry (n+1) 

' External 
Entry m 

Internal 
Entry n 

Internal 
Entry (n+1) 

Internal 
Entry m 

On backup file ~ roTI 

~ 

Figure 2-6. External and Internal Directory Entries 

VSE/VSAM Backup/Restore stores the volume serial 
numbers of the backup volumes into the volume list 
which consists of a set of virtual storage blocks, allocat­
ed as needed and chained by forward and backward 
chain pointers (see Figure 2-7). The volume serial 
numbers are stored in the sequence of the associated 
volume sequence numbers. 

All blocks of the volume list have the same fixed 
length of 128 bytes. The size can be changed to any 
value by changing the field VLBNVLE (the number of 
entries in a volume list block) in the dummy section 
describing the layout of the volume list. 

Restore Member List 
The user does not have to specify the individual objects 
he wants to restore on the RESTORE command. He can 
use generic names where possible. Furthermore, some 
of the objects of the backup file are restored automati-



Licensed Material - Property of IBM 

Backup/Restore Block (BRB) 

Backup 
File 
Header 
(BFH) 

_J_ __.___._ J -i ____ _ 

....----------~ 

VOLSER 

VOLSER 

o] 1 

Last VOLSER 

• 
Figure 2-7. Volume List 

cally without user specification. (Alternate indexes are 
restored along with their base cluster; paths are re­
stored with their path entry cluster.) In addition, ob­
jects of the backup file can be excluded from restora­
tion via the EXCLUDE parameter. 

Therefore, the list of objects to be restored does not 
necessarily coincide with the list of objects specified in 
the command. Nor does it coincide with th~ list of 
entries in the directory. It is a subset of the directory 
entries. 

Before any object of the backup file is restored, 
VSE/VSAM Backup/Restore constructs a list called the 
restore member list (or restore list), which contains one 
entry for each object that is actually restored (see Fig­
ure 2-8). The entries are ordered in the sequence the 
objects are restored. 

The order in which the objects are restored depends 
on which volume is mounted first and is as.follows: 

• The objects of the initially mounted backup vol­
ume are restored first. They are first in the restore 
member list. 

• Next are the objects of the backup volumes that 
follow (higher volume sequence numbers) the 
initially mounted backup volume. Their restora-

HJO.KSDS -+--

Backup/Restore Block 
(BRB) 

Backup 
Volume 1 

---·• HJO.ESDS 

---i VSAM.DS 

VSAM.AIX 

HJO.ESDS -t-t-t- ~ HJO.RRDS 

,..._. MY.AIX 
Restore 

Backup 
Volume 2 
(Initially 
Mounted) 

VSAM.DS 

VSAM.AIX ----

~ MY.PATH Member 
List 

HJO.KSDS 

TEST.#1 

o~o 

-HJO.RRDS -+-----

Backup 
Volume 3 

MY.AIX 

MY.PATH 

Figure 2-8. Restore Member List (RML) 

• 

tion sequence and sequence in the restore mem­
ber list is the same as it is on the backup file. 

Last are the objects of the backup volumes that 
precede (lower volume sequence numbers) the 
initially mounted backup volume. Again their 
restoration sequence and sequence in the restore 
member list is the same as it is on the backup file. 

One exception should be mentioned: 

If an alternate index to be restored starts on the 
initially mounted (or a later) backup volume, but its 
base cluster starts on a backup volume that precedes 
the initially mounted backup volume, this alternate 
index is not restored before the base cluster is restored, 
and its entry in the restore member list follows the 
entry for the base cluster. The same exception applies 
to paths. Note that, in such a case, some of the backup 
volumes may have to be mounted twice. 

The following general rules apply: 

Chapter 2: General Concepts 2 - 7 



• Associations are always restored after the object 
they are based upon has been restored. 

• The entries of associations in the restore member 
list always follow the restore member list entries 
for the objects the associations are based upon. 

The restore member list is a consecutive list in virtu­
al storage. The end of the list is indicated by an entry 
of zeros. The virtual storage allocated for the restore 
member list is chosen so that an entry for each object in 
directory plus a zero-entry would fit. 

Each entry in the restore member list contains: 

• A pointer to the associated directory entry that 
contains more information about the object. 

• A pointer to the best-fit entry for the object in the 
object list of the RESTORE command. The best-fit 
entry is the one whose local modifications, like 
the VOLUMES specification, are to be applied to 
the object when it is defined in the catalog. 

• A pointer to the entry of the object list of the 
RESTORE command whose password specification 
is to be used when an appropriate object with the 
same entryname is to be deleted from the catalog 
during restoration. In general, the password 
pointer is the same as the best-fit entry. For auto­
matically restored associations, it may, however, 
be different (no best-fit entry). 

The format of the restore member list entry is illus­
trated in Figure 2-9. 

Index Information Blocks 
VSE/VSAM Backup/Restore avoids time-consuming 
index-search operations in determining the location of 
and in reading higher-level index control intervals 
when an index entry has to be made. 

During restoration, VSE/VSAM Backup/Restore 
provides an Index Information Block (XIB) for each 
potential index level. The index information block 
contains the relative byte address of the last index con­
trol interval of the appropriate index level so that the 
last index CI can be read immediately. 

In addition, the index information block contains 
front-compression accumulators that allow simple 
calculation of the front-compression of an index entry 
from the front-compression of the section entries of the 
next lower level without performing an index decom­
pression. 

Essentially, the following rules apply for the calcula­
tion of front-compression: 

• The front-compression of a regular index entry 
on level n is equal to the minimum of the front­
compressions of the section entries of the index 

2 - 8 VSE/VSAM Backup/Restore Feature Logic 

Licensed Material - Property of IBM 

RESTORE OBJECTS ( -
(*)-
(ABC/PASSWD (VOLUMES(XZY001 ))) -
) 

Directory 

Restore 
Directory Best-Fit Password Member List 

.__---11'---...__ __ ......_ __ __, Entry 

Figure 2-9. Restore Member List Entry 

ABC 

control interval of level n-1 represented by the 
index entry. 

• The front-compression of a section entry of level 
n is equal to the minimum of the front­
compressions of all index entries of the level n 
contained in the section in question. 

These minimal values can be calculated easily as a 
by-product of the index construction on the next lower 
level. Accordingly, it is only necessary to determine the 
front-compressions on level one by decompression of 
the sequence set section entries and comparison with 
the high-key of the previous sequence set control inter­
val. All higher-level front-compressions can be derived 
from the front-compressions on the sequence set level. 

Because a VSAM data set is limited to 232 bytes and 
the minimum control interval size is 512 bytes, there 
may be at most 223 sequence set entries. Hence there 
will not be more than 23 index levels, provided at least 
two index entries fit into an index control interval. For 
the minimum index control interval size of 512 bytes, 
the key size should be not larger than 234 bytes. For 
larger index control interval sizes greater than 512, 
more than two index entries will fit. 



Licensed Material - Property of IBM 

The above considerations show that in nearly all 
cases the virtual storage required for the index infor­
mation blocks will be less than SK bytes. 

In virtual storage, the index information blocks are 
allocated consecutively and can be indexed by means 
of the index level number. Sufficient space is allocated 
for the potential (in accordance with the key and index 
control interval size) maximum number of index levels 
plus one. The extra index information block is provid­
ed in order to allow the same index processing for all 
index levels, including the highest possible level. 

The format of the index information blocks is shown 
in Figure 2-10. 

Backup /Restore Block (BRB) 

Data Set 
Control 
Header 
(DSH) 

XIB1 

XIB2 

XIB3 

XIBn 

For consistent Dummy 

processing of all XIB 

index levels 

Figure 2-IO. Index Information Blocks 

lnde x 
1 Level 

lnde x 
12 Leve 

lnde x 
3 Level 

High est 
ble possi 

in de x level 
ata set ford 

Backup and Restore Catalog Areas 
Unlike the Access Method Services EXPORT and 
IMPORT commands, VSE/VSAM Backup/Restore does 
not acquire virtual storage each time a Catalog Param­
eter List (CTGPL), a Catalog Field Vector Table 
(CTGFV), or a Catalog Field Parameter List (CTGFL) is 
needed for catalog access. 

The CTGPLS, CTGFVS, and CTGFLS required for cata­
log access are known to VSE/VSAM Backup/Restore in 
advance. They are pre-assembled and loaded 

(reentrant), when BACKUP or RESTORE command exe­
cution begins. 

The catalog areas for BACKUP are contained in the 
Backup Catalog Area (BCA), and those for RESTORE are 
contained in the Restore Catalog Area (RCA), both of 
which are pointed to by the Backup/Restore Block. 

Major Operations of the BACKUP 
Command 
After the Access Method Services Executive transfers 
control to the BACKUP Functional Support Routine 
(FSR), the following basic operations are performed: 

l. The Backup/Restore Block and the backup cata­
log area are loaded in a reentrant manner. 

2. The correctness of the generic names in the 
BACKUP command is checked. 

3. The directory is constructed: 

- Generic names are expanded to the set of en­
trynames they represent. 

- The associations of objects are automatically 
included. 

- Objects that are excluded from backup via the 
EXCLUDE parameter are not included in the 
directory. 

4. In parallel with directory construction, the locate 
area is filled, as far as possible, with catalog infor­
mation for the objects in the directory. 

5. The backup file is opened and the directory is 
written onto the first backup volume. 

6. The objects corresponding to the directory entries 
are backed up one by one. The backup process 
includes the following steps: 

a. It is ensured that the catalog information for 
the object to be backed up is contained in the 
locate area. If it is not, the locate area is re­
filled with the catalog information for the next 
set of objects. 

b. For a path, the object header is written onto 
the backup file. 

This is all that is done for a path. For non-path 
objects, steps c - g are also performed: 

c. The object is opened for input. If OPEN indi­
cates the object is empty, only step e is per­
formed. 

d. The buffer pool for the object's backup is con­
structed. 

e. The Object Header for the object is written 
onto the backup file. 

Chapter 2: General Concepts 2 - 9 



f. The object is copied onto the backup file. 

g. After the backup operation, the object is 
closed. 

7. After all objects have been backed up, the Back­
up Volume Cross Reference Listing (BVCR) and 
the Backup Object Cross Reference Listing 
(BOCR) are printed. 

8. The backup file is closed. 

9. All allocated resources are released. 

10. Control is transferred back to the Access Method 
Services Executive. 

The BACKUP FSR invokes various subfunctions in 
order to perform the above actions. 

