
File No. S360-20
Order No. GC28-6698-6 OS

Systems Reference Library

IBM System/3BD Dperating System:

Time Sharing Option Guide

OS Release 21.7

1

Seventh Edition (April, 1973)

This is a major revision of, and makes obsolete, GC28-6698-5 and GC28-6698-4 with
Technical Newsletter GN28-2519. Major changes to the text are listed in the "Summary
of Amendments." Changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

This edition applies to release 21.7 of IBM System/360 Operating System and to all
subsequent releases until otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/360 and
System/370 Bibliography, Order No. GA22-6822, and the current SRL Newsletter, Order No.
GN22-0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Corporation, Publications
Development, Department 058, Building 706-2, PO Box 390, Poughkeepsie, N. Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1969,1970,1971,1972,1973

,
,

...

This publication describes the concepts, features
and implementation of TSO, a general purpose
time-sharing facility operating under the MVT
configuration of the control program. This manual
is intended for those who design, generate, and
maintain a TSO installation.

This publication discusses:

• 	 The general capabilities and advantages of TSO.

• 	 The command language, programming languages •
and system facilities available to a TSO terminal
user.

• 	 The system elements added to MVT for TSO.

• 	 The generation and maintainance of a system
with TSO.

,

•

Preface

There are three appendixes:

• 	 A list of the TSO commands by function.

• A list of the Time Sharing Driver Entry Codes.

I·A list of Message Control Program diagnostic
messages.

There is also a bibliography of related reading and

an index .

The prerequisite publication is:

IBM System/360 Opentlng System: MVT Guide,

GC2S-6720.

Preface 3

.,

•

,

•

TSO Guide (Release 21.7) 4

Contents

..

•

•

Summary of Amendments

Introduction
Advantages of a Time Sharing System
Using a Terminal

Starting and Stopping a Terminal Session .
Working at the Terminal .

System Configuration
Terminals
Transmission Control Unit
Swap Data Set Devices . .

The Relationship of TSO to the Operating System
Execution of Background Jobs from the Terminal
Foreground-Background Compatibility
Restrictions and Limitations .
System Control
Job Definition and Scheduling . .
Tuning the Time Sharing System

Monitoring System Use and Performance
System Security

User Verification . .
Program Protection .
Data Set Security. .
Authorizations . . .

Capabilities of the TSO Command Language
IBM Program Products

Problem-Solving
Programming
Text and Data Handling

COllUl1llld Language FacWties
Conventions at the Terminal

Logging On ...
hlput Editing
Entry Modes. . .
The Attention Key
Data Set Naming Conventions .

Data Entry
Creating Data Sets . .
Entry Modes for EDIT
Input Mode
Edit Mode
Modifying Data Sets .

Data Set Management Commands
TSO Data Utilities

Text-Handling
Data Set Manipulation

Compiling and Executing Programs
Remote Job Entry . .
System Control

User Authorization . .
System Operation
Command Procedures

Other Commands

Programming at the Terminal
COBOL

Entering the Source Program
Compiling a COBOL Program.
Program Execution
Interactive Programs

FORTRAN
Entering the Source Program .
Compiling a FORTRAN Program

PL/I

7 	 Entering a PL/I Program . 37

Compiling a PL/I Program 38

Program Execution . 38
9

Assembler Language. . 	 38
10
Assembling the Program 	 38
11

Test Mode. . 	 38
11
Other Compilers 	 39
12

12

13 Problem SotviDg . 40

13 ITF: BASIC 40

14 ITF: PL/I 40

15
 Code and Go FORTRAN 41

15

16

System Summary 	 42
16
The Time Sharing Driver 	 43
16
Control Routines 	 44
17

The Time Sharing Control Task 	 44
17
The Region Control Task . . . 	 46
18
LOGON/LOGOFF. 	 47
19
The Terminal Monitor Program 	 48
19
TEST. 	 49
19
Service Routines 	 50
19
Command Processors and User Programs . 51
20

20
 Terminal I/O 51

21 The Message Control Program 51

Mixed Environment MCPs 52
21

Terminal Interfaces. 5222

23 Multi-Terminal Message Processors 53

Overview and Storage Map 53

Time Sharing Algorithms 55
24

Time Slices . . . 	 56
24

Major Time Slices 	 57
24
Minor Time Slices 	 59
25

25

25 Preparing a System for TSO . 62

25 Tailoring a Message Control Program 62

26 Mixed Environment MCPs 62

26 TSO-Only MCP 63

26 LINEGRP Macro Instruction 64

26 LISTT A Macro 68

27 TSOMCP Macro 69

27 Writing Cataloged Procedures for TSO 72

27 Message Control Program . . 73

28 Time Sharing Control Task . 73

28 Background Reader (BRDR) 76

29
 TSO Trace Writer 76

29 Logon Cataloged Procedure . 77

30 TSO System Parameters 78

31
 The Time Sharing Control Task Parameters 79
31
 Driver Parameters 	 79
31
 Buffer Control Parameters 	 81
31
 System Parameter Format . 	 82

32
 Tuning a System With TSO 	 88

Reducing I/O contention Between Foreground

33 and Background. 88

33 Reducing Fetch Time 89

34 Reducing Swap Overhead 91

34 Reducing Seek Time Between Different Libraries and

35 Different Parts of the Same Library 91

35 Using TSO Trace. 92

35 Writing Installation Exits for the SUBMIT Command. 94

36 Writing Installation Exits for the OUTPUT, STATUS,

36
 and CANCEL Commands. . . . 96

36 Writing a LOGON Pre-Prompt Exit. 97

Contents 5

Storage Estimates 101 Language Processors . 106

Main Storage Requirements 101 Program Control 106

MVT Basic Fixed Requirement 101 Remote Job Entry 107

Nucleus 101
 System Control 107

Master Scheduler Region . 101
 Session Control 107 ..)
Link. Pack Area . 102

Command Procedure Definition 108
System Queue Area 102

Message Control Program Requirement 102

Time Sharing Control Region Requirement 102 Appendix B: Driver Entry Codes 109

Dynamic Area Requirements . . 103

Foreground Region Requirement . 103
 Appendix C: Message Control Program Diqnostic 113

Auxiliary Storage Requirements 103

Swap Data Sets 103

System Libraries and Data Sets 104 BIbIograpby 116

Appendix A: TSO Commands 105 Index 117

Data Management . 105

Figures

Figure 1. Program Control Commands 29 Figure 20. Sample Cataloged Procedure to Start

Figure 2. TSO Control Flow Diagram . 42 Time Sharing Control Task 74

Figure 3. The Time Sharing Driver . . 44 Figure 21. Sample Background Reader (BRDR)

Figure 4. The Time Sharing Control Task 45 Procedure 76

Figure 5. The Region Control Task . 46 Figure 22. Sample TSO Trace Start Procedure 77

Figure 6. The LOGON/LOGOFF Scheduler . 47 Figure 23. Sample LOGON Cataloged Procedure 78

Figure 7. LOGON Linkage . 48 Figure 24. TSO System Parameter Syntax (Part 1 of 4) 83

Figure 8. Terminal Monitor Program 48 Figure 25. Sample TSO System Parameters 87

Figure 9. Service and TEST Routine 50 Figure 26. Summary of Tuning Objectives for Various

Figure 10. TCAM Message Control Program 53 Techniques 88

Figure 11. System Overview . 54 Figure 27. Sample Use of the UNITNAME Macro

Figure 12. Typical Main Storage Map 55 Instruction . 89

Figure 13. Queue Service Time 56 Figure 28. SVC Modules useful for Residence in TSO 91

Figure 14. Minor Time Slice . 57 Figure 29. Sample Job System to Run TSO Trace

Figure 15. Job Stream to Tailor MCP 64 Data Set Processor 92
 JFigure 16. Sample MCP. 72 Figure 30. Format of the TS Trace Data Set 93

Figure 17. Sample MCP. 72 Figure 31. Example of PL/I Logon Pre-Prompt

Figure 18. Sample MCP. 72 Exit DECLARE Statements 100

Figure 19. Sample MCP Start PrOcedures . 73 Figure 32. Swap Allocation Unit Sizes 103

•

•

TSO Guide (Release 21.7) 6

Summary of Amendments
for GC28-6698-6
OS Release 21.7

TCAM Level 4

Changes are made to the macro instructions for
generating a TSO Message Control Program to support
TCAM Level 4.

New Device Support

The 3270 Information Display System is supported as a
terminal device.

Message Control Program Diagnostics

A section describing the diagnostic messages generated
by the macro instructions which create a message control
program for TSO has been added.

Summary of Amendments
for GC28-6698-4
as Updated by GN28-2519
(Equivalent to GC28-6698-5)
Component Release 360S-0S-586

Dynamic Specification of DCB Parameters

The ATTRIB command, which provides the TSO user
with the capability for assigning data set attributes (DCB
parameters) dynamically from the terminal, has been
added .

•

•

Installation Messages

The section describing messages which require
installation action has been removed. The information
may be found in IBM System/360 Operatinl System:
Messages and Codes, GC28-6631.

Program Product Information

Specific information about IBM Program Products has
been removed and a reference has been added to the
Bibliography pointing to a general information source
for Program Product information.

Miscellaneous Changes

Minor changes have been made throughout the
publication to correct and clarify the information
presented.

Summary of Amendments 7

Summary of Amendments
for GC28-6698-4
OS Release 21

Pub6cations Change

Information describing job priorities, dispatching, and
classes, formerly in IBM System/360 Operating System:
Concepts and Facilities, GC28-6535, is now contained in
IBM System/360 Operating System: Introduction, GC28-6534.

SVC Restrictions

ProgrammiDg Change

SVC 93 (TGET/TPUT) can be used for certain
background purposes.

Dynamic Allocation

ProgrammiDg Change

A dynamically allocated data set uses 50 tracks for a
primary allocation and 10 for secondary allocation.

Time Sharing Driver Parameters

Rewritten section

The description of the Time Sharing Driver start
parameters has been rewritten to show dependencies
between parameters.

Tuning the TSO system

New Section

A new section has been added to describe TSO tuning
techniques.

Bib60graphy

New Section
•

A discussion of related reading, formerly in the Preface,
has been moved to the Bibliography and rewritten.

Swap Data Sets

ClarifIcation

Swap data sets must be allocated along cylinder
boundaries.

•

..

TSO Guide (Release 21.7) 8

Introduction

The IBM System/360 Operating System Time Sharing Option (TSO) adds general purpose time
sharing to the facilities already available through the MVT configuration of the control program. As
a result, the system provides a number of new capabilities:

• 	 It gives users access to the system through a command language which is entered at remote
terminals -- typewriter-like keyboard-printer or keyboard-screen devices connected through

.. telephone or other communication lines to the computer.

• 	 It gives those who may not be programmers the use of data entry, editing, and retrieval facilities.

• 	 It makes the facilities of the operating system available to programmers at remote terminals to
develop, test, and execute programs conveniently, without the job turnaround delays typical of
batch processing. Both terminal-oriented and batch programs can be developed at terminals.

• 	 It allows the management of an installation to dynamically control the use of the system's
resources from a terminal.

• 	 It creates a time-sharing environment for terminal-oriented applications. Some applications, such
as problem-solving languages, terminal-oriented compilers, and text-editing facilities, are available
as IBM Program Products. Installations can add others suited to their particular needs.

A major consideration in the design of TSO is ease of use. The way in which a user
communicates with the system can be kept simple to encourage people who may not be
programmers to take advantage of the speed and versatility of a computing system to solve their
problems. There are four ways in which TSO achieves this goal:

• 	 The physical medium is easy to use. Most users are already familiar with the conventional
typewriter keYl!oard. Information is easy to enter through the terminal's typewriter-like keyboard,
and no complex procedures are required to obtain output from the computer.

• 	 The way in which a terminal user defines his work is uncomplicated. He enters commands which
resemble English language words to describe the general function he wants to accomplish. If the
user chooses, he can create his own commands and command system.

• 	 If a user doesn't know how to .define his work to the system, he can type HELP and receive
information pertinent to the type of operation he is trying to perform. In most cases, he doesn't
need to enter detailed parameters describing every aspect of the work he is doing; the system
uses default values that are appropriate for most jobs. If he fails to provide parameters the system
needs to do the work he requested, the system will ask him for the missing information, item by

• 	 item, by "prompting" him for it in a conversational way .

• 	 The system keeps the terminal user aware of what is happening, so he knows what to do next.
He "converses" with the system on a step-by-step basis. The system lets him know when it is
ready to accept input from him, and it tells him immediately when there has been a change in the
status of his program. If the user receives a message he doesn't understand, he can request more
information about the situation simply by typing a question mark. The messages he receives use
uncomplicated language to describe the situation. When the messages become familiar to him, he
may request the system to use the abbreviated messages that are available with some of the
programming languages.

Introduction 9

Advantages of a Time Sharing System

In a simple batch processing system, one job at a time has access to the resources of the system
(main storage, the central processing unit, and I/O equipment). A programmer's job is loaded into
the computer and its operation is controlled by the system operator. The job acquires the resources
it needs as it runs to completion; resources the job doesn't need are unused. When the job is
finished, results are produced, a new job is loaded and executed, and the output for the completed
job (for example, a printout) is sent to the programmer. An inherent problem with this type of
processing is turnaround time, the elapsed time between the submission of a job to the computer
center for processing and the return of results to the programmer. Another problem is the inefficient
use of resources.

In a multiprogramming system (e.g., a system that operates under the control of the MVT
configuration of the System/360 Operating System), several jobs share the resources of the system
concurrently, so the use of resources is much more efficient. Although jobs are processed faster, the
operator at the system console still controls the system, and the programmer still must wait for
results to be returned to him.

A time sharing system reduces delays in receiving results. A larger number of jobs share the
resources of the system concurrently, and the execution of each job is controlled primarily by a
remote terminal user. Thus, time sharing can be defined as the shared, conversational, and
concurrent use of a computing system by a number of users at remote terminals.

The system resources shared by the time sharing jobs (foreground jobs) entered from the
terminals are also shared by batch jobs (background jobs) that are being processed at the same
time. Each foreground main storage region handles many active foreground jobs, although only one
job is actually in the region at any moment in time. A foreground job is assigned to a main storage
region and has access to the system's resources for a short period of time called a time slice. The
other foreground jobs assigned to that region are saved on auxiliary storage while the job being
executed in main storage receives a time slice.

At the end of the job's time slice, or if the job enters the wait state for terminal I/O, the main
storage image of the job (that is, programs, work areas, and associated control blocks) is stored on a
direct access device and another job is brought into the same region of main storage and given a
time slice. TSO schedules a similar time slice for each ready foreground job. The apportionment and
duration of time slices is disussed in detail in the "System Summary" section of this manual.

The process of copying job images back and forth between main and auxiliary storage is called
swapping. Writing an image to auxiliary storage is a swap out; reading one into main storage is a swap
in.

All foreground jobs are assigned the same priority. The order in which foreground and
background jobs are processed is determined by the operating system task dispatcher and the TSO
control routines. Job priorities, job classes, and the dispatching of tasks are discussed in IBM •
System/360 Operating System: Introduction, GC28-6534.

•The apportionment of slices of processing time to foreground jobs is not apparent to a terminal
user. At the terminal, the response of the system to requests for action is fast enough so that he has
the impression that he is the sole user. As far as the user is concerned the distinctive feature of a
time-sharing system is the way in which it "converses" or interacts on a step-by-step basis with him
as he does his work. He is prompted for information the system needs to execute his job, he
receives immediate response to his requests for action, and he is notified immediately of errors the
system detects, so that he can take corrective action at once.

In general then, a time-sharing system differs from a batch processing system in three ways:

10 TSO Guide (Release 21.7)

•

•

•

1. 	A terminal user concurrently shares the resources of a computing system with other terminal
users.

2. A terminal user can enter his problem statements and other input into the system as he develops
them, and he receives immediate results. Thus the problem of turnaround time (the amount of
time between when he submits his job for processing and when he receives results) inherent with
batch job operations is greatly reduced.

3. A terminal user is constantly aware of the progress of his job. He requests results from the
system one step at a time, he is prompted for any additional information the system requires, he
receives immediate notification of the status of his work, and he is apprised of errors as soon as
the system detects them. The terminal user can change his problem statements or correct errors
immediately after entering each statement or at any time during the current terminal session.
Thus, he minimizes the need for reruns.

Using a Terminal

A terminal session is designed to be an uncomplicated process for a terminal user: he identifies
himself to the system and then issues commands to request work from the system. As the session
progresses, the user has a variety of aids available at the terminal which he can use if he encounters
any difficulties.

Commands specifically tailored to an installation's needs can be written and added to the
command language or used to replace mM-supplied commands.

Starting and Stopping a Terminal Session

When the user has some work to perform with the system, he dials the system number if he has a
terminal on a switched line, or he turns the power on if he has a terminal on a non-switched line. A
switched line is one in which the connection between the computer and a terminal is established by
dialing the system's number from the terminal. A non-switched line is one with a connection
between the computer and a terminal. With an mM 2741 terminal or an mM 1050 terminal, the
system responds by unlocking the keyboard. In any case, the user identifies himself by entering
"LOGON" and one or more of the following fields:

• 	 A user identification, for example, the user's name or initials, which the system will use to identify
his programs and data sets.

• 	 A password, assigned by his installation, usually known only to the user and the system manager.

• 	 An ac:c:ount number, which defines the account in which his system usage totals are to be
accumulated.

• 	 A WGON procedure name, which identifies a cataloged procedure that specifies what system
resources he will be using.

The user may omit the last three fields if the system manager has defined only one account number
and LOGON procedure for him and no password is used.

The LOGON processor verifies that the user is an authorized TSO user, then checks the
password, if it is required, and account number in a record it keeps of user attributes, called the
User Attributes Data Set (UADS). From the attributes, the LOGON command operands, and a
LOGON cataloged procedure, the system builds a user profile, which is used to control the
processing of his job. The system assigns the user's job to a time-sharing (foreground) region of
main storage and allocates other resources, such as auxiliary storage space and user data sets
according to the LOGON procedure.

Introduction 11

LOGON marks the start of a terminal session. When the user completes his work, he enters
"LOGOFF" to end the session. The system then updates his job's system use totals, releases
resources allocated to it, and releases the terminal from TSO. A session is also terminated any time
the terminal user enters LOGON to start a new session. In this case, the old session is terminated
and a new one is begun; the terminal is not released in the process.

Working at the Terminal

The user enters commands to define and execute his work at the terminal. He enters a command by
typing a command name, such as EDIT and possibly some additional operands. The system finds the
appropriate command processor--a load module in a command library--and brings it into the
foreground region assigned to the user for execution. For example, in response to entering the EDIT
command, the system brings in the EDIT command processor, the data handling routine used to
create and update data sets.

If a user does not enter all the operands associated with a particular command name, default
values are assumed where possible. If necessary operands are missing, the system prompts the user
for them with a message such as "ENTER DATA SET NAME." The user can reply with the missing
value, or enter a question mark for a further explanation of what the system needs. If the user
chooses, he can specify that prompting messages be suppressed.

A terminal user can also receive assistance through the HELP facility. He can request information
regarding the syntax, operands, or function of any command, subcommand, or operand. If he enters
HELP followed by a command name, he receives an explanation of the command and the operands
required with it. HELP followed by a subcommand name furnishes an explanation of the
subcommand if the user is working with the command at that time. Entering HELP by itself returns
a description of the command language, a list of the commands, and an explanation of how to use
HELP to obtain further information.

During a typical session, the user enters a series of commands to define and perform his work. If
the sequence is one that is used often, he can store the sequence in a data set and then execute the
sequence whenever he needs it by entering the EXEC commands.

The commands provided with the system handle data and program entry, program invocation in
either the foreground or the background, program testing, data management, and session and system
control. IBM Program Products are available to support problem solving, data manipulation, and text
formatting, to provide terminal-oriented language processors, and to make these processors more
convenient to use from the terminal.

System Configuration

TSO is an extension of the MVT configuration of the control program on System/360 Models 50
through 195, or System/370 Models 145, 155, and 165. TSO also operates with the Model 65
Multiprocessing (M65MP) configuration. The minimum machine configuration for System/360
models must include 384K of main storage, the required I/O devices for MVT, plus at least one
each of the following:

• 	 A terminal (mM 1050,2741,2260 Local or Remote, 2265, or Teletype l Model 33 or 35 KSR
and ASR) .

• 	 A transmission control unit (mM 2701, 2702, or 2703), unless all terminals are locally attached
2260 Display Stations.

lTrademark of Teletype Corporation, Skokie, Illinois.

12 TSO Guide (Release 21.7)

•

•

•

•

• 	 Sufficient direct access storage space (mM 2301, 2311, 2303, 2305, 2314, or 3330) for

command libraries and system data sets.

• 	 Sufficient direct access storage space for swap data sets.

In a System/360 with 384K of main storage, TSO is, in effect, a "dedicated" time sharing system.
In other words, with 384K the system can run as a time sharing system or as a batch job processing
system, but not both at the same time. To run both time sharing and batch jobs concurrently or to
execute on M65MP or System/370 models, at least S12K of main storage is required. At least 128K
of main storage is required for system generation.

Terminals

Some remote terminal suitable for interactive applications have keyboards for entering input data
and either typewriter-like printers or display screens. A remote terminal incorporates or is attached
to a control unit. The control unit is in turn connected to the system by either of two ways:

• 	 Through a device such as a data set to a dialed (switched) line to the system.

• 	 Through either a direct or a leased line to the system.

At the computer site the communication line connects to a Transmission Control Unit, which in
turn is attached to one of the computer system's multiplexor channels. The mM 2260 Display
Station can be an exception to this general configuration. Its control unit, the mM·2848 Display
Control, can be attached directly to a multiplexor or selector channel. This mode of operation is
called local attachment.

TSO uses the Telecommunications Access Method (TCAM) for terminal access. TSO provides

terminal handling programs for the following terminals:

• 	 mM 2741 Communication Terminal.

• 	 mM 1050 Printer-Keyboard.

• 	 Teletypel Model 33 and 35 KSR or ASR. (Paper tape is not supported with Teletypel.)

I • mM 2260, 3270, and 2265 Display Stations.

The mM 2741 Receive Interruption Feature and the Transmit Interruption Feature are
recommended for use with the 2741. These features are described in the publication IBM 1741
Communications Terminal. The Transmit Interrupt, Receive Interrupt, and Text-Timeout Suppression
features are recommended for use with the mM 1050. 1050 multidrop is not supported. These
features are described in the publication IBM 1050 System Summary. Note that some of these
features are not available through the mM 2701 Data Adapter Unit.2

TransmiMion Control Unit

TSO requires at least one of the following transmission control units to handle terminal
communications:

• 	 mM 2701 Data Adapter Unit.
• 	 mM 2702 Transmission Control.
• 	 mM 2703 Transmission Control.

2Terminals which are equivalent to those explicitly supported may also function satisfactorily. The customer is

responsible for establishing equivalency. IBM assumes no responsibility for the impact that any changes to the

IBM-supplied products or programs may have on such terminals.

Introduction 13

The Terminal Interruption Features are recommended for use with the 2702 and 2703 transmission
control units and must be present if the terminals are to use the features. These units are described
in the following publications.

• IBM 1701 nata Adapter Unit, Component Description, GA22-6864.

• IBM System/360 Component Description, IBM 1701 Transmission Control, GA22-6846.

• IBM 1703 Transmission Control, Component Description, GA27-2703.

Swap Data Set De"rices

The process of copying images back and forth between main and auxiliary storage is called swapping.

Writing an image to auxiliary storage is a swap out; reading one into main storage is a swap in. The

pre-formatted data sets into which jobs are written are called swap data sets. A swap data set is ,.

divided into swap allocation units, each of which consists of a device-dependent number of 2048-byte

records. An integral number of swap allocation units, not necessarily contiguous, are assigned to

each job to contain the swapped out image of the job.

If there is more than one foreground region, they share the available swap data sets, but the cycle
of swapping for each region is essentially independent of other regions. However, the system avoids
queueing on swap data sets if possible.

TSO requires sufficient storage capacity on one or more of the following for swap data sets:

• mM 2301 Drum Storage.
• mM 2303 Drum Storage.
• mM 2305 Fixed Head Storage, Model 1 or 2.
• mM 2314/2319 Direct Access Storage Facility.
• mM 3330 Disk Storage Facility.

See the "Storage Estimates" section of this publication for information on swap data set sizes.

The record overflow feature is required for the devices used to store the swap data sets. One or
more data sets on any of the above devices can be used for swap data sets.

The direct access storage space required for the swapped data may be divided among the devices
listed above in either of two ways. The user may specify that swapped data be distributed serially
among a hierarchy of data sets, or he may specify parallel distribution of data onto two or more
devices. With serial distribution, the first data set in the hierarchy is filled with swapped data, and
then the next data set in the hierarchy is used. For example, a drum, because of its higher access
speed, could be assigned as the first unit in the hierarchy, with a 2314 assigned to receive any
overflow of swapped data.

•With the parallel distribution scheme, two or more devices are used concurrently to receive swap
data sets. Identical device types must be used with parallel swapping. The exact order in which data
sets are written on either of the devices is determined by the system, based on the I/O activity
taking place in the channel at the time of a swap out. For example, if the two data sets are on
devices on separate channels, swap performance improves substantially.

Before a terminal job can be swapped out of main. storage, activity associated with the job must
be brought to an orderly halt. The halt must be performed in such a way that the job is not aware
of it, and information must be saved to restart the job when its next time slice is scheduled. The
orderly suspension of a job's activity before a swap out is called quiescing the job. Quiescing
includes the removal of the majority of the control blocks associated with the job from the system

14 TSO Guide (Release 21.7)

queues so they can be written to the swap data set along with the contents of the main storage
region assigned to the job.

The Relationship of TSO to the Operating System

For the data processing center, TSO is compatible with operating system standard formats and
services, while providing the flexibility needed for various time sharing and terminal-based
applications.

TSO is not necessarily intended to be used as a dedicated time-sharing system, that is, a system
on which only time-sharing operations take place. TSO augments the facilities already available with .. the operating system: batch processing, teleprocessing, and other data processing activities can take
place concurrently on the same system.

Once an installation has generated a system that includes TSO, time sharing operations can be
started and stopped at any time by the system console operator. The operator can specify how many
regions of main storage are to be assigned to time sharing users. Each region can serve many users,
whose programs are swapped back and forth between main and auxiliary storage. Time sharing, or
foreground operations, can take place concurrently with batch or background operations.
(Background jobs are not swapped.) If the user chooses, he can dedicate his system to time sharing
and run only foreground jobs. If there are periods when TSO is not needed in the system, time
sharing operations can be stopped, and the system will then process background jobs in the usual
way with MVT and TCAM.

Terminal communications are handled by the Telecommunications Access Method (TCAM)
through an interface that allows the use of standard sequential access method I/O statements and
macro instructions.

All of the MVT facilities are available to a background job. Foreground jobs can use most of the
operating system access methods for data set access (e.g., BSAM, QSAM, BDAM, etc.). All devices
available to these access methods are usable by foreground jobs. A detailed list of restrictions is in
the "Restrictions and Limitations" section of this manual.

Execution of Background Jobs from the Terminal

In addition to the foreground execution of programs, TSO allows jobs to be submitted for execution
in the background, or batch, portion of the system. If his installation authorizes it, a user can submit
a background job at his terminal, be notified of the job's status, and then receive results of the job
at the terminal. If he chooses, he can specify that the output of his job be produced at the
computing center, rather than at the terminal.

Foreground-Background Compatibility

• Because time sharing is carried out within the framework of MVT job and task management, the
foreground and background environments are compatible. TSO uses the same data formats,
programming conventions, and access methods as the rest of the operating system. The programming
languages and service programs available with TSO are compatible with their background
counterparts.

The TSO command language is also generally compatible with the Conversational Remote Job
Entry (CRJE) command language. Programs can be developed in the foreground and stored in
background libraries. These programs are compatible with other system programs. Most problem
programs can be executed in either the background or the foreground without revision or
recompilation.

Introduction 1S

Restrictions and Limitations

Certain facilities are unavailable to foreground jobs, although they r$lain available to background
jobs. These include: '

• 	 The BT AM and QTAM telecommunications access methods.

• 	 The Graphics Access Method (GAM).

• 	 The EXCP equivalents of the BTAM, QTAM, and GAM access methods.

• 	 Main storage requests for hierarchy 1. (All foreground requests for main storage are allocated to
hierarchy 0.) ..

• 	 Use of Job Control Language in the foreground for other than single-step jobs. (The TSO
command language is used to provide the equivalent of multi-step jobs.) •

• 	 Checkpoint/Restart Facility. (Foreground requests for checkpoint are ignored.)

• 	 Rollout/Rollin Option.

• 	 TESTRAN Facility.

• 	 Multivolume and tape data sets are not supported by most Command Processors and cannot be
allocated dynamically.

SVC numbers 92 through 102 (decimal) are added to the system for TSO. The following SVCs
can be issued by problem programs in the foreground region:

• 	 SVC 93--TGET/TPUT (execute terminalI/O).

• 	 SVC 94--STCC (specify terminal control characteristics).

• 	 SVC 95--TSEVENT (notify the supervisor of an event).

• 	 SVC 96--STAX (specify a terminal attention exit).

• 	 SVC 97--Breakpoint (used by TEST command).

• 	 SVC 98--PROTECT (protect a data set with a password).

• 	 SVC 99--Dynamic Allocation (of a data set).

• 	 SVC 100--Submit a job to the background.

• 	 SVC 102--AQCTL -- used by TCAM to communicate with problem programs.

•Of these, only SVC 98--PROTECT--can be issued by programs executing in the background.
SVCs 92 (TCB EXCP) and 101 (TCAM-TSO Communication) are used only by supervisor
programs.

Including TSO in a system adds no restrictions to programs executed in the background. For
example, other teleprocessing applications can be run simultaneously.

System Control

The management of an installation can shift most of the responsibility for controlling the time
sharing system from the operator at the system console to users at remote terminals, called control
terminals. A control terminal user can alter the system configuration to meet changing work loads.

16 TSO Guide (Release 21.7)

For instance, he can assign an extra region during peak periods, and then release it to be used for
batch operations during slack periods. Such changes require no shutdown of TSO and are not
noticed by the users of other regions. Even the starting and stopping of TSO operations are
accomplished without shutting down the system or affecting background operations.

Job Dennition and Scheduling

To the operating system, each terminal session from LOGON to LOGOFF is one terminal job,
corresponding to a single step batch job. The job control statements that define a terminal job are
stored in the LOGON procedure used to begin the session. The "EXEC" JCL statement in the
LOGON procedure identifies the program the user wants loaded into his region for execution. The

• 	 program may be the TSO-provided command language handler or an installation provided
application program.

An important feature of TSO is the dynamic allocation of data sets for time sharing users. A user
may defer definition of his data sets until he requires them. During LOGON processing, any data
sets named on Data Definition (DD) statements in the procedure are allocated to the terminal job.
Any data sets requiring volume mounting by the operator, must be defined here. The procedure also
includes dynamic DD statements (similar to a DD DUMMY), which reserve control block space for
data sets the user may allocate during the session. The dynamic allocation facility allows data sets to
be created, deleted, concatenated, or separated without previous allocation at the beginning of the
job step.

Tuning the Time Sharing System

In a time sharing system, execution time is divided among the active foreground jobs and
background jobs in brief time slices. A time slice must be long enough to perform a meaningful
amount of processing, but not so long that the time between successive slices prevents quick
response to conversational users. At the same time, time slices cannot be so short and frequent that
system overhead for swapping and task switching becomes excessive. Balancing these factors
depends on the number and type of jobs the system is processing. A solution for one job mix is not
necessarily suitable for another job mix. The TSO time sharing algorithms -- the formulas used to
calculate the division of time among jobs -- are based on several variables, most of which can be
specified by the installation to tune the system for their particular workload. Some of the tuning
variables such as the number of foreground regions and the maximum number of users, can be set
or modified by the system operator or a user at a control terminal whenever the system is running.
Others are specified as parameters in SYS l.PARMLIB. These parameters are used when the
operator starts the time sharing operations.

The time sharing algorithms are described in detail in the "System· Summary" section of this
manual. They are implemented by a subroutine called Time Sharing Driver. The Driver makes
decisions about system functions such as swapping and task switching. An installation may
experiment with other time sharing algorithms by modifying or replacing the driver, and specifying •
use of the new Driver in the SYS l.PARMLIB parameters used when the operator starts time sharing
operations.

Execution time may also be affected by the choice of modules to be included in the Link Pack
Area (LPA) extension in the Time Sharing Control Task (TSC) region. The size of the LPA
extension and the amount of main storage dynamically allocated by the driver are major factors in
determining the size of the TSC region. The installation may let the TSC calculate its own region
size or may specify a TSC region size, either in SYSl.PARMLIB or on the START command used
to start TSO, to compensate for additional main storage requirements created during tuning.

Introduction 17

Monitoring System Use and Performance

By extending the services of the system to many concurrent users, TSO makes the operating system
more useful to more people. However, installation management's job of monitoring system use and
performance becomes more complex. Three tools are provided to help management maintain a clear
picture of what the system is doing.

System Management Facilities (SMF): The SMF option can be used with TSO. Both the data
collection and dynamic control facilities are extended to the foreground environment.

With the data collection facility, records describing both the system environment and individual
user activity are written to the SMF data sets in a format similar to that used for background
records. The system environment data includes:

• Machine configuration.

• Resource status.

• Library management information.

This information is recorded whenever time-sharing operations are started, modified, or stopped by
an operator. The user data includes:

• II0 device use.

• Data set use.

• Main storage used.

• Time resident in main storage.

• Time actually spent executing.

The user data is recorded at LOGON and LOGOFF and during a terminal session whenever a user
changes the status of his data sets with the dynamic allocation facility. The information on the use
of data sets is particularly useful to the installation for controlling the use of secondary storage in
the time-sharing environment.

The SMF dynamic control exits give the installation access to control program information at key
points during the processing of jobs, including foreground jobs. The step initiation and termination
exits are taken, if present, when a user begins or ends a terminal session. These routines can record
information and control processing for foreground jobs just as they do for background jobs. SMF is
discussed in detail in the publication IBM System/360 Operating System: System Management Facilities,
GC28-6712.

An additional installation exit, separate from the SMF dynamic control exits, is provided from the
routine handling user LOGON. This exit allows the installation to establish its own user verification
and control procedures, independent of those supplied with the system. The section of this
publication 'Writing a Logon Pre-prompt Installation Exit' describes the parameters passed and what
actions the exit may take.

MONITOR Command: The MONITOR command allows the operator to watch the changing
workload on the system over a period of time. In addition to the job initiation, data set, and volume
information formerly available with the DISPLAY command, he can request notification of
time-sharing users logging on and off the system. The DISPLA Y command now gives the system
workload at a particular point in time, and has been extended to include information relative to the
time-sharing environment, such as the number of foreground regions and the number of active

18 TSO Guide (Release 21.7)

•

terminals. Both MONITOR and DISPLAY, like other operator commands concerned with the
time-sharing operation, are available to a control user at a remote terminal as well as the system
operator at the console.

