
Order Number:
SC26-4109-2

Program Number:
5740-SM1

Release Number:
8.0

I I i' il 1'' I 1' ; 1' I ~ ~1' I <.. I 1' :, -~~ ', I ;1' ;,' (;~ (.~ :
I I _ I ' 11 .I ';·:-~ I - J

' •] "] '. . I)'] D 1·-,.
'·\. i I I : I i ' iJ ~ I i ~ .

SC26-4109-2 Program Number 5740-SMl

Release 8.0

Third Edition (March 1986)

This is a major revision of, and makes obsolete, SC26-4109-l.

This edition applies to Release 8.0 of IBM DFSORT, Program Product 5740-SMl, and to
any subsequent releases until otherwise indicated in new editions or technical newsletters.

Because this book is primarily designed for new users of this product, specific changes
normally indicated by a vertical bar to the left of the change do not appear in this edition.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30x.x,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program may
be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked there.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

©Copyright International Business Machines Corporation 1983, 1985, 1986

ii

Preface

The objective of this book is to help you get started using the DFSORT program.
It shows you step-by-step how to write sort, merge and copy applications, and
teaches you some techniques for using DFSORT most efficiently.

Organization

This book has eleven chapters and two appendixes:

Chapter 1
"What is DFSORT?" gives an overview of what DFSORT can do.

Chapter 2
"Doing a Simple Sort" shows you how to do basic sort applications. For these
applications and for those in Chapters 4 through 7 and 10, you will learn how to
execute DFSORT by using job control language (JCL).

Chapter 3

"Tailoring the Input File" explains how to select from the input file only the
records that are relevant to your application.

Chapter 4

"Summing Values in Records" explains how to sum the values in two or more
records.

Chapter 5

"Reformatting Records Using OUTREC" shows you how to reformat records
after they are processed (sorted, merged, or copied), for example, how to insert
blanks between fields to make a printout more legible.

Chapter 6
"Reformatting Records Using INREC" explains how to reformat records before
they are processed; for example, you will see how to eliminate unnecessary fields
to make the processing more efficient.

iii

Preface

Chapter 7

"Merging Files" explains how to merge presorted files.

Chapter 8
"Calling DFSORT from a Program" explains how to call DFSORT from a
program written in PL/I or COBOL.

Chapter 9
"Overriding Installation Defaults" explains how to override defaults established
when DFSORT was installed.

Chapter 10

"Copying Files" explains how to specify copy applications on the SORT,
MERGE, or OPTION statement.

Chapter 11

"Using DFSORT Efficiently" explains ways to get the best performance from
DFSORT.

Appendix A

"Sample File" illustrates a file used throughout the book as input for the
examples. The illustration folds out so that you may easily refer to both the input
file and the examples at the same time.

Appendix B

"Processing Order of Control Statements" contains a flowchart showing the
order in which DFSORT control statements are processed.

Related Publications

For more detailed information on DFSORT, see

• DFSORT Application Programming: Guide, SC33-4035

For an explanation of DFSORT defaults, see

• DFSORT Planning and Installation, SC33-4034

For a quick reference, see

• DFSORT Reference Summary, SX33-8001

In addition, you may want to refer to your JCL reference manual and the
programming guides for COBOL and PL/I.

iv

Preface

Summary of Amendments

Release 8.0, March 1986

A main feature added to DFSORT that affects this manual is the ability to:

• Copy data sets without performing any sorting or merging operation. You can
use COPY with most of the same control statements, exits, and options
available when sorting or merging.

Release 7.1,. June 1985

New features added to DFSORT that affect this manual are the ability to:

• Keep the first record when summarizing identically collating records when
doing a sort or merge (see the chapter on "Summing Values in Records").

• Call DFSORT from VS COBOL II programs (see the chapter on "Calling
DFSORT from a Program").

•Use the VS COBOL II FASTSRT compile time option, which enhances
performance (see the chapters on "Calling DFSORT from a Program" and
"Using DFSORT Efficiently").

v

Contents

1. What Is DFSORT?

Sorting Records

Merging Records

Copying Records

What Do You Code?.

2. Doing a Simple Sort

Writing the SORT Statement
Sorting by Multiple Fields
Continuing a Statement
Sorting in Descending Order

Writing the JCL

3. Tailoring the Input File

Writing the INCLUDE Statement

Writing the OMIT Statement

Allowable Comparisons for INCLUDE and OMIT

Formats for Writing Constants

4. Summing Values in Records

Writing the SUM Statement

Overflow

Deleting Records with Duplicate Control Fields

5. Reformatting Records Using OUTREC

Writing the OUTREC Statement
Deleting Fields
Reordering Fields
Inserting Binary Zeros
Inserting Blanks

6. Reformatting Records Using INREC

Writing the INREC Statement

Writing Other Statements with INREC

Preventing Overflow When Summing Values

1

2

3

4

4

5

7
9

11
11

13

15

16

20

21

22

23

24

28

28

31

32
32
34
34
35

37

38

39

40

vii

Contents

7. Merging Files 43

Writing the MERGE Statement 46

Writing the JCL 46

8. Calling DFSORT from a Program 49

Passing Control Statements 50

Calling from a COBOL Program 50
Sorting Records 50
Merging Records 5 3

Using VS COBOL II FASTSRT 55

Calling from a PL/I Program 56

9. Overriding Installation Defaults 59

Using the JCL EXEC Statement 60

Using the OPTION Statement 60

10. Copying Files 63

Specifying COPY on the SORT, MERGE, and OPTION Statements 64

Using COPY with INCLUDE and INREC 65

Writing the JCL 66

11. Using DFSORT Efficiently 67

Be Generous with Main Storage 68

Use High Speed Disks 68

Use INREC 69

Use INCLUDE or OMIT 69

Execute DFSORT with JCL 69

Use FASTSRT with VS COBOL II 69

Appendix A. Sample File 71

Appendix B. Processing Order of Control Statements 73

Index 75

viii

Figures

1. Sort by Course Department in Ascending Order 7

2. Data Format Codes 8

3. Sort by Multiple Fields 10

4. Sort by Department in Ascending Order and Price in Descending Order 12

5. Comparison Operators 17

6. Books for which Number Sold Is Greater than Number in Stock 18

7. Books by COR for which Number Sold Is Greater than Number in Stock 19

8. Sort, Omitting Books Not Required for Classes 20

9. Allowable Field-to-Field Comparisons 21

10. Allowable Field-to-Constant Comparisons 21

11. Sum of Prices for English Department 25

12. Sum of Prices for Each English Class 26

13. Sums of Number in Stock and Number Sold for Each Publisher 27

14. List of Publishers, Deleting Duplicates 29

15. Writing Only Publisher, Number in Stock, and Number Sold Fields 33

16. Reordering the Fields 34

1 7. Inserting Binary Zeros 3 5

18. Output After Inserting Blanks 36

19. Input Records After INREC 39

20. Using INREC to Write Only Publisher, Number in Stock, and Number Sold 39

21. Padding Summary Fields 40

22. New Number in Stock and Number Sold Fields 41

23. Bookstore File Sorted by Department and Title 44

24. Five New Records Sorted by Department and Title 45

25. Updated Bookstore File 45

26. Bookstore File as a Source for a Copy Application 65

27. List of Computer Texts Copied from Bookstore File 66

ix

1

1 What Is DFSORT?

DFSORT (Data Facility Sort) is a program developed by IBM to help you
organize information. You can use it for a task as simple as alphabetizing a list
of names, or as an aid in complex tasks such as taking inventory or running a
billing system. Through its record-level editing capability, DFSORT gives you
the ability to perform data management functions at the record level.

Sorting Records

The primary function of DFSORT is to sort records. Sorting is arranging records
in either ascending or descending order within a file.

Ascending Order

Descending Order

Records are sorted using either EBCDIC, the standard DFSORT collating
sequence, or the ISCII/ ASCII sequence established by the International
Organization of Standards and the American National Standards Institute.

The EBCDIC and ISCII/ ASCII collating sequences for the most common
symbols are:

EBCDIC

Space
¢.<(+I &!$*);-w
-/,%_>?:#@'="
a through z
A through Z
0 through 9

ISCil/ASCil

Space
I"#$%&'()*+,-./
0 through 9
:;<=>?@
A through Z
[\]/\ \

a through z
{ I l -

The data in the records can be in any of the formats used with the IBM
System/370 (for example, EBCDIC character, ISCII/ ASCII character, decimal,
and binary).

2

1 What Is DFSORT?

While you are sorting, you can:

• Include or exclude certain records from the input file.

• Reformat records.

• Sum values in records.

• Alter the collating sequence.

Merging Records

Another major function of DFSORT is to merge records.

Merging is combining two or more files of sorted records to form a single file of
sorted records.

1~6J~0) 12345678910

While you are merging, you can:

• Include or exclude certain records from the input file.

• Reformat records.

• Sum values in records.

• Alter the collating sequence.

3

1 What Is DFSORT?

Copying Records

A third major function of DFSORT is to copy records without any sorting or
merging taking place.

You can copy files in much the same way that you would sort or merge them.

12345 ... 12345
While copying, you can:

• Include or exclude certain records from the input file.

• Reformat records.

What Do You Code?

You can do all of the above by coding a small set of DFSORT control statements
that take the place of programs with complex logic. In fact, you can do a basic
sort, merge, or copy by writing only one control statement (or, if calling
DFSORT from a COBOL program, you can do a basic sort or merge by writing
a COBOL SORT or MERGE statement).

You can execute DFSORT either by using the job control language (JCL) EXEC
statement or by calling it from a program written in COBOL, PL/I, or assembler.

