
GC28-8302-5

Program Product

---- ----- -- - ---- ---- - ---- - - ----------- _ .-

GC28-8302·5

VS BASIC
Program Product General Information

Program Number 5748·XX1

Page of GC28-8302-S
Revised April 21, 1978
By TNL GN26-0902

Fourth Edition (October 1976)

This edition. as amended by technical newsletter GN26-0902, applies to Release 3 of VS
BASIC, program number 5748-XXI, and to any subsequent releases unless otherwise
indicated in new editions or technical newsletters. Release 3 runs under the same
operating-system environments that support the current version and modification level.

The changes for this edition are summarized under "Summary of Amendments" following
the list of figures. Technical changes made are indicated by a vertical bar to the left of the
change. These bars will be deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not noted.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication. consult the
latest IBM System/370 Bibliography, GC20-000I, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, P. O. Box 50020,
Programming Publishing, San Jose, California 95150. All comments and suggestions
become the property of IBM.

© Copyright International Business Machines Corporation 1973, 1974, 1975, 1976

PREFACE

This publication gives general information about VS BASIC, a program
product that operates in the following virtual storage environments:

• mM VS Personal Computing (VSPC)

• C~S (Conversational Monitor System) of VM/370

• TSO (Time Sharing Option) of VS2

VS BASIC also runs under the batch environments of OS/VSl, OS/VS2, and
DOS/VS.

Included are descriptions of VS BASIC language capabilities, as well as
information on operating system environments and compatibility
considerations.

For additional information on VS Personal Computing (VSPC), refer to VS
Personal Computing (VSPC) for OS/VS and DOS/VS: General
Information. GH20-9070.

This publication is intended as an aid in evaluation and planning; it is not
meant for the BASIC terminal user or batch programmer.

Preface 3

CONTENTS

Preface ... 3

Figures .. 7

Summary of Amendments, Number 3 9
Summary of Amendments, Number 2 10
Summary of Amendments, Number I 11

Introduction .. .13

VS BASIC .. 15
Highlights of the Language 16

Arithmetic Capability 16
Character Handling Capabilities 16
Array Handling Capabilities 16
Program, File, and Terminal Input/Output Facilities 17
Record-Oriented File Capability 18
Intrinsic Functions and Internal Constants 19
Read-Only Internal Variables 19
User-Defined Functions 19
Program Segmentation 19
Program Control Statements 20
Program Error Handling 20

Interactive Debugging 21

Language Statements and Debugging Summary 23

Operating Environments .. 31
Programming Systems ~ 31

Characteristics of a Time-Sharing Environment 31
VSPC (VS Personal Computing) 32
TSO (Time Sharing Option) 32
CMS (Conversational Monitor System) 33

Characteristics of a Batch Environment 33
Compatibility with Other IBM BASIC Products 34

Cross Language Data Exchanging 35
Exchanging Data with VSPC FORTRAN 35
Exchanging Data with APL 36

I Compatibility with Previous Releases 36

Reference MateriaJ ... 37

Index .. 41

Contents S

FIGURES

Figure 1. VS BASIC Language Elements 24
Figure 2. VS BASIC Language Statements 25
Figure 3. VS BASIC Matrix Operations 27
Figure 4. VS BASIC Intrinsic Functions 28
Figure 5. VS BASIC Internal Constants 29
Figure 6. VS BASIC Debugging Subcommands 29

I Figure 7. VS BASIC Read-Only Internal Variables 29
Figure 8. Data Type Compatibility 35

Figures 7

Page of GC28-8302-S
Revised April 21, 1978
By TNL GN26-0902

SUMMARY OF AMENDMENTS

April 1978

Service Changes

Number 4

A reference to the general information manual for the user's system has been
added to the section "Operating Environments ."

Information about VSPC Release 2 has been added to the section "VSPC
(VS Personal Computing)" under "Characteristics of a Time-Sharing
Enviromment. "

Number 3

Release 3, October 1976

Input/Output Facilities

New statements, INPUT FROM and PRINT TO, provide the ability to
retrieve input-type data from a user's file and to direct output, usually printed
at the terminal, to a user's data file.

Relative-Record File Extensions

VS BASIC support of VSAM files has been extended to include support of
relative record-oriented files.

Error Handling During Program Execution

Operators/Mnemonics

VS BASIC error handling facilities are extended through the addition of the
ON statement and read-only internal variables to provide information relative
to errors occurring at execution time.

The addition of the character mnemonics to the relational, logical, and
character operators extends the use of the operators to terminal keyboards
without special characters. The special characters and mnemonics can be used
interchangeably.

Buffered-Ahead Terminal Input

This new capability allows the VS BASIC user to enter input data to satisfy
the request of more than one INPUT statement on a single input line.

New Statements and Intrinsic Function

The new language statements are; INPUT FROM, ON, OPTION, and PRINT
TO. The intrinsic functions table has been updated to incorporate the CHR
function.

Summary of Amendments 9

SUMMARY OF AMENDMENTS

10 VS BASIC General Information

Date of Publication: September 1975
Form of Publication: GC28-8302-3

VSPC support of VS BASIC

New: Program Feature

Number 2

VS BASIC can now run under the VSPC (VS Personal Computing) program
products in OS/VS 1, OS/VS2, or DOS/VS environments, as well as under
CMS (Conversational Monitor System) and TSO (Time Sharing Option).

The debugging feature available under CMS and TSO is not available under
VSPC.

As of Release 3 of VM/370, CMS will support VSAM.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of the publishing date are indicated by a
vertical bar to the left of the text. These bars will be deleted at any
subsequent republication of the page affected.

SUMMARY OF AMENDMENTS

Date of Publication: May 1974
Form of Publication: Revision GC28-8302-1

Among the changes included in this edition are the following:

• A new table containing a summary of matrix operations

• An expanded discussion of job control statements for the batch
environments OS/VS, DOS/VS, and CMS

Number 1

• A new reference material chapter describing the publications that support
the VS BASIC product

• A restriction in the use of the RESET statement under DOS/VS

• An increase in the printed format of short-precision items from six digits to
seven digits

• A number of minor changes in the description of language features and
operating environments

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of the publishing date are indicated by a
vertical bar to the left of the text. These bars will be deleted at any
subsequent republication of the page affected.

Summary of Amendments II

INTRODUcnON

During the last several years, BASIC has gained wide acceptance as a
valuable programming language. Originally developed at Dartmouth College
to encourage non-programmers to use computers for simple problem-solving
operations, BASIC has since come out of the classroom and into other fields.
Simple to learn, its elements can be mastered by the beginner in a matter of
hours. Designed for interactive systems, it is ideally suited to the
conversational environment of the typewriter-like terminal connected to a
central computer. The occasional user-the person who sometimes fmds a
computer helpful for problem-solving, but who does not consider himself a
programmer-will find it ideal. The professional programmer will fmd that its
wide range of programming capability allows him to develop sophisticated
programs quickly and effectively.

The ease of use, and the effectiveness, of BASIC may best be illustrated
through an example. The formula to compute compound interest is:

A=P(l +R/IOO)l

where P is the principal, R is the rate of interest, and t is the number of years.
A represents the amount available at the end of t.

The short program below shows how the user at a terminal can enter a
number for the principal and a number for the annual interest rate, compute
the amount available at the end of each year for twenty years, and print the
amounts.

100
110
120

INPUT P,R
PRINT 'AT END OF YEAR:
FOR T=1 to 20

130 LET A = P*(1+R/100)**T
140 PRINT USING 145,T,A
145 ## $###.##
150 NEXT T
160 END

AMOUNT AVAILABLE IS:'

Introduction 13

14 VS BASIC General Information

If the user were to specify the numbers 200 and 5.25 as the principal and
interest rate respectively, the program would produce results like the
following:

AT END OF YEAR: AMOUNT AVAILABLE IS:
1 $211.00
2 $222.60
3 $234.85
4 $247.76
5 $261.39
6 $275.77
7 $290.93
8 $306.93
9 $323.82

10 $341.62
1 1 $360.41
12 $380.24
13 $401.15
14 $423.21
15 $446.49
16 $471.04
17 $495.95
18 $524.28
19 $553.12
20 $583.54

VSBASIC

VS BASIC provides a powerful and responsive version of this programming
language. The extensive facilities offered by VS BASIC address the scientific,
engineering, commercial, and educational problem-solving needs of
businesses, schools, and public agencies. Among these facilities are:

• Arithmetic capability in short- and long-precision, permitting arithmetic
operations on variables and arrays.

