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ytby the True Binary Search is Needed 

It is a rare computer program which does not at some point search 
through an ordered table or group of records to find a number or 
name that matches some input. We are confronted with very 
similar problems in looking up an electricity rate, sorting tape 
records internally, converting codes, finding a disk record within 
a blocked track, distributing charges to general ledger accounts, 
or searching a symbol table. 

Table look-up instructions with which some computers are equipped 
generally provide a simple and efficient method of accomplishing 
such searches. However, they require that certain rules be 
observed, such a s the placement of word mark s, which may not 
be desirable in all cases. Then too, the straight table look-up 
becomes very time-consuming when directed at large tables or 
when long functions must be interspersed between the table 
arguments. 

Computers such as the IBM 1401, 1440, 1460, and 1620 do not 
po ssess any table look -up commands I but are frequently called 
upon to perform these functions with whatever instructions are 
available. Programmers usually take the most straight-forward 
approach and search a table item by item by means of indexing or 
address modification. This can be costly on large volume jobs 
where the operation must be done repeatedly. Alternative methods, 
used where timing is the main consideration, usually prove to be 
rather complicated and tend to use a large amount of memory for 
instructions. 

The true binary search described in thi s paper was developed by 
the author for use on the IBM 1410 in a situation where it was 
impossible to include the word marks needed by the table look-up 
instruction. However, its greatest application should prove to be 
for the computers mentioned above which do not have table look-up 
abi.lity. It will completely search any size sequential table or 
group of records in a minimum number of comparisons, but does not 
require a great deal of storage for the program itself. Once 
understood, it is found to be quite straight-forward and easily 
adapted to many table search operations. 
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Theory of Binary Search 

Using a table that is either in ascending or descending sequence, 
it is possible to compare a search argument against the center 
table argument. If they are equal, the search is already finished. 
Otherwise the result of the comparison tells in which half of the 
table the desired argument may be found. A second comparison 
at the center of one of the halves can further tell which quarter 
of the original table might contain it. This procedure can be 
repeated as long as it is possible to subdivide whatever portion 
of the table remains. 

Obviously a table that can be repeatedly divided in half until 
only one logical entry is left must in itself be related to some 
power of 2. It must in fact contain a total of entries equal to one 
less than some power of 2 in order to simulate a "look-up equall1 
operation and exactly some power of 2 far "look-up equal-high" 
or "look-up equal-low." This distinction will be explained later 
in this paper. For the moment we shall concentrate on the search 
for equal only so that this topic may be followed through to 
conclusion. 

To illustrate the application of a binary table, let us refer to the 
following sample table: 

Position in 
Table Argument Function 

1 015 9463001 
2 027 1004076 
3 066 3472300 
4 094 6875679 
5 123 4221842 
6 148 3884468 
7 159 5123779 
8 li77 6897212 
9 200 2011897 

10 251 3675774 
11 283 2001480 
12 694 7581531 
13 733 0175000 
14 746 6361792 
15 999 ******* 

- 2 -
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The table consists of 15 entries in ascending sequence. Each 
entry contains ten digits I three for the argument which is the 
field against which we must make our comparisons and seven 
for the function. The other element of our problem is the searc.h 
argument which must match exactly with one of the table arguments. 
The obj eet of the search is I of course I to extract the function from 
the table which lies to the right of the matching table argument. 

To search this table by the binary method I the program must 
compare the search argument against the table argument of the 
eighth entry. If an equal condition results I the desired item 
has been found and the search terminates. H-owever, if the search 
argument is low, the item must be among entries 1 - 7 of the 
table, and if high, it has to be in the upper seven entrie s (9 - 15). 
The next comparison is made on the item which is the next lower 
power of two entries away from the previously compared item. 
Thus I we must look at entry 4 (low) or entry 12 (high). Succes sive 
comparisons are then made which always reduce the number of 
pas sibilitie s by half until only one entry remains. If that entry 
is not equal to the search argument, it means that the argument is 
not in the table. 

