
llr~
TECHNJ[CAL

C INFORMATION
EXCHANGE

I nternational Business Machines Corporation

IBM 1401 TAPE IOCS ADVANCED NOTES

Tom Scharf
IBM Corp ..
D. P. Customer Education
Gladengvn. 3B, Etterstad
Oslo, Norway

FOR IBM INTERNAL USE ONLY

This paper is in the author's original form.
The objective in providing this copy is to
keep you informed in your field of interest.
Please do not distribute this paper to persons
outside the Company.

Distributed by
DPD Program Information Department
IBM Corporation
112 East Post Road
White Plains, New York

TIE 5-0057
February 17, 1965
34 pages

TO

~ 17 - 5 0 $7

TIE 5-0057

TITLE: IBM 1401 TAPE IOCS ADVANCED NOTES

AUTHOR: TOM SCHARF

DATE JANUARY 12., 1965.

DIREC T INQUIRIES TO : TOM SCHARF

IBM D. P. CUSTOMER EDUCATION

GLADENGVN. 3B, ETTERSTAD,

OSLO, NORWAY.

ABSTRACT: THIS PAPER IS THE RESULT OF EXPERIENCE WITH

THIS PARTICULAR SYSTEM SINCE ITS ANNOUNCEMENT.

THE APPROACH IS TO TAKE EACH DTF - example

WLRADDR - , EACH DIOCS STATEMENT AND EACH

MACRO INSTRUCTION AND EXPLAIN IN DETAIL ITS

IMPORTANCE IN THE TOTAL PROGRAM STRUCTURE.

AN EXPLANATION IS GIVEN OF HOW THE COMPILER

HANDLES EACH PARAMETER AND WHICH RESULTS

EACH PARAMETER HAS, FOR EXAMPLE ON THE DTF

TABLE OR THE DTF ROUTINE. COMMON ERRORS

AND MISUNDERSTANDINGS ARE TAKEN UP IN LIGHT

OF THESE FACTS AND CERTAIN EVALUATIONS ARE

MADE AS TO THE ADVISABILITY OF USING OR NOT

USING CERTAIN PARAMETERS. THE PAPER WAS

ORIGINALLY WRITTEN AS AN INSTRUCTOR BACK

GROUND FOR ORDINARY IOCS COURSES AND FOR'

DIRECT USE ON AN ADVANCED IOCS COURSE.

INTRODUCTION

These notes are designed to help programmers and others who desire a

deeper knowledge of this IOCS system. This can then be used as the basis

for self-study or for a short course in advanced IOCS.

A sound understanding of the facts contained in this paper will help pro

grammers to avoid common errors and misunderstandings as well as to

.better be able to analyze errors correctly and more quickly when they occur.

The notes are based on the author's own experience with several different

non-overlap systems and purposely exclude areas which the author does not

have extensive experience in such as overlap and printer DTF's.

It is the authors conviction that senior programmers, systems engineers

and others who have responsibility for solving special problems with and

for teaching this system will profit greatly by a detailed study of the IOCS

- it is, after all, only one program with some minor variations but it is

used in virtually all programs of many installations and problems come up

every day which can much more quickly be solved through a detailed know

ledge of the system.

This principle is valid for nn st programming systems to-day but since no

programmer "has time" (read "makes time" or "takes time") then they

lose time and money in the long run.

In preparation at present writing is an english translation of a table constructed

(in NOl'wegian) giving an explanation of virtually every single symbolic label

found in non-overlap IOCS, DIOCS and DTF routines. This is of course a

very useful analysis tool and has been in wide use for several years here

in Norway.

- i -

Table of Contents (cont.)

TABLE OF CONTENTS

PAGE SUBJECT

22 The Macros
PAGE SUBJECT 1. Get

23 l. Cont'.
The DTF Entries 24 2. Put

1. DTF File Name 25 3. Open
2. Filetype 26 4. Close
3. Chandrive 5. FEORL
4. Alttape 27 6. ReIse
5. Recform 28 7. RDLIN

2 6. Sizerec
7. Blocksize

3 8. IOAREAS
4 9. Typelabel

10. Checklabel
11. EOFADDR

5 12. WLRADDR
6 12. Cont.
7 12. Cont.
8 13. Workarea

14. Indexreg
15. Varbuild

9 16. Rewind
17. Totals

10 17. Cont.
II 18. Header

18. DTF Table for a Typical File
12 19. Reelseq

20. Serialnum
21. Padding

13 21. Cont.
14 22. Modepar

23. EX AD DR
15 23. Cont.

16 The DIOCS Entries
1. DIOCS
2. DIOCSORG
3. IODEVICES
4. Tapeuse
5. Features

17 6. Labeldef
18 6. Cont.
19 7. Counts

8. Altdrive
9. Exits

10. RWDOPTION
20 11. Readerror
21 11. Cont.

- iii -

- ii - cont.

1.

2.

3.

4.

5.

THE DTF E!\TRIES

DTF File name

Should preferably contain the word FILE (example: INFILE,

FILEAB) to avoid confusion when OPEN, GET, PUT and other

macros are used.

Is used by IOCS as the symbolic label on the first instruction in

the corresponding DTF routine.

FILETYPE

For TAPE files. INPUT or OUTPUT must be specified since

these parameters are decisive for correct compilation.

An error here ruins the whole DTF.

This information will also be reflected on the DTF table at FILE

NAME-2 by a one-position code which is tested by DIOCS routines.

R=tape input, W=tape output, 1= reader, 4= punch, 2=printer.

CHANDRIVE

Any drive number from 0 to 9 is valid.

Two files may have the same number if they are not OPEN at the

same time.

The result of the entry here is that it is placed on the DTF table

at FILENAME-3 (primarily for flip-flop use) and in the model I/O

instruction on the four-line table at J11KOON.

These two locations can easily be patched to modify drive number.

ALTTAPE

Any digit 0-9 is valid.

Only result is that this entry is placed in the DTF table at loca

tion FILENAME-4 which is normally blank.

This location is tested at end of reel (IEOR on trailer) and

swapped with the position at FILENAME-3 (which is used to deter

mine drive number.

RECFORM

If neither VARIABLE or FIXED is specified then FIXED will be

assumed.

- I - (cont.)

The DTF Entries (cont.)

6.