• Character handling capabilities that permit different character lengths and
the ability to search character strings.

• Array handling operations for both numeric and character one- and
two-dimensional arrays.

• Input/output facilities that provide great flexibility in accessing input data
and in formatting output data.

• Record-oriented file facilities that allow record processing in direct or
sequential fashion.

• A set of intrinsic functions performing often-needed arithmetic and
character operations.

• User-defined functions that can be defined in one statement or over a
group of statements.

• Program segmentation capability that allows more than one BASIC
program to be executed in sequential order.

• Program control capability that enables the user to maintain control over
program flow.

• Program error handling capabilities that allow the user to receive control
when errors occur during program execution.

In addition, the VS BASIC processor under CMS and TSO provides an
interactive debugging facility to permit the user to dynamically debug a
program at the terminal. VSPC does not provide the debug facility.

VS BASIC is designed to operate in virtual storage environments. It operates
in the time-sharing environments:

• IBM VS Personal Computing (VSPC)

• CMS under VM/370

• TSO under VS2

It also operates as a batch compiler under OS/VS 1, OS/VS2, DOS/VS, and
CMS batch. Program compatibility is thus assured for users who may decide
at some later time to migrate from one system to another.

Record-oriented file facilities or VSPC stream or record facilities use VSAM
(Virtual Storage Access·Method). VSAM is IBM's high-performance access
method for use with direct-access files.

VS BASIC IS

Highlights of the Language

Arithmetlc Capability

Character HandIIDg CapabUltles

16 VS BASIC Generallnfonnation

This section briefly describes some of the language facilities available.

In addition to operations that perform addition, subtraction, multiplication,
division, and exponentiation, VS BASIC enables the user to perform matrix
identity, inversion, and transposition.

The VS BASIC user can enter numbers in three forms: integer, for whole
numbers, fixed-point, for decimal numbers, and floating-point; for extremely
large or small numbers that require exponents.

Users can enter values in short-form precision, providing seven significant
digits of precision, and in long-form precision, providing fifteen significant
digits.

To enable the user to conveniently handle character data and to perform
character string operations, VS BASIC allows him to modify or refer to
portions of character strings, permits different user-defined character lengths
(up to a maximum of 255 characters), and supplies a concatenation facility
and intrinsic functions for character data.

With the IDX intrinsic function, the user can locate a group of characters
within a character string; with the STR function, he can extract or display the
group.

With the ability to define different character lengths, the user is given wide
latitude in structuring character strings. He can format report headings,
construct data tables, annotate report entries, etc. Moreover, with the
concatenation operator (the symbols I I in comli»ination), he can join
together a number of character items; this capability is useful in putting
together listings containing variable information, such as dated headings or
varying combinations of numbers.

In addition, the user can define and access one- and two-dimensional
character arrays.

Array capabilities enable the BASIC user to store, access, and control sets of
related data. In addition to defining one- and two-dimensional arrays, both
numeric and character, the user can redimension arrays by changing the
number of dimensions in an array or the number of elements in a dimension.
He can define arrays explicitly or implicitly: explicitly, by naming the array
and its dimensions in a DIM statement; implicitly, by simply naming and using
the array in the program. Default dimensions of 10 for a single dimensional
array and 100 for a two-dimensional array are assigned to. an implicitly
defined array.

The user can assign a single value to all array members and can change
individual array member values.

Through the ASORT and DSORT keywords in an assignment statement, the
user can sort arithmetic and character arrays in ascending or descending
order.

He can facilitate input/output operations by specifying arrays and scalars on
the same input/output statement as, for example, shown below:

PRINTMATA, 2+B-C, MAT 0$

This statement prints the value of the arithmetic array A (identified as an
array by the word MAT), the value of the scalar expression 2+B-C, and the
value of the character array D$.

Figure 3 in the section "Language Statements and Debugging Summary"
contains a list of matrix operations available.

Program, File, and Terminal Input/Output Fadlides

VS BASIC provides extensive data handling and input/output facilities.

Input data can be accepted from external files (those that exist outside the
BASIC program) with the GET or READ FILE statements, or from the
user's terminal or card reader (depending upon interactive or batch
environment) with the INPUT statement. The DATA statement allows the
user to define data which is then stored in an internal data table; the table is
accessed by the READ statement and pointers to data in the table are reset
by the RESTORE statement to permit repeated access.

Input data can be retrieved from a sequential record-oriented data file by
specifying the INPUT FROM statement. The INPUT FROM statement
causes subsequent INPUT statements to retrieve data from the data file
specified in the INPUT FROM statement.

Buffered-ahead terminal input enables the VS BASIC user to enter, on a
single input line, data values required to satisfy the requests of more than one
INPUT statement. Each group of data values to satisfy a given INPUT
statement is separated by a semicolon. The read-only internal variable
&BUFF is available to provide the user with a means of determining the
number of unprocessed groups of INPUT data in the internal buffer. Using
the read-only internal variable &BUFF with the RESET statement removes
all the data values from .the internal buffer, thereby setting the value of
&BUFF to zero. Internal read-only variables are summarized in Figure 7.

Output data can be directed to the terminal or printer (depending upon
interactive or batch environment) through the PRINT statement, or to
external files through the PUT or WRITE FILE statements. Output can be
formatted using the FORM or Image statements. The FORM statement
allows the user to specify the print line position where a data item is to
appear, to forward space a number of positions on a line, to skip a number of
lines, and to specify such commercial print formats as asterisk protection,
comma insertion, and floating plus, minus, and dollar signs.

Output data can be directed to a sequential record-oriented data file by
specifying the PRINT TO statement. The PRINT TO statement causes
subsequent PRINT statements to add data to the data file specified by the
PRINT statement. This output can subsequently be listed at a printer.

The RESET statement allows the user to reposition a stream-oriented file to
its beginnino: or to its end to add new records. With record-oriented files, the
RESET FILE statement can reposition a file to its beginning or to a particular
record within the file.

The OPEN and EXIT statements provide additional file control. The OPEN
statement permits the user to specify whether a file is to be opened for input

VS BASIC 17

Record-Oriented File Capability

18 VS BASIC General Information

or output operations. The EXIT statement permits him to control end-of -file
and input/output error conditions.

Record-oriented file capability gives the user a method of:

- Accessing records in a sequential manner from the beginning of a file or
from some point within a file.

- Accessing records in a direct manner by matching key fields in individual
records.

\
- Accessing records in a direct manner by specifying the relative-record

number in a record-oriented file.

- Mixing direct and sequential accessing for a file.

Using such input/output statements as READ FILE. REREAD FILE.
WRITE FILE, REWRITE FILE, and DELETE FILE. the user can insert.
retrieve, alter. replace, and erase records in a file, through a terminal or
through batch job submission.

I Record-oriented files can be entry-sequenced, key-sequenced or sequenced
by relative-record number. In an entry-sequenced file. records are stored in
the order in which they are written, that is. in sequential order. In a
key-sequenced file, records are stored according to keys. A key is a unique
character value that identifies the record. When the user wishes to retrieve a
record from a key-sequenced file. he tells the system which key to look for
and the system returns the record with the matching key. In relative-record
files, records are loaded into fixed-length slots. The relative-record number
identifies that slot and the record that occupies that slot. With the
relative-record file direct access facility. a user can retrieve a particular record
directly by specifying its relative-record number. For many applications.
direct processing is faster and more efficient than sequential file processing.
and allows the user to move forward and backward through a file as his needs

I require. The user can ~till process a key-sequenced file or relative-record file
sequentially, either in strict sequential order or by stepping through the file.
sequentially selecting records and skipping others. Moreover. sequential
processing can begin from the beginning of the file or from some record
within the file.