The course taken by the search is best demonstrated by using 
an actual input argument such as 123. This is initially compared 
against item #8 (177) and found to be low. The next comparison 
against the center item of the lower half of the table I item #4 
(094) I results in a high condition caus:Lng the search to move 
upward to item #6 (148). The low indication at this point means 
that only one pos sibility remains I item #5 (123) I which in this 
ca se satisfies the equal condition desired. 

Had the input search argument been a number like 105 which doe s 
not exist in the table I the program would have followed the same 
course, but would have given a low result on the final comparison. 
Since it had previously been found to be higher than item #4, this 
low result means that the search argument falls somewhere 
between items #4 and #5. 
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To completely search a 15 item table such as the one on the 
previous page requires a maximum of only four comparisons. Note 
that the average number of comparisons is somewhat below this 
because if an equal condition results at some earlier point I no 
further comparisons are necessary. 

It is easy to see that as a binary table increases in size to one 
item less than higher powers of 2 I the number of comparisons 
needed for a complete search beComes lower in relation to the 
size of the table. Thus the following numbers of iterations are 
all that are needed for various larger tables: 

No. of Items Maximum No. of 
In Table Comparisons 

31 5 
63 6 

127 7 
255 8 
511 9 

1023 10 

The essential value of the binary table lies in the fact that it is 
perfectly symmetrical. Each successive comparison must move 
to a point higher or lower on the table which is exactly half the 
distance travelled by the previous comparison. When this 
di stance ha s been reduced to the length of one item I the search 
is completed. 

This type of table organization lends itself to computer programming 
in that a simple loop containing just one compare instruction, 
one of whose addresses is continually modified by the lengths 
noted above, can perform the whole search. The key to this 
loop is a small subsidiary table of values containing an entry 
for each iteration needed equal to the amount the table address 
to be compared against mu st be incremented or decremented at 
that point of the search. It must terminate with some indicator 
which tells the program that the last iteration ha s been completed. 

For the IS-item table described above the subsidiary table would 
look like this: 
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4XL 
2XL 
lXL 
End 

= 

= 
= 

40 
20 
10 

** 

L equals the length of the table argument plus the function which 
total 10 digits in the example. After the initial comparison has 
been made at the table's center / the value 40 is added to the 
compare address if the result were high and subtracted if low. 
In this manner the programmed loop can accomplish the search 
described previously. The program is actually controlled by the 
subsidiary table which means that m €rely by changing its values 
the same program can operate on tables with different sized 
entries or, by adding more values at the beginning (80/160, etc.), 
upon larger binary table s. 

;-...7~- /L.t v I / 2.. S~ b s. ,j l <:YJ t!;"Jks <';r-~ "'- 4-<tl'-el,.J, 

VoI.,I" t~ /tl( (!"' ..... l"k ... .,,1:. (.-'1 1<) q V., ~~."4",7f- s"" J. &,~t- .e ..... 
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Binary Theory.Applied to All Tables 

At this point the reader may be wondering what practical applica
tion the binary search can have I since it appears to require tables 
of only certain sizes which of course are not often found in 
actual practice. The salient fact here is that any sequential table 
of any size can be thought of as beinq made up· of two overlapping 
binary table s of the next lower power of two minus one. Consider 
the following table of 25 items which is an extension of the binary 
table of 15 items described in the previous section: 

Position in 
Table Argument Function 

1 015 9463001 
2 027 1004076 
3 066 etc. 
4 094 
5· 123 
6 148 

Lower 7 159 
Binary 8 177 
Table 9 200 

10 251 
11 283 
12 694 
13 733 
14 746 
15 758 
16 762 
17 Upper 795 
18 Binary 796 
19 Table 811 
20 853 
21 866 
22 904 
23 913 
24 957 
25 999 
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It can be seen that this table may be thought of as one 15 - item 
binary table of entries 1 - 15 and a second one consisting of 
entries 11-25. The only difference between searching this 
table and a straight binary table is that an initial comparison at 
the table Y s center (item *13 in this case) must force the program 
to search either the upper or lower table. The identical routine 
de scribed in the previous section can succes sfully search this 
unsymmetrical table. The only chanue is in the subsidiary table 
which controls the operation. Here one additional value must 
be placed at the beginning which will modify the address at item 
*13 to go next to either items *8 or *18 (the center pOints of the 
two binary sub-tables). The subsidiary control table would then 
appear like this: 

