
Program Product

GC28-6473-3

IBM DOS/VS COBOL
Compiler and Library
General Information

Program Numbers: 5746-CB1 (Compiler and Library)
5746-LM4 (Library)

Page of GC28-6473-2,-3
As Updated Jan. 31, 1979
By TNL GN20-9292·

Preface

. Fourth Edition (April 1976)

This publication contains information to aid data systems planners and
analysts in evaluating and planning for the use of the DOS/VS COBOL
Compiler and Library Program Product. The DOS/VS COBOL Subroutine
Library can also be ordered separately.

DOS/VS COBOL allows source programs written in American National
Standard COBOL to be processed in a DOS virtual environment. DOS/VS
COBOL is compatible with the highest level of American National Standard
COBOL, X3.23-1968, and with international standard ISO/R 1989-1972
Programming Language COBOL. CODASYL-Specified and IBM-Specified
extensions are also implemented.

The DOS/VS COBOL Compiler and Library Program Product operates
under control of DOS/VS. DOS/VS can operate as an independent system
or under control of VM/370.

This publication is not a specification manual. Proposed specifications for
the IBM DOS/VS COBOL Program Products are given in the publication:

Program Product Design Objectives: IBM DOS/VS COBOL
Compiler and Library, GC28-647 4

This edition, as amended by technical newsletters GN20-9140, GN20-9134, and GN20-9292, applies to
Release 2 of the IBM DOS/VS COBOL Compiler and Library, program numbers 5746-CB1 and 5746-LM4,
and to any subsequent releases unless otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Amendments" following the table
of contents. Specific changes made as of this publishing date are indicated by a vertical bar to the
left of the change. These bars will be deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not noted.

Changes are continually made to the information herein; before using this publication in connection with
the operation of IBM systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the
editions that are applicable and current.

Publications are not stocked at the address given below; requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

Comments may be addressed to IBM Corporation, P. O. Box 50020, Programming Publishing, San Jose,
California U. S. A. 95150. IBM may use or distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

© Copyright International Business Machines Corporation 1973, 1974

August 5,1977

Contents

Introduction . . • • • • • • • • • • • • • • . . • • • . • • • • • ..3
Data Set Compatibility .. 5
Programming Compatibility .. 5
System Requirements ... 7

IBM DOS/VS COBOL CompHer•................•..........•...... 8
Features ... 8
Virtual System Support .. 10
VSAM Support ... 10
System/370 Device Support ... 11
MERGE Support ... 12
Syntax-Check Feature ... 12
FIPS Flagger .. 13
Lister (Release 2 only) ... 13
SORT-OPTION Clause (Release 2 only) 16
Verb Profiles (Release 2 only) ... 16
Symbolic Debug .. 17
Flow Trace .. 18
Statement Number Option .. 20
Execution Time Statistics (Release 2 only) 20
WHEN-COMPILED Special Register 20
Detailed Data and Procedure Division Information 22
Optimized Object Code .. 22
System/370 Instruction Generation 22
Speedy Sorted Cross-Reference .. 24

IBM DOS/VS COBOL Subroutine Library 27

IBM DOS/VS COBOL Language Base•............ 28
Basic Internal Processing (Nucleus) 28
Sequential Access ... 29
Random Access .. 30
Table Handling ... 31
Sort .. 31
Report Writer .. 32
Segmentation .. 32
Source Program Library .. 33
VSAM Mass Storage Processing .. 33
MERGE .. 34
Advanced System/370 Device Processing 35
Subprogram Linkage .. 35
Debugging Facilities ... 35

Appendix A: Other IBM COBOL Program Products 37

Appendix B: IBM DOS/VS COBOL Changes to the Reserved Word List 47

Index ... 51

Figures

1. Example of Lister Option Output ... 14

2. Example of Verb Profiles Output ... 17

3. Example of Symbolic D~bugging Output 19

4. Examples of Execution Time Statistics Output 21

5. SXREF/XREF Performance Comparisons-Version 3/Version 2 25

Tables

1. Alphanumeric Moves and Comparisons-System/360 vs. System/370 23

2. Shift And Round Decimal (SRP)-System/360 vs. System/370 23

Page of GC28-6473-2,-3.
As Updated Jan. 31, 1979
By TNL GN20-9292

SUMMARY OF AMENDMENTS

Number 3

Number 2

Number 1

Support for fIXed block devices is provided under DOS/VSE with VSE/ Advanced
Function, Release 1.

Support has been added for the 3330-11 Disk Storage and 3350 Direct Access Storage devices.

Support has been added to run DOS/VS COBOL under control of VM/370 CMS Release 3.

DOS/VS COBOL programs can be compiled in CMS and then executed in a DOS virtual machine, or
under a DOS system.

The following restrictions apply to execution of DOS/VS COBOL programs in CMS:

1. Indexed fIles (DTFIS) are not supported. Various clauses and statements are therefore invalid:
RECORD KEY, APPLY CYL-OVERFLOW, NOMINAL KEY, APPLY MASTER/CYL-INDEX,
TRACK-AREA, APPLY CORE-INDEX and START.

2. Creating direct fIles is restricted as follows:
-For U and V recording modes, access mode must be sequential.
-For ACCESS IS SEQUENTIAL, track identifier must not be modified.

3. None of the user label-handling functions are supported. Therefore, the label-handling format of
USE is invalid. The data-name option of the LABEL RECORDS clause is invalid.

4. There is no Sort or Segmentation feature.
5. ASCII-encoded tape mes are not supported.
6. Spanned records (S-mode) processing is not available. This means that the S-mode default (block

size smaller than record size) cannot be specified, and that· the RECORDING MODE IS S clause
cannot be specified.

In addition, multitasking, multipartition operation, and teleprocessing functions are not ·supported
when executing under CMS.

3

Introduction

Data Set Compatibility

Programming Compatibility

Page of GC28-6473-3
Revised August 5, 1~77
By TNL GN20-9234

This publication describes briefly the DOS/VS COBOL Compiler and
Library, a Program Product that offers advanced programming facilities to
reduce program development time and increase programmer productivity.
Separate chapters describe:

• DOS/VS COBOL Compiler features, grouped by the improved
functions they make possible:

Virtual System Support

Advanced Application Programs

Programmer Productivity Aids .

Efficient Object-Time Performance

Improved Compile-Time Performance

• DOS/VS COBOL Subroutine Library Features

• DOS/VS COBOL Language Base

In addition, appendixes list the other COBOL Program Products available,
and DOS/VS COBOL additions to the reserved word list.

The VSAM Compatibility Interface allows the user to perform all ISAM-like
functions on VSAM data sets using existing COBOL ISAM programs. By
converting old ISAM data sets to VSAM format, the user can continue
present operation with only minor JCL changes. The resulting VSAM data
set usually requires less frequent reorganization than the ISAM data set,
because VSAM uses free space within the data set for updating.

The data format of VSAM files is common to both DOS/VS and OS/VS.
Thus a data set created for one system can be used without change by
programs written to interface with the other.

Data set compatibility exists between the DOS/VS COBOL Compiler and
the other IBM DOS COBOL Compilers: all versions of the Full American
National Standard COBOL Compiler, the Subset American National
Standard COBOL Compiler, and the COBOL D Compiler. That is, data sets
created by a program compiled on one of these compilers can be processed by
a program compiled on the DOS/VS COBOL Compiler.

The IBM DOS/VS COBOL Compiler is compatible with all versions of the
IBM DOS Full American National Standard COBOL Compiler, and with the
Subset American National Standard COBOL Compiler.

5

6

A number of reserved words as defined in CODASYL COBOL have been
added to the reserved word list (see Appendix B). None of these words
should be specified as user-defined names in a COBOL source program. The
publication IBM DOS Full American National Standard COBOL, Order
No. GC28-6394, gives the complete list of reserved words.

Source programs written for the COBOL D Compiler must be converted
before compiling them on the DOS/VSCOBOL Compiler. The Language
Conversion Program described in the publication IBM System/360
Conversion Aids: COBOL-to-American National Standard COBOL
Language Conversion Program, Order No. GC28-6400, facilitates such
conversions.

The DOS/VS COBOL Library (5746-LM4) will operate with programs
compiled by the DOS Full American National Standard COBOL, Version 3
(5736-CB2), DOS Full American National Standard COBOL, Version 2
(360N-CB-482) and DOS Subset American National Standard COBOL
(5736-CBl) compilers. Thus a user having such programs need not
recompile when going to the DOS/VS COBOL Program Product.

Object Modules from the above mentioned compilers may be linked
together in a program when operating under the DOS/VS Operating System.

System Requirements

Compile-time
Machine
Requirements

Object-time
Machine
Req uirements

Virtual
Memory

Devices
Supported

Page ofGC28-6473-2 -3
As Updated Jan. 31. i979
By TNL GN20-9292

System/370 Models 115,125,135,145, 155ll, or 158
4 Required Work Files: SYSO01 (Disk), SYSOO2-SYSOO4

(Tape or Disk)
3 Optiona.1 Work Files: SYSLNK (Disk, for CATAL or

LINK options); SYSOO5 (Tape or Disk, for Symbolic
Debug); SYSOO6 (Disk, for F IPS Flagged

System/370

1 Work File (Tape or Disk) when Symbolic Debug is used

Input/Output Devices used by the object program

64K Compiler

3203 132-character Printer
5203.9611 :20/132-character Printer
3886 Optical Character Reader
3330-11 Disk Storage
3340 Direct Access Storage
3350 Direct Access Storage
3540 Diskette Input/Output Unit
5425 Multifunction Card Unit
Fixed block direct access storage devices
(Plus all devices supported by DOS Full American National
Standard COBOL, Version 3)

7

mM DOS/VS COBOL Compiler

"

8

The DOS/VS COBOL Compil~r makes it possible to process American
National Standard COBOL programs in a DOS virtual environment. The
language implemented i~ compatible with the highest level of American
National Standard COBOL, X3.23-1968, and with international standard
ISO/R 1989-1972 Programming Language COBOL. CODASYL-specified
and IBM-specified exteJ)sions to these standards are also implemented.

