
HP 64753 Emulator
Terminal Interface: Z80
Emulator User’s Guide

Edition1

64753-90901E1187
Printed in U.S.A. 11/87

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warran-
ties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein
or for incidental or consequential damages in connection with
the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reli-
ability of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1987, Hewlett-Packard Company.

This document contains proprietary information, which is pro-
tected by copyright. All rights are reserved. No part of this docu-
ment may be photocopied, reproduced or translated to another
language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is sub-
ject to change without notice.

AdvanceLink, Vectra and HP are trademarks of Hewlett-
Packard Company.

IBM and PC AT are registered trademarks of International Busi-
ness Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80918, U.S.A.

Printing History

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates
the version level of the software product at the time the manual
was issued. Many product updates and fixes do not require man-
ual changes and, conversely, manual corrections may be done
without accompanying product changes. Therefore, do not ex-
pect a one to one correspondence between product updates and
manual revisions.

Edition 1 11/87 64753-90901E1187

Using This Manual

This manual, the Terminal Interface Z80 User’s Guide, explains
how to use the Z80 Emulator with the built-in Terminal Inter-
face firmware. It covers general use of the Z80 Emulator, in-
cluding:

• Getting Started - Chapter 1

• Features Of The Z80 Emulator - Chapter 1

• How To Configure The Z80 Emulator - Chapter 1

• How To Map Z80 Emulation Memory - Chapter 1

• How To Load A Sample Z80 Program - Chapter 1

• How To Modify Z80 Memory - Chapter 2

• Use The Z80 Features - Chapter 2

• Display And Modify I/O Locations - Chapter 2

• Display And Modify Registers - Chapter 2

• Set Up, Execute, And Display A Trace - Chapter 2

• In-Circuit Emulation - Chapter 3

• Z80 Emulator Characteristics - Appendix A

• Z80 Emulator Specific Syntax - Appendix B

• Z80 Error Messages - Appendix C

The index contains terms and corresponding page numbers so
that you can locate information quickly.

If you do not understand a term in this manual, refer to the HP
64700 Emulators Glossary Of Terms for a definition.

Use this manual in conjunction with your HP 64700 Emulators
Terminal Interface User’s Reference. That manual contains de-
tails about all of the Terminal Interface commands.

Refer To The
Maps

The HP 64700 Series Manual Maps will lead you in the right di-
rection for getting started with the various interfaces, and with
using your emulator/analyzer. You can find the maps in the
package marked Read Me First.

Contents

 Chapter 1 Getting Started

Introduction . 1-1
Purpose Of The Z80 Emulator . 1-1
Features Of The Z80 Emulator . 1-3

Limitations And/Or Restrictions. 1-4
How The Emulation Components Communicate 1-4
Information On The Emulation Components. 1-5

Using The Help Command To Assist You 1-5
How To Use Macros . 1-7
How To Create Your Own Macros. 1-9

Before Using The Z80 Emulator . 1-10
About Operating The Z80 Emulator In A Target System . 1-11
Familiarize Yourself With The System Prompts 1-11
Initialize The Z80 Emulator . 1-12

How To Configure The Z80 Emulator 1-12
Some Background On The Z80 Configuration Items . . 1-13
Other Z80 Configuration Items. 1-14
Getting Help On Z80 Emulator Configuration Items . 1-14
Using "cf" To Configure The Emulator 1-14

About The Other Configuration Items 1-20
Memory Map . 1-20
Access And Display Modes. 1-21
Break Conditions . 1-22
Breakpoints . 1-23
Coordinated Measurement Bus Operation 1-24
That’s All About Configuration Items 1-24

How To Map Z80 Emulation Memory 1-24

Contents-1

How To Load A Sample Z80 Program 1-26
Loading A Program By Modifying Memory 1-28
Loading A Program In Transparent Configuration . . . 1-29
Run The Example Program . 1-33
Remember To Use The Manuals. 1-33