5XL 50 
4XL = 40 
2XL 20 
lXL = 10 
End = ** 

This method is valid for an equal search through any table having 
an odd number of entrie s . To handle an even number of entries 
requires a slight change because of the fact that the initial 
distances moved up or down after the first comparison would not 
be the same. This is accomplished by creating two subsidiary 
table s instead of one. The increment table is referred to if the 
result of a comparison is high I the decrement table if low. They 
would look like this if the original table were increased to 26 
items: 

Increment 
Table 

60 
40 
20 
10 

** 

Decrement 
Table ___ _ 

50 
40 
20 
10 

** 
The initial comparison could still be made against item #13 I but 
if the re suIt were high I the next comparison should be made 
against item *19 which is now the center of the binary sub-table 
extending from item #12 to #26. Having the two subsidiary tables 
forces this sequence of operations. 
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Note that this example requires a maximum of five comparisons 
or, in other words, the number equal to the exponent of the next 
power of 2 which is greater than the number of items in the table. 

Exactly the same routine s can search for an equal argument in any 
size of table, the only change being to add more values to the 
subsidiary table (s). In this manner a table of as much as 2000 
entries, for example, may be completely searched by comparing 
against only eleven of these entries or less. 

Programming Example of Equal Search: 

At this point it is appropriate to show a logic diagram and programming 
example of an equal binary search. This particular routine was 
written for and te sted on the IBM 1410, but should operate unchanged 
on the IBM 1401, 144,0, and 1460 computers provided they are 
equipped with index regi sters and the high -low-equal compare 
feature. On these machines having three-position addresses, 
care should be taken that if the total length of the table exceeds 
999 characters, modulo 16 complements must be used for the 
negative values in the subsidiary table, II LOTBL" • If it exceeds 
1999 characters, the constant, "MIDPT" and possibly some of the 
positive values ("HITBL") must be given their three-positi'on 
equivalents. The program steps need not be changed. 
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Item not 
found 
routine 

(high or low) 

Initialize 
1 st Compare a 
center of 

table 

Ye,s. 

Logic Diagram of Binary Table Search 
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* 8 I NARY SEARCH PROGRAMM I NG EXAMPLE FOR ,18M 1410 
START ZA MIDPT,Xl INITIALIZE TO MIDDLE ITEM IN TABLE 

ZA &0,X2 ZERO X2 
COMP C TBARG&Xl,INARG COMPARE SEARCH ARGUMENT TO TABLE 

UPPER 
ADOX2 

8H 
BE 

UPPER 
FOUND 

A LOTBL&X2,Xl 
B AODX2 

BRANCH TO GO HIGHER IN TABLE 
BRANCH IF EXACT MATCH 
GO LOWER IN TABLE 

A HITBL&X2,Xl GO HIGHER· I-N TABLE 
A &3.X2 UP X2 FOR NEXT VALUE IN SUBSIDIARY TABLES 
BW COf~P,HIT8L-2&X2 TEST FOR END OF SUBSIDIARY TABLE 

NOFIND -----IF BRANCH ON WORD MARK NOT TAKEN. ITEM WAS NOT FOUND. 
FOUND -----BEGIN PROCESSING FOUND ITEM AT THIS POINT 
* WHENEVER AN EQUAL ARGUMENT HAS BEEN FOUND,INDEX REGISTER 1 
* CONTAINS THE HIGH-ORDER RELATIVE ADDRESS OF THE FOUND TABLE ITEM 
* WHICH MAY BE PROCESSED AS REQUIRED 