Entry-sequenced files are read sequentially from the beginning of the file.

With record-oriented file capability, the VS BASIC user is given a powerful
programming capability. He is able to access records in files created by other
users, is able to share with other users the files that he creates. and thus is
able to communicate with users of other languages. such as COBOL and
PL/I.

Note: Because VSPC record-oriented files are nonkeyed, VS BASIC
record-oriented file capabilities associated with gaining access to records by
key are not supported with VSPC data files. Keyed access capability under

I VSPC may be achieved via external files. VSPC data files may be accessed
directly by specifying their relative-record number.

Intrinsic Functions and Internal Constants

Read-Only Internal Variables

User-Dermed Functions

VS BASIC intrinsic functions and internal constants simplify mathematical
and character string operations. An intrinsic function is a routine supplied by
VS BASIC that returns a particular value, such as the sine of a number. By
specifying the name of the function in a BASIC statement, the user calls the
routine to perform that specific action. An internal constant is an arithmetic
constant having a predefined value. By specifying the name of the constant in
a BASIC statement, the user causes that value to be made available to his
program, thereby making it unnecessary for him to define the value himself.

Among the many mathematical functions available are SIN, COS, TAN,
MAX, MIN, and SUM. Character handling functions include STR and lOX.
Some functions-TIM, DAT, CLK, and CPU, to perform clock and date
manipulations-are useful in accounting procedures, in printing report
headings, and in obtaining computer usage times. Figure 4, in the section
"Language Statements and Debugging Summary," contains a complete list of
VS BASIC intrinsic functions.

Installation-written functions that are to be used in many applications can be
installed in the library of intrinsic functions and can thus be made available,
like mM-supplied intrinsic functions, to all users of the library. This capability
provides programming convenience and enables VS BASIC users to share
such functions, thereby enhancing communication between users.

Figure 5 in "Language Statements and Debugging Summary" contains a
complete list of VS BASIC internal constants. Among internal constants
available are &PI for the value of 'IT, &SQR2 for the square root of 2, and,
to address the growing needs of applications performing metric operations,
&INCM to convert inches to centimeters and &GALI to convert gallons to
liters.

VS BASIC provides several read-only internal variables to aid the user in such
operations as buffered-ahead terminal input and program error handling. An
internal variable is a character or numeric value set (changed as necessary by
VS BASIC) that is available to the user in certain operations. Internal
variables can be used with both numeric and relational operators. Among the
internal variables that aid in program error handling are &ERR, which helps
to identify the error, and &FILE, which names the data file related to the
error. Figure 7 lists and summarizes the use of the internal variables.

To enable the BASIC user to define specialized functions not available as
intrinsic functions, VS BASIC permits single-line and multi-line functions and
multiple arguments. The user can define a function and then refer to it by
name in his program, as he would an intrinsic function.

User-defined functions may be character or numeric, and may accept one or
multiple arguments (character and numeric), or even no arguments.

The user can define a function in a single statement or in a group of
statements. The DEF and FNEND statements are used to delimit a multi-line
function, the DEF statement naming the function and marking the beginning
of the group and the FNEND statement marking the end of the group. Any
value to be returned by the function to the program is defined by the
RETURN statement.

VS BASIC 19

Program Segmentation

Program Control Statements

Program Error Handling

20 VS BASIC General Information

To enable BASIC users to execute a number of BASIC programs sequentially,
the CHAIN and USE statements can be used.

By specifying the name of il program in a CHAIN statement, the user
transfers control to that program when the CHAIN statement is executed. By
specifying a character variable in the USE statement, he can receive a
parameter passed from the "chaining" program to the "chained" program.

With the program chaining technique available to him, the VS BASIC user is
able to build modular programs and intermix them at will to meet various
applications. He can develop programs that perform specific operations, can
store them in a library of programs, and can selectively retrieve them for each
particular application, using the same program over and over again in
different applications.

Program control statements enable the user to maintain control over program
flow, that is, let him decide the sequence in which sections of a program are
to be executed.

The IF statement can contain relational and logical operators to test
expressions, and can take alternative action, such as branching to another
statement if a condition is true or changing a variable's value if the condition
is false.

The GOTO statement transfers control either to another statement
unconditionally (simple GOTO), or to one of a set of statements depending
on the value of an expression (computed GOTO). The GOSUB statement
similarly can transfer control unconditionally or to one of a set of statements.
The difference between these statements is that the GOSUB transfers control
to a subroutine; when a RETURN statement is executed, control returns to
the statement following the GOSUB statement.

The FOR and NEXT statements are used to create program loops; these
statements help in coding a program section where a group of operations is to
be repeated.

The VS BASIC user can control errors that occur during program execution
by specifying the action to be taken when a certain error condition is
encountered.

The user can specify error clauses in conjunction with both stream and
record-oriented input/output statements. When errors associated with
input/output operations occur, this facility transfers control to the designated
statement, rather than terminating the program.

With the ON statement the user can identify specific errors to be handled by
the program together with the action to be taken.

Four read-only internal variables- &CODE, &ERR, &FILE, and
&LINE-provide the user with additional error handling capabilities in
determining what the error was and where it occurred. Read-Only Internal
Variables are summarized in Figure 7.

Intel'tlctive Debllpg
An additional capability available to time-sharing VS BASIC users operating
under TSO or CMS is the interactive debugging facility, which simpHfies the
process of debugging a program. Debugging subcommands allow the user to
go through his program at his terminal and trace program execution. He can
start and stop program execution dynamically, establish breakpoints, display
and alter program values, control logic flow, monitor the frequency of
execution of program statements, monitor arithmetic operations, and
experiment with different corrections to program errors. Figure 6, in the
section "Language Statements and Debugging Summary," contains a
complete list of the debugging subcommands.

With interactive debugging, the VS BASIC user under eMS or TSO can
isolate any area of a program that is giving trouble. Because he can control
logic flow during execution, he can often check out the "fix" at the same time
he changes the program-without changing the source code or recompiling
until he is satisfied that he has corrected the problem. The interactive
debugging facility is not available under VSPC.

VS BASIC 21

LANGUAGE STATEMENTS AND DEBUGGING
SUMMARY

The VS BASIC language consists of language elements and statements,
I intrinsic functions, internal constants and, internal variables. The interactive
debugging facility under CMS and TSO consists of system-like subcommands
used at program execution time.

Figure 1 briefly summarizes VS BASIC language elements. Language
statements are summarized in Figure 2. Matrix operations available with the
language are summarized in Figure 3.

Intrinsic functions are routines supplied by VS BASIC which can be referred
to during program execution without being defined in the BASIC program.
Included are mathematical functions for computing square roots, for obtaining
logarithmic, trigonometric, maximum and minimum values, and for
performing other operations; character functions for string handling
operations; and miscellaneous functions for converting Fahrenheit to
centigrade and vice versa, for counting the number of data items processed by
input/output statements, for returning date and time information, and for
other operations. Intrinsic functions are summarized in Figure 4.

Internal constants are arithmetic constants whose value is predefined in the
VS BASIC language. Internal constants are summarized in Figure 5.

The VS BASIC interactive debugging facility is made available to the user if
he specifies the TEST option in the system RUN, EDIT, or VSBASIC
command (these commands are discussed in the section "Operating
Environments"), Debugging subcommands are summarized in Figure 6.

I Internal variables are listed and summarized in Figure 7.

Language Statements and Debuggins Summary 23

Data Types • Arithmetic: Constants, variables and armys, in integer, fixed-point, and
floating-point, with precision in short and long form.

Constants are specified as fixed numeric values.
Examples: 4,255,25.3, 3E6

Variables are named by a single letter or a letter followed by a digit.
Examples: A, BI

Arrays are na med by a single letter. Array clements arc specified
by an array name followed by one or two subscripts enclosed in
parentheses.
Examples: ('(4), X(5,5)

• Character: Constants, variables and arrays, from I to 255 characters.