4

5

2 Doing a Simple Sort

You can begin by doing a basic sort and using the JCL EXEC statement to
execute it.

First of all, turn to the sample file in Appendix A. All the examples in this
manual will refer to this file as input, so you should become familiar with it.
(Note that the examples are for fixed-length records only; for information on
processing variable-length records, see DFSORT Application Programming:
Guide).

You will see that each record in the bookstore file has 12 fields (book title,
author's last name, and so on).

To sort records, you choose one or more fields that you want ordered. These
fields are called control fields (or, in COBOL, keys).

For example, if you choose the course department field as a control field and
specify ascending order, the records will be sorted as shown in Figure 1. For the
sake of brevity, not all the record fields are shown in Figure 1; however, notice
that each entire record is sorted, not just the control field.

Also notice that records having equal control fields (in this case, having the same
department) appear in their original order. For example, within the Computer
Science department (COMP), the title Video Game Design still appears before
Computers: An Introduction.

Whether records with equal control fields should appear in their original order or
whether DFSORT may randomly order them can be determined at either
installation time (as a default) or at execution time. In our examples, we'll
assume that the default is for records with equal control fields to appear in their
original order.

6

2

BYTE

Doing a Simple Sort

Book Course Price
Title Dept.

1 75 110 114 170 173

LIVING WELL ON A SMALL BUDGET 9900

PICK'S POCKET DICTIONARY 295
INTRODUCTION TO BIOLOGY BIOL 2350
SUPPLYING THE DEMAND BUS IN 1925

STRATEGIC MARKETING BUS IN 2350

COMPUTER LANGUAGES COMP 2600

VIDEO GAME DESIGN COMP 2199
COMPUTERS: AN INTRODUCTION COMP 1899

NUMBERING SYSTEMS COMP 360

SYSTEM PROGRAMMING COMP 3195

INKLINGS: AN ANTHOLOGY OF YOUNG POETS ENGL 595
EDITING SOFTWARE MANUALS ENGL 1450

MODERN ANTHOLOGY OF WOMEN POETS ENGL 450
THE COMPLETE PROOFREADER ENGL 625

SHORT STORIES AND TALL TALES ENGL 1520

THE INDUSTRIAL REVOLUTION HIST 795

EIGHTEENTH CENTURY EUROPE HIST 1790

CRISES OF THE MIDDLE AGES HIST 1200

INTRODUCTION TO PSYCHOLOGY PSYCH 2200

ADVANCED TOPICS IN PSYCHOANALYSIS PSYCH 2600

Figure 1. Sort by Course Department in Ascending Order

Writing the SORT Statement

When executing DFSORT with the JCL EXEC statement, you describe the
control fields, and the order in which you want them sorted, by using a SORT
control statement.

To write a SORT statement that sorts the bookstore records by the department
field (as shown in Figure 1), you:

• Leave at least one blank, and write SORT.

• Leave at least one blank and write FIELDS=.

7

2 Doing a Simple Sort

• Write, in parentheses, and separated by commas:

- Where the department field begins, relative to the beginning of the record
(the first position is byte 1). The department field begins at byte 110.

- The length of the department field in bytes. The department field is 5 bytes
long.

- A code for the data format. The department field contains character data,
which you specify as CH.

(Figure 2 shows the codes for the most common data formats).

- The letter A, which means you want ascending order.

Note: Make sure that the statement is coded between columns 2 through 71.

12 71

SORT FIELDS=(110,5,CH,A)

Beginning of r
_d_ep_a_r_tm~e-nt~fi-el_d~~~~~~~~~~~~~
Length of department
field

Character data

Ascending order

The most common data formats and their codes are:

Data Format

EBCDIC Character
ISCII/ ASCII Character
Binary
Zoned Decimal
Packed Decimal

Figure 2. Data Format Codes

8

Code

CH
AC
BI
ZD
PD

80

2

Department

Course Number

Instructor's Last Name

Instructor's Initials

Title

Doing a Simple Sort

Sorting by Multiple Fields

Within each department, you can further sort the records, by specifying more
control fields.

When you specify two or more control fields, you specify them in the order of
greater to lesser priority.

Note: Control fields may overlap or be contained within other control fields.

Figure 3 shows how the records would be sorted if you specified the following
control fields in the order they are listed:

• Course department

• Course number

• Instructor's last name

• Instructor's initials

• Book title

So, if two records have the same course department, they are sorted by course
number; if they also have the same course number, they are sorted by instructor's
last name; if they also have the same last name, they are sorted by initials; and, if
they also have the same initials, they are sorted by title.

To write a SORT statement that sorts the records as they are shown in Figure 3,
specify the location, length, data format, and order for each of the control fields,
as follows:

SORT FIELDS=(110,5,CH,A, 115,5,CH,A, 145, 15,CH,A, 160,2,CH,A, 1, 75,CH,A)

9

2 Doing a Simple Sort

Book
Title

BYTE 1

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
NUMBERING SYSTEMS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
THE COMPLETE PROOFREADER

75

INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
THE INDUSTRIAL REVOLUTION
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
INTRODUCTION TO PSYCHOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS

Figure 3. Sort by Multiple Fields

Course
Dept.

Course
No.

110 114 115 119

BIOL
BUS IN
BUS IN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

80521
70124
70251
00032
00032
00032
00103
00205
10054
10347
10347
10856
10856
50420
50521
50632
30016
30975

Instr.
Last Name

145 159

GREENBERG
LORCH
MAXWELL
CHATTERJEE
CHATTERJEE
CHATTERJEE
SMITH
NEUMANN
BUCK
MENDOZA
MENDOZA
FRIEDMAN
FRIEDMAN
GOODGOLD
WILLERTON
BISCARDI
ZABOSKI
NAKATSU

Instr.
Init.

Price

160 161 170 173

HC
MH
RF
AN
CL
CL
DC
LB
GR
VR
VR
KR
KR
ST
DW
HR
RL
FL

9900
295

2350
2350
1925

360
2600
1899
3195
2199
1520
1450

625
595
450
795

1200
1790
2200
2600

You can shorten this last statement and still achieve the same result, by
specifying the department and course number together as one field, and the
instructor's last name and initials together as one field. You can specify fields
together whenever they are next to each other and have the same data format.

Department and
Course Number

Instructor's Last Name
and Initials

Title

SORT FIELDS=(110,10,CH,A,145,17,CH,A,1,75,CH,A)

10

2

Department

Price

Doing a Simple Sort

Also, if all the control fields have the same type of data format, you can specify
the data format just once, using the FORMAT= parameter, like this:

SORT FIELDS=(110,10,A,145,17,A,1,75,A) ,FORMAT=CH

Continuing a Statement

If you can't fit your SORT statement (or any other DFSORT statement that we'll
discuss later) between columns 2 through 71, you can continue it on the next
line. If you end a line with a comma followed by a blank, DFSORT will assume
that the next line is a continuation.

The continuation can begin anywhere between columns 2 through 71.

For example:

SORT FIELDS=(110,10,A,145,17,A,
1,75,A) ,FORMAT=CH

Sorting in Descending Order

To sort the records in descending order, specify D instead of A. You can have
some control fields in descending order and others in ascending order. For
example, to sort the departments in ascending order and the prices for each
department in descending order, you write:

SORT FIELDS=(110,5,CH,A,170,4,BI,D)

Figure 4 shows the result.

11

2

BYTE

Doing a Simple Sort

Book
Title

1

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
THE COMPLETE PROOFREADER
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
EIGHTEENTH CENTURY EUROPE
CRISES OF THE MIDDLE AGES
THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
INTRODUCTION TO PSYCHOLOGY

Course
Dept.

75 110

BIOL
BUS IN
BUS IN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

Figure 4. Sort by Department in Ascending Order and Price in Descending Order

12

114

Price

170 173

9900
295

2350
2350
1925
3195
2600
2199
1899

360
1520
1450

625
595
450

1790
1200

795
2600
2200

2 Doing a Simple Sort

Writing the JCL

The JCL you need to do a sort depends on whether you execute DFSORT with
the JCL EXEC statement or call DFSORT from a program. For now, we'll limit
our discussion to executing DFSORT with the JCL EXEC statement.

The JCL statements you need are described below.

I /jobname JOB

The JOB statement signals the beginning of a job. At your installation, you may
be required to specify information such as your name and account number on the
JOB statement.

I I stepname EXEC

The EXEC statement signals the beginning of a job step and tells the operating
system what program to execute. To execute DFSORT, write the EXEC
statement like this:

//stepname EXEC PGM=SORT

I /STEPLIB DD

The STEPLIB DD statement defines the library containing the DFSORT
program. If your DFSORT program is in a system library, you can omit the
STEPLIB statement.

//SYSOUT DD

The SYSOUT DD statement defines the output data set for messages.

//SORTIN DD

The SORTIN DD statement defines the input data set.

I /SORTWKnn DD

The SORTWKnn DD statement defines a work storage data set. For most
applications, one work storage data set is sufficient. (Increasing the number of
work storage data sets does not improve performance.)

I /SORTOUT DD

The SORTOUT DD statement defines the output data set.

//SYSIN DD

The SYSIN DD statement precedes the DFSORT statements.

13

2 Doing a Simple Sort

Below is some sample JCL that will execute DFSORT. It is assumed that the
input data set is cataloged and that the output data set will be cataloged. It is
also assumed that the input and output record lengths are the same. Later, in
Chapter 5, we'll show you how to modify the SORTOUT DD statement if the
record length is changed.