* * DATA AREA~ NEEDED 
TABLE DA 10X26 TABLE AREA OF 26 ITEMS OF 10 CHAR. EACH 
TBARG 1,3 TABLE ARGUMENT 
TFUNC 7,10 TABLE FUNCTION 
INPUT DA IX80.G SAMPLE INPUT AREA 
JNARG 17.19 SEARCH ARGUMENT 
* SUBSIDIARY TABLES TO CONTROL AN EQUAL ONLY SEARCH OF A 26 ITEM 
* TABLE CONTAINING 3 DIGIT ARGUMENTS AND 7 DIGIT FUNCTIONS. 
* 
LOT8L DCIAI -050 5 ITEMS LOWER IN TA8LE 

-040 4 

-020 2 
-010 1 

HITBL DCW &060 6 ITEMS HIGHER 
(,,040 4 
&020 2 
&010 1 

DC @ ~ LACK OF WORD MARK HERE TERMINATES SEARCH 
* CONSTANT TO INITIALIZE Xl TO MIDDLE ITEM OF TABLE 
MlnPT DCW &120 

Autocoder Program Segment of Binary Table Search 
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Binary Search for Egual-High 

To simulate a "look-up equal-high ll machine operation in which 
the table argument must be foun,d which either equals the search 
argument or is the next higher one to it requires only a small 
change in our interpretation of the table. The principal difference 
is that the ideal size table for this operation exactly equals some 
power of 2, rather than containing one item less. If we recall 
that the chief virtue of the binary table is the fact that it is 
perfectly symmetrical for purposes of the search, we can see that 
there is a subtle difference between an equal look -up and one for 
equa I-high. In the search for equal, each comparison eliminates 
one pos s ibility, i. e. I the item just compared. The two remaining 
halves of the table or sub-table must be of equal lengths. For 
this reason the comparison at the center point of the table or a 
sub-tablE; must be at the center of a group that is one less item 
than some power of 2. When the search is for equal or high, 
the item just compared is not necessarily eliminated from the 
search since a low result does not indicate that the desired 
table argument has been found until further comparisons have 
proven that the next lower item in the table is lower than the 
search argument. 

Because the subsequent comparisons iri the lower or upper 
halves of the table must take the identical course and the item 
just compared must still be taken into consideration as an 
entry in the lower half, the table itself must contain a number 
of items exactly equal to some power of 2. 

Although this difference exists, the logic of the search remains 
unchanged. The only thing that must be altered is the points 
in the table where comparisons are made. This merely entails 
placing different values in the subsidiary control tables. The 
example of a 26 entry table discussed in the previous section 
was thought of as two overlapping binary tables of 15 items each 
(items 1-15 and 12-26) for an equal search. To perform a 
"look-up equal-high" requires it to be thought of as two tables 
of 16 items each (items 1-16 and 11-26). After a comparison 
against the center item resulting in the search argument being 
found low, the next comparison would be made against item *8 in 
either case. However I if the re sult were high I the equal search 
would next look at item *19 whereas the equal-high search would 
to to item *18. 

- 11 -
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The logic and programming example shown on pages 9 and 10 
are almost identical for both an equal and equal-high search. 
The only difference is that the test for equal must branch to what 
was previously the "not found" routine. "Found" and "not found" 
are, therefore, synonymous for anything but an equal search. The 
reason for this is that there is no such thing as a "not found" 
condition following an equal-high search. The program must 
always find something, which generally means that the last item 
in the table should be a pad of 9 1 s or some other unique indica tor. 

The subsidiary tables to control the equal-high search on the 
same 26 item table would appear like this: 

LOTBL DCW - 050 HITBL DCW + 050 
- 040 + 040 
- 020 + 020 
- 010 + 010 
- 000 + 010 

DC @@ 

Note that these tables each contain one more entry than the 
corresponding tables for an equal search. The reason for this is 
that if on the last iteration of an equal-high search the search 
argument is found to be low I the proper "higher than" item is the 
one just compared, but if the search argument is high, the next 
higher item in the table is the one desired. Therefore I after the 
final comparison a low result leaves the table argument1s address 
unchanged (LOTBL entry -000) I but a high result causes it to be 
adjusted upward by one item (HITBL entry + 010) • 

If a search for an argument just lower than the highest item in the 
table is followed through, it will be observed that this final 
table argument is never actually compared in the example given. 
It is assumed to be the desired item if the search argument is 
greater than the next-to-last item. This is the reason that it is 
best to tag this last item with some special indicator (such as 91 s) 
which the program can subsequently test. 