The added and improved functions of the DOS/VS COBOL Compiler
make possible advanced program applications. Existing applications can
obtain improved performance when updated to take advantage of DOS/VS
COBOL/"features. Other DOS/VS COBOL features make program
development easy, and give efficient compile-time and object-time
perforniance. " ,

, VIRTUAL SYSTEM SUPPORT, through DOS/VS, uses the performance
improvements and large storage capacity of the Virtual System.

, ,

ADVANCED)APPLICATION PROGRAMS can be achieved when the
following DQS/VS COBOL features are used:

• VSAM Support ~ VSAM is a high-performance access method with
a' high degree of data security. Through an index, access can be
sequential or random; physical 'sequential access is also provided.

'. Advanced' System/3 70 'Device Support - multifunction card devices,
advanced pririte'rs, optical niark readers, optical character readers, ,
high-speed disk facilities, and the diskette input/output unit are all
supported.

• 'MERGE Support - The MERGE verb enables two Qr more
identically~sequenced input files ~o be combined into a single output

, file by specifying a set of keys. Both standard sequential and
sequentially accessed' VSAM files can be designated as input or output.

PROGRAMMER PRODUCTIVITY AIDS are provided through
high-ievellangu~ge debugging 'and efficiency check features. (Surveys show

, that in the past up to'30°A> of a programmer's development time was spent
debugging.)

• Syntax-Check Feature.- optionally provides a quick scan of the
source program without producing object code. Syntax checking can
be' unconditional or conditional.

• FIPS (Federal'Information Processing Standard) Flagger - ensures
that DOS/VS COBOL source programs can be written to conform to
the Federal Information Processing Standard, by identifying
nonstandard clauses and statements.

• Lister (Release 2 only) ~ Provides specially formatted source .listing
with embedded cross references for increased intelligibility and ease of
use. Reformatted source deck is available as an option.

Page of GC28-64 73-3
Revised August 5, 1977
By TNL GN20-9234

• SORT-OPTION Clause (Release 2 Only) - gives the COBOL
programmer greater control over operations of the Sort/Merge
program.

• Verb Profiles (Release 2 only) - Facilitates identifying and locating
verbs in the COBOL source program. Options provide verb summary
or a verb cross reference listing which includes the verb summary.

• Symbolic Debug - during program execution, COBOL-formatted
snapsh9ts and maps of the Data Division can be obtained, either at
specified points during execution or at abnormal termination. Any
number of debugging runs can,be executed without recompilation, and
without source language changes.

• Flow Trace - shows program flow up to the point of abnormal
termination. The path of execution within and between user-specified
modules can be traced. No COBOL source language changes are
needed.

• Statement Number Option - provides information about the
COBOL statement being executed at abnormal termination.

• Execution Time Statistics (Release 2 only) - Maintains a count of
the number of times each verb in the COBOL source program is
executed during an individual program execution.

• WHEN-COMPILED Special Register - Provides a means of
associating a compilation listing with both the object program and the
output produced at execution time.

• Detailed Data and Procedure Division Info~mation - through
expanded functions of the condensed listing (CLIST) or symbolic map
(SYM).

EFFICIENT OBJECT-TIME PERFORMANCE can be achieved with
DOS/VS COBOL. The following features make it possible:

• COBOL Optimizer - when requested, can reduce generated
Procedure Division code by as much as 30<?~, as compared with code
produced without requesting the feature.

• System/3 70 Support - automatic generation of System/370
instructions saves object program space and speeds up execution.
High-performance System/370 devices also speed up execution, as
well as allowing advanced applications.

IMPROVED COMPILE-TIME PERFORMANCE is achieved with the
sorted cross-reference feature described below.

• Speedy Sorted Cross-Reference (SXREF) - gives compile-time
performance up to 2 times faster than for Version 2 ANS COBOL
source ordered cross-reference (XREF). Alphabetized cross-reference
listings make it easier to find references to user-specified names.

Each of these DOS/VS COBOL features is described in greater detail in the
following sections. In addition, all features of DOS Full American National
standard COBOL, Version 3, are still available with DOS/VS COBOL,
including the following:

9

Advanced Application Programs

Virtual System Suppo~

• ASCII Support

• Separately Signed Numeric Data

• Double-buffered ISAM

• Improvements in the MOVE Statement and in Comparisons

The DOS/VS COBOL Compiler and Library operate under control of
DOS/VS. DOS/VS makes available as much as 16 million bytes of Virtual
Storage, and the ability to use high-performance VSAM (Virtual Storage:
Access Method). DOS/VS operates as an independent system or under
control of VM/370. Powerful System/370 instructions are automatically
generated and the performance impr~vements of advanced System/37Q
devices can be exploited.

VSAM (Virtual Storage Access Method)

Indexed File Processing

10

VSAM is a high-performance access method of DOS/VS for use with direct
access storage. VSAM offers high-speed retrieval and storage of data,
flexible data organization, ease of use - including simplified job control
statements - data protection against unauthorized access, central control of
data management functions, cross-system compatibility, device independence
(freedom from consideration of block sizes, control information, record
deblocking, etc.), and ease of conversion from other access methods. VSAM
uses a multifunction utility program known as Access Method Services to
define a VSAM data set, to load records into it, to convert an existing indexed
or sequential data set to VSAM format, and to perform other tasks as well.
VSAM allows key-sequenced and entry-sequenced data sets.

In a key-sequenced data set, records are stored in the ascending collating
sequence of an embedded key field. Records can be retrieved sequentially in
key sequence; they can also be retrieved randomly according to the value of
the desired key. VSAM uses the contents of the key field and optional free
space (space in the data set not occupied by data) to insert new records in
their key sequence.

In an entry-sequenced data set, the records are stored in the order in which
they are presented for inclusion in the data set. New records are stored at the
end of the data set. In COBOL, record retrieval must be sequential.

DOS/VS COBOL makes possible two types of file processing through
VSAM: indexed and sequential.

A VSAM'indexed (key-sequenced) file is ordered in the ascending sequence
of its record key .,- which is embedded in the record and whose value must
not change. The physical sequence of the records in the file corresponds to

Sequential File Processing

Advanced Appli~ion_ Programs_
Page ofGC28-6473-2,-3
As Up_~at~d Jan. 31, 1979
By TNL GN20-9292

the ascending collating sequence of the record key. Records can be processed
either sequentially or randomly, and can be fixed or variable in length.

In sequential processing, records are accessed in the ascending order of
their record key values.

In random processing the sequence of record retrieval is controlled by the
programmer. The desired record is accessed through the value placed in its
RECORD KEY data item. A full or partial key value can be used.

Perfomrance Considerations: In a VSAM data set, inserted records are stored
and addressed the same way as original records; thus access speed after many
insertions is equivalent to access speed before insertions. Free space allows
efficient automatic reorganization of the data set by the access method; thus,
there is seldom need to reorganize the data set offline.

In a VSAM sequential (entry-sequenced) file, data is stored in the order in
which it is received. In COBOL, records can be retrieved only in the same
order in which they were stored. There is no key field. New records are
always stored at the end of the data set. Records can be fixed or variable in
length.

Programming Considerations: A record cannot be deleted from the file;
however, its space can be reused for a new record of the same length.

If file reorganization becomes necessary, then a new file must be created,
using records from the presently existing file.

System/370 Device Support

DOS/VS COBOL supports the following advanced System/370 devices,
making possible new programming applications and enhanced performance.

3203 Advanced Printer - with 132-character print line

5203 Advanced Printer - with 120/132 character print line at compile time,
and 96/120/132 character print line for user files at object time

3886 Optical Character Reader - reads multiline alphanumeric or numeric
machine-printed documents or numeric hand-printed documents, with
stacker selection

High-speed, large-capacity mass storage facilities:
3330-11 Disk Storage
3340 Direct Access Storage
3350 Direct Access Storage
Fixed Block Direct Access Storage devices

11

Advanced Application Programs

MERGE Support

Syntax-Check Feature

3540 Diskette Input/Output Unit - transfers IBM diskette data directly to
the System/370, and transfers System/370 data directly to IBM
diskettes (Data for initial entry via diSkette is prepared using the IBM
3740 Data ~ntry System)

5425 Multifunction Card Unit (MFCU) - For 96-column cards, with
read/punch!print/select features and combined function processing.
Without the combined function features, the 5425 MFCU can be used
as a reader or as a punch.

All devices supported by DOS Full American National Standard COBOL
Version 3 are supported by DOS/VS COBOL. These include:
3504/3505/3881 (with OMR), 3525 (with RCE and combined function
processing), 2560 MFCM, 3410/3420 tapes, and 3330 disk. (To specify the
new System/370 devices for an existing COBOL program, the user must
modify the source program and recompile.)

The MERGE verb allows the ,COBOL user to combine two or more
identically ordered input files into one output file according to embedded
keyes) in the record. Special processing of merged records can also be
specified. More than (me MERGE statement can be executed in one
program. Both standard sequential files and sequentially accessed VSAM
files can be designated as input or output. The Program Product DOS/VS
Sort-Merge (Program Number 5746-SMl) is designed to be used with the
MERGE statement.

This feature optionally produces a quick scan of the source pr9gram for
syntax errors without producing object code .. Syntax-checking can be
unconditional or conditional.

When unconditional syntax-checking is requested, the compiler scans the
source text for syntax errors, and generates the appropriate error messages,
but does not generate object text.

When conditional syntax-checking is requested, the compiler scans the
source text for syntax errors, and generates the appropriate error messages. If
no message exceeds the W or C level, a full compilation is produced. If one
or more E or D level messages are produced, the compiler generates the
messages, but does not generate object text.

~-----------------(A-few-syntax-errors-may-not-be-detected-when--a-syntax-checkingr~----­

compilation is requested. When the, compiler is released, a list of such errors

12

will be made available.)

When object text is not produced, all of the following compile-time
options, if specified, are suppressed:

OPTION control statement: LINK, DECK, XREF

Programmer Productivity Aids

CBL statement: SXREF, CLlST, LlSTX, PMAP, SYMDMP, TRUNC, OPTIMIZE,

FLOW, STATE

Unconditional syntax-checking is assumed if all of the following
compile-time options are specified:

OPTION control statement: NO LINK, NOXREF, NODECK, NOLIST

CBL statement: SUPMAP (and CLlST, XREF, and PMAP are not specified)

If neither unconditional nor conditional syntax-checking is specified, or if
unconditional syntax-checking is not assumed, a full compilation - including
error messages, object text, and all other .specified (or default) options - is
produced.