//EXAMP
//SORT
//STEPLIB
//SYSOUT
//SORTIN
//SORTWK01
//SORTOUT
II
//SYSIN

SORT

/*

JOB A492,PROGRAMMER
EXEC PGM=SORT
DD DSN=A492.SM,DISP=SHR
DD SYSOUT=A
DD DSN=BOOKS.INPUT,DISP=OLD
DD UNIT=SYSDA,SPACE=(CYL, (1,1))
DD DSN=BOOKS.OUTPUT,DISP=(NEW,CATLG,DELETE),

SPACE=(CYL, (1,1)) ,UNIT=SYSDA
DD *

FIELDS=(110,10,A,145,17,A,1,75,A),
FORMAT=CH

For more detailed information about executing DFSORT with JCL, see
DFSORT Application Programming: Guide.

14

),

,)

15

3 Tailoring the Input File

Often, only a subset of the records in a file is needed for an application. This
chapter explains how to tailor the input file, selecting only the records that you
need.

By tailoring the file, you can increase the speed of the sort, because the unneeded
records are deleted before the sort begins; the fewer the records, the less time it
takes to sort them.

You tailor an input file by either:

• Specifying on an INCLUDE control statement the records you want included,
or

• Specifying on an OMIT control statement the records you want omitted.

Your choice of the INCLUDE or the OMIT statement depends on which is easier
and more efficient to write for a given application. You may not use both
statements together.

You select the records you want included or omitted by comparing the contents
of a record field with either:

• Another field (for example, you can select records for which the author's last
name is the same as the instructor's last name); or,

• A constant. The constant may be a character string, a decimal number, or a
hexadecimal string (for example, you can select records that have the character
string "HIST" in the department field).

You may also have two or more conditions combined by logical ANDs and ORs.
For example, you can select records that have either "HIST" or "PSYCH" in the
department field.

Note: DFSORT follows these rules for padding and truncation:

• In a field-to-field comparison, the shorter field is padded as appropriate (with
blanks or zeros).

• In a field-to-constant comparison, the constant is padded or truncated to the
length of the field. Decimal constants are padded or truncated on the left;
character and hexadecimal constants are padded or truncated on the right.

Writing the INCLUDE Statement

Suppose that it's the end of the year, and you want to sort by title only the books
that you need to order more copies for the coming year. If the number of copies
sold this year for a particular book is greater than the number in stock, you can
assume you need to order more copies.

16

3

Number Sold

Number in Stock

Tailoring the Input File

To write an INCLUDE statement that selects only the books you need to order:

• Leave at least one blank and write INCLUDE.

• Leave at least one blank and write COND=.

• Write, in parentheses, and separated by commas:

- The location, length, and data format of the number sold field.

- The comparison operator GT (comparison operators are shown in Figure 5).

- The location, length, and data format of the number in stock field.

(You can use FORMAT= when fields have the same data format.)

You may select from the following comparison operators:

EQ
NE
GT
GE
LT
LE

Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

Figure 5. Comparison Operators

You then sort the tailored file by title in ascending order by using the SORT
statement.

You can place the SORT statement either before or after the INCLUDE
statement. Control statements don't have to be in any specific order; however, it
is good documentation practice to code them in the order in which they are
processed. For a flowchart showing the order in which all the control statements
are processed, see Appendix B.

INCLUDE COND=(166,4,BI,GT,162,4,BI)

SORT FIELDS=(1,75,CH,A)

The sorted file is shown in Figure 6.

17

3

BYTE

Tailoring the Input File

Book No. in No. Sold Price
Title Stock Y-to-D

1 75 162 165 166 169 170 173

ADVANCED TOPICS IN PSYCHOANALYSIS 1 12 2600
COMPUTER LANGUAGES 5 29 2600
COMPUTERS: AN INTRODUCTION 20 26 1899
CRISES OF THE MIDDLE AGES 14 17 1200
EDITING SOFTWARE MANUALS 13 32 1450
INKLINGS: AN ANTHOLOGY OF YOUNG POETS 2 32 595
INTRODUCTION TO BIOLOGY 6 11 2350
MODERN ANTHOLOGY OF WOMEN POETS 26 450
NUMBERING SYSTEMS 6 27 360
STRATEGIC MARKETING 3 35 2350
SUPPLYING THE DEMAND 0 32 1925
SYSTEM PROGRAMMING 4 23 3195
THE COMPLETE PROOFREADER 7 19 625

Figure 6. Books for which Number Sold Is Greater than Number in Stock

Now, suppose you want to tailor the input file even further, to sort only the
books you need to order from COR Publishers. In this case, two conditions must
be true: 1) the number sold is greater than the number in stock, and 2) the book
is published by COR. To add this second condition, you can expand the above
INCLUDE statement by adding a logical AND, and comparing the contents of
the publisher field to the character string "COR" (the last section in this chapter
shows how to specify constants). Because the publisher field is four bytes long,
"COR" will be padded on the right with one blank.

INCLUDE COND=(166,4,BI,GT,162,4,BI,AND,106,4,CH,EQ,C'COR')
SORT FIELDS=(1,75,CH,A)

The sorted file is shown in Figure 7.

18

3 Tailoring the Input File

Book Publisher No. in No. Sold Price
Title Stock Y-to-D

BYTE 1 75 106 109 162 165 166 169 170 173

CRISES OF THE MIDDLE AGES COR 14 17 1200
INKLINGS: AN ANTHOLOGY OF YOUNG POETS COR 2 32 595
MODERN ANTHOLOGY OF WOMEN POETS COR 26 450
SUPPLYING THE DEMAND COR 0 32 1925

Figure 7. Books by COR for which Number Sold Is Greater than Number In Stock

As another example, you can sort only the books for courses 00032 and 10347
by writing the INCLUDE and SORT statements as follows:

INCLUDE COND=(115,5,CH,EQ,C'00032' ,OR,115,5,CH,EQ,C'10347')
SORT FIELDS=(115,5,CH,A)

Note: Be aware of the rules for padding and truncation of constants and fields.
In the above example, you cannot substitute C'32' for C'00032', because
character constants are padded on the right with blanks.

19

3

BYTE

Tailoring the Input File

Writing the OMIT Statement

Suppose that you want to sort by title all the books used for courses, but not
those for general reading. In this case, you can write an OMIT statement that
excludes records containing a blank in the course department field.

The format of the OMIT statement is the same as that of the INCLUDE
statement. So, to exclude the general reading books, you write:

OMIT COND= (110 I 5 I CH' EQ' c I I)
SORT FIELDS=(1,75,CH,A)

The sorted file is shown in Figure 8.

Book Course Price
Title Dept.

1 75 110 114 170 173

ADVANCED TOPICS IN PSYCHOANALYSIS PSYCH 2600
COMPUTER LANGUAGES COMP 2600
COMPUTERS: AN INTRODUCTION COMP 1899
CRISES OF THE MIDDLE AGES HIST 1200
EDITING SOFTWARE MANUALS ENGL 1450
EIGHTEENTH CENTURY EUROPE HIST 1790
INKLINGS: AN ANTHOLOGY OF YOUNG POETS ENGL 595
INTRODUCTION TO BIOLOGY BIOL 2350
INTRODUCTION TO PSYCHOLOGY PSYCH 2200
MODERN ANTHOLOGY OF WOMEN POETS ENGL 450
NUMBERING SYSTEMS COMP 360
SHORT STORIES AND TALL TALES ENGL 1520
STRATEGIC MARKETING BUS IN 2350
SUPPLYING THE DEMAND BUS IN 1925

SYSTEM PROGRAMMING COMP 3195

THE COMPLETE PROOFREADER ENGL 625
THE INDUSTRIAL REVOLUTION HIST 795

VIDEO GAME DESIGN COMP 2199

Figure 8. Sort, Omitting Books Not Required for Classes

20

3 Tailoring the Input File

Allowable Comparisons for INCLUDE and OMIT

Figures 9 and 10 show the allowable field-to-field and field-to-constant
comparisons for INCLUDE and OMIT.

Field BI CH ZD PD AC
Format

BI x x
CH x x
ZD x x
PD x x
AC x

Figure 9. Allowable Field-to-Field Comparisons

Field Character Hexadecimal Decimal
Format String String Number

BI x x
CH x x
ZD x
PD x
AC x x

Figure I 0. Allowable Field-to-Constant Comparisons

For example, if you want to sort by author's last name and include only those
books whose author's last name begins with "M", you can compare the contents
of byte 76 (the first byte of the author's last name), which is in character format,
with either a character or hexadecimal string:

INCLUDE COND=(76,1,CH,EQ,C'M')
SORT FIELDS=(76,15,CH,A)

or

INCLUDE COND=(76,1,CH,EQ,X'D4')
SORT FIELDS=(76,15,CH,A)

21

3 Tailoring the Input File

Another example: If you want to sort by number in stock only the books for
which the number in stock is less than 10, you can compare the contents of the
number in the stock field, which is in binary format, to a hexadecimal string:

INCLUDE COND=(162,4,BI,LT,X'OOOOOOOA'
SORT FIELDS=(162,4,BI,A)

Again, remember the padding and truncation rules. If you specified X' OA', the
string would be padded on the right instead of the left.

Fonnats for Writing Constants

The formats for writing character strings, hexadecimal strings, and decimal
numbers are shown below.

Character Strings

The format for writing a character string is:

C'x ... x'

where xis an EBCDIC character. For example, C'FERN'.

If you want to include a single apostrophe in the string, you must specify it as
two single apostrophes. For example, O,NEILL must be specified as
C'O''NEILL'.

Hexadecimal Strings

The format for writing a hexadecimal string is:

X'yy ... yy'

where yy is a pair of hexadecimal digits. For example, X'7FBO'.

Decimal Numbers

The format for writing a decimal number is:

n ... n or ±n ... n

where n is a decimal digit. Examples are 24, +24, and -24.