Character constants arc enclosed in single or double quotation marks.
E:xalllples: 'one', "two", "literal data 456"

Variables are named by a letter followed by a dollar sign (S).
I::xample: A$

Arrays arc named by a letter followed by a dollar sign ($). Array
clements are specified by an array name followed by one or two
subscripts enclosed in parentheses.
t:1."amp/('s: Q$ (10), B$ (3,5)

Operators • Arithmetic: + Addition and unary plus
- Subtraction and unary minus
• Multiplication
/ Division
tor ** Exponentiation

• Relational: < or .LT. Less than
>or.GT. Greater than
= or .EQ. Equal to
'" or .NE. or <> Not equal to
"or .LE. or < = Less than or equal to
;;. or .GE. or > '" Greater than or equal to

• Logical: &or.AND. And
10r.OR. Or

• Character.· II or .CAT. Concatenation

Expressions • Arithmetic: Simple arithmetic variable
Subscripted arithmetic array reference
Arithmetic constant
Function reference
Internal constant
Appropriate combinations of the above separated by arithmetic

operators and parentheses
I::xamples:

A
A+Bl+C(3)-4
(X·SQR(B))/&PI

• Character: Simple character variable
Subscripted character array reference
Character constant
Function reference
Appropriate combinations of the above separated by concatenation

operators and parentheses
Examples:

Q$ (4) II Q$ (5) D • is date required'

Figure 1. VS BASIC Language Elements

24 VS BASIC General Information

Statement Use

array assignment Assigns values to arithmetic and character arrays; performs addition, subtraction,
multiplication, and such functions as identity, transposition, inversion, and sorting.
(These operations are summarized in Figure 3.)

scalar assignment Assigns values to character or arithmetic variables and array members.

CHAIN Terminates execution of current program and begins execution of another program.

CLOSE (FILE) Deactivates the stream-oriented or record-oriented file(s) specified in the statement.
• ;

DATA Defmes input for an internal data table.

DEF Defines a user function.

DELETE FILE Deletes records from a rccord-oriented file.

DIM Defines the dimensions of an array and the length of a character variable.

END Defines the end of the program.

EXIT Specifies action to be taken for exceptional execution conditions encountered
during input/output processing.

FNEND Marks the end of a group of statements defining a user function (used with DEF).

FOR Initializes a loop (used with NEXT).

FORM Controls format of printed output or record-oriented input/output.

GET I Reads input from a stream-oriented file into scalar and array variables.

GOSUB (simple) Transfers control unconditionally to a subroutine (used with RETURN).

GOSUB (computed) Transfers control to one of several subroutines. depending on the value of a test
expression (used with RETURN).

GOTO (simple) Transfers control unconditionally to a statement.

GOTO (computed) Transfers control to one of several statements, depending on the value of a test
expression.

IF Tests a condition and transfers control or executes a statement based on the
results of the test.

Image Controls format of printed output (used with PRINT).

INPUT I Reads input from an input device into scalar and array variables.

INPUT FROM Provides the ability to retrieve input-type data from a record-oriented data file.

NEXT Delimits a loop (used with FOR).

ON Defines certain types of error conditions that can be handled within a VS BASIC
program at execution time.

OPEN [FILE) Activates the stream-oriented or record-oriented file(s) specified in the statement.

OPTION Provides for the selection of specific options that can be applied to a VS BASIC
program.

PAUSE Interrupts program execution.

PRINTl Prints expression values from scalar and array variables to an output device.

PRINT TO Provides the ability to direct output, normally printed at the terminal, to a record-
oriented data file.

PRINT USINGl Prints values in a user-chosen format.

Figure 2 (Part 1 of 2). VS BASIC Language Statements

Language Statements and Debugging Summary 25

Statemellt Use

PUT1 Writes output into a stream-oriented file.

READI Reads data from an internal data table (used with DATA).

READ FILEI Reads records from a record-oriented file into scalar and array variables.

REM Inserts remarks into a source program.

REREAD FILE 1 Makes accessible again the last record read from a record-oriented file.

RESET IFILEJ Repositions stream-oriented files to their beginning or end (except for DOS/VS
files, which cannot be positioned to their end), and repositions record-oriented
files to their beginning or to a particular record.

RESTORE Resets an internal file (used with READ and DATA).

RETURN Returns control from a subroutine (used with GOSUB) or from a user function (used
with DEF).

REWRITE FILE I Alters existing records in a record-oriented file.

STOP Terminates program execution.

USE Receives a value passed by another program (used with CHAIN).

WRITE FILEt Writes records to a record-oriented file.

t Matrix data in the statement is identified by the word MAT.

Figure 2 (Part 2 of 2). VS BASIC Language Statements

26 VS BASIC General Information

Operation Example I::xplanation

Scalar Assignment 1 MAT A = (J+5) The value of the expression in parentheses
MAT AS = ('XYZ') is assigned to all the members of the array

named A (or AS).

Array Assignment I MATA=8 The value in each member of array B (BS) is
MAT AS= BS assigned to the corresponding member of array

A(A$). Both arrays must have identical
dimensions; for instance, A(S,3) and 8(5,3).

Array Addition MATA=8+C The value in each member of array C is added to
the value in the corresponding member of array
B and the result is assigned to the corresponding
member of array A. All arrays must have
identical dimensions; for instance, A(4,3),
B(4,3), and C(4,3).

Array Subtraction MATA=B-C The value in each member of array C is subtracted
from the value in the corresponding member of
array B and the result is assigned to the
corresponding member of array A. All arrays
must have identical dimensions; for instance,
A(4,3), B(4,3), and C(4,3).

Scalar Multiplication MATA=(3)*B The value in each member of array B is multiplied
by the expression in parentheses and the result
is assigned to the corresponding member of
array A. Both arrays must have identical
dimensions; for instance, A(5,3) and B(S,3).

Matrix Multiplication MAT A =B" C Each element of array A is the dot product of
the corresponding row of the fust array and
corresponding column of the second array.

Identity Function MATA=IDN An identity matrix is assigned to array A. Array
A "'lust be a square array; for instance, A(S,s).

Inverse Function MAT A = INV(B) The inverse matrix of array 8 is assigned to array
A. Both arrays must be square and have identical
dimensions; for instance, A(4,4) and 8(4,4).

Transpose Function MAT A .: TRN(B) The transpose matrix of array 8 is assigned to
array A. Both arrays must be two-dimensional,
with the number of rows in one array equal to
the number of columns in the other; for
instance, A(S,3) and B(3,S).

Ascending Sort 1 MAT A=ASORT(B) The values in array 8 (BS) are sorted in ascending
MAT AS=ASORT(BS) order and· the result is assigned to array A (AS).

80th arrays must have identical dimensions: for
instance, A(S,3) and B(5,3).

Descending Sort 1 MAT A=DSORT(B) The values in array 8 (8S) are sorted in
MAT AS=DSORT(BS) descending order and the result is aSsigned to

array A (AS). Both arrays must have identical
dimensions; for instance, A(5,3) and 8(5,3).

I Can be performed on both arithmetic and character arrays. All other functions are performed on arithmetic arrays
only .