PerfortlUllta Considerations: Compile time is significantly reduced when
object code is not. produced.

FIPS (Federal Infonnation Processing Standard) F1agger

Lister (Release 2 Only)

The Federal Information Processing Standard is a compatible subset of
American National Standard COBOL, X3 .23-1968. FIPS recognizes four
language levels: low, low-intermediate, high-intermediate, and full. When
the FIPS Flagger is used, source clauses and statements that do not conform
to the specified level of FIPS are identified. This assists the user in creating
DOS!VS COBOL programs which conform to that standard.

Programming Consideratiom: At system generation time, no flagging,
NOL VL (which is the system generation default), or flagging at a specified
FIPS level, L VL=A!B!C!D, can be specified as-the installation default
option. At compile time, the programmer can override any of these options
by specifying another level of FIPS flagging; if he specifies NOL VL,
however, the option is ignored.

The Lister option permits the user to obtain a reformatted detailed source
code listing that contains complete cross-reference information at the source
level. Each COBOL statement is begun on a new line, and indented in a
manner that makes the logic of the program readily apparent, by highlighting
level numbers, nested IF statements, etc. Each line of the reformatted source
listing contains one or more references to other source statements, specifying
the statement number, and indicating the type of reference. Figure 1 gives an
example of Lister output.

13

-I ."
~ ciQ'

c: .,
~

:-
tTl
)(
Cl

3
"0
(i"
0
r c;;.
(; .,
0
-g
o·
::l

0
c: -a s
~
Cl
::l

0
~

GRANT Z

1 IDHHIF ICATION DIVISION.
2 PFCOGP At-I- I C. GPANT Z. .
3 E N V I RON ~E ~ T D I ~ I S I 0.:.
4 CONFIGURATION SECTION.
5 SOURCE-CC~PUTER. Iet-l-37~.

6 OBJECT-COMPUTER. IBM-37C.
7 INPUT-DUTPLIT SECT ION.
a FIlE-CCNTI<OL.
9 SELECT INPUT-eUFFER ASSIGN TO SYSOC~-UR-2~4CR-S.

11 SELECT OUTPUT-BUF~ER ASSIG~ TO SVS006-UR-14C3-S.
13 SELECT FILEX-DIAGNOSTICS ASSIGN TO SYSCC7-UT-2400-S.
15 SELECT FILEY-WORKFILE ASSIGN TO sysona-UT-24JC-S.
17 SELECT FILEl-wOPKFILE ASS IGN TO SYSCC9-UT-240o-S.

GRANTZ

19 DATA CI~ISICN.
~ 20 FILE SECTION.
~21 FO INPUT-BUFFER

LABEL RECORDS ARE OMITTED.
23 01 INPlT-C~~D.

21
29
38
53
64

,.0

10/06/73 PAGE ~

1~/06113 PAGF 2

e......., .318E'32~
333U

24 02 INP~T-BYTE
25 INPUT-INDEX

OCCURS 72 TIMES III,IDEXED BY 337Q,659Q,l::64U,675Q,t-l~O,60310tbt\40,be7Q,bqnQ,t:dnQ.b96Q,~ ~
PIC x. _ ~ 32 2C, 3 3 f.C, l! C; 7W , il ';9 X, ,. t> c: , h'" 4 X , f. f. f-O , t. 7 5 X ,f, 7 ~ l(, 681 '(,684 X t 8 f ~

2602 FILLER

*
*

PIC X(~). 9'"

o Reference to FD statement number.

8 FD referred to by SELECT statement.

€) SELECT statement; (E) denotes Environment
Division reference.

e Procedure Division statement; (R) denotes that
statement 328 reads this data item.

o Data item changed by statement 322.

o Footnotes for additional references at
bottom of this page.

f
:p

~
n

~
~
~ a-

."
C;'
c
~
~

tTl
>c
~

3
"0
n­
o
r
iii'
n .,
o
~
0'
:J

o
c
-S g
:a
~

~
N
o
~

-"'"

315 PPOCEDURE CIVISION.

*
317
318

321
322

325
326
~

327
328
329
330
331
332
333
334
335
336
337
338

•

START-J~B.
OPEN INPUT INPUT-BUFFER OUTPUT CUTPUT-BUFFER,

FILEX-DIAGNOSTICS, FILEY-WORKFILE
FILEI-WCRKFILE.

21,29
38,53

64 o 33,39
~25'175'214

215,142

HOVE SPACES TO BUFFER-AREA, DIAGNOSTIC
SET INPUT-INDEX, PROC-INDEX, LABEL-INDEX,

LABEL-INDEX-END, DICT-INDEX,
DICT-INDEX-END TO 1

"eVE 0 TO SEC-NUHBER~
HOVE SPACES TC DIAG~CSTIC.

GET-CARD. 338G,658P,119P,12Q2P,1298P,1354P
READ INPlT-BUFFER AT END

GO TO END-OF-INPUT.
,",OVE SPACES TO OUTPUT-PRINTER.
ADD 1 TO SEC-NUI4BER
MOVE SEQ-NUM8ER TO SEQUENCE-~UI4BER.

MeVE INPuT-CARD TO OUTPUT-RECCRD
HOVE SPACES TO BUFFER-AREA
WRITE OUTPUT-PRINTER.
SET INPlT-INDEX TO 1.
IF INPUT-BYTE (1) EQUAL TO •••

GC TO GET-ORO.

143
A

&- 39

.21
197

30
A

A,32
23,34

33
30
25
24

327

A-85 17 SEQ-NUMBEP PIC qqq VALUE o.

NOle two-columll Procedure DlvlsiolllUlln6.

G Data items,

o Footnoted data item.

f) ParasraPb Gone to (G) and Performed (P)
by referenced statements.

363
364
3[.'\
366
367
368
369G)
370
371
372
373

375

316
377
378
319
380
381
382

383
384

•
385
38~

ELSE
GO TO PROCESS -AL PH-DATA-ARRAYlOO

ELSE
NEXT SENTENCE.

j
lF SWITCHI EQUAL TO 0

MOVE 1 TO SWI TCHI
IF EIGHT-BYTE ~OT EQUAL TO 'DATA-DIV'

GO TO DIAG-BAD-INPUT
ELSE

GO TO READ-DATA-WORO.
IF FLAG2 ECUAL TO 1 At() NOT RESERveD-WORD AND

NOT ARRAY
MOVE

'ONLY RESERVED WORDS HAY APPEAR IN COL
• COL2.' TO TEXT lA

PERFORM DIAG-END
IF SWITCH2 NOT GREATE~ THAN 0

GO TO NO-DATA-TYPE.
IF A~RA Y AND SWITCH2 EQUAL TO 0

GO TO NO-DATA-TYP~.
IF RESERVED-WORD AND FLAG2 NOT EQUAL TO 1

PERFORM DI AG-RE S-WORD-NOT-COll THRU
DIAG~EXIT •

IF PPOC-DIV
GO TO F1NISH-DATA-DIV.

IF NUfi4-DATA
GO TO PROCESS-NUH-DATA.

..
~25C,331C,332U,194U

Gil Nested I Fs indented prosressively,

_Footnote,

.Proced~ Division statements referencinl
this data item.

44B

77
17

117
1361

343
110,121

123

1. ASSUME
44

1381
18

1308
123,18

1308
111,llO

13~O

1386
126
481)

124
413

f ,
!
i

Prop.Uanter Productivity Ai.
Thus, when reading the Data Division, the user can identify immediately

the procedure division statements that read, write, or inspect a given data
item. File descriptions are comprehended quickly because of uniform
indenting conventions that are imposed by the Lister option. When reading
the ,Procedure Division, the user can see references to statements in the Data
Division, showing use of the data item, and also to other statements in the
Procedure Division, simplifying the tracing of program logic. The lister option
further facilitates the tracing of program logic by printing the Procedure
Division in multi-column format, so that fewer page turnings are required, and
more logic appears on a page. Optionally, the user may obtain a new source
deck that reflects the reformatted source listing, with the exception of
embedded cross-reference information.

The Lister option also produces a summary listing that contains selected
statements from the source program, plus a condensation of the detailed
information from the reformatted source listing. The total number of each
type of reference for each File Description, and for each Section in the
Procedure Division is shown.

P~/OI'fIIIIIIC6 CtlllfidttYdloaf: Although use of the Lister option necessarily
adds time to the compilation run, the lister option does not alter the source
code. Therefore, such source code takes no longer to compile than if the
Lister option had not been invoked. However, to save time on initial
compilations, the lister option should not be invoked until the COBOL source
program is known to be substantially free of syntax errors. Once an
up-to-date reformatted source listing and new source deck reflecting the
listing is obtained, the Lister option can be omitted on subsequent
compilations. When large COBOL programs are to be listed and compiled,
the user may be able to obtain lower run times by electing to use Lister cross
reference information in place of XREF or SXREF.

SORT-OPTION Clause (Release 1 Only)

The SORT -OPTION clause gives the COBOL programmer greater control
over operations of the Sort/Merge program. In the sort-file-description
entry, the SORT-OPTION clause specifies a Working-Storage area which at
object time will contain an OPTION control statement for the Sort/Merge
program (Program Product S746-SMl). Options not specified defaUlt to the
Sort/Merge defaults and not to the COBOL program defaults.

Verb Prordes (Release 1 Only)

The verb profiles option produces a list of all verbs contained in the COBOL
source program. Each different COBOL verb in the program is shown,
followed by a count representing the number of times it appears in the source
program. Optionally, the count is followed by the associated statement
numbers. Figure 3 gives an example of Verb Profile/Statistics output.

Symbolic Debug

PrcwlllUller Productivity Ai.