If neither BLOCKED nor UNBLOCKED are specified then UN-

BLOCKED is assumed.

i. e. This line is theoretically unnecessary for fixed unblocked

files but is very strongly recommended as fully filled out as this

strengthens documentation greatly and eliminates error possibi

lities. It costs virtually nothing!

This line is only used for tape and is extremely important - an

error here is "fatal" - it ruins the whole DTF because major

variations in the DTF routine as based on this line.

SIZEREC

Note the purpose of this entry is to give the IOCS routines infor

mation on the size of the data record - NB including possible

record marks.

For fixed blocked records it is used for

a) increasing an internal accumulator (}:t 2QOON) which starts

at 000 for the first data record and increases by the record

length as given in SIZEREC for each GET or PUT until the

block is ended as signaled by a BCE test for a groupmark in

the next potential data record. A two-address SBR instruc

tion is used to increase the count.

b) Ensuring correct padding-record length.

For fixed unblocked files this parameter is used to check

record length (if WLRADDR).

For other files the author is not aware of any use lOCS makes

of this constant.

Errors during the first GET or during the CLOSE process

are often caused when SIZEREC does not correspond to the

DA used as lOAREA and the DA group mark is therefore not

positioned "correctly" causing loops stopped only by core

boundary.

7. BLOCKSIZE

Only for blocked filesj total IOAREA DA length not including groupmark

desired.

Used by IOCS:

a) For fixed blocked records is used to calculate the values of

- 2 - (cont.)

The DTF Entries (cont.)
- -. - - - - - - - - - - - -

8.

b)

c)

}:t ZQ and 114Q operands, these are not instructions. llZQ

is actually an internal accumulator used to keep track of which

data record in the block is the current one and ']:lZQ is used

to update a possible INDEXREG between each GET or PUT.

l'.4Q is a constant used to reset ~ ZQ after a WRL condition

so that the next GET will read a new block. The operand

value of the initial states of J::{ ZQ and):{4Q are determined

by setting them to (BLOCKSIZE - SIZEREC) and letting the

autocoder assembler calculate this difference. The reason

for this is that the first GET after OPEN will thus be forced to

read in a new tape block when l1ZQ is like this.

At EOF J1ZQ will stand at "BLOCKSIZE" (so will INDEXREG

if one is assigned) thus it is necessary to reset ;:tZQ with the

aid of a RELSE if the file is to be re-opened!

For variable blocked output with V ARBUILD this parameter

is used to determine potential block size irrespective of actual

DA size.

For all blocked files this parameter is used to check record

length (WLRADDR must be specified for this check).

IOAREAS

This is the area which will serve as input or output directly from

tape.

This parameter is a typical substitution type parameter which is

placed directly into several instruction operands in the DTF routine

any valid address form will do but any indexing used will be negated

(+ X 0).

This is then usually a DA address as it is the first position of the

input area which is needed. The DA must always have a group mark

- on most file forms, this is a vital prerequisite to proper IOCS

functioning.

The group mark is used to stop I/O operations but also to test for

a full block (F /B) and stop move-record instructions when work areas

are used (F jul.
It is possible for a careful programmer to patch - change this para

meter if it is forgotten or in error.

- 3 - (cont.)

The DTF Entries (cont.)

9.
10.

11.

TYPELABEL and

CHECKLABEL

The result of this entry is restricted to a one position code On the

DTF table at FILENAME-5 and it is combined with the result of the

CHECKLABEL entry to produce the code which is tested by the

general label routine in DIOCS (moved then for DIOCS use to

IOCPSV -4) to determine the extent of label reading, writing and

checking necessary.

The codes are:

Blank

Z

Standard - check all from input or check old output

header.

Standard - no checking of any part header or trailer.

Standard-check IDENT and block count (on trailer).

No labels.

Non-standard.

A very important point to be noted here is that this code cannot be

changed at will to any of the others unless the correct routines are

present in the DIOCS.

For complete code flexibility it would be necessary to specify

MIXED and CHECK in DIOCS LABELDEF. For example it is not

possible to specify STANDARD in DIOCS and then change this code

in the DTF table to blank in order to eliminate label reading. This

does not work because all DTF's are assumed (STANDARD in

LABELDEF) to have standard labels thus no test is made at all for

blank in this position. Similarly it is impossible to specify complete

checking by changing A to 1 if LABELDEF only has IDENT speci

fied. The routines simply don't exist!

However it is possible to specify "downward" for example no

checking (A) instead of full checking (l) or no labels (bl) instead of

standard (1, A or J) if MIXED is specified. simply by patching.

EOFADDR

The use IOCS compiler makes of this is simply to create a 3 position

address constant on the corresponding DTF table (at FILENAME-7).

- 4 - (cont.)

12.

This area on the DTF table is normally a three position blank for

output files.

Any correction or change may be made to the three-position con

stant by patching. No other changes are necessary. A missing

EOFADDR is thus very easy to correct without recompilation.

Any symbolic or actual address may b e used subject to the usual

rules for unsigned DCW address constants.

Thus an actual address must be specified in 3-position code (999

or N43) indexing is possible.

This address constant is moved up to the general D rocs routines

to a BOOO instruction at -Ji 2KOO 1 (not IOCRCL which deter-

mines if it is EOF or EOR before branding to EOFADDR).

An EOF ADDR accidentally specified for an output file is disre

garded and no recompilation is necessary.

WLRADDR

This line is alvays optional however experience has shown that it

is abs31utely necessary on all input files (except variable unblocked

where no check is possible) due to the possibility among many

other things of electronic malfUnction.

The check is carried out by a compare against a calculated con

stant as compared to the B-register after the RT operation (=GM+l,

stored in IOC TBR).

Any group marks brought into the input area are automatically

erased before branch to the WLRADDR.

The lOCS is conditioned to read a completely new block when the

next GET order is given.

Aside from the obvious and very common WLR reason - incorrectly

generated test data, WLR can corne because of the following:

a) Very large "noise" records (over 12 pos.) generated during

backspace rewrite and skip and blank tape routines because

of imperfect positioning of R/W heads.

- 5 - (cont.)

The DTF entries (cont.)

b)

c)

d)

The 1401 internally can skip a character cycle or take an

extra cycle during tape reading or writing thus extending or

contracting the record.

Wrong tape mounted or wrong tape on wrong drive.