. Figure 3. VS BASIC Matrix Operations

Language Statements and Debugging Summary 27

Functions Returning an Arithmetic Value

Function Meaning

ADS (X) Finds the absolute value of X.
ACS(X) Fmds the arccosine (in radians) of X.
ASN(X) Fmds the arcsine (in radians) of X.
ATN(X) Finds the arctangent (in radians) of X.
CEN(X) Converts corresponding Fahrenheit degrees X into Centigrade degrees.
CNT Counts the number of data items successfully processed by the last I/O statement.
COS (X) Finds the cosine of X radians.
COT (X) Finds the cotangent of X radians.
CPU Fmds program execution time in seconds.
CSC(X) Finds the cosecant of X radians.
DEG(X) Finds the number of degrees in X radians.
DET(A) Finds the determinant of square arithmetic array A.
DOT (A,B) Finds the dot product of arithmetic arrays A and B.
EXP(X) Raises the value of e to power X.
FAR (X) Converts corresponding Centigrade degrees X into Fahrenheit degrees.
HCS(X) Finds the hyperbolic cosine of X.
HSN (X) Finds the hyperbolic sine of X.
HTN(X) Finds the hyperbolic tangent of X.
IDX(C,D) Finds the position relative to 1 of the character string D within string C.
INT(X) Returns the integer part of the real number X.
JDY (C») Converts the current date or the Gregorian date C into Julian form.
KLN(C) Finds the length, in bytes, of an embedded key in file C.
KPS (C) Finds the byte position relative to 0 of the start of an embedded key in file C.
LEN (C) Fmds the length of the character string C. less trailing blanks.
LGT(X) Finds the common logarithm (base 10) of X.
LOG (X) Finds the natural logarithm (base e) of X.
LTW(X) Finds the binary logarithm (base 2) of X.
MAX (Xl'··· Xn) Finds the maximum value in the list of variables.
MIN (Xl.·.· Xn) Finds the minimum value in the list of Variables.
NUM(C) Returns an arithmetic value obtained by converting the character string C.
PRD(A) Finds the product of the elements in arithmetic array A.
RAD(X) Finds the number of radians in X degrees.
RND «X») Generates random numbers using X. or a default value, as a seed.
RLN(C) Returns the length of the last record referenced in file C.
SEC (X) Finds the secant of X radians.
SGN(X) Returns the sign of X (in the form +1. -I. or 0).
SIN (X) Finds the sine of X radians.
SQR(X) Finds the square root of X.
SUM (A) Finds the sum of the elements in arithmetic array A.
TAN (X) Finds the tangent of X radians.
TIM Finds the time of day in seconds since midnight.

Functions RetuminS a Owacter Value

Function Meaning

CHR(X) Converts the scalar numeric expression to its equivalent character form.
CLK. Produces the time of day as an ciplt-i:hardcter string in the form hh:mm:ss, to indicate

DAT (X»)
hours, minutes, seconds.
Converts the current date or the Julian date X into Gregorian form.

STR (C,x(,Y» Extracts the portion of the character string C beginning with position X for a length
of Y or until the end of the string.

Notes; The c1wacters X and Y represent arithmetic scalar arguments.
The c1wacters A and B represent arithmetic array arguments.
The characters C and D represent character scalar arguments.
The STR intrinsic function can also be used as a pseudo variable; that is, it can be used in Dlace of a
variable to receive data. Thus, it may appear to the left of the equal sign in a scalar assignment
statement, or in an input data list.

Figure 4. VS BASIC Intrinsic Functions

28 VS BASIC General Information

Short·Form Long·Form
Name Use Value Value

&'PI Arithmetic value of n. 3.141593 3.14159265358979

&.E Arithmetic value of the base e in the 2.718282 2.71828182845905
system of natural logarithms.

&'SQRl Square root of 2. 1.414214 1.41421356237309

&.INCM Centimeters to the inch. 2.540005 2.54000500000000

&'LBKG / Kilograms to the pound. .4535924 .45359237000000

&.GAll Liters to the gallon. 3.785412 3.78541178400000

Figure 5. VS BASIC Internal Constants

Subcommand Use

AT Sets breakpoints in the program where control can be given to the user or to a list of
sub commands.

END Terminates the debugging session.

GO or GOTO Resumes execution of the VS BASIC program.

HELP Provides user information about syntax and function of debugging subcommands.
(TSO only)

IF Tests program conditions and executes either a user-specified subcommand or the
HALT option to give control to the user.

LIST Displays the value of data items.

L1STBRKS Lists the current breakpoints.

L1STFREQ Usts the number of times VS BASIC statements have been executed. and statement
numbers of statements never executed.

NEXT Sets a breakpoint at the next executed VS BASIC statement.

OFF Removes breakpoints.

OFFWN Ends monitoring of a condition specified by the WHEN subcommand.

QUALIFY Specifies the program unit (main program or user function) to which debugging
subcommands are to apply.

RUN Resumes execution of the VS BASIC program without further debugging.
At end of the prolUBm. a prompt will be given for possible program restart.

SET Assigns values to data items.

TRACE Traces program flow of control.

WHEN Monitors changes of values of specified variables and array elements and interrupts
program execution when a specified condition occurs.

WHERE Produces a traceback of the program's flow of control.

Figure 6. VS BASIC Debugging Subcommands

Language Statements and Debugging Summary 29

Name Meal/ing

&BUFF Contains the number of unprocessed groups of input data values.

&CODE Contains the system r.eturn code resulting from VSAM error.

&ERR Contains the error message number for identifying the particular error that was
encountered.

&FILE Contains the name of the data file associated with the error condition.

&LlNE Contains the line number of the statement where the error occurred.

&REC Contains the number of the last record successfully referred to in a relative
record-oriented file.

Figure 7. VS BASIC Read-Only Internal Variable

30 VS BASIC General Information

Page of GC28·8302·5
Revised April 21, 1978
By TNL GN26-0902

OPERATING ENVIRONMENTS

Programming Systems

The VS BASIC processor is designed to operate in a virtual storage system, in
both time-sharing and batch environments. It is a single-pass compiler,
enhancing compile-time performance. It accepts up to 1000 source statements
and produces executable code that can be run immediately after compilation
or that can be stored as an object program and run at some later time.

Under VSPC, the VS BASIC processor is reentrant in the VSl, VS2, and
DOS/VS environments. Under VSl and VS2, VS BASIC is reentrant. Under
TSO, the VS BASIC processor is reentrant except for the interactive
debugging module. Under DOS/VS, the processor is reentrant except for the
executor module.

Where the processors are reentrant, they may be placed in the link pack area
or the shared virtual area under DOS/VS so that many users can
simultaneously refer to them.

Under CMS, the VS BASIC processor is not reenterable.

Because all environments in which VS BASIC operates can be virtual, real
storage requirements are largely a function of performance desired. Typical
program compilation and execution without debugging requires approximately
128K of virtual storage for the processor and user program. With debugging,
approximately 256K of virtual storage is required.

VS BASIC runs on the processing units that are supported by the
environments described below. See the general information manual of the
system you are using for a complete list.

In a time-sharing environment, VS BASIC operates under the following
systems:

• VSPC in VS1, VS2, or DOS/VS environments

• CMS as a conversational system component of VM/370

• TSO as a subsystem of VS2

In a batch environment, VS BASIC operates under VS 1, VS2, DOS/VS, and
CMS.

Record-oriented file capability or VSPC file facilities require the use of
VSAM (Virtual Storage Access Method).

Characteristics of a Time-Sharing Environment

The time-sharing VS BASIC user can do the following at his terminal:

• Build and execute programs.

• Modify programs freely through line insertions, deletions, and
replacements.

• Save programs in private libraries or in system storage areas.

• Dynamically debug his programs (CMS and TSO only).

Operating Environments 31

Page of GC28-8302-S
Revised April 21, 1978
By TNL GN26-0902

VSPC (VS Personal Computing)

TSO (Time Sharing Option)

32 VS BASIC General Information

Although each time-sharing environment offers somewhat different operating
features; they provide similar facilities for the VS BASIC user. These
environments are briefly described below.

VSPC is a program product that will operate in OS/VS 1, OS/VS2, or
DOS/VS environments.

VSPC offers users at remote conversational terminals a choice of responsive
tools to meet their needs for personal computing. VSPC provides a
comprehensive set of functions for data and source program manipulation
that is tailored for end users without extensive data processing knowledge.
With VSPC a user can also submit jobs for batch processing and retrieve job
output at the terminal.

To the VS BASIC user it offers:

• Source text preparation and storage through LOAD and SA VB commands
and the line entry, editing, and library facilities.

• Compilation and execution through the STORE and RUN commands.
Through these commands, the user can instruct the VS BASIC compiler to
store the object code; to run a previously compiled program or to compile
and execute a program.

A method of chaining to programs written in VSPC FORTRAN or VSPC
PL/I or to VSPC command list files (CLIST).