Major Operations of the RESTORE 
Command 
After the Access Method Services Executive transfers 
control to the RESTORE FSR, the following basic opera­
tions take place: 

1. The Backup/Restore Block and the restore cata­
log area are loaded in a reentrant manner. 

2. The correctness of the generic names in the 
RESTORE command is checked. 

3. The backup file is opened and the directory is 
read. 

4. The restore member list is created containing one 
entry for each object to be restored in these­
quence the objects are restored. Restoration starts 
with the mounted volume and wraps around at 
the end of the backup file. Associations are never 
restored before the object they are based upon 
has been restored. 

2 - lO VSE/VSAM Backup/Restore Feature Logic 

Licensed Material - Property of IBM 

Objects excluded from restoration via the 
EXCLUDE parameter of the RESTORE command 
are not in the restore member list. 

5. The objects selected by the restore member list 
are restored one by one. The following steps are 
performed for each object: 

a. The backup file is searched for the object. The 
proper backup volume is mounted if it has not 
yet been mounted. 

b. The Object Header for the object is read. 

c. The object is defined in the VSAM catalog. An 
existing object with the same entryname is de­
leted before the definition. All local or global 
define modifications are applied. 

If the object is a path or an empty object, this is 
all that is done. For other objects, steps d - hare 
also performed. 

d. The object is opened for output. 

e. The buff er pool consisting of data buffers and, 
for a KSDS, three index buffers, is constructed. 

f. For a KSDS, the necessary number of index 
information blocks is provided. 

g. The object is restored. The index of a KSDS is 
reconstructed in the restoration process. 

h. The object is closed after it has been restored. 

6. The backup file is closed and all allocated resour­
ces are released. 

7. Control is transferred back to the Access Method 
Services Executive. 

The RESTORE FSR invokes various subfunctions in 
order to perform the above actions. 



Licensed Material - Property of IBM 

Figure 3-1 shows the basic control block structure for 
VSE/VSAM Backup/Restore. Most of the control blocks 
are discussed in previous sections and, therefore, are 
just summarized here. 

Backup/Restore Block (BRB) 
The Backup/Restore Block (BRB) is the major control 
block for VSE/VSAM Backup/Restore. It consists of 
seven sub-control blocks that control the resources 
used by VSE/VSAM Backup/Restore. 

The sub-control blocks of the Backup/Restore 
Block are: 

• Directory Control Header (OCH), 

• Locate Area Control Header (LCH), 

• VSAM Data Set Work Area (VOW), 

• Data Set Control Header (OSH), 

• Buffer Pool Header (BPH), 

• Backup File Header (BFH), and 

• Tape Command Parameter List (TCP). 

Besides these sub-blocks, the Backup/Restore Block 
contains pointers to 

- the Restore Member List (RML), 

- the Backup Catalog Area (BCA), and 

- the Restore Catalog Area (RCA). 

In addition, the Backup/Restore Block contains 
work areas and a register save area pool for registers 
saved by the subfunctions invoked by the BACKUP FSR 

or the RESTORE FSR. 

The Backup/Restore Block is always pointed to by 
register 13 and starts with a standard 72-byte save area 
for use by functions invoked by VSE/VSAM 

Backup/Restore (such as VSAM Open, Close, or Record 
Management). 

The individual control blocks within the BRB are 
briefly described below. 

Directory Control Header (OCH): A sub-block of the 
BRB controlling the virtual storage version of the direc­
tory. It contains directory block and entry pointers and 
counts. 

Locate Area Control Header (LCH): A sub-block of 
the BRB controlling the Locate Area. It contains locate 
area block pointers and usage information. 

Chapter 3: Control Block Structure 

VSAM Data Set Work Area (VOW): A sub-block of 
the BRB containing an ACB and related password and 
data set name areas used for opening an object to be 
backed up or restored. In addition, it contains the nec­
essary call information to OPEN and CLOSE in order to 
provide reentrancy. 

Data Set Control Header (DSH): A sub-block of the 
BRB containing the data set characteristics and addi­
tional object-related control information necessary for 
the backup or restoration of an object. 

The OSH has three sub-blocks called Component 
Definition Blocks (COB) describing the characteristics 
of the individual components of a VSAM data set. The 
COBS are: 

- the Data Component Definition Block (OCOB), 

- the Sequence Set Component Definition Block 
(SSCOB), and 

- the High-Level Index Component Definition 
Block (HXCOB) . 

VSE/VSAM Backup/Restore has different COBS for 
the sequence set and the high-level index set in order to 
support mixed-architecture indexes. 

The DSH also points to the index information blocks 
used for the reconstruction of the index during restora­
tion. 

The structure of the OSH is illustrated in Figure 3-2. 

Buffer Pool Header (BPH): A sub-block of the BRB 

controlling buff er usage by VSE/VSAM 

Backup/Restore. It contains user-specified buffer op­
tions, buffer pool characteristics, and pointers to the 
first Buffer Definition Block (BOB) and Index Buffer 
Blocks (XBB). 

Backup File Header (BFH): A sub-block of the BRB 

controlling the backup file. It contains the backup file 
and backup volume creation times, the volume se­
quence and volume serial numbers of the current 
backup volume, and pointers to the volume list for 
labeled backup files. 

Tape Command Parameter List (TCP): A sub-block of 
the BRB containing a CCB, channel programs, and data 
areas for special tape (backup file) requests such as 
writing an EOT record or continuation header. 

Additional control blocks used by Backup/Restore 
are described below: 

Chapter 3: Control Block Structure 3 - I 



VJ 

N 

< 
ti) 

tTl 
........ 
< 
ti) 

> 
3:: 

°' ~ 
,i:" 
c 

"O 
........ 
~ n 
"' 0 
ii 
'Tl 
0 
SI) 

2 
ri 
l""" 
0 

Otl ;:;· 

'Tl 
o:Q" 
c 
ii 
'-f 

~ 

~ 
t=;• 
(j 
0 ::s 
[ 
°' 0 
(") 
,i:" 

~ 
2 
(") 

2 
ri 

Restore 
Member 
List 
(RML) 

Volume 
Characteristics 
Table 

Function 
Data 
Table 
(FDT) 

l 
Directory 
Control 
Header 
(OCH) 

I 

(VCT) 

Directory 
Block 
Header 
(DBH) 

l 
Directory 
Block 
Header 
(DBH) 

Locate Area 
Control 
Header 
(LCH) 

l 
Locate Area 
Block 
Header 
(LBH) 

Locate Area 
Block 
Header 
(LBH) 

Global 
Data 
Table 
(GOT) 

VSAM 
Data Set 
Work Area 
(VOW) 

Backup/Restore Block 
(BRB) 

sub-blocks 

l 

Data Set 
Control 
Header 
(DSH) 

Index 
Information 
Block 
(XIB) 

Index 
Information 
Block 
(XIB) 

Index 
· Information 

1 
.Block 
(XIB) 

Backup 
Catalog 
Area 
(BCA) 

Buffer 
Pool 
Header 
(BPH) 

Buffer 
Definition 
Block 
(BOB) 

1 
Buffer 
Definition 
Block 
(BOB) 

Sequence 
Set Index 
Buffer Block 
(XBB1) 

Second Level ' 
t-1 Index Buffer 

Block I 
(XBB2) 

High-Level I 
.._. Index Buffer 

Block 
(XBBn) 

l 

Restore 
Catalog 
Area 
(RCA) 

I 
Backup 
File 
Header 
(BFH) 

Volume 
List Block 
(VLB) 

l 
Volume 
List Block 
(VLB) 

l 
Tape 
Command 
Parameter 
List 
(TCP) 

t"" r;· 
~ = [ll 

~ =-
3:: = .... 
~ 
:::!. e. 

""C .. 
0 
-= ~ a 
0 .... 
; 
3:: 



Licensed Material - Property of IBM 

1 Data Set Control Header 

J l (DSH) 

T 
sub-blocks 

J 
l I 1 

Data Component Sequence Set High- Level Index 

Definition Block Component Component 

(DCDB) Definition Block Definition Block 
(SSCDB) (HXCDB) 

Index. Index Index 
Information Information ... Information 
Block Block Block 

(XIB) (XIB) (XIB) 

Figure 3-2. Structure of the Data Set Control Header 

Directory Block Header (DBH) 
The header preceding each directory block and con­
trolling the space utilization of the directory block. 

Locate Area Block Header (LBH) 
The header preceding each locate area block and con­
trolling the space utilization of the locate area block. 

Index Information Block (XIB) 
A control block used to keep positioning and front­
compression information for a particular index level. 

Buffer Definition Block (BDB) 
A control block controlling an individual data buffer in 
contrast to the total buff er pool. Besides pointers to the 
associated buffer and to the next buffer definition 
block in the "buffer loop," it contains IORBs, seek 
count fields, define-extent and locate parameter lists, 
and pointers to the disk and tape channel programs for 
the buffer. 

Index Buffer Block (XBB) 
A control block controlling an individual index buffer 
for index restoration. It contains pointers to the associ­
ated index buff er and its pregenerated disk channel 
programs. In addition, it contains an IORB and work 
areas for the channel programs. 

Volume List Block (VLB) 
A block of the volume list that contains the volume 
serial number of labeled backup volumes during 
backup. 

Restore Member List (RML) 
The expanded list of objects to be restored by the exe­
cution of a RESTORE command. The entries are in the 
same order as the corresponding objects are restored. 

Volume Characteristics Table (VCT) 
A chain of blocks containing an entry for each disk 
volume for which Backup has done a locate-by­
volume-serial-number to find tracks-per-cylinder for 
conversion of allocation units. The use of this table lets 
Backup avoid repeated locates for the same volume. 

Backup Catalog Area (BCA) 
A control block containing all the fields, work areas, 
Catalog Parameter Lists, and Catalog Field Parameter 
Lists required for catalog access during backup. 

Restore Catalog Area (RCA) 
A control block containing all the fields, work areas, 
Catalog Parameter Lists, Catalog Field Vector Tables, 
and Catalog Field Parameter Lists required for catalog 
access during restoration. 

Function Data Table (FDT) 
A parameter list constructed by the Access Method 
Services Reader /Interpreter and passed by the Access 
Method Services Executive to the BACKUP or RESTORE 
FSR. It contains the internal representation of the pa­
rameters specified by the user on the BACKUP or 
RESTORE command. 