A previous program has inadvertantly written wrong length

records due to a groupmark word mark accidentally appearing

in the output area (esp. when using common I/O areas).

The standard WLR routine which is generated individually for each

DTF routine and costs about 38 positions in core) tests in 151iluifll~

whether or not the record length is exactly correct or not Is t i f c e-
-lse@!itu (jn tb 8 som hi) sed: I1m~"@ IIISeiS) the grol1pw a r k lift-

.];8 l011iiaHo; tesis,yful. I!owev~-tftis bas proved to be a]Cery sorioue

It is psss-hlp to eke I Eol too 10115 tape lee Ids by a tittle a~

~i5Qgr?DlmiDgo. An extra groupmark wordrnark must be placed back

each IOAREA DA groupmark:

IOAREA

GM

• Ql

DA

DA

'2Dd *b QElI
cw

01!J'f'

lutLOVtlf

2xlOO.'

.~ '~I)G-
c6dihg l:cte.ii,j ga

ClI_1 A 118 tou-luiig fec6r~s

II HlThE

Rest!Ol e eM £01 t!mi,;{

.. !pee Itt iust.

Since the lOCS will automatically clear the GM at GM when a too-long

WLR occurs we must restore this in our WLR error routine:

MLCWA

MLCWA (chaining & half-chaining is possible

here)

If the WLR routine is to be general then this GM restore could

- 6 - (cont.)

The DTF Entries (cont.)

be carried out before the CW GM-l instruction above in a subrou-

tine created for the GET. If this is even more generally desired

then the address of the group marks can be found by using the fact

that the 3-position field IOCTBR contains the address of the IRG

created groupmark plus one. If this is a too-long record then IOCTBR

contains GM+I, however, if it is a too-short record then any other

address in the IOAREA is possible, so be careful. A special symbol

such as (12-4-8) placed after the GM could be used as a basis

for establishing which case (too-long or too-short) had occurred.

This information would enable the general routine to restore the GM

if necessary and also give valuable information about the type of

WLR which could be printed or typed or used to determine what type

of recovery procedures are worth trying.

What kind of a WLR routine should be written? IBM leaves this up

to the user.

a)

b)

c)

d)

e)

A macro can be written for this purpose to standardize the

routines.

An early version of IOCS branclm to WLRADDR from the BU

instruction thus it was pO,ssible to generalize for all WLR and

return to the IOCS as for a convertional SBR subroutine.

This is changed and SBR use will not work now.

A new GET will read in a new block;however a good WLR

routine could try to backspace 10 or more times before giving

up (the tape unit will be found in all cases in location IOCTRW+3.

Thus: MLNS IOCTRW+3, * + 4

BSP 0

can be used in a general routine.

In any case at least a halt and preferably a clear message

giving tape unit (IOCTRW+3!) should be given before proceeding

to a new GET.

Some attempt to identify the block should be made so that an

investigation of the output can help determine if the record really

was a "noise record". It will not be possible to get this in

formation from a workarea (not filled) or an indexed IOAREA

- 7 - (cont.)

The DTF Entries (cont.)

13.

(not correctly indexed at this point). The best bet is to, for

example, take the first 80 absolute (non-indexed+xO) positions

of the IOAREA and print or punch them. The IOAREA can be

picked up for all cases at IOCTRW+6 for use in a general

subroutine.

WORKAREA

The conception behind this entry is that one and only one workarea

is used by an I/O FILE so why not let IOCS do the moving. The

inclusion of this entry produces an MRCM (MCM) instruction in the

DTF routine which simply moves a data record between IOAREA

and WORKAREA. We must provide the recordmarks for this for

blocked records.

INDEXREG cannot be used together with this for the same DTF

because INDEXREG says "I want to process in the IOAREA without

IOCS moving the record to a workarea." An area param.eter in a

GET for a file where WORKAREA is specified will not work for

essentially the same reason. It will not be treated as an error -

it will just simply not have any effect on data moving because no

DTF routine coding has been included (as it normally will be when

WORKAREA, INDEXREG, VARBUILD are absent.) to test the GET

instruction to see if any record-moving is specified.

If desired, patching of the operand of the MCM instruction in the

DTF routine can safely be carried out in order to correct the workarea

specificat~on.

14. INDEXREG

Is only available for fixed blocked records and is most commonly

used on input.

An invalid specification here has far-reaching effects on the DTF

routine and a recompile is the best thing here.

WORKAREA, VARBUILD or a GET-PUT area specification may not

be used at the same time as INDEXREG for reasons noted under

"WORKAREA'~ however records handled in this manner can be easily

moved by the programmer down to a workarea. This is commonly

- 8 - (cont.)

The DTF Entries (cant.)

15.

done to save processing time by avoiding the move for records not

to be extensively processed.

Use of WORKAREA is the simplest alternative (and the safest),

however we are forced to consider INDEXREG use because it saves

processing time when total references to the indexed area are so

few that the additional time needed for all indexing calculations

(1401 hardware) pro record does not exceed the time needed to move

the record. This factor can easily result in for example i hour

saved daily for a file updating run which takes 3 or 4 hours a day.

Note especially that variable blocked records cannot be handled on

the 1401 tape IOCS by INDEXREG they must be moved to work area.

The reason for this might have something to do with the lack of

MRCWM (~ove record with wordmarks) instruction as on 1410/7010.

If any reader has an application where substantial time savings

will result from being able to index V /B records in input then I can

console him that it is possible to "cheat" by specifying variable/

unblocked to IOCS.lletting each GET get a whole block and deblocking

by relatively siInple Inanual coding.

The author has constructed and sucessfully used a Inacro "NOGET"

expressly for this purpose. ReInember one detail for variable un

blocked records IOCS will change the IRG-generated GM to a

record Inark during the GET, in case you try to test that to deterInine

last data record.

VARBUILD

This is str'aightforwardly described in the Inanual. The usual error

is using Xl which is not allowed as this is internally used siInul

taneously by IOCS during PUT (but is of course otherwise freely

available to the user).

The VARBUILD rythm is

a) Give the size you want the processor to allocate for the next

record to the varbuild operand.

b) PUT ,FILE. The IOCS now determines if the previously put

records must be written out to Inake room for the new one or

not. In any case the varbuild operand will then re'ceive froIn

IOCS the exact address (left-most) where the new record can

be placed. The user can then Inove his record in using this

inforInation. For exaInple

-8-()., (cont.)