TSO Trace Program.: The TSO Trace Writer Program provides a detailed history of what the system
does over a period of time. The Trace Program records a stream of information that all components
of the system are continuously passing to the Time Sharing Driver. The Driver uses this information
in its calculations of resource allocation. When the operator starts the Trace Program, it intercepts
these event signals and records then with a time stamp in a data set. Typical events recorded are
"job requesting terminal input" and "swap completed." The TSO Trace Data Set Processor can be

.. used at a later time to format and print out the information recorded by the Trace Program. The
Trace Data Set Processor can be requested to list only those events associated with a particular
component of the system, such as the dispatcher, or to list only those events associated with a
particular terminal or set of terminals. Using this information, system management can determine
how well the system is responding to the workload and make adjustments to the tuning variables if
necessary.

System Security

The need for adequate data and program protection is increased in the time-sharing environment,
where many persons are simultaneously using the system. The system itself must be protected
against unauthorized users. Each user's programs and data must be protected against accidental
destruction by other users. Confidential data must be safeguarded against unauthorized access.

User Verification

Any user starting a terminal session is required to supply a user identification recognized by the
system; that is, one that has been defined by the system administrator. The installation may also
require the user to supply a unique and confidential password with the LOGON command.

Further verification of a user's identity can be performed by the optional installation routine
called when a user logs on. This routine can request further information from the applicant and
deny him access to the system if he fails to provide it.

Program Protection

Although a number of users may have jobs assigned to the same foreground main storage region,
only one user's job is present in the region at a particular time -- the other jobs are temporarily
stored in the swap data sets. No user can accidentally destroy or tamper with another user's job.
Like the background regions under MVT, the foreground regions have unique storage keys,
preventing a job from modifying any area of main storage outside its assigned region .

•
Data Set Security

Because any user can refer to any data set in the system catalog, the data set security facility of the
operating system is extended to allow individual users to protect their own data sets from
unauthorized reference. A user can assign one or more passwords to a data set. If anyone
subsequently attempts to open the data set, he is prompted for the password(s). If he fails to supply
the correct password in two attempts, his program is terminated.

The password assigned to a data set can be the one associated with the user for LOGON. In this
case, the user will not be prompted for the password when opening his own data set. Any other
user, however, must supply the correct password to refer to that data set.

Passwords can be assigned for two levels of protection:

Introduction 19

• 	 Modification protection. No password is required to open the data set for reading, but a password
must be supplied to write into the data set, or to delete it. This type of protection is required for
system libraries and data sets, to prevent accidental modification or to prevent a user from
assigning a password and locking out all other users. There is no performance degradation in
opening the data sets for reading.

• 	 Read protection. The password must be supplied to open the data set for reading.

Authorizations

Special authorizations in the User Attribute Data Set are required for the use of some TSO facilities.
Specific authorization is required for:

• 	 Submission of jobs for execution in the background.
• 	 Use of system operator commands from the terminal.
• 	 Use of commands to modify the User Attribute Data Set itself.

The User Attributes Data Set should be password-protected, to prevent assignment of these
authorizations by anyone other than the system administrator or his designate.

Capabilities of the TSO Command Language

The TSO command language serves two separate, but related, purposes:

• 	 It gives the terminal user a simple means to request the system to perform work.
• 	 It gives system personnel a framework for applications.

Functions available through the commands supplied with the system include:

• 	 Data set management.
• 	 Program development.
• 	 Program execution.
• 	 System control.

The following sections describe these capabilities and are followed by a description of the
applications available as IBM Program Products. Installation management has complete control over
which functions are available to each terminal user.

Data Set Management: The TSO command language includes commands to enter, store, edit, and
retrieve data sets consisting of text, data, or source programs. Essentially, the commands give the
terminal user the data set management functions of the operating system. Through the use of default
values and data set naming conventions, the commands can be simple enough for the
non-sophisticated user.

Data from the terminal goes into standard operating system sequential or partitioned data sets.
Conventions for immediate correction of keying errors are available for each terminal device type.
At a 2741 Communications Terminal, for instance, the user can just backspace over an error and
type in the correct characters.

At the user's option, the system will assign a number to each line of data as it is entered. Later,
the user can retrieve and edit the line by referring to this line number. The user can also retrieve a
line by specifying a string of characters contained in the line, and having the system scan the data
set for it.

Program Development: TSO offers convenient facilities for program development. The programmer
can use the data-handling facilities to create source programs and to have them syntax-checked
line-by-line as he enters them. Any operating system language processor can be invoked from the

20 TSO Guide (Release 21. 7)

•

•

terminal. Some language facilities and translators designed especially for the terminal environment
are discussed under "mM Program Products."

Compiler diagnostic messages and listings can be directed to the terminal, allowing the
programmer to correct errors immediately and recompile the program. Once the program compiles
successfully, it can be tested conversationally. The programmer can start and stop execution from
the terminal, inspect and modify main storage and register contents, trace and control the program
flow.

Because of background-foreground compatibility, programs produced at the terminal can be
executed in either environment. Programs in the foreground can use the sequential access methods
(BSAM and QSAM) to direct II0 to the terminal. In the background, the same unmodified
programs can address a data set or unit record device.

Program Execution: Programs can be invoked at the terminal in several ways. Any load module can
be established as a command and executed simply by keying in the program name at the terminal.
Load modules not defined as commands can be invoked in the foreground with the CALL
command. If a program uses data sets, a command procedure can be used to allocate them. Entering
the one-word procedure name can allocate the data sets, invoke and start the program, and free the
data sets again on program termination. Whenever a program in the foreground terminates with an
error condition, the testing facilities can be used to determine the nature of the error.

The terminal user can also submit jobs to the background job stream. Commands similar to those
used for the Conversational Remote Job Entry (CRJE) facility are used to create job control
language describing the job, and to submit it to the batch job stream. The user can request
notification of job completion at his terminal, and can have job output directed either to his terminal
or to a device at the computer site.

System Control: Certain users can be authorized to use commands for controlling system operation.
With the proper authorization, a user at a remote terminal can use standard operator commands
such as DISPLAY and MODIFY to control the time-sharing portion of the system.

A separate control facility (ACCOUNT) allows an authorized terminal user to establish and
maintain the profile of each system user. Using special commands from his terminal, he can define
or modify user passwords, account numbers, and procedure names, and control authorizations and
restrictions for each user.

IBM Program Products

The command language is designed so that new commands and applications can be easily integrated
into it. Applications available from mM as Program Products IQok the same as other commands to
terminal users .

The mM Program Products available for TSO systems are introduced briefly in the following
paragraphs. Each is discussed more fully in later chapters of this manual. The Bibliography lists a
source of further information about the Program Products.

Problem Solving

Three language processors specially designed for mathematical problem solving by users who are not
necessarily professional programmers are available. Two are part of the Interactive Terminal Facility
(ITF). The third is Code and Go FORTRAN, which is discussed with the other FORTRAN
Program Products in the next section.

Introduction 21

ITF: BASIC is a simple, algebra-like language easily learned by anyone familiar with mathematical
notation.

ITF: PL/I is a subset of full PL/I that provides a powerful conversational language that is easy to
learn and use. ITF: PL/I can be executed line-by-line as it is entered, or collected into procedures
and subroutines for later execution. Errors in either ITF: BASIC or ITF: PL/I can be detected as
soon as the statement is entered and can be corrected immediately.

Programming

Program Products to aid the users of several programming languages are available with TSO. There
are four types of products:

• Compilers.
• Libraries to support the compilers and object programs.
• Prompters.

I • Interactive debug programs.

The compilers can be used in either background or foreground environments. In the foreground,
they provide diagnostics and listings formatted for the terminal. For instance, diagnostic messages
can optionally refer to source errors by the line number assigned by the EDIT command. With the
line number, the user can retrieve and correct the statement without having a complete listing
displayed at the terminal.

Prompters are initialization routines that allow the user to invoke a compiler with a single
command, such as FORT or RUN. The prompter handles all data set allocations and sets processor
options. If the user omits necessary information, such as the name of the source program to be
processed, the prompter requests the information with a terminal message.

Interactive debug programs provide execution-time program testing and debugging functions.
Using commands, the user can cause the Interactive Debug to establish, remove, and list
breakpoints; display and change data values; alter or trace flow of program execution; display the
source program; monitor user-specified conditions; and execute prespecified subcommands at
breakpoints.

The following paragraphs introduce the Program Products available for each programming
language. The chapter "Programming at the Terminal" discusses these products in greater detail and
shows how other operating system processors can be used from the terminal.

FORTRAN: There are five Program Products for FORTRAN programmers: two language
I	processors, a library for use with either processor, a prompter, and an interactive debug program:

Code and Go FORTRAN, FORTRAN IV (Gl), the FORTRAN IV Library (Mod I), the TSO
IFORTRAN Prompter, and FORTRAN Interactive Debug.

COBOL: Two language processors, a prompter, and an interactive debug program are available for

I	COBOL programmers: the Full American National Standard COBOL Version 3 or 4 compiler, the
TSO COBOL Prompter, and COBOL Interactive Debug.

PL/I: Two language processors and two supporting libraries are available for PL/I programmers:
the PL/I Optimizing Compiler, the OS PL/I Checkout Compiler, and the PL/I Resident Library
and the PL/I Transient Library. The compilers incorporate a prompting routine.

Assembler Language: The TSO Assembler Prompter is available to invoke the Assembler (F). The
Assembler (F) is not a Program Product.

•

22 TSO Guide (Release 21.7)

Text and Data Handling

The TSO Data Utilities Program Product provides four commands (COPY, LIST, MERGE, and
FORMAT) to manipulate data sets and to format text for output at the terminal or on a high-speed
printer .

•

Introduction 23

Command Language Facilities

TSO terminal users define their work in the TSO command language. A command can be thought of
as a request from the terminal user for the system to perform a particular function. This chapter
describes and gives examples of the facilities available through the command language. There are
commands for elementary functions such as entering, editing, and retrieving data; remote job entry;
mathematical calculation; and program development and testing in several programming languages.
These important functions are the base on which the installation's own terminal-oriented
applications and systems are developed.

Conventions at the Terminal

The command is the means by which work is defined at the terminal. The first word of a command
is always the command name. It is used by the system to select a command processor (a problem
program) from the system command library or a user command library. Any further information in
the input line, the command operands, is passed to the command processor in a parameter list.
Operands are separated, or delimited, by either blank spaces or commas. A few commands require
that groups of related operands be enclosed in parentheses.

Most operands are optional. If an optional operand is not entered with the command, the system
assumes the default values and proceeds as if the user had entered that value. If the missing operand
is not one that can be defaulted, for instance, a data set name, the system prompts the user for it
with a message such as "ENTER DATA SET NAME". When all the operands have been either entered or
defaulted, the command processor proceeds to perform the desired function. Some of the command
processors, such as EDIT, accept, interpret, and perform subcommands, which follow the same
syntactic rules as the general commands.

Logging On

To establish a connection with the system, the user activates his terminal, dials the computer, if

necessary, and enters the LOGON command. He must always supply his user identification as an

operand of the LOGON command; if he does not supply it, a prompting message is issued. Up to

three additional levels of identification may be needed, depending on the accounting methods and

security procedures used by his installation.

The installation may require users to enter a password with the LOGON command. Each user can
have one or more passwords associated with his identification. At terminals equipped with the print
inhibit feature, the system is able to suppress printing of the password as it is keyed in.

Associated with each password are one or more account numbers, and with each account number,
one or more LOGON Procedure names. The LOGON Procedure contains the Job Control
Language statements defining the user's terminal job, just as cataloged procedures define
background jobs. For instance, the LOGON Procedure may allocate certain commonly used data
sets. Whenever there is only one account number or procedure name, the system selects it by

I default, and the user is not required to enter it.

The system acknowledges that the LOGON has been accepted when it has checked the
identification supplied and has determined that the resources requested in the LOGON Procedure
are available, and the user can begin his work.

...

24 TSO Guide (Release 21.7)

•

Input Editing

Some system editing is provided for every line of input from the terminal. Lowercase alphabetic
characters (from terminals that have them) are translated to uppercase, except for certain
text-handling applications. Each user can define his own character-delete and line-delete characters
for correcting any keying errors in input lines. There are default character-delete and line-delete
characters for the typewriter-like terminals (the cursor controls can be used on the 2260 and 2265
Display Stations). If a user defines the quotation mark as his character-delete character, and percent
sign as his line-delete character, then enters the line:

etoain%aBCc"deee""

it is received by the system as

ABCDE

Users whose terminals have backspace and attention keys may define those keys as their
character-delete and line-delete characters.

Entry Modes

Immediately after LOGON, the system is ready to accept any command in the command libraries.
The terminal is said to be in command mode. Some commands place the terminal in other entry
modes: EDIT, for instance, has an input mode, that accepts successive lines of input for a data set;
and an edit mode, that accepts EDIT subcommands. Other commands, such as TEST, ACCOUNT,
OUTPUT, and OPERATOR also define special purpose modes.

The Attention Key

The attention key can be used to transfer from one mode to another, or to interrupt a program or
command processor during execution. Any command in process can be cancelled by hitting the
attention key and entering a new command. A user program can be interrupted with the attention
key to transfer to the test mode for debugging activity, then the program can be restarted.

Assembler language user programs can define attention exit routines with the ST AX macro
instruction. Control will be passed to such a routine when an attention is entered.

An important function of the attention feature is to prevent the user from being "locked out" of
the system while a long-running program executes, or while voluminous output is displayed at the
terminal. For terminals without attention keys, the attention feature can be simulated. The user can
specify a string of characters, such as "STP". that is to be interpreted as an attention. The system
can be instructed to interrupt any long-running program or terminal output periodically to accept
either the simulated attention character string, or a digit to specify the level of attention exit or a
null line to continue processing .

Data Set Naming Conventions

Unless requested not to, the system appends two qualifiers to a simple data set name specified by a
user: a descriptive qualifier and user identification qualifier. The user identification qualifier is the
same as the user identification specified with the LOGON command and is appended as the
left-most qualifier of data set names that follow the TSO naming conventions. The user never needs
to enter his identification qualifier; it is always known to the system.

The descriptive qualifier is placed at the right of the user entered data set name. It tells the
system what kind of data is recorded in the data set and for what purposes it can used. For
instance, the qualifier for a data set containing COBOL source statements is COBOL; for a load

Command Language Facilities 25

module, LOAD. Whenever possible, the system determines the appropriate descriptive qualifier from
the command referring to the data set, and the user need not enter it as part of the name. In some
cases, the user must supply it, as part of the data set name entered with the command, or in

I response to a prompting message.

To refer to a data set that does not follow the naming conventions, or that has an identification
qualifier different from the one specified at LOGON, the user encloses the fully qualified data set
name in apostrophes. The system does not append any additional qualifiers in this case, and uses the
name "as is," except for translation to uppercase, to search the catalog. Using this technique, several
users may refer to a data set with the shared attribute at the same time.

Data Entry

The EDIT command is used to enter information into the system. Because almost every system

application will use some of the editing facilities, an overview of the command is presented here.

Later sections will demonstrate some of the particular uses of the command.

Creating Data Sets

The EDIT command processor creates or modifies data sets with sequential organization, including
members of partitioned data sets. The data sets contain only printable characters in EBCDIC
representation. A data set name is entered with the EDIT command. If the user specifies the data
set is old, EDIT opens it for modifications. If it is a new data set, EDIT invokes the dynamic
allocation routines to create it. The data set attributes, such as blocksize and record length, can be
specified by the user, or defaulted to standard values. For data sets containing source-language
programs, the standard attributes are determined by the compiler to be used.

One input line from the terminal normally becomes one record in the data set. Because of this
equivalency between records and lines at the terminal, data sets created by EDIT are called line data
sets. On request, EDIT associates a line number with each record of the data set as it is entered.

Entry Modes for EDIT

Depending on the type of work the user is doing with his data set, he uses one of two entry modes
provided by EDIT (some other modes specifically for particular programming languages are
discussed later). The input mode allows rapid entry of successive lines of input for the data set. The
edit mode allows subcommands to be entered to modify, insert, or delete lines.

Input Mode

In input mode, the user enters successive lines of input. The lines are normally appended at the end
of the data set, although the user can request they be inserted at some other point. The only
subcommand recognized in the input mode is the null line (hitting the return key with no preceding
characters), which requests transfer to the edit mode.

Services available in the input mode include translation of lowercase letters to uppercase,
translation of tab characters to a series of blanks, and interpretation of the character-delete and
line-delete characters. If line numbers are being assigned to each line, the user may request each
new number be typed out by the system at the beginning of each input line. If line numbers are not
being assigned, the user can request prompting for each new line by an underscore. If no prompting
is requested, lines are entered one after another, with no intervening response from the system.
Programming language syntax checkers can be requested to process input lines as they are entered.

•

26 TSO Guide (Release 21.7)

Edit Mode

In edit mode, the user enters subcommands to point to particular records of the data set, to modify
or renumber records, to add and delete records, to control editing of input, or to compile and
execute a program.

Whenever the terminal is in edit mode, the user is considered to be positioned at a particular
record, or line, of the data set. The EDIT command processor maintains a current line pointer to
keep track of the user's position. In general, the current line pointer, which can be referred to in
subcommands by an asterisk (*), is positioned at the last line r:eferred to, entered, changed, or
printed. Using the subcommands provided, the user can move the current line pointer to any record
in the data set .

• For line-numbered data sets, specifying a line number as an operand of a subcommand moves the
pointer to that record before the action requested by the subcommand is carried out. This method
of operation is called line number editing.

Another method of repositioning the current line pointer is called context editing. A set of
subcommands is provided to reposition the current line pointer without reference to line numbers.
The user can move the pointer up or down a specified number of lines, or request the system to
find a line with a particular series of characters in it, and move the pointer to it.

Modifying Data Sets

The most common use of the EDIT command for existing data sets is the addition, deletion, or
modification of records. The INSERT and DELETE subcommands handle single or multiple record
insertions and deletions. The CHANGE subcommand allows the user to replace one character string
with another, not necessarily of the same length.

Data Set Management Commands

To allow the user to manage his data stored on auxiliary storage devices, a set of data set utility
commands is included in the TSO command language. All user data is kept in standard operating
system data set, and as a default, data sets used by foreground programs are entered in the system
catalog, reducing the amount of information the user must supply about the data set from the
terminal when he refers to it.

The LISTCA T and LISTDS commands retrieve information from the system catalog for the user.
He can find out what data sets are currently allocated to him, and what the attributes of the data
sets are. The RENAME command can assign a new data set name to an existing data set, or add an
alias name to a partitioned data set member. The DELETE command removes a data set from the
catalog, and frees the auxiliary storage space it occupies.

The PROTECT command is the facility to assign password protection to data sets. Protection can
• 	 be assigned for read access and for write and delete access. Multiple passwords can be assigned to a

single data set.

The ALLOCATE and FREE commands invoke the dynamic data set allocation routines from the
terminal. A user who wants to run a program that requires one or more data sets not currently
allocated to his foreground job enters ALLOCATE commands to have the data sets assigned. The
FREE command is used to release the data sets assigned by ALLOCATE. The ALLOCATE
command can also be used to find data sets not in the system catalog, and to control the size of
new data sets and the volumes to which they are assigned.

Command Language Facilities 27

The ATTRIB command can be used to build a list of data set attributes. These attributes are
specified by the operands of the command. The operands are similar to the DCB parameters of the
JCL DD statement. The attributes in an attribute list can be assigned to data sets being allocated by
the ALLOCATE command.

TSO Data Utilities

The TSO Data Utilities Program Product is available to augment the data entry and data set
management commands by providing a text-formatting capability and data set utilities for terminal
users. The product provides four commands:

• FORMAT, to format textual information into pages.

• LIST, to display all or part of a data set at the terminal.

• COPY, to copy a data set.

• MERGE, to merge all or part of one data set into another.

The FORMAT and MERGE commands can also be used as subcommands of EDIT (EDIT
incorporates a less powerful listing capability). The COpy and MERGE commands can be used for
access to ASCII tape data sets. See the publication IBM System/360 Operating System: Planning for
the Use of Information Interchange Standards, GC28-67S6, for details.

Text-Handling

The EDIT, FORMAT, and LIST commands provide a facility for the entry, editing, storage, and
output of text. With the EDIT command, the terminal user creates a data set with the type qualifier
TEXT, and enters the materialline-by-line. If his terminal has both uppercase and lowercase letters,
the material will not be translated to uppercase letters, but will be saved just as entered. The user
can specify what tab settings he wants to use, and the system will convert tabs in the material into
strings of blanks of the proper length. The use of line numbers is optional.

The user formats the data set by inserting format control records into it. A format control record
is entered as a separate line in the data set, starting with a period in the first position, followed by a
control word (or a two-character abbreviation). The EDIT processor does not interpret the controls;
they are retained in the data set for interpretation later by the FORMAT processor. The controls
allow the user to:

• Print a heading on each page.
• Center lines of text between margins.
• Control the amount of space for all four margins on the page.
• Control line spacing.
• Justify left and right margins of the text.
• Number pages of output consecutively.
• Halt printing when desired.
• Print multiple copies of selected pages.

The FORMAT processor scans the data set for the format controls and inserts blanks, carrier
return characters, headings, and page numbers as needed. At the user's option, the output can be
formatted for a terminal or saved in a data set for deferred printing, either on the terminal (with the
LIST command) or on a high-speed printer. Either an all-capitals or an uppercase and lowercase
print chain can be used on the printer.

•

28 TSO Guide (Release 21.7)

Data Set Manipulation

The COPY, LIST, and MERGE commands allow the terminal user to move information between
data sets and to display sets at the terminal.

The COPY command will duplicate sequential or partitioned data sets or a member of a
partitioned data set. While doing so, it can resequence or change the record length, blocksize, or
record format as requested. The MERGE command will copy all or part of one data set or member
into another data set and will resequence the record numbers in the receiving data set if requested.
Both these data commands will process tape data sets in ASCII format. Tape devices must be
allocated to a user in his LOGON procedure .

• The LIST command displays all or part of a data set at the terminal. The user can request that
fields within records be rearranged for output, and line numbers can be suppressed or included.

Compiling and Executing Programs

A variety of commands are provided to give the user control over program compilation and
execution. The form of the program determines command selection. For those language processors
that are supported by a prompter Program Product or that incorporate a prompter, the terminal user
requests a compilation of a source program with a single command. The prompter performs the
following functions:

• Requests any necessary operands with messages to the terminal.
• Sets other compiler options to default values suitable for the terminal environment.
• Dynamically allocates the data sets needed by the compiler.
• Invokes the compiler.

For instance, if an installation has the TSO COBOL Prompter and the Full American National
Standard COBOL Version 3 or 4 processor Program Products, the user can enter the COBOL
command to compile his program and produce an object module. The LOADGO command can then
be used to call the OS Loader to bring the program into main storage for execution, or the LINK
command can be used to call the Linkage Editor to create a permanent load module.

During program development, when a programmer is repeatedly compiling and testing a program,
he can use the RUN command to invoke it. RUN first calls the appropriate prompter and compiler,
and then the OS Loader (except when used with the PL/I Checkout Compiler, which provides its
own execution facilities). In any case, RUN provides a compile-load-go sequence with a single
command. RUN can be used as a command, or as a subcommand of EDIT. Figure 1 is a summary
of the commands for executing programs.

Form of Form of OBJECT LOAD EXECUTING

input: output: MODULE MODULE PROGRAM

•
COBOL

SOURCE FORT -- RUN

PROGRAM ASM

PLI

OBJECT -- LINK LOADGO

MODULE

LOAD -- -- CALL

MODULE

Figure 1. Program Control Commands

Command Language Facilities 29

Any load module, including language processors for which there are no prompters, can be
invoked with the CALL command. For instance, the FORT command provided by the TSO
FORTRAN Prompter Program Product invokes the FORTRAN IV (Gl) compiler. If a programmer
wants to use the FORTRAN IV (H) processor for a particular compilation, he can enter the
command:

CALL 'SYS1.LINKLIB(IFEAAB)' 'MAP,OPT=1'

The compiler is loaded into the foreground region and given control. The options are passed to it as
though they had been specified in the P ARM field of an EXEC statement in Job Control Language.
It is necessary for the user to allocate data sets for the compiler's use before entering the CALL
command. A series of ALLOCATE commands can be defined in a command procedure, so that
they need not be entered every time a compiler is used. For more information about compiling and
executing programs, refer to the TSO Terminal User's Guide.

The TEST command can also be used to invoke a user program, and to control its execution.
Before passing control to the program, TEST allows the user to establish initial values to be passed
to the program as test data, and to set up breakpoints where execution is to be interrupted for
displays and other debugging activity.

Breakpoints are established with the AT subcommand in test terminal mode. AT specifies a
symbolic or absolute address in the program where execution is to be interrupted. The action to be
taken at the point of interruption, such as listing or modifying storage and register contents, can be
specified in a pre-stored string of TEST subcommands, or entered through the terminal at the time
of interruption. Main storage contents can be displayed at the terminal or stored in a data set for
deferred printing. TEST subcommands allow the programmer to load additional programs into
storage, to delete or replace programs in storage, to issue GETMAIN and FREEMAIN as
subcommands from the terminal, to define the location and attributes of symbols, and to start and
stop program execution.

Users of FORTRAN IV (Gl) and Code and Go FORTRAN can use FORTRAN Interactive
Debug for execution-time program checkout; similarly, users of Full ANS COBOL Version 4 can
use COBOL Interactive Debug.

Remote Job Entry

The command language includes the SUBMIT, STATUS, OUTPUT and CANCEL commands to
handle submission of jobs for execution in the background. These commands have the same format
as the commands available with the Conversational Remote Job Entry (CRJE) facility of the
operating system.

To have a job executed in the background, the user places the job control statements defining the
job in a data set. By convention the jobname is the one-to-seven character user identification, plus a
single character to provide uniqueness. The user then enters a SUBMIT command, including the
name of the data set as an operand. SUBMIT will generate a standard job name and a JOB
statement if one is not included in the job definition. One data set can contain more than one job
definition. Any time after entering the SUBMIT command, the user can inquire about the status of
the job. The STATUS command returns information such as whether the job is waiting for
resources, is executing, or is completed. The job can be terminated with the CANCEL command.

A new keyword has been defined for the JOB statement to allow automatic notification of the
user when the job is completed. By coding NOTIFY = with his user identification, the user requests
a message to his terminal when the job completes. The message is saved until he enters a LISTBC
command. The OUTPUT command allows the user to display job output (SYSOUT) at his terminal,
to save it in a data set, or to delete it.

30 TSO Guide (Release 21.7)

•

•

..

System Control

Two facilities are provided for the installation manager or system programmer to control operation
of the system from his terminal. The ACCOUNT command adds, changes, or deletes entries in the
User Attributes Data Set, which is the list of all authorized users of the system, together with the
characteristics defining their profiles. The OPERATOR command places a terminal in a special
mode allowing entry of commands normally available only at the system console. Use of either of
these facilities requires special authorization. Users with such authorization are called control users.

User Authorization

When a control user enters an ACCOUNT command, his terminal is placed in account mode. With
subcommands, the control user defines each user to the system, specifying his identification,
passwords, account numbers, and LOGON Procedure names. This information is placed in the User
Attribute Data Set, along with indications of any special authorizations the user may have, such as
permission to use the ACCOUNT or Remote Job Entry facilities, and a limit on the region size he
may request. This information will be retrieved whenever the user logs on, to verify his authority to
use the system, and to define his foreground job.

System Operation

By entering the OPERATOR command, a control user has access to the system operator commands
MODIFY, DISPLAY, MONITOR, CANCEL, and STOPMN. The commands have the same format
and effect on the TSO system as if they were entered through the operator's console, as specified in
the publication IBM System/360 Operating System: Operator's Reference, GC28-6691.

Command Procedures

A command procedure is a data set containing a list of TSO commands and subcommands. The data
set name is entered as an operand of the EXEC command, and the commands are executed,
one-by-one in the order in which they appear in the procedure. When one command or
subcommand is completed, the next is read from the procedure and processed as though it had been
entered from the terminal. The commands can be typed out at the terminal as they are executed, or
the user can suppress the listing with an operand of the EXEC command.

An installation can keep its command procedures in a partitioned data set called a command
procedure library. Each member of the data set can contain one procedure. The installation defines
its command procedure library in the SYSPROC DO statement of the logon procedure for terminal
users. Each terminal user in the installation can define his own private version of the command
procedure library by using the ALLOCATE command.

The command procedure library must have been previously allocated to the file name 'SYSPROC'
by step allocation at logon time or with the ALLOCATE command .

The EXEC command can also be invoked implicitly if the procedure is a member of the
command procedure library. The member name of the command procedure can be entered as a
command name. When the name is not found in the command libraries, the system assumes it is in
the command procedure library.

Operand Substitution: Symbolic operands, starting with an ampersand (&), can be placed in
commands and subcommands within command procedures. Values for these operands are supplied in
the EXEC command invoking the procedure. A procedure (PROC) statement at the beginning of
the procedure specifies how many positional operands will be supplied, and what keyword operands
may be present. Default values for symbolic operands can be specified in the PROC statement.

Command Language Facilities 31

L

I

Conditional Statements: The WHEN statement tests the return code from any command or program
invoked during a procedure. A condition is stated with relational operators such as GT or LT
("greater than" or "less than"). If the condition is satisfied, the command in the WHEN statement
is executed. If it is not satisfied, the command following the WHEN statement is executed. The
command in the WHEN statement can itself be an EXEC command, invoking another command
procedure.

Other Commands

Several other commands are provided to allow the user to control the terminal environment and to

aid him in using the command system.

The TERMINAL and PROFILE commands are used to tailor the data entry conventions to the
terminal type and user's preference. TERMINAL allows him to specify the character string to be
used to simulate an attention interruption if his terminal does not have an attention key, and to ..
specify how often he is to be given an opportunity to simulate an interruption during long-running
execution or output sequences. The PROFILE command is used to specify the character-delete and
line-delete characters, and other user options such as whether he wants prompting messages
suppressed.

The HELP command provides the user with reference information on command and subcommand
syntax, function, and usage. For example, if a user has forgotten the function of the DELETE
command, he can enter:

help delete function

The HELP command will return information explaining the function of the DELETE command:

THE DELETE COMMAND IS USED TO DELETE A SEQUENTIAL DATA SET OR A MEMBER OF A

PARTITIONED DATA SET.

Requesting this information through the terminal is faster than searching for it in a printed manual.

The SEND command is used to send a message to the system operator or to another user. The

sender must know the user identifications of other users to whom he directs messages. Messages are

displayed immediately at the receiver's terminal unless the receiver has requested that messages be

suppressed or unless he is not logged on. Messages not sent immediately are saved, and are

transmitted if requested, when the addressee next logs on.

•

32 TSO Guide (Release 21.7)

L

•

..

Programming at the Terminal

The time sharing environment is especially well-suited to program development. The advantage of
programming at a time sharing terminal is the reduction of job tum-around delays. The programmer
can profitably devote himself to one project at a time -- he does not need other projects to work on
while waiting for results from a batch computing facility. TSO provides services for terminal users at
each step in program development: coding, compiling or assembling, testing, implementation,
documentation, and program maintenance.

Any compiler or assembler designed to run under the operating system can be invoked from a
TSO terminal. Compilers can be executed in the foreground, or, via the SUBMIT command, in the
background. Command language prompters are either incorporated in or separately available for
several of the language processors. The TSO prompters, all mM Program Products, provide specific
commands to invoke the associated processors, and perform the following functions:

• 	 Request the user to enter necessary information such as the name of his source program.

• 	 Allocate data sets required by the processor and free them on completion.

• 	 Set any compiler options specified by the user and set default values for those options the user
omits.

I Prompters are available for Full American National Standard COBOL Version 3 or Version 4,
FORTRAN IV (Gl), and Assembler (F). Prompters are incorporated in the PL/I Optimizing
Compiler, the OS PL/I Checkout Compiler, and the problem-solving language processors (ITF:
BASIC, ITF: PL/I, and Code and Go FORTRAN). Each of the processors accepts a TERM option,
a request for special formatting of diagnostics and listings for the terminal, and a NUM option, to
control the use of EDIT line numbers in error messages. Syntax checking of source programs is
provided for PL/I (F), FORTRAN IV levels (E), (Gl), (G), and (H), and the problem-solving
languages. The test mode gives the user real-time control over program execution for debugging.
Similar facilities for ITF: PL/I, ITF: BASIC, Code and Go FORTRAN and the PL/I Checkout
Compiler are discussed in the next chapter, "Problem Solving."

Either the loader or the linkage editor can be invoked from the terminal. Users authorized to do
so can add load modules to the system command library, where they will be available as commands
to all system users. Any user can add programs to his own command library. Programs written in
any language can be defined as command processors, but only assembler language has the facilities
to make use of the command service routines such as input scanning and prompting.

Because of foreground-background compatibility, production programs that will eventually be run
in the background environment can be written and tested from the terminal. II0 that goes to the
terminal in the foreground can be re-directed to a sequential data set in the background. No
recompilation is necessary.

The following sections describe the special terminal support provided for COBOL, FORTRAN,
PL/I, and Assembler language programmers. Language processors for which no specific terminal
support is provided can also be invoked in the foreground. (See "Other Compilers" in this chapter.)

COBOL

TSO provides the COBOL programmer with facilities for entering, compiling, and testing programs
from his terminal. The programmer can use the COBOL command for compiling his program with
the following mM Program Products:

Programming at the Terminal 33

• TSO COBOL Prompter .
• Full American National Standard COBOL Version 3 or Version 4 Compiler.

The programmer can use the TESTCOB command to invoke the COBOL Interactive Debug for
testing and monitoring programs compiled under the TEST option of the Version 4 compiler.

Entering the Source Program

The COBOL programmer uses the TSO EDIT command to create or modify his source program.

With the EDIT command, he enters operands to name the data set containing the program, and

identify it as an old program to be modified or a new program.

With the terminal in input mode, the user enters successive lines of the program. The system
accepts each line when he hits the return key of the terminal, and types out the line number of the
next line. This line number becomes the sequence field of the COBOL statement in columns 1-6,
and in addition is used in place of the compiler-generated "card number" in program listings and
diagnostic messages. Automatic line numbering can be suppressed, if desired, by an operand of the
EDIT command.

After the line number is typed out, the terminal is logically positioned at the continuation column
(column 7) of the COBOL statement. The user can space or tab to Area A (column 8) or Area B
(column 12) of the statement. These logical tab settings are automatically set by the EDIT program
whenever a COBOL program is being processed. EDIT converts the tab characters to the necessary
number of blanks to format the statement correctly. The number of blanks generated is independent
of the physical tab settings at the terminal. The user can, if he wishes, override the standard settings
by specifying his own with an EDIT subcommand.