VERBS OCCURS REFERENCE

CLOSE 000001 000081
GENERATE 000001 000078
GO 000002 000077 000079
INITIATE 000001 000069
OPEt~ 000001 000068
READY 000001 000067
RESET 000001 000074
RETURN 000001 000077
SORT 000001 000070
STOP 000001 000075
TERMINATE 000001 000080

~Statement number references can be requested optionally in
addition to the verb count.

Figure 2. Example of Verb Profile Output

This feature reduces program development time by making debugging
information available in a COBOL format instead of a hexadecimal dump
format. No source language changes are needed; the debugging information
is requested through object-time control cards. Thus, multiple debugging runs
can be made without recompilation.

When a program terminates abnormally, the user receives a
COBOL-formatted map of his Data Division. Each data area is identified by
its source name, and its contents are easily readable. The user can also
request snapshots of the Data Division at any point during program execution.

If two or more COBOL programs are link-edited together and one of them
terminates abnormally, the user is provided with such COBOL-formatted
information for the program causing termination and its callers, up to and
including the main program. Abnormal termination information is provided in
the following parts:

1. Abnormal termination message, including the number of the statement
and of the verb being executed at the time of abnormal termination.

2. Selected areas in the Task Global Table.

3. COBOL-formatted map of the Data Division, including:

a. for SO's, the sort or merge record.

b. for FO's, the data record (and, for VSAM files, the file status).

17

11

c. for RO's, the report line, page counter, and line counter.

d. Working-Storage.

e. The.Linkage Section.

A dynamic map can be requested at any point in the Procedure Division.
If such a map is requested at a STOP RUN, EXIT PROGRAM, or GOBACK
statement, an "end-of-job~' map results.

No source language changes are needed to use this feature. At compile
time, an option tells the compiler to create a debug file, an additional data set
which contains descriptions of data items (the dictionary) and other
debugging information. At object time, symbolic debug output is requested
through control cards. An additional work file, SYSOOS, is required at
compile time and object time.

Several COBOL programs Iink-edited together must have separate debug
flIes if they are compiled with the SYMDMP option.

l'r/", ~: When this feature is used, optimized object code
cannot be requested.

Load module size is increased by 3 factors, although in a virtual system,
additional real storage for these elements is not needed:

1. Space needed for the SYMDMP routine.

2. Additional inline instructions in the object program for each branch
out of the object code main line (such as branches to object-time
subroutines, data management routines, etc.).

3. Data and table space, which depends on the number of SYMDMP
control cards specified.

Figure 3 gives portions of a sample program compiled using the SYMDMP
option, and shows an example of the abnormal termination map that can be
requested.

\ The flow trace option allows the user to receive a formatted trace (that is, a
list containing the program identification and statement numbers)
corresponding to a variable number of procedures executed prior to an
abnormal termination. The number of procedures to be traced is specified by
the user. The flow trace option requires no source language changes.

A flow trace is printed only in the event of an abnormal termination. The
number of procedures to be traced may be specified at compile time or
execution time.

~

."
00'
~ Portions ofTESTRUN source program. compiled using the Symbolic Debugging Feature
n
~

m
)(

~

3
"0
n
2.
(,I)
'<
3
[
n'
o
n
r:r
c
~
5'

OQ

o
c
.;
5.

00038

00055
00056

Field B does not contain r00057
valid COMPUTATIONAL·3
data.

00059

00066
Therefore. source stat~eo 0 0 6 7
ment 00069 is in error. 00068

00069

000370

000530
000535
000540

000550

000620
000630
000640
000650

Portions of symbolic formatted map produced at abnormal termination.

Message giving source
statement and verb number
causing abnormal termination.

WORKING-STORAGE SECTION.

01 RECORDA.
02 A PIC S9(4) VALUE 1234.
02 B REDEFINES A PIC S9(7) COMPUTATIONAL-3.

PROCEDURE DIVISION.

STEP-I. OPEN OUTPUT FILE-I. MOVE ZERO TO KOUNT, NUMBR.
STEP-2. ADD 1 TO KOUNT, NUMBR.

MOVE ALPHA (KOUNT) TO NO-OF-DEPENDENTS.
COMPUTE B = B + 1.

COBOL ABEND DIAGNOSTIC AIDS

Portion of Data Division map INTERRUPT CODE 7 LAST PSW ADDR BEFORE ABEND E00044A2

Data present in RECORDA.

Fields A &: B. (Invalid numeric
positions in field B shown as
asterisks (.).

ND.QT

NP-S

numeric display overpunch
sign trailing
numeric packed decimal­
signed

PROGRAM TESTRUN

LAS~ CARD NUMBER/VERB NUMBER EXECUTED -- CARD NUMBER 000069/VERB NUMBER 01.

000055
003E40
003E40 000056
003E40 000057

01

02
02

RECORDA

A
B

(HEX)
ND-OT
NP-S

F1F2F3C4
+1234
+*1*2*3*

Note: In the complete map. an explanation of the data codes used. and selected areas of the TGT are printed after the statement number message and before
the Data Division map.

f ..

I
i

Pn1grammer Productivity Aids

Per/orrtUllla COlUideratiom: When the feature is used, optimized object code
cannot be requested. An additional 6 bytes are generated for each
procedure-name in the program. A trace table is built; its length is 80 bytes
plus 4 times the number of procedures specified for the table. Execution time
is increased by the time necessary to process these instructions and to build
the trace table. Library modules of approximately 2700 and 1200 bytes are
needed. The 2700-byte routine may be shared with the Statement Number
Option. In a virtual system, additional real storage is not needed for these
elements.

Statement Number Option

20

This option facilitates debugging by providing information about the
statement being executed at the time of abnormal termination. At abnormal
termination, the statement number is printed; if there are two or more verbs
in the source statement, the verb being executed is identified. The program
containing the statement is also identified. This option requires no source
language changes.

Per/onnlllla COIUiduatiOll.J: When this feature is used, optimized object code
cannot be requested. There areS additional bytes generated for each
procedure-name in the program, and S to 17 for each· verb.

Execution Time Statistics (Release 2 Only)

The execution time statistics option provides the programmer with
information that aids user program optimization by identifying heavily-used
portions of the COBOL source program. It is also useful to the programmer
in debugging by providing verification that alI portions of a program have'
been executed. During execution of the object program, a count is
maintained for each verh.inthe source program. Just prior to program
termination, the system prints the accumulated execution count showing the
verb, the name of the procedure in which it appears, and the number of the
statement in which it appears. Figure 4 gives an example of Verb
Profile/Statistics output.

WHEN-COMPILED Special Register

The WHEN-COMPILED special register makes available to the object
program the date-and-time compiled constant carried in the object module.
WHEN-COMPILED provides a means of associating a compilation listing
with both the object program and the output produced at execution time.

STATEMENT PROCEDURE NAME

119 PAGE-HEAD-RTN
120
121 PAGE-HEAD-RTN-SWITCH
122
123 PAGE-HEAD-RTN-TEST
124
124
125
125
126
127
128 PAGE-HEAD-RTN-ALTER
129
130 PAGE-HEAD-RTN-SUPPRESS
131
132 PAGE-HEAD-RTN-EXIT
133
136 OPEN-FILES
136
137
138 READATA
139
139
140
141
142 COMPLETE
143
144
145
146

1-

Last Block. (this column contains an

subroutine)

VERB STATIC COUNT DYNAMIC

I

L VERB ID
B

USE

GO

IF
HOVE
ELSE
MOVE
MOVE
GO

ALTER

M()VE

EXIT

()PEN
INITIATE

RfAO
Gf)
GF.NERATE
Gf)

PERFORM
TERMINATE·
CLOSE

• STOP

Programmer Productivity Aids

VERB COUNT PERCENT

6 2.343

5 1.953
2 .781

3 1. 171
3 1. 171
5 1. 953

1 .390

1 .390

6 2.290

1 .390
1 .390

73 28.515
1 .390

72 28.125
72 28.125

1 .390
1 .390
1 .390
1 .390

asterisk. (*) for the last block. in each

COUNT VERB EXECUTIONS PERCENT

--------------- ------------ ------------- --------------- -------

ALTER 1 1 1 .390
CLOSE 1 1 1 .390
EXIT 1 1 6 2.343
GENERATE 1 1 72 28.125
GO 4 4 84 32.812
IF 1 1 5 1. 953
INITIATE 1 1 1 .390
MOVE 4 4 9 3.515
OPEN 1 1 1 .390
PERFORM 1 1 1 .390
READ 1 1 73 28.515
STOP 1 1 1 .390
TERMINATE 1 1 1 .390

Figure 4. Examples of Execution Statistics Output

21

Efficient Object-lime Perfonnance

Detailed Data and Procedure Division Information

Optimized Object Code

. Additional information is provided when the Condensed Listing (CLIST) or
Symbolic Map (SYM) compiler options are specified. Global tables, literal
pools, register assignments, PBL assignments, and Working-Storage location
and size (in hexadecimal notation) are all given in addition to the information
previously provided with these options.

With this feature the user can obtain optimized object code as output from
the DOS/VS COBOL Compiler. When this feature is requested, new phases
of the Compiler generate more efficient code, considerably reducing the
amount of space required by the object program.

The code thus produced is considerably better (with respect to object
program space) than that produced by Version 2 of the American National
Standard COBOL Compiler. The time required to execute this code is equal
to or less than the time required to execute object code produced by Version
2 of the American National Standard COBOL Compiler.

The optimized object code feature is requested at compile time via the
CBL card. This feature may not be used if the symbolic debug feature, the
statement number option, or the flow trace option is requested.

Perj'Ot'IItIIII« COIIfIdt!rrJtiolB: Excluding user's data, the space saved as
compared with Version 2 can be up to 30°16 of the generated code. The
percentage of space saved is dependent on the nature of the program. For
small programs with few data areas the savings will be small. As a general
rule, however, the space saved increases with the number of referenced
paragraph-names and branches, and the number of OI-Ievel data-names in the
program.

System/370 Instruction Generation

22.