The DTF Entries (cant.)

16.

17.

01 MLC SIZE, X2

02 PUT ,UTFILE

03 MRCM WORKAR,0+X2

GIVE SIZE

.i\.~LLOCATE A PLACE

MOVE RECORD TO

ALLOCA TED AREA

Use of an indexregister as V ARBUILD operand saves one instruc-

tion in this exaInple (but of course we assume the register is available).

Note that the varbuild operand (esp. an X-reg) may safely be used

for any other purpose between these "put sequences".

Note that VARBUILD is in f act the only method of writing out vari

able/blocked records via this IOCS~

REWIND.

The only effect this entry has is on a one-position field on the DTF

table just above the end of file address (at FILENAME-IO).

There are three possible codes here:

Blank

B

A

= No rewind desired at beginning or end of reel

= Unload desired at end of reel, rewind at beginning

= Rewind desired at end and beginning of reel.

These codes are Inoved along with the whole DTF table to the joint

DIOCS routines' area for DTF tables at IOCPSV each time this file

has a beginning or end of reel situation. The rewind code resides

at IOCPSV-9 which is EQU to IOCRWD and both labels are used in

the DIOCS routines.

Blank and B are tested directly as needed while A is "assumed"

if blank or B are not present,thus any other codes would give the

"rewind" effect.

No codes will be tested at all if either UNLOAD or NORWD is not

specified in DIOCS R WDOPTION. If at least one file has a NOR WD

entry then one of the two valid RWDOPTION entries must be entered

otherwise ~ will be made on this code and rewind will be

assuIned regardless of the DTF specification.

TOTALS

The result of one or two entries here is that for each count desired,

a ten or 16 position accuInulator will be provided at the upper end

- 9 -

The DTF Entries (cont.)

of the DTF table immediately adjacent to the * which in fact is used

as a signal to determine wehter or not there are more fields to be

handled by the DIOCS routines after all other fields except hash and

record fields are handled in the IOCENT routine which initializes

a DTF table for use by the general DIOCS routines.

The field J17 JOON is the field used for record counts. This can be

referred to directly (f. ex. 1\7 J002 for the first DTF) where know

ledge of record count is desireable for example in order to limit file

size on a reel to be sorted. No zone bits ever exist in this field.

117KOON is the label of the 16 position accumulator provided for hash

totals although only the right hand 10 positions are used in the label

and thus authomatic overflow is "lost".

In addition to the 10 position fields an A (add) instruction will be

created at an appropriate place in the DTF routine to take these

totals.

Note that a WM will be desireable to delimit hash fields less than

ten positons. This field which must have a WM is in the workarea

defined in the DTF if one is defined there; otherwise the wordm.ark must

come in the IOAREA DA even if a warkarea is named in the GET

or PUT macro~ The reason is logical; the DTF has no knowledge

whatsoever of GET ar PUT use~

It should be more obvious here why variable/blocked records ~

be read into a work area.

If the user neglects to make corresponding entries for HASH and

RECORD in the DIOCS COUNTS fields then a specification in the

DTF is useless for label procedures but can certainly be used for

other purposes as mentioned above. The DIOCS has no knowledge of

what HASH and RECORD totals are specified in the DTF's and vice-

versa.

Note especially that hash totals in the DTF are not given by the word

HASH as in COUNTS but are the relative position of the right-most

position in the field to be hash-accumul ated. This information is

used as address adjustment in the add instruction only and can thus

easily be corrected by patching.

- 10 - (coat.)

The DTF Entries (cont.)

18.

LABEL USED

HEADER

The only practical use of this entry is to give the 10 pOSe header

IDENT when an input file is only to be tested on IDENT and to give

the IDENT and retention cycle desired for output files.

There is no practical sense in giving retention cycle and creation

date for input files since these data are invariably provided via

a RDLIN card when they are to be used.

Parameter 1 (the IDENT) will be placed on the DTF table immedi

ately above the % constant which is the signal that label information

follows. It is rather important that this parameter be always 10

positions since the constant will be generated incorrectly otherwise

and ruin the IOCS processing.

The second parameter on output files will be placed in the three

position field which is located three fields above the IDENT.

A picture is a good idea here.

Here is a typical DTF table:

IN DIOCS * DTF TABLE FOR A TYPICAL FILE

IeCHSH

IeCRCT
IeCCRD
ISCRCY
IeCSEQ
reCSER
IeCIDT

IeCBLK
IeCRWD
IeCEeF

JeCPSV-4
IeCPSV-3
IeCPSV -2

DCW @*@ END OF TABLE MARK
Jl7KOO2 DCW :#=,16 FOR HASH -TOTAL (only 1010wer

pOSe used)
Jl7J002 DCW :#' 1 0 FOR RECORD COUNT

DCW #5 CREATION DATE
DCW @075@ RETENTION CYCLE
DCW @001@ REEL NUMBER
DCW @2010<@ FILE SERIAL NUMBER
DCW <!'KUNDEFL20l@ FILE IDENT
DCW @%@ BEGINNIN G-o F-LA BE L-DA T A MARK

(Indication of which exits are used can come here)
-DCW &000000 BLOCK COUNT, LEFT HAND 5 POS.
DCW @ B@ REWIND CODE (UNLOAD)
DCW EeF@EOFADDRADRCONSTANT
DCW @ PADDING CHARACTER
DCW @ 1 @ CHECK LABEL (ALL)
DCW @ @ POSSIBLE ALTERNATE TAPE ur-;-IT
DCW @ 3~ MAIN TAPE UNIT
DCW € R@ INDICATES FILE TYPE R== tape input
DCW e Me> INDICATES MODE (MOVE OR LOAD)

The next position is the first in the DTF routine and it has the same

label as the DTF FILENAME.

A study of this table is very important for an understanding of

- 11 - (cont.)

The DTF Entries (cont.)

19.

20.

21.

IOCS. It should be obvious that the constants we give in the DTF

go directly to this table in many cases and since the standard autocoder

macro substitution system is used by IOCS also then an incorrect

specification of the length of a field (for ex. 3 instead of 003 for

retention cycle) would give a too-little constant and give undesired

results at object time. To put it another way - if you get a funny

looking label - check this table!

Parameter sequence is extremely important here - note especially

the difference between input and output file specification!