Global Data Table (GDT) 
A parameter list passed by the Access Method Services 
Executive to the function support routine and contain­
ing pointers to the Access Method Services service 
functions (such as UPRINT) and to the inter-module 
and intra-module trace tables. 

Chapter 3: Control Block Structure 3 - 3 



Licensed Material - Property of IBM 

3 - 4 VSE/VSAM Backup/Restore Feature Logic 



Licensed Material - Property of IBM 

Chapter 4: Module Structure 

VSE/VSAM Backup/Restore is divided into a set of 
small, self-contained subfunctions with only minimal, 
well-defined interaction with surrounding functions. 
Maintainability is enhanced by this strict structuring 
because each function can be understood by itself. 

Flow of Control 
The functions (modules) of VSE/VSAM Backup/Restore 
always return control to the calling function so that the 
flow of control can be represented by a tree structure. 
Following is the flow of control for the BACKUP or 
RESTORE commands. Each function occupies one module. 

Access Method Services executive 
BACKUP 
BACKUP FSR (IDCBPFSR) 

message handler (IDCBPMSH) 
command analyzer (IDCBPCMA) 

message handler (IDCBPMSH) 
directory build (IDCBPDYB) 

open VSAM catalog (IDCBPOVC) 
obtain object name (IDCBPOON) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

scan exclusion list (IDCBPSXL) 
locate VSAM object (IDCBPLVO) 

scan exclusion list (IDCBPSXL) 
build locate entry (IDCBPBLE) 

convert allocation units (IDCBPCAU) 
add locate entry (IDCBPALE) 

add directory entry (IDCBPADE) 
search directory (IDCBPSRD) 
move directory entry (IDCBPMDE) 
obtain object name (IDCBPOON) 
locate VSAM object (IDCBPL VO) 
message handler (IDCBPMSH) 

message handler (IDCBPMSH) 
backup open (IDCBPBPO) 
secure locate entry (IDCBPSLE) 

reset locate area (IDCBPRSL) 
locate VSAM object (IDCBPLVO) 

VSAM open (IDCBPVOP) 
build RPSTAB (IDCBPBDR) 

build backup buffers (IDCBPBBF) 
write object header (IDCBPWOH) 

backup EOV (IDCBPBPV) 
message handler (IDCBPMSH) 

backup data set (IDCBPBDS) 
next backup volume (IDCBPNBV) 

backup EOV (IDCBPBPV) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

data disk read (IDCBPDDR) 
data disk wait (IDCBPDDW) 

VSAM close (IDCBPVCL) 
backup close (IDCBPBPC) 

message handler (IDCBPMSH) 
print XREF (IDCBPPXL) 

directory sort (IDCBPDYS) 
message handler (IDCBPMSH) 

remove buffers (IDCBPRVB) 
remove locate area (IDCBPRVL) 
remove directory (IDCBPRVD) 

Chapter 4: Module Structure 4 - l 



RESTORE 
RESTORE FSR (IDCRTFSR) 

message handler (IDCBPMSH) 
command analyzer (IDCBPCMA) 

message handler (IDCBPMSH) 
restore open (IDCRTRTO) 
build restore list (IDCRTBRL) 

scan exclusion list (IDCBPSXL) 
mount specific (IDCR TMTS) 

restore open (IDCRTRTO) 
operator (IDCRTOPI) 

read object header (IDCRTROH) 

Licensed Material - Property of IBM 

mount next (IDCRTMTN) 
operator (IDCRTOPI) 

mount later (IDCRTMTL) 
restore open (IDCRTRTO) 
mount specific (IDCRTMTS) 

restore open (IDCRTRTO) 
operator (IDCRTOPI) 

operator (IDCRTOPI) 
define object (IDCRTDFO) 

build FVT (IDCRTBFV) 
delete VSAM object (IDCRTDVO) 

message handler (IDCBPMSH) 
message handler (IDCBPMSH) 

VSAM open (IDCBPVOP) 
build RPSTAB (IDCBPBDR) 

build restore buffers (IDCRTBBR) 
build XIB (IDCRTBDX) 
restore data set (IDCRTRDS) or remap data set (IDCRTMDS) 

Call IDCRTRDS for a basic restoration or IDCRTMDS if file modifications (restoration to volume of 
different device type or DAT ARECORDS or INDEXCISIZE specified) are required. These two paths 
are described on the following pages. After one of these two paths is completed, control returns to the 
main line for VSAM close processing. 

VSAM close (IDCBPVCL) 
delete VSAM object (IDCRTDVO) 

message handler (IDCBPMSH) 
remove XIB (IDCRTRVX) 
remove buffers (IDCBPRVB) 
restore close (IDCRTRTC) 

4 - 2 VSE/VSAM Backup/Restore Feature Logic 



Licensed Material - Property of IBM 

Basic Restoration 
restore data set (IDCRTRDS) 

get extent (IDCRTGEX) 
IKQNEX 

restore EOV (IDCRTREV) 
mount next (IDCRTMTN) 

operator (IDCRTOPI) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

data disk write (IDCRTDWR) 
disk write wait (IDCRTDWW) 
add control area (IDCRTACA) 

get next index record (IDCRTGNX) 
get extent (IDCRTGEX) 

IKQNEX 
write index (IDCRTWRX) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

read index (IDCRTRDX) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

get extent (IDCRTGEX) 
IKQNEX 

write SEOF (IDCRTWRS) 
convert RBA (IDCBPCRB) 

lKQEDX 
IKQEOV 

data disk write (IDCRTDWR) 
data write wait (IDCRTDWW) 
write index (IDCRTWRX) 

close index (IDCRTCLX) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

write SEOF (IDCRTWRS) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

data disk write (IDCRTDWR) 
data write wait (IDCRTDWW) 
write index (IDCRTWRX) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

write index (IDCRTWRX) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

write SEOF (IDCRTWRS) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

data disk write (IDCRTDWR) 
data write wait (IDCRTDWW) 
write index (IDCRTWRX) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

Return to the main line on page 4-2 for VSAM close processing. 

Chapter 4: Module Structure 4 - 3 



Licensed Material - Property of IBM 

Restoration with File Modification 
remap data set (IDCRTMDS) 

get extent (IDCRTGEX) 
IKQNEX 

restore EOV (IDCRTREV) 
mount next (IDCRTMTN) 

operator (IDCRTOPI) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

data disk write (IDCRTDWR) 
data write wait (IDCRTDWW) 
remap sequence set (IDCRTMSS) 

get extent (IDCRTGEX) 
IKQNEX 

add control area (IDCRTACA) 
get next index record (IDCRTGNX) 

get extent (IDCRTGEX) 
IKQNEX 

write index (lDCRTWRX) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

read index (IDCRTRDX) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

get extent (IDCRTGEX) 
IKQNEX 

write SEOF (IDCRTWRS) 

preformat (IDCRTPFO) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

data disk write (IDCRTDWR) 
data write wait (IDCRTDWW) 
write index (IDCRTWRX) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

close index (IDCRTCLX) 
write SEOF (IDCRTWRS) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

data disk write (IDCRTDWR) 
data write wait (IDCRTDWW) 
write index (IDCRTWRX) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

write index (IDCRTWRX) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

write SEOF (IDCRTWRS) 
convert RBA (IDCBPCRB) 

IKQEDX 
IKQEOV 

data disk write (IDCRTDWR) 
data write wait (IDCRTDWW) 
write index (IDCRTWRX) 

convert RBA (IDCBPCRB) 
IKQEDX 
IKQEOV 

Return to the main line on page 4-2 for VSAM close processing. 

4 - 4 VSE/VSAM Backup/Restore Feature Logic 



Licensed Material - Property of IBM 

Summary of Executable Modules 
IDCBPADE Add Directory Entry 

Acquires the space for a directory entry in a di-
rectory block and allocates new directory blocks 
as necessary. 

IDCBPALE Add Locate Entry 
Acquires the space for a Locate Entry (catalog 
information for the Object Header) in the Lo-
cate Area. 

IDCBPBBF Build Backup Buffers 
Constructs the buffers, Buffer Definition 
Blocks, and buff er channel programs for the 
backup of an object. 

IDCBPBDR Build RPST AB 
Builds a sector number table for RPS devices to 
allow fast access to sector numbers during bac-
kup or restoration. 

IDCBPBDS Back Up Data Set 
Performs the actual backup of a data set. 

IDCBPBLE Build Locate Entry 
Constructs the Locate Entry (catalog informa-
tion for the Object Header) in the Locate Area .. 

IDCBPBPC Backup Close 
Closes the backup file after backup and causes 
the printing of the cross-reference listings. 

IDCBPBPO Backup Open 
Opens the backup file for output and constructs 
channel programs for writing the directory and 
the dummy records; writes the directory onto 
the first backup volume; initializes the volume 
list. 

IDCBPBPV BackupEOV 
Writes an EQT-record onto the current backup 
volume, mounts the next backup volume, and 
writes the directory onto it; extends the volume 
list. 

IDCBPCAU Convert Allocation Units 
Converts space allocation specifications 
(TRACKS or CYLINDERS, as retrieved from 
the catalog) to device-independent units 
(RECORDS) to be saved in the tape backup 
file. 

IDCBPCMA Command Analyzer 
Checks the correctness of any generic name in 
the object or exclusion list of the BACKUP or 
RESTORE command. 

IDCBPCRB Convert RBA 
Converts an RBA into a disk address. 

IDCBPDDR Data Disk Read 
Modifies the disk read channel program for a 
buffer and schedules the reading of a buffer 
from an object to be backed up. 

IDCBPDDW Data Disk Wait 
Completes a disk read operation scheduled by 
the Data-Disk-Read Function. 

IDCBPDYB Directory Build 
Builds a directory from the BACKUP command 
object list, the exclusion list, and the VSAM 
catalog. In parallel, the Locate Area is filled 
with catalog information for the objects to be 
backed up. 

IDCBPDYS 

IDCBPFSR 

IDCBPLVO 

IDCBPMDE 

IDCBPMSH 

IDCBPNBV 

IDCBPOON 

IDCBPOVC 

IDCBPPXL 

IDCBPRSL 

IDCBPRVB 

IDCBPRVD 

IDCBPRVL 

IDCBPSLE 

IDCBPSRD 

IDCBPSXL 

IDCBPVCL 

Directory Sort 
Sorts the directory by object name. 

BACKUP Function Support Routine 
Basic module invoked by the Access Method 
Services Executive; directs the flow of control 
during the BACKUP command execution. 