System/370 instructions are provided automatically by DOS/VS COBOL.
(WbenmM-360 is specified in the OBJECT-COMPUTER paragraph, the
compiler generates System/370 instructions, and issues a warning message.)
The Compiler generates instructions from the System/370 set, including
Move Long (MVCL), Compare Logical Long (CLCL), and Shift And Round:
Decimal (SRP) that are particularly useful to COBOL. These System/370
instructions replace object-time subroutines and instructions that the Version
3 Compiler generates under System/360 including routines and instructions
to handle decimal arithmetic scaling (where operands have a different number
of decimal places) and rounding. System/370 support also gives much
improved processing of variable length fields.

Efficient Object-Time Perfonnance

Since System/370 does not require boundary alignment for
COMPUTATIONAL, COMPUTATIONAL-I, and COMPUTATIONAL-2
items, no moves are generated for items that are not SYNCHRONIZED.

PerformaItU Comideratiom: Space occupied by a DOS/VS COBOL program
is decreased, particularly when calls to object-time subroutines are no longer
necessary. Such calls are always generated in System/360 for variable-length
moves and comparisons. If there is at least one variable-length alphanumeric
move in the source program, System/370 support reduces the size of the
object program by at least 484 bytes; if there is also at least one
variable-length alphanumeric comparison, System/370 support reduces the
size of the object program by at least an additional 498 bytes.

Table I gives comparative figures, without right justification, for
fixed-length and variable-length MOVE statements, and for fixed-length and
variable-length comparisons.

Table 2 gives comparative figures for Shift And Round Decimal
generation; the savings shown are made for each such operation in the object
program.

For Each Comparison (in a
For Hacll A/phnlllllaic MOI'e: condit iOlla/ expression):
Object-progralll II/slrl/(.:Iiol/~ Object-program Illstructiom

Number of Bytes
in Each Move or Systelll/J60 Systelll/J70 System/J60 System/370

Comparisol/ Bytes Needed Bytes Needed Bytes Needed Bytes Needed

variahle h!ngth 26 + 4HO* 14-22 26 + 496· 16-24

fixed length

1-256 6-16 6-16 H-26 8-26

257-512 P_-l") 12-22 16-36 16-24

::"I13-76H 18-28 14-22 24-46 16-24

76l)-1024 24-34 14-22 32-56 16-24

1025-1280 30-40 14-22 40-66 16-24

1281-1536 36-46 14-22 48-76 16-24

_.- _

>.w96 26 + 480· 14-22 26 + 496· 16-24

·Bytes needed to invoke ohject-time ~uhroutint!. plus size of suhroutine itself.

Table I. AlphanulIleric MoVt:s and Comparisons-System/360 vs. System/370

System/J60 System/J70
Function Bytes Needed Bytes Needed

Rounding 3l) + literal· 6

Left Scaling 6 + literal· 6

Right Scaling 12 6

• As used for decimal point alignment: the iiteral varies in length with sile of data-item.

numoer of decimal positions dcfineu. and/or scaling positions defined.

Table 2_ Shift Anu Rounu Decimal (SRP)-Systcm/360 vs_ System/370

23

Improved Compile-time Perfonnance

Speedy Sorted Cross-Reference

24

If an alphabetized cross-reference list is requested, the DOS/VS COBOL
compiler produces a cross-reference dictionary in which data-names,
file-names, and procedure-names are sorted alphanumerically into two
groups. One group consists of data-names and file-names; the second
consists of procedure-names. Each group is preceded by a subheading.

This option is requested at compile time via the CBL card.

Perfonnance Considerations: Although actual figures are not the same,
performance improvement for DOS/VS COBOL is in the same order of
magnitude as for DOS Full American National Standard COBOL, Version 3,
since the technique used is the same. Version 3 alphabetized cross-reference
(SXREF) performs up to 25 times faster than previous source-ordered
cross-reference (XREF). As a result, when SXREF is requested, compilation
can be up to 2 times faster, depending on the options chosen, than Version 2
compilation using source-ordered XREF. Version 3 XREF is similarly
improved in performance over Version 2. Figure 5 gives examples of actual
test cases.

Note: A more comprehensive reformatted listing of the entire COBOL source
program can be obtained by invoking the Lister option. The listing thus
produced contains embedded cross-reference information and simplifies
tracing program logic. (See the "Lister" section.)

Improved Compile-Time Perfonnance

40

35

JO

25

20

15

10

V~RSION 2 COMPILE TIME IXREFI I} SAVINGSINCOMPILE TIME

VERSION 3 COMPILE TIME ISXREF o. XREFI

I
E

T I
c 0

lr I
A B

G

~ ______ ~ __ ----L ______ ~ _____ ~ ___ ~ __ ~
1000 2000 3000 4000 5000

PROCEDURE DIVISION STATEMENTS

Oth., OJl:ions In Effect,

1/ OPTION LOG,NODUMP,NOLINK,NODLCK,NOLIST,NOLISTX,NOSYM,ERRS
CDL DUF~25b,SEQ,FLAGW,SPACEl,APOST,TRUNC,ZWB,PMAP;O,NOOPT
CDL FLOW=99,NOSTATE,NOCLIST,NOSlJPHAP

Compil.n Und Vt'l ~Ion 3 Releuf' 2 1 PT F 7

Version 2 Reled~f' 21 1 PH-- 9

Syll.m u..d: 500 MPS

o.r~ D'IIIJIOO Procedur. Dil/iII'on
T"ICa~ Sourc~ C."us Entrl"s Sr.remMtJ

A' 549 168 322

953 W9 120

C' 2171 908 1032

0 2012 368 1566

4229 1003 3110

F' 1426 3195 4090

G' 8319 3195 5065

-programs milked wllh an nlt'.:\k use mtlinten~nce function,. ~o thai eBl LIB wn u~d

Figure 5, SXREF/XREF Performance Comparisons -- Version 3/Version 2

25

IBM DOS/VS COBOL Subroutine Library

COBOL library subroutines perform operations requiring extensive coding.
For this reason, it is inefficient to place this coding in the object module
produced by the DOS/VS COBOL Compiler each time it is needed. The
COBOL object-time subroutines, now packaged as a separate Program
Product, are located in the relocatable and core image libraries. Routines
required to execute the problem program are combined with the object
module produced by the DOS/VS COBOL Compiler at link-edit time or are
dynamically fetched during program execution.

There are several major categories into which the Subroutine Library can
be divided:

• Input/ output

• Conversion

• Arithmetic verbs

• Sort/Merge interfaces

• Checkpoint (RERUN)

• Segmentation Feature

• Debugging

• Other verbs

• VSAM Interface

• 3886 processing

Note that the Subroutine Library, because it is for use with programs
compiled by the DOS/VS COBOL Compiler, necessarily contains all
subroutines needed to support the improvements provided in the DOS/VS
COBOL Compiler. These improvements are described in the section
"DOS/VS COBOL Compiler."

The DOS/VS COBOL Subroutine Library is part of the Disk Operating
System relocatable and core image libraries. These libraries must reside on a
disk storage device. The Subroutine Library is designed for use under the
IBM Disk Operating System, with object modules produced by the DOS/VS
COBOL Compiler.

27

mM DOS/VS COBOL Language Base

DOS/VS COBOL is compatible with the highest level of American National
Standard COBOL, X3.23-1968, and with international standard ISO/R
1989-1972 Programming Language COBOL. DOS/VS COBOL is also a
subset of the complete CODASYL description of the COBOL language as
documented in CODASYL COBOL Journal of Development.
IBM-specified language capabilities are also implemented. DOS/VS COBOL
supports all COBOL features supported by DOS Full American National
Standard COBOL.

The following functional description of the DOS/VS COBOL
implementation indicates which items are Standard COBOL, which items are
CODA S YL-Specified, and which items are IBM-Specified. The descriptions
are grouped according to processing function.

Those items not available in previous versions of IBM DOS COBOL are
identified as follows:

not available in COBOL D

not available in DOS Full ANS COBOL Version 2

not available in DOS Full ANS COBOL Version 3

Basic Internal Processing (Nucleus)

Identification Division

Environment Division

28

Allows the user to specify internal data processing within the framework of
the four COBOL program divisions.

Standard COBOL: The programmer can name the COBOL program and
write comment entries. He can request that the actual compilation date l be
printed in the source listing (via the DATE-COMPILED paragraph).

Standard COBOL: The programmer can document source and object
computer configuration. IBM function-names with a fixed meaning can be
equated to user-specified mnemonic-names. Switches can be specified for use
with the switch-status condition. Another character may be substituted for
the dollar sign, 1 and the functions of the decimal point and comma in
PICTURE strings and numeric literals can be interchanged.

Data Division

Procedure Division

Sequential Access

Environment Division

Data Division

Standard COBOL: The programmer can describe the data to be used in the
program. Data can be hierarchically grouped in records, or it can consist of
independent noncontiguous data items. Data items can be assigned a specific
size and value, can be described as alphabetic, alphanumeric, or fixed-point
numeric (zoned decimal or binary), as being aligned upon necessary
boundarier;, as having alternate attributes, and as being regrouped for specific
processil.1g needs. !

IBM-Specified Items: Numeric items may be defined as internal decimal, as
internal or external floating-point, or as having a sterling currency format.

Standard COBOL: A simple or nested conditional statement allows a simple
or compound condition to be tested. (Conditions allowed are: class,
condition-name, relation, sign, switch-status.) Arithmetic operations allowed
are: addition, subtraction, multiplication, division, exponentation, or a
combination of any or all; mUltiple receiving fields! are allowed in addition
and subtraction operations. Unconditional and conditional branching
statements and program switches are allowed. Data can be moved from one
storage location to another, and a data item can be inspected to count and/or
replace single characters or groups of characters within it. Low-volume data
can be moved into or out of the computer.

Allows the user to process records in the physical order in which they are
placed in the file.

Standard COBOL: The programmer can name the file and document the
device upon which it resides; he can specify sequential access for the file as
well as any shared memory areas and checkpoint instructions.

IBM-Specified Items: Indexed files can be specified, and access can be
sequential.

Standard COBO . The FD entry allows the user to specify fixed or variable
length physical a logical records, the presence of system standard, user
standard, or non .. dard labels, to document the contents of labels, and to

29

Procedure Division

Random Access

Environment Division

Data Division

30

identify records associated with the file.

IBM-Specified Items: 1 The programmer can specify the recording mode for
the file.