• Security through the filename and LOGON passwords and the PROTECT
command.

• Record processing of external VSAM files (entry-sequenced,
key-sequenced, and relative-record).

• Access to VSPC files in either a direct or a sequential manner.

With VSPC Release 2, the VS BASIC user is offered:

• Full screen editing and program function key support for greater usability
of the IBM 3270 Display System.

• Record processing of external VSAM files with primary or alternate
indexes.

TSO is a general-purpose time-sharing subsystem of VS2. It provides a
powerful command language through which a user at a terminal can access
and share the facilities of VS2. Its range is such that it can be used by the
professional programmer and the novice.

To the VS BASIC user it offers:

• Source text preparation and storage through line entry, editing, and system
library facilities.

• Compilation and execution through either the VSBASIC, EDIT, or RUN
command. Through these commands, the user can instruct the VS BASIC
compiler whether to store a successfully compiled program, whether to
execute a program immediately after compilation, and whether to make
available the interactive debugging facility.

Page of GC2II-lS3U~-!)
Added April 21, 1978
By TNL GN26-0902

• Data file control through ALLOCATE, DELETE (stream-oriented files
only), FREE (stream-oriented files only), and RENAME commands. VS
BASIC files follow TSO naming conventions in the form:

userid.name.DATA.

• Security through the LOGON password and the PROTECT command.

• Record processing of VSAM files in a direct or sequential manner.

Operating Environments 32.1

CMS (CoDversational Monitor System)

CMS is the conversational system component of VM/370. It gives the user
control over a virtual computing system; that is, the user controls all system
facilities at the terminal as though he were sitting at an operator's console.
CMS is directed to scientific and technical problem solvers, research groups in
schools, and commercial users developing programs at terminals.

To tbe VS BASIC user it offers:

• Source text preparation and storage through line entry, editing, and library
routines.

• Compilation and execution through the VSBASIC command. Like the TSO
commands, this command allows the user to instruct the VS BASIC
compiler whether to store a successfully compiled program, whether to
execute a program immediately after compilation, and whether to make
available the interactive debugging facility.

• Data file control through ERASE and RENAME commands. VS BASIC
data files are processed by specifying the fIletype VSBDATA.

• Security through the LOGON command to VM/370 and the maintenance
of the user's virtual machine.

I. Record processing of VSAM files in a direct or sequential manner.

Characteristics 0/ a Batch Environment
A batch environment is typified by the use of a centralized computing
installation to process jobs in a batched, or serial, manner; that is, jobs are
grouped and then run by the system one by one in sequential order. The user
communicates with a batch system through the job control statements he
submits with his program. Job control statements used to execute a VS
BASIC program are the following.

Under VSl and VS2:

1. The JOB statement, to identify the user to the system.

2. The EXEC statement, to call the VS BASIC processor.

3. The following DD statements, to specify information about the VS BASIC
program:

a. A DD statement to name the VS BASIC program and to specify its
location in the system's resources.

b. CONTROL, to describe a file of RUN commands. The RUN command
is the batch counterpart of the time-sharing RUN, EDIT, or VSBASIC
commands. It indicates whether the program is a source program or an
object program, whether a compiled program should be stored. and
whether a program should be run immediately after compilation. A
RUN command is required for each VS BASIC program. The
CONTROL DD statement may describe a file of many RUN
commands. thereby allowing sequential execution of many VS BASIC
programs.

c. SYSPRINT. to describe the output data set that is to receive system
messages and output from VS BASIC PRINT statements.

d. Other DD statements. as required. to describe the object program being
stored, and the files used by the program. such as data for INPUT

Operating Environments 33

statements, files used by other input/output statements, and programs
called by CHAIN statements.

Under DOS/VS:

1. The JOB statement.

2. The EXEC statement.

3. The following statements containing information about the VS BASIC
program:

a. DLBL and EXTENT statements, to describe files on direct access
devices.

b. TLBL, to describe files on magnetic tape.

c. ASSGN statements, as required, to assign files to physical devices.

In addition, the system logical units SYSIPT and SYSLST are required:
SYSIPT, to describe the RUN command, the VS BASIC program, and
input data to the program; and SYSLST, to.describe the device that is to
receive system messages and output from VS BASIC PRINT statements.

UnderCMS:

1. The JOB statement.

2. The SET statement, to optionally specify user options controlling system
timing, printing, and punching resources.

3. The /* statement, to denote the end of input to the CMS Batch Facility.

In addition, the CP command LINK may be needed to communicate data
information to the system.

Compatibility with Other mM BASIC Products

34 VS BASIC General.lnformation

All correct programs running under ITF: BASIC will run under VS BASIC as
long as the maximum literal pool size is not exceeded.

Files created under OS and TSO ITF: BASIC can be read by VS BASIC
provided the filename is specified in the form 'userid.DATA(name)'. Files
created under DOS ITF: BASIC must first be converted to conventional DOS
format; the ITF CONVERT command may be used.

All correct programs running under the CALL-OS BASIC processor
supported by CMS will run under VS BASIC after adjustment of file
input/ output statements. CMS editing commands can be used to change these
statements to conform to VS BASIC syntax.

Additionally, under CALL-OS BASIC, if an OPEN statement is issued for a
file already open, the file is repositioned to its beginning. Under VS BASIC,
an OPEN statement for a file already open is ignored. CALL-OS BASIC
programs containing such OPEN statements should be converted by adding a
CLOSE statement before the OPEN statement.

Files created by CALL-OS BASIC under CMS can be read by VS BASIC
after being converted to VS BASIC format using the file conversion utility
supplied with VS BASIC.

All correct programs running under VS BASIC (non-VSPC) will run under
VS BASIC for VSPC after adjustment of file input/output statements and

program names in CHAIN statements. These changes can be made using the
VSPC editing facilities.

Non-VSPC VS BASIC files can be imported from sequential data sets to
VSPC by using the VSPC Service Program.

The MAT ZER and MAT CON functions, which exist in earlier BASIC
processors, are replaced in VS BASIC by the facilities of the MAT assignment
statement. However, as a compatibility convenience, these functions are
available in VS BASIC so that existing BASIC programs containing
references to them will not require change in order to run under VS BASIC.

Cross Language Datil Exchanging

Data can be exchanged using VSPC files, provided the data types written are
readable by the receiving language.

Exchanging Data With VSPC FORTRAN

VS BASIC record-oriented files can be read by FORTRAN formatted and
unformatted record I/O statements. Similarly FORTRAN files written by
formatted or unformatted I/O statements can be read by VS BASIC
record-oriented I/O statements. However, it is the user's responsibility to
ensure that the data types match. Figure 8 summarizes the compatibility.

VS BASIC Data Type

S(short precision floating point)

LOong precision floating point)
or unconVerted arithmetic variable

PIC notation (numeric with
exponential)

PIC (numeric with decimal point)

PIC (numeric)

C (character)

Figure S. Data Type Compatibility

Note the following rules:

FORTRAN
Fonnatted

A(4) format
into real *4

A(S) format
into real *S

DorFformat

Fformat

I format

A format

FORTRAN
Unfonnatted

Real *4 item

Real"'S item

Any data item

I. VS BASIC cannot read FORTRAN formatted or unformatted complex or
logical data.

2. FORTRAN cannot read:

• PD (packed decimal)

• NC (zoned decimal)

• PIC with editing characters (*, commas, slashes, or currency signs).

3. VS BASIC will be able to read FORTRAN direct access files in sequential
mode.

4. VS BASIC record files can be read using FORTRAN list-directed,
statements, but the constrairits required for success are strict and their use
is not recommended.

5. VS BASIC writes arrays in row major order; they must, therefore, be
transposed before they can be used by any FORTRAN array operator.