Notes . 1-34

 Chapter 2 How To Use The Z80 Emulator

What Is In This Chapter?. 2-1
Modify Z80 Memory. 2-1
Use The Z80 Run/Stop Features . 2-2
Display And Modify I/O Locations . 2-6
Display And Modify Z80 Registers . 2-8
Set Up, Execute, And Display A Trace 2-10

Execute A Trace . 2-11
Display The Trace. 2-11
Stepping Through A Trace List . 2-12

Defining Logical Expressions . 2-13
Determining How Much Of Memory Is Accessed. 2-15

 Chapter 3 In-Circuit Emulation

What Is In This Chapter?. 3-1
What Is In-Circuit Emulation? . 3-1

Default Configuration Item Definitions. 3-2

2-Contents

How To Install The Z80 Emulator Probe. 3-3
Perform Z80 Emulation Functions In-Circuit 3-4
An Example Target System . 3-4

When To Modify I/O Locations. 3-7
In-Circuit Emulation Specifics . 3-8

Emulation Memory and Target System Memory 3-9
Modifying Operation Of The Monitor Program 3-9

Make Bus Cycles Visible . 3-9
Reduce Monitor Program Access Time 3-10
Tailoring The Monitor For Target System Interaction 3-10
Restrictions . 3-12
Creating/Loading The User Monitor Subroutines 3-15
Observe Monitor Operation . 3-15

High-Speed CMOS Target System Interface 3-16

 Appendix A Z80 Emulator Characteristics

Notes . A-12

 Appendix B Z80 Emulator Specific Syntax

What Is In This Appendix? . B-1
Z80 Specific Syntax Diagrams And Variables B-1

Z80 Emulator Configuration Items. B-2
I/O . B-3
Address . B-4

Contents-3

Display Mode. B-5
Register Class . B-6

 Appendix C Z80 Error Mess ages

What Is In This Appendix? . C-1
Z80 Unique Error Messages . C-1
Real-Time Error Messages . C-2
Reset Error Messages . C-2
Monitor Error Messages . C-3
Unknown Or Fatal Errors . C-3
Notes . C-4

Illustrations

Figure 1-1. HP 64753 Z80 Emulation System. 1-2
Figure 1-2. How The Emulation Components Communicate . 1-5
Figure 1-3. An Example Z80 Program 1-27
Figure 1-4. Expanded Listing Of Assembled Z80 Program1-30
Figure 1-5. Content Of Z80 Memory After File Transfer 1-32
Figure 3-1. High-Speed CMOS Circuit Schematic. 3-17
Figure 3-2. Example Build Of Circuit. 3-18
Figure A-1. Opcode Fetch Cycle Timing A-2
Figure A-2. Data Memory Read/Write Cycle Timing A-3
Figure A-3. Input/Output Read And WriteTiming A-4
Figure A-4. Bus Request/Acknowledge Timing A-5
Figure A-5. Interrupt Request/Acknowledge Timing A-6
Figure A-6. Halt Acknowledge Cycle Timing A-7
Figure A-7. Reset Timing . A-8

4-Contents

Tables

Table 3-1. Instructions Used With A Target System 3-13
Table A-1. Performance Characteristics. A-9
Table A-1. Performance Characteristics (Cont’d) A-10

Contents-5

 Notes

6-Contents

1

Getting Started

Introduction The topics in this chapter include:

• Purpose Of The Z80 Emulator

• Features Of The Z80 Emulator

• Before Using The Z80 Emulator

• How To Configure The Z80 Emulator

• How To Load A Sample Z80 Program

Note If you do not understand a term in this manual, refer to the HP
64700 Glossary Of Terms for a definition.

Purpose Of The
Z80 Emulator

The HP 64753 Z80 Emulator is designed to replace the Z80 mi-
croprocessor in your target system so that you can control opera-
tion of the target system, or to create and debug software with-
out a target system connected. The Z80 emulator performs just
like the Z80 microprocessor, but is a device that allows you to

Getting Started 1-1

Figure 1-1. HP 64753 Z80 Emulat ion System

1-2 Getting Started

control the Z80 capabilities, such as memory and register con-
tent.