Locate VSAM Object 
Obtains the catalog information for an object, 
builds a directory entry for it, and stores its cata­
log information in the Locate Area. 

Move Directory Entry 
Moves an existing entry of the directory to the 
end of the directory. 

Message Handler 
Prepares any message to be printed during 
BACKUP or RESTORE command execution 
for printing by the Access Method Services 
UPRINT. 

Next Backup Volume 
Writes the dummy record terminating a part of 
a data object, calls backup EOV to mount the 
next backup volume, and writes a Continuation 
Header for object being backed up. 

Obtain Object Name 
Obtains the true name and the master password 
of a cluster, alternate index, or path record 
whose control interval number has been speci­
fied. 

Open VSAM Catalog 
Opens the VSAM Catalog as regular data set for 
input. 

Print XREF 
Assembles and prints the Backup Volume and 
the Backup Object Cross Reference listings. 

Reset Locate Area 
Resets the Locate Area to empty so that it can 
be refilled with catalog information. 

Remove Buffers 
Releases and frees the virtual storage for the 
buffer pool for BACKUP or RESTORE. 

Remove Directory 
Frees the virtual storage acquired for the bac­
kup file directory. 

Remove Locate Area 
Frees the virtual storage acquired for the Locate 
Area and for catalog work areas. 

Secure Locate Entry 
Ensures that the Locate Area contains the cata­
log information for the next object to be backed 
up. If not, it refills the Locate Area with the 
catalog information. 

Search Directory 
Searches the directory for a specified object 
name. 

Scan Exclusion List 
Scans the exclusion list of BACKUP or RE­
STORE command to determine ifan object is to 
be excluded from backup or restoration. 

VSAMClose 
Closes an object after backup or restoration. 

Chapter 4: Module Structure 4 - 5 



Licensed Material - Property of IBM 

IDCBPVOP VSAMOpen IDCRTMDS Remap Data Set 
Opens an object to be backed up or to be re- Performs actual restoration of a data set when 
stored for input or output; constructs the Data file modification (moving files to volume of dif-
Set Control Header for the object. ferent device type, or DAT ARECORDS or IN-

IDCBPWOH Write Object Header 
DEXCISIZE specified) is required. 

Writes the Object Header for an object being IDCRTMSS Remap Sequence Set 
backed up. Reconstructs sequence set records when file 

modification (moving files to volume of differ-
IDCRTACA Add Control Area ent device type. or DAT ARECORDS or IN-

Writes the sequence set record for a control area DEXCISIZE specified) is required. 
and constructs the higher-level index entries for 
the control area. IDCRTMTL Mount Later 

Mounts the next or any later volume of the bac-
IDCRTBBR Build Restore Buffers kup file during restoration. 

Constructs the buffers, Buffer Definition 
Blocks, Index Buffer Blocks, and buffer channel IDCRTMTN Mount Next 
programs for the restoration of an object. Mounts the next backup volume during restora-

IDCRTBDX Build XIB 
ti on. 

Constructs the Index Information Blocks for the IDCRTMTS Mount Specific 
index reconstruetion of an object to be restored. Mounts a specified volume of the backup file. 

IDCRTBFV BuildFVT IDCRTOPI Operator Interaction 
Builds a field vector table and the associated Issues any messages to the operator during res-
field parameter lists for a component necessary toration. 
for the redefinition of an object. 

IDCRTPFO Preformat 
IDCRTBRL Build Restore List Preformats one or more empty Cls to use as free 

Builds the Restore Member List (a list of all space within a CA. 
objects to be restored). 

IDCRTRDS Restore Data Set 
IDCRTCLX Oose Index Performs the actual restoration of a data set 

Issues and completes any outstanding index 1/0 when no file modification is required. 
operation after the restoration of a key-
sequenced data set. Initiates the writing of all IDCRTRDX Read Index 
necessary software-ends-of-file. Reads an index control interval into an index 

IDCRTDFO Define Object 
buffer for third- or higher-level index. 

Defines an object in the VSAM catalog during IDCRTREV Restore EOV 
restoration. Handles the transition to the next backup vol-

IDCRTDVO Delete VSAM Object 
ume when the end of a backup volume is 

Deletes an old version of a VSAM object to be 
reached during the restoration of an object. 

restored. IDCRTROH Read Object Header 

Data Disk Write 
Scans the backup file for a specified object and 

IDCRTDWR reads the Object Header for it. 
Modifies the disk channel program for a data 
buffer and schedules the disk write operation for IDCRTRTC Restore Close 
the data buff er during restoration. Closes the backup file after completion or termi-

IDCRTDWW Data Write Wait 
nation of the RESTORE command. 

Completes a disk write operation scheduled by IDCRTRTO Restore Open 
the Data-Disk-Write Function. Opens the backup file for input and reads the 

IDCRTFSR RESTORE Function Support Routine 
directory of the mounted backup volume. 

Basic module invoked by the Access Method IDCRTRVX RemoveXIB 
Services Executive; controls the flow during the Frees the virtual storage acquired for Index In-
RESTORE command execution. formation Blocks. 

IDCRTGEX Get Extent IDCRTWRS WriteSEOF 
Obtains an extent for an object being restored. Writes a software-end-of-file (SEOF) for a data 

IDCRTGNX Get Next Index Record 
set being restored. 

Obtains disk space and an index buffer for the IDCRTWRX Write Index 
next index record and initializes it. Schedules the writing of an index buffer. 

4 - 6 VSE/VSAM Backup/Restore Feature Logic 



Licensed Material - Property of IBM 

Summary of Non-Executable Modules 
VSE/VSAM Backup/Restore includes modules that do 
not contain executable code but rather tables or pre­
generated control blocks which are loaded at execution 
time, or which punch link books for the individual 
phases of VSE/VSAM Backup/Restore. The following is 
a list of these modules. 

IDCBPBCA 

IDCBPBRB 

IDCBPBST 

IDCBPIOM 

IDCCDBP 

IDCCDRT 

IDCCMZ3 

Backup Catalog Area 
Pregenerated Backup Catalog Area containing 
all work areas, catalog parameter lists, field pa­
rameter lists, and channel programs for catalog 
access during the execution of the BACKUP 
command. 

Backup/Restore Block 
Pregenerated Backup/Restore Block; all fields 
initialized as required for the execution of 
BACKUP or RESTORE commands. 

Buffersize Table 
Contains the tables necessary to determine the 
(optimal) buffersize to be used for the backup of 
an object. 

1/0 Module 
Contains the DTFMT, MTMOD, and DTFCN 
declarations used for the opening, closing, and 
end-of-volume handling of the backup file or 
for operator messages. 

Backup Command Descriptor 
Contains the command descripor to be used by 
the Access Method Services Reader/Interpreter 
to analyze a BACKUP command and to con­
struct the appropriate Function Data Table. 

Restore Command Descriptor 
Contains the command descriptor to be used by 
the Access Method Services Reader/Interpreter 
to analyze a RESTORE command and to con­
struct the appropriate Function Data Table. 

IDCTSBPO Link Book 
Punches phase, include, entry, and end state­
ments for the link book for phase IDCTSBPO, 
which contains the static text entries for 
VSE/VSAM Backup/Restore. 

IDCCMZ4 

IDCCMZS 

IDCCMZ6 

IDCCMZ7 

IDCCMZ8 

IDCCMZ9 

IDCRTRCA 

IDCTSBPO 

IDCBPOI Link Book 
Punches phase, include, entry, and end state­
ments for the link book for phase IDCBPOl, 
which contains the functional support routines 
for the BACKUP command. 

IDCBP02 Link Book 
Punches phase, include, entry, and end state­
ments for the link book for phase IDCBP02, 
which contains the pregenerated 
Backup/Restore Block, the Backup Catalog 
Area, and the Restore Catalog Area. 

IDCBP03 Link Book 
Punches phase, include, entry, and end state­
ments for the link book for phase IDCBP03, 
which contains the buffersize table for 
VSE/VSAM Backup/Restore. 

IDCCDBP Link Book 
Punches phase, include, entry, and end state­
ments for the link book for phase IDCCDBP, 
which contains the command descriptor for the 
BACKUP command. 

IDCRTOI Link Book 
Punches phase, include, entry, and end state­
ments for the link book for phase IDCRTOI, 
which contains the functional support routines 
for the RESTORE command. 

IDCCDRT Link Book 
Punches phase, include, entry, and end state­
ments for the link book for phase IDCCDRT, 
which contains the command descriptor for the 
RESTORE command. 

Restore Catalog Area 
Pregenerated Restore Catalog Area containing 
all work areas, catalog parameter lists, field vec­
tor tables, and field parameter lists required for 
catalog access during the execution of the RE­
STORE command. 

Backup/Restore Static Text Module 
Contains the format structures for the 
VSE/VSAM Backup/Restore messages to be 
printed by means of the Access Method Services 
UPRINT function. 

Chapter 4: Module Structure 4 - 7 



Licensed Material - Property of IBM 

4 - 8 VSE/VSAM Backup/Restore Feature Logic 



Licensed Material - Property of IBM 

VSE/VSAM Backup/Restore consists of seven phases 
used by the BACK UP and RESTORE commands as fol­
lows: 

VSE/VSAM 

r Backup/Restore ---, 
Phases I 

backup restore 

Chapter 5: Phase Structure 

--~--~~~~--..,.~-'---, --~)-------~~---~---. 
IDCBP01 IDCBP02 IDCBP03 IDCTSBPO IDCCDBP IDCRT01 IDCBP02 IDCTSBPO IDCCDRT 

IDCBP01 

IDCBPOl 

IDCBP03 

IDCCDBP 

IDCCDRT 

IDCRTOt 

IDCTSBPO 

BACKUPFSR 
Contains all executable modules for the 
BACKUP command. 

Pregenerated Control Blocks 
Contains the pregenerated control blocks and 
nonreentrant 1/0 routines for the BACKUP 
and RESTORE commands. 

Buffersize Tables 
Contains the buffersize tables used during 
backup. 

BACKUP Command Descriptor 
Contains the command descriptor to be used by 
the Access Method Services Reader/Interpreter 
to analyze a BACKUP command and to con­
struct the appropriate Function Data Table. 

RESTORE Command Descriptor 
Contains the command descriptor to be used by 
the Access Method Services Reader/Interpreter 
to analyze a RESTORE command and to con­
struct the appropriate Function Data Table. 

RESTOREFSR 
Contains all executable modules for the 
RESTORE command. 