REELSEQ

Generally this is rather useless - the author has never seen it used

and cannot think of any good excuse to use it either.

The effect of course is an initial modification of the normally gene

rated @001@ DCW on the label table.

SERlALNUM

Any five position field can be specified here but the user must deter

mine his own system.

A useful system might be to always place the five position program

-IDENT (col. 76-80 of autocoder cards) here so that tapes give an

indication as to the program which produced them!

PADDING

The effect of the single position (usually "9") inserted here is simply

to replace the normally blank position assigned as padding character

on the DTF table.

This entry will most certainly not determine whether the padding

routine will be carried out. Padding with whichever character is on

the DTF table will always be carried out if necessary at CLOSE or

FEORL on FIXED/BLOCKED OUTPUT FILES.

At that time this character is picked up from the table by the DTF

padding routine at II 3PooN.

The padding procedure is worth mentioning.

The padding character is moved by a loop in the padding routine

from the next-to-last character in the record and one by one towards

- 12 -

The DTF Entries (cont.)

the left end of the record then for all remaining records to be padded

in the block an MCM (MRCM) is executed in order to "copy" this

padding until the end of block is reached as indicated by the pre

sence of a Groupmark (see routine n INOON).

The most common failures at this point then are due to:

a) Error in SIZEREC or DA length specification.

b) No record mark at end of padding record; this usually occurs

during testing of programs with so little test data that a full

output block has not been created yet, this results in a process

as the MCM destroys its own future A-field (esp. GM-WM)

because the last data records lack record marks.

c) Missing Groupmark at end of DA.

Worthy of note is that present 1401 tape COBOL which USes

IOCS will always pad with blanks unless the user via a patch to the

DTF table(or ENTER AUTOCODER to change the table) changes the

padding character.

Of course the user must always test for padding on input files which

can contain padding.

A popular misconception is that to "save time" we can branch directly

to the EOF routine. This must be forbidden as it is not compatible

with IOCS because if we branch directly to the EO:r routine ~fter dis-
coverlng a paddlng record:

a) Labels will never be checked (trailer),

b) Padding can come at the end of ~ block if FEORL or RELSE

has been used in the program producing the tape - and if it

does not use them now, it might at any future time be changed

(for example to cut down reel size for sort input),

c} Padding will not necessarily come at all if the block is full!

The only correct programming is that every GET have an immediately

following padding test which always brandEs to the GET again if we find

padding. The use of a GET subroutine so that this is not "forgotten"

is to be recommended.

Generally 9 sh~uld always be used for padding unless special circum

stances dictate otherwise but retnember - even if fixed/blocked files

are used padding might not come at all.

- 13 -

The DTF Entries (cont.)

22.

23.

Padding records should always be generated in test input for fixed

blocked files!

Be careful to test a big enough field so that you can be absolutely

sure that the record is padding. BCE testing is strongly discou

raged. Remember that input data can be in error!

MODEPAR

Not normally used because MOVE mode which is most common is

assumed when nothing is specified.

Result of this entry comes on the lowest position of the DTF table

and in the model I/O instruction in the DTF routine under l! lKOON

table.

EXmADDR

Exits are at most installations never or hardly ever used although

some will of course use them in every program because of special

label procedures.

The author has very little practical experience with exits and would

prefer therefore not to discuss .them at length.

An interesting point here however can be mentioned.

If it is considered necessary to use exits then their effect can often

be achieved by macro instructions or autocoder coding which ORG

INTO laCS routines and patch in exits symbolically. In one case the

author constructed a macro to do just this so that labels were auto

matically displayed on a console typewriter for every open. Since

a macro cannot refer to another macro's It labels {and DIOCS is a

macro} and no IOCXXX labels were where we needed them it was

necessary to tack our own private label into an existing DIOCS in

struction. This has succeeded very well and been in use for over

two years but is certainly "dangerous" because we have no guarantee

that the system will work after each new modification level! Of

course the label must be added to existing model statements and we must

~ add or subtract from the model statements since each updating

of laCS is completely dependent on the expected sequence numbering

of each model statement after the immediately preceding update.

- 14 - (cont.)

The DTF Entries {cont.}

The use of one or more of these statements in the DTF will produce

eight different DCW constants, one for each potential exit. a *
indicates the exit is not used for this file while lack of an * indi

cates that

a)

b)

the exit is to be activated when this file is handled,

instead of the *. the 3 position address which the exit is to

branch to is included in its place.

These are included. if at all, just below the '10 sign on the DTF

table.

Example: exit one (EXIADDR) is specified as EXITl.

DCW

DCW

DCW

DCW

DCW

DCW

DCW

DCW

DCW

@'10@
EXITI

@*@
@~@

~@
€.e?
e'.@
~*@
@.@

address constant

indicates exit 2 not used

exit 8 is not used in this particular

DTF.

No exit can be activated if it is not specified as being used in the

DIOCS EXITS entry.

- 15 -

THE Dloes ENTRIES

I. DIOeS This word must come as the third (or 2nd if no JOB card)
card of a compilc~.tion. That is1no intervening comments
cards are allowed. Generally speaking no other cards except
DIOeS, DTF, JOB and eTL should be used before the last
DTF is finished.

2. DIOeSORG The effect of this entry is simply to change the (333) normal
ORG ahead of laCS coding to the operand specified here.
This feature is rarely used in actual practice.

3. IODEVleES The point of this entry is to give information to the macro-
processor that we expect to have DTF's in this program for
the named devices (Tape, Printer etc.) and that therefore
certain routines and instructions must be included in the
DIOeS routines, especially to separate the tape files (with
label handling) from unit record files. '

The ext~a coding generated by superfluous use of U/R para
meter specification is minimal (a few BeE tests to avoid
label routines). The use of the parameter TAPE is however
extremely important as it is decisive for all tape model
statements.

It is a common misconception that we should specify U/R
(Reader. Printer, Punch) when we have them on the 1401 or
use them in the program but this is not at all the case.
The deciding factor is - do we have DTF's for these devices -
parameter sequence is quite irrelevant here.

4. T APEUSE The primary function of this entry is to reduce the DIOeS
coding gene,rated and to reduce the processing time for certain
routines a little.

There will be no adverse effects other than those mentioned
above if this is not specified when only input or output files
are present. However if this is in~orrectly specified then a
recompilation is demanded since this has far reaching effects
on the routines generated.