Standard COBOL: The programmer can create, retrieve, and update a
sequential file; he can create and retrieve a direct file. When an input/ output
error occurs, special routines can be executed. Label Declarative procedures
to process user standard or nonstandard labels can be specified.1

IBM-Specified Items: The programmer can create, retrieve, and update an
indexed file. Processing can begin at any record,1 or class of records,1 2 in the
file.

Allows the user to process records in a mass storage file by means of a
programmer-specified key. The order of processing is the order in which keys
are presented.

Standard COBOL: The programmer can name the file and document the
device upon which it resides; he can specify random access for the file, as well
as any shared memory areas and checkpoint instructions.

IBM-Specified Items: Indexed files can be specified, and access can be
random.

Standard COBOL: The FD entry allows the user to specify fixed or variable
length physical and logical records, the presence of system standard or user
standard labels, to document the contents of such labels, and to identify
records associated with the file.

IBM-Specified Items: 1 The programmer can specify the recording mode for
the file.

Table Handling

Data Division

Procedure Division

Sort I

E"vironment Division

Standard COBOL: The programmer can create, retrieve, update and add
records to a direct file. When an input/output error occurs, special routines
can be executed. Label Declarative procedures to process user standard
labels can be specified. l

IBM-Specified Items: Through a search key the programmer can retrieve,
update, or add records to an indexed flle.

Allows the user to define and process fixed or variable length tables of up to
three dimensions. Subscripting (giving the ordinal position of the table entry)
and indexing (giving the displacement of the table entry)' are provided.

Standard COBOL: One elementary variable-length table is allowed. A
table may be ordered on some ascending or descending key.' Data items can
be defined to hold index values without conversion.'

IBM-Specified Items: 1 Three nested levels of variable-length tables can be
defined.

Standard COBOL: I Sequential or binary search of a table is provided.
Index-name values can be initialized before a table search begins, and can be
equated to literals, data-names or other index-name values.

Allows the user to order a file of records one or more times according to the
ascending/ descending order of embedded key(s) in each record. More than
one file may be sorted.

Standard COBOL: Names and identifies the sort file, documents the
hardware devices to be used. Shared memory areas can be specified.

11

Data Divisio1l

Procedure Divisio1l

Report Writer 1

Segmentation I

IBM-Specified Items: Checkpoints can be taken during a sorting operation.

Standard COBOL: The SD entry specifies the logical sort record size and
the names of the records to be sorted.

IBM-Specified Items: The recording mode of the records to be sorted t;an
be specified. Sort work file label information is accepted.

Standard COBOL: The programmer can specify that records are to be
accepted from an input file, sorted, and placed on an output file. Input
and/or output records can be modified before/after sort processing.

IBM-Specified Items: Control can be passed outside of the sort procedures
during modification of input and/or output records. Sort special registers
allow optimization of the sort processing.

Allows the user to specify the -format and logic of a printed report in the Data
Division, thus minimizing the Procedure Division coding necessary. Detail
and/ or Summary reporting may be specified.

Standard COBOL: The RD entry describes the physical aspects of the
report, including identifying code, control data items and page format. The
report group description entry identifies a report group and defines its format
(line and column), and characteristics: whether it is a heading, detail, or
footing item, if it is an item used as a source or as a sum counter, when it is to
be reinitialized, etc. Procedure Division statements specify that report data
items are to be initialized, that report processing (detail or summary) is to be
performed, and that report processing is to be ended. Reporting Declaratives
for special processing situations can be specified. One report may be written
to two different files.

IBM-Specified Items: Report group printing can be suppressed at specific
points during program execution.

Allows the user to specify object program overlay requirements through
specification of segment numbers for Procedure Division sections.

Source Program Library

Standard COBOL: All sections with the same segment number constitute
one program segment. Segments with different segment numbers may be
intermixed in the Procedure Division. Permanent segments that cannot be
overlaid and permanent segments that can be overlaid (both always made
available in their last-used state) are provided. Independent segments (always
made available in their initial state) can overlay or be overlaid by other
segments. In the Environment Division, the programmer can specify those
permanent segments which can and those which cannot be overlaid by
independent segments.

Allows the user to specify text that is to be copied into a source program from
a library.

Standard COBOL: Library text, with word substitution in the text to be
copied,· can be copied into the COBOL source program. Text may be:
Configuration Section paragraphs, Input-Output Section paragraphs, FD and
SD· entries, record description entries, Procedure Division sections and
paragraphs.

IBM-Specified Items:· Copied text need not appear on the source listing.
Complete programs copied from a library can be used as input for a
compilation; statements can be added and/or deleted before compilation
begins.

VSAM Mass Storage Processin~l, 2, 3

Environment Division

Allows the user to process records sequentialJy or randomly in a VSAM mass
storage file. Records can be placed in the file in physical sequential order, or
in the ascending order of an embedded record key, which contains an
unchanging unique value.

Physical sequential files must be accessed sequentially. Indexed files can
be accessed sequentially in order of ascendirig record keys, and randomly
through the value of each record key presented.

CODASYL-Specified Items: The programmer can name the file and
document the device upon which it resides; for physical sequential files he can
specify sequential access; for indexed files he can specify sequential, random,
or dynamic access. For indexed files he also specifies the record key. For
both types of files, he specifies file organization, buffer allocation, shared
memory areas between files, and checkpoint instructions.

IBM-Specified Items: A password (;all be defined.

33

Data Division

Procedure Division

MERGE
1, 2,3

Environment Division

Data Division

Procedure Division

34

CODASYL-Specified Items: For both sequential and indexed files, the FD
entry allows the user to specify fixed or variable length logical records. Other
clauses of the FD entry are accepted and treated as comments.

CODASYL-Specified Items: For a sequential file, the programmer can
create, retrieve, update, and add records in the file. For an indexed file, the
programmer can create, retrieve, update, add, and delete records in the file;
he can specify that sequential processing is to begin at some specific record or
at some class of records. For both types of files, special routines can be
executed when an input/output error occurs.

IBM-Specified Items: If a password has been defined, the file cannot be
opened unless a valid password is present.

Allows the user to combine two or more identically sequenced files according
to the ascending/descending order of embedded key(s) in each record. Up to
8 files may be combined in a single merge operation.

CODASYL-Specified Items: Names and identifies the merge file.

CODASYL-Specified Items: The SD entry specifies the logical merge record
size and the names of the records to be merged.

IBM-Specified Items: The recording mode of the records to be merged can
be specified. Merge work file label information serves only as documentation.

CODASYI.-Specified Items: The programmer can specify that records are to
I, . ; .. ,; frnll1 input files, merged, and placed on an output file. Output
records can be modified after merge processing.

IBM-Specified Items: Control can be passed outside of the merge
procedures during modification of output records. Certain sort special
registers allow optimization of merge processing.

Advanced System/370 Device Processing}' 2

Subprogram Linkage

Debugging Facilities

Allows the user to exploit the processing capabilities of the advanced
System/370 devices.

Standard COBOL: Through standard COBOL language combined function
processing for the System/370 card devices can be specified.
Read/punch/print, read/punch, read/print, and punch/print functions can
be specified.

IBM-Specified Items: Through standard COBOL source language and
object-time control cards, Optical Mark Read processing for the 3505 and
Read Column Eliminate Processing for the 3505 and 3525 can be specified.
For the Optical Character Readers, predefined object-time library subroutines
provide the following functions: opening and closing the file, reading,
checking, controlling the document, and loading a new format record. After
each request, a return code is passed back to the program so that any
exceptional condition can be tested. Options are available to specify error
and end-of-file processing.

Allows communication between object programs in one run unit.

CODASYL-Speci!ied Items: Data can be shared between calling and called
programs. Control can be transferred from a calling program to a called
subprogram.

IBM-Specified Items: Alternate entry points into a called subprogram are
allowed.

Allows the user to describe conditions under which data items and/or
procedures are to be monitored during object program execution.

IBM-Specified Items: A formatted display of selected data items or literals
at specific points of program execution can be requested either conditionally
or unconditionally. When a procedure is entered, an indication can be
requested. A debugging procedure can be written at the end of the source
program for insertion before any section or paragraph in the Procedure .
Division. Selective execution of a debugging statement may be requested
depending on a count condition.

35

Appendix A: Other mM COBOL Program Products

The following brief descriptions outline the features and functions of other
IBM COBOL Program Products. There are Program Product COBOL
Compilers for a wide range of systems. There are also other Program
Products related to COBOL which make the compilation and debugging of
IBM OS COBOL programs far quicker and easier than before.

Note: A Type 1 (no fee) Language Conversion Program (LCP) is available
which converts COBOL D, E, and F programs to American National
Standard COBOL. IBM DOS American National Standard COBOL is
upwardly compatible with IBM DOS/VS COBOL - that is, any IBM DOS
American National Standard COBOL program (Subset or Full) will run under
DOS/VS without change.