Decimal numbers must not contain commas or decimal points.

22

L______

:,~ i u 11·n ·1:1Tf:1·11n1:.£:' \~>~:I 11·u·1(~~:'
'· - . ~ .. ,,. . .

i-:11_1 ff!~(((Dfrr0~,.~

23

4

Price

Summing Values
in Records

Suppose that the English department wants to know the total price of books for
all its courses.

You can tailor the file to include only the English department's records by using
the INCLUDE statement, and sum the book prices by using the SORT and SUM
statements.

On the SUM control statement, you specify one or more numeric fields that are
to be summed whenever records have equal control fields (control fields are
specified on the SORT statement). The numeric fields can be in binary, packed
decimal, or zoned decimal format.

So, to sum the prices for all English department's records, you specify the price
field on the SUM statement and the department field on the SORT statement.
By the time SUM and SORT are processed, INCLUDE will have tailored the file
to contain only the English department's records, making the department field
equal for all the records, and allowing the prices to be summed. (For a flowchart
showing the order in which the INCLUDE, SUM, and SORT statements are
processed, see Appendix B.)

When you sum records, keep in mind that two types of fields are involved:

• Control fields, which are specified on the SORT statement, and

• Summary fields, which are specified on the SUM statement.

The contents of the summary fields are summed only when the contents of the
control fields are equal.

Writing the SUM Statement

To write a SUM statement that sums the prices for the English department:

• Leave at least one blank and write SUM.

•Leave at least one blank and write FIELDS=.

• Write, in parentheses, and separated by commas:

- The location, length, and data format of the price field.

The INCLUDE, SORT, and SUM statements are shown below:

INCLUDE COND=(110,5,CH,EQ,C'ENGL')
SORT FIELDS=(110,5,CH,A)
SUM FIELDS=(170,4,BI)

24

4

BYTE

*

Control Field

Summary Field

Summing Values
in Records

When the prices are summed, the final sum is placed in the price field of one
record, and the other records are deleted. Therefore, the result (shown in
Figure 11) is only one record, containing the sum. Whether you know which
record will be kept depends on whether you specified that records should keep
their original order. Remember that, for our examples, we assumed that the
installation default is for records with equal control fields to appear in their
original order. When summing records keeping the original order, DFSORT
chooses the first record to contain the sum.

Book
Title

Course
Dept.

75 110

Price

114 170 173

INKLINGS: AN ANTHOLOGY OF ... ENGL 4640

Figure 11. Sum of Prices for English Department

* Some of the fields in your summation record may not be meaningful, such as
the book title field in Figure 11. In the next chapter, you'll discover how to omit
the fields that are not meaningful.

25

4

Price

BYTE

Summing Values
in Records

Let's suppose now that the English department wants to know the total price of
books for each of its courses. In this case, you still select only the English
department's records using INCLUDE, and specify the price field on the SUM
statement, but you specify the course number on the SORT statement.

INCLUDE COND=(110,5,CH,EQ,C'ENGL')
SORT FIELDS=(115,5,CH,A)
SUM FIELDS=(170,4,BI)

The result, one record per course, is shown in Figure 12.

Book Course
Title No.

75 115

SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF ...

Figure 12. Sum of Prices for Each English Class

26

Price

119 170 173

10054 1520
10347 2075
10856 1045

4 Summing Values
in Records

For an example using two summary fields, assume that for inventory purposes
you want to sum separately the number of books in stock and the number sold
for each of the publishers.

For this application, specify the publisher as the control field on the SORT
statement, and the number in stock and number sold as summary fields on the
SUM statement.

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=(162,4,166,4) ,FORMAT=BI

N __ u_m_b_e_r_i_n_S_t_o_c_k~~~~~~~~~~~__,~
Number Sold

The result, one record per publisher, is shown in Figure 13.

Book Publisher No. in No. Sold Price
Title Stock Y-to-D

BYTE 1 75 106 109 162 165 166 169 170 173 J.

LIVING WELL ON A ... COR 103 161 9900
COMPUTER LANGUAGES FERN 19 87 2600
VIDEO GAME DESIGN VALD 42 97 2199
COMPUTERS: AN INTRO ... WETH 62 79 1899

Figure 13. Sums of Number in Stock and Number Sold for Each Publisher

27

4 Summing Values
in Records

Overflow

When a sum becomes larger than the space available for it, overflow occurs. For
example, if you have a 2-byte binary field (unsigned) containing X'FFFF' and
you add X' 0001 ' to it, overflow will occur, because the sum requires more than
two bytes.

FFFF
0001

10000

If overflow occurs, the two records involved (two records are summed at a time)
will be left unsummarized; that is, their contents will be left undisturbed, and
neither record will be deleted. However, other records will continue to be
summarized. If overflow occurs, DFSORT will give you a warning message.

In some cases, you can correct overflow by padding the summary fields with
zeros, using the INREC control statement. You'll learn how to do this in
Chapter 6.

Deleting Records with Duplicate Control Fields

Apart from summing values, another function of SUM is to delete records with
duplicate control fields.

For example, you may want to list the publishers in ascending order, but you
want each publisher to appear only once. If you used only the SORT statement,
COR would appear seven times (because seven books in the file are published by
COR), FERN would appear four times, V ALD five times, and WETH four
times.

By specifying FIELDS=NONE on the SUM statement, as shown below, only
one record per publisher will be written.

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=NONE

The result is shown in Figure 14.

28

4 Summing Values
in Records

Book Publisher Price
Title

BYTE 75 106 109 170 173

LIVING WELL ON A SMALL BUDGET COR 9900
COMPUTER LANGUAGES FERN 2600
VIDEO GAME DESIGN VALD 2199
COMPUTERS: AN INTRODUCTION WETH 1899

Figure 14. List of Publishers, Deleting Duplicates

29

·' I ; ! : '. · 1 n ~ I) ' a (.' v 'I 'i ; r ~ ~ • I . : I I, ·~·:. ~ ~- '- 1 j I ·J._ t,.,

31

5 Reformatting Records
Using OUTREC

After the records are sorted and before they are written, you can reformat them
by using the OUTREC control statement.

Using OUTREC, you can:

• Delete fields

• Rearrange the order of fields

• Insert zeros before, between, or after fields

• Insert blanks before, between, or after fields

Note: If you use OUTREC to change the record length (by deleting fields or
inserting blanks), be sure to specify the new record length on the SORTOUT DD
statement (using the DCB parameter).

Writing the OUTREC Statement

Deleting Fields

In the last chapter, you used the SUM statement to sum the books in stock and
the books sold for each publisher. Now, using the OUTREC statement, you can
delete all the fields that aren't needed for the application (fields whose contents
are not meaningful in a summation record). Only the publisher, number in stock,
and number sold fields will be written, reducing the output record length to 12
bytes.

To write the OUTREC statement, you:

• Leave at least one blank and write OUTREC.

• Leave at least one blank and write FIELDS=.

•Write, in parentheses, and separated by commas:

- The location and length of the publisher field.

- The location and length of the number in stock field.

- The location and length of the number sold field.

Because the number in stock and number sold fields are next to each other, you
can also specify them together as one field (they need not have the same data
format).

Note that on this statement you do not specify the data format.

32

5

Number in Stock

Number Sold

Number in Stock
and Number Sold

BYTE

Reformatting Records
Using OUTREC

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=(162,4,BI,166,4,BI)
OUTREC FIELDS=(106,4,162,4, 166,4)

Or:

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=(162,4,BI,166,4,BI)
OUTREC FIELDS=(106,4,162,8)

Because the record length was changed, the new length must be specified on the
SORTOUT DD statement. For example:

llSORTOUT DD DSN=BOOKS.OUTPUT,DISP=(NEW,CATLG,DELETE),
II SPACE=(CYL, (1,1) ,UNIT=SYSDA,
II DCB=(LRECL=12,BLKSIZE=12,RECFM=F)

The output is shown in Figure 15.

Publisher No. in No. Sold
Stock Y-to-D

1 4 5 8 9 12

COR 103 161
FERN 19 87
VALD 42 97
WETH 62 79

Figure 15. Writing Only Publisher, Number in Stock, and Number Sold Fields

33

5

BYTE

Reformatting Records
Using OUTREC

Reordering Fields

The fields always appear in the order in which you specify them. So, if you
wanted the number sold to appear before the number in stock, as shown in
Figure 16, you would merely reverse their order on the OUTREC statement.

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=(162,4,BI,166,4,BI)
OUTREC FIELDS=(106,4,166,4,162,4)

Publisher No. Sold
Y-to-D

1 4 5

COR
FERN
VALD
WETH

Figure 16. Reordering the Fields

Inserting Binary Zeros

No.in
Stock

8 9

161
87
97
79

12

103
19
42
62

Building on the last example, assume you want to reformat the records to include
a new 4-byte binary field after the number in stock (beginning at byte 13). In
this case, you could insert binary zeros as place holders for the new field (to be
filled in with data at a later date).

To insert the zeros, write 4Z after the last field, as shown below.

SORT FIELDS=(106,4,CH,A)
SUM FIELDS=(162,4,BI,166,4,BI)
OUTREC FIELDS=(106,4,166,4,162,4,4Z)

This time, you must specify on the SORTOUT DD statement that the new record
length is 16 bytes:

llSORTOUT DD DSN=BOOKS.OUTPUT,DISP=(NEW,CATLG,DELETE),
II SPACE=(CYL,(1,1),UNIT=SYSDA,
II DCB=(LRECL=16,BLKSIZE=16,RECFM=F)

The result is shown in Figure 17.