Compiling a COBOL Program

I	The Full American National Standard COBOL Version 3 or 4 compiler is invoked with the COBOL
command. The only required operand is the name of the data set containing the source program to
be compiled. However, any of the compiler options (except DECK) can be entered with the
command as operands.

I Three compiler options are available: TERM, PRINT /NOPRINT, and TEST /NOTEST (Version
4 only). The TERM option orders the compiler to issue progress messages to the terminal as it
processes the source program, for instance, "ANS COBOL IN PROGRESS," and to issue diagnostic
messages formatted for the terminal. An error or warning message directed to the terminal includes
the line number of the source statement in error, and the compiler error message. Using edit mode
subcommands, the programmer can retrieve the statement by line number, and correct the error.

The PRINT /NOPRINT option, available only in the foreground, allows the programmer to
choose whether the program listing is to be placed in a data set, displayed at the terminal, or
suppressed. When developing a program from the terminal, it is not normally necessary to have the
complete listing generated and displayed, since the error and diagnostic messages are extracted and
displayed through the TERM option. NOPRINT is the default value, and suppresses the listing.
When source program errors have been corrected and the program is compiled a final time, the
programmer specifies PRINT to generate the listing, which may be displayed at the terminal, or
saved in a data set for deferred printing, either at the terminal or on a high-speed printer. The
contents of the listing are controlled by the other options such as SOURCE, PMAP, and XREF.

The TEST/NOTEST option allows the programmer to compile the program with support for later
execution under control of COBOL Interactive Debug (TEST). A program compiled with the TEST
option can be executed without COBOL Interactive Debug.) The TESTCOB command invokes
COBOL Interactive Debug.

34 TSO Guide (Release 21.7)

•

..

•

Program Execution

The object program created by the COBOL compiler can be invoked with the LOADGO command,
which calls the Loader to bring the program into main storage and pass control to it. The user
enters ALLOCATE commands for any data sets needed by the program before invoking it.

The object program can also be defined as, or as part of, a load module with the LINK
command. As a load module, the program can be placed in a private or system program library. To
define the program QUERY as a command in a private command library
CONRAD.COMMANDS.LOAD, the LINK command is:

LINK QUERY.OBJ LOAD(COMMANDS(QUERY)) COBLIB

Once part of a command library, and once the private command library is concatenated to the
command library (and linkage library), the program is invoked simply by entering the program name
(or an alias) as a command. To invoke the program defined above, the user would type:

QUERY

The RUN subcommand of EDIT functions as a combination of the COBOL and LOADGO
commands. It is especially useful during the testing phase of program development, since it can be
used without leaving the edit mode. When a source program is complete,· the user enters the RUN
command, invoking first the compiler, then his object program. Whenever he detects and error
requiring a change to the program, the programmer can immediately update his source program with
EDIT subcommands, and enter another RUN subcommand.

Interactive Programs

COBOL programs can be designed to interact with a terminal user simply by defining the terminal
as a file. Programs can read input lines from the terminal, act on the information, and respond.
Because the terminal is defined as a sequential utility file, the same program can be executed in the
background, reading and writing to sequential data sets or devices, without recompilation.

To define the terminal as a file, the user enters ALLOCATE commands for the external names
used in the name field of the ASSIGN clauses in the program.

For programs containing ACCEPT and DISPLAY clauses, or which generate TRACE and
EXHIBIT output for debugging, the SYSIN and SYSOUT files can be defined as the terminal.
DISPLAY output is sent to the terminal instead of system output. TRACE and EXHIBIT output is
also sent to the terminal.

FORTRAN

.. 	 Two versions of FORTRAN N with special support for the foreground environment are available as
Program Products to TSO users:

• 	 Code and Go FORTRAN.•
• 	 FORTRAN N (Gl).

Both processors can also be used in the background environment. Three additional Program
Products are available to complement the processors:

• 	 FORTRAN N Library (Mod I), for use with either processor to provide list-directed
input/output support, ASCII data set handling, and PAUSE and STOP output to the terminal.

Programming at the Terminal 35

- TSO FORTRAN Prompter, which allows the terminal user to invoke the FORTRAN N (Gl)

processor with the FORT or RUN commands.

I-FORTRAN Interactive Debug, which allows the terminal user to test and debug his FORTRAN
N (Gl) or Code and Go FORTRAN program at execution time.

A FORTRAN programmer can also invoke the FORTRAN (E), (G), or (H) processors with the
CALL command, but not with the RUN or FORT commands. The user is responsible for allocating
the data sets needed by these compilers, and for specifying the compiler options. The prompter
performs these services for the FORTRAN N (Gl) compiler, which also has output specially
formatted for the terminal.

Code and Go FORTRAN is optimized for a fast compile-and-execute sequence, carried out entirely
within main storage for small-to medium-sized programs. This makes it a useful tool for
problem-solvers. It accepts free-form or standard source statements. However, no permanent object
program is produced, and some execution speed is sacrificed for fast compilation. Whenever the
programmer need to link separately compiled programs and subroutines, when he is working with
very large programs, or when he wants to produce an object program he can save, he will use the
FORTRAN (Gl) compiler. He may develop and test his program with Code and Go FORTRAN,
and then compile it a last time with the FORT command. The TSO CONVERT command will
change free form source statements to fixed form or vice versa. Code and Go FORTRAN is
discussed in greater detail in the chapter "Problem Solving."

Entering the Source Program

The programmer uses the EDIT command to create a source program. An operand of the EDIT

command informs the syntax checker what FORTRAN compiler is going to be used. As the

program source statements are entered, the FORTRAN syntax checker processes each line,

interrupting the input sequence if it detects an error.

Compiling a FORTRAN Program

When the programmer finishes entering the source program, he saves his data set with the SA VB
subcommand, and, to invoke the FORTRAN N (Gl) compiler, switches to command mode to enter
the FORT command, or stays in edit mode and uses the RUN subcommand. Operands of FORT
allow him to specify various compiler options: whether or not a listing is to be produced, the
contents of the listing, where it is to be printed or stored, whether or not an object program is to be
produced, whether diagnostics are to be sent to the terminal, and whether the program is to be
compiled for execution with FORTRAN Interactive Debug. All operands except the input data set
name can default to standard values.

As the compiler processes the program, it may find program organization errors that were not
detected by the syntax checker on a statement-by-statement basis. Compiler diagnostic messages are
sent to to the terminal, along with the statement in error, and a pointer to the field in error, if
possible. Preceding the source statement is the line number assigned by EDIT when the source
program was entered. The line number allows the programmer to use the EDIT subcommands to
correct the statement quickly, without listing the entire program.

When the program compiles successfully, the programmer can print an error-free listing, and use
the LOADGO command to load his program for execution.

PL/I

The PL/I programmer can use the following language processors from the terminal:

36 TSO Guide (Release 21.7)

..

..

•

•

•

•

•

• ITF: PL/I.

• PL/I Optimizing Compiler.

• PL/I (F) Compiler.

• PL/I Checkout Compiler.

The ITF: PL/I Program Product supports a subset of the PL/I language designed for solving
problems at the terminal. It is provided by a compiler that offers two types of processing: a rapid
compile-and-execute sequence for small- to medium-sized programs, or line-by-line interpretation
and execution of PL/I statements as they are entered. ITF: PL/I is described in the chapter,
"Problem Solving."

The PL/I Optimizing Compiler, an mM Program Product, is a language processor for use in
either the background or the foreground environment. For the foreground environment, the compiler
incorporates a prompter, which allows the user to invoke it with the PLI or RUN commands.
Compiler options allow the user to request diagnostics and listings formatted for the terminal, or to
request termination of compilation if syntax errors are found.

The PL/I programmer can also use the PL/I (F) compiler from the terminal, but no special
prompting or output format is available. The F-Ievel syntax checker can be used to scan source
statements as they are entered or to scan complete programs. The PL/I (F) compiler cannot be
invoked with the PLI or PLIC commands.

The PL/I Optimizing Compiler implements a more comprehensive set of PL/I than previous
compilers and offers a choice of fast compilation, optimization for speed of object program
execution, or optimization for minimum object program size. A subroutine library is required during
linkage editing of a compiler output module. A second library is required for execution of the object
program. Each library is available as an mM Program Product:

• OS PL/I Resident Library.

• OS PL/I Transient Library.

The PL/I Checkout Compiler is a two-stage processing program which translates and interprets
(executes) PL/I programs. It can be used in either the batch or TSO environment of the mM
System/360 Operating System and supports the same level of language as the PL/I Optimizing
Compiler.

Using the checkout compiler in a TSO environment will often enable you to check out a PL/I
program in one session at the terminal. Its conversational checkout features allow you to
communicate with the compiler during processing. The compiler prints messages and listings at the
terminal (as requested by the TERMINAL option) and you can respond with PL/I subcommands,
or PL/I statements for immediate execution. The subcommands allow you to change compiler
options, request more information, copy output files at the terminal, make temporary modifications
to the PL/I program (during interpretation only), and either continue or terminate processing. The
OS PL/I Transient Library is required during execution .

You can also communicate with the PL/I program when it is being interpreted by using the
conversational I/O feature of PL/I.

Entering a PL/I Program

The programmer uses the EDIT command to create his source program and save it as a data set. He
can request EDIT to assign a line number to each line of his source program as he enters it. If line
numbers are assigned, he can request the PL/I Optimizing Compiler or the PL/I Checkout

Programming at the Terminal 37

Compiler to use them in diagnostic messages, instead of statement numbers. The programmer can
use the line number to retrieve the erroneous source statement, correct the error, and invoke
another compilation, all without having the complete listing displayed at the terminal.

Compiling a PL/I Program

To invoke a compiler, the programmer uses either the RUN command, the PLI or the PLIC
command. RUN can be used as a subcommand of EDIT, allowing the user to correct errors without
entering the EDIT command again. RUN causes a complete compile-load-go sequence but does not
produce a permanent object program. RUN is normally used during the initial compilations to check
for source language errors. When a program is debugged, the PLI command can be used to produce
an object program and a full listing. The object module can be loaded for execution or linkage
edited into a program library for use as a load module. Whether invoked by RUN, or PLI, the PL/I
Optimizing Compiler directs diagnostic messages to the terminal, in either a full or an abbreviated
format. During testing, the programmer can have traces and other output generated by PL/I
program checkout facilities displayed at the terminal. The PLIC command invokes the PL/I
Checkout Compiler.

Program Execution

Programs produced by the compiler can be executed in either the background or the foreground. In
the foreground I/O can be directed to the terminal by allocating a PL/I file, such as SYSIN or
SYSPRINT, to the terminal with the ALLOCATE command. In the background these same files can
be directed to data sets or unit record devices.

Assembler Language

Like programmers who use the higher level languages, the assembler language user enters his source
program statements with the EDIT command. Assembler (F) accepts free form input, but the tab
setting facilities of EDIT allow the user to create a formatted listing. On request, EDIT assigns line
numbers to the source statements, which are later referred to by diagnostic messages produced
during assembly. Line number or context editing is always available to correct errors, modify source
statements, or add comments.

Assembling the Program

When the programmer completes his source, program and saves it, he invokes Assembler (F) with
the RUN or ASM commands. The use of these commands requires the TSO Assembler Prompter
Program Product. Operands of ASM give him control over the listing format, disposition of output,
and diagnostic messages.

Assembler diagnostic messages sent to the terminal include the statement in error, if possible;
both the EDIT -assigned line number and the assembler-assigned statement number; and an
explanation of the error. Usually, the user will not need to have the complete listing displayed in
order to obtain an error-free assembly. Using the line numbers in the diagnostic messages, the
programmer can quickly locate and fix source statements errors with the edit mode subcommands.

Test Mode

When assembly completes without error, the programmer creates a load module with the LINK
command, and uses the TEST command to bring it into storage. The TEST command processor uses
the symbol table produced by the assembler and linkage editor, which gives the address and
attributes of each symbolic name used in the source program. Before passing control to the program,
TEST allows the user to establish initial values to be passed to the program as test data, and to set

38 TSO Guide (Release 21.7)

•

•

•

•

•

•

up breakpoints where execution is to be interrupted for displays, dumps, and other debugging
activity. The user can refer to points in the program by symbolic names, absolute relative or indirect
addresses.

To display storage and register contents, the programmer uses the LIST subcommand. specifying a
register range or address range, or a list of symbolic names. Special forms of the LIST subcommand
provide standard formats for control blocks such as the TCB, DEB, DCB, and PSW. LIST will also
provide a current map of user storage. List output can be directed to either the terminal or a data
set.

Other TEST subcommands allow the programmer to load additional programs into storage, to
delete or replace programs in storage, to issue GETMAIN and FREEMAIN as subcommands from
the terminal, to define the location and attributes of symbols not in the symbol table, and to start
and stop program execution.

Other Compilers

Any language processor designed to execute under the operating system can be invoked from a TSO
terminal. A compiler, like any other program in load module form, is invoked with the CALL
command. Options to invoked with the CALL command. Options to control the execution of mM
compilers -- such as LOAD or NOXREF -- are entered with the CALL command, in the same form
as they would be specified in the P ARM field of an EXEC statement in a background job stream.

Before a language processor is invoked, the necessary input, output, and utility files must be
allocated under the names expected by the processor. For the compilers invoked directly by their
own commands (Full American National Standard COBOL Version 3 or 4, FORTRAN IV (Gl),
PLjI Optimizing Compiler, PLjI Checkout Compiler, ITF: PLjI, ITF: BASIC, Code and Go
FORTRAN, and Assembler (F», the necessary allocations are performed by initialization programs
called before the compilers.

Since the ALLOCATE statements necessary for a particular compiler are always the same, it is
easiest to define them in a command procedure to be used for invoking that compiler. The function
of the command procedure is the same as the cataloged procedures used to invoke compilers in the
background: to save the user the trouble of entering a set of unchanging statements each time the
compiler is invoked. Command procedures can be defined, either by individual users or by the
installation, for any processor .

Programming at the Terminal 39

Problem Solving

To meet the needs of users who may not be professional programmers, three problem-solving
languages are available as IBM Program Products with TSO: ITF: BASIC, ITF: PL/I, and Code and
Go FORTRAN. ITF: BASIC is a simple, algebra-like language that can be quickly learned, yet it has
the power to perform complex mathematical calculations. ITF: PL/I is a subset of the full PL/I
language. ITF: PL/I can be used in two ways: statements can be interpreted and executed as they
are entered (desk calculator mode); or they can be collected into procedures for compilation and
execution as programs or subroutines. Code and Go FORTRAN provides the full FORTRAN IV
language for terminal users. It has a very fast compile-and-execute sequence, carried out entirely in
main storage. Code and Go FORTRAN accepts free-form or standard form source statements.

All three languages have statement-by-statement syntax checking as the programs are keyed in, and
additional diagnostics are set to the terminal for errors detected during compilation and execution
phases. For the ITF: BASIC and PL/I languages, the test mode allows the user to monitor program
execution with breakpoints and traces, to inspect and reset the values of variables and to modify
main storage during execution. Code and Go FORTRAN supports both the compile-time debug
facility and the use of FORTRAN Interactive Debug.

Programs in any of the three languages are created, and can be run, in edit mode. Whenever
necessary, the user can use EDIT to replace or modify source statements. For small to medium-sized
programs performance is better in edit mode than in command mode, since the source statements
and, in the case of Code and Go FORTRAN, the object program, can be kept in main storage and
do not have to be read in from auxiliary storage.

ITF: BASIC

The ITF: BASIC Program Product is derived from the BASIC language created for time sharing use
at Dartmouth College. With TSO, the BASIC user logs on to the system, then enters the EDIT
command. In the input mode he enters successive statements to define his problem. If the system
detects a syntax error, he is notified immediately so that he can correct the faulty statement before
continuing. The user can defer syntax checking until compilation. When all his statements have been
entered and syntax checked, the user issued the RUN subcommand to compile and execute the
program. An operand of the RUN subcommand specifies whether he wants to execute with short
precision (6 significant decimal digits) or long precision (15 digits). Programs and data can be saved
from one session to the next, or deleted after use.

ITF: PL/I

The ITF: PL/I Program Product is a subset of the full PL/I language, suited to problem-solving
because of its simplicity and ease of use. For example, there are no arithmetic conversion rules to
remember: all data is kept in decimal floating-point format. The language is compatible with PL/I as
provided by the PL/I (F) compiler, except that source language programs are stored with
variable-length records and some arithmetic data formats that would default to fixed-point binary in
full PL/I are floating-point decimal in ITF: PL/I. A utility command, CONVERT, is provided to
format ITF: PL/I source programs for submission to a batch PL/I compiler, if the user wants to
create an object program.

ITF: PL/I can be used under either the EDIT or the CALC commands. Under EDIT, statements
are collected into a program. When the program is complete, the RUN subcommand is used to
compile and execute it. Under the CALC command, statements are interpreted and executed as they

40 TSO Guide (Release 21.7)

•

•

•

to

are entered. Statements are discarded as soon as they have been executed. Variables, however, are
all defined as "static externals" and kept in a table in main storage, where they can be refered to by
subsequent ITF: PL/I statements, or displayed at the terminal. The table of variables created during
a session using the CALC command can be saved in a data set for use in later sessions.

ITF Test Facility

When a user invokes an ITF: PL/I or BASIC procedure for execution, as an option he can specify
that the program is to be tested. In this case, the system allows the user to set breakpoints in the
program before it is started, and to set up program traces and displays of variables. All output from
the testing routines is displayed at the terminal. When the program is interrupted by a breakpoint, or
when the user hits the attention key, he can display and modify variable values, modify test
procedures, and then restart the program at the point of interruption. The ITF testing subcommands
are a subset of the TEST subcommands available for the programming languages.

Syntax errors in an ITF: PL/I source statement are detected as soon as the statement is entered,
and the user is notified to correct the statement. The user can request deferral of syntax checking to
compile time. When operating under EDIT, some errors will Otlly be detected at compile-execute
time. In this case, a message is sent to the terminal, and the user is returned to the edit mode to
correct the error in the source program.

Code and Go FORTRAN

For the many problem-solvers who are familiar with the FORTRAN programming language, the
Code and Go FORTRAN Program Product is available for use from the terminal. The user creates
his program, and optionally has it syntax-checked, with the EDIT command. He uses the RUN
subcommand or the GOFORT command to invoke the Code and Go FORTRAN compiler. The
source program is converted to an object program in main storage. As soon as the object program is
complete, control is passed to it, except where TEST has been specified for execution with
FORTRAN Interactive Debug. In this case, the TESTFORT command is used to invoke execution
of the compiled program. The compiler used for Code and Go FORTRAN bypasses certain object
code optimization processing for greater compilation speed.

Free-Form Statements: Code and Go FORTRAN does not require statements to begin in column 7.
If a statement has a label, the statement can immediately follow the label. If it has no label, it can
start in column 1.

A utility command (CONVERT) is available to change free-form source statements to fixed
form, if a user wants to submit them to one of the batch FORTRAN compilers after developing and
testing them in free form. Code and Go FORTRAN will also accept the standard format .

Problem Solving 41

System Summary

This chapter introduces the major control and service routines that have been added to the MVT
control program for time sharing. It identifies points where the installation can control system
execution, and where modules can be modified or replaced for specialized applications.

MVT Control Program

u
Time Sharing Message Control 	 • ,.

/ ""
~

""
Contra I Task

Program
(TSC) - (MCP)

U
I

RegionContra I Task

(RCT)

Terminal
Logon/Logoff I/o

U
.1)Schedulers Requests

(LOGON)

U
Terminal Monitor

Program
 .~

(TMP)

U
Command

Processors (..I

User CP)

Programs

Figure 2. TSO Control Flow Diagram

Figure 2 is a generalized diagram of the flow of control through the system, showing several •
levels of control under the MVT control program. The portion of the system directly concerned with
time sharing can be divided into five levels:

•
1. 	At the highest level are the Time Sharing Control and the TCAM Message Control Program

tasks. The Time Sharing Control task handles system-wide functions such as the initialization
procedure required when the operator starts time sharing, and the swapping of foreground jobs.
The Message Control Program is a part of the Telecommunications Access Method (TCAM) and
handles all I/O for remote terminals.

2. Below the Time Sharing Control task is the Region Control task for foreground regions. The
Region Control task supervises the quiescing and restoring of job activity before and after
swapping. Conceptually, there is one Region Control Task for each foreground region, however,

42 TSO Guide (Release 21.7)

..

•

•

since the Region Control Task is composed of reenterable code residing in the TSC region, only
one copy exists.

3. The LOGON/LOGOFF Scheduler is invoked by the Region Control task whenever a user wants
to log on or off the system. The LOGON routine identifies the user to the system, and defines
his foreground job using parameters in the LOGON procedure, user profile, and operands of the
LOGON command.

4. 	LOGON invokes a problem program specified by the user's LOGON procedure at the next level.
This is normally the TSO Terminal Monitor Program, which handles TSO and user-supplied
commands.

5. Command processors and other application programs execute at the lowest level of control.

These levels are conceptual only, and are not defined by priorities or locations in main storage .
Through the course of this chapter a more precise system flow diagram will be built. However, some
overall design features of the system are apparent from even the simplified picture in Figure 2:

• 	 TSO is highly modular -- built up from small components with well-defined interfaces -- and
therefore flexible and adaptable to local needs. The Terminal Monitor Program and the Message
Control Program are designed to be modified or replaced by the installation for a specialized
application.

• 	 Each level of control also provides an opportunity for the system to recover from failure. For
instance, abnormal termination of a command processor or other problem program is handled by
the Terminal Monitor Program. Only the user who invoked the failing program is affected -- and
he is given an opportunity to recover the program through the TEST facility. Users at other
terminals are completely protected.

lbe Time Sharing Driver

Before discussing the individual control routines in greater detail, one program must be added to the
control flow diagram. The Time Sharing Driver isolates in one component the decision-making
algorithms for the division of system resources among all the users of the system. By passing
parameters to the Driver with the START command or from the system parameter library, the
installation controls the various scheduling algorithms to gain the desired performance for its job
mix. These "tuning" parameters and the algorithms are discussed in the last section of this chapter.

As shown in Figure 3, the Driver has a unique relationship to the other control routines. It
cannot be logically assigned to one of the control levels, but is used as a service program by all the
levels from the MVT supervisor down to the Terminal Monitor Program. The calling programs
inform the Driver of events throughout the system -- time slice end, user waiting for LOGON, job
waiting for input, etc. From this stream of information, the Driver maintains a current picture of the
system load and activity. Based on this picture, the Driver orders actions such as swapping, changes
in priority, and assignment of a user to a particular region .

The Driver component itself is completely insulated from the rest of the system by the Time
Sharing Interface Program, which accepts all calls to the Driver, then passes them through a
standard interface to the Driver itself. The Driver returns parameters to the Interface Program that
request various actions by the other control routines. Thus, an installation can modify or replace the
Driver -- effectively, provide its own system scheduler -- without modifying the system
implementation programs. The operator uses the START command to specify which Driver -- the
standard one or an installation-written one -- is to be used.

System Summary 43

(TMP)

MVT Control Program

Time Shoring
Interface Program

(TSIP)

DRIVER

(MCP)

..

(PARAMETER LIST)

Figure 3. The Time Sharing Driver

Control Routines

The following paragraphs discuss the functions of each of the TSO routines. Although the TCAM
Message Control Program logically shares the highest level of control with the Time Sharing Control
Task, it is discussed last.

The Time Sharing Control Task

The Time Sharing Control task, as shown in Figure 4 handles all functions affecting the entire time
sharing portion of the system. This includes responding to the START, MODIFY, and STOP
operator commands, and handling the swapping of foreground jobs into and out of main storage.

When the operator enters the START command for TSO, and initialization module of the Time
Sharing Control is given control. The initialization module calculates the size of the Time Sharing
Control region that will be needed and obtains it from the main storage management routine of
MVT. In this region, the Time Sharing Control task builds the control blocks and buffers the system
will need, and invokes a Region Control task for each foreground region.

The installation may override the calculated TSC region size by specifying the size it wants in
SYS1.PARMLIB or on the START command. This may be necessary if an installation written
Driver has greater main storage requirements than the Driver supplied with TSO.

44 TSO Guide (Release 21.7)

•

•

•

Command

Figure 4. The Time Sharing Control Task

While the time sharing system is operating, the major function of the Time Sharing Control task
is the swapping of foreground jobs into and out of main storage. Swapping is handled at this level
so it can be optimized on a system-wide basis when mUltiple foreground regions are active. A swap
out is scheduled whether a channel is free or not.

The Time Sharing Control task maintains an input queue and an output queue for swap requests
(one of each set if parallel swapping is being used). It builds a channel program for each swap
request. A program-controlled interruption (PCI) will occur near the end of each channel program.
When the interruption occurs, an exit routine selects the next channel program to execute. The exit
routine inserts a transfer to the next channel program at the end of the current channel program.
Thus as the number of requests increases, the swap process is carried out by a never-ending channel
program. Seek time is minimized by attempting to swap jobs out to the direct access area from
which the last job swapped in, or if this is not possible, by using the free space closest to the
current arm position.

In determining what portion of a foreground region to swap out, the Time Sharing Control task
uses a map of the foreground job created by the Region Control task. Each entry in the map
identifies the starting address and length of a section of the region that the job is using. The number
of entries in this map is the same for every job and is specified by the installation in the system
parameter library. If there are too few entries, inactive main storage must be included (and
swapped). A large number of entries cuts down on the amount of inactive storage that has to be
swapped, but adds to processing overhead.

When the operator enters a STOP command to shut down the time sharing operation, the Time
Sharing Control task initiates a logoff for each active user. When all users are disconnected, the
Time Sharing Control task ensures that all the system resources that had been assigned to it are
returned; the Time Sharing COntrol task then terminates, returning its main storage region to the
system .

If any users cannot be logged off, the Time Sharing Control task cannot terminate. The operator
is given the facility to "force" TSO to terminate even if it appears that normal STOP processing
cannot be completed. For further information on "forced" STOP, see message IKJ024D in II'M
System/360 Operating System: Messages and Codes, GC28-6631.

System Summary 4S

The Region Control Task

A major function of the Region Control task is quiescing and restoring foreground job activity
before and after swapping. Conceptually, there is one Region Control task for each active
foreground region, invoked by the Time Sharing Control task although only one copy exists in the
TSC region. Figure 5 shows a single Region Control task under the Time Sharing Control task.

Before a foreground job can be swapped out of main storage, any activity associated with it must
be brought to an orderly halt, or set up to be handled by some supervisor routine that will be
remaining in main storage. This includes removing control blocks associated with the job from
system queues, or flagging them as inactive.

ATTACH

Region
Control
Task

Figure S. The Region Control Task

Quiescing of I/O activity is initiated by the Region Control task (at the request of the Driver),
which issues the Purge Supervisor Call for each task associated with the foreground job. The Purge
routine removes I/O requests from the I/O Supervisor's queues of pending requests if they have not
yet been initiated. If a request has been started, that is, if data transfer is already taking place, it is
allowed to complete before the job is marked ready for swapping. The control blocks associated
with unstarted requests are stored in the foreground region where they will be swapped out of main
storage along with the job.

I/O requests that address the terminal are an exception to the quiescing procedure because of
their long completion time. These requests are handled through the TSO interface with TCAM and
are buffered in supervisor main storage, not in the foreground region. Data can be written or read
to these buffers whether the job is present in its main storage region or not.

Many control blocks, like the I/O requests mentioned above, reside in the foreground region. For
background jobs, these control blocks would be created and maintained in the System Queue Area,
a section of main storage set aside for this purpose during nucleus initialization. Foreground regions,
however, each contain a Local System Queue Area to hold control blocks. As part of quiescing, the
Region Control task removes pointers to these control blocks from system queues. The blocks can
then be swapped out of main storage along with the foreground job. The only control blocks for
foreground jobs that are assigned in the System Queue Area (and remain in main storage) are
requests for timer interruptions, operator replies, and assignment of resources through ENQ.

When a job is swapped into main storage by the Time Sharing Control task, the Region Control
task receives control to restore the I/O requests it intercepted at swap out time, and to return the
control blocks associated with the job to the appropriate system queues.

•

46 TSO Guide (Release 21.7)

•

LOGON/LOGOFF

The LOGON/LOGOFF Scheduler routine performs the same functions for foreground jobs that the
reader/interpreter and initiator do for background jobs. When defining a foreground job, LOGON
uses many of the same programs as subroutines.

When LOGON is invoked by the Region Control task, as shown in Figure 6, it is swapped into
the foreground region. A copy of the LOGON/LOGOFF Scheduler for each foreground region is
kept in the swap data set, reducing the amount of initialization time needed. LOGON, and all
routines below it in the control flow diagram, execute from the foreground region, and are swapped
in and out of main storage. LOGON first validates the user's identification and password in the
User Attribute Data Set, and reads in the rest of the user profile. From the profile and any operands
entered with the LOGON command, LOGON builds, in main storage a JOB and an EXEC
statement that define the foreground job. The EXEC statement names the LOGON Procedure
specified by the user, and the procedure in tum specifies the name of the program to be invoked .
The procedure also contains DD statements for data sets the user always wants allocated to him,
and some special DD statements that save control block space for data sets he may allocate later,
dynamically.

Figure 6. The LOGON/LOGOFF Scheduler

The JOB and EXEC statements built by the LOGON routine are passed to the reader/interpreter
to define the resources required by the job, and then to the initiator for allocation of the resources
-- direct access storage space, main storage control blocks, etc., -- and invocation of the program.
Figure 7 shows the linkage scheme used during LOGON. Use of the system reader and initiator
ensures that foreground jobs are compatible with normal background jobs, appearing to the system
as a job consisting of a single step . ..

The LOGON/LOGOFF Scheduler executes in the user's foreground region. Assignment to that
region is provisional until LOGON determines the correct size for the user's needs. If a larger region

• is appropriate, LOGON can, through the Region Control task and the Time Sharing Control task,
request that the Driver assign a different region. If a region switch is made, the job information
LOGON has already gathered is left in a supervisor buffer. The Driver, through the Time Sharing
Control task, causes LOGON to be invoked in the new region, where processing can proceed.

System Summary 47

-- - - - - -- - - -

Attach From RCT MVT J0 b S h d e I' Routlnesc u Ing ..,),-- - - - - - - - - -- -­~ I l
Logorv' I IXCTL xcnReader/ Initiator/
Logoff

Interpreter Terminator IScheduler I

(LOGON) I

I
L - - ~

Program Named ATTACH ..
In Logon
Procedure

..
Figure 7. LOGON Linkage

The LOGON routine is also brought into a region whenever a user enters a LOGOFF command,
or a second LOGON command, during a session. For logoff, the LOGON routine ensures that all
resources have been returned to the system, and calls the accounting routines to update the user's
statistics. A second LOGON command during a session also causes logoff processing, but it is
immediately followed by re-Iogon. The new logon may request a different logon procedure or region
size. When a region size is supplied for the new logon, the mM supplied Time Sharing Driver will
only assign a new region if the user's present region cannot satisfy the size requirement or has been
made unavailable for LOGON by the operator's MODIFY command.

The Terminal Monitor Program

For users of the TSO command language, the program named in the EXEC statement of the
LOGON Procedure is the Terminal Monitor Program. Users of locally-provided command systems,
or terminal monitors "dedicated" to some local application, can specify these programs in the
LOGON Procedure. If necessary for security reasons, user access to particular applications can be
controlled through the profiles in the User Attributes Data Set.

The remainder of this discussion concerns only the mM-supplied Terminal Monitor Program, as
shown in Figure 8. Installation-written monitors must perform similar functions, and can use some
or all of the service routines described below.

...

Figure 8. Terminal Monitor Program

48 TSO Guide (Release 21.7)

When the Terminal Monitor Program receives control from LOGON, it is passed a pointer to the
user profile. The profile contains information to control the environment of the current session -­
the user identification to append to data set names, whether the user wants to be prompted for
command information, whether he wants numerical message identifiers included in messages to the
terminal.

During a session, the Terminal Monitor is called on to handle four conditions:

• A command processor or user program is completing, and a new command must be requested.
• A command processor or user program is terminating because of an error.
• The user hit the Attention key, interrupting the current program.
• A CANCEL operator command is forcing a LOGOFF for the user.

To invoke a command processor, the Terminal Monitor Program uses the command name to
search the command library or libraries for the processor load module. When it is found, an •
ATTACH macro instruction is used to invoke it. When the command processor completes, the
Terminal Monitor issues a DETACH for it, and writes a READY message to the terminal, indicating
another command may be entered.

When a command processor or a user program invoked by a command (CALL, RUN, etc.)
terminates because of an error, control is passed to a Terminal Monitor Program routine that
notifies the user of the error condition and allows him to enter a new command. If the new
command is TEST, abnormal termination processing (ABEND) is cancelled and control is passed to
the TEST processor so the user can examine the failing program and attempt to recover. If the new
command is not TEST, the failing program completes abnormal termination and the new command
is processed.

When a user hits the attention key, or when a attention interruption is simulated for terminals
without an attention key, the Terminal Monitor Program attention routine is given control, unless
the currently executing program (a command processor or user program) has specified an
attention-handling routine of its own. The Terminal Monitor Program attention routine gets a line
from the terminal. If it is a program status inquiry such as TIME, the Terminal Monitor Program
handles the inquiry and does not cancel the interrupted program. If a new command is entered, the
interrupted program is cancelled and the Terminal Monitor Program invokes the new command
processor. If the user enters a null line, the interrupted program is restarted at the point of
interruption although the current content of the buffers are lost.

When the operator or a control user enters the CANCEL command to force a user logoff, the
Terminal Monitor Program terminates any program the user may have running, and returns to the
LOGON routine for logoff processing and accounting.

TEST

The TEST processor is handled differently than other command processors, since it must be able to
control the execution of programs (including command processors) being tested. The TEST routine
executes at the same level as the Terminal Monitor Program -- receiving control via a LINK, rather

t than a ATTACH, macro instruction.

TEST reads successive subcommands from the terminal or a command procedure. Each
subcommand requests some action -- modification of the tested program's registers or storage areas,
insertion of breakpoints in the program, display of data. When the GO subcommand is encountered,
the tested program is allowed to execute to the next breakpoint (an inserted SVC instruction) or to
completion. When a breakpoint is encountered, TEST again receives control. It will then handle
subcommands specified previously by the user, new subcommands entered from the terminal, or
both. Another GO subcommand will restart the tested program.

System Summary 49

Service Routines

The command processor service routines, as shown in Figure 9, are used by the Terminal Monitor
Program, TEST, and command processor. In general, they perform services that are useful to all
foreground programs, and their availability as subroutines saves repetitive coding in all the command
processors. They can be called from programs written in Assembler language.

Command Analysis: Two routines are provided for analyzing input lines to the Terminal Monitor
Program and command processors. The Scan routine determines if an input line contains a
syntactically correct command name, and, if it does, returns it to the calling program. The Parse
routine continues the analysis of a command or subcommand by comparing the line to a parameter
supplied by the calling program describing the permissible operands and default values. The Parse
routine builds a new parameter list from this information, describing the options the user has
selected, and returns it to the calling program.