Features Of The
Z80 Emulator

Supported Microprocessors: The Z80, Z80A, Z80B and Z80H
and CMOS versions of the Z80 are supported.

Clock Speeds: Up to 10 MHz clock speeds are supported when
using an external (target system) clock. The internal clock
speed is 8 MHz.

Emulation Memory: There are 64K bytes of emulation memory
that you can configure into 256 byte blocks. A maximum of 16
ranges can be configured as emulation RAM (ERAM), emula-
tion ROM (EROM), target system RAM (TRAM), target sys-
tem ROM (TROM), and guarded (GRD) memory. The Z80
emulator will check for reads or writes to guarded memory or
writes to ROM.

Analysis: The analyzer supplied with the Z80 emulator moni-
tors the Z80 emulation processor using its own analysis bus.
This analyzer performs only state analysis, and is sometimes re-
ferred to as the "emulation" analyzer. The optional "external"
analyzer consists of 16 probes that you can connect to your tar-
get system. You can configure the "external" analyzer to per-
form state or timing analysis measurements.

Register Support: You can control the Z80 emulation proces-
sor main and alternate registers by displaying and modifying
them. You can use the program counter register content to
start the Z80 running.

Illegal Opcode Detection: Illegal opcodes are detected by the
Z80 emulator control card. Status information sent to the ana-
lyzer contains the details.

Single-Step: You can have the Z80 emulation processor exe-
cute a single instruction, or a specified number of instructions.

Getting Started 1-3

Breakpoints: Hardware breakpoints, set by the analyzer, accu-
rately reflect the state of the Z80 emulation processor at the
time the break occurred. Software breakpoints are achieved by
including an instruction not commonly used (LD B,B).

Reset Support: A emulator request to reset the Z80 emulator
always resets the emulator to the monitor. Target system reset
is accepted while running user programs, or while in the moni-
tor, following a run from reset (r rst) command.

User Interface: The user interface is normally passive while run-
ning the monitor program. The interface can optionally be ac-
tive (running bus cycles) while running in the monitor. You can
select the value of address lines A12-A15 while the monitor is
running.

Real-Time Operation: Real-time signifies continuous execution
of the target system program without interference. Interference
occurs when you initiate a break to the monitor, or when the
break happens automatically.

Emulator features performed in real-time include: running, dis-
playing, loading, modifying and storing emulation memory, and
tracing.

Emulator features not performed in real-time include: display-
ing, loading, modifying, and storing target system memory, dis-
playing or modifying registers, and single stepping.

Limitations And/Or
Restrictions

DMA Support: Direct Memory Access operations to Z80 emu-
lation memory is not permitted. However, DMA is supported
to target system memory.

How The Emulation
Components

Communicate

The Z80 emulation components communicate with each other
as shown in figure 1-2. The arrows show the direction of com-
munication.

1-4 Getting Started

Information On The
Emulation

Components

Refer to the HP 64700 Emulators Hardware Installation And
Configuration manual for details on emulation components.

Using The Help
Command To
Assist You

At any time, you can type "help" or "?" to display more informa-
tion about HP 64700 Series commands. The help command al-
lows you to display information about all of the HP 64700 Series
emulation and analysis commands, and about various other
groups of commands.

Z80 Emulator
Controller

External Analyzer Emulation
Analyzer

HP 64700 Series
Emulation
System Controller

HP 64753 Z80 Emulation System

TRIGGER

HOST

CMB

AUXILIARY Emulation
Probe

(To/From
Target System)

external
probe

Figure 1-2. How The Emulation Components Communicate

Getting Started 1-5

Note Throughout the examples in this manual, to put the commands
into effect you must press Enter (or Return) after each one.

To observe what the help command provides....

TYPE: help

You should see:

help - display help information
 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

--- VALID group NAMES ---
 gram - system grammar
 proc - processor specific grammar

 sys - system commands
 emul - emulation commands
 trc - analyzer trace commands
 xtrc - external trace analysis commands
 * - All command groups

To display a comprehensive list of all of the commands....