34

5

BYTE

Reformatting Records
Using OUTREC

Publisher No. Sold No. in X'0 ... 0'
Y-to-D Stock

1 4 5 8 9 12 13 16

COR 161 103 0 ... 0
FERN 87 19 0 ... 0
VALD 97 42 0 ... 0
WETH 79 62 0 •.• o

Figure 17. Inserting Binary Zeros

You can insert binary zeros before, between, or after fields.

Inserting Blanks

If an output data set contains only character data, you can print it by writing the
SORTOUT DD statement, as follows:

//SORTOUT DD SYSOUT=A

You can make the printout more legible by using the OUTREC statement to
separate the fields with blanks and to create a margin.

For example, assume you want to print just the publisher and title fields, and
want the publisher field to appear first. Because most of the publishers' names
fill up the entire 4-byte publisher field, if you don't separate the two fields with
blanks, the publishers' names will run into the titles; also, without a margin, the
publishers' names will begin at the edge of the paper.

The printout can be made more legible by separating the fields with 10 blanks
and creating a margin of 20 blanks.

To insert the blanks, write 1 OX between the two fields, and 20X before the first
field, as shown below. The SORT statement sorts the records by title in
ascending order (remember that SORT or MERGE is always required).

SORT FIELDS=(1,75,CH,A)
OUTREC FIELDS=(20X,106,4,10X,1,75)

The output is shown in Figure 18.

35

5

20 Blanks

10 Blanks

Reformatting Records
Using OUTREC

FERN
FERN
WETH
COR
VALD
WETH
COR
VALD
COR
COR
COR
FERN
COR
VALD
VALD
COR
WETH
FERN
WETH
VALD

Figure 18. Output After Inserting Blanks

ADVANCED TOPICS IN PSYCHOANALYSIS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
CRISES OF THE MIDDLE AGES
EDITING SOFTWARE MANUALS
EIGHTEENTH CENTURY EUROPE
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
INTRODUCTION TO BIOLOGY
INTRODUCTION TO PSYCHOLOGY
LIVING WELL ON A SMALL BUDGET
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
PICK'S POCKET DICTIONARY
SHORT STORIES AND TALL TALES
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
THE COMPLETE PROOFREADER
THE INDUSTRIAL REVOLUTION
VIDEO GAME DESIGN

You can insert blanks before, between, or after fields.

36

37

6 Reformatting Records
UsingINREC

You have just discovered how to reformat records using the OUTREC control
statement. Another way to reformat records is to use the INREC control
statement. With INREC, you can also delete fields, insert blanks or zeros, and
reorder fields.

The difference between OUTREC and INREC is that, whereas OUTREC
reformats records after they are sorted, INREC reformats them before they are
sorted.

Because shorter records take less time to sort, you should generally use INREC
to delete fields, and OUTREC to insert blanks or zeros. However, both these
functions are provided on each statement for flexibility. Because reordering
fields doesn't affect record length, it doesn't matter which statement you use for
this function.

Note: Be sure to specify the final record length on the SORTOUT DD statement
(that is, the length after INREC if you are using just INREC, or the length after
OUTREC if you are using just OUTREC or both INREC and OUTREC).

Writing the INREC Statement

The INREC statement has the same format as the OUTREC statement. So, in
the first example of Chapter 5, where you used OUTREC to write only the
publisher, number in stock, and number sold fields, you could use INREC
instead, as shown below.

INREC FIELDS=(106,4,162,4,166,4)

P-ublish-er --=Ir=
Number in Stock I

Number Sold

Or:

Publisher

Number in Stock and
Number Sold

INREC FIELDS=(106,4,162,8) =r=

38

6

BYTE

BYTE

Reformatting Records
UsinglNREC

Writing Other Statements with INREC

Because INREC reformats the records before they are sorted, the SORT and
SUM statements must refer to the reformatted rather than the original records.

Thus, after INREC, the input records are 12 bytes long (see Figure 19):

Publisher No. in
Stock

4 5

Figure 19. Input Records After INREC

No. Sold
Y-to-D

8 9

You write the SORT and SUM statements like this:

SORT FIELDS=(1,4,CH,A)
SUM FIELDS=(S,4,BI,9,4,BI)

The final result is shown in Figure 20.

Publisher No. in No. Sold
Stock Y-to-D

4 5 8 9

COR 103
FERN 19
VALD 42
WETH 62

Figure 20. Using INREC to Write Only Publisher, Number in Stock, and Number Sold

12

12

161
87
97
79

39

6

BYTE

New Number in Stock
Field

New Number Sold
Field

New Number in Stock
Field

New Number Sold
Field

Reformatting Records
UsingINREC

If you turn to the flowchart in Appendix B, you'll see that the INREC statement
is processed before SORT, SUM, and OUTREC, but after INCLUDE and OMIT.
Therefore, when using the INREC statement, SORT, SUM, and OUTREC must
refer to the reformatted records, and INCLUDE and OMIT must refer to the
original records.

Note: The flow~hart in Appendix B also includes MERGE and OPTION COPY
in the processing order.

Preventing Overflow When Summing Values

In some cases, you can prevent overflow by using INREC to pad summary fields
with zeros. However, this method can't be used for negative fixed-point binary
data, because padding with zeros rather than with ones would change the sign.

If the summary fields in the last example were overflowing, you could pad each
of them on the left with four bytes (binary fields must be two, four, or eight
bytes long), as shown in Figure 21.

Publisher X'0 ... 0' No. in
Stock

1 4 5 8 9

Figure 21. Padding Summary Fields

INREC FIELDS=(106,4,4Z,162,4,4Z,166,4)
SORT FIELDS=(1,4,CH,A)
SUM FIELDS=(S,8,BI,13,8,BI)

X'0 ... 0'

12 13

The output records, each 20 bytes long, are shown in Figure 22.

40

No. Sold
Y-to-D

16 17 20

6

BYTE

Reformatting Records
UsinglNREC

Publisher New No. New No.
in Stock Sold Y-to-D

1 4 5 12 13 20

COR 103 161
FERN 19 87
VALD 42 97
WETH 62 79

Figure 22. New Number in Stock and Number Sold Fields

Note that you cannot use OUTREC to prevent overflow, because it is processed
after summarization.

41

·---~J

'~ • : _, ! '·.~ : i , .~

43

7

BYTE

Merging Files

Generally, the reason for merging files is to add more records to a file that is
already sorted.

For example, assume that the bookstore file is already sqrted by department and
title (see Figure 23), and you want to update it by merging it with a file that
contains five new records, also sorted by department and title (see Figure 24).
Figure 25 shows the resulting file, which is now the updated bookstore file.

Book
Title

1

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES
THE COMPLETE PROOFREADER
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
INTRODUCTION TO PSYCHOLOGY

Figure 23. Bookstore File Sorted by Department and Title

44

75

Course
Dept.

110

BIOL
BU SIN
BUS IN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

114

Price

170 173

9900
295

2350
2350
1925
2600
1899

360
3195
2199
1450
595
450

1520
625

1200
1790

795
2600
2200

7

BYTE

BYTE

Merging Files

Book
Title

INTERNATIONAL COOKBOOK
WORLD JOURNEYS BY TRAIN
ARTS AND CRAFTS OF ASIA
BIOCHEMISTRY
BEHAVIORAL ANALYSIS

75

Figure 24. Five New Records Sorted by Department and Title

Book
Title

1

INTERNATIONAL COOKBOOK
LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
WORLD JOURNEYS BY TRAIN
ARTS AND CRAFTS OF ASIA
BIOCHEMISTRY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES
THE COMPLETE PROOFREADER
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
BEHAVIORAL ANALYSIS
INTRODUCTION TO PSYCHOLOGY

Figure 25. Updated Bookstore File

75

Course
Dept.

110

ART
BIOL
PSYCH

Course
Dept.

110

ART
BIOL
BIOL
BUS IN
BUS IN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH
PSYCH

Price

114 170 173

114

1450
1099
1545
2150
1060

Price

170 173

1450
9900

295
1099
1545
2150
2350
2350
1925
2600
1899

360
3195
2199
1450
595
450

1520
625

1200
1790

795
2600
1060
2200

45

7

Department

Title

Merging Files

To merge files, you write a MERGE control statement and several JCL
statements. Whenever you merge files, you must make sure that their records
have the same format and that they have been previously sorted by the same
control fields. You can merge up to 16 files at a time.

Except for SORT, all statements described so far (INCLUDE, OMIT, SUM,
OUTREC, and INREC) can also be used for a merge application.

Writing the MERGE Statement

The format of the MERGE statement is the same as that of the SORT statement.

So, to merge the bookstore master file with the file containing the five new
records, you write the MERGE statement as shown below:

MERGE ,FIELDS=(110,5,A,1,75,A),FORMAT=CH

Writing the JCL

As in a sort, the JCL you need depends on whether you execute DFSORT with
the JCL EXEC statement or call it from a program. This chapter discusses only
executing DFSORTwith the JCL EXEC statement.

The JCL DD statements for a merge are the same as those for a sort, with the
following exceptions:

•You do not use the SORTWKnn DD statement.

•Instead of the SORTIN DD statement, you use SORTINnn DD statements to
define the input files. You need one SORTINnn DD statement for each file
that will be merged. The value nn can be a number from 01through16.

46

7 Merging Files

To merge the bookstore master file and the file containing the new records, you
can code the following JCL statements (it is assumed that the input files are
cataloged and that the output file will be cataloged):

//EXAMP
//SORT
//STEPLIB
//SYSOUT
//SORTIN01
//SORTIN02
//SORTOUT
II
//SYSIN

MERGE
I*

JOB A492,PROGRAMMER
EXEC PGM=SORT
DD DSN=A492.SM,DISP=SHR
DD SYSOUT=A
DD DSN=BOOKS.INPUT1,DISP=OLD
DD DSN=BOOKS.INPUT2,DISP=OLD
DD DSN=BOOKS.OUTPUT,DISP={NEW,CATLG,DELETE),

SPACE=(CYL, (1,1)) ,UNIT=SYSDA
DD *
FIELDS=(110,5,A,1,75,A),FORMAT=CH

In the next chapter, you'll learn how to call DFSORT from a program.