About 155 positions can be saved by using this entry.

5. FEATURES The point here is that features such as overlap, release and
print storage which the user desires used by I/O devices which
are specified in one or more DTFis can be specified here.
This will ensure that maximum use is made of these features.

- 16 -

5. cont. It is never necessary to specify any of these features if the
user does not want to. This can be desirable when no
meaningful time savings can be achieved since I/O volume
is low and the user prefers to save the core space which
will be used by the additional routines.

The overlap feature has a very great effect on the compilation
of tape programs, being virtually a whole new laCS, if this
feature is never used (When overlap is not ,installed on a 1401)
considerable compile time improvement can be made by cutting
out all the model statements in the IOCS which are especially
for overlap. This process is separately described in laCS
program library writeups and should normally be done.

RELEASE should normally be specified for card reader or
punch files of any volume (lets say several hundred cards or
more) unless the slight additional core (over 100 pOSe including
a work area) required is mor~ desperately needed elsewhere.

Note that a card reader which is to use the release equipment
will require that a work area be used. This can be recommended
in any 'case as a great convenience since a DA with wordmarks
cannot be written for positions I to 80. If release equipment
is installed then, this can only be utilized effectively by laCS
specification.

DIoes routines are only affected slightly by these parameters
in order to ensure "release"before tape I/O operations are
performed. The main effeCt is that the respective DTF routines
for U /R are increased to include coding. The "release" function
will automatically be performed where necessary by all laCS
routines. However, user coding must also take this into account
and before any lengthy operations are performed.

B 'IoeRDX (release the reader)

and/or

B IoePNX (release the punch)

must be included. Failure to do this at the appropriate points
will stop the rnach~e and the card in que stion will fall in the
norn'lal pocket. '

The position of the I register will indicate the point at which
the programmer must place the branch-to-release instruction
(Which, by the way) is an SBR-type subroutine}.

6. LABELDEF This important entry is one which new IOCS students have
greatest difficulty understanding.

It is only necessa,ry if some tape files have any kind of labels.

It determines which routines are to be included in the DIOeS
for use as, specified in the individual DTF or by the RDLIN
macro.

- 17 -

6. cont. To simplify we can say that the following specification (we
disregard TM as unimportant)

MIXED, CHECK, RDLIN

is the most general case. Any other specification limits
the extent of the possible DTF specifications and is (like
"Tapeuse") primarily an attempt to reduce the coding to be
included in the DIOCS routine.

MIXED means that DTF files can have STANDARD, NON
STANDARD labels or none at all - and that the DTF table
can at any time easily be patched to change that status.

If we instead of MIXED specify STANDARD then we have
said that ali tape files will always have standard labels
and the user will find that it is very difficult indeed to patch
lOGS so that a file may be temporarily read or written without
labels.

The additional coding generated by MIXED is very modest
being essentially some few BCE tests. So it is generally
worthwhile to use this - it can for example simplify testing.

CHECK will allow all possible combinations of label checking
as determined by the DTF table entry including no check at all.

Whereas IDENT eliminates the possibility that any file will
be checked completely regardless of the DTF specification.
whereas only about 50 positions would be saved.

Standard (or MIXED) and CHECK specification require about
1000 extra positions to give complete label handling, as
opposed to not using lables at all or prograrn.m.ing for them
individually.

RDLIN specification will lead to the inclusion of a 174 position
SBR-type subroutine called IOCRDLwhich is used exclusively
by RDLIN macros. This fact is useful since the routine is
easy to overlay after use to win core positions (ORG IOCRDL).

If CHECK is to be used in any DTF, then RDLIN is virtually
manditory in order to change the creation date in the DTF
table for correct comparison with the input header. Another
consequence of RDLIN use is that RDLIN cards must be made
for every file written with standard labels. It is most expedient
to punch RDLIN cards automatically. At one installation the
author constructed a macro "PURDL" which automatically
patched laCS and ensured RDLIN card production. Another
device which is very simple is to utilize the fact that after
OPEN on an input file, all the required information is in label
form at the label I/O area named IOCSLB, which is accessable
to the programmer.

For example: OPEN OUTFIL
SW 121
MLC IOCSLB+39, 150
MLC ~RDLIN@ 1/2 CHAIN
P
CS 180 OPTIONAL
SS 8 OPTIONAL

This is cheap and ea:Yl~n.? a macro is readily constructed.

7. COUNTS These parameters will include the coding needed by the
DIOCS routine to handle the count fields found in DT F' sand
to check and produce these counts on trailer labels. About
217 positions are required if both are specified and about
187 positions if only ~ is specified.

This entry does nothing but give the possibility for hash or
record totals; the actual use they are put to depends entirely
on the DTF specifications. If no DTF has courits then these
routines only take up space but do no harm.

8. ALTDRIVE If included, this parameter includes 29 positions extra in the
DIOCS routines which primarily test the alternate drive unit
space on the DTF table (FILENAME-4) for a file at end of
reel and shift the drive number (if it isn It blank) with the drive
indicated in the main drive position (FILENAME- 3), and
ensure that the I/O instruction receives this new drive number.

If the altdrive space on the DTF table is blank, then this will
have no effect. In other words, if altdrive has been specified
in the DIOGS, then flip-flop unit changing can be entirely con
trolled by patching or programming changes to the single
position on the DTF table (for example by control card or
sense switch choice).

9. EXITS When specified, routines for testing the DTF table just below
the '10 sign for indication of which exits are desired, are in
cluded as well as coding at the exit points in the DIOGS label
routines in order to allow branch to the addresses given for
each particular exit on the DTF table.

Core requirement for this specification is 70 positions (DTF
table test routine) plus 9 extra positions for each exit named.
These 9 are used for the exit itself. In addition the following
number of positions for the exit as indicated must be included:

Exits 1-2-4-5-7-8

3

6

11 positions

39 positions

25 positions

for example exits 1 and 3 require altogether 138 positions.

10. R WDOPTION If UNLOAD is included, then extra coding will be included
so that any DTF specifying UNLOAD on the DTF table will be
tested and unload will be performed instead of the normal
rewind. NOR WD option will also be tested.

- 19 -

10. cont. If NORWD is specified, then tests will be made for NORWD
option in the DTF table but otherwise, rewind will be assumed_
UNLOAD is not taken into consideration by IOCS.