Operating Environments 35

Exchanging Data With APL

6. VS BASIC format control specifications X[n] or POS[n] can be used to
skip over unreadable data items.

7. VS BASIC stream I/O facility is similar in many ways to FORTRAN's
list-directed I/O. However, VS BASIC does not recognize record
boundaries except where they are n~cessary for writing the file. As the
position of the record boundary cannot be determined easily, it is normally
only possible for FORTRAN to read a VS BASIC stream file by the use of
one READ statement which causes FORTRAN to read VS BASIC records
until it fills aU the data items. VS BASIC can read a FORTRAN
list-directed record provided that neither COMPLEX nor LOGICAL data
types are used. It should be noted that VS BASIC writes arrays in row
major order and FORTRAN in column major order.

APL's EBCDIC files can be read by VS BASIC I/O statements. For stream
GET statements, the APL file must be written so that each field is separated
by a blank. For record-oriented I/O statements, each character vector written
by APL will appear as a separate record.

VS BASIC's stream files can be read by APL but the character vector read
must be decoded by the receiving function. For files containing only numeric
data, the EXECUTE operator may be used. Each record of a VS BASIC
VSPC file can be read into a character vector. Each item in the record should
be in EBCDIC if it is to be interpreted by APL and the receiving function
must decode it.

Compatibility with Previous Releases

36 VS BASIC General Information

VS BASIC Release 2 programs for which object programs were saved must
be recompiled with the Release 3 processor.

Those few user programs which depend upon a PRINT USING statement
with a reference to an IMAGE to force the preceding data to be printed, will
need to be modified. One way is through the addition of a PRINT statement
which will then cause the preceding data to be printed.

REFERENCE MATERIAL

B is /01' BASIC

VS BASIC Language

The System/370 VS BASIC processor is supported by the publications
described below. A summary of the available literature supporting IBM
System/370 will be found in IBM System/370 Bibliography, GC20-0001.

These publications, SC28-8300 (for TSO) and SC28-8310 (for CMS),
provide a tutorial introduction to the use of VS BASIC under a time-sharing
system. They are intended for users with no prior programming experience.
Elementary BASIC programming concepts and language statements are
presented in a simple step-by-step approach. Language features are gradually
introduced through meaningful examples. Material of a detailed nature is not
described here; such material is left to the VS BASIC Language manual.

These publications can be used alone or in conjunction with instructor
availability.

This publication, GC28-8303, describes the statements in the VS BASIC
language. The publication is divided into two main parts. The first presents
the language in a tutorial manner, proceeding from simple to complex
concepts. This part takes the reader through various steps in planning a
program, and fits language statements into those steps. Numerous examples
are included. The second part is a reference section, presenting BASIC
language syntax and rules of usage. VS BASIC statements are organized into
alphabetical order for easier retrievability. Implementation dependencies are
noted, so that the reader is aware of how a particular operating environment
affects the use of the language.

This publication is intended to be used with an accompanying Terminal User's
Guide or Programmer's Guide for the appropriate environment. Conceptually,
the Language manual and the accompanying Guide can be thought of as
separate sections of one document that gives the user all the information
needed to program VS BASIC in a particular environment. The
accompanying Guide will include a master index containing Language manual
entries as well as entries to material in the Guide.

Some knowledge of programming concepts is required for use of this
publication. The novice programmer will find the publication B is for
BASIC useful before proceeding to this publication.

VS BASIC TSO Tenninal User's Guide

This publication, SC28-8304, is directed to the VS BASIC user programming
in the TSO environment. It is intended to be used with the VS BASIC
Language manual to provide a complete guide to using VS BASIC under
TSO.

The publication introduces the structure and commands of the TSO
environment and is a primary source of information for the commonly-used
system command formats, the debug facility, and VS BASIC language
implementation dependencies under TSO.

No previous experience with TSO is required for use of this publication.

Reference Material 37

,
VS BASIC (TSO) Reference Summary

This reference card, SX28-6385, provides a handy guide to using VS BASIC
under TSO. It summarizes language syntax, rules of usage, VS BASIC
debugging subcommands, and the most commonly-used TSO system
commands.

The card is intended to supplement the Language/TSO Terminal User's
Guide combination so that the user need rarely refer to either book once he's
achieved a working familiarity with VS BASIC under TSO.

VS BASIC CMSTerminal User's Guide

This publication, SC28-8306, is directed to the VS BASIC user programming
in the CMS environment, both interactive and batch. It is intended to be used
with the VS BASIC Language manual to provide a complete guide to using
VS BASIC under CMS,

The publication introduces the structure and commands of the CMS
environment and is a primary source of information for the commonly-used
system command formats, the debug facility, and VS BASIC language
implementation dependencies under CMS.

No previous experience with CMS is required for use of this publication.

VS BASIC (CMS) Reference Summary

This reference card, SX28-6386, provides a handy guide to using VS BASIC
under CMS. It summarizes language syntax, rules of usage, VS BASIC
debugging subcommands, and the most commonly-used CMS sy&tem
commands.

The card is intended to supplement the Language/CMS Terminal User's
Guide combination so that the user need rarely refer to either book once he's
achieved a working familiarity with VS BASIC under CMS.

VS BASIC fot;,rspc: Terminal User's Guide

This publication is directed to the VS BASIC user programming in the VSPC
environment. It is intended to be used with the VS BASIC Language
manual to provide a complete guide to using VS BASIC for VSPC.

lbe publication introduces the structure and commands of the VSPC
environment and is a primary source of information for the commonly-used
system command formats and VS BASIC language implementation
dependencies under VSPC.

No previous experience with VSPC is required for use of this publication.

VS BASIC/or .VSPC: Reference Summary

38 VS BASIC General Information

This reference card provides a handy guide to using VS BASIC for VSPC. It
summarizes langllage syntax, rules of usage, and the most commonly-used
VSPC system commands.

The card is intended to supplement the Language/VSPC Terminal User's
Guide combination so that the user need rarely refer to either book once he's
achieved a working familiarity with vs BASIC for VSPC.

VS BASIC OS/VS and DOS/VS Programmer's Guide

This publication, SC2S-S30S, is directed to the VS BASIC user programming
in the batch environment of VSl, VS2, or DOS/VS. It is intended to be used
with the VS BASIC Language manual to provide a complete guide to using
VS BASIC in these batch environments.

In addition to containing information about the use of the VS BASIC
processor, this publication is a primary source of information for that subset
of the OS/VS or DOS/VS job control language needed to compile and
execute a VS BASIC program.

No previous experience with either OS/VS or DOS/VS is required for use of
this publication.

VS BASIC Installlltion Reference Material

VS BASIC Program Logic

This publication, SC2S-S309, provides installation personnel with information
on how to install the VS BASIC processor under OS/VS, DOS/VS, VSPC,
TSO, and CMS. Included with the step-by-step procedure for each
environment are storage information and system programmer considerations.

This publication is essentially supplemental, in that it assumes the availability
of or familiarity with other system publications pertaining to the use of the
environment under which VS BASIC will operate (for example, system
generation reference publications, storage estimates, VM/370 Planning
Guide.

This publication, L Y2S-6422, describes the internal structure and method of
operation of the VS BASIC processor, and is meant to be used for purposes
of program maintenance.

Program logic manuals are available to licensees only and are provided for the
use of program maintenance personnel. They are not necessary,for the
installation or use of the program product. Contact your mM representative
for further information.

Reference Material 39

INDEX

'IT, as an internal constant 29

A
APL 36
arithmetic assignment statement 25
ari thmetic capabili ties 16
arithmetic data types 24
arithmetic expressions 24
arithmetic intrinsic functions

summary of 28
array addition 27
array assignment statement 25,27
array capability 16,17
array subtraction 27
arrays

arithmetic 24
character 20
matrix operations with 27

ASSGN DOS/VS control statement 34
assignment statement 25,27

B
batch environment

characteristics 31,33-34
batch input/output 17
buffered-ahead terminal input 17

c
CALL-OS BASIC 34
character capabilities 16
character data types 24
character expressions 24
character intrinsic functions

summary of 28·
CHAIN statement 25,20,35

need for DO statement in batch environment 33
CLOSE statement 25
CMS (Conversational Monitor System)

CALL-OS BASIC under 34
characteristics 33
file conversion utility 34
restriction with record-oriented files 31

commercial print support 17
compatibility

file 34
program 34,]5,36

concatenation of character data 16,24
constants,

arithmetic 24
character 24

CONTROL DD statement 33
• control statements 20
Conversational Monitor System see CMS
cross language data exchanging 35-36

D I"

data exctranging .,35-36
DATA statement '2.5,17 '
data type compatibility 35
data tYpes, summary, of, 24
DO l!tatementsln batch processing 33
deb.ugging capability 21

summary of subcommands 29
TEST option 23

.DEF statement 2-',19
·DELETE FILE siatement 25,18
DlM'stai~~eRt 25
DLBJ.. DO.S/VS ~oPtrol' s~tement 34
DOS ITF:BASIC.' 34 ..