47

(,,',~.{lrnff' 1·~) 1·~;':·,(()f~ 1. n
ft1r(OlTi_1 ,~1 rP1i'O}flr!·{•TT1

49

.s Calling DFSORT
from a Program

You can call DFSORT from programs written in COBOL, PL/I, or Assembler
language. Here, we'll limit our discussion to sorting and merging using COBOL
and sorting using PL/I. For information on restrictions when using these
languages and on calling DFSORT from an assembler program, see DFSORT
Application Programming: Guide.

Passing Control Statements
When using OS/VS COBOL, VS COBOL II, or PL/I, you can pass the
INCLUDE, OMIT, SUM, INREC, and/or OUTREC control statement (these
program products create a RECORD and a SORT or MERGE control
statement for you) to DFSORT by using the SORTCNTL DD statement. For
example, you can pass the INCLUDE control statement that will select only the
English department books, as follows:

//EXAMP JOB A492,PROGRAMMER

//SORTCNTL DD *
INCLUDE COND=(110,5,CH,EQ,C'ENGL')

I*

Note: When using VS COBOL II, you need to understand the use of the SORT­
CONTROL special register. For full information, see VS COBOL II Application
Programming Guide.

Calling from a COBOL Program

To call DFSORT from a COBOL program, use the COBOL statements SORT
and MERGE. The following sections show sample programs that use the
COBOL SORT and MERGE statements. These examples assume that the
COBOL environment is available. For complete information, see IBM OS /VS
COBOL Compiler and Library Programming Guide, VS COBOL II Application
Programming Guide, VS COBOL II Application Programming: Language
Reference, and IBM VS COBOL for OS/VS.

Sorting Records

The sample COBOL program on the following pages calls DFSORT to sort the
bookstore master file (MASTER-FILE) by title in ascending order. The sorted
master file is written to SORTED-MASTER-FILE.

Notice that the control field and order of the sort are specified in the COBOL
program itself rather than with a SORT control statement.

SORT-RETURN is the COBOL special register for the DFSORT return code.

50

8 Calling DFSORT
from a Program

Below is the JCL for the program:

//EXAMP
//BOOKS
//STEPLIB
II
//SYSOUT
//MASTIN
//SORTWK01
//MASTOUT
II
//PRINTFL
I*

JOB A492,PROGRAMMER
EXEC PGM=COBOLPGM
DD DSN=A492.SM,DISP=SHR
DD DSN=USER.PGMLIB,DISP=SHR
DD SYSOUT=A
DD DSN=BOOKS.INPUT,DISP=OLD
DD UNIT=SYSDA,SPACE=(CYL, (1,1))
DD DSN=BOOKS.OUTPUT,DISP=(NEW,CATLG,DELETE),

SPACE=(CYL, (1,1)),UNIT=SYSDA
DD SYSOUT=A

In contrast to the JCL for executing DFSORT with the JCL EXEC statement
(see Chapter 2), the above JCL has these differences:

• The program name on the EXEC statement is that of the COBOL program.

•The STEPLIB DD statement defines the library containing the DFSORT
program, as well as the library containing the COBOL program.

• The name of the DD statement for the input file need not be SORTIN.

•The name of the DD statement for the output file need not be SORTOUT.

• The SYSIN DD statement is not used for passing control statements (instead,
as we'll explain later, control statements are passed by the SORTCNTL DD
statement).

51

8 Calling DFSORT
from a Program

IDENTIFICATION DIVISION.
PROGRAM-ID.

COBOLPGM.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SD-FILE ASSIGN TO
DUMMYNM.
SELECT MASTER-FILE ASSIGN TO
MASTIN.
SELECT SORTED-MASTER-FILE ASSIGN TO
MASTOUT.
SELECT PRINT-FILE ASSIGN TO
PRINTFL.

DATA DIVISION.
FILE SECTION.
SD SD-FILE

DATA RECORD IS SD-RECORD.
01 SD-RECORD.

05 TITLE-IN PICTURE X(75).
05 AUTH-LN-IN PICTURE X(15).
05 AUTH-FN-IN PICTURE X(15).
05 PUB-IN PICTURE X(4).
05 COUR-DEPT-IN PICTURE X(5).
05 COUR-NO-IN PICTURE X(5).
05 COUR-NAM-IN PICTURE X(25).
05 INST-LN-IN PICTURE X(15).
05 INST-INIT-IN PICTURE X(2).
05 NO-STOCK-IN PICTURE 9(8) COMP.
05 NO-SOLD-IN PICTURE 9(8) COMP.
05 PRICE-IN PICTURE 9(8) COMP.

FD MASTER-FILE
DATA RECORD IS MASTER-RECORD.

01 MASTER-RECORD.
05 FILLER PICTURE X(173).

FD SORTED-MASTER-FILE
DATA RECORD IS SORTED-MASTER-RECORD.

01 SORTED-MASTER-RECORD.
05 FILLER PICTURE X(173).

FD PRINT-FILE
DATA RECORD IS OUTPUT-REPORT-RECORD.

01 OUTPUT-REPORT-RECORD.
05 REPORT-OUT PICTURE X(120).

PROCEDURE DIVISION.

52

8 Calling DFSORT
from a Program

SORT-ROUTINE SECTION.
SORT SD-FILE
ASCENDING KEY TITLE-IN
USING MASTER-FILE
GIVING SORTED-MASTER-FILE.
IF SORT-RETURN > 0
DISPLAY "SORT FAILED".

SORT-REPORT SECTION.
print a report on PRINT-FILE using SORTED-MASTER-FILE.

STOP RUN.

Merging Records

The sample COBOL program on the following page calls DFSORT to merge the
presorted bookstore master file (MASTER-FILE) with another presorted file
(NEW-BOOKS-FILE) to create a new master file (MERGED-FILE).

Below is the JCL for the program:

//EXAMP
//BOOKS
//STEPLIB
II
//SYSOUT
//MASTERFL
//NEWBOOKS
//MERGEDFL
II
//PRINTFL
I*

JOB A492,PROGRAMMER
EXEC PGM=COBOLP
DD DSN=A492.SM,DISP=SHR
DD DSN=USER.PGMLIB,DISP=SHR
DD SYSOUT=A
DD DSN=BOOKS.INPUTA,DISP=OLD
DD DSN=BOOKS.INPUTB,DISP=OLD
DD DSN=BOOKS.OUTPUT,DISP=(NEW,CATLG,DELETE),

SPACE=(CYL, (1,1)) ,UNIT=SYSDA
DD SYSOUT=A

53

8 Calling DFSORT
from a Program

IDENTIFICATION DIVISION.
PROGRAM-ID.

COBOLP.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SD-FILE ASSIGN TO
DUMMYNM.
SELECT MASTER-FILE ASSIGN TO
MASTERFL.
SELECT NEW-BOOKS-FILE ASSIGN TO
NEWBOOKS.
SELECT MERGED-FILE ASSIGN TO
MERGEDFL.
SELECT PRINT-FILE ASSIGN TO
PRINTFL.

DATA DIVISION.
FILE SECTION.
SD SD-FILE

DATA RECORD IS SD-RECORD.
01 SD-RECORD.

05 TITLE-KEY PICTURE X(75).
05 FILLER PICTURE X(98).

FD MASTER-FILE
DATA RECORD IS MASTER-RECORD.

01 MASTER-RECORD.
05 FILLER PICTURE X(173).

FD NEW-BOOKS-FILE
DATA RECORD IS NEW-BOOKS-RECORD.

01 NEW-BOOKS-RECORD.
05 FILLER PICTURE X(173).

FD MERGED-FILE
DATA RECORD IS MERGED-RECORD.

01 MERGED-RECORD.
05 FILLER PICTURE X(173).

FD PRINT-FILE
DATA RECORD IS OUTPUT-RECORD.

01 OUTPUT-RECORD.
05 FILLER PICTURE X(120).

PROCEDURE DIVISION.

MERGE-ROUTINE SECTION.

54

MERGE SD-FILE
ASCENDING KEY TITLE-KEY
USING MASTER-FILE NEW-BOOKS-FILE
GIVING MERGED-FILE.
IF SORT-RETURN > 0
DISPLAY "MERGE FAILED".
STOP RUN.

8 Calling DFSORT
from a Program

Using VS COBOL II FASTSRT

If you compile the previous COBOL program for sorting records with VS
COBOL II, the input (from MASTER-FILE) and the output (to
SORTED-MASTER-FILE) would qualify for the VS COBOL II FASTSRT
option. When using this compile-time FASTSRT option, your sort runs
considerably faster, because DFSORT rather than COBOL does the input and
output processing. For full information on FASTSRT, refer to VS COBOL II
Application Programming Guide.

Note: COBOL evaluates sort input and output independently to see if it qualifies
for F ASTSR T. If either the input or the output of your sort does not qualify
because of the presence of an input or output procedure, you may be able to
replace such a procedure, using DFSORT control statements to accomplish the
same thing. For example, you can use a control statement (OUTREC) to indicate
how records will be reformatted before being written to the output data set.