TYPE: help -s

You should see:

mem : cim, cov, cp, dump, io, load, m, map, ser
 run : b, bc, bp, cf, cmb, es, r, reg, rst, rx, s
 sys : ?, bnct, cmbt, dt, echo, equ, help, init, mac, mo, po, pv,
 rep, stty, ver, w, x, xp
 trc : t, ta, tarm, tcf, tck, tcq, telif, tf, tg, tgout, th, tif,
 tinit, tl, tlb, tp, tpat, tpq, trng, ts, tsck, tsq, tsto, tx
 xtrc : xt, xtarm, xtcf, xtck, xtcq, xtelif, xtf, xtg, xtgout, xth,
 xtif, xtl, xtlb, xtmo, xtp, xtpat, xtpq, xtrng, xts, xtsck,
 xtsq, xtsto, xtv, xtx

To display details about any of the commands....

TYPE: help < command>

1-6 Getting Started

To display information specifically about the Z80 emulator....

TYPE: help proc

You should see:

--- Address format ---
 16 bit address for memory and I/O addresses
 --- Emulation Status Characters ---
 R - emulator in reset state c - no target system clock
 U - running user program r - target system reset active
 M - running monitor program h - processor halted
 W - waiting for CMB to become ready g - bus granted
 T - waiting for target system reset b - no bus cycles
 ? - unknown state
 --- Equates for Analyzer Label stat ---
 opcode - first instruction byte im0 - mode 0 acknowledge
 operand - other instruction byte im1 - mode 1 acknowledge
 dataread - memory data read im2 - mode 2 acknowledge
 datawrite - memory data write nmi - NMI acknowledge
 input - input port read busack - bus grant acknowledge
 output - output port write illegal - previous byte illegal
 refresh - memory refresh grd - guarded memory access
 user - user program wrrom - write to rom
 monitor - monitor program
 --- Macros ---
 outcircuit - setup emulator for operation without a target system
 incircuit - setup emulator for operation plugged into a target system
 tbrk - trace before break to monitor program

How To Use Macros Did you notice that the last three lines of the "help proc" display
define macros? The macros are set up by default for the Z80
emulator. They allow you to execute a set of commands by typ-
ing one word. Here’s how it works:

To observe macros that are already defined....

TYPE: mac

You should see:

mac incircuit={rst ; map -d * ; map other tram ; cf clk=ext }

mac outcircuit={rst ; map -d * ; map other eram ; cf clk=int }

mac tbrk={tcf -e; tck -ub ; tp e ; tsq -i 3 ; tif 1 stat=user ; tif 2 stat=moni-
tor ; t ; tck -u }

Getting Started 1-7

These lines define three macros for in-circuit emulation, out-of-
circuit emulation, and tracing before a break. (In-circuit emula-
tion refers to Z80 emulator operation while connected to a Z80
target system. Out-of-circuit emulation refers to Z80 emulator
operation while not connected to a target system.)

The first two macros each accomplish four things:

1. Resets the emulator.

2. Deletes all current memory map terms.

3. Maps all other memory as target RAM (tram) or emula-
tion RAM (eram).

4. Configures the clock as either external (target system) or
internal (emulator).

The third macro sets up the emulation analyzer to:

1. Select the easy trace configuration.

2. Traces user and background monitor code.

3. Positions the trigger at the end of the trace list.

4. Specifies two trace sequence primary branch expressions.

5. Starts a trace.

6. After the trace is complete, returns to tracing only user
programs.

Notice that commands that make up each macro are separated
by a semicolon (;).

To see what the outcircuit macro accomplishes....

TYPE: outcircuit

You should see:

rst ; map -d * ; map other eram ; cf clk=int

1-8 Getting Started

Here’s the response you get if you type "incircuit", and don’t
have a target system connected....

rst ; map -d * ; map other tram ; cf clk=ext

The prompt then changes to "c> " to indicate that no target sys-
tem clock is available.

To get out of this mess....

TYPE: outcircuit

The system will display:

map -d * ; map other eram ; cf clk=int ; rst -m

To see what the tbrk macro accomplishes...