From Logon

~ LOAD - CALL

Service
Or
LINK Terminal LINK

Routines Monitor Test
Program

(TMP)

: ATTACHATTACH
(A Program To Be Tested),I

Command
Processor
Or
User
Program

Figure 9. Service and TEST Routine

TerminalI/O: Four service routines are provided to handle command processor input and output for
the terminal. Command processors normally accept input lines containing subcommands and data
from the terminal, and send messages back to the terminal. However, a command processor may be
invoked from a command procedure, and in this case, the input to the command comes from an
in-storage list built by one EXEC command processor from the CLIST data set that contians the
procedure. To allow the command processors to be independent of the source of input, I/O is
handled through the Getline, Putline, and Putget service routines.

Getline, Putline, and Putget use a push-down list to keep track of the current input source.
Entries in the list represent a terminal, or an in-storage list. The in-storage list may be a command
procedure or data. A fourth service routine, Stack, is provided to manipulate this list as the input
source changes.

When a command processor calls Getline for a line of input, Getline checks the list of sources to
determine the current source and returns one record from that source. The caller need. not know
whether the input came from the terminal or an in-storage buffer. Putline also checks the list of
input sources before sending output from the command processor. Some types of messages,
identified by a code in the message identifier, are suppressed if the current input source is not the

50 TSO Guide (Release 21.7)

•

,

1

•

I ,

...

terminal. For instance, it is not appropriate to issue a prompting message for command operand
information if a command procedure is in progress. A return code to the caller indicates whether the
message was issued or suppressed. Putget combines the function of Putline and Getline -- first
sending a message, then returning one record.

Dynamic Allocation: The Dynamic Allocation Interface routine handles data set allocation and
manipulation for command processors. Dynamic allocation uses control block space reserved by DD
DYNAM statements in the user's LOGON Procedure. These control blocks are used over and over
again when different data sets are needed, but at anyone time, a user can have only as many data
sets allocated as he has DD statements in his LOGON Procedure. Command processors call on
Dynamic Allocation to allocate data sets, to free data sets, to search the system catalog for a
particular data set or group of related data sets, and to concatenate or separate groups of data sets.

In TSO a problem may arise from the multiple use of a Job File Control Block (JFCB) for an
input data set. When the data set is opened, information supplied in the Data Set Control Block
(DSCB) and the JFCB is used to fill any zeroed fields in the Data Control Block (DCB). The
opening routines then do a reverse merge from the DCB back into the JFCB, this time filling any
zeroed fields in the JFCB. If the same data set is subsequently opened using another DCB, the
opening routines will retrieve information from the JFCB for fields not specified in the DSCB or on
the DD card. This information could be faulty and could cause a program failure. Deleting the data
set with the DELETE command and allocating it again with an ALLOCATE command will prevent
these kind of errors.

Command Processors and User Programs

Although command processors vary widely in function, they have some initialization features in
common. All call on the Parse routine to analyze the invoking command and prompt the user for
missing or invalid operands, and all use the Dynamic Allocation routine to determine if necessary
data sets are allocated and to allocate them if they are not.

At this point, some command processors call on standard system processors to carry out the
function desired. For instance, the TSO COBOL Prompter sets up a standard calling sequence
according to the options selected by the user, and transfers control to the American National
Standard COBOL compiler to compile the user's program. Except for the special formatting of
output and messages, the compiler operates exactly as it would in the background.

User-written command processors, and other programs that are not defined as command
processors, should avoid using the special Terminal Monitor Program-command processor interface if
they are to be compatible with the background environment. The CALL, LOADGO, and RUN
commands allow control information to be passed to background-compatible programs in exactly the
same format as information in the PARM field of an EXEC statement. Data set allocation can be
handled by ALLOCATE commands in a command procedure used to invoke the program.

Tenninal I/O

The Telecommunications Access Method, or TeAM, handles all I/O between remote terminals and
jobs in the system. TeAM distinguishes between time sharing applications, with emphasis on direct
control of the calling terminal, and other teleprocessing applications, where emphasis may be on
queuing, formatting and routing of messages between remote terminals or between applications and
remote terminals.

The Message Control Program

The Message Control Program is the TeAM control routine. It contains definitions and descriptions
of the various terminals that can connect to the system, it has buffers for storing data going to and

System Summary 51

coming from the terminals. It transfers data between its buffers and time sharing buffers.

Most of the Message Control Program is written using a special set of macro instructions that is
essentially a language suitable for defining the telecommunications network and specifying the
handling of messages on the network and in the system. Macro instructions to generate a Message
Control Program suitable for handling terminalI/O for time sharing are distributed with the TSO
package.

The Message Control Program executes as a problem program, in a main storage region with a
nonzero protection key. Normally, it has the highest priority of the problem programs in the system.
It must have a higher priority than the Time Sharing Control Task.

Mixed Environment MCPs

A TSO message control program can contain more than one message handler. A message handler is
a sequence of code that routes terminalI/O to the appropriate program or terminal. A mixed
environment Message Control Program contains the message handler for terminalI/O for TSO and
in addition one or more non-TSO message handlers.

In a mixed environment, the terminals used with TSO are allocated to the TSO message handler
and the terminals used for TCAM applications to the TCAM message handlers. This is done
through the macro instructions which define the message control program and through the cataloged
procedure that starts the message control program.

Terminal Interfaces

A variety of interfaces to Terminal services are provided in TSO. The one suitable for a particular
program depends on whether the program is defined as a command processor, and whether it must
also be able to execute in the background environment.

A supervisor call routine, reached through the TGET and TPUT macro instructions, provides a
direct route for program I/O to a remote terminal. TGET and TPUT transfer data between the
calling program and a set of buffers in the Time Sharing Control Task region, that are, in tum,
emptied and filled by TCAM. Through TGET and TPUT, the calling program can control deletion
or insertion of terminal control characters, and whether an output transmission is to break in on any
input transmission in progress. A program using TGET and TPUT does not have to perform OPEN
or CLOSE processing, and need not provide a DCB for the terminal. However, these macro
instructions are available only to programs executing in the foreground.

Programs designed to be command processors can call on the Getline, Putline, and Putget service
routines used by the IBM-supplied command processors for I/O. As noted earlier, these service
routines have the capability to switch the input source from the terminal to a buffer in main storage,
and to suppress certain types of output if the terminal is not the current input source.

The sequential access methods, BSAM (READ, WRITE, CHECK) and QSAM (GET, PUT),
have been extended to call on TCAM (TGET, TPUT) when called from foreground programs for
terminal I/O. This is the normal route for terminal I/O from programs that must be executable in
the background as well as the foreground, or whcih are coded in a higher level language, such as
FORTRAN or COBOL.

Programs using BSAM and QSAM to reach the terminal use the standard macro instructions or
1/0 statements. When the program is executed, the DD statement or ALLOCATE command
defines whether the I/O is for a data set or the terminal. No recompilation is necessary to switch
from one to the other, only a change in the DD statement.

52 TSO Guide (Release 21.7)

to

•

..

To/From
Terminals

Getline, Putline, Putget and the sequential access methods all issue TGET or TPUT for the caller
when the I/O is for a terminal. Figure 10 shows this SVC routine handling calls from anywhere
within the TSO system and passing the requests to the TCAM Message Control Program.

•

•

.,

voMVT Control Program
Supervisor

Terminal I/o
Requests From
TSO Routi nes

or
User Programs

TSO Control

Operator
Start
Command

TPUT­ Message
TGET Control
SVC Program

(MCP)

Figure 10. TCAM Message Control Program

Multi-Terminal Message Processors

Independent of TSO, the Telecommunications Access Method includes facilities for routing messages
received from remote terminal to queues for an application program, and transmitting replies
generated by the applications program to queues for a terminal. In a system without TSO, such a
message processing program must reside in main storage in one of the problem program regions,
when it is to be available if one of the terminals in the telecommunication network sends a message
that requires processing. With the addition of TSO, a terminal user logged on to TSO can execute a
TCAM message processing program in a foreground region. He can do this by invoking it through
the TSO command language, or by specifying it instead of the TSO Terminal Monitor Program on
his LOGON procedure. The DD statements which define the process queues must be contained in
the LOGON procedure. The program will be swapped in whenever needed, but will not occupy
main storage space when it has no message to process. Unlike standard foreground jobs, which are
associated with a single terminal, these message processing programs can handle GET/READ,
PUT/WRITE TCAM oriented input/output from any terminal defined to the TCAM processing
queues, through the QNAMES operand of the statements on the LOGON procedure. In addition,
the standard TSO terminal interfaces, can be used to interact with the terminal executing the
Message Processing Program. For further information on message processing programs, see IBM
System/360 Operating System: TeAM Programmer's Guide and Reference Manual, GC28-2024 .

Overview and Storage Map

Figure 11 is an overview of the complete time-sharing system as developed in the preceding
sections. The picture is simplified in that it shows only one task at each level of control; there is
actually one LOGON-Terminal Monitor Program for each user. Many of the programs themselves
are re-enterable, and can be placed in an extension to the link pack area (LPA) built when the
operator starts TSO.

System Summary 53

Figure 12 is a map of a typical main storage layout when TSO is operating. Almost all the
additional storage requirement for TSO control functions is included in the Time Sharing Control
Task region. This region is not assigned until the operator enters the START TS command, so the
presence of TSO in the system has no effect on MVT throughput when time sharing is not active.

•

..

MVT Control Program

Time Sharing
Interface Prg.

DRIVER

Figure 11. System Overview

Message

Control

Program

Terminal
Vo

..

54 TSO Guide (Release 21.7)

Link Pack Area
{Key=O ~--~M~a-st-e-r~Sc~h-e~du~l-er----------'

Message Control
{KeyI 0 Program & Buffers
r-----------------------;

TS Control Region
• Time Shari ng Contra I Task
• Region Control Tasks

Key= 0 • Driver
• Extended Link Pack Area
• Buffers

•
High
Main
Storage

Dynamic
Area

Low
Main Foreground
Storage Region

Loco I System
Queue Area

Background
Region

System Queue Area

, MVT Nucleus

• Figure 12. Typical Main Storage Map

Time Sharing Algorithms

As noted earlier in this chapter, the Time Sharirlg Driver is responsible for dividing the system
resources -­ most importantly, execution time -­ among the various jobs in the system. So that this
may be done effectively, the Driver is given a constant stream of information about the status of
each job in the system -­ whether it is ready to execute, whether it is waiting for I/O, whether it is
in main storage or has been swapped out.

System Summary 55

In a time sharing system, execution time is divided among the active foreground jobs and
background jobs in brief time slices. A time slice must be long enough to perform a meaningful
amount of processing, but not so long that the time between successive slices prevents quick
response to conversational users. At the same time, time slices cannot be so short and frequent that
system overhead for swapping and task switching becomes unreasonable.

Balancing these factors depends partly on the number and type of jobs the system is processing:
a solution for one job mix is not necessarily suitable for another job mix. The Driver's time sharing
algorithms -- the formulas it uses to calculate the division of execution time among the jobs in the
system -- are based on several variables, many of which can be specified by the installation to tune
the system for the local job mix. These variables may specify the system configuration, such as the
number of foreground regions to be activated; they may request the Driver to use one of several
algorithms it has for a particular calculation; or they may specify constants used in the algorithms.
The variables are stored in a member of the system parameter library.

Time Slices

The Driver uses two important cycles in calculating time slices. One is the cycle of foreground jobs
assigned to a region being swapped into the region, then back out to the swap data set on auxiliary
storage. The average length of time to complete one cycle -swapping each job assigned to the region
into it one time -- can be controlled by the installation for each foreground region. The length of
time each job gets to remain in main storage during a cycle is called the major time slice. Figure 13
shows a cycle of major time slices and swapping of jobs between the main storage region and a
swap data set.

Swap Data Set

I-=:=:::;;~===------I

Job A

Job D

Foreground
} Region

Jab C

C's D's
Major Major
Slice Slice

Elapsed

Main Storage

..

Figure 13. Queue Service Time

56 TSO Guide (Release 21.7)

Region 1
Queue Service
Time

Region 2
Queue Service
Time

I

Job C
Major
Slice

~NOW

Job F
Mojor
Slice

Job D
Major
Slice

" ­ Next
Swap

The other cycle used by the Driver is the allocation of execution time to the jobs in main storage.
At a particular time there are likely to be several regions containing jobs ready to execute -- one or
more foreground regions containing jobs swapped in for major time slices, and some background
jobs in their own regions. The Driver divides the amount of time remaining until the next scheduled
swap out among the jobs than are ready to execute, resulting in a minor time slice for each. For the
duration of its minor time slice, each job has the highest effective priority of the problem programs
(excluding TeAM). As in batch MVT, if the job cannot execute because it is waiting for I/O or
some system resources, another job runs until the higher-priority job is ready again.

Figure 14 shows the indirect relationship between major and minor time slices. A major slice is a
fraction of a cycle of swaps into a foreground region, and is the length of a job's stay in main
storage. The minor slice is a fraction of the time remaining before the next scheduled swap out for
any region (called the available execution time), and determines how long each job will remain at
the highest effective priority; that is, how much execution time the job is alloted .

•

Foreground
Job C

Region 1I I
Foreground

Job F
Region 2I I

Background
Job N

Region 3

Minor

Time

f-Slice--j
 Ma; n Storage

I Re~ion I Region Region
2 3

Available Execution Time

Figure 14. Minor Time Slice

Major and Minor time slices can be calculated using only the number of ready jobs, and the
available execution time. However the Driver algorithms have the capability to distinguish among

• 	 varying user needs to provide the best service to each foreground job. The following two sections
show how the tuning variables can be used to make the calculation of time slices most efficient for
varying job mixes.

Ma.jor Time Slices

Swapping all the jobs into a foreground region from a queue of ready jobs assigned to that region is
called servicing the job. The length of time used to swap all ready jobs on one queue is called the
queue service time. The average queue service time for each queue of foreground jobs is an

System Summary 57

installation parameter, passed to the Driver. The specified queue service time is divided by the
number of ready foreground jobs on the queue, yielding a major time slice value for each job for
that service cycle. As the number of jobs assigned to that queue increases, the major time slice value
gets smaller. The time between services for each job remains fairly constant, which is important for
conversational users expecting quick responses.

A problem may arise when a large number of users are assigned to the queue. The division of
queue service time may result in a major time slice too short to perform any meaningful amount of
processing for the user, and the system will be spending all its time swapping. To avoid this
condition, the installation specifies a minimum major time slice for each queue. Each job is
guaranteed at least that amount of time in main storage on each cycle (provided it is ready to
execute). When the minimum slice is being used, the actual queue service time will exceed the
specified average queue service time.

Multiple Region Queues: To meet varying needs of users performing different kinds of processing,
the installation can establish multiple service queues for each foreground region. Queue service
cycles can be rotated equally among these queues, or priorities can be specified among them. Each
queue is assigned its own average queue service time. The installation can also specify that a queue
is to be given mUltiple cycles before the next queue is serviced, or that it is to be serviced until
empty -that is, until no jobs are left on the queue that are ready to run.

Assignment to queues can be based on the amount of main storage the job is using, or the degree
of interaction with the terminal, or both. The amount of main storage assigned to the job is called
swap load, since it is a measure of the amount of I/O necessary to swap the job in and out of
storage. A swap load limit can be specified for each queue. If a job's storage needs grow beyond the
limit, it is assigned to a lower queue, with a higher limit. The lower queues can be set up to receive
fewer services, but longer major time slices at each service. Therefore the larger jobs will not have
to be swapped so often.

The degree of interaction with the terminal is measured by the amount of processing time used
by the job since its last request for I/O to the terminal. A terminalI/O request is called an
interaction, and the length of execution time between interactions is called interaction time or
occupancy. Very long interaction times indicate the user is not currently processing conversationally
-- perhaps he is compiling a program, or executing some long-running problem program. In this case,
his job does not require the quick response times provided by the higher region queues, and can be
moved to a lower queue where it will receive fewer, but longer, major time slices. Each queue can
be assigned an interactive time limit, to allow for this differentiation. The occupancy and swap load
limits for a given queue must be higher than the next lowest queue.

Either the swap load or the interaction time limits can be suppressed when the time sharing
operation is started for the day, but if both are suppressed, only one queue per foreground region is
maintained. The rotation of service cycles around the queues for a region can also be made
preemptive: any time a job on higher queue becomes ready to execute; for instance, if a terminal
I/O request completes, the service cycle of any lower queue is interrupted to service the job on the
higher queue. This scheduling scheme tends to make responses to trivial terminal requests very fast,
while lengthening somewhat the response to requests requiring a lot of processing time.

Region Assignment: The last factor involved in calculating major time slices is choosing a foreground
region for the user logging on. The minimum region size needed by the user is stated in this
LOGON procedure, and only those foreground regions large enough are considered.

If a choice must be made among two or more regions, the system can try to balance the
workload by assigning the new user to the region with the fewest logged-on users. However, this
leaves open the possibility that a group of users all requiring a lot of execution time will be assigned
to one region, while another region has a preponderance of users processing conversationally.

58 TSO Guide (Release 21.7)

.,

•

•

•

•

•

Neither group will receive the best service possible. To prevent this condition, the installation can
specify that an average region activity be maintained for each foreground region. The average region
activity is the number of jobs likely to be ready to execute (not waiting for terminal I/O, for
instance) at the beginning of the next cycle of major time slices. A new user is then assigned to the
region with the lowest region activity, which is not necessarily the region with the fewest logged-on
users.

The region activity estimate is based on the number of ready jobs on the region's queues during
recent major cycles. Values from more recent cycles are "weighted" in calculating the average. The
weighting factor, called the "region activity decay constant," is specified by the installation. Use of
decay constant prevents wild fluctuations in the region activity because of a few cycles, but allows
gradual change to reflect changing workload.

Major Slice Variables: To summarize, the system programmer can specify the following variables
affecting the major time slice calculation:

• The maximum number of users logged on.

• The number of foreground regions.

• The method for assigning users to regions.

• The number of service queues for each region.

For each region queue, the following variables can be specified:

• The average queue service time.

• The number of service cycles before advancing to the next queue.

• The minimum major time slice.

• The swap load limit.

• The interaction time limit.

Variables can be omitted or ignored, if the job mix and workload allow simplification of the
algorithm. In general, the more homogeneous the job mix, the more the algorithm can be simplified,
dividing time almost equally among the jobs. Remember that the major time slice determines only
how long a job remains in main storage, not how much execution time it receives. Calculation of the
minor time slice, which determines execution time, is discussed next.

Minor Time Stices

The minor time slice is the result of dividing the available execution time among the regions of main
storage containing either a ready foreground job or a ready background. Available execution time, in
this sense, is the period from the time of the calculation until the next scheduled swap out.
Whenever a major time slice expires, the calculation is repeated with the new number of ready
regions.

The minor time slice is not quite equivalent to a period of execution time -- a job may have to
wait for I/O or some resource during its minor time slice. In this case, control is given to another
region until the waiting job is ready again. If it does not become ready before its minor time slice
expires, it may wait until the next cycle of minor time slices before executing again.

All terminal jobs are assigned the same dispatching priority, so their Task Control Blocks (TCBs)
are grouped together on the queue of active TCBs maintained by the operating system task

System Summary 59

supervisor. Because the dispatcher always searches this queue from the top when looking for the
next task to receive control, there is an effective priority within the time-sharing TCB group based
on the order in which the TCBs are found. The TSO control routines adjust this order to effect the
dispatching of a task currently assigned a minor time slice. When the minor time slice of the top
foreground job expires, its TCBs are moved to the bottom of the group.

The installation can adjust or weight the fraction of available execution time assigned to each
ready region, or it can suppress division of the time altogether. The system operator, or a control
user, specifies how many regions are active, and how much execution time, if any, is to be
guaranteed to jobs running in the background regions. Three possible methods of calculating the
minor time slices, called simple, even, and weighted dispatching, are described in the following
paragraphs.

Simple Dispatching: In this case, the minor time slice is set equal to the available time, and assigned
to the TCB at the top of the time-sharing TCB group (which will always be the job swapped in
most recently). Expressed as an algorithm:

MS = AT

where MS is the minor time slice and AT is the available execution time, or the time remaining
before the next scheduled swap out.

If the operator has requested a percentage of execution time for the background regions, available
time is reduced by that amount before the minor time slice is calculated. When the minor time slice
expires, in this case before time for a swap out, the remaining time is assigned to TCBs representing
jobs in the background regions, in whatever priority they may have. If no background percentage is
requested, any background jobs will receive only the execution time that the foreground jobs cannot
use.

Simple dispatching is always used whenever only one foreground region is present in the system.

Even Dispatching: When more than one foreground region is defined, the installation can specify
even dispatching of the foreground jobs. In this case, the available execution time is divided evenly
among the ready foreground regions.

The algorithm is:

AT
MS = N

where N is the number of foreground regions containing jobs ready to execute. As in simple
dispatching, available time is reduced before the calculation by any guaranteed background
percentage.

The first minor time slice is assigned to the foreground job at the top of the group of
time-sharing TCBs on the queue. When the minor slice expires, the TCBs associated with that job
are moved to the bottom of the time-sharing group, and the next foreground job receives a minor
time slice.

Weighted Dispatching: The third way the minor time slice calculation can be performed is on a
weighted basis. This method allows the system to compensate for jobs that are likely to spend much
of their minor time slice in the wait state, usually because of pending I/O requests. (But not for
pending terminalI/O, since a job waiting for terminalI/O is not swapped in, and never becomes
eligible for a minor time slice.) Under weighted dispatching, the system keeps an estimated wait time
percentage for terminal job, based on averages of time spent waiting by each job during previous
major time slices. Jobs with a high estimated wait time percentage tend to be I/O-bound, and will
donate much of their time slices to jobs with TCBs on the queue below them. Jobs with low

60 TSO Guide (Release 21.7)

..

..

•

•

..

estimated wait time percentages tend to be compute-bound, and will use most of their minor time
slice themselves. It is often desirable to assign the I/O-bound job a weighted, or longer, minor time
slice to compensate for its "donation" of execution time to other jobs.

To weight the minor time slices, the system forms a sum of the estimated wait time percentage of
the jobs to be assigned minor slices in the current cycle. Each job is then given a fraction of the
available execution time equal to its fraction of the total estimated wait time percentages.

The algorithm is:

This job's EWT%

MS --------------- x (AT)

Sum of EWT%s

where MS is the minor slice to be assigned to a terminal job, EWT% is the estimated wait time
percentage, and AT is the available execution time for this minor slice cycle, again adjusted for any
guaranteed background percentage.

As an example, consider a minor time slice calculation for two foreground regions, one containing
Job A, which is expected to wait 40 percent of it minor time slice; the other containing Job B,
which is expected to wait only 10 percent. The sum of the estimated wait time percentages is SO
percent. Job A gets 40/50, or 4/5, of the available execution time as its minor time slice. Job B is
assigned 10/50, or 1/5, of the available execution time. However, Job B will probably be able to
execute for about 40 percent of Job A's minor time slice too (while Job A is waiting for I/O), and
so will end up with under half the available execution time -- about what it would have been
assigned on an equal division. Job A, however, will be able to get its I/O started, wait for it to
complete, and still have some processing time left to handle the data or issue another I/O request.
On an equal division of available time, its minor time slice might have expired before its first I/O
request completed.

The estimation of wait time percentage is made by updating a running average of a job's wait
time percentages at the end of every major time slice. In making the average, a weighting factor is
used to emphasize recent usage over earlier usage. The weighting factor is called the wait time decay
constant. Its purpose and function is similar to the region activity decay constant, and it can also be
specified by the installation. Values appropriate for general job mixes are included in
SYSl.PARMLIB .

•

System Summary 61

Preparing a System for TSO

This chapter is intended for the programmers and system analysts responsible for generating and
maintaining a system with TSO. (The discussions assume that the reader is familiar with the System
Summary chapter of this publication.) The discussions contain specific information needed to
maintain or generate a system with TSO.

For example, the discussion "Tailoring a Message Control Program" does not discuss the role a
message control program plays in a TSO configuration, but rather provides the syntax and meaning
of the macro instructions used to generate a message control program.

This chapter includes discussions of how to:

• Generate (or tailor) a Message Control Program.

• Write the cataloged procedures used by TSO.

• Specify TSO starting parameters.

• Tune the Time Sharing Driver and use TSO Trace.

• Write an installation exit for the SUBMIT command processor.

• Write an installation exit for the STATUS, OUTPUT, and CANCEL command processors.

• Write a LOGON pre-prompt exit.

Tailoring a Message Control Program

A Message Control Program, (MCP), handles terminal I/O for TSO. An installation must tailor the
MCP to match its needs.

For further information about TCAM and Message Control Programs in general, see IBM
System/360 Operating System: TeAM Programmer's Guide and Reference Manual, GC30-2024.

TSO includes a standard Message Control Program (MCP) to handle terminal I/O for those
installations that use TSO for all their TCAM applications. An installation tailors a Message Control
Program in three steps. First, three macro instructions must be assembled: LINEGRP, LISTTA, and
TSOMCP. The output of this assembly is a series of TCAM (Telecommuncations Access Method)
macro instructions which must, in tum be assembled. The output of this second assembly forms an
MCP that must then be linked edited into SYS 1.LINKLffi.

•
Mixed Environment MCPs

If an installation requires a mixed environment Message Control Program, because of TCAM
..

applications programs, (message processing programs), it must generate an MCP using TCAM
macro instructions instead of the special TSO MCP generating macro instructions. The TCAM
macro instructions are used to generate an MCP containing the TSO Message Handler, and any
other message handlers for particular terminal applications, and the necessary terminal I/O control
blocks.

The communications lines which are to be used for TSO sessions can also be used for TCAM
applications.

62 TSO Guide (Release 21.7)

In addition to the standard TCAM macro instructions, the TSOMH macro instruction can be used

to form a TSO Message Handler.

The TSOMH macro instruction has one operand, CUTOFF, which specifies a maximum message
length. The syntax of the TSOMH macro instruction is:

TSOMH

CUTOFF=
specifies the maximum number of bytes before the remainder of an input message is lost to the
system. The value must be an integer between 150 and 65535; the default is 300.

TSO-Only MCP

The following is an explanation of each step of the generation of the MCP supplied with TSO:

Step 1 - Assembly of the one or more LINEGRP macro instructions each followed optionally by
one or more LISTT A macro instructions, all followed by the TSOMCP macro instruction.
The resultant output is a temporary data set containing assembler language source
statements -- TCAM macro instructions which constitute a Message Control Program,
that will be used as input to Step 2.

Note: Terminals may be attached to a 2701 through Dual Communication Interface A or B. The
LINEGRP macro instruction assumes that all terminals are attached through interface A. If the
terminals on a line group are attached through interface B, punch the output of step 1 and change
the INVLIST parameter of the DCB for that line group. For further information, see OS/MFf and
OS/MVT TeAM Programmer's Guide, GC30-2024.

Step 2 - Assembly of the TCAM MCP macro instructions generated within Step 1. The output of
Step 2 is the MCP object module placed into a temporary data set.

Step 3 - Linkage Editing of the object modules from Step 2 into SYS1.LINKLIB to create an
executable MCP load module.

Figure 15 shows the Job Control Language necessary to run these steps.

•

Preparing a System for TSO 63

IIMCPGEN JOB Job card parameters

IISTEPl EXEC ASMFC

IIASM.SYSPUNCH DD DSN=&&TCM,DISP=(,PASS),

II UNIT=SYSDA,SPACE=(CYL,(l,l))

IIASM.SYSIN DD *
LINEGRP

LISTTA

LINEGRP

TSOMCP

END

1*

IISTEP2 EXEC ASMFC,COND=(4,LT,STEP1.ASM)
 ..IIASM.SYSPUNCH DD DSN=&&OBJ,DISP=(,PASS),

II UNIT=SYSDA,SPACE=(CYL,(l,l))

IIASM.SYSIN DD DSN=*.STEP1.ASM.SYSPUNCH,

II DISP=(OLD,PASS)

IISTEP3 EXEC PGM=LINKEDIT,COND=(4,LT,STEP2.ASM)

IISYSLMOD DD DSN=SYS1.LINKLIB(IEDQTCAM),DISP=SHR

IISYSPRINT DD SYSOUT=A

IISYSUTl DD UNIT=SYSDA,SPACE=(1024,(50,20))

IISYSLIB DD DSN=SYS1.TELCMLIB,DISP=SHR

IISYSLIN DD DSN=*.STEP2.ASM.SYSPUNCH,

II DISP=(OLD,PASS)

Figure 1 S. Job Stream to Tailor MCP

LINEGRP Macro Instruction

The LINEGRP macro is used to define a line group, a group of terminals with similar characteristics:
for example, a group of IBM 2741 terminals. The operands of the LINEGRP macro instruction
specify:

• 	 The types of terminals in the line group. (TERM)

• 	 The ddname of the DD statements that define the communications lines as data sets.
(DDNAME)

• 	 The number of lines, that is, physical device addresses in the line group. (LINENO)

•
• 	 The number of TCAM basic units, per terminal buffer. (UNITNO)

• 	 The translation tables to be used to translate from the terminal code to EBCDIC. (TRANTAB)

• 	 The character string identifying the transmission code being used when dynamic translation is
required. (CODE)

• 	 Whether switched or nonswitched lines are used in this line group. (DIAL)

• 	 The polling interval for polled terminals in this line group. (INTVL)

• 	 The special features the terminals in this line group have -- that is, Transmit or Receive
Interruption and for 1050, Text Timeout suppression. (FEATURE)

64 TSO Guide (Release 21.7)

..

•

-f.

I

..

• 	 The polling and addressing character of terminals in this line group, for 1050,2260/2265, and
3270. (ADDR)

• 	 The screen sizes for IBM 2260, 2265 and 3270 Display Stations. (SCREEN)

• 	 The number of terminals on each nonswitched line. (TERMNO)

LINEGRP Macro Instruction Format

Name Operation Operand

(name)LINEGRP TERM=type
DDNAME=ddname
LINENO=number
[UNITNO=number]

[TRANTAB=(table;table ...)]

[CODE=(string,string ...)]

[DIAL= {~~s}J
[INTVL=number]

rFEATURE=(BREAK,) (ATTN,). (TOSUPPR)l
L NOBREAK, NOATTN, J

[ADDR=character string]

[SCREEN=(integer, integer)]

[TERMNO=(integer, integer)]

TERM=
Specifies the type of terminal making up this line group. Only one of the following can be
selected:

1050 -- defines a line group consisting of mM 1050 Printer-Keyboards on either switched (dial)
or non-switched (direct) lines.

2741 -- defines a line group consisting of IBM 2741 Communications Terminals on either
switched or non-switched lines.

5041-- defines a line group consisting of both mM 2741s and mM 1050s. The terminals in this
line group must be on switched (dial) lines.

3335 -- defines a line group consisting of Teletype Model 33 or Model 35 terminal or both. The
terminals in this line group must be on switched (dial) lines.

226L-- defines a line group consisting of mM 2260 Display Stations connected on a local line.
226R-- defines a line group consisting of mM 2260 Display Stations, connected on a remote

line, and optionally mM 2265 Display Stations.
327L-- defines a line group consisting of mM 3270 display systems connected directly to a CPU

channel.
327R-- defines a line group consisting of mM 3270 display systems connected on a remote line.
327S -- defines a line group consisting of stand-alone mM 3270 display systems (mM 3275

Display Stations) connected on a remote line .

DDNAME=
Specifies the ddnames of the DD statements that define, as a data set, the terminal lines in the
line group. These DD statements are found in the cataloged procedure that is used to start the
MCP.

LINENO=
Specifies the number of lines in this line group. The value must be an integer between 1 and 51.
To save storage space, code large line groups before smaller line groups.

UNITNO=

Preparing a System for TSO 65

Specifies the number of basic units per buffer for terminals in this line group. A basic unit is used
by TCAM to construct I/O buffers. The default value is 1.

TRANTAB=
Specifies the translation tables to be used for this line group. If this parameter is omitted, all of
the supplied translation tables that are valid for the terminal type specified by TERM= will be
included except those marked with an asterisk. Terminal dependent characters may be translated
to invalid EBCDIC characters.

TERM= TRANTAB= Cornmon Name

1050 1050

2741 CR41
EB41
BC41*

Correspondence
EBCDIC
BCD •

5041 1050
BC41*
EB41
CR41

BCD
BCD
EBCDIC
Correspondence

3335 TTYB
TTYC*

TTY
TTY

parity
non-parity

226L EBCD

226R 2260

2265 2265

327L EBCD EBCDIC

327R EBCD
ASCI*

EBCDIC
ASCII

327S EBCD
ASCI*

EBCDIC
ASCII

*Not used as a default translation table.

Note: If more than one table is specified explicitly or implied by default, the MCP will use the
CODE parameter to determine the proper translation table dynamically. For 3270 line groups,
only one table may be specified.

CODE=
Specifies the character string use to determine the terminal character set. Each time a terminal is
connected, the MCP translates the input line from that terminal using each of the translation
tables specified in the TRANT AB operand. The MCP compares the translated result with the
character string specified in the CODE= operand. When the MCP finds a match, it uses the
appropriate translation table for that terminal from then on.

,
The default is CODE=LOGON unless the TRANTAB operand specified both BC41 and EB41
(2741 BCD and 2741 EBCDIC). If both EBCDIC and BCD characters sets are present in the
line group, the default is CODE= "LOGON.

..

An installation can specify a maximum of four character strings other than LOGON, but each of
them must be eight or fewer characters.

DIAL=
Specifies whether the line group is a dial (switched) line group. If this parameter is omitted, YES
is assumed. DIAL=NO is required for TERM=226L, 226R, 2265, 327L, 327R, and 327S.

66 TSO Guide (Release 21.7)

..

..

•

•

INTVL=
Specifies the poll delay intervals in seconds for polled lines. The value should be an integer
between 1 and 255. If this parameter is omitted, a value of two is assumed for polled lines. Zero
is assumed for 2741, 3335, 226L, and 327L terminal types.

FEATURE=
Specifies the special features that define this line group:

BREAK 	 Specifies that terminals in this line group have the Transmit Interruption feature.

NOBREAK 	 Specifies that terminals in this line group do not have the Transmit Interruption
feature. This operand should be specified when any of the terminals in the line
group do not have the feature.

ATTN 	 Specifies terminals in this line group have the Attention feature (Received

Interruption.)

NOA TTN 	 Specifies that terminals in this line group do not have the Attention Feature.

TOSUPPR 	 For 1050 terminals, this operand specifies that the optional Text Time-out
Suppression feature is present. This operand applies only to 1050 terminals and
should be specified only if all 1050 terminals in a 1050 or 5041 group have the
feature. When specified read inhibit rather than read commands will be used unless
Autopoll is also being used.

The following table describes the features which may specified for the 1050, 2741, 5041, 2260,
3270, and the 3335 (TWX); where:

D Default.