55

8 Calling DFSORT
from a Program

Calling from a PL/I Program

When calling DFSORT from a PL/I program, the information that must be
passed to DFSORT includes a SORT or MERGE control statement, a RECORD
control statement, and the amount of main storage to be allocated. By now, you
are familiar with the SORT and MERGE control statements. On the RECORD
control statement, you specify the record type and length. Following the
RECORD control statement, you specify the amount of main storage in bytes.
(The more main storage you allocate, on the order of about one megabyte, the
better the performance will be.)

You can also pass control statements by using the SORTCNTL DD statement.

The sample PL/I program on the following page calls DFSORT to sort the
bookstore file by title. It allocates 900000 bytes of main storage.

The following is the JCL for the program. The SORTCNTL DD statement is
used to pass an INCLUDE control statement that selects only the English
department books.

//EXAMP
//BOOKS
//STEPLIB
II
//SYSOUT
//SORTIN
//SORTWK01
//SORTOUT
II
//SORTCNTL

INCLUDE
//SYSPRINT
/*

56

JOB A492,PROGRAMMER
EXEC PGM=PLIPGM
DD DSN=A492.SM,DISP=SHR
DD DSN=USER.PGMLIB,DISP=SHR
DD SYSOUT=A
DD DSN=BOOKS.INPUT,DISP=OLD
DD UNIT=SYSDA,SPACE=(CYL, (1,1))
DD DSN=BOOKS.OUTPUT,DISP=(NEW,CATLG,DELETE) I

SPACE=(CYL, (1,1)) ,UNIT=SYSDA
DD *
COND=(110,5,CH,EQ,C'ENGL')
DD SYSOUT=A

8 Calling DFSORT
from a Program

PLIPGM: PROC OPTIONS(MAIN);

DCL 1 MASTER RECORD,
5 TITLE IN CHAR(75) I

5 AUTH_LN_IN CHAR(20),

5 PRICE IN BIN FIXED(31);

DCL RETURN CODE FIXED BIN(31,0);

CALL PLISRTA (' SORT FIELDS=(1,75,CH,A) I I

I RECORD TYPE=F,LENGTH=(173) I

900000,
RETURN CODE);

IF RETURN CODE 1= 0 THEN DO;
PUT SKIP EDIT ('SORT FAILED') (A);
CALL PLIRETC(RETURN_CODE);

END;

CALL OUTPUT;

OUTPUT: PROCEDURE;

. Print a report from the sorted master file (SORTOUT)

END;
END PLIPGM;

57

<a .
7 I ,) ' 1 • ~'. 1 r 1 ; 111 o 1i'11-~ ,..Q_ · I_:: ~ i ~ i i :~. , I 1 I : ~- , I i 1· :' U 11 ~ :

'··
1

-r- _ ,1 _ I',
1J ·n-1· ;;1111, Ii''"
• ' ' ' • '' J : I 'I I '"

59

9 Overriding Installation
Defaults

When DFSORT is first installed, it has IBM-established defaults. During
installation, your system programmer has the option of changing these defaults.

For example, one IBM default is to list the DFSORT statements in the output
data set for messages; however, at your site, the default may be to not list the
statements.

Furthermore, separate defaults may be established for jobs executed with JCL
and those called from a program. So, when you execute DFSORT with JCL, the
default may be to list the statements, and when you call DFSORT from a
program, the default may be to not list them.

Although it usually isn't necessary, you can temporarily override some of the
installation defaults either by specifying parameters on the JCL EXEC statement
or by writing an OPTION control statement. If calling DFSORT from an
assembler program, you can also override defaults by means of a parameter list.

In this chapter, we'll discuss how to override a couple of the many available
defaults. We'll also limit our discussion to the JCL EXEC statement and the
OPTION statement. For a list of all the possible defaults, and information on
how to code the assembler parameter list, see DFSORT Application
Programming: Guide.

Using the JCL EXEC Statement

If executing DFSORT with the JCL EXEC statement, you can use the PARM
parameter to override certain defaults. For example, if the default at your
installation is to list DFSORT statements and you don't want them listed, you
can specify NOLIST in the PARM field, as follows:

//SORT EXEC PGM=SORT,PARM='NOLIST'

On the other hand, if the default is not to list the statements and you want them
listed, you can specify LIST in the PARM field:

//SORT EXEC PGM=SORT,PARM='LIST'

Using the OPTION Statement

Whether you execute DFSORT with the JCL EXEC statement or call it from a
program, you can use the OPTION statement to override certain defaults. To do
this, you place the OPTION statement among the other DFSORT control
statements that follow the SYSIN or SORTCNTL DD statement.

60

9 Overriding Installation
Defaults

A particular default that can be overridden with the OPTION statement is one
that specifies whether equally collating records are to be written in their original
order.

The IBM default is that DFSORT may write equally collating records in random
order. If your installation has kept this default and you want to temporarily
override it (so that equally collating records are written in their original order),
you can specify EQUALS on the OPTION statement, as follows:

OPTION EQUALS

Or, if your installation has established EQUALS as the default and you want to
temporarily override it (so that equally collating records may be written in
random order), you can specify NOEQUALS on the OPTION statement:

OPTION NOEQUALS

Note that some defaults can be overridden by the OPTION statement, but not
the JCL EXEC statement, and that other defaults can be overridden by the JCL
EXEC statement, but not the OPTION statement.

For a table showing all defaults and exactly how each can be overridden, see
DFSORT Application Programming: Guide.

61

63

10 Copying Files

DFSORT lets you copy data directly without performing a sorting or merging
operation.

With the exception of SUM, you can use any of the control statements discussed
so far when copying. In other words, the program gives you the ability to select
and reformat the specific data you want to copy.

You can specify COPY on the SORT control statement, on the MERGE
statement, or on the OPTION statement.

Specifying COPY on the SORT, MERGE, and OPTION
Statements

The SORT statement changes very little when you specify COPY. Just replace
the parenthetical information with the word COPY as shown below:

SORT FIELDS=COPY

The MERGE statement also changes very little when you specify COPY. Again,
just replace the parenthetical information with the word COPY as shown below:

MERGE FIELDS=COPY

You can specify COPY on the OPTION statement as follows:

OPTION COPY

64

10

BYTE

Copying Files

Using COPY with INCLUDE and INREC

Suppose you would like to select and reformat specific data to be copied from the
file shown in Figure 26:

Book
Title

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES
THE COMPLETE PROOFREADER
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
INTRODUCTION TO PSYCHOLOGY

75

Figure 26. Bookstore File as a Source for a Copy Application

Course
Dept.

110 114.

BIOL
BUS IN
BUS IN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

Price

170 173

9900
295

2350
2350
1925
2600
1899

360
3195
2199
1450

595
450

1520
625

1200
1790

795
2600
2200

You have a complete bookstore file that is sorted by department and title, and
you want a copy of just the reading list (without the prices) for the computer
department. Figure 27 on page 66 shows the copy of the file.

65

10

BYTE

Copying Files

Book
Title

COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN

75

Figure 27. List of Computer Texts Copied from Bookstore File

Course
Dept.

110 114

COMP
COMP
COMP
COMP
COMP

In this example, we used the INCLUDE statement to select only departments
equal to "COMP", added the INREC statement to eliminate the Price field, and
used the OPTION statement to specify the copy function. The statements
looked like this:

INCLUDE COND=(110,5,CH,EQ,C'COMP')
INREC FIELDS=(1,114)
OPTION COPY

Writing the JCL

The JCL DD statements for a copy application are the same as those for a sort,
with one exception:

•You do not use the SORTWKnn DD statement.

Below is some sample JCL that will execute the previous copy example:

//EXAMP
//SORT
//STEPLIB
//SYSOUT
//SORTIN
//SORTOUT
II
II
//SYSIN

/*

JOB A492,PROGRAMMER
EXEC PGM=SORT
DD DSN=A492.SM,DISP=SHR
DD SYSOUT=A
DD DSN=BOOKS.INPUT,DISP=OLD
DD DSN=BOOKS.OUTPUT,DISP=(NEW,CATLG,DELETE),

SPACE=(CYL, (1,1)) ,UNIT=SYSDA
DCB=(LRECL=114,BLKSIZE=114,RECFM=F)

DD *
INCLUDE COND=(110,5,CH,EQ,C'COMP')
INREC FIELDS=(1,114)
OPTION COPY

Note: You can use SORT FIELDS=COPY or MERGE FIELDS=COPY
instead of OPTION COPY to produce the same results.

66

f.l fl \-l: .. ~: ',; 1·:1-i ~r~' CD 11} \:; n) 1
\}. U

rr fl lf'i·K·t h'.tfO :\ i \ i\•:

67

11 UsingDFSORT
Efficiently

You will get the best performance from DFSORT if you follow these guidelines:

• Be generous with main storage.

• Use high speed disks for sort work data sets.

•Use INREC.

• Use INCLUDE or OMIT.

• Execute DFSORT with the JCL EXEC statement.

•Use FASTSRTwith VS COBOL II.

Be Generous with Main Storage

The amount of storage allocated to DFSORT is a default that you can override
using either the OPTION statement or the PARM field on the JCL EXEC
statement.

In general, the more main storage available to DFSORT (on the order of about
one megabyte), the better the performance.

If the default at your installation is small and if enough real storage is available,
you will probably want to override it when you sort or merge large files.

You can allocate more storage using the OPTION statement by specifying
MAINSIZE=nK, where nK is the total amount of main storage to be allocated to
DFSORT. For example:

OPTION MAINSIZE=1200K

You can allocate more storage using the PARM field on the JCL EXEC
statement by specifying SIZE=nK. For example:

//SORT EXEC PGM=SORT,PARM='SIZE=1200K'

Use High Speed Disks

Using disks for sort work data sets (SORTWKnn) is much more efficient than
using tapes. You should avoid using tapes for sort work data sets whenever
possible.