TYPE: tbrk

You will see:

tcf -e; tck -ub ; tp e ; tsq -i 3 ; tif 1 stat=user ; tif 2 stat=monitor ; t ; tck
-u
 Emulation trace started

You can halt the trace by typing th. Refer to the HP 64700 Ana-
lyzer User’s Guide for details about the HP 64700 analyzer.

How To Create Your
Own Macros

If you want to create your own macros, follow this syntax:

mac < macro_name> = {command 1; command 2; command 3}

By the way, you can use more than 3 commands in a macro defi-
nition. Refer to the HP 64700 Emulators Hardware Installation
And Configuration manual for details about the mac command.

For example, if you want to display Z80 registers, have the Z80
emulator run, trace, then display a trace list, you could define a
gmacro to do all of that for you when you type the macro name.
For example (be sure to type the brackets)....

TYPE: mac z80go= {reg;r;t;tl}

To execute the macro....

TYPE: z80go

Getting Started 1-9

Before Using The
Z80 Emulator

Before you can use the Z80 emulator, make sure you have com-
pleted these steps:

1. Understand the concept of emulation and the HP 64000-PC
system architecture as presented in the System Overview Man-
ual. This may help avoid problems later on.

2. You must have installed the Z80 emulator hardware in the
configuration you desire (either standalone, transparent or re-
mote mode). Refer to the HP 64700 Hardware Emulators Instal-
lation And Configuration manual for details on configurations.

3. If you are using remote mode, you must have installed and
configured the proper program for your particular host com-
puter. This provides the necessary data communications rou-
tines that allow the host computer to emulate the standalone or
transparent command modes. Refer to the proper Software In-
stallation Instructions (for your particular host computer) for de-
tails.

4. Press the Enter key so that the system displays one of these
prompts:

U>

R>

M>

Upon powerup, the HP 64700 prompt should be "R> ". If one
of these prompts does not appear, perform steps 2 and 3 again
while referring to the manuals mentioned. Then try pressing
the Enter key again. If one of these prompts do not then ap-
pear, refer to the HP 64700 Emulators Support Services manual
for details on basic troubleshooting procedures. This manual
also contains a list of the HP Sales And Service Offices.

Note One of these prompts must appear on your screen before you
can continue.

1-10 Getting Started

About Operating The
Z80 Emulator In A

Target System

If you want to operate the Z80 emulator in-circuit (in a target
system), see chapter 3 for details about installing the Z80 emula-
tor probe and an example of how to use the emulator in a target
system.

Familiarize Yourself
With The System

Prompts

The following steps are included to familiarize you with the sys-
tem prompts that appear while operating the Z80 emulator.

1. TYPE: rst

You will see:

R>

The rst (reset) command resets the emulation processor and
keeps it in the reset state. The "R> " prompt indicates the proc-
essor is reset.

2. TYPE: r

You will see:

U>

The r (run) command causes the emulation processor to run
from the current program counter address. The "U> " prompt
indicates that the processor is running a user program (rather
than running in the monitor).

3. TYPE: b

You will see:

M>

The b (break) command causes the emulation processor to stop
execution of whatever it was doing and begin executing in the
emulation monitor. The "M> " prompt indicates that the emula-
tor is running in the monitor.

4. The emulation processor may encounter parts of a program
that cause it to halt. When this occurs, the system prompt will
change to "h> ". An interrupt or reset is required to exit the halt
state.

Getting Started 1-11

Initialize The Z80
Emulator

For this tutorial, it is important that you initialize the Z80 emu-
lator to a known state.

Before you initialize the Z80 emulator:

1. Verify that no one is using the emulator.

2. Verify that no one needs the current emulator configuration.

Note It is important that you accomplish steps 1 and 2 if you are op-
erating the Z80 emulator in standalone mode controlled only
by a data terminal. In standalone mode, the only way to put a
program into memory is by modifying the memory locations
with the proper program data.

Initialize the emulator by typing: init

The emulation system will respond that the emulator has been
initialized.