The search for equal-high takes the same maximum number of 
comparisons as the search for equal. However, in many applica
tions the equal condition, which is the only thing that can stop 
the iterations before maximum, occurs only rarely While looking for 
equal-high. Here the average number of comparisons per search 
would be nearly the same as the maximum. 

- 12 -
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Binary Search for EquaJ-Low 

A slightly different situation develops when the search required 
must look for the table argument that is either equal to or the next 
lower value than the search argument. Here again the logic of the 
search is exactly the same a s what ha s been previously discus sed. 
Only the subsidiary control tables must be altered with no change 
in the program instructions. 

The difference lie s in the fact that comparisons to every level of a 
binary table or sub-table are made against the left-of-center item 
for an equal-high search and against the right-of-center item 
during an equal-low search. Another way of stating this is to say 
that in looking for an equal or high condition, a comparison to the 
highest item in the lower half of a binary table determines that if 
this table item is equal to or higher than the search argument, 
the de sired item must be in the lower half of the table. If it is 
lower (search argument high), the de sired item has to belong to the 
upper half. The situation is reversed in a search for equal-low 
where the significant point of comparison is at the lowest item 
in the upper half of the table segment. When the search argument 
is low or equal, the search continues in the upper half. If high, 
the search must shift down to the lower half. This reasoning is 
valid if the table contains entrie s totalling any power of 2 or 2 
itself. In the latter case the comparison pinpoints the proper item 
which is what happens on the final iteration of the sample program. 

To cause the same sample program to follow the desired sequence 
of comparisons for the equal-low search on the 26 item table I 
the following subsidiary control table s would be employed. 

LOTBL DeW 040 HITBL Dew + 060 
- 040 + 040 
- 020 + 020 
- 010 + 010 
- 010 + 000 

@@ 

- 13 -
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This example is based on the initial comparison still being made 
against item #13 (MIDPT equals + 120). The point of initial 
comparison is not fixed on one particular item, but on any of 
those that are part of the overlapping portion of the two 
binary sub-tables I provided the first increments in the sub
sidiary tables are adjusted accordingly. Thus.r if MIDPT were 
made + 130 (to compare first against item #14) I the first 
entries in the two subsidiary tables would have to be -050 and 
+050. 

For the same reason that the equal-high search required a special 
entry in the highest (right-most) table pOSition, the equal-low 
search needs it in the lowest (left-most) pOSition. The program 
arrives at this entry without comparing against it if all other items 
have been found to be higher than the search argument. It can 
contain asterisks or some other indication that may be tested by the 
program. 

Timing for an equal-low search is the same as for equal-high. 
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Tables in Descending Sequence 

Tables arranged in a descending sequence may be searched by 
the same program merely by changing the points of comparison so 
that they are oriented toward the right end of the table in the 
manner that the ascending table· s points are oriented toward the 
left end. When the result of anyone comparison indicates that 
the next point should be higher in the table (at some higher 
table argument) I the address of this point is arrived at by 
decrementing the current address. This means that if the initial 
point of comparison is moved one item to the right, just by 
changing the signs on the values in the increment and decrement 
subsidiary tables, a search of an ascending table can apply to the 
same size descending table. 