. DOS/VS '31,)4'
rcisirli:tiol\ ~ p'c>sitio!'ing'files to their end 26

.E
EDIT TSO command 23,32-
END statement 25 .
entrY-sequeri~ files 18
~XEC: statementin batch environment 33-34
EXIT statement 25,17-18
.exprell~ctns ~. .' . '.

ari~me\ic·.24. ~
c~aract~r 1 34; ,

EXTENT. DOS/VS cOlltml statement 34
•. error handling .20

, ,
file con~rsion utility u,CMS 34
files "

corqpatibilitywith other BASIC products 34
naming' conventions, CMS and TSO 32-33
r~d-otiented:-' 18 .
stream-orledted 17 .. '

: FNEND statement' '25,'19-20
_ " 'FOR'st~tement~S.20- .

.• FO~ sJa,tement. 25.,17 .
'FOI.tTR/.N, 3S ; • ,. "

, functions .
instaUation-wrjtten 19
intrinsic 19 '

, ~mmary of '28 . "
user-defined 1~20

"'G, . ','

. OET,statement Z~.i.7 ..
, " GQS\1B,statement 25,20

:OOTQ staten1en\ "2$;ZO ' . " .

.1
identity function operation 27
IF statement 25,20
Image statemellt is. 17 .
INPUT statement 2S .
: need'forDD~tetl}ent in batch environment 34
INPUT 'FROM,statement '17,25

~ ~. ~ .. . ,

Index 41

input/output facilities 17
buffered ahead terminal input 17
INPUT FROM statement 17,25
need for control statements in batch environment 34
PRINT TO 17,25
statements, summary of 25-26

installation-written functions 19
interactive debugging capability 21

summary of subcommands 29
TEST system option 23

internal constants 29,19
internal variables 19,30
intrinsic functions 28,19-20
inverse function operation 27
ITF: BASIC 34

J
job control statements for batch environments

CMS 34
DOS!VS 33-34
OS!VS 33

JOB statement in batch environments 33-34

K
key-sequenced files 18

L
Language manual, summary of 37
language exchanging 35-36
language statements, summary of 23-30
length of character data 16
LINK CP command 34
link pack area

compiler modules in 31
long-form precision 16,35
loops

FOR statement use 20

M
MAT assignment statement 35,26
MAT CON function 35
matrix arithmetic capability 27,16
MAT ZER function 35
mnemonics 24
multi-line functions 19

N
NEXT statement 25,20

o
ON statement 20,25
OPEN statement 25,17-18

CALL-OS restriction 34
operators

arithmetic 24
character 24
logical 24
mnemonics 24

. OPTION statement
OS ITF:BASIC 34

42 VS BASIC General Information

output facilities 17-18
need for control statements in batch environment 33-34

PRINTTO 17,25
statements, summary of 25-26

p
PAUSE statement 25
PIC notation 35
precision, short and long form 16,35
PRINT statement 25,17

need for control statement in batch environment 33-34
PRINT TO 17,25
PRINT USING 25
program compatibility 34,15
program control statements 20
Program Logic manual, summary of 39
program, sample 13
program segmentation 20
Programmer's Guide, summary of 39
programming systems

summary of 31-34
pseudo variable, STR 28
publications, summary of 37-39
PUT statement 26,17

R
READ statement 26,17
READ FILE statement 26,17
read-only internal variables 19,30
record-oriented input/output 18

summary of statements 25-26
redimensioning arrays
reference publications 37-39
relative-record files 17
REM statement 26
REREAD FILE statement 26,18
RESET statement 26,17
RESTORE statement 26,17
RETURN statement 26,18
REWRITE FILE statement 26,18
RUN command in batch environment 33-34
RUN TSO command 32
RUNVSPC 32

s
sample program 13
scalar assignment statement 25,27
scalar multiplication 27
segmentation capabilities 20
SET CMS control statement 34
short-form precision 16,35
sorting operations 27
statements

summary of 23-30
STOP statement 26
storage requirements 31
STR intrinsic function, as a pseudo variable 28
stream files 15,36
subcommands, debugging 29
SYSIPT DOS/VS logical unit 34
SYSLST DOS/VS logical unit 34
SYSPRINT DO statement 33

T
terminal input/output 17-18
Terminal User's Guides, summary of 37-38
TEST option 23

interactive debugging facility 21,29
time-sharing environments 31-33
TLBL DOS/VS control statement 34
transposition function operation 27
TSO ITF:BASIC 34
TSO (Time Sharing Option)

characteristics of 32

u
USE statement 26,20
user-defined functions 19-20

v
variables,

arithmetic 24
character 24
internal 19,30

Virtual Storage Access Method (VSAM) 15.31
VM/370 15.31
VS 15
VS BASIC Language manual. summary of 37
VSAM (Virtual Storage Access Method) 15.31
VSBASIC command 32-33.22
VSBDAT A filetype 33
VSPC (VS Personal Computing)

CALL-OS BASIC under 34
characteristics of 32

VSPC FORTRAN 35-36

w
WRITE FILE statement 26.18

Index 43

VS BASIC General Information
GC28-8302-5

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of pUblications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name and address,
(including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U,S,A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

GC28-8302-5

Fold and Staple
,•..•..................•...........•........•.••••••••...•..................•••.•...•••••••• ~ •.•..••••.....• ~

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N.Y.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

, .. .
Fold and Staple

==-::. =® - ---~ - ~--- -. --.-- -- ------------- _.-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9. North Tarrytown. N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N.Y., U.S.A. 10601

<
(I)

Ol

~
n
G')
CD
:l
CD ..,
!!!..
:;--0 ..,
3
~.
0
:l

"'0
:::l.
:l ...
CD
Co

:l

C
en
~
G')
0
N ;
0

~ . ..

m:~~echnical Newsletter This Newsletter No. GN26.0902

Date April 21, 1978

Base Publication No. GC28·8302·5

Prerequisite Newsletters None

VS BASIC
General Information

© Copyright IBM Corp. 1973,1974,1975,1976

This technical newsletter, a part of Release 3 of VS BASIC, program number 5748-XX I,
provides replacement pages for the subject publication. These replacement pages remain
in effect for subsequent releases unless specifically altered.

Pages to be inserted and removed are:

cover, edition notice
9,10
31-32.1 (32.1 added)

Each technical change is marked by a vertical bar to the left of the change.

Summary of Amendments

Changes included in this newsletter are summarized under "Summary of Amendments"
following the list of figures.

Note: Please file this cover letter at the back of the publication to provide a record
of changes.

IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose, California 95150

Printed in U.S.A.

GC28-8302·5

- H ----- ----- -~-- - - ------------- _ . -
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue . White Plains. N .Y. 10604

IBM World Trade Americas / Far East Corporation
Town of Mount Pleasant. Route 9, North Tarrytown, N .Y .. U .S.A . 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N .Y., U .S .A . 10601

<
(J)

CD
»
(J)

()

C>

'" :J
It> ...,
III

:J
o
3
III
~.
o
::l

." ...,
:J

'" 0-

:J

C
en
»

	000
	001
	002
	003
	005
	007
	009
	010
	011
	013
	014
	015
	016
	017
	018
	019
	020
	021
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032.0
	032.1
	033
	034
	035
	036
	037
	038
	039
	041
	042
	043
	replyA
	replyB
	upd1
	xback