31

1130 COBOL Compiler & Library

Program Number

Features

~bugging Aids

System Requirements

Compiler Storage Requirements

Data Set Compatibility

Device Support

Of Interest To

Availability

General Documentation

38

5711·CB1

• Spanned Records
• COpy Useable in 3 Divisions
• 3 Levels of Indexing, Subscripting
• Abbreviations Extensively Permitted
• Extensive Argument Passing CALL Statement
• Improved Compile Operations with

1) Larger CPU (up to 32K wOlds)
2) 1442 Card Punch if 2501 Card Reader Installed

instead of Reader/Punch
3) Additional 2310 Disk Drives

• Improved Execution Operations with the above plus
a Second Printer

• Load on CALL, System OVPrlay on CALL
• Special Servicp Suuroutines

Notv: 1130 COBOL does not include
.ISAM
• Packed Decimal

(except via service subroutine)
• Floating Point
• TRANSFORM
• Declaratives
• Segmentation
(All are included in DOS Subset ANS COBOLI

READY TRACE
RESET TRACE
Source Statement Number Retention
Callable Snapshot Dump

1130 Disk Monitor System Version 2

8K words

Any 1130 RPG sequentially created file
1130 FORTRAN files
(converted by service program)

1132 Printer
1403 Printer 120·132 Print Positions
1442 Card Read/Punch
2501 Card Reader

New Users

NOW

General Information GH20-0799

System/1 COBOL Compiler & Library

Program Number

Features

Debugging Aids

System Requirements

Compiler Storage Requirements

Data Set Compatibility

Device Support

Of Interest To

Availability

General Documentation

5702·CB1

Upward Compatible to DOS and OS COBO L
• Superset of 1130 COBOL: includes all 1130 Language

Features
• Lowest Level Nucleus plus Extensions In Nucleus,

Sequential and Random Access
• Extensive Options
• CODASYL Extensions
• Comprehensive and Precise Diagnostics
.ISAM
• Segmentation
• Table Handling
• Extensive COPY Usage
• Accepts 80 or 96-(;0Iumn Card Input
• Separate Sign Feature
• Multi-F unction Card Processi ng

Note: System/3 COBOL does not include
• Floating Point
• TRANSFORM
• Declarat ives

(All are included in DOS Subset ANS COBOL)

READY TRACE
RESET TRACE
EXHIBIT

Model 10 Disk System Control Program
Release 6

12K

Any System/3 file created through Disk
System Management including RPG
80 column 1130 or System/360 card files

Additional Models of 5444 Disk and 5203·1403 Printers.
5424 MFCU 1442 Card Read/Punch
5471 Console
5445 Disk

New Users

3410/3411 Tape

Users Moving from 1130 COBOL to System/3
DOS Users (mixed shop with System/3)

Release 3 NOW

General Information GC28·6453

39

DOS Subset ANS COBOL Compiler & Library

Program Number

Features

Debugging Aids

System Requirements

Compiler Storage Requirements

Data Set Compatibility

Device Support

Of I nterest To

Availability

General Documentation

40

5736-CB1

Highlights:
• Segmentation
• Double buffered ISAM
• Table Handling with Indexing

Comprehensive, Precise Diagnostics
Expanded Output Listings

• Assembler mnemonics in LlSTX
• Expanded Data Division Map
• Comments in every Division

Expanded Function
• Spanned Records
• ADD, SUBTRACT & MOVE CORRESPONDING
• COpy Allowed in All Divisions
• Relative Track Addressing
• RENAMES
• VALUE THRU, VALUE IS series
• Separate Signed Numeric Data
• CICS

Compiler Design and Performance Improvements
• SYSLINK & Deck in one Run
• PROGSIZE Option

(See DOS Full ANS COBOL for items not included)

READY TRACE EXHIBIT
RESET TRACE Sorted XREF

DOS Release 24
Double-buffered ISAM, Release 25
2319,3211
3330, 3410, 3420, 3505, 3525 Release 27

20K

DOS Full ANS COBOL Versions 2 & 3
COBOL D

3211 Printer
2319 Disk
3330 Disk

COBOL:. D

3410,3420 Tape
3505 Reader (OMR)
3525 Card Punch

Small Storage or Multiprogramming User
5/370 user

Release 2
3881,2560
5425

NOW
6/73

12/73

General Information GC28-6402

DOS Full ANS COBOL Compiler & Library Version 3

Program Number

Features

Debugging Aids

System Requirements

Compiler Storage Requirements

Data Set Compatibility

Device Support

Of Interest To

Availability

General Documentation

5736-CB2 Compiler 5736-LM2 Library

All DOS Subset ANS COBOL Features, plus:
• Sort Feature
• Report Writer
• Full Table Handling

- SEARCH verb
- 3-level variable-length tables

• Full Segmentation
(overlayable fixed segments)

• Full Source Program Library
(REPLACING option)

• Extended Source Program Library
(BASIS/INSERT/DELETE cards)

Version 3 offers the following improvements over Version 2:
• Optimized Object Code
• Move and Compare Improvements
• Debugging Features Listed above

All DOS Subset ANS COBOL items, plus:

Batch Symbolic Debug (COBOL-formatted
Data Division snapshots and listings)
WORKING-STORAGE location and size

DOS
2319.3211
3330,3410,3420,
3505,3525
3604. 2560, 3881

54K

DOS Full ANS COBOL Version 2
ANS Subset COBOL
COBOL 0

Release 25

Release 27

Release 28

Flow Trace
Statement number
Expanded CliST
&SYM

Relocation factor

3211 Printer
2319 Disk
3330 Disk

3410,3420 Tape

2560 Multi function
Card Machine CMFCM)

DOS ANS Version 2
COBOL 0 Large Storage Users
S/370 user

NOW

General Information GC28-6421

3504, 3505 Reacler (OMR/RCE)
3525 Card Punch (RCE)
3881 Optional Mark Reader COMR)

41

OS Full ANS COBOL Compiler & Library Versioll 3

Program Number

Features

Debugging Aids

System Requirements

Compiler Storage Requirements

Data Set Compatibility

Device Support

Of I nterest To

Availability

0. Documentation

42

5734-CB1

Improvements over Version 2
• Time Sharing Option Support
• OPEN Statement Improvement
• Move & Compare Improvement
• Optional Allocation of Compiler

Data Sets
• Batch Compilation
• Separate Signed Numeric Data
• Dynamic Record Length Specified
• Generic Keys for Indexed Files
• RERUN Facility at End-of-Volume
• ON Statement Improvement
• Error Declarative Enhancement
• Debugging Features listed above
• Sort interface improvements

Sorted XREF Flow Trace
WOR KING-STORAGE

Location & Size
Statement Number
Expanded CLiST & DMAP

Basic Support
ASCII
TSO

8DK MFT
86K VS1. MVT
92K VS2

OS
Rei. 19
ReI. 20.1
ReI. 20.1

OS Full ANS COBOL Version 2
COBOL E & F

3211 Printer
2319 Disk

OSIVS
VS1. VS2
VS1. VS2

VS2

2305 Fixed Head Storage
3330 Disk

OS full ANS COBOL Versi.on 2 All TSO users
users moving from DOS to OS System/370 users
COBOL E & F

Release 3 NOW

General Information GC28-6407

OS Full ANS COBOL Compiler & Library Version "

Program Number

Features

Debugging Aids

System Requirements

Compiler Storage Requirements

Data Set Compatibility

Device Support

Of Interest To

Availability

General Documentation

5734·CB2 (Complier & Library) 5734·LM2 (Library only)

All Version 3 items plus:
• OPtimized object code
• Library management facility (reentrant object library)
• Teleprocessing facility (TCAM)
• Dynamic subprogram linkage
• Syntax-checking compilation
• String Manipulation
• FBS (fixed block standard) support (improves 3330

performance)
• Supports COBOL Interactive Debug (see reverse side)

All as ANS COBOL Version 3 items, plus:
Batch symbolic debug (COBOL·formatted dynamiC Data

Syntax·checker
Division snapshots and listings)

Associated COBOL Interactive Debug Program Product

Basic Support
ASCII
TSO
Teleprocessing (TCAM)

as
ReI. 19
ReI. 20.1
ReI. 20.1
ReI. 21.6

80K
86K

VS1, MFT, MVT
VS2

as Full ANS COBOL Versions 2 & 3
COBOL E & F

3211 Printer 3330 Disk

OS/VS
VS1, VS2
VS1, VS2

VS2
VS1, VS2

2319 Disk 3410,3420 Tape
2305 Fixed Head Storage 3505 Reader (OMR/RCE)

3525 Card Punch (RCE)

as Full ANS COBOL Versions 2 & 3
Users moving from DOS to as
COBOL E & F

NOW

Planning Guide GC28·6431

All TSO users
System/370 users

43

TSO COBOL Prompter

Program Number

Features

Dvnamic Storage Requirements

Of I nterest To

Availability

General Documentation

44

5734-CPl

Simplifies Compilation of a COBOL Program through
Conversational Method

COBOL Prompter Function
• Accepts Terminal Input
• Analyzes Input for Completeness and Correctness
• Prompts Terminal User for Required Operands
• Dynamically Allocates Necessary Data Sets
• Builds an OPtion List and DD LIST for Compiler
• Invokes the as Version 3 Compiler, Program Product

5734-CBI, which contains the following options

Compil3tion Storage Availability (BUF option)
Buffer Storage Allocation (SIZE option)
Batch Compilation
Debugging Aids
Sorted Cross Reference
Terminal Output Facility - output dafa sets can be
allocated to the terminal

• Invokes the as Version 4 Compiler, Program Product
5734-CB2, which contains all features of the Version 3
Compiler, plus:

- Batc" Symbolic Debugging (may be allocated to the termin31)
- OPtimized Object Code
- Teleprocessing Facility
- Library Management Facility
- Dynamic Subprogram Linkage

80K ANS COBOL Compiler
20K TSO Service Routine
2K TSO COBOL Prompter

TSO Users under as or VS2

NOW

General Information GC28-6454

OS COBOL Interactive Debug

Program Number

Features

Dynamic Storage Requirements

Of Interest To

Availability

General Documentation

5734·CB4

Allows interactive debugging of a COBOL program from a
TSO terminal, through dynamic monitoring of object
program execution

Via a TSO terminal, a COBOL user can:
• Establish unconditional or conditional breakpoints

(suspensions of execution)
• Prespecify automatic actions at breakpoints

(that is, display of data, etc.)
• Dynamically display/compare/modify contents of data

items
• Resume execution at any user-specified procedure·name
• Trace the path of execution
• Displ;ry selected COBOL source statements
• List status of files
• List or remove active breakpoints
• Obtain assistance in entering COBOL Interactive Debug

commands (via HELP)
• Dynamically interrupt (via ATTENTION) and enter

debugging commands during test session

Fi xed Region Work Space (all code reentrant, may be
LPA resident)

COBOL Inte{active Debug:
TSO: Parse

Variable Work Space

COBOL Interactive Debug
Dictionary

Table Space
Debug Working Storage

TSO C~ntrol Blocks

LSQA

46K
20K

may be 12K per 500
elementary Data
Division entries
4K·6K
6K . 8K

12K

8K

Object Module produced by companion Program
Product 5734·CB2 ros Full ANS COBOL Version 4)

TSO users - under OS or VS2
OS Full ANS COBOL Version 4 us.p.rs

NOW

General Information GC28·6454

Appendix B: mM DOS/VS COBOL Changes in the Reserved Word List

For DOS/VS COBOL, the DOS American National Standard COBOL
Version 3 reserved word list must include the following entries.