A Assumed.

I Invalid.

0 Optional.

Feature 1050 2741 5041 3335 2260 3270

BREAK 0 D 0 A I I
NOBREAK D 0 D I A A
ATTN D D D A I I
NOATTN 0 0 0 I A A
TOSUPPR 0 A 0* A I I

*TOSUPPR is optional for the 1050 terminals in a 5041 line group. It is
assumed for the 2741 terminals in the same 5041 line group.

ADDR==
Specifies the station identification character (1050), the two byte control unit device address
(226R,2265), or the two-byte control unit/device polling characters (327R, 327S) of the
terminals in the line group. The character string should be the hexadecimal equivalent of the
appropriate transmission code .

Hexadecimal characters should be specified without framing characters. For example if the station
identification character is "A", the correct specification is ADDR=E2, the hexadecimal
equivalent of the 1050 transmission code for the character "A", not ADDR=Cl, the hexadecimal
equivalent of the EBCDIC character "A". To find the hexadecimal equivalent of a given
character in a specific transmission code, consult the component description publication.

For the 1050, only the station identification character value need be specified; the component
selection character values will default to the common polling and addressing values for input and
output, respectively. 1050 multidrop is not supported.

Preparing a System for TSO 67

This parameter is not valid for TERM=2741 or TERM=3335. This parameter is required for
TERM= 1050 or 5041. For configurations in which the addressing characters vary among the
different terminals in the line group, as in 2265 or 3270, the addressing characters should be
specified using LISTTA macro instructions (see below) rather than the LINEGRP macro
instruction.

SCREEN =
Specifies the screen dimensions of the display station(s) on the line. The first integer specifies the
number of rows on the screen. The second integer specifies the number of characters per row.
Standard mM screen sizes are 12x80, 12x40, and 6x40 for the 2260 and 12x40 or 24x80 for the
3270. Non-standard sizes will be accepted but a warning will be given. The default for this
parameter is 12x80 for a 2260 and 24x80 for a 3270.

TERMNO=
Specifies the number of terminals attached to each non-switched line, used with TERM=226R,
327R, 327S, and 2265. Each subparameter specifies the number of terminals attached to the
corresponding relative line within the line group. The relative line numbers are determined by the
order in which lines in the line group are defined with DD statements in the cataloged procedure
used to start the MCP.

LISTIA Macro

The LISTT A macro instruction specifies variations in device address (ADDR) within a line group.
One or more LISTTA macro instructions can appear after each LINEGRP macro instruction. Each
LISTTA macro instruction modifies one line (RLN) within a line group.

LISTIA Macro Instruction Format

Name Operation Operand

name LISTTA RLN=integer
[,ADDR=(chars ,chars ...)]
[,SCREEN=(integer, integer))

RLN
Specifies the relative line number within a line group to which the attributes specified in this
macro instruction apply. The relative line numbers are determined by the order in which lines in
the line group are defined with DD statements in the cataloged procedure used to start the MCP.
For example, RLN-1 refers to the line in the line group defined by the first DD statement in the
cataloged procedure.

ADDR=
Specifies the alphabetic station identification character (1050), the two byte control unit and
device address (2260, 2265), or the two-byte control unit/device polling characters (327R, 327S)
of the terminal(s) on this line. One character string must be specified for each terminal on the
line. Subparameters must be specified in the order in which polling is to take place. Each
character string should be the hexadecimal equivalent of the appropriate transmission code
representation for the terminal involved. Hexadecimal characters should be specified without
framing characters.

Example: ADDR=(AOA1,AOA2) -- for a 2848 Model 2 with two mM 2260 Display Stations
attached.

For a 1050, only the station identification character value need be specified. 1050 multidrop is
not supported.

68 TSO Guide (Release 21.7)

•

•

,

..

SCREEN=.
Specifies the screen dimensions of the display station(s) on the line. The first integer specifies the
number of rows on the screen. The second integer specifies the number of characters per row.
Standard IBM screen size are 12x80, 12X40, and 6x40 for the 2260 and 12x40 or 24x80 for the
3270. Non standard sizes will be accepted but a warning will be given. The default for this
parameter is 12x80 for a 2260 and 24x80 for a 3270.

TSOMCP Macro

The TSOMCP macro instruction:

• Names the MCP (provides the CSECT name).

• Defines the size of the TCAM basic units used to construct terminal I/O buffers .

• • Specifies which TCAM trace tables will be provided.

• Specifies whether a cross-reference table will be included in the MCP.

• Specifies whether the operator can change parameters when he starts the MCP.

TSOMCP Macro Instruction Format

Name Operation 	 Operand

name TSOMCP 	 [UNITSIZ=number]

[TRACE=number]

[DTRACE=number]

[LNUNITS=number]

[OLTEST=number]

[OPTIONS=(XREF,PROMPT)]

Note: All operands are 	optional.

name
Provides the CSECT label for the generated program. This field is required.

UNITSIZ=
Specifies the size of a TCAM basic unit and must be a value between 41 and 255 iQ.clusive. If
omitted, the MCP uses a default value of 60. UNITSIZ should be a multiple of 8, plus 4 for
efficient main storage usage.

TRACE=
Specifies the number of TCAM I/O trace table entries in the Message Control Program. The
default value is zero. Maximum value is 65535.

DTRACE=
Specifies the number of TCAM Dispatcher Trace Table entries in the Message Control Program.
The default value is zero. Maximum value is 65535 .

•
LNUNlTS=

Specifies the number of TCAM basic units to be provided in the buffer pool for creating line
buffers for this MCP. A maximum of 65,535 may be specified. If this operand is omitted, the
system will calculate a default value using the following algorithm:

LNUNITS=

2 x (number of terminals) x (UNITNO value)

or (for 2260, 2265, or 3270)

2.5 x (number of terminals) x UNITNO

Preparing a System for TSO 69

where:

UNlTNO (as specified in each LINEGRP macro) represents the number of units per buffer for

terminals defined in the associated line group. H UNlTNO is omitted in the LINEGRP macro,

the default value (1) is used. This means that each buffer will consist of one basic unit.

H both the LNUNITS and UNlTNO keywords are defaulted, the buffer pool created will consist

of 2 buffers per terminal with each buffer being one basic unit in length. (PCI buffering is used

for both input and output.)

OLTEST-
Specifies the number of 1024 byte blocks used for Online Test procedures. The value must be 0
or an integer greater than 9 and less tha.n 256. The default is 0, meaning Online Test is not used.
For a system with display stations, the minimum value is 14 rather than 10.

OPTIONS­

XREF

A cross-reference table including control blocks for each line will be included in the MCP.
H this option is omitted, the cross-reference table will be excluded.

PROMPT

H PROMPT is specified, the system operator will be asked to enter parameters when
TCAM is started. At that time he may enter and override some of the parameters specified
when the MCP was assembled. The following TCAM parameters are ones which an
installation may want to specify when it starts TCAM for TSO. The last parameter entered
must be a "U" to end the prompting process. See IBM System/360 Operating System: TeAM
Programmer's Guide and Reference, GC30-2024, for a description of the INTRO macro
instruction and the parameters which can be overridden.

KEYLEN - integer
K - integer

Specifies the size of the basic units, with which the terminalI/O buffers are constructed.
This corresponds to UNITSIZ- parameter.

LNUNITS - integer
B - integer

Specifies the number of basic units which are used to build buffers. It corresponds to
LNUNITS. The value must be between 0 and 65535.

STARTUP - C

S - C

Specifies that a "cold" start is to be performed following a shutdown of the Message
Control Program or a system failure. It is required if OPTIONS-PROMPT was specified on
the TSOMCP macro instruction.

CROSSRF-integer
F - integer

Specifies the number of entries in the cross reference table, a debugging aid. H
OPTIONS-XREF is specified in the TSO MCP, one entry will be generated for each line.
H the operator specifies fewer entries than there are simultaneously open lines, lines opened
after the table is full will have no entries.

70 TSO Guide (Release 21.7)

i

•

..

TRACE = integer
T 	= integer

Specifies the number of TCAM I/O trace entries to be allocated; corresponds to TRACE=
in the TSOMCP macro instruction.

DTRACE = integer
A = integer

Specifies the number of entries in the TCAM Dispatcher Trace Table, corresponds to
DTRACE= in the TSOMCP macro. The Dispatcher Trace Table is a debugging aid that
keeps a sequential record of TCAM subtasks activated by the TCAM dispatcher. One
four-word entry is created for each subtask activated. When the end of the table is reached,
the table is wrapped around; new entries overlay the oldest entries. Maximum to be
specified is 65535: If 0 is specified, the table is not generated .

OLTEST== number

0= number

Specifies the number of 1024 byte blocks to be used for Online Test procedures. This
parameter corresponds to the OLTEST parameter of the TSOMCP macro instruction. The
default is 0, which indicates that Online Test will not be used. The value must be 0 or an
integer greater than 9 and less than 256. For a system with display stations the minimum
value is 14 rather than 10.

cm == integer
C 	= integer

Specifies the maximum number of Command Input Blocks (Cm) that can be used at any
one time in the TCAM subsystem. cm's are the buffers used to contain operator control
messages entered at the system console. The maximum that can be specified is 255. If the
operand is omitted, "Cm=2" is assumed. At least two cm's should be specified, since
START uses one. If an attempt is made to enter an operator control message from the
system console, and the number of cm's specified is already in use, the message is rejected
by TCAM.

Figures 16, 17, and 18 show the MCP macro specifications for three sample systems.

The first system, shown in Figure 16, has:

1. 	10 lines for leased, (non-switched), 2741's; all are BCD terminals and use EBCDIC character set
only. All terminals in this line group have both Receive and Transmit Interrupt features.

2. 	5 lines of teletype (which could be either 33 or 35).

3. The system operator will be prompted to enter TCAM parameters when he starts TCAM. At that
time he can override any of the parameters specified on the TSOMCP macro as well as TCAM
parameters. See the description of the TSOMCP macro instruction, for parameters pertinent to
TSO. (The operator will always have to reply "s=c,u'" STARTUP=COLD and a "u" to
terminate prompting.) A Dispatcher Subtask Trace Table, useful for debugging purposes, is to be
included in the MCP. It will contain 1004 byte entries. (DTRACE=100)

The sample system shown in Figure 17 has 10 dial lines, to be used by both 1050's and 2741's. The
station identification character for the 1050's is "A". Notice that it is specified in terminal
transmission code, (E2) not EBCDIC (Cl). Assume there are four types of terminals in the line
group.

A. Three 1050's, with Text Timeout Suppression feature and Receive and Transmit Interrupt
features.

Preparing a System for TSO 71

B. One 1050, with Text Timeout Suppression feature.

C. Five 2741 's, with Correspondence Code, Receive and Transmit Interrupt features.

D. Two 2741's, with EBCDIC code.

The default is ATTN and NOBREAK.

Users at terminals in groups A and C could use the TERMINAL command to request Transmit
Interrupt handling, (BREAK) or the installation could provide a special LOGON cataloged
procedure for these users containing a suitable interruption during output, or while the keyboard is
locked, or after a number of consecutive lines of output, when output is being sent. This also could
be specified in a LOGON procedure.

LINEGRP

LINEGRP
TSOMCP

TERM=2741,DDNAME=LNGP2741,LINENO=10,
TRANTAB=EB41,DIAL=NO
TERM=3335,DDNAME=LNGPTWX,LINENO=5
OPTIONS=PROMPT,DTRACE=100

x ..

Figure 16. Sample MCP

LINEGRP

TSOMCP

TERM=5041,DDNAME=DIAL5041,LINENO=10,ADDR=E2,
FEATURE=TOSUPPR

x

Figure 17. Sample MCP

The sample system shown in Figure 18 has one line group with two lines. These lines are connected
to 3270 display systems operating in ASCII transmission code. The first line is connected to one
control unit with four display stations. The second line is connected to one control unit with two
display stations. The first line has control unit number 0 and device numbers 0, 1, 2, and 3. The
second line has control unit number 1 with device numbers 4 and 5.

LINEGRP TERM=327R,DDNAME=ANR,LINENO=2,
DIAL=NO,TRANTAB=ASCI,TERMNO=(4,2)

LISTTA RLN=l ,ADDR=(2020,20L1.1 ,2042,2043)
LISTTA RLN=2,ADDR=(4144,4145)
TSOMCP

Figure 18. Sample MCP

x

Writing Cataloged Procedures for TSO

Two categories of cataloged procedures are used by TSO. The first includes procedures invoked by
the system operator when he starts any of these four TSO tasks: •
1. The Message Control Program (MCP).

2. The Time Sharing Control Task (TSO).

3. The Background Reader for the SUBMIT command (BRDR).

4. The TSO Trace Writer.

The second category consists of those procedures invoked each time a LOGON command is
entered at a terminal. The PROC operand of the LOGON command specifies the name of the
cataloged procedure which:

72 TSO Guide (Release 21.7)

1. Contains the JCL statements that define the data sets available to the terminal user.

2. 	Specifies the name of the Terminal Monitor Program (TMP) supplied with TSO or the
user-written substitute for the TMP.

Both categories of cataloged procedures must be members of SYS1.PROCLIB or members of
dedicated partitioned data sets.

Message Control Program

The cataloged procedure used to start the Message Control Program specifies through the PGM=
operand of the EXEC statement the MCP to be started. The MCP should be named IEDQTCAM.
This name allows the MCP to run in a region smaller than MINPART and ensure that the MCP can
not be canceled, that is the operator must halt it. Specify ROLL=(NO,NO) to preclude an attempt

.. 	 to Rollout the MCP. Specify DPRTY=(15,15) to insure high priority. The MCP must run at a
higher priority than the TSC.

The cataloged procedure used to start the MCP also must define any terminals attached to the
system as data sets. This is done through the ddnames specified in the LINEGRP macro instructions
used in generating the MCP. Figure 19 shows two procedures that can be used to start the two
sample MCPs generated in Figure 16 and 17.

IIMCP1 EXEC PGM=IEDQTCAM,ROLL=(NO,NO),TIME=1440,DPRTY=(15,15), X
II REGION=70K
IILNGP2741 DD UNIT=021 FIRST LINE GROUP DATA SET 2741
II DD UNIT=022
II DD UNIT=023
II DD UNIT=024
II DD UNIT=025
II DD UNIT=026
II DD UNIT=027
II DD UNIT=028
II DD UNIT=029
II DD UNIT=02A
IILNGPTWX DD UNIT=02B SECOND LINE GROUP DATA SET TWX
II DD UNIT=02C
II DD UNIT=02D
II DD UNIT=02E
II DD UNIT=02F

IIMCP2 EXEC PGM=IEDQTCAM,ROLL=(NO,NO),TIME=1440,DPRTY=(15,15), X
II REGION=66K

IIDIAL5041 DD UNIT=021 LINE GROUP DATA SET

II DD UNIT=022

II DD UNIT=023
II DD UNIT=024
II DD UNIT=025
II DD UNIT=026
II DD UNIT=027
II DD UNIT=028

... 	 II DD UNIT=029
II DD UNIT=02A

Figure 19. Sample MCP Start Procedures

Time Sharing Control Task

The cataloged procedure used to start the Time Sharing Control Task contains the Job Control
statements defining all the system resources the TSC requires. The procedure consists of an EXEC
statement and several Data Definition statements.

Preparing a System for TSO 73

The EXEC statement of the cataloged procedure that starts the Time Sharing Control Task,
specifies:

• 	 The TSC program name, which is IKJEATOO.

• 	 The TSC region size. This size can be overridden (1) by the TSCREGSZ parameter of the TSO
start parameters in SYSl.PARMLIB, (2) by the operator on the START command, or (3) by the
TSC initialization routines if a larger region is required. If the size specified is less than the
MINPART defined for the installation, it must be greater than or equal to the Time Sharing
Control region size. Refer to IBM System/360 Operating System: Storage Estimates, GC28-6551,
for how to calculate the Time Sharing Control region size.

• 	 ROLL=(NO,NO) to preclude an attempt to roll out the TSC region, if OPTIONS=ROLLOUT ..
has been specified during system generation.

• 	 DPRTY= to set a priority for the TSC. It must be lower than the MCP.

Five data sets must be defined.

• 	 SYSP ARM -- The library containing TSC initialization parameters. These parameters are
discussed under "TSO System Parameters".

• 	 SYSUADS -- The User Attributes Data Set; this data set cannot be concatenated.

• 	 SYSLBC -- The broadcast data set which contains messages for users. In addition, the broadcast
data set contains a list of valid users, generated by the ACCOUNT command and its
subcommands.

• 	 SYSW APoo -- The swap data sets.

• 	 IEFPDSI -- The partitioned data set containing LOGON cataloged procedures. This data set may
be either SYS l.PROCLIB or a partitioned data set dedicated to LOGON procedures. A dedicated
data set will speed up LOGON processing.

For each of these data set definitions, DISP=SHR should be specified.

Parallel units must be of the same device type. A swap data set must be allocated in cylinder
mUltiples on a cylinder boundary.

If an installation uses the TSO dump, SYSTSDP, the TSO dump data set, usually a tape volume,
should be defined.

Figure 20 shows a sample cataloged procedure to start the TSC.

//IEFPROC EXEC PGM=IKJEATOO,ROLL=(NO,NO),DPRTY=(13,13)
//SYSPARM DD DSN=SYS1.PARMLIB,DISP=SHR •
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=SYS1.BRODCAST DISP=SHR
//SYSWAPOO DD DSN=SYS1.SWAP1,DISP=SHR ..
//SYSWAPOl DD DSN=SYS1.SWAP2,DISP=SHR
//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR
//SYSTSDP DD UNIT=2400,VOL=SER=TSODUMP,DISP=(,KEEP)

Figure 20. Sample Cataloged Procedure to Start Time Sharing Control Task

The data definition ddname on the DD statement defining the SWAP data set specifies whether
serial or parallel swapping is to be used. The ddname is of the form:

SYSWAPln

74 TSO Guide (Release 21.7)

i

..

..

where 1 indicates the level of the data set, i.e., 0 for prime, I for first overflow; and n is the data set
number at this level.

For example, if an installation has two data sets and wants to use parallel swapping it would use
SYSWAPOO and SYSW APOI as the ddnames.

If an installation wanted to use a mM 2301 drum for a prime swap data set and a mM 2314 as
overflow, the ddnames would be SYSWAPOO for the 2301 the prime data set, and SYSWAPIO for
the 2314, the first overflow data set.

If a system or TSO failure causes TSO to be restarted, you can use IMDPRDMP program to save
the swap data sets before attempting to restart TSO. When invoking IMDPRDMP, the DD
statements for the swap data sets should be the same as those in the TSO cataloged procedure; the
/ /PRINTER DD statement writes to tape with chained scheduling and a large blocking factor so
that the data sets are dumped quickly. The publication IBM System/360 Operation System: Senice
Aids, GC28-6719 shows the procedures for analyzing system failures and how to use the
IMDPRDMP program to save the swap data sets.

Starting and Stopping TSO:

When the operator starts TSO for the day~ he must:

1. 	Issue a START command to start the Message Control Program. The operand of the START
command is the name of the cataloged procedure that provides the Job Control statements
necessary to execute the MCP. For example if the cataloged procedure used to start the MCP is
named TCAM, the operator will issue a START TCAM command.

2. Issue a START command to start the Time Sharing Control Task (TSC). The operand of this
command names a cataloged procedure used to start the TSC. For example if the cataloged
procedure used to start the TSC is name TS, the operator would issue a START TS command.

When the operator stops TSO for the day, he must:

1. 	Issue a STOP command to stop the Time Sharing Control Task. The operand of the STOP
command must be the same as the operand that was used to start the TSC.

2. Issue a HALT command to stop the Message Control Program. If the PGM= operand of the
EXEC statement in the cataloged procedure used to start the MCP is IEDQTCAM, then the
MCP cannot be cancelled with a CANCEL command. If the operator cancels the MCP, the TSC
must be stopped before the MCP is restarted. The MCP cannot be halted with a HALT
command unless TSO is stopped.

Defining a VADS using the TSC Procedure:

When a TSO system is first started after system generation, it is necessary to construct a UADS
using the ACCOUNT command. The distributed UADS contains one valid user: mMUSER and this
user is authorized to use one procedure: IKJACCNT. The installation manager should use the
ALLOCATE command to define a new UADS with a file name of SYSUADS and a data set name
other than SYS1.UADS, specifying a volume serial number. The installation manager should then
define its UADS structure with a series of ACCOUNT command ADD subcommands. He should
then log off, stop the system, and change the SYSUADS DD statement in the TSC start procedure,
to point to the new UADS.

Note: The ACCOUNT command subcommands in addition to changing the UADS, also maintain a
list of valid userids in the Broadcast data set. This list is checked by the SEND command before any
messages are sent. If an installation generates a new TSO system and saves the old UADS, it must
also save the old Broadcast Data Set.

Preparing a System for TSO 7S

Background Reader (BRDR)

The cataloged procedure used to start the Background Reader (BRDR) contains Job Control
statements that:

• Specify the program name of the Background Reader.

• Pass the Background Reader standard Reader-Interpreter parameters.

• Define required data sets.

The Background Reader, (BRDR), runs as a system task. It is started by the operator. It
interprets Job Control Language passed by a terminal user with the SUBMIT command. If there is
no input for the BRDR, it will relinquish its region and wait for input. Output from the BRDR is
placed on SYS1.SYSJOBQE and is queued for execution by a standard initiator. The cataloged
procedure that provides the Job Control Language to start the Background Reader is similar to
other reader procedures. The BRDR program name is IKJEFF40. Figure 21 shows an example of a
BRDR procedure. For further information on writing system reader/interpreter cataloged
procedures, see IBM System/360 Operating System: MVT Guide, GC28-6720.

An installation exit can gain access to and modify or delete any JCL passed by the SUBMIT
command processor. The section, "Writing Installation Exits for the SUBMIT Command" describes
how to write this exit.

IIBRDR EXEC PGM=IKJEFF40, X
II REGION=70K, X
II PARM='Reader/lnterpreter Parameters'
IIIEFPDSI DD DSN=SYS1.PROCLIB, X
II DISP=SHR
II DD UNIT=SYSDA, X
II SPACE= (80,(500,50),RLSE,CONTIG), X
II DCB=(BUFNO=2,LRECL=80,BLKSIZE=80,DSORG=PS, X
II RECFM=F,BUFL=80)
IIIEFRDER DD DUMMY

Figure 21. Sample Background Reader (BRDR) Procedure

TSO Trace Writer

Ths TSO Trace Writer collects Time Sharing Driver Entry Codes and writes them out to a data set.
The Trace Writer operates in its own partition and is started by the operator. A cataloged procedure
distributed with TSO defines the resources needed to run TSO Trace.

The cataloged procedure used to start the TSO Trace Writer:

• Specifies the program name of the TSO Trace facility.
• Passes to the Trace Writer a parameter which controls sampling rate.
• Defines the TSO Trace output data set.

Figure 22 shows the procedure. The sample procedure specifies that the Trace Writer output data
set is to be written to a 2400 tape unit. The output data set can also reside on disk. The user may
specify that chained scheduling be used if trace data set is on tape. If an installation specifies in the
DCB operand of the DD statement an NCP value, it must be at least three, that is,

DCB=(BLKSIZE=&BLKSIZE,NCP=3).

An installation should not include a SYSABEND or SYSUDUMP statement in the TSO TRACE
cataloged procedure.

76 TSO Guide (Release 21.7)

•

•

..

IITXTRACE PROC TRREGN=20K, DEFAULTS: REGION SIZE=20K
II TRPARM=100, 	 ENTRY RATE=100 ENTRIESISEC
II VOLCNT=20, 	 VOLUME COUNT=20
II BLKSIZE=2048 	 BUFFER SIZE=2048
11* DESCRIPTION OF SYMBOLIC PARAMETERS -- ­
11* TRREGN - TRACE WRITER REGION SIZE
11* TRPARM - AN 	 ESTIMATE OF THE RATE AT WHICH ENTRIES WILL BE MADE
11* INTO TRACE BUFFERS IN NUMBER OF ENTRIES PER SECONDS
11* VOLCNT - MAXIMUM NO. OF VOLUMES AVAILABLE FOR TRACE DATA SET
11* PER RUN. MAXIMUM VALUE ALLOWED IS 255.
11* BLKSIZE - SIZE OF TRACE BUFFERS. MINIMUM SIZE ALLOWED BY TRACE
11* WRITER IS 128; MAXIMUM ALLOWED BY SYSTEM IS 32,760
11*
IIIEFPROC EXEC PGM=IKJFATRC, INVOKES INITIALIZATION MODULE
II 	 DPRTY=14, PRIORITY SHOULD AT LEAST BE HIGHER
II 	 REGION=&TRREGN, THAN CPU-BOUND JOBS IN THE SYSTEM

• 	 II PARM=&TRPARM
11*
IIIEFRDER DD DSNAME=TSTRACE, NAME OF TRACE DATA SET

II UNIT=2400 DATA SET CREATED ON 9-TRK TAPE(s)

II DISP=(NEW,KEEP),

II DCB=(BLKSIZE=&BLKSIZE),

II VOLUME=(",&VOLCNT)

Figure 22. Sample TSO Trace Start Procedure

Logon Cataloged Procedure

The LOGON cataloged procedure defines the system resources that the terminal user can use. The
LOGON cataloged procedure can be named in the PROC operand of the LOGON command or
supplied through an installation exit from the LOGON processor. This procedure:

• 	 Defines or allows for dynamic allocation of all data sets used by the terminal user.

• 	 Specifies which program is to be invoked after LOGON, the TMP distributed with TSO or a user
written program.

The data sets defined can include the common system utility data sets, and data sets used by the
compilers such as SYSUTl, SYSUT2 or even the specialized data sets used by the Assembler or the
Linkage Editor.

In addition any data sets that will be allocated through the ALLOCATE command must have a
corresponding DD DYNAM statement. Any data sets needed by a processing program such as a
compiler or a system utility can be defined dynamically through the ALLOCATE command or through
Dynamic Allocation.

The Terminal Monitor Program distributed with TSO is named IKJEFTOI. If a user written TMP is • 	 to be used for a particular procedure, then its module name should be substituted for IKJEFTOI in the
PGM=operand on the EXEC statement.

The P ARM operand on the EXEC statement is interpreted by the Terminal Monitor Program
(TMP) as the first line of input from the terminal.

ROLL=(NO,NO) should be specified to preclude rolling out the Time Sharing Region.

REGION= is ignored

The command library, SYSl.CMDLffi, contains the command processor load modules. An
installation can also load many of these modules into the TSO Link Pack Area. The command library
can be concatenated to SYSl.LINKLIB or defined in the LOGON procedure as a step library.

Preparing a System for TSO 77

Note: If the command library is defined in the LOGON procedure as a step library, the modules in
the TSO Link Pack Area will not be used. ~s will degrade performance.

To concatenate SYSl.CMDLm to SYSl.LINKLm, use the LNKLSTOO member of
SYS1.P ARMLm. See IBM System/360 Operating System: MVT Guide, GC28-6720 for further
information about using LNKLSTOO.

Figure 23 shows an example of a LOGON procedure.

The sample LOGON procedure can be useful to a programmer using COBOL. Statement 1
specifies the TSO standard TMP for execution. Statement 2 defines the data set containing the
HELP command messages. Stal\Dlent 3 defines a utility data set used by several command ,..

processors while statement 4 defines the EDIT utility data set. Statements 5, 6, and 7 define utility
data sets used by the COBOL compiler. Statement 8 defines the COBOL subroutine library.
Statements 11 through 17 define data sets which can be allocated during the terminal session by the
user or a program he invokes, using the ALLOCATE command. Statement 18 defines SYSPROC,
an installation defined partitioned data set containing command procedures.

//COPROC EXEC PGM=IKJEFT01,ROLL=(NO,NO) 001

//SYSHELP 000SN=SYS1.HELP,OISP=SHR 002

//SYSUTl 000SN=&SYSUT1,UNIT=SYSOA,SPACE=(CYL,(10,10)) 003

//SYSEOIT 000SN=&EOIT,UNIT=SYSOA,SPACE=(1688,(50,20)) 004

//SYSUT2 000SN=&SYSUT2,UNIT=SYSOA,SPACE=(TRK,(10,5)) 005

//SYSUT3 000SN=&SYSUT3,UNIT=SYSOA,SPACE=(TRK,(10,5)) 006

//SYSUT4 000SN=&SYSUT4,UNIT=SYSOA,SPACE=(TRK,(10,5)) 007

//SYSLIB 000SN=SYS1.COBLIB,OISP=SHR 008

//SYSIN 00 TERM=TS 009

//SYSPRINT OC TERM=TS 010

//001 OOOYNAM 011

//002 OOOYNAM 012

//003 OOOYNAM 013

//004 OOOYNAM 014

//005 OOOYNAM 015

//006 OOOYNAM 016

//007 OOOYNAM 017

//SYSPROC 00 OSN=CMDPROC,OISP=SHR 018

Figure 23. Sample LOGON Cataloged Procedure

TSO System Parameters

When the Time Sharing Control Task initializes the TSO system, it reads a series of parameters
from a member of the partitioned data set named on the SYSPARM DD statement. The SYSPARM •
DD statement appears in the cataloged procedure used to start the TSC. The member name is
IKJPRMOO or a name supplied by the operator on the START command. There are three types of
parameters.

• TSC parameters.
• Time Sharing Driver parameters.
• Parameters dealing with the allocation of terminal buffers.

All of these parameters have an effect on the size of the TSC region. The publication IBM
System/360 Operating System: Storage Estimates, GC28-6551 gives formulas for assessing the effects
of these parameters on region size.

78 TSO Guide (Release 21.7)

L
The Tune Sharing Control Task Parameters

The TSC parameters:

• 	 Define the number and size of the Time Sharing regions.
• 	 Optionally specify a size for the TSC region.

• 	 Specify the maximum number of users.
• 	 Specify whether SMF is to be used.
• 	 Specify which DRIVER to use.
• 	 Limit the number of tracks the SUBMIT command can use to queue jobs.
• 	 Define the module contents of the Time Sharing Link Pack Extension . ..
Notes:

• 	 All parameters except LPA and DUMP/NODUMP may be overridden on the START command.
• 	 USERS, SMF, REGSIZE(n), and SUBMIT may be changed by a MODIFY command.
• 	 TERMAX, REGNMAX, and MAP must be specified either in SYS1.PARMLIB or on the

START command used to start TSO.

The contents of the Time Sharing Link Pack Area, that part of the TSC region containing
reenterable modules common to different TSO applications has a direct effect on system response
and overhead. The following routines are used by different users many times during an average
session and should reduce loading time if included.

• 	 The I/O Service routines -- that is GETLINE, PUTLINE, PUTGET, and STACK.
• 	 The TMP mainline routines.
• 	 Command Scan -- a service routine used to check the syntax of commands.
• 	 TIME -- a routine used to get the time of day.
• 	 PARSE -- a routine that analyzes the syntax of commands.

In addition if EDIT is being used extensively, portions of the EDIT command processor should be
included.

• 	 The Edit Mainline routines.
• 	 INPUT subcommand processor.
• 	 LIST subcommand processor.
• 	 CHANGE subcommand processor.
• 	 Implicit change processor, that is , the update function for portions individual lines.

Driver Parameters

The DRIVER parameters define dispatching and swap scheduling algorithms (1) for user jobs within
one time sharing region and (2) between two time sharing regions.

.. The DRIVER parameters dealing with activity within each region determine:

• 	 The type of swap scheduling to be used, preemptive or round robin.

• 	 The number of service queues in a region.

• 	 The cutoff points for each queue in terms of swapload or main storage residence between
interactions (terminal I/O requests).

• 	 The algorithms used to calculate time slices for each queue.

Preparing a System for TSO 79

Certain parameters apply to service queues and require queues to be defined through the
SUBQUEUES parameter. These parameters usually are used in pairs, one parameter specifying that
a certain criterion is to be used in queue placement and the other specifying the value to be used.

For example, the SWAPLOAD!NOSWAPLOAD parameter specifies whether or not swap load
will be used as a criterion for determining which queue a user will be put in. If SWAPLOAD has
been specified, the MAXSW AP parameter defines the maximum swap load for each queue.

These paired parameters dealing with service queues are:

SWAPLOAD!MAXSW AP(n,m) = iii

AVGSERVICE!SERVICE(n,m) =iii

OCCUPANCY!MAXOCCUPANCY(n,m) =iii

Note: 'n', 'm', and 'iii' refer to region number, queue number and a value associated with the
parameter, such as k byte blocks for SWAPLOAD.

The DRIVER parameters dealing with activity between time sharing regions determine:

• 	 Whether new users are to be assigned to a region based on region activity.

• 	 What type of dispatching the Driver uses between multiple regions or between foreground and
background tasks.

There are three types of dispatching: (1) Simple, (2) Even, and (3) Weighted. The parameters
involved are PRIORITY, WAIT and BACKGROUND.

If an installation specifies NOPRIORITY and NOWAIT, then simple dispatching is used. The
formula used is:

MS = AT

where MS is the minor time slice and AT is the available execution time, or the time remaining
before the next scheduled swap out.

If an installation specifies PRIORITY and NOW AlT, then even dispatching is used. The formula
used is:

AT

MS = N

where N is the number of foreground regions containing jobs ready to execute. As in simple
dispatching, available time is reduced before the calculation by any guaranteed background
percentage.

If an installation specifies PRIORITY and WAIT, then weighted dispatching is used. The formula
used is:

This job's EWT%

MS = --------------- x (AT)

Sum of EWT%s

where MS is the minor slice to be assigned to a terminal job, EWT% is the estimated wait time
percentage, and AT is the available execution time for this minor slice cycle, again adjusted for any
guaranteed background percentage.

In a single region system, NOW AlT, NOACTIVITY, and NOPRIORITY should be specified.

80 TSO Guide (Release 21. 7)

•

..

The decay constants for the wait estimate (DECAYW AIT) and the activity estimate
(DECAY ACT) are used to smooth out excessive variations in activity and I/O wait time. If a value
of 100, a decay constant of one since the value is in hundredths is used, the current value has a
weight equal to the old value. If a value less than 100 is used, the current value has the most
weight. If a value greater than 100 is used, the old value has the most weight and will "smooth out"
the effects of excessive variations.

The expression used is:

new-value = (old-value ~ decay-constant) + current-value

(decay-constant + 1)

MINSLICE, the minimum amount of residence time (major time slice) given to a user program
on a given service queue, should be set to allow a useful amount of execution time. One way to
calculate MINSLICE is to divide the acceptable response time by the assumed average number of
users for a normal load.

If A VGSERVICE has been specified, then the major time slice for users on a given queue is
calculated each time the queue is serviced. The value specified by SERVICE for that queue is
divided by the number of ready users and the result is compared to the MIN SLICE value. The
higher of the two is used as the major time slice.

This means that with a normal number of users active, each user program will receive a major
time slice at least equal to the MINSLICE value, with a given average response. As the number of
users drops, the average response time will remain the same but each user program will receive a
longer time slice, based on the SERVICE value.