Backup/Restore Static Text 
Contains the format structures for the messages 
issued by VSE/VSAM Backup/Restore. 

Phase-to-Module Relationship 
This section lists which modules belong to the individ­
ual phases for VSE/VSAM Backup/Restore. They are 
listed in the order in which they are included at link­
edit. 
Phase Name 
IDCBPOl 

Module Name 
IDCBPFSR 
IDCBPMSH 
IDCBPSLE 
IDCBPVOP 
IDCBPBDR 
IDCBPVCL 
IDCBPBBF 
IDCBPWOH 
IDCBPBDS 
IDCBPDDR 
IDCBPDDW 
IDCBPCRB 
IDCBPNBV 
IDCBPBPV 
IDCBPLVO 
IDCBPSXL 
IDCBPBLE 
IDCBPCAU 

IDCBP02 

IDCBP03 

IDCRTOl 

IDCBPALE 
IDCBPOON 
IDCBPRSL 
IDCBPCMA 
IDCBPDYB 
IDCBPADE 
IDCBPSRD 
IDCBPMDE 
IDCBPOVC 
IDCBPBPO 
IDCBPBPC 
IDCBPPXL 
IDCBPDYS 
IDCBPRVB 
IDCBPRVL 
IDCBPRVD 

IDCBPBRB 
IDCBPBCA 
IDCBPIOM 
IDCRTRCA 

IDCBPBST 

IDCRTFSR 
IDCBPMSH 
IDCRTROH 
IDCRTDFO 
IDCRTBFV 
IDCRTDVO 
IDCBPVOP 
IDCBPBDR 
IDCBPVCL 
IDCRTBBR 
IDCRTBDX 
IDCRTRDS 
IDCRTDWR 
IDCRTDWW 
IDCBPCRB 
IDCRTACA 
IDCRTWRX 
IDCRTGNX 
IDCRTRDX 
IDCRTWRS 
IDCRTGEX 
IDCRTCLX 
IDCRTREV 
IDCRTPFO 
IDCRTMDS 
IDCRTMSS 
IDCRTMTN 
IDCRTOPI 
IDCRTMTL 
IDCRTMTS 
IDCRTRTO 
IDCBPCMA 
IDCRTBRL 
IDCBPSXL 
IDCRTRVX 
IDCBPRVB 
IDCRTRTC 

Chapter 5: Phase Structure 5 - l 



IDCTSBPO 

IDCCDBP 

IDCCDRT 

IDCTSBPO 

IDCCDBP 

IDCCDRT 

Phase-to-Link Book Relationship 
This section lists the link books for VSE/VSAM 

Backup/Restore and the phases that can be linked by 
means of the individual link books. In order to not 
have to relink unnecessary phases of VSE/VSAM 

5 - 2 VSE/VSAM Backup/Restore Feature Logic 

Licensed Material - Property of IBM 

Backup/Restore in case of a required fix, a separate 
link book is provided for each phase. 

Phase Name 
IDCTSBPO 
IDCBPOI 
IDCBP02 
IDCBP03 
IDCCDBP 
IDCRTOI 
IDCCDRT 

Link Book Name 
IDCCMZ3 
IDCCMZ4 
IDCCMZ5 
IDCCMZ6 
IDCCMZ7 
IDCCMZ8 
IDCCMZ9 



Licensed Material - Property of IBM 

VSE/VSAM Backup/Restore has the following macros: 

IDCDFBOO 

IDCDFBOl 

IDCDFB02 

IDCDFB03 

IDCDFB04 

IDCDFB05 

IDCDFB06 

IDCDFB07 

IDCDFB08 

IDCDFB09 

IDCDFBlO 

IDCDFBll 

IDCDFB12 

IDCDFB13 

IDCDFB14 

IDCDFB15 

Backup/Restore Block (BRB) 
Generates a dummy section or actual code for 
the Backup/Restore Block. 

Directory Control Header (OCH) 
Generates a dummy section or actual code for 
the Directory Control Header. 

Directory Block Header (DBH) 
Generates a dummy section of the Directory 
Block Header. 

Directory Entries (DE) 
Generates dummy sections of the external 
(EDE) and internal (IDE) directory entries. 

Locate Area Control Header (LCH) 
Generates a dummy section or actual code for 
the Locate Area Control Header. 

Locate Area Block Header (LBH) 
Generates a dummy section for the Locate Area 
Block Header. 

Data Set Control Header (DSH) 
Generates a dummy section or actual code for 
the Data Set Control Header. 

Component Definition Block (COB) 
Generates a dummy section or actual code for a 
Component Definition Block, which is part of 
the Data Set Control Header. 

Buffer Pool Header (BPH) 
Generates a dummy section or actual code for 
the Buffer Pool Header. 

Buffer Definition Block (BOB) 
Generates a dummy section for the Buffer Defi­
nition Block. 

Request Control Section (RCS) 
Generates a dummy section or actual code for 
Request Control Sections, which are part of the 
Buffer Definition Block. 

Index Buffer Block (XBB) 
Generates a dummy section for the Index Buffer 
Block. 

Backup File Header (BFH) 
Generates a dummy section or actual code for 
the Backup File Header. 

Tape Command Parameter List (TCP) 
Generates a dummy section or actual code for 
the Tape Command Parameter List. 

VSAM Data Set Work Area (VOW) 
Generates a dummy section or actual code for 
the VSAM Data Set Work Area. 

Volume List (VL) 
Generates dummy sections for the layouts of a 
Volume List Block (VLB) and a Volume List 
Entry (VLE). 

IDCDFB16 

IDCDFB17 

IDCDFB18 

IDCDFB19 

IDCDFB20 

IDCDFB21 

IDCDFB22 

IDCDFB23 

IDCDFB24 

IDCDFB30 

IDCDFB31 

IDCDFB32 

IDCDFB33 

IDCDFB34 

IDCDFB35 

IDCDFB36 

Chapter 6: Macro Directory 

Channel Command Word (CCW) 
Generates a dummy section and equates for a 
channel command word. 

DTFMT Layout (DTF) 
Generates a dummy section for the layout of a 
DTFMT. 

Volume Label (VOLi) 
Generates a dummy section for the layout of a 
VOLi label. 

1/0 Module Header (IOH) 
Generates a dummy section for the layout of the 
header portion of the module IDCBPIOM. 

GENL Parameter List (GENL) 
Generates a dummy section for the GEN L pa­
rameter list to be used for a LOAD macro with 
TEXT= NO. 

Fix List (FXL) 
Generates a dummy section for the fix list to be 
used during the construction of the buffer pools 
for BACKUP and RESTORE. 

Inter-Module Trace Table (MTT) 
Generates a dummy section describing the lay­
out of the Access Method Services Inter-Module 
Trace Table. 

Map Data Set Work Area (MWK) 
Generates a dummy section of the work area 
used by IDCRTMDS and IDCRTMSS during 
restoration of a data set when file modifications 
are made (moving files to volume of different 
device type, or specification of 
DATARECORDS or INDEXCISIZE). 

Map Volume Characteristics Table (VCT) 
Generates a dummy section describing the 
structure of the Volume Characteristics Table 
blocks and entries. 

Backup Catalog Area (BCA) 
Generates a dummy section or actual code for 
the Backup Catalog Area. 

Restore Catalog Area (RCA) 
Generates a dummy section or actual code for 
the Restore Catalog Area. 

Locate Control List (LCL) 
Generates a dummy section or actual code for 
the Locate Control List, a sub-structure of the 
Backup Catalog Area. 

Define Control List (DCL) 
Generates a dummy section or actual code for 
the Define Control List, a sub-structure of the 
Restore Catalog Area. 

Catalog Parameter List (CTGPL) 
Generates a dummy section or actual code for a 
Catalog Parameter List. 

Catalog Field Vector Table (CTGFV) 
Generates a dummy section or actual code for a 
Catalog Field Vector Table. 

Catalog Field Parameter List (CTGFL) 
Generates a dummy section or actual code for a 
Catalog Field Parameter List. 

Chapter 6: Macro Directory 6 - I 



Licensed Material - Property of IBM 

IDCDFB37 Catalog Cluster Record (CCR) IDCDFB71 Module Termination 
Generates a dummy section for the layout of a Generates code for the termination of all 
catalog cluster record. VSE/VSAM Backup/Restore Module.s. 

IDCDFB38 Extension Record (EXR) IDCDFB72 Error Code Setting 
Generates a dummy section for the layout of a Generates code for the setting of the internal 
catalog extension record. error codes and the condition codes used by 

IDCDFB39 Group Occurrence Pointer (GOP) VSE/VSAM Backup/Restore. 

Generates a dummy section for the layout of a 
IDCDFB73 Execute 1/0 Group Occurrence Pointer. 

Generates code for the issuance of an EXCP. 
IDCDFB40 Object Header (OHO) 

Generates dummy sections for the elements of IDCDFB74 Wait 1/0 
the Object Header, such as Object Header Con- Generates code for waiting for the completion 
trol Portion (OHC), the Object Header Catalog of an 1/0 operation. 
Dictionary (OCD), or the entries of the Catalog 
Information Area. IDCDFB75 Re- Entrant Load 

IDCDFB41 Dummy Record (ORD) 
Generates code for the re-entrant loading of the 
phase IDCBP02 containing the Backup/Restore 

Generates a dummy section for the layout of a Block, the Backup Catalog Area, the Restore 
dummy record. Catalog Area, and the DTF 1/0 modules. 

IDCDFB42 Restore Member List Entry (RLE) 
IDCDFB76 Convert Time 

Generates a dummy section for the layout of a 
Converts the time of day and the date into print-Restore Member List Entry. 
able format. 

IDCDFB43 Index Information Block (XIB) 
Generates a dummy section for the layout of an IDCDFB77 Convert RBA 
Index Information Block. Generates code for RBA conversion 

(IDCBPCRB). 
IDCDFB44 Index Header (XHD) 

Generates a dummy section for the layout of the IDCDFB78 Next Backup Volume 
header of an index record. Generates code for the Next-Backup-Volume 

IDCDFB50 Function Data Table (FDT) 
function (IDCBPNBV). 

Generates dummy sections for the layout of the IDCDFB79 Restore EOV 
elements of the Function Data Table for the 

Generates code for the Restore-EOV function BACKUP and RESTORE commands. 
(IDCRTREV). 

IDCDFB60 Message Codes (MSC) 
Generates equates for all internal message codes IDCDFB80 Message Handler 
and condition codes used by VSE/VSAM Generates code for the Message Handler func-
Backup/Restore. tion (IDCBPMSH). 