UNLOAD requires 40 additional positions while NOR WIND
(or NORWD it makes no difference since only the first three
letters are tested) requires only 16 additional positions.

11. READERROR This entry describes what procedures are to be carried
out when a "permanent" tape error is discovered. This means
that the normal tape error routines have given up hope. If
nothing is specified, BYPASS is assumed. That is, the record
(the whole tape--record, not just a data record) will be bypassed
without any processing and a new record will be read before
control is returned to the userM

Before this stage is reached, the IOCS HALT 3050 will appear
and the operator can press start to continue trying. If after
ten further attempts reading is not successful, then the read
error options (if any) will be executed.

If CLEAN is inserted as it should be if space allows (104
positions), then the tape will be packspacedD times and read
forward ~ before a new read is attempted. This brings
the area oftape in question back to a vacuum cleaner on the
tape statiDn which will attempt to clean the tape.

If this however does not succeed, the other options will be
tried. Clean is recommended in addition to all other possible
parameters. ----

PROCESS, can be specified so that the tape record will be
handled regardless. This option does not cost any core posi
tions, but just changes a branch instruction.

Process is generally better than the bypass option because
many errors are so insignificant that it is better to process
the records after noting where the error occurs (if possible)
to check the output later. If the controls built into the program
are good enough, there is less danger here than there is when a
record is simply hopped over!

A dump tape option is used by many customers but I think this
is a rather expensive use of a tape unit since the actual error
rate is very low. Let us say this situation under namal
circumstances should not occur for more than a few records
a ymr_ If it does occur often enough to justify a dump tape,
then something is radically wrong at your installation!

11. cont. In the authoM> opinion all options offered are rather poor.
At one installation which had a 1407 console typewriter, the
author constructed a macro instruction RDERR which all
programmers use which automatically gives operator in
structions to allow dump (the rotary and I/O switch must be
changed so that a re-read will read in the record without
correcting the parity, replacing error positions by}f{) :1£
of the entire error record on the console with exact error
indication. This is a great advantage because if the record
is then processed (this can be determined by the programmer
or the operator), then the results should be predictable since
we know which symbols are in error.

This dump with parity error identification cannot be achieved
on a printer because the printer has no indication for incorrect
parity.

In addition no extra unit such as a dump tape is needed. Extra
tapes are better used as flip-flop for example.

:1£ The error positons are in core as even parity characters

but is typed as}t(•

- 21 -

1. GET

THE MACROS

GET provides us with a data record (logical record) from an
input file. It does this by branching to the DTF routine for
that file which actually provides the record for us and if
necessary utilizes the joint routines in the DIOCS to read in
new tape blocks to replenish the supply of data records which
the DTF routine utilizes.

Let's look at a typical GET macro's generated coding:

01 GET INFILE, WORKI

02 SBR IOCUXT+3tIOJ009 STORE ADDRESS OF NEXT
INST AFTER THE GET MACRO

03 B INFILE BRANCH TO THE DTF FILE
ROUTINE

04 DSA WORKI ADDRESS OF RECEIVING AREA

05 DCW @,. N0 8J DUMMY (CAN BE SKIP/SPACE
INST)

06 DCW @.I$@,I DUMMY (CAN BE PARAMETER
4 SKIP/SPACE CONSTANT)

07trOJ009 EQU *+1 EQU TO ESTABLISH A LABEL
WHICH CAN BE USED AS EXIT
FROM THE MACRO

This sequence is so common and simple that it is well worth
learning - not least to aid in changes and corrections by patching.

IOCUXT is an instruction which looks like this

IOCUXT B 0

and is simply used as a general exit from GET, PUT and certain
other routines (very useful in coreprint analysis). so the first
instruction in the macro uses a two operand SBR to store an
address constant in this branch instruction. One of several
advantages of this technique is that it is independent of the DTF
itself since the IOCUXT is in the DIOCS.

The next instruction 03 is a branch to whatever is written as the
first parameter of the GET macro. Without any checking what
"S'OeVer this branch is attempted. Of course parameter 1 is
supposed to be the DTF FILE NAME and that name is given as
symbolic label for the first instruction in the DTF routine. In
other words we tell the macro where to branch to. If we don It
write the filename correctly in the macro we will still get a
branch to our first parameter even if it is for example an input
area or non-existent (undefined). The main point is that we can
easily correct any error by a patch or an "alter" during a re
assembly with alterations without laCS regeneration (see auto
coder operating procedures).

- 22 -

1. cont. The GET (and all ot her IOCS macros) are in fact "ordinary"
macros which have no other connection or knowledge of laCS
than the file name which, for the macro is simply a parameter
which it uses as a label.

This lack of communication between the GET macro and the
DTF and DIOCS routines is one of the main reasons that this
particular lOCS system cannot do more "work" directly in the
GET sequence as the 1410 and 1401 (DISK) laCS do. These
systems use a different type macro system which allows
information to be stored from one macro to the next - for
example from DIOCS to DTF to GET. The result is that the
processing time in this particular laCS system is relatively
high. There is much more branching back and forth than is
necessary in these other systems.

The fourth line (04) is normally a dummy entry, a $, but if
an area parameter is specified (that is if parameter 2 which
should be a receiving area) then a DSA line comes which
produces an address constant. Note that since this is a DSA -
actual addresses can be used such as 1 or 1234.

The DTF routine uses the information now stored in IOCUXT
to find out where the macro, which referred to it, is. Then
the routine finds this parameter, if the DTF has not specified
INDEXREG or WORKAREA. - -

The parameter is placed in the B-operand of an MCM instruction
which is not executed if the parameter is $, but which otherwise
moves the I/O area data record to the area we have named as
our second parameter - even if we have named a file by accident.
This of course ruins the whole DTF routine. Anything other
than $ which is named in the second parameter will cause an
attempted move !

A full discussion of GET should actually include a detailed
description of how the DTF file routine functions. However,
that is much too great a problem to take up at this point.
Suffice to say that any student of IOCS should be able to "read"
some DTF routines and interpret their functions and methods
at the autocoder level. Program flow charts for the DTF routines
will of course be found in the IOCS writeups.

- 23 -

2. PUT ;..row that we know the GET macro it can suffice to say that the
principles are exactly the same as for the GET macro, the
principal difference being that the order of the parameters 1
and 2 are reversed. Thus parameter 2 will be placed in the
branch instruction and parameter one will be the DSA constant.