How To
Configure The
Z80 Emulator

You will use the cf command to configure the Z80 emulator.
Configuring the emulator requires that you modify existing Z80
configuration choices to meet your needs. Here is how it works:

TYPE: cf and press Enter

1-12 Getting Started

You should see:

cf clk=int

cf rrt=dis

cf qbrk=en

cf trfsh=dis

cf tbusack=dis

cf busreq=en

cf int=en

cf nmi=en

cf waitem=en

cf wrdata=dis

cf moncyc=dis

cf monbase=0

For now, let’s change just one of the values. Let’s suppose that
you want to use the target system clock rather than the emulator
clock.

TYPE: cf clk= ext

NOW TYPE: cf

Notice that the first entry has changed to "clk= ext". It’s this
easy! For the rest of this tutorial we will use the clock that is in-
ternal to the Z80 emulator, so let’s change it back.

TYPE: cf clk= int

Some Background
On The Z80

Configuration Items

The following several pages contain Z80 configuration details
that will help you become familiar with the configuration items.

The Z80 emulator parameters you can configure include:

• CLOCK (clk)

• RESTRICT TO REAL-TIME RUNS (rrt)

• BREAK CONDITIONS (qbrk)

• TRACING ON REFRESH CYCLES (trfsh)

Getting Started 1-13

• TRACING ON BUS ACKNOWLEDGE CYCLES
(tbusack)

• BUS REQUEST (busreq)

• INTERRUPT (int)

• NON-MASKABLE INTERRUPT (nmi)

• TARGET SYSTEM WAIT (waitem)

• DATA WRITE TO TARGET SYSTEM (wrdata)

• Z80 MONITOR CYCLES (moncyc)

• Z80 MONITOR LOCATION (monbase)

Other Z80
Configuration Items

There are other configuration items that you can change, but
are not part of the cf command. These include:

• Memory Map

• Access And Display Modes

• Break Conditions

• Software Breakpoints

• Coordinated Measurement Bus Operation

These configuration items are covered later in this chapter.

Getting Help On Z80
Emulator

Configuration Items

You can get help on the Z80 configuration items by typing help
cf. To get help on a specific configuration item, such as the
clock, type help cf clk. If you have any problems, refer to your
HP 64700 Emulators Terminal Interface User’s Reference manual.

Using "cf" To
Configure The

Emulator

cf is the emulation configuration command. You can use it in
several ways to modify the Z80 emulator configuration.

1. You can display the entire Z80 emulator configuration by
typing: cf

1-14 Getting Started

2. You can display just one configuration item by typing: cf
< item>

3. You can equate a configuration item to a value by typing: cf
< item> = < value>

Clock (clk)

The emulator can either run from the internal 8 MHz clock or
the CLK input from a target system. When using the internal
clock of the emulator, your program execution is relative to the
internal clock speed. Make sure that you select the internal
clock when running the emulator out-of-circuit (not connected
to a target system).

For example:

cf clk= int - selects internal clock in the emulator

cf clk= ext - selects CLK input in the target system

Restrict To Real-Time Runs (rrt)

When "rrt" is enabled while the emulator is running a user pro-
gram, only these four commands that require a break to the
monitor will be accepted: rst, b, r, and s. The emulator will re-
ject all other commands that require a break to the monitor.

When "rrt" is disabled, all commands that require a break to the
monitor will always be accepted.

For example:

cf rrt= en - restricts the Z80 emulator to real-time runs

cf rrt= dis - disables the emulator real-time run restriction

Note Modifying the memory map or changing the emulation clock
will place the emulator in the reset state, even if you have speci-
fied rrt= en .

Getting Started 1-15

Quick Break (qbrk)

You can "quickly" break to the monitor, and return to the user
program, for operations such as displaying registers.

With this option enabled, when the emulator temporarily
breaks to the monitor, the time it spends there will be very brief.
The amount of time spent depends on the processor clock
speed; at 8 MHz, the time spent in the monitor during a quick
break to display registers, is about 200 microseconds. If CMB
operation is enabled, any other emulators on the CMB will not
break to the monitor when this emulator does a temporary
break.