IDCDFB70 Module Initialization IDCDFB81 Add Control Area 
Generates code for the module initialization of Generates code for the Add-Control-Area func-
all VSE/VSAM Backup/Restore modules. tion (IDCRTACA). 

6 - 2 VSE/VSAM Backup/Restore Feature Logic 



Licensed Material - Property of IBM 

VSE/VSAM Backup/Restore invokes Access Method 

Services functions. Accordingly, the diagnostic aids for 

Access Method Services apply as far as VSE/VSAM 

Backup/Restore supports the diagnostic capability. 

For corresponding detail, use VSE/VSAM Access Me­
thod Services Logic. 

Trace Tables 
VSE/VSAM Backup/Restore supports inter-module 

trace points. At the beginning of each module (except 

where critical to performance) the trace-ID of the mod­

ule is stored in the Inter-Module Trace Table. Upon 

exit from a module, the caller's trace-ID is restored so 

that the Inter-Module Trace Table correctly reflects the 

flow of control through the VSE/VSAM Backup/Restore 

modules. 

Intra-module trace points are not supported by the 

VSE/VSAM Backup/Restore modules because the indi­

vidual modules are small. 

Trace Point to Module Cross Reference 
The following list contains the trace points set by 

VSE/VSAM Backup/Restore modules. The trace points 

are set at the beginning of these modules. In general, 

the trace-ID corresponds to the last three letters of the 

module name, padded with one blank. 

The trace-IDs for the modules IDCBPFSR and 

IDCR TFSR are an exception. They are equal to the last 

4 characters of the phase names for the BACKUP FSR 

(IDCBPOl) and the RESTORE FSR (IDCRTOl) and are BPOl 

and RTOl respectively. 

Trace Point Module Name Function 
ACA IDCRTACA Add Control Area 
ADE IDCBPADE Add Directory Entry 
ALE IDCBPALE Add Locate Entry 
BBF IDCBPBBF Build Backup Buffers 
BBR IDCRTBBR Build Restore Buffer 
BDR IDCBPBDR Build RPST AB 
BDS IDCBPBDS Backup Data Set 
BDX IDCRTBDX Build XIB 
BFV IDCRTBFV Build CTGFV 
BLE IDCBPBLE Build Locate Entry 
BPC IDCBPBPC Backup Close 
BPO IDCBPBPO Backup Open 
BPV IDCBPBPV Backup EOV 
BPOl IDCBPFSR BACKUP FSR 
BRL IDCRTBRL Build Restore List 
CAU IDCBPCAU Convert Allocation Units 
CLX IDCRTCLX Close Index 
CMA IDCBPCMA Command Analyzer 
CRB IDCBPCRB Convert RBA 
DFO IDCRTDFO Define Object 
DVO IDCRTDVO Delete VSAM Object 
DYB IDCBPDYB Directory Build 
DYS IDCBPDYS Directory Sort 
GEX IDCRTGEX Get Extent 
GNX IDCRTGNX Get Next Index Record 

Chapter 7: Diagnostic Aids 

Trace Point Module Name Function 
LVO IDCBPLVO Locate VSAM Object 
MOE IDCBPMDE Move Directory Entry 
MDS IDCRTMDS Remap Data Set 
MSH IDCBPMSH Message Handler 
MSS IDCRTMSS Remap Sequence Set 
MTL IDCRTMTL Mount Later 
MTN IDCRTMTN Mount Next 
MTS IDCRTMTS Mount Specific 
NBV IDCBPNBV Next Backup Volume 
OON IDCBPOON Obtain Object Name 
OPI IDCRTOPI Operator Interface 
ovc IDCBPOVC Open VSAM Catalog 
PFO IDCRTPFO Preformat Function 
PXL IDCBPPXL Print XREF 
RDS IDCRTRDS Restore Data Set 
RDX IDCRTRDX Read Index 
REV IDCRTREV Restore EOV 
ROH IDCRTROH Read Object Header 
RSL IDCBPRSL Reset Locate Area 
RTC IDCRTRTC Restore Close 
RTO IDCRTRTO Restore Open 
RTOl IDCRTFSR RESTORE FSR 
RVB IDCBPRVB Remove Buffers 
RVD IDCBPRVD Remove Directory 
RVL IDCBPRVL Remove Locate Area 
RVX IDCRTRVX Remove XIB 
SLE IDCBPSLE Secure Locate Entry 
SRD IDCBPSRD Search Directory 
SXL IDCBPSXL Scan Exclusion List 
VCL IDCBPVCL VSAM Close 
VOP IDCBPVOP VSAM Open 
WOH IDCBPWOH Write Object Header 
WRS IDCRTWRS Write SEOF 
WRX IDCRTWRX Write Index 
none* IDCBPDDR Data Disk Read 
none* IDCBPDDW Data Disk Wait 
none* IDCRTDWR Data Disk Write 
none* IDCRTDWW Data Write Wait 

* No trace point provided because module's performance 
is critical. 

Dump Points 
VSE/VSAM Backup/Restore does not support dump 

points. 

Abort Codes 
The following list identifies the ABORT codes set by 

modules of VSE/VSAM Backup/Restore. 

Module Name Code 

IDCBPFSR 28 

80 

IDCRTFSR 28 

80 

Cause 

No virtual storage available to load 
the Backup/Restore Block. 
The Backup/Restore Block was not 
found in the system libraries. 

No virtual storage available to load 
the Backup/Restore Block. 
The Backup/Restore Block was not 
found in the system libraries. 

Chapter 7: Diagnostic Aids 7 - l 



How to Find the Backup/Restore 
Block 
For all modules of VSE/VSAM Backup/Restore, register 
13 points to the Backup/Restore Block. Offset 72-75 
should contain the characters 'BRBb', the identifier for 
the Backup/Restore Block. 

If register 13 does not point to the BRB because a 
service invoked by VSE/VSAM Backup/Restore has 
control, you can find the BRB by scanning down the 
right side of a dump for the identifier 'BRBb' at offset 72 
of the Backup/Restore Block. · 

How to Find the GDT and FDT from 
the BRB 
The Backup/Restore Block points to the Global Data 
Table and the Function Data Table for the executed 
command. 

The field labeled BRBGDT points to the Global Data 
Table. The field labeled BRBFDT points to the Func­
tion Data Table. The field BRBREQ identifies the com­
mand being executed: 

4 - BACK UP command being executed. 
8 - RESTORE command being executed. 

How to Find the Inter-module Trace 
Table 
After you have found the Global Data Table from the 
Backup/Restore Block, you can find the Inter-Module 
Trace Table address at offset 8 of the Global Data 
Table. 

How to Determine the Active Module 
If register 13 points to the Backup/Restore Block, you 
can determine which module of VSE/VSAM 
Backup/Restore is active: In general, register 12 is used 
as base register. If you subtract X'l2' from the value in 
register 12, the result points to the name of the module 
that is in control. 

Exceptions are the modules IDCBPDDR and 
IDCBPDDW for BACKUP and IDCRTDWR and 
IDCRTDWW for RESTORE. For them, after subtracting 
X' 12· from register 12, the result points to the module 
name of the caller, IDCBPBDS or IDCRTRDS, respective­
ly. 

7 - 2 VSE/VSAM Backup/Restore Feature Logic 

Licensed Material - Property of IBM 

How to Determine the Position in the 
Function Tree 
Many modules of VSE/VSAM Backup/Restore are 
called from different locations. If you want to deter­
mine where you are in the function tree (see Chapter 
4 ), do as follows: 

The Backup/Restore Block contains a save area 
pool used to store the registers of the calling functions. 
The inter-module trace-ID of the caller is saved in front 
of the registers. The BRB save area pool starts at the 
label BRBSAP. The field BRBNSA of the 
Backup/Restore Block points to the next available 
position. 

After you find which module is active (by subtract­
ing X'l2' from register 12, as described before), deter­
mine how many registers it stores (macro IDCDFB70). 
By subtracting the size of a trace-ID and the size of the 
registers stored from the address contained in the field 
BRBNSA, you come to the trace-ID of the calling mod­
ule. By looking up how many registers it, in turn, 
stores, you can come to the trace-ID of its caller. Con­
tinue until you reach the beginning of the save area 
pool. This process is illustrated in Figure 7-1. 

How to Determine the Last Message 
The field BRBERC of the Backup/Restore Block con­
tains the internal message code of the last message 
printed or being printed by VSE/VSAM 
Backup/Restore. See macro IDCDFB60 for message 
codes. The field BRBMID contains the trace-ID of the 
module that caused the message to be issued. 

How to Determine the Last and the 
Maximum Condition Codes 
The fields BRBLCC and BRBMCC contain the last condi­
tion code and the maximum condition code set by any 
VSE/VSAM Backup/Restore module. The field 
BRBERCNT indicates the number of errors encountered 
thus far by VSE/VSAM Backup/Restore. 



Licensed Material - Property of IBM 

Register 13 Register 12 = X'12' 

Backup/Restore Block 

IDCBPALE 

BRBNSA 
I-....---i 

BRBSAP 

BP01 

Registers of IDCBPFSR 
stored by IDCBPDYB 

DYB-b 

Registers of IDCBPDYB 
stored by IDCBPLVO 

LV015 

Registers of IDCBPLVO 
stored by IDCBPBLE 

BLE15 

Registers of IDCBPBLE 
stored by IDCBPALE 

~Tree Substructure IDCBPFSR - IDCBPDYB- IDCBPLVO­
IDCBPBLE - IDCBPALE 

Figure 7-1. Determining the VSE/VSAM Backup/Restore Flow of 
Control 

Note: The chain of modules derived by this method is different from 
the flow of control represented by the Inter-Module Trace Table. 
The chain derived by the method just described represents the last 
module invoked at each level of the function tree described in Chap­
ter 4. 