Now it is easy to see that

PUT UTFILE

will not work correctly since parameter two is not present
and parameter one is a file name instead of an area name.

PUT , UTFILE

is required if parameter one is missing.

It would be simple to rewrite the PUT macro so that a one
parameter put would regard that one parameter as the file
name and thus eliminate a very common error. However
since this was not done by the designers of IOCS, we must
assume that the intention was to force the programmer to
document the fact that the other parameter was intentionally
left out.

This error is in any case simple to correct without a full
IOCS regeneration as we mentioned under GET.

- 24 -

3. OPEN OPEN

B

NOP

INFILE

IOCOPN

INFILE-17

Macro

Branch to open routine

Label information is at position
INFILE-17

The above is the coding generated.

The parameters named in the macros are assumed to be
valid file name s.

All DTF's are built up in such a manner that the address of
the filename (= first position in the DTF routine) minus 17
positions is the lower section of the DTF table. This is where
open routines can find label information and information about
exits.

The main reason the second line is generated with a NOP is
that the SBR instruction at IOCOPN stores the return address
(in IOCQUT - also a very useful point to examine coreprints).

If a plain address constant had been used, then the return to
the instructions following would have to be accomplished by
some form of address adjustment. The use of NOP then is a
cheap way of eliminating this difficulty.

From this explanation the reader should now be able via patching
and alter to add, take away and change OPEN macros in a very
straightforward manner.

As the reader can confirm, the first instruction of the DTF
routine is (for example)

INFILE B IOCUXT

which obviously means that a GET or PUT can get nothing done
since any attempt to B INFILE just branches to the exit without
getting/putting any records.

What this means is that the file is not open. One of the things
done by the open routine is to change this B IOCUXT to

INFILE NOP IOCUXT

Thus the path is open to the rest of the DTF routine and we
say the file is "OPEN". CLOSE of course restores the B.

From this discussion the reader should now be able to examine
a core print or to test any file by a BCE instruction to see if
it is OPENed or CLOSEd. This is very useful in error analysis
and end-of-file routines. The author has constructed a pair of
simple macros to make this easy to remember. One example
should suffice,

BCLOS
BCE
BOPEN
BCE

END, INFILE MACRO
END, INFILE, B GENERATED CODING
CONTIN, OUTFIL MACRO
CONTIN, OUTFIL, N GEN

- 25 -

4. CLOSE CLOSE macro is constructed in the same manner as OPEN.

CLOSE
B
NOP

INFILE
IOCLOZ
INFILE-17

and so therefore easy to patch and change.

CLOSE (and OPEN) can be traced on a core print by examination
of the branch instruction at IOCOUT which is a B 000 instruction
similar to IOCUXT. The address at IOCOUT will give information
about which OPEN or CLOSE was attempted last. IOCOUT is
used by other routines internally in the DIOCS as well as the
FEORL macro.

In particular IOCOUT is used by the end of reel routine, so if
the program has failed after EOR but before close. then exact
information on which DTFroutine is concerned will be in this
branch instruction.

One important point about CLOSE which is commonly misunder
stood is that close does not check the trailer label on a tape
input file. When the tapemark is read the trailer is read and
checked to the extent specified and then tested for EOR or EOF.
If it is end of file (EOF) then the users end-of-file routine
(EOFADDR) is executed. It is however the function of the
CLOSE macro to ~ the tape at end-of-file.

Generally speaking CLOSE should be executed for input files
immediately upon EOF. This gives a "free· switch as described
under OPEN and prevents a variety of errors.

~ for an output file will

a) write out last block, with padding if necessary

b) write tape mark, trailer label, tape mark if standard labels

c} rewind, unload the tape (as specified).

5. FEORL This is not very commonly used but one important use can be
mentioned as an example. Output reels which are to be sorted
must not be filled up over the length of normal work tapes even
if the output reel happens to be extra long. This is known as
exceeding maximum file size (MFS).

By counting records the programmer can force the end-of-reel
at the correct point using FEORL (MFS can be calculated
manually or by the sort program.) thus ensuring a correct sort.

- 26 -

6. RELSE The only practical use the author has put this macro to has
been re-initialization of internal DTF routine accumulators
when a reel is to be re-read. This is especially important
on fixed blocked files since the OPEN does not initialize the
blocking accumulators which are left at a useless value at
EOF.

A typical sequence might be

OP OPEN
GET
CLosE
RELSE
B

F
F
F
F
OP

RE-INITIALIZE TO BLOCK START POINT
RE-OPEN

The main effect of the relse is that 1120 accumulator is reset
to 1140 constants value. This can of course be done by an MLC
instruction.

The file does not have to be open in order to use RELSE since
relse skips over the first two instructions in the DTF routine -
especially the B/NOP switch.

- 27 -

7. RDLIN RDLIN coding generated is similar to OPEN and '":LOSE.

RDLIN
B
NOP

FILE
IOCRDL
FILE-17

IOCRDL is a 174 position SBR-type subroutine which essentially

a)

b)

c)

reads a card

confirms that it is RDLIN (in col. 16-20)

moves its data to corresponding areas in the DTF
table for the file named

The important point is that no check is made to determine that
the RDLIN card information goes to the correct file. So the
sequence which the operator places the RDLIN cards in can be
critical especially if the RDLIN cards are used for output files.

In addition note that the RDLIN cards do no label checking etc.
whatsoever - they only change the entries in the DTF table -
label writing and checking is carried out as if no RDLIN card
was read.

A point which causes unexpected difficulties is that the IOCRDL
subroutine will execute

CS ·80

Thu.s the read area is cleared of any word marks set in a
"housekeeping" routine in the read area. This is one of the
many reasons the author recommends that programmers avoid
using the read area directly.

RDLIN can of course be used at any time a change in label
information is desired and the use of RDLIN can of course be
controlled with a sense switch. The principal use however is
to change the creation date specification before the DTF table
is compared to an input header for full checking.

Of course since creation date must be changed then all other
information must also be correctly contained in the RDLIN card -
no blanks can be used to indicate "no- change".

- 28 -

	000
	001
	002
	01
	03
	05
	07
	08
	10
	12
	14
	16
	18
	20
	22
	24
	26
	28