If PREEMPT is specified, CYCLES should be set to zero, since a higher priority queue will
preempt a lower priority queue.

The system operator is prompted for all necessary values that are not specified. For example if
OCCUPANCY has been specified, but no MAXOCCUPANCY values entered, the system operator
will have to supply values for each service queue in each region. At least one service queue must be
defined for each region, and a CYCLES value specified for all service queues defined to preclude
unnecessary prompting.

If a parameter is specified or entered incorrectly, the parameter is ignored, but no error message
is issued.

Buffer Control Parameters

TSO controls the allocation of terminal buffers in the TSC region. Buffer allocations are based on
initial parameters specified in SYS I.PARMLIB.

The BUFSIZE= parameter specifies the size in bytes of each TSO terminal buffer.

The BUFFERS= parameter specifies the total number of TSO buffers. The remaining parameters
deal with allocating the number of buffers per user when a given number of users is logged on.

TSO maintains a count of the number of allocated buffers per user, both for input and output.
When the number of buffers either for input or output rises to a given level, the user is prevented
from continuing until more buffers are available. If the specified maximum number of input buffers
are allocated, the keyboard is locked up. If the maximum number of output buffers are allocated,
the user's program is put into a wait. This level is determined by the OW AITHI value for output
and the INLOCKHI value for input.

Preparing a System for TSO 81

When the number of logged on users changes by the percentage specified in the USRCHGE
parameter, and when the number of users falls below SLACK value, the number of buffers per user
is readjusted. The number of buffers for input and output are distributed in the same ratio as
specified by INLOCKHI and OWAITlll.

System Parameter Format

The format of the parameter records is:

t> t> parameter-ownert> keyword =value t> ...

where t> stands for one or more blanks. ",

The possible parameter-owners are:
•

• TS -­ parameters for the Time Sharing Control Task.

• DRIVER -­ parameters for the Time Sharing Driver.

· noc -- parameters controlling terminal buffer allocation.

Keywords cannot be continued but may be repeated. This has the effect of continuation, as repeated
keyword values are added on to those already specified. When two parameters conflict, the last
value is used. Figure 25 shows an example of system parameters for a single region model 50 and
for a double region model 65. Figure 24 shows the syntax and meaning of the start parameters.

82 TSO Guide (Release 21.7)

PARAMETER KEYWORD MEANING
OWNER

TS TERMAX=nnnn Specifies maximum number of users.

USERS=nnnn Specifies initial maximum number of users,
TERMAX, can be changed by MODIFY command.

defaults to

REGNMAX=nn Specifies number of TSO user regions.

MAP=nn Specifies the number of MAP
swapping of unused storage.

entries, used to reduce

Standard SMF parameters; see System Management
Facilities, GC28-6712. 	 The default is the same as
the default defined 	for the background region. If no
background default exists, the default is OPT=2
and EXT=YES.

DSPCH=cccccc 	 Specifies first six characters of Time Sharing Driver.
Defaults to IKJEAD, driver supplied with TSO. This
parameter defines the names of all four Driver• 	 modules. That is the driver supplied with TSO has
four modules, IKJEADOO to IKJEAD03.

LPA=(module list) 	 List of modules to be included in Time Sharing Link
Pack Extension.

REGSIZE(nn)=(mmK, Specifies region size (mmk) and LSQS size (iiik)
iiiK) for region nn. Defaults to zero.

SUBMIT=nnnn 	 Specifies the maximum number of tracks in the SUBMIT
command job queue. Defaults to limit set at System
Generation.

TSCREGSZ=nnnnnK 	 Specifies amount of main storage to be allocated to
Time Sharing Control Task region. nnnnn is number of
contiguous 1024 byte areas desired, must be even, and
may not be more than 16382. An odd number will be
rounded up to next higher even number. If not
specified in either SYS1.PARMLIB or in START command,
Time Sharing Control Task will calculate its own
region size.

DUMP=jDUMP t DUMP indicates that swap units are to be marked
1NODUMP~ reserved. Necessary if a SWAP dump to be taken.

TIOC BUFSIZE=nn Specifies size of terminal buffer. Default 44.

BUFFERS=nn 	 Total number of buffers.

OWAITHI=nn 	 Specifies the maximum number of allocated output
terminal buffers per user in order to put a user
program into output wait.

INLOCKHI=nn 	 Specifies the maximum number of allocated input
terminal buffers per user in order to lock a users
keyboard.

OWAITLO=nn 	 Specifies the number of allocated output buffers to
bring a user out of output wait state. In other words
if OWAITLO=4, when 4 or less buffers remain allocated,
the user is brought out of output wait.

INLOCKLO=nn 	 Specifies the number of currently allocated input
buffers to unlock the terminal keyboard for input. In
other words, when the number of allocated input
buffers fail to or below the INLOCKLO value, the
users's keyboard is unlocked.

Figure 24. TSO System Parameter Syntax (Part 1 of 4)

Preparing a System for TSO 83

USERCHG=nn 	 Specifies percentage of change in logged on users
needed to redistribute buffers and recalculate the
OWAITHI and INLOCKHI numbers during slack time.

RESVBUF=nn 	 Specifies the total number of terminal buffers that
must be free to avoid locking all terminals to prevent
input.

SLACK=nn 	 Specifies number of logged on users that constitute
slack time.

DRIVER PARAMETERS

PARAMETER 	 EFFECT OPERAND

ACTIVITY 	 Use average reg~on activity in none ,
selecting a reglon for a new user.
Single region systems should specify
NOACTIVITY.

AVGSERVICE 	 Calculate major time slice for users none •
on a queue by dividing number of
ready users by value set in SERVICE.

BACKGROUND=nn 	 The specified percentage of available nn

CPU time is guaranteed for background percentage

(non-TSO) tasks.

CYCLES(n,m)=iiii 	 The number of times an entire queue n

will be serviced (ie. each ready region

user swapped in before the next m

lower queue is serviced.) If zero service

is specified; the queue is serviced queue

until empty, (no ready users) iii

Cycles must be specified for each cycles

region.

DECAYACT=nnnn 	 The specified exponential decay con­ nnn

stant (in 1/100ths) will be used to exponential

smooth average region activity. decay constant

Higher values make history more in 1/100ths.

important. Value of 100

makes history
as important
as current
value.

DECAYWAIT=nnnn 	 The specified exponential decay nnn

constant (in 1/100ths) will be exponential

used to smooth average I/O wait decay constant

time. Higher values make history in 1/100ths.

more important. Value of 100

makes history
as important
as current
value.

Figure 24. TSO System Parameter Syntax (Part 2 of 4)

84 TSO Guide (Release 21.7)

PARAMETER 	 EFFECT OPERAND

MAXSWAP(n,m)=iii 	 A user maximum swap load for queue n
m in region n is iiii 1024 byte region
blocks. A user exceeding this m
swap load will be moved to service queue
a lower priority queue. iiii

1024 byte
blocks of
swap load.

MAXOCCUPANCY(n,m)=iiii 	 Occupancy is the accumulated time n
a user has resided in main storage region
since the last terminal interaction. m
If a user on queue n in region m, service queue
accumulates more than iiii 1/100ths iiii
of a second of occupancy, he will be 1/100ths
moved to a lower queue. seconds.•

MINSLICE(n,m)=iiii 	 The minimum amount of core residency n
allotted to a user on queue m in region
region n is iiii (1/100ths) of a m

• 	 second. service queue
iiii

1/100ths
seconds.

NOACTIVITY 	 Region activity average will not none
be used in assigning new users to
regions. NOACTIVITY should be
specified for single region
systems. Default.

NOAVGSERVICE 	 AVGSERVICE calculations are not none
performed. Default.

NOBACKGROUND 	 Background tasks will not be none
guaranteed a minimum amount of
execution time. Default.

NOOCCUPANCY 	 The length of time a user none
program is resident will not
be used to position him on a
service queue. Default.

NOPREEMPT 	 Preemptive swap scheduling is none
not used. Default.

NOPRIORITY 	 Minor time slices are not calculated none
Default.

NOSWAPLOAD 	 Swap load (size of programs) will none
not be criterion for service queue
placement. Default.

NOWAIT 	 I/O WAIT time estimate will not none
be used in dispatching between
multiple regions. Causes even
dispatching between regions if
PRIORITY was specified, simple
dispatching if NOPRIORITY was
specified. Should be specified
for single region system. Default.

• Figure 24. TSO System Parameter Syntax (Part 3 of 4)

...

Preparing a System for TSO 85

OPERAND

none

none

none
•

n
version

m
queue

iiii
1/100ths
of seconds

n
region

mmm
number of
service queues

PARAMETER

OCCUPANCY

PREEMPT

PRIORITY

SERVICE(n,m)=iiii

SUBQUEUES (n)=mmm

SWAPLOAD

WAIT

EFFECT

Residence times since last
terminal I/O interaction are
accumulated for current user
program to use for service
queue placement.

Preemptive swap scheduling is
used. Assumes mUltiple service
queues defined through SUBQUEUES
parameter. A user who comes ready
on a higher queue preempts a
resident user on a lower queue.
The preempted user is swapped out
after a minslice of the preemptor
has elapsed. The preemptors entire
queue is serviced.

If NOWAIT was specified, each
region receives an equal minor
time slice. If WAIT was specified,
regions receive minor time slices
based on I/O WAIT time.

The amount of time (iiii 1/100ths
of seconds) is divided by the
number of ready users in queue
m, region n. The result
is compared with MINSLICE, and the
larger is used as the major time
slice. This calculation is per­
formed whenever a queue is to be
cycled, (all the ready users swapped
in) .

The number of service queues in
region 'n' is 'm'. Lower service
queue numbers have higher priority.
If only one service queue is
defined, then round robin swap
scheduling is used. At least one
service queue must be defined for
each region.

Swap load or size of program
in 1024 byte blocks, is used for
queue placement.

Causes I/O wait time estimate to
be calculated for region. Used
with weighted dispatching.

Figure 24. TSO system Parameter Syntax (Part 4 of 4)

86 TSO Guide (Release 21.7)

TS TERMAX=10 REGNMAX=1 REGSIZE(1)=(100K,8K)
TS LPA=(IKJPTGT,IKJSCAN,IKJEFT02,IKJEFT25)
TS LPA=(IKJPARS)
DRIVER AVGSERVICE PREEMPT SUBQUEUES(1)=3
DRIVER CYCLES(1,1)=0
DRIVER CYCLES(1,2)=0
DRIVER CYCLES(1,3)=0
DRIVER MAXOCCUPANCY(1,1)=750 MINSLICE(1,1)=150
DRIVER MAXOCCUPANCY(1,2)=1500 MINSLICE(1,2)=750
DRIVER MAXOCCUPANCY(1,3)=4500 MINSLICE(1,3)=4500
DRIVER SERVICE(1,1)=150
DRIVER SERVICE(1,2)=1500
DRIVER SERVICE(1,3)=6000
TIOC BUFSIZE=44
TIOC BUFFERS=80

• 	 TIOC OWAITHI=8
TIOC OWAITHI=4
TIOC INLOCKHI=4
TIOC INLOCKLO=2
TIOC SLACK=01
TIOC RESVBUF=10
TIOC USERCHG=99

L

TS TERMAX=60 REGNMAX=2 REGSIZE(1)=100K,8K) REGSIZE(2)=(100K,8K)
TS LPA=(IKJPTGT,IKJSCAN,IKJEFT02,IKJEFT25)
TS LPA=(IKJEBEM4,IKJEBELP,IKJEBELT,IKJEBECH,IKJEBELI)
TS LPA=(IKJPARS)
DRIVER WAIT
DRIVER PRIORITY
DRIVER ACTIVITY
DRIVER OCCUPANCY
DRIVER AVGSERVICE
DRIVER PREEMPT
DRIVER DECAYWAIT=100
DRIVER DECAYACT=100
DRIVER SUBQUEUES(1)=3 SUBQUEUES(2)=3
DRIVER CYCLES(1,1)=0 CYCLES(1,2)=0 CYCLES(1,3)=0
DRIVER CYCLES(2,1)=0 CYCLES(2,2)=0 CYCLES(2,3)=0
DRIVER MAXOCCUPANCY(1,1)=500 MINSLICE(1,1)=100
DRIVER MAXOCCUPANCY(1,2)=1000 MINSLICE(1,2)=500
DRIVER MAXOCCUPANCY(1,3)=3000 MINSLICE(1,3)=3000
DRIVER MAXOCCUPANCY(2,1)=500 MINSLICE(2,1)=100
DRIVER MAXOCCUPANCY(2,2)=1000 MINSLICE(2,2)=5000
DRIVER MAXOCCUPANCY(2,3)=3000 MINSLICE(2,3)=3000
DRIVER SERVICE(1,1)=1000
DRIVER SERVICE(1,2)=1000
DRIVER SERVICE(1,3)=6000
DRIVER SERVICE(2,1)=100
DRIVER SERVICE(2,2)=1000
DRIVER SERVICE(2,3)=6000
TIOC BUFSIZE=44

" TIOC BUFFERS=300

TIOC OWAITHI=8

TIOC OWAITLO=4

TIOC INLOCKHI=4

TIOC INLOCKLO=2

TIOC SLACK=12

TIOC RESVBUF=60

TIOC USERCHG=01

Figure 25. Sample TSO System Parameters

Preparing a System for TSO 87

Tuning a System With TSO

This section describes some techniques useful in improving the performance of a system with TSO.
Some of these techniques act directly upon the underlying MVT control program, but they all affect
TSO system performance. The specific objectives discussed are:

• 	 Reducing I/O contention between foreground (TSO) and background tasks.

• 	 Reducing time spent fetching modules.

• 	 Reducing swap overhead that is, the amount of I/O performed copying foreground job images
between main and secondary storage.

• 	 Reducing seek time between different libraries and different parts of the same library.

The techniques are discussed in terms of their objectives. Figure 26 summarizes the various techniques
in terms of the times at which they are used.

Writing
LOGON

Writing Procedures
SYSl.PARMLIB Cataloged UADS Library

SYSGEN Construction Procedures Building Positioning

Reducing UNITNAME UNIT UNIT

Foreground/ IOREQUE~PRIORITY

Background I/O I

Contention

Reducing Operator Communications BLDL (SVC)

Fetch Time Residence Options BLDL (LINKLIB)

Transient Area TSLPA

LPA

Reducing 	 ABSTR (JCL)
Seek Time 	 IEHDASDR(VTOC)

IEBCOPY
IEHMOVE

Tuning the TSO TRACE

Driver

Figure 26. Summary of Tuning Objectives for Various Techniques

Reducing I/O Contention Between Foreground and Background

To reduce the I/O contention between foreground (TSO) tasks and background tasks:

1. During System Generation, use the UNITNAME macro instruction (1) to separate direct access
space into foreground (TSO) and background areas and (2) to define generic names, unitnames,
for these spaces. (IBM System/360 Operating System: System Generation, GC28-6554, discusses the
UNITNAME macro instruction.)

In cataloged procedures for background use, define utility data sets with the UNIT parameter
specifying one of the background unitnames, (for example, SYSDA).

In cataloged procedures for foreground use, notably the LOGON procedures, define utility data
sets using a UNIT parameter specifying one of the foreground (TSO) unitnames, (for example,
SYSTS).

,,.

..

•

88 TSO Guide (Release 21.7)

•

Restrict placement of data sets allocated dynamically, (using the ALLOCATE command), by
specifying a foreground unitname in the UADS. Define a unit for dynamically allocated data sets
in the UADS with the ADD subcommand of the ACCOUNT command.

Be sure to give the PUBLIC attribute, in the PRESRES member of SYS 1.P ARMLffi, to at least
one of the Foreground Unitname volumes so that SYSOUT data sets will be dynamically
allocated on a specific unit. See IBM System/360 Operating System: MVT Guide, GC28-6720, for
more information on the PRESRES member of SYS1.PARMLIB.

2. Specify priority scheduling on I/O for the direct access devices on which TSO data sets reside.
Since foreground jobs usually run at higher priority than background jobs, this should reduce the
time Foreground (TSO) jobs wait for background I/O requests. Use the IOREQUE operand of
the IODEVICE macro instruction. For further information, see the System Generation publication.

For an example of the use of UNITNAME, if your system has two 2314 Direct Access Storage
Facilites available, at addresses 130 through 137 and 230 through 237, you could define generic
names for scratch, utility, and spooling data sets by using the UNITNAME macro instructions
specified in Figure 27.

UNITNAME UNIT=(130,4),(230,4),NAME=SYSDA

* BACKGROUND SCRATCH UNITNAME, NON-TSO

UN I TNAME UNIT=(134,4),(234,4),NAME=SYSTS

* FOREGROUND TSO UNITNAME

Figure 27. Sample Use of the UNITNAME Macro Instruction

For the system in this example, if a data set is defined with a UNIT parameter specifying
SYSDA, it will reside on one of the 2314 packs at addresses 130 to 133 or 230 to 233. Data sets
defined with a UNIT parameter specifying SYSTS, will reside on one of the 2314 packs at addresses
134,135,136,137,234,235,236,237,or237.

There are advantages to using generic naming through the UNITNAME macro facility:

1. There is no arm contention between foreground and background utility data sets.

2. TSO utility data sets can be demounted easily when TSO is not active.

If the UADS specifies that new dynamically allocated data sets should reside on the units in the
foreground unitname group, then there will be no arm contention between these data sets and
background data sets.

Reducing Fetch Time

Reducing the time spent fetching modules from libraries is one of the most important controllable
factors in system performance. For the purposes of this discussion, fetch time is defined as the time
span from the start of execution of a macro instruction which obtains a module from secondary
storage and optionally transfers control to the module to completion of this operation. Examples of
these types of macro instructions are LINK and LOAD.

Note: The following list of modules for residence and directory residence were selected based on a
count of modules fetched during TSO operation. The modules are included because they fulfill at
least one of the following criterion:

• High fetch count.

Preparing a System for TSO 89

• Reduce seek time between one or more of the following - SVCLm, VTOC, or CATALOG.

• Required for each line of terminal output.

• Required for each line of terminal I/O.

• Must be refreshed after SWAP-in if not resident.

• Part of Catalog sequence.

• BSAM CHECK routine for terminal I/O.

• High use count for resident access modules. (Increases swap load if not resident.)

If the referenced module is resident in the Link Pack Area, or the TSO Link Pack Area
Extension, then no I/O is involved in a fetch. If the module is not resident, but if there is a BLDL
entry for it, then a directory search is not required. If there is no BLDL entry, then I/O is required
for the BLDL (directory search) and for the actual loading of the module. An installation therefore
can influence fetch time through the following four options:

1. SVC module residence.

Figure 28 shows a list of SVC modules and their functions. For further information about loading
modules into the Link Pack Area, see MVT Guide, GC28-6720.

2. Resident directory entries (BLDL) for SVC library.

The following Dynamic Allocation modules should be included in the SVC BLDL list:

IGCOI091, IGC02091, IGC03091, IGC07091, IGC09091 IGClOO91, IGCII091, IGC12091,
IGC13091, IGC14091, IGC14091, IGC15091, IGC16091, IGC17091, IGC26091, IGC27091,

IGC29091.

The following Catalog Modules should be included in the SVC BLDL list:

IGGOCLC2, IGGOCLC3, IGGOCLC7, IGGOCLF2.

3. Resident directory entries (BLDL) for Linkage library, and TSO Command library.

A LINKLm BLDL entry in main storage occupies 56 bytes. Modules which have BLDL entries
have their fetch time significantly reduced. For this reason, it is recommended that the entire list
of modules in IBM System/360 Operating System: Storage Estimates, GC28-6551, listed under
"Reentrant Load Modules that can be made resident in the Time Sharing Link Pack Area," be
included in the Linkage Library BLDL list.

4. SVC transient area pairs.

In addition to defining module and directory (BLDL) residence, specifying during system
generation two SVC transient areas for each initiator (background region) or each foreground
region, decreases total time spent waiting for the loading of a non-resident SVC function.

Module Name/Function

IGCOO02F SVC 26 CATALOG
ICGOO02H SVC 28 OPEN Extent Catalog
IGCOO03C SVC 33 I/O Halt
IGCOO06+ SVC 60 STAE
IGCOO09+ SVC 90 XQMNGR
IGCOO09C SVC 93 TGET/TPUT
IGCOO09F SVC 96 STAX

90 TSO Guide (Release 21.7)

II

•

•

"

..

IGC0009G SVC 97 TEST
IGC0009I SVC 99 Dynamic Allocation
IGC2509I Dynamic Allocation Update DSE
IGC2509I Dynamic Allocation Initiation
IGGOCLC1 Catalog Locate
IGGOCLC6 Catalog Return
IGG09301 TPUT

Figure 28. SVC Modules useful for Residence in TSO

Reducing Swap Overhead

There are two ways to reduce swap load:

1. Use the MAP parameter of the TSC start parameters to reduce the amount of unused core
swapped. MAP=6 is a recommended value. For further information about the MAP parameter,
see "TSO System Parameters."

2. 	Any TSO modules resident in the TSLPA will not be swapped. This means that TSO modules
common to foreground jobs, such as the TMP, should be considered for residency.

Reducing Seek Time Between Different Ubrarles and Different Parts of the Same Ubrary

You can reduce seek time and increase I/O overlap by properly placing system data sets on direct
access devices.

Use the IEBCOPY utility program to move system data sets. Use the IEHMOVE utility program to
move the system catalog. Use the IEHDASDR utility to place the VTOC of a volume. For further
information about these utilities, see IBM SystelD/360 Openting SystelD; Utilities, GC28-6586.

Use the ABSTR operand of the SPACE parameter on dd statements to position data sets. In
arranging libraries on direct access devices, the following points should be kept in mind.

1. Every reference to the system catalog requires a reference to the VTOC, since the catalog must
be opened. If the system catalog and the VTOC share cylinders (split cylinders), then seek time
is reduced.

2. Unless the CATLG/UNCATLG modules (IGGOCLC2, IGGOCLC3, IGGOCLC7) are resident
in the Link Pack Area, they must be fetched during any catalog operation. If these modules are
not resident, it is useful to have the system catalog and SVCLm adjacent on the storage device.

3. To allow for maximum overlap during fetch I/O, either CMDLm or LINKLm should reside on a
different volume than SVCLm. Since CMDLm and LINKIB should be concatenated, they also
should probably not reside on the same volume.

4. In general, heavily referenced data sets, like LINKLIB and SYSJOBQE should be in proximity
when they share a volume.

The following example shows the dd statements used to define system data sets. The space
parameters apply for 2314 volumes. It is assumed that the VTOC was placed on tracks 50 to 52 on
these 2314 packs. Cataloging of data sets should be done after this allocation has been run.

Preparing a System for TSO 91

IIFORTLIB DO DSN=SYS1.FORTLIB,SPACE=(ABSTR,(28,2,40)),UNIT=2314, X
II VOL=SER=SYSRES,DISP=(NEW,KEEP), X
II DCB=(RECFM=U,BLKSIZE=3625)
IICMDLIB DO DSN=SYS1.CMDLIB,SPACE=(ABSTR,(20,30,30)),UNIT=2314, X
II VOL=SER=SYSRES,DISP=(NEW,KEEP), X
II DCB=(RECFM=U,BLKSIZE=3625)

IISYSCTLG DO DSN=SYS1.SYSCTLG,SPACE=(ABSTR,(7,53)),UNIT=2314, X

II VOL=SER=SYSRES,DISP=(NEW,KEEP)

IISVCLIB DO DSN=SYS1.SVCLIB,SPACE=(ABSTR,(80,60,75)),UNIT=2314, X

II VOL=SER=SYSRES,DISP=(NEW,KEEP), X

II DCB=(RECFM=U,BLKSIZE=1024,DSORG=POU)

IIPROCLIB DD DSN=SYS1.PROCLIB,SPACE=(ABSTR,(20,140,9)),UNIT=2314,X

II VOL=SER=SYSRES,DISP=(NEW,KEEP), X

II DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)

IIBRODCAST DD DSN=SYS1.BRODCAST,SPACE=(ABSTR,(20,30)),UNIT=2314, X

II VOL=SER=SYSRS2,DISP=(NEW,KEEP)

IIUADS DD DSN=SYS1.UADS,SPACE=(ABSTR,(20,53)),UNIT=2314, X

II VOL=SER=SYSRS2,DISP=(NEW,KEEP), X

II DD DCB=(DSORG=PD,RECFM=FB,BLKSIZE=800)

IILOGON DD DSN=SYS1.LOGON,SPACE=(ABSTR,(7,73,5)),UNIT=2314, X

II VOL=SER=SYSRS2,DISP=(NEW,KEEP), X

II DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)

IIJOBQUE DD DSN=SYS1.SYSJOBQE,SPACE=(ABSTR,(60,80)"CONTIG), X

II VOL=SER=SYSRS2,DISP=(NEW,KEEP),UNIT=2314

IILINKLIB DD DSN=SYS1.LINKLIB,SPACE=(ABSTR,(75,140,100)), X

II VOL=SER=SYSRS2,DISP=(NEW,KEEP),UNIT=2314, X

II DCB=(RECFM=U,BLKSIZE=3625)

Using TSO Trace

The TSO Trace Data Set Processor is a problem program that dumps the output data set from TSO
Trace and produces a formatted listing. Figure 29 shows the job control language required to run
the TSO Trace Data Set Processor. The example assumes that the TSO Trace Data set has been
written to a tape volume with a volume serial number of TIRACE. The listing shows the
parameters specified, and provides an explanation of each entry record as well as the contents of the
record in hexadecimal and EBCDIC. The contents of register 1 is listed in the third column of the
Trace Data Set Processor.

IITTRDUMP JOB , MSGLEVEL=1

IISTEP EXEC PGM=IKJFATRP,PARM='CODES=STD'

IISYSPRINT DD SYSOUT=A

IITRACEDD DD DSN=TSTRACE,VOL=SCR=TTRACE,UNIT=2400

Figure 29. Sample Job System to Run TSO Trace Data Set Processor

TSO TRACE is a started task which operates in its own region. All Driver Entry Codes are
recorded in buffers which are then written to a data set. This data set can be listed by the TSO
Trace Data Set Processor or can be analyzed by a user written program. The section of this
publication Writing Cataloged Procedures for TSO, discusses how to define the TS Trace data set and
specify parameters required by TSO Trace. Figure 30 shows the format of the TSO Trace data set.

92 TSO Guide (Release 21.7)

...

..)

•

Entry When Produced Description of Contents
Type

'A' When the trace writer is started 	 Word 1 X'FFFFFFFD'
Word 2 # of 3-word entries per record
Word 3 Time of Day in timer units

'B' When the trace writer is stopped. 	 Word 1 X'FFFFFFFE'
Word 2 Date in packed decimal OOYYDDDS
Word 3 Time of Day in timer units

'C' 	 When information was lost (volume Word 1 X'FFFFFFFF'
switching, low sampling rate, Word 2 Number of entries lost
etc. Word 3 Time of Day in timer units of

the first lost entry

'D' Normal entry (contains words 1-3 Word Bytes 1-2 TJID or 0
of the DPA). Byte 3 Reserved (X'OO')

Byte 4 Entry code
Word 2 Contents of register 1 on

entry to TSIP
Word 3 Time of Day in timer units

'E' 	 Following a normal entry with Words 1-2 Command name
entry code 0 (TMP entry). Word 3 Unpredictable

'F' 	 Following a normal entry with Bytes 1-7 USERID
entry code 25 (LOGON establishes Bytes 8-12 Unpredictable
PSCB) .

'G' Following a normal entry with 	 Diagnostic data {There will be2n+!
entry code 44 (FE Serviceability) 	 3-word groups of data available. The value

of n is contained in bits 5-7 of word 2
of the normal entry.

Figure 30. Format of the TS Trace Data Set

The TSEVENT macro instruction is issued by system tasks to request services of the Driver or to
notify the Driver of specific events. The TSEVENT macro instruction specifies an event name that
is translated into a Driver Entry Code. Based on parameters specified to the Driver and on the
sequence of these codes, the Driver initiates various actions.

Appendix C lists all the possible event names, the codes they generate, their meanings, and which
task issues these codes. Associated with most TSEVENT macro calls is a TJID, which identifies the
user to the Driver. The TJID is assigned when the user logs on.

The P ARM value on the EXEC statement specifies what entries will be listed. All "G" type
records will be listed regardless of the parameters. The individual keyword parameters should be
enclosed in apostrophes and separated by commas. The keyword parameters and their syntax are:

CODES

specifies which class of entry codes are to be included in the listing. The subparameters, S,T and
D represent 'System' codes, 'TerminalI/O' codes, and "Dispatcher" codes, respectively. The
listing, therefore, will contain only those entry codes belonging to the class, or classes, specified.
Appendix C lists the Entry Code classes. These subparameters may be written in any order, but

• 	 must not contain delimiters nor embedded blanks. If the CODES parameter is omitted, all
non-dispatcher entries will be listed, i.e., CODES=ST is the default option.

TJID = XXX[- YYY]

specifies that only entries associated with the TJID specified by the number XXX ~re to be listed.
If YYY is also given, all entries associated with TJID's in the range XXX to YYY, inclusive, are
listed. If the value given for XXX is zero, all entries will be listed. (This is also the default if the
'TJID' parameter is not specified.) Both numbers :xxx and YYY must be specified as decimal
digits. The maximum length of each number is three digits.

Preparing a System for TSO 93

CLOCK=XXXXXXXX[- YYYYYYYY]
indicates that no entry before time XXXXXXXX (relative to the starting time of the first entry)
is to be included in the listing. If - YYYYYYYY is specified no entry after that time is listed.
Both numbers must be specified as decimal digits and given the time in seconds. The maximum
length of each number is seven digits.

Writing Installation Exits for the Submit Command

A user exit from the SUBMIT command allows an installation to:

• Verify a jobname.
• Verify a userid.
• Send a message to the terminal and optionally request a reply.
• Cancel a SUBMIT request. ..
The TSO SUBMIT command allows a terminal user to initiate a background job. A description of
the syntax and use of the SUBMIT command is found in IBM System/360 Operatlq System: Time
Sharing Option, Command Language Reference, GC28-6732.

The SUBMIT command processor writes the contents of a user specified data set consisting of
Job Control Language statements, (JCL), and input data, onto a logical extension of
SYSl.SYSJOBQE. The size of this extension is limited at system generation time by the SUBMITQ
operand of the TSO OPTION macro. Size can be further limited by the SUBMIT parameter which
the Time Sharing Control Task reads from SYSl.PARMLffi when the operator issues a START TS
command.

Any authorized terminal user can submit a background job, but no jobs will be scheduled if the
operator has not issued a START BRDR command.

An installation can control foreground initiated background jobs through an installation written
SUBMIT exit routine. Through the routine an installation can:

• Delete, modify, or insert statements.
• Request that a message be displayed at the terminal and optionally request a reply.

The routine must be linkage edited as an independent module, given the name IKJEFF10, and
placed in SYS l.LINKLffi. The SUBMIT command processor invokes the user written exit when the
first JOB statement is read. The ffiM supplied exit does no JCL checking; it only sets the return
code to zero. Return codes in register 15 control subsequent calls. The return codes are:

o - continue -- that is process the current statement and read the next.

4 - reinvoke the exit routine for another statement -- that is process the current statement and

re-enter the exit routine when the next statement is read.
8 - display a message at the terminal and re-enter the exit routine.
12- display a message at the terminal, obtain a response, and re-enter the exit routine. (If the "

user has specified NOPROMPT, this will cause the SUBMIT processor to issue an error
message and abort.)

16 - abort. (The exit routine should first use return codes 8 and 12 to issue a message to the
user.)

Upon entry to the user written exit routine, register 1 contains the address of a list of six fullwords.

1st word - address of the current JCL statement. This statement may be changed by the exit

routine.

If zero, entry is to get a JCL statement. (The return code from the previous call was 4.) To

delete the current statement, set this word to zero.

94 TSO Guide (Release 21.7)

•

2nd word - address of a message to be displayed at the terminal.

The exit routine obtains a message area and sets this word for return codes 8 or 12. When the

exit routine is re-entered, it may free the message area. If zero, either there is no message, the

return code was 0 or 4, or this is the first call. The format of the message is LLtext, where LL is

a two-byte field containing the length of the message area including the LL field. The maximum

length is 82.

3rd word - address of response.

If the exit return code from the previous call was 12, SUBMIT will free the buffer. The format of

the response is LLtext where LL is a two byte length field containing the length of the text and

the LL field, with a maximum length of 82 bytes.

4th word - address of USERID.

The USERID is 8 characters left justified padded with blanks.

5th word - control switches.

Byte 0 specifies under what conditions SUBMIT will call the exit.

Byte Bit Meaning

0 0 JOB statement
1 EXEC statement
2 DD statement
3 Command
4 Null
5 Reserved
6 Reserved
7 Reserved

The default will cause SUBMIT to enter the exit routine for JOB cards only. The exit routine may
change the setting of these bits to control when it will be entered.

Byte 1 if non-zero contains the card column where the operand field begins. For example, if the
operand field begins in column 16, byte 1 contains hex 10.

Byte 2 identifies the current statement.

Byte Bit Meaning

2 	 0 JOB statement
1 EXEC statement
2 DD statement
3 command
4 null
5 operand to be continued
6 statement to be continued
7 statement continuation

If bit 5 is on, bit 6 must be on, but bit 6 can be on and bit 5 off.

Byte 3 is unused.

6th word - for exit's use.

The first time SUBMIT calls the exit, the 6th word is initialized to zeros. The exit can use the
word for counters or switches. The value is not changed between calls.

Preparing a System for TSO 95

Writing Installation Exits for the OUTPUT, STATUS, and CANCEL
Commands

An installation can write its own exit for the OUTPUT, CANCEL, and STATUS commands. The
exit routine common to all three command processors is named IKJEFF53, which is a separate load
module on SYSl.LINKLIB. The IBM-supplied module performs jobname verification if a user exit is
not supplied. Any STATUS command will be accepted, but the job name for a CANCEL or
OUTPUT command must equal the userid plus at least one character. The exit routine will not be
entered for a STATUS command with no operands. The parameters and the return codes have the
same format and meaning for all three command processors. The installation exit determines which
command processor is invoking it from a parameter. The parameters are passed through a standard
linkage with register one containing the address of a list of seven full words.

Word 1 -- contains the address of the jobname. 	 •
Word 2 -- contains the address of the two-byte length of the jobname.

Word 3 -- contains the address of the userid.

Word 4 -- contains the address of the one-byte length of the userid.

Word 5 -- contains the address of a message to be issued to the terminal user. The format of one
message is LLtext, where LL is a two byte field containing the length of the entire .
message including the LL field, with a maximum length of 82 bytes. If 0, the exit is being
entered to create a message. The exit routine must obtain and free the message area.