Chapter 7: Diagnostic Aids 7 - 3 



Message-to-Module Cross Reference 
Message 
IDC400A 

IDC40ll 
IDC402A 
IDC403I 

IDCOOOII 

IDC30031 

IDC30041 

IDC01300I 
IDC0130ll 
IDC01302I 
IDCOI303I 
IDCOI304I 
IDCOI305I 
IDCI 1306I 

IDCI 1307I 
IDCI 1345I 
IDC21308I 
IDC21309I 
IDC313IOI 
IDC3131 ll 
IDC313121 
IDC31313I 
IDC313141 
IDC31315I 

IDC31316I 

IDC31317I 
IDC31318I 
IDC31319I 
IDC313201 
IDC313211 
IDC313221 

Text 
MOUNT VOLUME xxx OF BACKUP FILE ON SYS004=cuu 

BACKUP VOLUME REQUIRED FOR file-id 
MOUNT VOLUME xxx OR HIGHER ON SYS004=cuu 
TIME STAMP MISMATCH. BACKUP FILE CREATED ON date AT 
hh:mm:ss 

FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS xxx 

FUNCTION TERMINATED. CONDITION CODE IS nnn 

FUNCTION TERMINATED. INSUFFICIENT MAIN STORAGE. 

BACKUP FILE CREATED ON date AT hh:mm:ss 
RESTO RE'S BACKUP FILE CREATED ON date AT hh:mm:ss 
SUCCESSFUL RESTORATION OF file-id 
SUCCESSFUL DELETION OF file-id- ENTRY TYPE=x 
SUCCESSFUL DEFINITION OF file-id 
PASSWORDS SUPPRESSED FOR file-id 
NO OBJECT FOR entryname 

SKIPPING RESTORATION OF file-id 
CANNOT CONVERT ALLOCATION UNITS FOR file-id 
CANNOT CLOSE file-id 
**VSAM CLOSE ERROR IS nnn 
INVALID GENERIC NAME file-id 
ERROR EXPANDING GENERIC NAME entryname 
**VSAM PHYSICAL ERROR RETURN CODE IS nnn 
PASSWORD CONFLICT FOR file-id 
**CONFLICTING OBJECT IS file-id 
CANNOT LOCATE CATALOG 

**VSAM CATALOG RETURN CODE IS nnn 
REASON CODE IS IGGOCLxx-mmm 

CANNOT OPEN VSAM CATALOG 
CATALOG VOLUME ERROR 
CATALOG EXTENT ERROR 
CATALOG 1/0 ERROR 
CANNOT RETRIEVE CATALOG INFORMATION FOR file-id 
CANNOT LOCATE ASSOCIATION OF file-id 

7 - 4 VSE/VSAM Backup/Restore Feature Logic 

Licensed Material - Property of IBM 

Module 
IDCRTMTN 
IDCRTMTS 
IDCRTMTL 
IDCRTMTL 
IDCRTMTL 
IDCRTMTN 
IDCRTMTS 
IDCBPFSR 
IDCRTFSR 
IDCBPFSR 
IDCRTFSR 
IDCBPADE 
IDCBPALE 
IDCBPBBF 
IDCBPBDS 
IDCBPBPO 
IDCBPBPV 
IDCBPLVO 
IDCBPOON 
IDCBPVOP 
IDCBPWOH 
IDCRTBBR 
IDCRTBDX 
IDCRTBFV 
IDCRTBRL 
IDCRTDFO 
IDCRTGEX 
IDCRTMDS 
IDCRTMSS 
IDCRTRDS 
IDCRTRDX 
IDCRTROH 
IDCRTRTO 
IDCRTWRS 
IDCRTWRX 
IDCBPPXL 
IDCRTRTO 
IDCRTFSR 
IDCRTDVO 
IDCRTDFO 
IDCBPWOH 
IDCBPBPC 
IDCBPDYB 
IDCRTBRL 
IDCRTFSR 
IDCBPCAU 
IDCBPVCL 
IDCBPVCL 
IDCBPCMA 
IDCBPDYB 
IDCBPDYB 
IDCBPDYB 
IDCBPDYB 
IDCBPOVC 
IDCRTDFO 
IDCBPLVO 
IDCBPOVC 
IDCRTDFO 
IDCRTDVO 
IDCBPOVC 
IDCBPOON 
IDCBPOON 
IDCBPOON 
IDCBPLVO 
IDCBPLVO 



Licensed Material - Property of IBM 

IDC313231 CANNOT LOCATE BASE CLUSTER OF file-id IDCBPLVO 
IDC313241 CANNOT OPEN file-id IDCBPVOP 
IDC313251 * *VSAM OPEN ERROR IS nnn IDCBPOVC 

IDCBPVOP 
IDC313261 NO BACKUP OF file-id-CANNOT BE RESTORED IDCBPVOP 
IDC313271 EXTENT ERROR FOR file-id IDCBPBDS 

IDCRTMDS 
IDCRTPFO 
IDCRTRDS 
IDCRTRDX 
IDCRTWRS 
IDCRTWRX 

IDC313281 VOLUME ERROR FOR file-id IDCBPBDS 
IDCRTMDS 
IDCRTPFO 
IDCRTRDS 
IDCRTRDX 
IDCRTWRS 
IDCRTWRX 

IDC313291 DISK 1/0 ERROR FOR file-id IDCBPBDS 
IDCRTACA 
IDCRTCLX 
IDCRTMDS 
IDCRTPFO 
IDCRTRDS 
IDCRTWRS 

IDC313301 BACKUP FILE 1/0 ERROR IDCBPBDS 
IDCBPBPC 
IDCBPBPO 
IDCBPBPV 
IDCBPNBV 
IDCBPWOH 
IDCRTMTN 
IDCRTMDS 
IDCRTRDS 
IDCRTREV 
IDCRTROH 
IDCRTRTO 

IDC3133 ll USECLASS ERROR FOR file-id IDCRTDFO 
IDC313321 NO DNAME FOR UNIQUE COMPONENT OF file-id IDCRTDFO 
IDC313331 CANNOT FIND OBJECT file-id IDCRTFSR 
IDC313341 CANNOT DELETE OLD VERSION OR ASSOCIATION OF file-id IDCRTDVO 
IDC313351 CANNOT DEFINE file-id IDCRTDFO 
IDC313361 CANNOT RESTORE SAM ESDS file-id IDCRTDFO 
IDC313371 CANNOT RESTORE file-id ON SPECIFIED VOLUME IDCBPVOP 
IDC313381 CANNOT EXTEND file-id IDCRTGEX 
IDC313391 MORE THAN 255 INDEX LEVELS FOR file-id IDCRTACA 
IDC313401 BACKUP FILE IN ERROR IDCRTMDS 

IDCRTRDS 
IDCRTREV 
IDCRTROH 
IDCRTRTO 

IDC313411 INCOMPLETE BACKUP COPY OF file-id IDCRTREV 
IDC313421 RESTORE TERMINATED. FAILURE TO MOUNT BACKUP VOLUME. IDCRTOPI 
IDC313431 FUNCTION TERMINATED. MAXIMUM NUMBER OF ERRORS IDCBPDYB 

EXCEEDED. IDCBPFSR 
IDCBPLVO 
IDCRTFSR 

IDC313441 CANNOT DEFINE file-id ON SPECIFIED VOLUME IDCRTDFO 

Chapter 7: Diagnostic Aids 7 - 5 



Licensed Material - Property of IBM 

7 - 6 VSE/VSAM Backup/Restore Feature Logic 



Licensed Material - Property of IBM 

abort codes 7-1 
ACB (see access method control block) 
access method control block 3-1 
allocation modification 2-1 

flow of control 4-4 
output buffers 2-3 
performance 2-4 

alternate index 
on backup file 1-10 
restoration 2-7 

associations 
backed up 1-10. 2-9 
restored 2-8. 2-10 

backup 
catalog area 2-9. 3-1. 3-3 
file 

creation time stamp 1-2. 3-1 
directory entries 2-6 
format 1-1 through 1-10 
header 3-1 
sequence of objects 1-10 

object cross reference 2-6. 2-10 
operation 2-9 

associations 1-10. 2-9 
buffers 2-1 

volume 
creation time stamp 1-2. 3-1 
cross reference 2-6. 2-10 
termination time stamp 1-2 

BACKUP command 2-9 
BLOCKSIZE parameter 1-8. 2-1 
BUFFERS parameter 2-1 
command descriptor 5-1 
EXCLUDE parameter 2-9 
flow of control 4-1 
FSR 2-9. 3-1 

phase 5-1 
major operations 2-9 

backup/restore block 3-1 
during BACKUP 2-9 
during RESTORE 2-10 
used in debugging 7-1 through 7-3 

BC A (see backup catalog area) 
BDB (see buffer definition block) 
BFH (see backup file header) 
block. data 1-8 

transfer of 2-1 
BLOCKSIZE parameter 1-8. 2-1 

buffers 2-1 
(see also physical record size) 

BOCR (see backup object cross reference) 
BPH (see buffer pool header) 
BRB (see backup/restore block) 
buffer 2-1 through 2-5 

blocking 2-1 
channel programs 2-3 
common data buffers 2-1 
data 2-1 
definition block 3-1. 3-3 

use with data buffers 2-1 
dummy records 1-9 
for file modifications 2-3 
index buffer 2-1 

control blocks 3-1. 3-3 
output 2-3 
parameter 2-1 
performance 2-4 
pool 2-10 

header 3-1 
reblocking 2-1 

size 5-1 
BVCR (see backup volume cross reference) 

catalog 
backup catalog area 2-9. 3-1. 3-3 
data component 1-7 
directory entries 2-6 
field parameter list 2-9. 3-3 
field vector table 2-9. 3-3 
index component 1-7 
information area I-7 
locate area 

control block 3-1. 3-3 
during BACKUP processing 2-9 
used to store catalog info 2-4 

locate operation I-7 
object header control portion 1-6 
parameter list 2-9. 3-3 
restore catalog area 

control block 2-9. 3-1. 3-3 
during RESTORE processing 2-10 

CDB (see component definition blocks) 
channel programs 2-3. 3-3 
CHO (see continuation header) 
combination name 1-7 
component definition blocks 3-1 
compression. front 2-8 
condition code 7-2 
continuation header 1-4. 1-8 
control 

areas 1-8. 1-9 
modifications 2-1 
transfer of 2-1 

intervals 1-8. 1-9 
buffers 2-1 
directory entries 2-6 
index 2-1. 2-8 

creation time stamp 
file l-2. 3-1 
volume 1-2. 3-1 

cross reference 
backup object 2-6. 2-10 
backup volume 2-6. 2-10 
message-to-module 7-4 
phase-to-link book 5-2 
phase-to-module 5-1 
trace point-to-module 7-1 