The keys preceding the entries, and their meanings, are:

(xa) before a word means that the word is a CODASYL-specified
extension to American National Standard COBOL

(xac) before a word means that the word is an IBM-specified
extension to both American National Standard COBOL and
CODASYL COBOL

(ca) before a word means that the word is a CODASYL COBOL
reserved word not incorporated in DOS/VS COBOL

(sp) before a word means that the word is an IBM function-name
established in support of the SPECIAL-NAMES function.

(spn) before a word means that the word is used by an IBM
Program Product COBOL compiler, but not this compiler

(ca) ALPHANUMERIC

(ca) ALPHANUMERIC-EDITED

(ca) BOTTOM

(spn) CANCEL

(spn) CBL

(spn) CD
(xa) CHARACTER

(spn) COMMUNICATION
(xa) COMP-4
(xa) COMPUT ATIONAL-4

(spn) COUNT

(spn) DATE

(spn) DAY
. (ca) DAY-OF-WEEK

(ca) DEBUG-CONTENTS

(ca) DEBUG-ITEM

(ca) DEBUG-LINE

(ca) DEBUG-NAME

(ca) DEBUG-SUB~ 1

(ca) DEBUG-SUB-2

(ca) DEBUG-SUB-3
(ca) DEBUGGING

(xa) DELETE

(spn) DELIMITED

(spn) DELIMITER

(spn) DEPTH
(spn) DESTINATION

(ca) DISABLE

47

(ea) DUPLICATES
(xa) DYNAMIC

(spn) EGI
(spn) EMI
(ea) ENABLE
(spn) ESI
(xa) EXCEPTION
(xa) EXTEND

(ea) INITIAL
(ca) INITIALIZE
(ca) INSPECT

(spn) LENGTH

(xa) MERGE
(spn) MESSAGE

(ca) NUMERIC-EDITED

ha) ORGANIZATION
(spn) OVERFLOW

bac) PASSWORD
(spn) POINTER
(ta) PROCEDURES

(spo) QUEUE

(spo) RECEIVE
(ea) RELATIVE
(xac) RELOAD
(ea) REMOVAL
(xa) REWRITE

(spn) SEGMENT
(spn) SEND
bac) SERVICE
(xa) SORT-MERGE
(spn) SORT-MESSAGE
(xac) SORT-OPTION
(xa) START
(spn) STRING
(spo) SUB-QUEUE-l
(spo) SUB-QUEUE-2
(spn) SUB-QUEUE-3
(xa) SUPPRESS
(spn) SYMBOLIC
(sp) S03
(sp) S04
(sp) SOS

(spn) . TABLE
(spn) TEXT
(spn) TIME
(ca) TOP

(spn) UNSTRING

(xac) WHEN-COMPILED

The following words should be deleted from the list:

CONSTANT

KEYS

LOWER-BOUND
LOWER-BOUNDS

OH
OV

PREPARED

PRIORITY
RANGE

SELECTED

49

INDEX

advanced application program features
System/370 device support 11,12,9
VSAM support 10, 11,8

American National Standard COBOL, X3.23-1968
compiler support 5,2
language support 28-36

Basic Internal Processing, language description 28,29

CLCL instruction 22
CLIST option 22,13
COBOL D conversion considerations 5
COBOL Language Base (see language description)
COBOL program product list 37-45
COBOL reserved words .47-49
compare logical long (CLCL) instruction 22
compatibility

data set 5
programming 5,6

compatibility interface 5
compile-time machine requirements 7
compile-time performance feature (SXREF) 24,25,9
compile-time reduced with syntax-check feature 12,13
compiler compatibility 5,6
condensed listing (CLIST) 22,13
conditional syntax checking 12,13
count of verbs in verb profiles 16
CPU models valid for compilation 7
cross-reference option 24,25,9

Data Division information 22,9
data format of VSAM files 5
data set compatibility 5
date-and-time-compiled constant 20,9
Debugging Facilities, language description 35
detailed Data Division information, description 22,9
detailed Procedure Division information, description 22.9
devices supported ll,12,7
DOS/VS COBOL

compiler features .8-25
language base 28-35
releases needed for 7
reserved words 47-49
subroutine library features 27
system requirements 7

DOS/VS sort-merge program product
description 12
SOR1' -OPTION clause and 16,9

ExecutIon time statIstics teatu"re 20

features, listed 8-10
FIPS (Federal Information Processing Standard) Flagger

description 13,8
programming considerations 13

fixed block devices 7,11
flow trace feature

description 18,9
performance considerations 20
and statement number option 20
and optimized object code 20
and syntax-check feature 13

indenting conventions in lister 13
input! output devices 11,12,7
international standard ISO/RI989-1972 5,2
ISAM/VSAM conversion 5

Page ofGC28-6473-2,-3
As Updated Jan. 31, 1979
By TNL GN20-9292

language description
basic internal processing 28,29
debugging facilities 35
merge 34,35
nucleus 28,29
random access 30,31
report writer 32,33
segmentation 32
sequential access 29,30
sort 31,32
source program library 33
subprogram linkage 35
System/370 device support 35
table handling 31
VSAM support 33,34

levels of FIPS flagging 13
lister feature

description 13-16,8
embedded cross-references 13
example 14,15
performance considerations 16
reformatted deck (optional) 16
reformatted source listing 13
summary listing 16

machine requirements 7
move long (MVCL) instruction 22,23
merge

feature 12,8
language description 33
SORT-OPTION clause and 16

Nucleus, language description 28,29

object-time machine requirements 7
object-time performance features

COBOL optimizer 22,9
optimized object code 22,9
System/370 support 22,23,9

object-time subroutine library, description 27
optimized object code

description 22,9
performance considerations 22
and flow trace option 22
and statement number option 22
and symbolic debug 22
and syntax-check feature. 13

options of sort/merge 16,9

Procedure Division information 22,9
program products, COBOL 37-45
programmer productivity aids featur~s

Data and Procedure Division information 22,9
FIPS flagger 13,8
flow trace 18,20,9
statement number option 20,9
symbolic debug 17-19,9
syntax-check feature 12,13,8
WHEN-COMPILED special register 21,9

programrrllng compa-tibility 5,6

random access,
language description 30,31
VSAM files 10,11,8,5

release required 7
Report Writer, language description 32,33
reserved words added 47-49,6

Segmentation, language description 32
Sequential Access,

language description 29,30 51

52

VSAM files 10,11,9,6
shift and round decimal (SRP) instruction 22,23
Sort, language description 31,32
sort-merge, DOS/VS Program Product 12
SORT-OPTION clause 16.9'
sorted cross-reference feature

description 24,25
examples 25
performance considerations 24

source deck option in lister 16
Source Program Library, language description 33
SRP instruction 22,23
standard sequential files and MERGE support 12,34,35
standards implemented 2,5
statement number option

description 20,9
performance considerations 20
and optimized object code 22
and syntax-check feature 12

statement numbers in verb profiles 16
storage needed for compiler 7
Subprogram Linkage, language description 35
subroutine library, description 27
SXREF option .

description 24,25,9
and syntax-check feature 12,13

SYM option 22
symbolic debug feature

description 17-19,9
example 19
and optimized object code 18
performance considerations i8,10
and syntax-check feature 12·,

symbolic map (SYM) 22
syntax-check feature

and CBL statement 12,13
description 12,13,8
and OPTION statement 12
performance considerations 13

system requirements
compile-time 7
device support 7
DOS release required 7
object-time 7
virtual memory needed 7

System/370 device support
feature 11,12,9
language description 35
Version 3 devices supported 12,7
3203 printer support 11,7
3340 disk support 11,7
3540 diskette input/output unit 11,12,7

and 3740 data entry system 11,12
3886 optical character reader 11,7
5425 MFCU 12,7

System/370 instruction generation
description 22,23,9

examples 23
performance considerations 23
and SYNCHRONIZED clause· 22

System/370 models valid for compilation 7

Table Handling, language description 31
timing considerations for lister 16

unconditional syntax checking 12,13

Verb profiles feature 16,9
Version 3 devices supported 12,7
Version 3 features supported

ASCII 10
double-buffered ISAM 10
move and compare improvements 10
separately signed numeric data 10

virtual memory needed for compiler 7
Virtual system support 10,8
VM/370 support 10
VSAM (Virtual Storage Access Method)

access method services 10
compatibility interface 5
data format 5
description 10, 11,8
indexed file processing 10, II
processing capabilities 10
sequential file processing II

VSAM files and MERG E support 12

WHEN-COMPILED special register feature 20,9
work files needed

for compilation 7
for execution 7

XREF option
description 24,25
and syntax-check feature 12,13

2560 MFCM 12
3203 printer 11,7
3330 disk 12
3330-11 disk 7,11
3340 disk 7,11
3350 storage 7,11
3410/3420 tape 12
3504/3505 reader with OMR 12
3525 punch with RCE 12
3540 diskette input/output unit 11,7
3740 data entry system 12
3881 with OMR 12
3886 OCR 11,7
5203 printer 11,7
5425 MFCU 12,7

IBM DOS/VS COBOL Compiler and
Library General Information
GC28·6473·3

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph refen."nct's
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems anu
programs or to request copies of publications. Rather. direct such qUL'stion~ or
requests to your local I BM representative.

If you would like a reply, please provide your name, job title, anu business
address (including ZI P code).

Fold on two Iincs, staple, and mail. No posta!!c nccessary if mailed in the U.S.A. (Elsewhere.
any IBM rqHc\cnlative will bc happy to forward your COJlllTlcnts.) Thank you for your
cooperation.

Reader's
Comment
Form

GC28-6473-3

Fold and Staple
...

II "I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
General Products Division

ARMONK, N.Y.

Programming Publishing-Department J57
1501 California Avenue
Palo Alto, California 94304

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York. New York 10017
(I nternationaU

III
~
o
o
en -....
< en
(")
o
III
o
r
G)