If we continue with the sample table of 26 items used in previous 
:illustrations, the three types of look-up when applied to 
descending tables would require the following subsidiary tables 
(MIDPT'is +130 or item #14): 

Look -Up Equal 

LOTBL DeW + 050 
+ 040 
+ 020 
+ 010 

Look-Up Equal-High 

LOTBL DeW + 050 
+ 040 
+ 020 
+ 010 
+ 000 

Look-Up Equal-Low 

LOTBL DeW + 040 
of 040 
+ 020 
+ 010 
+ 010 

,- 15 -

HITBL Dew - 060 
- 040 
- 020 
- 010 

De @@ 

HITBL Dew - 050 
- 040 
- 020 
- 010 
- 010 

De @@ 

HITBL Dew - 060 
- 040 
- 020 
- 010 
- 000 

DC @@ 



How to Construct the Subsidiary Tables 

Since the program sample shown on page 10 can perform any of 
the six searches covered in this paper I the only problem the user 
has is to calculate the values in the subsidiary tables. This is 
a four-step proposition consisting of the following: 

1. Select initial point of comparison. 
2. Determine the first value in both the increment 

and decrement tables. 
3. Fill in the remaining values except the last. 
4. Select the last value. 

The initial point of comparison is generally at the midpoint of 
any table, although it may be against any of those items which 
fall in the overlapping portion of the two binary sub -table s of the 
next lower power of 2. Let us call this entry number M. From 
this, the value of the constant, MIDPT, can be calculated 
relative to zero. Where L = the length of each table entry: 

MIDPT. L (M - 1) 

The second points of comparison are the most critical because 
they are peculiar to the type of search performed. To do this 
let us call T the totai number of items in the table. For an equal
high search, T must include the highest entry which is either 
the highest possible argument or a special indicator. The same 
is true of the lowest argument in an equal-low search. Next, 
figure the value of n which is the power of 2 that is the next 
lower to the total items I or in other words so that: 

2n <.T < 2n + 1 

Having determined the value s of M,L ITt and n I we can now 
find the items that may be compared against on the second iteration. 
Let us first deal with tables in ascending sequence. The following 
formula table shows how the two points are arrived at for the 
different type s of search: 
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Second Points of Comparison for Ascending Tables 

Item # After Item # After 
IY:I;>e of Search Low Result <:p 1) High Result (P2) 

Equal 2n - l T - 2n - l + 1 

Equal-High 2n-l T - 2n - l 

Equal-Low 2n - l + 1 T - 2n - l + 1 

The above points may be called P. Thus I for example I if a table 
contains 53 items for an equal-low search, T= 53 and n= 5 
(i .. e • I 25 < 53< 2 6 ). When the re s ult 'of the initial compari son 
is low I the second should be made at item Pl where: 

PI = 25-1 + 1 

If the result is high, it must be made at item #38. 

P2 = 53 - 25 - 1 + 1 

P2 = 38 

To obtain VII the value to be placed in the decrement table 
(LOTBL) I and V2 I to be the first entry in the increment table 
(HITBL) merely subtract the value of M from the respective P and 
multiply by the length of each table item. Thus: 

VI = L (PI - M ) 

V2 = L (P 2 - M ) 

The same type of formula table for descending tables applies: 
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Second Points of Comparison for Descending Tables 

Item # After Item # After 
Type of Search Low Result (PI) High Result (PZ) 

Equal T - Zn-l + 1 Zn-l 

Equal-High T - 2n - 1 + 1 2n - 1 + 1 

Equal-Low T - Zn-l 2n - 1 

The values of VI and V2 are determined by the same equations shown 
above. 

It can be seen that the values of VI and V 2 are functions of (a) the 
number of items in the table,. (b) the length of each item, (c) -the 
sequence of the table I (d) the type of search to be performed and 
(e) the position of the initial comparison. The assignment of 
specific values to VI and V2 forces the search1s second iteration 
to look at the center of some size binary table. For an equal 
only search this is at exactly the center item. When the look-up 
is for equal-high, it is the highest item of the binary table IS 

lower half; for equal-low, the lowest item of the upper half. 