High speed disks, such as the IBM 3380 Direct Access Storage, offer the best
performance.

68

11 UsingDFSORT
Efficiently

UseINREC

INREC can help improve performance while shortening records. The shorter the
records, the faster the processing. Therefore, you should use INREC whenever
possible, to eliminate unnecessary fields.

Remember that INREC reformats records before they are processed, and
OUTREC reformats them after they are processed. So, you should use INREC
to shorten records, and OUTREC to lengthen records.

Use INCLUDE or OMIT

Naturally, the size of the input file(s) also affects the amount of time processing
will take. The fewer the records, the faster the DFSORT application. Include or
omit can help improve performance when records are excluded, so you should
use INCLUDE or OMIT whenever possible to select only the records pertaining
to your application.

Execute DFSORT with JCL

As a rule, DFSORT is more efficient when executed with the JCL EXEC
statement than when called from a program.

Although calling DFSORT from a program may be convenient if the program
modifies the data before or after DFSORT (for example, if DFSORT sums
numbers and the program calculates their average), you should be aware of the
possible trade-off in performance.

Use FASTSRT with VS COBOL II

With VS COBOL II, using the FASTSRT compile-time option enhances
DFSORT performance. With FASTSRT, DFSORT rather than COBOL does
the input and output processing. For more information on this option, see your
COBOL II Application Programming Guide.

69

Appendix A.
Sample File

Book Author's Author's Publisher Course
Title Last Name First Name Department

BYTE 1 75 76 90 91 105 l 06 109 110 114

COMPUTER LANGUAGES MURRAY ROBERT FERN COMP
LIVING WELL ON A SMALL BUDGET DEWAN FRANK COR
SUPPLYING THE DEMAND MILLER TOM COR BUS IN
VIDEO GAME DESIGN RASMUSSEN LORI VALD COMP
INKLINGS: AN ANTHOLOGY OF YOUNG POETS WILDE KAREN COR ENGL
COMPUTERS: AN INTRODUCTION DINS HAW JOKHI WETH COMP
PICK'S POCKET DICTIONARY GUSTLIN CAROL COR
EDITING SOFTWARE MANUALS OJ ALVO VICTOR VALD ENGL
NUMBERING SYSTEMS BAYLESS WILLIAM FERN COMP
STRATEGIC MARKETING YAEGER MARK VALD BUS IN
THE INDUSTRIAL REVOLUTION GROSS DON WETH HIST
MODERN ANTHOLOGY OF WOMEN POETS COWARD PETER COR ENGL
INTRODUCTION TO PSYCHOLOGY DUZET LINDA COR PSYCH
THE COMPLETE PROOFREADER GREEN ANN FERN ENGL
SYSTEM PROGRAMMING CAUDILLO RAUL WETH COMP
SHORT STORIES AND TALL TALES AVRIL LILIANA VALD ENGL
INTRODUCTION TO BIOLOGY WU CHIEN VALD BIOL
ADVANCED TOPICS IN PSYCHOANALYSIS OS TO I CH DIANNE FERN PSYCH
EIGHTEENTH CENTURY EUROPE
CRISES OF THE MIDDLE AGES

MUNGER ALICE WETH HIST
BENDER GREG COR HIST

This sample file is for use with Chapters 2 through 7.

Assume that the file is used at a college bookstore to keep information about the
books it sells. Each horizontal line represents a record, and each column a record
field. For the sake of illustration, the file has only twenty records, each 173
bytes long.

The first nine fields of each record contain character data and the last three fields
contain binary data (binary data is shown in its character representation). Note
that because binary data cannot contain decimal points, the prices are shown in
cents rather than dollars.

Blanks in the fields pertaining to courses indicate that the book is not required
for any class.

For your quick reference, the table to the right shows the length and data format
of each field.

Course
Number

115 119

00032

70251
00205
10856
00032

10347
00032
70124
50420
10856
30016
10347
00103
10054
80521
30975
50632
50521

Course Instructor's Instructor's Number Number Sold Price
Name Last Name Initials In Stock Year-to-Date

120 144 145 159 160 161 162 165 166 169 170 173

INTRO TO COMPUTERS CHATTERJEE CL 5 29 2600
14 9900

MARKETING MAXWELL RF 0 32 1925
VIDEO GAMES NEUMANN LB 10 10 2199
MODERN POETRY FRIEDMAN KR 2 32 595
INTRO TO COMPUTERS CHATTERJEE CL 20 26 1899

46 38 295
TECHNICAL EDITING MENDOZA VR 13 32 1450
INTRO TO COMPUTERS CHATTERJEE AN 6 27 360
ADVANCED MARKETING LORCH MH 3 35 2350
WORLD HISTORY GOODGOLD ST 15 9 795
MODERN POETRY FRIEDMAN KR 26 450
PSYCHOLOGY I ZABOSKI RL 26 15 2200
TECHNICAL EDITING MENDOZA VR 7 19 625
DATA MANAGEMENT SMITH DC 4 23 3195
FICTION WRITING BUCK GR 10 9 1520
BIOLOGY I GREENBERG HC 6 1 1 2350
PSYCHOANALYSIS NAKATSU FL 1 12 2600
EUROPEAN HISTORY BISCARDI HR 23 21 1790
WORLD HISTORY WILLER TON ow 14 17 1200

Field Length Data Format

Title 75 CH
Author's Last Name 15 CH
Author's First Name 15 CH
Publisher 4 CH
Course Department 5 CH
Course Number 5 CH
Course Name 25 CH
Instructor's Last Name 15 CH
Instructor's Initials 2 CH
Number In Stock 4 BI
Number Sold Y-to-D 4 BI
Price 4 BI

71

I __ _J

1i~ 1nx~ff(f~~1 >.·s IT~:,
IJ1]([i.ro:r~\1111f2 @~;-u}~n CQ)J CCtfffnrur9)~1 ~~1rr1nc~nn~rnn('>

73

AppendixB.
Processing.Order of Control Statements

The flowchart below shows the order in which control statements are processed.
(SUM is processed at the same time as SORT or MERGE; it is not used with
copy.)

Although you may write the statements in any order, they will always be
processed in the order shown below.

INCLUDE
OMIT

I
INREC

1
SORT
MERGE
OPTION

COPY
SUM

1
OUTREC

74

I

i i 1 ~ ~ :• :~ ·~

75

Index

AC format 8
allowable comparisons 21
ascending order 8
ASCII

format code 8
sequence 2

BI format 8
binary data 8

calling DFSORT from a program 49
CH format 8
character data 8
COBOL

calling DFSORT 50
passing DFSORT statements 50
sample program 52, 54

COBOL II
FASTSRT compile time option 69
passing DFSORT statements 56

collating sequence 2
comparison operators 17
comparisons, allowable 21
constants, formats for writing 22
continuing a statement 11
control fields

combining 10
deleting

with INREC 3 8
with OUTREC 32

equal 6
general information 6
multiple 9
overlapping 9
reordering

with INREC 3 8
with OUTREC 34

Copying files 64

76

data formats 8
defaults

order of equal records 6
overriding 60

deleting fields
with INREC 38
with OUTREC 32

descending order 11
devices 68

EBCDIC
format code 8
sequence 2

efficient use of DFSORT 68
equal control fields 6
EXEC statement 13

FASTSRT compile time option 69
field-to-constant comparison 16, 21
field-to-field comparison 16, 21
FORMAT= parameter 11
formats for writing constants 22
formats, data 8

INCLUDE statement
improving performance 69
writing 16

input records, reformatting 38
INREC statement

improving performance 69
used with other statements 39
writing 38

inserting blanks or zeros
with INREC 38
with OUTREC 32

installation defaults, overriding 60
ISCII

format code 8
sequence 2

Index

JCL (job control language)
calling DFSORT from a program 51,

53,56
executing a copy 66
executing a merge 46
executing a sort 13
improving performance 69

JOB statement 13

LRECL parameter 32, 38

main storage, allocating 68
MERGE statement 46
MERGE statement, COBOL 50
multiple control fields 9

OMIT statement
improving performance 69
writing 20

omitting records 20
OPTION statement 60
order of control statements
output records, reformatting
OUTREC statement

used with INREC 40
writing 32

overflow 28, 40

17, 73
32

overriding installation defaults 59

packed decimal data 8
padding /

with INCLUDE I OMIT 16
with INREC 28, 38
with OUTREC 32

PARM parameter 60
passing DFSORT statements

from a COBOL II program 56
from a COBOL program 50
from a PL/I program 50

PD format 8
performance 68
PL/I

calling DFSORT 56
passing DFSORT statements 50
sample program 57

record length, changing 32, 38
RECORD statement 56
reformatting records

with INREC 38
with OUTREC 32

reordering fields
with INREC 38
with OUTREC 34

return code, DFSORT (COBOL) 50

selecting records 16
sequence, collating 2
SORT-RETURN special register

(COBOL) 50
SORT statement 7
SORT statement, COBOL 50
SORTCNTL DD statement 50
SORTIN DD statement 13
SORTINnn DD statement 46
SORTOUT DD statement

changing record length 32, 38
general information 13

SORTWKnn DD statement 13, 46, 68
STEPLIB DD statement 13
SUM statement 24
SYSIN DD statement 13
SYSOUT DD statement 13

tailoring a file 16
truncation 16

work storage data sets
devices for 68
number needed 13

77

ZD format 8
zoned decimal data 8

78

Getting Started With DFSORT

SC26-4109-2

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

SC26-4109-2

Reader's Comment Form

Fold and tape

Fold and tape

--------- ----- - -- - ---- -- ------ -----·-®

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

II II I

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC26-4109-02