Word 6 -- contains the address of a response from the terminal user. The format of the response is
LLtext where LL is a two byte field containing the length of the entire message including
the LL field, with a maximum length of 82 bytes. The caller of the exit routine will
obtain and free the reply area.

Word 7 -- contains the address of the one-byte command code.

Command codes are:

o = STATUS command.

4 = 	 CANCEL command.

8 = 	OUTPUT command.

Return codes are passed in register 15 and are defined as:
... o = 	Valid job name, get next job name and continue processing.

4 = 	 Display message, get response, and call exit again. If the terminal user has specified

NOPROMPT on his LOGON or PROFILE command, the command will abort and a

message will be issued to the terminal.

8 = 	Display message and call exit again.

12= Invalid jobname. Cancel request for foreground initiated background service, then continue

checking any other job name on the command. The exit routine should first use return code

4 or 8 to issue a message.

16= Abort. The exit routine should first issue a message.

96 	 TSO Guide (Release 21.7)

Writing a Logon Pre-Prompt Exit

A user-written exit, cataloged in SYS1.LINKLIB can specifiy most of the values to be determined
from the LOGON command or from prompting by the LOGON command processor. These include:

• The userid.

• 	 The password.

• 	 An account character string -- that is the value specified in the ACCT operand.

• 	 A procedure name -- that is the name of a cataloged procedure usually specified in the PROC
operand.

• 	 A region size.

• 	 A series of SO byte card images of Job Control Language (JCL) to be used instead of the JOB
and EXEC statements normally constructed by the LOGON processor.

• 	 Portions of the Protected Step Control Block.

• 	 The contents of the User Profile Table.

• The contents of the Environment Control Table used by the LOGON Prompter.

In addition, the exit can:

• 	 Read but not change the Event Control Block which will be posted if the exit terminates due to a
CANCEL request.

• 	 Read but not change the completion code from the last step executed from the terminal logging
on.

The parameters passed are defined in the PL/I example in Figure 31. The variables declared as
either BIT or CHAR, VARYING are passed as String Dope Vectors. The exit may be written in
any language but since parameters are passed as String Dope Vectors, they can be manipulated
directly in PL/I. For a definition of String Dope Vectors and information on the linkage between
Assembler Language and PL/I programs, see IBM System/360 Operating System: PL/I-F Programmer's
Guide, GC2S-6594. The exit must be Linkage Edited and cataloged in SYS1.LINKLIB with a entry
point name which processes standard Operating System parameters and the module must be named
IKJEFLD.

The exit receives control as a problem program and can use the I/O service routines through .. Assembler Language macro instruction (PUTLINE, GETLINE, PUTGET, STAX) .

LOGON passes 16 parameters to the user exit. They are of three types: ..
1. 	Character String defined in PL/I as CHAR VARYING.

2. Bit Strings defined in PL/I as BIT VARYING.

3. Fullwords defined in PL/I as BINARY FIXED (31).

The parameters passed can be given any name in the user written exit procedure but their
meaning is determined by the order in which they appear. The following explanation of the
parameters uses the names defined in the PL/I example in Figure 31.

Preparing a System for TSO 97

CONTROL SWITCHES -- a bit string that specifies what actions the exit has taken. The various

bit switches are:

UADS FAIL -- if this bit is equal to one, on entry to the pre-prompt exit, then there was an
unsuccessful ENQ on the UADS entry for the specified userid.

REGION FAIL -- if this bit is equal to one on entry to the pre-prompt exit, the region size

specified in the LOGON REGION operand was too large to be satisfied. The exit can specify

a different region size.

FAIL -- if this bit is equal to one on entry to the pre-prompt exit, the LOGON processor will
cancel the attempted log on. No message will be issued to the terminal user, so the pre-prompt
exit must issue any needed message. •

CANCEL -- if this bit is equal to one LOGON will terminate and the terminal will be
disconnected.

DONT PROMPT -- if this bit is equal to one on return from the procedure, the LOGON

processor will not prompt the terminal user for any necessary LOGON operand values but will

use the values specified by the pre-prompt exit. These include:

• Userid.
• Password.
• Accounting string.
• Procedure name.
• Region size.

EXIT UADS -- if this bit equals one on return from the pre-prompt exit, the LOGON

processor will not reference the UADS but will take all character strings and bit strings from

the procedure. DON'T PROMPT must be set to one if this bit is set to one.

EXIT JCL -- if this bit is equal to one on return from the pre-prompt exit, the pre-prompt exit

has supplied Job Control Language (JCL) that is to be used instead of the JOB and EXEC

statements constructed normally by the LOGON processor.

EXIT PSCB -- if this bit is equal to one on return from the pre-prompt exit, the LOGON

processor will use the PSCB accounting string returned by the user but will not write it to the

UADS at LOGOFF time.

EXIT ATTRI -- if this bit is equal to one on return from the pre-prompt exit, the LOGON

processor will use the PSCBA TR1 string provided by the exit and will not write it into the

UADS at LOGOFF time.

EXIT ATTR2 -- if this bit is equal to one on return from the pre-prompt exit, the LOGON

processor will use the PSCBA TR2 string returned by the pre-prompt exit and will not write it ..

into the UADS at LOGOFF time.

EXIT GROUP -- if this bit is equal to one on return from the pre-prompt exit, the LOGON ..

processor will use the PSCBGPNM string returned by the exit procedure, but will not write it

to the UADS at LOGOFF time.

EXIT UPT -- if this bit is equal to one on exit from the pre-prompt exit, the LOGON

processor will use the UPT string returned by the exit procedure, but will not be written to the

UADS at LOGOFF time.

NO ENQ UADS -- if this bit equals one and the DONT PROMPT and EXIT UADS bits are

both one, the LOGON processor will not ENQ on the UADS entry for the specified user.

98 TSO Guide (Release 21.7)

•

If both OONT PROMPT and EXIT UADS are equal to one then:

• EXIT PSCB
• EXIT ATIRl
• EXIT ATIR2
• EXIT GROUP
• EXIT UPT

also must be equal to one.

TERMINAL INPUT LINE -- this parameter contains the first line entered from the terminal.

The values for the next five parameters must be specifed if the DONT PROMPT bit is set to one.

USERID -- used to return a userid to the LOGON processor.

PASSWORD -- used to return a password to the LOGON processor.

ACCOUNT -- used to return an accounting string to the LOGON processor.

PROCEDURE -- used to return the name of a cataloged procedure containing JCL to define the
resources needed by the terminal job.

REGION SIZE -- used to return to the LOGON processor a region size for the terminal job.

The value for the following parameter must be specified if the EXIT JCL bit is set to one.

JCL -- used to provide Job Control Language statements that define terminal job resources
instead of the JOB and EXEC statements constructed by the LOGON processor.

The next six parameters must have values specified by the pre-prompt exit if EXIT UADS is set to
one by the pre-prompt exit.

PSCB -- used by the exit procedure to set a value for the PSCB accounting string.

FIRST ATTRIBUTE -- used to return a value for the PSCBATRl string.

SECOND ATTRIBUTE -- used to return a value for the PSCBA TR2 string.

GENERIC GROUP -- used to return a value for the PSCBGPNM.

UPT -- used to return a value for the UPT.

ECT -- used to return a value for the Environment Control Table (ECT) used by the LOGON
prompter.

The last two parameters cannot be altered by the pre-prompt exit but may be read .

ECB -- the Event Control Block (ECB) for the exit procedure.

COMPLETION CODE -- this fullword contains the completion code for the last job step of the
last job executed from this terminal.

For the format of the Protected Step Control Block (PSCB), the User Profile Table (UPT), and the
Environment Control Table (ECT) see the publication IBM System/360 Operating System: System
Control Blocks, GC28-6628.

Preparing a System for TSO 99

DECLARE
CONTROL SWITCHES BIT (*) VARYING,

UADS FALL BIT (1) DEFINED CONTROL SWITCHES POSITION (1),
REGION FAIL BIT (1) DEFINED CONTROL_SWITCHES POSITION (2),
FAIL BIT (1) DEFINED CONTROL SWITCHES POSITION (3),
CANCEL BIT (1) DEFINED CONTROL SWITCHES POSITION (4),
DONT PROMPT BIT (1) DEFINED CONTROL_SWITCHES POSITION (5),
EXIT UADS BIT (1) DEFINED CONTROL SWITCHES POSITION (6),
EXIT JCL BIT (1) DEFINED CONTROL_SWITCHES POSITION (7),
EXIT PSCB BIT (1) DEFINED CONTROL SWITCHES POSITION (8),
EXIT ATTR1 BIT (1) DEFINED CONTROL SWITCHES POSITION (9),
EXIT ATTR2 BIT (1) DEFINED CONTROL SWITCHES POSITION (10),
EXIT GROUP BIT (1) DEFINED CONTROL SWITCHES POSITION (11),
EXIT-UPT BIT (1) DEFINED CONTROL SWITCHES POSITION (12),
NO ENQ USERID BIT (1) DEFINED CONTROL SWITCHES POSITION (13);

DECLARE TERMINAL INPUT LINE CHAR (*) VARYING;

DECLARE USERID - - CHAR (*) VARYING;

DECLARE PASSWORD CHAR (*) VARYING;

DECLARE ACCOUNT CHAR (*) VARYING;

DECLARE PROCEDURE CHAR (*) VARYING;

DECLARE REGION SIZE BINARY FIXED (31);

DECLARE JCL CHAR (*) VARYING;

DECLARE PSCB BIT (*) VARYING;

DECLARE FIRST ATTRIBUTE BIT (*) VARYING;

DECLARE SECOND ATTRIBUTE BIT (*) VARYING;

DECLARE GENERIC GROUP CHAR (*) VARYING;

DECLARE UPT - BIT (128);

DECLARE ECT BIT (256);

DECLARE CP ABEND BIT (1) DEFINED ECT POSITION (1);

DECLARE CP-RETURN-CODE BIT (24) DEFINED ECT POSITION (8);

DECLARE IO-WORD AREA ADDR BIT (32) DEFINED ECT POSITION (33);

DECLARE NOSEC LEVEL MSG BIT (1) DEFINED ECT POSITION (65);

DECLARE SEC LEVEL MSG ADDR BIT (24) DEFINED ECT POSITION (73);

DECLARE COMMAND NAME - CHAR (8) DEFINED ECT POSITION (97);

DECLARE SUBCOMMAND NAME CHAR (8) DEFINED ECT POSITION (161);

DECLARE NO MAIL SWITCH BIT (1) DEFINED ECT POSITION (228);

DECLARE NO-NOTICE SWITCH BIT (1) DEFINED ECT POSITION (229);

DECLARE ECB - BINARY FIXED (31);

DECLARE COMPLETION CODE BINARY FIXED (31);

IFigure 31. Example of PL/I Logon Pre-Prompt Exit DECLARE Statements

..

..

100 TSO Guide (Release 21.7)

..

..

..

Storage Estimates

The estimates included in this chapter are intended for planning purposes only. None of these
estimates have been verified, and they are subject to change. Verified estimates appear in the
publication IBM System/360 Openting System: Storace EstiJDates, GC28-6SS1 .

This chapter contains two sections: main storage requirements and auxiliary storage
considerations. All figures in this chapter are decimal, and "K" represents a factor of 1024 .

Main Storage Requirements

The main storage requirement for TSO is divided into four major parts:

• An addition to the MVT basic fixed requirement.

• The TCAM Message Control Program requirement.

• The Time Sharing Control region requirement.

• The foreground regions in which user's programs are executed.

Only the first of these requirements has any effect on the batch environment if time sharing is not
active. Storage for the TCAM, Time Sharing Control, and foreground regions is obtained from the
dynamic area when the operator starts time-sharing operations. This storage is returned to the
dynamic area when time sharing is stopped, and is again available for batch processing.

The main storage basic fixed requirement for an MVT system is for:

• The nucleus.

• The Master Scheduler. Region.

• The Link Pack Area (LPA).

• The System Queue Area (SQA).

Storage for the basic fixed requirement is allocated by the Nucleus Initialization Program (NIP)
when the system is started and does not normally vary while the system is running .

Nucleus

Including TSO at system generation adds approximately 3K to the size of the resident MVT nucleus,
for a total requirement of about 4SK. In addition, communication lines, like other I/O devices,
require 40 bytes each in the nucleus for control blocks.

Master Scheduler Region

The master scheduler region is increased by approximately 4K to handle new or extended operator
commands for the time-sharing environment, and for extended error recovery. The total requirement
is about 16K.

Storage Estimates 101

Link Pack Area

One small TSO module is added to the required MVT link: pack area list of resident modules. The
minimum link: pack area size remains 10K. If the standard MVT resident reenterable load module
and resident SVC lists are used at system generation, the LPA requirement is about 54K. If space is
available, an additional 16K of SVC modules for time sharing are appropriate for the resident list,
for a total LPA size of 70K.

Additional resident reenterable load modules for time sharing are placed in an extension to the
link: pack area allocated in the Time Sharing Control region, and are resident only when time sharing
is active. The size of this extension, called the Time Sharing Link: Pack Area (TSLPA), is discussed
with the Time Sharing Control Region requirement.

System Queue Area

During time-sharing operations, use of the system queue area is kept to a minimum by placing as
many control blocks as possible into a local system queue area (LSQA) defined in each foreground
region. Control blocks in the local SQA are swapped in and out of main storage along with the
foreground job they apply to.

Some control blocks associated with foreground jobs, such as queue elements for named data sets
and operator reply queue elements, must remain in main storage while the job is swapped out. Space
for these control blocks, and for all control blocks associated with the tasks supervising the
time-sharing operation must be allocated from the system queue area. These requirements must be
considered when setting SQA size at system generation or at nucleus initialization.

Message Control Program Requirement

The size of the TCAM Message Control Program region depends largely on what options are
selected and what hardware is present on the teleprocessing network. In addition to the minimum
requirement for the Message Control Program routines, there are requirements for each defined line
group, each additional terminal type, and for each permitted user. If teleprocessing applications
other than TSO are present, additional routines to handle different buffering and queuing techniques
will be needed.

In a system with TSO as the only teleprocessing application, with three terminal types and two
line groups, the Message Control Program requirement is expected to be about 52K plus 800 bytes
for each possible concurrent user. Although the Message Control Program executes in a problem
program region, the region may be smaller than the normal minimum problem program region size
(MINPART).

Tillie SIIarillg Control Region Requirement

The Time Sharing Control region must provide space for programs for the Time Sharing Control
Task, Region Control Tasks, several resident SVC routines, the time sharing extension to the link:
pack area, and various control blocks. Some of the control blocks are repeated for each foreground
region, for each swap data set, or for each time sharing user. An initialization routine brought in
when the operator starts time sharing analyzes the time-sharing parameters supplied by the
installation, calculates the region size requirement, and obtains the region from the dynamic area.

Using a buffer length of 40 bytes, and assuming eight buffers per time-sharing user, a TSO
configuration with two mM 2314 swap data sets, one foreground region, and 20 users would
require a time sharing control region of about 87K. A larger configuration, with two 2301 swap data

102 TSO Guide (Release 21.7)

...

sets and two 2314 swap data sets, four foreground regions, and 100 users would require about
117K for the time sharing control region.

DytUlmic Area ReqllinmellD

The SEND operator command, like several others already in the MVT configuration, obtains and
uses an 12K operator command region from the dynamic area when the operator enters it. This area
is freed when processing of the command is completed.

When it is active, the time sharing trace facility requires a 20K region from the dynamic area.

.. ForegrtllllUl Regioll ReqllWmmt

..
 The foreground region contains the programs invoked by the terminal user. Space must be provided

in the foreground region for the local system queue area (LSQA) and for four main storage
subpools used for control blocks for the command system.

The subpools defined are:

• SubpooIO--4K.
• Subpool 1--4K.
• Subpool 78--2K.
• Subpool251--2K.

The minimum foreground region size is 72K, and all mM-supplied command processors e1.cept some
of the language processors can execute in this region.

Auxiliary Storage Requirements

The major additions to the system auxiliary storage requirements for TSO are for the swap data sets
and new or larger system libraries and data sets. The installation must also consider the direct access
storage needs of the individual terminal users, and make allowances for these in the size of the
system catalog and password data sets. In addition, data sets which are dynamically allocated, use
SPACE=(50,10,10) for size parameters.

Swap Data Sets

A swap data set is divided into swap allocation units, each of which consists of a device-dependent
number of 2K records. To avoid space fragmentation, space in the swap data set is always assigned
in integral swap allOCation units. Figure 32 shows the sizes of allocation units for various swap
devices.

Allocation

Device Type Unit Size

2301 Drum Storage 1 track 18K

2303 Drum Storage 4 tracks 18K

2305-1 Fixed Head

Storage 4 tracks 44K

2305-2 Fixed Head

Storage 4 tracks 52K

2314 Direct Access

Storage 1/2 cylinder 64K

3330 Disk Storage 3 tracks 32K

Figure 32. Swap Allocation Unit Sizes

Storage Estimates 103

For a system with one foreground region, the maximum necessary swap space can be calculated
by the algorithm:

Swap Space = (R/A). (U+2)

where:

R is the size of the region.

A is the size of an allocation unit, as shown in Figure 32, (R/A is rounded up to an integer).

U is the number of concurrent foreground jobs.

For instance, a system with one foreground region of 120K, an ffiM 2314 swap device, and 30
possible users would have a maximum swap data set space requirement of:

(120/64).(30+2) = 2.32 = 64 allocation units or 32 cylinders

In this case, the number of allocation units required to hold a complete foreground region is two,

and the number of users plus two is 32.

Swap data sets must be allocated by cylinder, even if the swap data set does not occupy a full
cylinder.

If TSO runs out of swap space, no message is issued, and the system may loop, so allow
sufficient space.

System Libraries and Data Sets

The additions to system libraries for TSO are expected to be (with the increments expressed in 2311
tracks):

• SYS1.LINKLffi--30 tracks.

• SYS1.SVCLffi--20 tracks.

• SYS1.MACLffi--60 tracks.

Two new libraries, SYS1.CMDLffi (command library) and SYS1.HELPLffi (HELP data set), are
expected to be smaller than 220 mM 2311 tracks each.

The size of the User Attribute Data Set, a partitioned data set with a member for each user
identification, depends on the number of password-identification-account number-procedure name
combinations defined for each user. A simple identification structure for a single user with a single
value at each level requires about 200 bytes of storage space.

Typical time-sharing usage also requires more space for the system catalog and password data
sets than batch usage. All user data sets are cataloged as a default, and read-only password
protection is recommended at least for system data sets. This type of protection does not cause any ...performance degradation when the data sets are accessed for reading.

104 TSO Guide (Release 21.7)

Appendix A: TSO Commands

The commands available to terminal users of the Time Sharing Option are listed below, grouped
according to function. Installations may give other names to these commands by assigning aliases to
the respective members in the system command library. No IBM-supplied command names include
numerals, allowing installations to ensure uniqueness in locally named commands.

Data Management

ALLOCATE
define and allocate a new or old data set.

ATTRIB
build a list of data set attributes that can be assigned to data sets being allocated.

COPY
duplicate a sequential or partitioned data set, or a member of a partitioned data set, optionally
modifying such characteristics as blocking factor.!

DELETE
delete and uncatalog one or more data sets or members.

EDIT
invoke the edit mode or input mode to modify or create a data set; provide an interface to the
language syntax checkers and processors.

FORMAT
format a data set for printing according to embedded controls.!

FREE
release a data set or an attribute list.

LIST
display at the terminal all or part of one or more data sets, optionally re-arranging information in
the records.!

LISTALC
display at the terminal the names and characteristics of currently active (allocated) data sets.

LISTBC
display at the terminal any system notices or messages from other users.

LISTCAT
display at the terminal the names and characteristics of a group of data sets indexed together in
the system catalog.

LISTDS
display at the terminal the characteristics of one or more specified data sets.

MERGE
copy all or part of one data set or member into another.!

PROTECT
assign or modify password protection to a data set.

11BM Program Products.

Appendix A: TSO Commands 105

RENAME
change the name of a data set or member, or assign an alias to a member.

Language Processors

ASM
invoke the Assembler (F) prompter.1

CALC
invoke the ITF: PL/I processor for desk calculator mode.1

COBOL
invoke the Full American National Standard COBOL compiler (Version 3 or 4).1

CONVERT
convert source programs written in Code and Go FORTRAN free form to standard format
FORTRAN or ITF: PL/I programs to PL/1.1

FORT
invoke the FORTRAN (Gl) compiler.1

GOFORT
invoke the Code and Go FORTRAN compiler to compile, load, and execute a source program
previously saved.1

PLI
invoke the PL/I Optimizing compiler.!

PLIC
invoke the PL/I Checkout Compiler.1

RUN BASIC
invoke the ITF: BASIC compiler and execution control routines.!

RUN GOFORT
invoke the Code and Go FORTRAN compiler and execution control routines.!

RUN IPLI
invoke the ITF: PL/I compiler and execution control routines.!

RUN PLI CHECK
invoke the PL/I Checkout Compiler.1

RUN PLI OPT
invoke the PL/I Optimizing Compiler, the OS Loader, and give control to the resulting module.1

TESTCOB
invoke COBOL Interactive Debug for monitoring and testing programs compiled under the TEST
option of the Full American National Standard COBOL Version 4 compiler.1

TESTFORT
invoke FORTRAN Interactive Debug for monitoring and testing programs compiled under
FORTRAN IV (Gl) or Code and Go F9RTRAN.1

Program Control

CALL
invoke a specified program which exists in load module form.

11BM Program Products.

106 TSO Guide (Release 21.7)

,.

•

LINK
invoke the Linkage Editor to create a load module from one or more object and load modules.

LOADGO
invoke the Loader to process a specified object module, bring it into storage, and give it control.

RUN
invoke a user program in source program form, first compiling it, then calling the Loader to bring
it into storage and give it control.

TEST
control the execution of a program, interrupting it at pre-specified points for debugging activity.

Remote Job Entry

Note: Use of these commands requires authorization in the user profile.

CANCEL
cancel a job previously submitted for background execution.

OUTPUT
direct SYSOUT data sets and system messages from submitted jobs to the terminal or a specified
data set.

STATUS
display information at the terminal on the status of a job previously submitted for background
execution.

SUBMIT
submit a data set containing job control language for one or more jobs for interpretation and
execution in the background.

System Control

Note: Use of these commands requires authorization in the user profile.

ACCOUNT
add or modify user profiles in the User Attribute Data Set.

OPERATOR
invoke the operator mode, allowing the user to enter system commands from his terminal.

Session Control

EXEC
invoke a command procedure.

HELP
display at the terminal information on command function and syntax .

LOGON
start a terminal session.

LOGOFF
end a terminal session.

PROFILE
specify special characters for line editing; lock out and accept messages from other users.

SEND
direct a message to the system operator or to another user.

Appendix A: TSO Commands 107

TERMINAL
specify the conditions under which an attention interruption is to be simulated, for terminals
without attention keys; and defme other terminal-dependent characteristics.

TIME
display at the terminal the amount of time expended during the current session or the current
program.

Conunand Procedure Definitioa

END
indicate the end of a command procedure.

PROC
indicate the beginning of a command procedure; define positional and keyword parameters for
symbolic substitution.

WHEN
test the return code set by the previous command in the command procedure (usually CALL or
LOADGO).

..

..

•

108 TSO Guide (Release 21.7)

Appendix B: Driver Entry Codes

Entry Code Table (Part 1 of 4)