After the second comparison the search assumes a regular pattern 
for every type of look-up and previous result. Therefore,. these 
portions of the two subsidiary tables are identical except for the 
signs of the values. They follow this progression: 

L (2 n -2 ),. L (Z n -3 ) I •••••• L (2 0 ) 

When dealing with an ascending table,. all signs in the decrement 
(LOTBL) table are minus and in the increment (HITBL) table, plus. 
The signs are reversed for a descending table. Note that this 
portion of a subsidiary table always contains n-2 values. 
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At this point the subsidiary tables are complete for an equal only 
search where, :In the event of a not-found condition, the programmer 
is not concerned with the next higher or lower items. All that must 
be added is the II search end indicator II which in the sample program 
.is the position without a word mark (DC) following the increment 
table (HITBI4. 

For an equal-high or equal-low look-up the final element of 
a subsidiary table is added to the address of the very last item 
compared causing the program to II find II it or the item immediately 
to the right or left. If the item in the final comparison is the one 
desired, this element is zero. Otherwise it is plus or minus the 
item length (L) causing the search to end one item higher or 
lower in the table. This value is constant as follows for the different 
table sequences and types of search: 

Final Subsidiary Table Values 

Type of Search 

Ascendinq Tables 

Equal 
Equal-High 
Equal-Low 

Descending Tables 

Equal 
Equal-High 
Equal-Low 

Decrement (LOTBL) Increment (HITBL) 

Not required * 
Zero 
- L 

Not required * 
Zero 
+L 

Not required * 
+L 
Zero 

Not required * 
-L 

Zero 

*Note: By including the same values required by equal-high or 
equal-low searches I a not found condition following an 
equal search can pinpoint the next higher or lower 
item respectively. 
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The final increment table item must be followed by a location not 
containing a word mark to stop the iterations in conformance with 
the sample program 0 

By following the above steps the user can easily adapt the sample 
standard search program to perform any of the usual table look-up 
operations upon any sequential table containing elements of a 
fixed length. Since the size of the area being searched is con
trolled by the size of the subsidiary tables, the latter may be 
modified by a program such as an internal sort to expand as 
the table (addresses of already sorted records) increases. 

Conclusion 

The true binary search will have wide application on any computer 
not equipped with table look-up instructions. On such a machine 
the only times some alternative method might be preferable would 
be in dealing with tables containing only a few items or if the 
frequency of "hits II is disproportionately large on a very small 
number of items. 

The storage requirements of the program and subsidiary tables 
are only slightly greater than for the simplest type of indexed 
search. No other programmed table look-up can completely 
search an ordered table or group of records in as few iterations as 
the binary search. Most methods require a great deal more. The 
number of steps actually executed per iteration is hardly greater 
than by the usual,! less efficient routines. 

The binary search I of course I cannot opera te upon non -sequential 
tables. 

Even computers such as the 7070 and 1410 that possess table 
look-up commands can employ the binary search to great 
advantage under certain circumstances. It can outperform 
straight table look-up instructions on extremely large tables. 
Since the' length of functions (which may be the information portion 
of records) interspersed between table arguments does not effect 
the timing of the binary search, it is superior to 1410 table 
look-up where these functions are large. As mentioned earlier I 
the sample search program needs no word marks whatsoever in 
the table itself whereas 1410 table look-up requires and allows 
the m' only in specific places. 
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Random access systems such as the IBM 1410-1301 can often 
economically use a single disk input--output area for several formats 
of records which must be searched. Word marks for one format 
may not be acceptable for another. A specific instance is in the 
case of a sequential file accessed by means of index tracks. 
U sing the binary search both index and data tracks may be read 
into the same area without difficulty. The alternatives are 
eith~r to reserve two large areas (which in this case are normally 
2800 characters each) or to set and clear a great many word 
marks for the machine table look-up 0 

Every business or industry uses tables in one form or another. 
Any ordered group of records may in fact be thought of as a table 0 

From searching through a simple list of city codes to compiling 
symbol tables to looking for a record on a disk track I tables are 
an integral part of data processing. The true binary search 
proves to be the most efficient method of performing these searches 
on the vast majority of IBM computers and can be extre'mely help
ful on the rest. 
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