CTG FL (see catalog field parameter list) 
CTG FV (see catalog field vector table) 
CTG PL (see catalog parameter list) 

data 
blocks 1-8 
buffers 2-1. 2-3 
component 

blocks 1-9 
catalog information I-7 
changing allocation size 2-1 
definition block 3-1 
output buffers 2-3 
performance 2-4 
SAM ESDS 1-9 

set control header 3-1. 3-3 
DBH (see directory block header) 
DCDB (see data component definition block) 
DCH (see directory control header) 
device type modifications 2-1 

flow of control 4-4 
output buffers 2-3 
performance 2-4 

Index 

Index I - I 



diagnostic aids 7-1 through 7-4 
dictionary 1-6, I -7 

object header control portion 1-6 
directory 1-1 

BACKUP 2-9 
block 1-1 through 1-3, 3-1 

header format 1-1 through 1-l 3-1 
used to identify dummy records 1-9 

control header 3-1 
entries 1-L 1-3 

BACKUP 2-9 
external 2-6 
internal 2-6 
pointers to 3-1 

locate area 2-4 
macro 6-1 
RESTORE 2-10 

disk 1/0 2-2 through 2-4 
DSH (see data set control header) 
dummy 

blocks for read-ahead 1-2 
records 1-4, 1-9 

dump points 7-1 

empty object 1-4 
RESTORE 2-10 

end-of-tape ( EOT) record 1-1 through 1-4 
EOT record 1-1 through 1-4 
erroneous object 

directory entry 1-3 
error object header 1-4, I-7 

error object header 1-4, 1-7 
EXCLUDE parameter 2-9, 2-IO 
EXCP 2-2 through 2-4 
EXPORT/EXPORTRA 1-8. 2-9 
external directory entries 2-6 

FDT (see function data table) 
field/combination name I-7 
file creation time stamp 1-2, 3-1 
format write requirements 2-2 
forward space file command 1-1 
front compression 2-8 
FSR (see function support routine) 
function 

data table 3-3, 7-2 
support routine 

BACKUP 2-9 
parameter list 3-3 
RESTORE 2-10 

tree 4-1 through 4-4, 7-2 

GOT (see global data table) 
generic names 

BACKUP 2-9 
locate area 2-4 
RESTORE 2- IO 
restore member list 2-7 

global data table 3-3, 7-2 

header 1-1 
backup file header 3-1 
buffer pool header 3-1 
continuation header 1-4. 1-8 
data set control header 3-1, 3-3 
dictionary 1-6, 1-7 
directory 

block header 1-1 through 1-3, 3-1 
control header 3-1 

error object header 1-4, 1-7 
locate area block header 3-3 
locate area control header 3-1 
object header 1-4, 1-5 

I - 2 VSE/VSAM Backup/Restore Feature Logic 

Licensed Material - Property of IBM 

control portion 1-6. I -7 
error object header 1-4, I -7 
used for RESTORE 2-10 

record 1-4 
highest-priority partition 2-4 
high-level index component definition block 3· I 
HXCDB 3-1 

IMPORT/IMPORTRA 1-8, 2-9 
index 

buffer 2-1 
control blocks 2-2, 3-1, 3-3 

CI modifications 2-1 
flow of control 4-4 
output of buffers 2-3 
performance 2-4 

component 
catalog information I-7 

information blocks 2-8. 3-3 
during RESTORE processing 2-10 

inter-module trace table 3-3, 7-L 7-2 
internal directory entries 2-6 
intra-module trace table 3-3, 7-1 
invalid object 

directory entry 1-3 
error object header 1-4, I-7 

1/0 2-2 through 2-4 

labels 1-1 
LBH (see locate area block header) 
LCH (see locate area control header) 
link book phase-to-module relationship 5-2 
locate 

area 2-4, 2-9 
block header 3-3 
control header 3-1 

catalog information I-7 
lowest-priority partition 2-4 

macro directory 6-1 
message-to-module cross reference 7-4 
messages for debugging purposes 7 -4 
modifications at RESTORE 2-1 

flow of control 4-4 
output buffers 2-3 
performance 2-4 

module-to-phase relationship 5-1 
module-to-trace point list 7-1 
modules 

list of executable modules 4-5 
list of nonexecutable modules 4-7 

object 
header 1-4, 2-10 

continuation header 1-4, 1-8 
control portion 1-6, I-7 
dictionary I-7 
error 1-4, I -7 

type 
erroneous 1-3, I-7 
invalid 1-3, 1-7 
skipped 1-3, 1-7 

OHO (see object header) 

partition 
highest-priority 2-4 
lowest-priority 2-4 

path 
on backup file 1-IO 
restoration 2-7, 2-8 

performance for RESTORE 2-4 
phase-to-link book relationship 5-2 
phase-to-module relationship 5-1 



Licensed Material - Property of IBM 

physical blocks. transfer of 2-1 
(also see physical record size) 

physical record size 1-8. 2-1 
priority, partition 2-4 

RCA (see restore catalog area) 
record 

EOT 1-1 through 1-4 
sequence-set 1-8 
size, physical record 1-8, 2-1 

RECORDS 1-7 
reinstruction (definition) 2-4 
relational level (directory entry) 1-3 
restoration 

alternate indexes 2-7, 2-8 
associations 2-8 
automatic 2-6 through 2-7 
index buffers 2-2 
paths 2-7, 2-8 
sequence 2-7. 2-10 
sequence set 2-8 

restore 
catalog area 3-1. 3-3 

during BACKUP 2-9 
during RESTORE 2-10 

member list 2-7. 3- I. 3-3 
during RESTORE 2-IO 

RESTORE 
command descriptor 5-1 
EXCLUDE parameter 2-7, 2-IO 
file modifications 2-1 
flow of control 4-2 through 4-4 
FSR 3-1. 5-1 
major operations 2-10 
output buffers 2-3 
performance 2-4 

RML (see restore member list) 

SAM ESDS 1-9 
sequence set record 1-8 

buffers 2-2 
component definition block 3-1 
size 2-8 
transfer of .2-1 

short block (see dummy records) 
SIO 2-2 through 2-4 
skipped object 

directory entry 1-3 
error object header 1-4, I -7 

space allocation modifications 2-1 

buffers 2-3 
performance 2-4 

SSC DB (see sequence set component 
definition block) 
static text 5-1 
streaming 2-1 through 2-4 

tape 
command parameter list 3-1 
1/0 2-2 through 2-4 
marks 1-1. 1-8 

TCP (see tape command parameter list) 
time stamp 

file creation 1-2 
volume creation 1-2 
volume termination 1-2 

trace-IDs 7-1 through 7-3 
trace point-to-module list 7-1 
trace table 

inter-module 7-1. 7-2 
pointer to 3-3 

intra-module 7-1 
pointer to 3-3 

UPRINT 3-3 
use class modifications 2-1 

VCT (see volume characteristics table) 
VOW (see VSAM data set work area) 
VLB (see volume list block) 
volume 

characteristics table 3-3 
count (directory entry) 1-3 
creation time stamp 1-2. 3-1 
list 2-6. 3-1 

block 3-3 
sequence number 1-3. 3-1 

in directory block header 1-2 
serial number 1-3. 3-1 

in BOCR and BVCR 2-6 
termination time stamp 1-2 

VSAM data set work area 3-1 

WAIT 2-3 through 2-4 

XBB (see index buffer blocks) 
XIB (see index information blocks) 

Index l - 3 



Licensed Material - Property of I BM 
L Y24-5213-1 

-~-- .---- -- ----- ------- - - ------------·-® 

< 
Cf) 
m 
< Cf) 
)> 
:s: 
OJ 
Q) 
0 
7\ 
c 
"'C -:0 
CD 
ti) 
....+ 
0 .., 
CD 

II 
CD 
Q) 
....+ 
c .., 
CD 

r 
0 
tC 
c:;· 

II 

ro 
z 
0 

Cf) 
w 
......i 
0 w 
9 

::J 

c 
en 
)> 



. § 
..... 0 

a5 -E .~ 
a. .c:: ·- ..... 
:J -er ~ 
(]) (]) 

Cl Cl) 

c 0 
:;:::; ..... 
~ (]) 
0 a. 
Cl)~ - ..... 

'@ "O 
E (]) 
-o E 
(]) E 
..... :J 
~ Cl 
E 
0 ~ ..... (]) 
:J .c:: 
~a 

.c:: ~ 
::! 0 
~ (]) 
en > E:;:::; 
(]) '(i.j 

:0 a5 e Cl) 

a. (]) 
~ 

(]) :J 
Cl) en 
:J en 
~ (]) 

t> a. 
c (]) 
«' en 
t> :J 
en 
~ (]) 
a. Cl) 
~ ~ ..... ~ 

Cf) a.. 
(]) ..... 
0 
z 

VSE/VSAM Backup/Restore 
Feature Logic 
L Y24-52 l 3- l 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. You may use this form to communicate 
your comments about this publication, its organization, or subject matter, with the 
understanding that IBM may use or distribute whatever information you supply in any 
way it believes appropriate without incurring any obligation to you . 

Your comments will be sent to the author's department for whatever review and action, 
if any, are deemed appropriate. Comments may be written in your own language; 
English is not required. 

Note: Copies of I BM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using 
your I BM system, to your I BM representative or to the I BM branch office serving your 
locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

D 

D 
D 
D 
D 
D 

D 
D 
D 

No 

D 

D 
D 
D 
D 
D 

As an instructor in class? 

As a student in class? 

As a reference manual? 

D 
D 
D 

If you would like a reply, please supply your name and address on the reverse side of this 
form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



L Y24-5213-1 

Reader's Comment Form 

Fold and Tape Please Do Not Staple Fold and Tape 
................................................................................................................................................................................................... , 

II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEt: 

International Business Machines Corporation 
Department G60 
P. 0. Box 6 
Endicott, New York 13760 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

................................................................................................................................................................................................... 1 

Fold Fold 

If you would like a reply, please print: 

-~- ..... ----- - --~ - ---~---- - - -~--~- -----·-® 

Your Name----------------------------
Company Name --------------- Department _____ _ 

Street Address--------------------
City _______________________ _ 

State ------------- Zip Code ------­
IBM Branch Office serving you --------------------

I 

< 
C/) 
m -< 
C/) 
)> 
s: 
co 
Q.) 
(") 
'7\ 
c 
'C -:a 
co 
en 
rl 

Q 
co 
"Tl 
co 
Q.) 
rl c ..., 
co 
r 
0 

(Q 
c:;· 

"Tl 

Cii' 
z 
0 

C/) 
w 
-...J 
0 w 
9 

r 
-< 
N 
~ 
cJ, 
N 

y.i 
...... 