r-------------r------------------------T-------------------,----------------------------,
I Event Name 	 I I I Input I

~~~~~:-=~::-t~::~~-~~:~~-~~~:::-t~~~~~-~~:-~~::--~~~~~~:::-~-T--~:~~~~:~-~----~ 
IPPMODE (0) IProblem Program (TMP) Command about to be 0 Address of 8­
I I (S); TIME Command; TEST processed character 

• 	 I I Command command name. 
I I 
I I Bit 0 
I I 0 - Ended 
I I 1 - Beginning 
I I 
ITSLICE (1) ITimer Second-Level Time slice has NA NA 
I IInterrupt Handler (S) expired 
I I 
I TERMWAIT (2) I TGET/TPUT (T) User is waiting for TJID Bi t 0 
I I terminal 1/0. Swap 
I I him out. 0: input 
I I 1: output 
I I 
I I Bytes 3 and 4: I 
I I number of free 
I I buffers. 
I I 
INIOWAIT (3) IRegion Control Task (S) IAII user's tasks TJID NA 
I I I are in non- I/O 
I I IWait. 
I I I 
USERRDY (4) 	 I Dequeue, TIOC I Swapped out user TJID NA 

I (Attention, TSINPUT, Iready to run. 
ITooUTPUT), Timer SLIH, I 
IWTOR (S,T) I 
I 	 I 

RUSRTRMW (5) 	 IRegion Control Task (5) IRestored user is TJID NA 
I I still in non-I/O 
I Iwait. SWap him out. 
I I 

REQSTNC (6) 	 I Enqueue (5) I User is setting 0 Estima ted must I 
I Imust complete for complete time. I 
I I owned resources. I 
I I 

RELMC (7) 	 IDequeue (S) IUser is no longer 0 NA 
I 	 I I in must complete 


I I status. 

I I 


DISPLAC (8) ITSO Dispatcher (D) 	 IA task switch has NA NA 
I taken place 
I resulting in a 
Ibackground task 
Ibeing dispatched; 
I the old task was 
Inot a background 
I task. 
I 

• 	 DI5PSYS (9) TOO Dispatcher (D) IA task switch has NA NA 
Itaken place 
Iresulting in a 
Isystem task being 
I d i spa tched; the old 
Itask was not a 

I ____________~________________________ I system 	 ________________L-	 ta sk. ___________~~ 	 ~ 

Appendix B: Driver Entry Codes 109 



Entry Code Table (Part 2 of 4) 

r-------------r------------------------T-------------------r----------------------------1
IEven t Name I I I Input 
I (Entry Code) I Calling Routine (ClASS) IReason for Entry IRegister 0 Register 1 I 

r-------------+------------------------+-------------------t-----------T----------------i 

I 

DISPTS nO} ITS 
I 

Dispatcher (D) IA task switch has 
I taken place 

0 NA 

I 
I 

Iresulting in a 
Inew time-sharing 

I Itask being 
I Idispatched; the old 
I Itask was not for 
I I the same TSO user. 

DISPWAIT 
I 

(l1}ITS Dispatcher (D) 
I 
IA task switch has NA NA , 

I Itaken place 
I Iresulting in a 
I Isystem wait. 
I I 

Q5CEST (12) IRegion Control Task (S) IQuiesce is started TJID NA 
I I 

QSCECMP (13) IRegion Control Task (S) Quiesce is complete TJID Number of 
I FBQEs 

SWOUTST (14) 
I 
I Time Shar ing Control swap out started TJID Byte 0: 
ITask (SWAP) (S) Swap units 

I 
I 
I 

I 
I 
I 

Byte 1: 
swap device 
code (O,4,8,C) 

I I Bytes 2 and 3: 
I 
I 

I 
I 

SWap size (in 
2K blocks) 

I I 
ISWOUTCMP 
I 

(15) ITime 
I Task 

Sharing Control 
(SWAP) (S) 

Swap out complete TJID NA 

I I 
ISWINST (16) ITime Sharing Control ISwap in started TJID NA 

I ITask (SWAP) (S) I 
I 
ISWINCMP 
I 

(11) 
I 
ITime Sharing Control 
I Task (SWAP) (S) 

I 
ISWap 
I 

in complete TJID NA 

I 
RSTORST (lS) 

I 
IRegion Control Task (S) 

I 
IRestore is started TJID NA 

I I 
RSTORCMP (19) IRegion Control Task (S) Restore is complete TJID NA 

I 
(20) IReserved 

I 
(21) IReserved 

I 
(22) IReserved 

I 
(23) IReserved 

I 
(24) IReserved 

I 
ILOGACCT (25) ILOgon (S) Pass Logon 0 Address of 
I I information for accounting 
L-____________~________________________~___________________~___________~________________ JI laccounting purposes I information 

.,. 

110 TSO Guide (Release 21.7) 



Entry Code Table (Part 3 of 4) 

• 

Time Shar ing Con trol Specify region size Region number 
ITask, Region Control for specific region (Bytes 0 
ITask (5) and 1) 

1 Required 
1 region size 
1 (Bytes 2 
1 and 3) 
1 

(28) 1Reserved 

1 

1End of Task (5) TJID is to TJID NA 
1 be released. 
1 Region can 
1 be released. 

1
I LOGON (30) 
 ILOGON (5) Hook user into TJID Region ID 
1 Iregion selected 
1 1by entry code 31 
1 1 

REQRGNID (31) 1Time Sharing Control IObtain region ID 1 TJID Region size 
ITask, Logon (5) lappropriate to sizel 
1 1 1 

ISWINERR (32) 1RCT and 1 1 
1 ITime Sharing 1Swap in failed 1 TJID Bit 0 
1 1Control Task (SWAP) (5) 1 1 
1 1 1 1 0: Not LOGON 
1 1 1 1 image 
1 1 1 1 1: LOGON image 
1 1 1 I 
ISWOTERR (33) ITime Sharing Control 1Swap out failed. Nol TJID TJID of failed 
I ITask (S~P) (5) Iroom on SWAP data I user 
1 1 Iset 
1 1 1 
ITGETPUT (34) ITGET, TPUT (T) ITGET was satisfied; TJID Bit 0: 
1 1 ITPUT was satisfied or 
I 1 1 o o - TGET 

1 - TPUTJill
1 1 For TGET., 

1 1 1 Bit 1: 
1 1 1 o - all data I 
1 I I transferedl 
1 1 1 1 - partial I 
1 1 I transfer I 
1 1 1 I
1 I 1 Bytes 3 and 4=1• 1 1 1 Number of 
1 I 1 characters I
1L_____________L1________________________L-__________________ 1___________L trans ferred I1 L ________________1 

Appendix B: Driver Entry Codes 111 



Entry Code Table (Part 4 of 4) 

r-------------T----OO-------------------T-------------------T----------------------------, 
IEvent Name I I I Input I 

I (Entry Code) ICalling Routine (CLASS) IReason for Entry IRegister 0 Register 1 I 

t-------------t------------------------t-------------------+-----------T---------------~ 
I I 	 I I 
I I 	 I I 
IATTN (35) ITIOC Attention IAttention (not line I TJID Sign bit: 

I Iroutine (T) Idelete) I 

I I I I o - No exit 

I I I I 1 - Exit 

I I 	 I I 
IIOERROR (36) ITIOC Hang Up routine IPermanent I/O Error I TJID NA 

I I Terminal I 

I I disconnected I 

I I I 

ITERMDSCN (37) ITIOC 	 Disconnect terminal I TJID NA 
I ILOGOFF (T) 	 logically from TSO I .. 
I I 
I (38) IReserved 
I (39) IReserved 
I I 
RGNFAIL (40) 	 ITime Sharing Control Region failed NA Region ID 


ITask; Region Control Bit 0 

ITask (5) o - Region 

I failed 

I 1 - No more 

I LOGONs 

I for the 

I region 

I 

DONTSWAP (41) ITransient Area IDo not swap out TJID NA 

IHandler (S) luser 

I 	 I 

OKSWAP (42) 	 ITransient Area IAllow swap out of TJID NA 

I Handler (S) I user 

I I 


UPDATACC (43) LOGOFF (5) 	 I Upda te accounti ng TJID NA 

I information for 

IUser logging off 

I 

FEDIAG (44) ServiceaDility (5) 	 IFE diagnostics o Bit 0: 

Irecorded in TSO o 

TRACE da ta set 	 Bits 1-4: 

Diagnostic 
Identifier 
Bits 5-7: n 
when 2(n+1) 
equals number 

I of entries 

I Bits 8-31: 

I address of 

I data to be 

I recorded. 

I 

I 
IENQWAIT (45) Enqueue (5) User in enqueue TJID X'cooooooo' 

I WAIT. Swap him out. 

~------------~------------------------~------------------- -----------~----------------

on entry to the Time Sharing Driver, register 0 contains: 
Not.. 	 Bytes 0 and 1 TJID or 0 


Byte 2 Reserved 
 •
Byte 3 Entry code 

CLASS refers 	to the TSO Trace Data set Processor CODES parameter. 

112 TSO Guide (Release 21.7) 



Appendix C: Message Control Program Assembly Diagnostic 

• 

.. 


• 

IKJ5410tI 	 LINEGRP MACRO MUST 
PRECEDE TSOMCP MACRO 

Explanation: Processing of a LINEGRP macro has 
been terminated because it followed a TSOMCP 
macro. All LINEGRP macros must precede the 
TSOMCP macro . 

IKJ541011 	 MORE THAN 63 LINEGRP 
MACROS 

Explanation: Too many LINEGRP macros were 
issued. The user should check to see if there are 
two or more line groups with the same attributes 
which could be combined into one line group. 
Another possible solution could be combining 1050 
and 2741 line groups into a 5041 line group. 

IKJ541031 	 REQUIRED OPERAND(S) NOT 
SPECIFIED 

Explanation: Processing of this macro has been 
terminated because one or more required operands 
were omitted. 

IKJ541041 	 xxxx INVALID FOR yyyy 
OPERAND 

Explanation: The value (xxxx) of the indicated 
operand (yyyy) is invalid as specified. The user 
should reread the description of this operand and 
determine the permissable values. 

IKJ541051 	 TRANTAB=xxxx INVALID FOR 
THIS TERMINAL TYPE 

Explanation: The indicated translate table was 
ignored because it is not compatible with the 
terminal type specified in the TERM operand. 

IKJ541 061 CODE OPERAND SHOULD BE 
SPECIFIED ONLY IF MORE THAN 
ONE TRANSLATE TABLE IS 
SPECIFIED 

Explanation: The CODE operand has been ignored 
because less than two translate tables are being 
used in the line group. 

IKJ541071 	 CODE OPERAND CONTAINS 
MORE THAN 4 SUBLIST 
OPERANDS 

Explanation: Too many sUboperands were specified 
in the CODE operand sublist. The user should 
reread the description of this operand to be sure he 
understands dynamic translation. If not, he should 
omit this operand so that the default values will be 
used . 

IKJ541081 	 CODE SUBOPERAND TOO LONG 

Explanation: Each suboperand of the CODE 
operand must be less than 9 characters. 

IKJ541091 	 DIAL OPERAND NOT 
CONSISTANT WITH TERM 
OPERAND 

EXplanation: The terminal type specified in the 
TERM operand cannot be supported on the type 
of network (switched or non-switched) specified by 
the DIAL operand. 

IKJ54110I 	 xxxx OPERAND OUT OF RANGE, 
DEFAULT VALUE USED 

Explanation: The value of the indicated operand is 
outside the valid limits. The default value has been 
used instead. The user should consult the 
description of this operand to determine the value 
limits and the default value used. 

IKJ5411tI 	 xxxx OPERAND CONTAINS TOO 
MANY SUBLIST OPERANDS 

Explanation: 	 The indicated operand was not 
processed because it contained to many sublist 
operands. 

IKJ541111 	 SUBLIST OPERAND yy OF 
FEATURE OPERAND IS INVALID 

Explanation: 	 The indicated sublist operand (1, 2, 
or 3) of the FEATURE operand has been ignored 
because it is not valid for the terminal type 
specified in the TERM operand. 

Appendix C: Message Control Program Assembly Diagnostic 113 



1KJ54113I EBCD OR ASCI (BUT NOT BOTH) 
ALLOWED FOR THIS TERMINAL 
TYPE, DEFAULT VALUE USED 

Explanation: Either EBCD or ASCI, but not both, 
is allowed as TRANSTAB operand for 3270. The 
default value of EBCD is used. 

IKJ54114I 	 xxxx OPERAND NOT ALLOWED 
FOR THIS TERMINAL TYPE 

Explanation: The indicated operand has been 
ignored because it is not allowed with the terminal 
type specified in the TERM operand of the 
LINEGRP macro. 

1KJ54115I 	 TERMNO OPERAND 
REFERENCES NON-EXISTENT 
LINE(S) 

Explanation: The TERMNO operand refers to 
more lines than exist for this line group. In other 
words, the number of sublist operands in the 
TERMNO operand is greater than the value of the 
LINENO operand. The extra TERMNO sublist 
operands have been ignored. 

1KJ54116I 	 SCREEN OPERAND MUST BE A 
TWO-OPERAND SUBLIST 

Explanation: The SCREEN operand has been 
ignored because it is not a sublist with two 
suboperands. The default values (12,80)for 2260 or 
(24,80) for 3270 have been assumed. 

1KJ54117I 	 NON-STANDARD SCREEN 
DIMENSIONS -- ACCEPTED 

Explanation: 	 This message is a warning that the 
screen dimensions specified do not correspond to 
standard mM screen sizes. The values specified 
have been accepted, however. 

1KJ54118I 	 ADDR OPERAND INCORRECf 
LENGTH -- IGNORED 

Explanation: 	 ADDR operand of incorrect length 
has been ignored. For a 1050 terminal the length 
must be two, for 3270 or 2260/65 the length must 
be four. 

1KJ54119I 	 ADDR OPERAND SHOULD BE 
SPECIFIED FOR THIS TERMINAL 
TYPE 

Explanation: 	 The ADDR operand was omitted and 

114 TSO Guide (Release 21.7) 

the terminal type specified in the TERM operand 
requires addressing characters which can only be '\ 
specified in this LINEGRP macro. Note that this .."" 
warning message cannot be provided in the case of 
2260/65 or 3270 line groups. Omission of the 
ADDR operand can be valid in the LINEGRP 
macros of these line groups since the addressing 
characters may be specified in the LISTT A macro. 
Omission of necessary addressing characters from a 
LISTT A macro will be documented by message 
IKJ54128I. 

1KJ54120I LISTTA MACRO OUT OF ORDER 
-- IGNORED 

11 

Explanation: A LISTT A macro must follow the 
LINEGRP macro to which it refers and precede 
the TSOMCP macro. 

1KJ541211 	 RLN OPERAND MISSING OR 
INVALID 

. Explanation: 	 Processing of the LISTT A macro has 
been terminated because the RLN operand is 
missing or invalid. 

1KJ54122I 	 RLN OPERAND REFERS TO 
NON-EXISTENT LINE 

J
Explanation: Processing of the LISTT A macro has 
been terminated because the value of the RLN 
operand exceeds the value of the LINENO operand 
of the previous LINEGRP macro. 

IKJ54123I 	 LISTTA MACRO NOT ALLOWED 
WITH TERMINAL TYPE OF 
PREVIOUS LINEGRP 

Explanation: 	 The TERM operand of the previous 
LINEGRP macro specified a terminal type which 
does not permit LISTT A macros to be issued for 
the line group. This LISTTA macro was therefore 
ignored. 

1KJ54124I 	 ADDR OPERAND REFERS TO 
NON-EXISTENT TERMINAL(S) 

• 
Explanation: 	 The number of suboperands in the 
ADDR operand sublist of the LISTTA macro is 
greater than the number of terminals specified or 
defaulted by the TERMNO operand of the 
previous LINEGRP macro. The ADDR operand 
has been ignored. The user should recheck his 
specifications for the ADDR and RLN operands in 



• 

• 

• 

the USTTA macro and the TERMNO operand in 
the previous LINEGRP macro. 

IKJ541l51 	 MORE THAN ONE TSOMCP 
MACRO CALL ISSUED 

Explanation: Processing of this.TSOMCP macro 
was terminated because it was not the first 
TSOMCP macro in the assembly. Only one 
TSOMCP macro call is allowed for each generation 
of an MCP. 

IKJ541l61 	 NO LINEGRP MACRO ISSUED 
BEFORE TSOMCP MACRO 

Explanation: Processing of this macro was 
terminated because no LINEGRP macro had been 
issued previously in the assembly. At least one 
LINEGRP macro must precede the TSOMCP 
macro. 

IKJ541171 SERIOUS ERROR IN PREVIOUS 
MACRO CALL PREVENTS 
FUR11IER GENERATION 

ExpIanatloD: One or more serious errors in 
previous LINEGRP or LISTTA macros has 
occurred, causing MCP generation to be bypassed. 
See error messages printed in the listing prior to 
this one. 

IKJ54tlli 	 ADDRESSING CHARACfERS 
MISSING OR INVALID FOR 
TERMINAL(S) IN LINE GROUP xx 

ExpIImatioD: The TSOMCP macro has discovered 
a terminal whose type requires addressing 
characters, but for which none were correctly 
specified in previous LINEGRP or LISTT A 
macros. The error message indicates the relative 
number (xx) of the line group in which the error 
exists. 

Appendix C: Message Control Program Assembly Diagnostic 115 



Bib60grapby 

Readers interested in the implementation of the 
system should be familiar with the information in: 

IBM System/360 Operating System: 

Introduction, GC28-6534 

MVT Guide, GC28-6720. 

Job Control Language Reference, GC28-6704 

System Generation, GC28-6554. 

Storage Estimates, GC28-6551. 

TCAM Programming Guide and Reference Manual, 
GC30-2024 

The following publications provide information 
specific to the Time Sharing Option: 

IBM System/360 Operating System: Time Sharing 
Option Guide to Writing a Terminal Monitor 
Program or a Command Processor, GC28-6764 
discusses those portions of TSO which 
communicate directly with the terminal user and 
can be replaced or modified by an installation. 

Three publications provide information for terminal 
users: 

IBM System/360 Operating System: Time Sharing 
Option Command Language Reference, GC28-6732 
describes the syntax and facilities of the TSO 
Command Language. 

IBM System/360 Operating System: Time Sharing 
Option Terminal User's Guide, GC28-6763 
provides general information about TSO for 
TSO terminal users. 

IBM System/360 Operating System; Time Sharing 
Option Terminals, GC28-6762 describes how to 
use the terminals supported by TSO. 

For information about the internal logic of the 
Time Sharing Option refer to: 

IBM System/360 Operating System: Time Sharing 
Option 

Control Program, Program Logic Manual, 

116 TSO Guide (Release 21.7) 

GY27-7199. 

Terminal Monitor Program and Service Routines, 
Program Logic Manual, GY28-6770. 

For information about the internal logic of a 
specific command or subcommand, see the 
appropriate Command Processor Program Logic 
Manual. 

For more detail on specific components or subjects 
discussed in this publication, the following 
publications may be of interest. 

For system operation and management 

IBM System/360 Operating System: 

Operator's Reference, GC28-6691. 

System Management Facilities, GC28-6712. 

For I/O devices and control units: 

IBM 2701 Data Adapter Unit, Component 
Description, GA22-6864. 

IBM Component Description, 2702 Transmission 
Control, GA22-6846. 

IBM 2703 Transmission Control, Component 
Description, GA27-2703. 

IBM 2741 Communications Terminal, GA24-3415. 

IBM 1050 System Summary, GA24-3471. 

IBM Component Description, 2260 Display Station 
-·2848 Display Control, GA27-2700. 

For information about the language processors, see: 

IBM System/370 Program Products: Language and 
Sort Processors: OS, DOS, VM/370·CMS, 
GC28-8200. 

.. 

• 
For information about the TSO data utilities, see: 

IBM System/370 Program Products: TSO Data 
Utilities: COPY, FORMAT, UST, MERGE, 
Program Product Specifications, GC28-6768. 



Indexes to systems reference library manuals are 
consolidated in the publication IBM System/360 
Openting System: Systems Reference Ubrary Muter 
Index, Order No. GC28-6644. For additional 
information about any subject listed below, refer to 
other publications listed for the same subject in the 
Master Index. 

• 
Where more than one page reference is given, the 
major reference is first. 

• 
* as current line pointer 27 


Access methods 

available in foreground 15,52-53 

restrictions on 15 

used with TCAM 53 


ACCOUNT command 

Broadcast data set, effect on 75 

UNIT operand 88 

usage 31,21 

used in defining a UADS 75 

used in defining TSO unit classes 88 


Account number 
with LOGON 24 


ACTIVITY driver parameter 85 

ADDR 


operand of LINEGRP macro instruction 67 

operand of LISnA macro instruction 68 


ALLOCATE command 

compiler data sets 39 

function 27 


ANS COBOL compiler 

define terminal as file 35 

description 33-35 

in terminal environment 35,22 

PRINT option 34 

TERM option 34


I TEST option 34 

Apostrophes 


for data set names 27 

Assembler (F) 38 

Asterisk 


as current line pointer 27 

Attention (see simulated attention function) 

Attention exit routine 


description 26,49 
Attention key 


for line-delete 25 

handling 49 

simulating 26


I A TTRIB command 28 

Attributes


• of the data sets 26 

Authorizations 

for users 20,31 
Auxiliary storage requirements 103-104 
Available execution time 

in minor time slice 59 
Average queue service time 58 
Average region activity 59 
AVGSERVICE driver parameter 85 

Background 

definition 10 


Index 


Background execution percentage 
specifying 61,85 

Background jobs 

naming 31 

submission for terminal 21,30 


Background programs 
developing from terminal 21 


BACKGROUND driver parameter 84 

Background reader (BRDR) 


installation exits to SUBMIT command 94 

reader parameters 76 

required data sets 76 

sample cataloged procedure 76 

specifying program 76 


Backspace key 

for character-delete 25 


BASIC 

use 22,40 


Basic Telecommunications Access Method (BT AM) 

restriction 16 


Batch processing 

and time sharing 9 

description 9 


BRDR (see Background Reader) 
Breakpoints 


definition 30 

establishing 49 


BTAM 

restriction 16 


Buffer Control Parameters 

operands 84 

use 82 


BUFFERS 

operand of buffer control parameters 84 


BUFSIZE 

operand of buffer control parameters 84 


CALC command 40 

CALL command 


function 30 

to invoke compilers 39 


CANCEL command 

function 30 

installation exit (see OUTPUT command installation 


exit) 
CANCEL operator command 


from terminal 31 

use of 31 


Catalog 

of data sets 29 


Cataloged procedures (see Writing Cataloged Procedures 

for TSO) 


Character-delete character 

definition 25 

specifying 26 


Checker (see OS PL/I Checkout Compiler) 

Checkpoint/Restart 


restriction 16 

CIB 


operator entered TCAM parameter 71 

CLIST data set SO 

CLOCK 


operand of TSO trace data set processor 94 

COBOL (see ANS COBOL) 

COBOL command 34 

CODE 


operand of LINEGRP macro instruction 66 

syntax 65 


Code and Go FORTRAN 

use 41,36 


CODES 

operand of TSO trace data set processor 93 


Index 117 




Commands 

adding 22 

format 24 

listed 105-108 

to define work 12 


Command analysis 50 

Command capabilities 20-22 

Command library 


use by Terminal Monitor Program 49 

Command mode 26 

Command name 


definition 24 

use 24 


Command procedure 

CLIST data set 50 

definition statements 108 

function 31 

handling 50 

library 31 

when used 31,49 


Command processor 

cancelling 26 

completion 49 

definition 12 

design 51 

invocation 49 

programming languages for 33 


Compatibility 

background-foreground 16,22 

with CRJE 16,22 


Compute-bound jobs 60 

Concurrent processing 15 

Conditional statements 


in command procedures 32 

Context editing 27 

Control routines 44 

Conversational Remote Job Entry 


TSO compatible with 15,30 

I
CONVERT command 


for FORTRAN 36 

for ITF: PL/I 40 


COpy command 29 

CRJE (see Conversational Remote Job Entry) 

CROSSRF 


as operator entered TCAM parameter 70 

CUTOFF 


operand of TSOMH macro instruction 63 

CYCLES driver parameter 85 


DAIR (see Dynamic Allocation Interface Routine) 

Data entry 26 

Data set management commands 29 

Data sets 


allocation 17 

creating 26 

deleting 29 

line 26 

naming 25 

renaming 29 

retrieving 27 

shared 27 


Data set naming conventions 25 

Data set protection 


commands for 19 

Data set security 19 

Data utilities 29 

DD statements 


dynamic 17 

in LOGON procedure 77
IDDNAME 

operand of LINEGRP macro instruction 65 


ddname 

for broadcast data set 74 

for LOGON cataloged procedures 74 

for swap data sets 74 

for TSO dump 74 

for UADS 74 


Debugging (see Testing Programs) 

118 TSO Guide (Release 21.7) 

Decay constants 

region activity 59 

wait time 59 


DECAYACT driver parameter 84 

DECAYWAIT driver parameter 84 

Default values 


in command procedures 31 

in commands 24 


Defining a UADS using the TSC procedure 75 

Defining terminals as data sets 


for MCP 64 

I DELETE command 27 


Diagnostics 

ANS COBOL compiler 34 

Assembler 38 

FORTRAN IV (Gl) compiler 36 

FORTRAN syntax checker 36 

ITF: BASIC 41 

ITF: PL/I 41 

PL/I Optimizing Compiler 38 


DIAL 

operand of LINEGRP macro instruction 66 • 

syntax 65 


Dispatcher 55 

DISPLAY operator command 


from terminal 19 

Driver (see Time Sharing Driver) 

Driver entry codes 


(see also TSO Trace Writer) 

defined 109-112 

syntax 109 

used in measuring system performance 107 


Driver Parameters 

operands 84-85 

use 80-81 


DSPCH 

operand of TSC parameters 84 


DTRACE 

as operand of TSOMCP macro instruction 69 

as operator entered TCAM parameter 71
IDUMP 

operand of TSC parameters 84 


Dump 

TSO dump 


ddname for 74 

specifying in TSC START parameters 74 


Dynamlc allocation 

commands for 29 

DD statements 17 

function 17 

handling 50 


Dynamic Area 

main storage requirements 103 


EDIT command 

entry modes 26 

for Assembler 38 

for COBOL 34 

for FORTRAN 36 

for PL/I 38 

function 26-27 


Editing

by context 27 

by line number 27 


Entry modes ,definition 25 

for CALC 38 

for EDIT 26 


Estimated Wait Time Percentage 60 

Even dispatching 60 

EXEC command 30 

EXEC statement 


used to specify background reader 76 

used to specify message control program 73 

used to specify terminal monitor program 77 

used to specify time sharing control task 74 

used to specify TSO trace writer 77 




I FEATURE 

operand on LINEGRP macro instruction 67 


Foreground initiated background (FIB) 

job capability 30,21 


Foreground region 

assignment to 57 

definition 10 

main storage requirement 103 

subpools in 103 


Format control records 
for TEXT data sets 28 


Formatting text 28 

FORMAT command 28 

FORT command 36 

FORTRAN IV 


choice 22 

FORTRAN IV(E) 36
• 

• 
FORTRAN IV(GO 36 


options 36 

pro,ram entry 36 

testlng 36 


FORTRAN IV (G) compiler 36 

FORTRAN IV (H) 36 

FREE command 27 

Free-form source statements 


in Code and Go FORTRAN 41 


GAM 
restriction on 16 


Graphics Access Method (GAM) 

restriction 16 


HALT command (see Starting and Stopping TSO) 

HELP command 32 

HELP information 32,12 

Hierarchy support 


restriction on 16 


IBMUSER 75 

IEDQTCAM (see MCP Start Procedure) 

IEFPDSI 74 

IKJACCNT 75 

Initiator 


called by LOGON 47 

INLOCKHI 


operand of buffer control parameters 83 

INLOCKLO 


operand of buffer control parameters 83 

Input editing 


for terminals 25 

Installation exits 


for CANCEL command 96 

for OUTPUT command 96 

for STATUS command 96 

for SUBMIT command 94 


Interaction time 

definition 58 

limit 58
IInteractive Debug 

FORTRAN 36,22 

COBOL 34,22 


Interactive programs 

in COBOL 35


• in Code and Go FORTRAN 41 

in ITF: BASIC 40 

in ITF: PL/I 40 

in PL/I 38 


Interactive Terminal Facility (see ITF:) 

INTVL 


operand of LINEGRP macro instruction 67 

syntax 65 


I/O-bound jobs 60 

ITF: 


BASIC 40 

PL/I 40 


Job Control Language 

in LOGON procedure 47,77 


Job definition 

terminal jobs 17 


Job scheduling 

terminal jobs 17,47 


KEYLEN 

operator entered TCAM parameter 70 


Language processors 

ANS COBOL 22 

Assembler 22 

Code and Go FORTRAN 

for program development 22 

FORTRAN (GO 22 

invoked by CALL command 

ITF: BASIC 22 

ITF: PL/I 22 

PL/I (F) 22 

PL/I Optimizing Compiler 22 


Line, communication 

non-switched 11 

switched 11 


Line-delete 

character _specifying 34 


Line-delete character 

definition 25 

specifying 34 


Line group 

definition 64 


Line numbering 

for COBOL programs 34 

for data sets 26 


LINEGRP macro instruction 

operands of 65 

used in tailoring an MCP 64-68 


LINENO 

operand of LINEGRP macro instruction 65 

syntax 65 


LINK command 35 

Link Pack Area 


main storage requirement 102 

LINKLIB size 104 

LIST command 29 

LISTCAT command 27 

LISTDS command 27 

LISTT A macro instruction 


operands of 68 

used in tailoring an MCP 63 


LNUNITS 

as operand of TSOMCP macro instruction 69 

as operator entered TCAM parameter 70 


LOADGO command 35 

Local System Queue Area (LSQA) 116 

LOGOFF command 


to end terminal session 32 

LOGON/LOGOFF Scheduler 47 

LOGON cataloged procedure 


defining data sets 77 

naming a terminal monitor program 77 

parameters on EXEC statement 77 

restriction on rollout 77 

sample 78 


LOGON command 

entry format 24 

example 24 

for identification 25,43 


LOGON pre-prompt 

exit 97 

exit sample DECLARE statements 100 


LOGON procedure 

identifying 24 

invoked by LOGON 47 

job definition 47,44 


LOGON procedure name 

definition 11 

in LOGON command 24 


Index 119 




Long precision 

in ITF: BASIC 40 


LPA 

operand of TSC parameters 84 


Machine requirements 13 

MACLIB size 104 

Main storage hierarchy 


restriction 16 

Major time slice 


calculation of 57 

definition 57 


MAP 

operand of TSC parameters 84 


Master Scheduler Region 

main storage requirement 102 


MAXSWAP driver parameter 85 

MAXOCCUPANCY driver parameter 85 

MCP 


CSECT name 73,69 

region priority 73 

start procedure 87 

(see also Message Control Program) 
I 
MERGE command 29 


Message Control Program (MCP) 

defining for time sharing 63 

for time sharing 63 

main storage requirement 102 

priority 73 

tailoring 63 


Messages 
to users 32 


Minimum configuration 13 

Minimum major time slice 


specifying 81 

Minor time slice 


calculation of 81 

definition 60-61 


MINSLICE driver parameter 85,81 

Modification protection 


for data sets 20 

Modifying data sets 28 

MODIFY operator command 


from terminal 22,31 

Modularity 


of control program 42 

MONITOR operator command 


from termmal 18 

Multidrop line 13 

Multiple region queues 58 

Multiprogramming 


description 10 

Multistep jobs 


restriction in foreground 16 


Naming conventions 

for data sets 26 


Non-switched line 

definition 11 

use with terminal 11 


NOTIFY= keyword 

on JOB statement 30 


Nucleus 

main storage requirement 101 


Null line 

after attention 26 


OCCUPANCY driver parameter 86 

OLTEST 


as operand of TSOMCP macro instruction 70 

as operator entered TCAM parameter 71 


On-line test procedure (see OLTEST) 

OPERATOR command 31 

OPTIONS (see also Starting TSO) 


as operand of TSOMCP macro instruction 70 

use m starting MCP 70 


120 TSO Guide (Release 21.7) 

OS PL/I Checkout Compiler 

as Program Product 22 

description of 37 

prompter in 37 

supported by TSO 37 


Output 
from background jobs 30 


OUTPUT command 30 

OUTPUT command installation exit 


command codes 96 

parameter format 96 

return codes 96 


Overview of system 54 

OWAITHI 


operand of buffer control parameters 84 

OWAITLO 


operand of buffer control parameters 84 


Parallel swapping 

definition 14 
 •
specifying 74 


Passwords 

definition 11 

for data sets 20 

with LOGON command 11,24 


PL/I 

choice of processors 23 

for problem-solving 41 

for programming 37 


I PLI command 37 

PL/I Checker (see OS PL/I Checkout Compiler) 


I PLIC command 37 

PL/I (F) 22,37 

PL/I Optimizing Compiler 


options 37 

program entry 37 

program execution 38 


Preemptive scheduling 
definition 81 


PREEMPT driver parameter 86 

PRIORITY driver parameter 86 

Problem-solving 


Code and Go FORTRAN 41 

comparison of languages 22 

ITF: BASIC 41 

ITF: PL/I 41 


PROC statement 

in command procedures 31 


Procedure name 

for LOGON 24 


PROFILE command 32 

Program development 


assembler language 38 

COBOL 33 

commands for 22 

FORTRAN 35 

introduction 21 

PL/l 36 

testing 21 


Program execution 

commands for 17 


Program protection 20


I PROMPT 

as operand of TSOMCP macro instruction 70 


Prompter routine 

definition 33 
 • 

Prompting 

for input lines 26 

for operands 24 

user replies to 24 


PROTECT command 27,20 
Protection 


of data sets 20 

of programs 26 


Publications, recommended 116 

PURGESVC 46 

PUTGET service routine 50 

PUTLINE service routine 50 




Queue service time Size of SUBMIT job queue (see SUBMIT) 
definition 57 SLACK 

Quiescing operand of buffer control parameters 84 

control of 46 SLC (see ITF:) 

definition 14 SMF 


function 18 


Read protection 

for data sets 20 


Reader/Interpreter

called by LOGON 47 


Record Overflow Feature 

required for swapping 14 


Recovery management 43

I Region Control Task 46 


REGION operand of EXEC statement 

used to specify MCP region size 73
IREGNMAX


• operand of TSC parameters 84 

REGSIZE 


operand of TSC parameters 84 

Remote job entry


• commands for 30 

Remote terminals 


as COBOL files 35 

definition 11 


RENAME command 27 

Required configuration 13 

RESVBUF 


operand of buffer control parameters 84 

Restrictions 


background SVC use 16 

BTAM 16 

Checkpoint/restart 16 

GAM 16 

Hierarchy support 16 

Multistep jobs 16 

Rollout/rollin 16 

TESTRAN 16
IRLN 
operand of LISTT A macro instruction 68 


Rollout/Rollin 

restriction in foreground 16 


RUN command 29 


Sample cataloged procedure 

for logon 78 

for starting an MCP 73 

for starting background reader 76 

for starting TSC 74 

for starting TSO trace writer 77 


Sample MCP cataloged procedures 73 

Sample TSC cataloged procedure 74 

Sample TSO system parameters 87 

SCAN service routine 50
ISCREEN 


operand of LINEGRP macro instruction 68 

operand of LISTT A macro instruction 69 


SEND command 32 

Sequence field 


in COBOL statements 34 

Serial swapping 


definition 14 

specifying 74 


SERVICE driver parameter 87 

Service routines 


Dynamic Allocation Interface 50
• GETLINE 50 

PARSE 50 

:'UTGET 50 

PUTLINE 50 

SCAN 50 

STACK 50 


Shared ~e Component (see ITF:) 
Short precision 

in ITF: BASIC 40 

Simple dispatching 59 

Simulated attention function 


definition 26 

handling 26 


o~rand of TSC parameters 84 

Specifying a Time Sharing Driver 84 

Specifying contents of TSO Link Pack Area 84 

Specify Terminal Attention Exit (ST AX) 


background restriction on 17 

Specify Terminal Control Character (STCC) 


background restriction on 17 

STACK service routine 50 

Starting and Stopping TSO 


halting theMCP 75 

starting the MCP 75 

starting the TSC 75 

stopping the TSC 75 


STARTUP 

as operator entered TCAM parameter 70 


STATUS command 

installation exits for 96 

use of 30 


ST	AX macro instruction 

background restriction on 16 

use 50 


STCC 

background restriction on 16 


STOP operator command 

handling 45 


Storage map 45 

Subcommands 


format of 24 

in edit mode 26 


SUBMIT 

operand of TSC parameters 84 


SUBMIT command 

installation exit 94 


buffer format 94 

module name 94 

parameter format 94 

return codes 94 


use of 30 

SUBQUEUES driver parameter 86 

SVC 93 (TGET/TPUT) 


restriction on 16 

SVC 94 (STCC) 


restriction on 16 

SVC 96 (STAX) 


restriction on 16 

use 50 


SVCLIB size 104 

Swap Data Set 


ddname 

specifying parallel swapping 74 

specifying serial swapping 74 


definition 14 

devices 14 

size 103 


Swap devices 
allocation unit sizes 104 


Swap in 10 

Swap out 10 

Swap load 


calculation of 58 

SWAPLOAD driver parameter 86 

Swapping 


and major time slice 58 

and quiesce/restore 46 

controlling 45 

definition 10 

parallel 15 

separate channels for 15 

serial 15 


Switched line 

definition 11 

use with terminal 11 


Symbolic operands 

in command procedures 31 


Index 121 




Syntax checking 

for problem solving languages 22 

FORTRAN 36 

in input mode 28 

PL/I 38 


SYSP ARM (see also TSO System Parameters) 
used in TSC start procedure 74 


SYSUADS (see Defining a UADS) 

SYSLBC 74 

SYSWAP 74 

System 


catalog 29 

configuration 12 

security 19 


System Management Facilities 

function 18 

specifying 18,84 


System Queue Area (SQA) 
main storage requirement 102 


SYSTSDP 74 

SYS1.PROCLIB 


used in starting TSO tasks 47 


Tab settings 

for COBOL programs 34 


Tailoring a Message Control Program 

job steps involved 62 

sample MCP specification 71 

sample job stream 64 


Task Control Blocks 
on ready queue 55 


TCAM (see Telecommunications Access Method) 

Telecommunications Access Method (TCAM) 


function 52 

main storage requirement 102 

terminals supported 13 

user interface 52 


Teletypes 

use with TSO 13 


TERM 

operand of LINEGRP macro instruction 65 

syntax 65 


TERMAX 
operand of TSC parameters 84 


TERMINAL command 32 

Terminal conventions 


discussion of 24 

entry modes 26 

input editing 25 


Terminal I/O 

service routines 50 

TCAM function 52 

user interface for 50 


Terminal job 

definition 17 

LOGON procedure for 77 


Terminal Monitor Program (TMP) 

description 48 


Terminal session 

started by LOGON 24 


Terminals, remote 

definition 9 

description 11 

execution of batch jobs from 30 


TERMNO 

operand of LINEGRP macro instruction 68 


TEST command 
function 49,30 
to invoke a program 49,38 

Testing programs 

is assembler language 38 

in FORTRAN 36 

in ITF: BASIC 41 

in ITF: PL/I 41 

in PL/I 38 


Test mode 

definition 38 

for assembler language 38 


122 TSO Guide (Release 21.7) 

for FORTRAN 36 

for ITF: BASIC 41 

for ITF: PL/I 41 


TEST processor 49 

TESTCOB command 34 

TESTRAN 


restriction on 16 

Text processing 29 

TGET/TPUT 


background restriction 16 

use of Message Control Program 52 


TIME command 

handled by Terminal Monitor Program 48 


Time sharing 

control task cataloged procedure 73 

different from batch 9 

starting and stopping 75 


Time sharing algorithms 

and tuning 17 

definition 17 

in Driver 17,55-61 


Time Sharing Control Task 

description 44 
 • 

Time Sharing Control Region 

main storage requirement 102 

obtaining 44 


Time Sharing Driver (see also Driver) 

description 43,17 

parameters for 83-86 


Time Sharing Interface Program 

description 43 


Time Sharing Link Pack Area (see also TSO Link Pack 

Area) 


main storage requirement 102 

Time Sharing Option (see TSO) 

Time slices 


and tuning 80 

calculation of 56-61 

definition 10 

m!ljor 57 

mmor 59 


TIOC buffer control parameters 84 

TJID 


operand of TSO trace data set processor 93 

TRACE 


as operand of TSOMCP macro instruction 69 

as operator entered TCAM parameter 71 


Trace Data Set Processor 

listing if FE diagnostic 76 

sample job stream 77 


Transmission Control Units 

attached to multiplexer 14 

types 14 


TRANTAB 

operand of LINEGRP macro instruction 66 

syntax 65 


TSC parameters 

operands 83 

use 82,81


ITSCREGSZ 

operand of TSC parameters 83 


TSO 

general description 9 


TSO link pack area 

LPA operand of TSC parameters 83 

relation to operating system 54 

specifying contents 84 


TSO system parameters 

buffer control parameters 83 • 

driver parameters 81 

format 83 

TSC parameters 78-87 


TSO Trace Writer (see also Trace Data Set Processor) 

description 19 

driver entry codes 109-112 

operands on EXEC statement 93 

output record format 93 

sample job stream 92 




• 


• 


TSOMCP macro instruction 

used in tailoring an MCP 63 

syntax 69 

operands of 69 


Tuning 
and the Driver 88 


Tuning the Time Sharing Driver 88 

Turnaround 


definition 10 

time for 10 


UNIT operand of ACCOUNT subcommands 
UNITNO 

operand of LlNEGRP macro instruction 
syntax 6S 

UNITSIZ 
as operand of TSOMCP macro instruction 
default values 69 
syntax 69 

Usage statistics 
description 18 


USAS COBOL (see ANS COBOL) 

User Attribute Data Set (UADS) 


authorizations in 20 
definition 20 
modifying 7S 
size 104 
use by LOGON 47 
use by Terminal Monitor Program 48 

User identification 

definition 11 

in LOGON command 11,24 


User Main Storage Map 

use SS 


User profile 
definin~ 24 
modifymg 24 
use by Terminal Monitor Program 49 

User ·verification 
by LOGON 24 

USERCHG 
operand of buffer control parameters 84IUSERS 
operand of TSC parameters 85 

WAIT driver parameter 86 
Wait time decay constant 60 
Weighted dispatching 81 
WHEN statement 

in command procedures 32 
Writing cataloged procedures for TSO 

LOGON 77 
start procedure for BRDR 76 
start procedure for MCP 73 
start procedure for TSC 76 
start procedure for TSO trace 76 

89 
XREF 

66 as operand of TSOMCP macro instruction 70 
as operator entered parameter (see CROSSRF) 70 

69 
1050 Data Communication System 

recommended feature 14 
use with TSO 13 

2260 Display Station 13 
2265 Display Station 13 
2301 Drum Storage 

as swap device 14 
2303 Drum Storage

as swap device 14 
2305 Fixed Head Storage 

as swap device 14 
2314 Direct Access Storage Facility 

as swap device 14 
required features 14 

2701 Data Adapter Unit 14 
use with LINEGRP Macro 

2702 Transmission Control 
recommended features 14 
use with TSO 14 

2703 Transmission Control 
recommended features 14 

2741 Communication Terminal 
recommended features 13 

3270 Information Display System 
3330 Disk Storage Facility 

as swap device 14 

13 

Index 123 



GC28·6698·6 

~rn~ 
® 

Intematlonal Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 



IBM System/360 Operating System: 

1S0 Guide 


GC28-6698-6 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additi.onal publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility• 

• 

n 
S­
o.. 
~ a: 
» 
0­
::J 


GQ 


:;'
I'" 

CD 

.. 

READER'S 
COMMENT 
FORM 

What is your occupation? __________________________________________ 
Number oflatest Technical Newsletter (if any) concerning this pUblication: _____________ 
Please indicate in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments. 



GC28·6698·6 


n 
S. 

"l1 
Your comments, please ••• c: 

» 
0' 
::I

This manual is part of a library that serves as a reference source for system analysts, GIl 
r 

programmers, and operators of IBM systems. Your comments on the other side of this ;i. 
CD 

form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

I

Fold Fold • 

--- - - - ----- - - - ---- - -----~ 

I 


NO POSTAGE 

NECESSARY I
III II I I 


IF MAILED 

IN THE I 


UNITED STATES 


BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y. I 


I
POSTAGE WILL BE PAID BY ADDRESSEE: 

I 

I 

I
International Business Machines Corporation 
I
Department 058, Building 706·2 


PO Box 390 
 I 

Poughkeepsie, New York 12602 I 


I 

-----------------------~ 

Fold Fold I 

I 

I 
 •I 

I 

I 

I 

I 

I


I1rn~ 
<D I 


International Busin ... Machin.. Corporation 

Da.. Proce..lng Division I 

1133 Westchester Avenue, WhHe Plains, New York 10804 

(U.S.A. only) I 


I 

IBM World Trade Corporation I
821 UnHed Nations Plaza, New York, New York 10017 

(International) I 


\ 



IBM System/360 Operating System: 

1S0 Guide 


GC28-6698-6 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additi.onal publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility , -. 
1 

.. 
J 

READER'S 

COMMENT 

FORM 

What is your occupation? __________________________________________ 
Number of latest Technical Newsletter (if any) concerning this publication: _____________ 
Please indicate in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments. 



GC28-6698-6 

o 
S. 
~ .., 
o 

Your comments, please ... c: 
". 
o 

This manual is part of a library that serves as a reference source for system analysts, 
j 

CIQ 

c:programmers, and operators of IBM systems. Your comments on the other side of this ..j 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

I
Fold Fold 

- ------ - - - ---- - -----~ 
I 

NO POSTAGE 
NECESSARY111111 I 

I 

IF MAILED IIN THE 
UNITED STATES 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. I 

IPOSTAGE WILL BE PAID BY ADDRESSEE: 

I 
I 
IInternational Business Machines Corporation 
IDepartment 058, Building 706-2 

PO Box 390 I 
Poughkeepsie, New York 12602 I 

I 
-----------------------~ 

Fold Fold I 
I 
I 
I 
I 
I 
I 
I 
I

ITrn~ 
<!l I 

International Business Machines Corporation 
Data ProceSSing Division I 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) I 

I 
IBM World Trade Corporation I821 United Nations Plaza, New York, New York 10017 
(International) I 

I 
I 