With this option disabled, when the emulator temporarily
breaks to the monitor, the time it spends there will be length-
ened. A display of registers will take about 6 milliseconds. If
CMB operation is enabled, any other emulators on the CMB
will break to the monitor.

A temporary break occurs if while running user code a reg or io
command, or one that accesses target memory is received.

For example:

cf qbrk= en - enables the emulator to quickly enter and exit
the monitor

cf qbrk= dis - disables the emulator’s quick access time to the
monitor

Trace Refresh Cycles (trfsh)

When enabled, the emulation analyzer will receive refresh cy-
cles.

For example:

cf trfsh= en - enable the analyzer to trace emulator refresh cy-
cles

cf trfsh= dis - disables the analyzer from tracing emulator re-
fresh cycles

1-16 Getting Started

Trace Bus Acknowledge Cycles (tbusack)

When enabled, the emulation analyzer will receive one state for
each bus request or bus acknowledge cycle.

cf tbusack= en - enable the analyzer to trace bus acknowledge
cycles

cf tbusack= dis - disables the analyzer from tracing bus acknow-
ledge cycles

Bus Request (busreq)

The Z80 emulator can either respond to or ignore the /BUS-
REQ input from a target system. During these times the target
system requests to put valid data onto the data bus. This is in ef-
fect both while running the monitor program and while running
a user program.

For example:

cf busreq= en - enables /BUSREQ input

cf busreq= dis - disables /BUSREQ input

Interrupt (int)

The emulator can either respond to or ignore the /INT input
from the target system while running the user program. This sig-
nal is generated by the target system each time it seeks to inter-
rupt the Z80 emulation processor. While running the monitor
program the /INT input is always disabled.

For example:

cf int= en - enables emulator’s response to the /INT input sig-
nal

cf int= dis - disables emulator’s response to the /INT input
signal

Getting Started 1-17

Non-Maskable Interrupt (nmi)

The emulator can either respond to or ignore the /NMI input
from the target system. If enabled, a /NMI input received while
the emulation processor is running in the monitor will be ac-
knowledged when the emulator returns to the user program.

For example:

cf nmi= en - enables emulator’s response to the /NMI input
signal

cf nmi= dis - disables emulator’s response to the /NMI input
signal

Target System Wait (waitem)

If enabled, the emulator will respond to the /WAIT input from
the target system during emulation memory reads and writes.
Wait states will be inserted if requested. Wait states are never
requested by emulation memory. If disabled, no wait states will
be inserted during emulation memory accesses at any CLK fre-
quency even if the /WAIT input is active.

Whether enabled or disabled, the emulator will respond to the
/WAIT input during accesses to the target system.

For example:

cf waitem= en - enables emulator’s response to the /WAIT in-
put signal

cf waitem= dis - disables emulator’s response to the /WAIT in-
put signal

Data Write To Target System (wrdata)

If enabled, the emulator will drive the data bus to the target sys-
tem (with the value read from emulation memory) during all
read cycles from emulation memory. Control signals to the tar-
get system will indicate a memory read cycle but the data bus
will be driven with the value read from emulation memory. This
may be needed for Z80 peripheral devices to decode the RETI

1-18 Getting Started

instruction if the interrupt service routine is located in emula-
tion memory.

Note This could cause bus contention in the target system!

If disabled, the emulator will drive the data bus only during
memory write and output cycles.

For example:

cf wrdata= en - enables emulator to drive data to the target sys-
tem

cf wrdata= dis - disables emulator from driving data to the tar-
get system

Z80 Monitor Cycles (moncyc)

If disabled, the emulator will appear to the target system to be
completely passive while running the monitor program (no bus
cycles, including refresh). If enabled, the target system will rec-
ognize that the monitor program is running. All memory ad-
dresses will remain within a 4K byte range beginning with the
value specified by configuration item monbase. Memory write
cycles will be inhibited.

For example:

cf moncyc= en - enables monitor cycles

cf moncyc= dis - disables monitor cycles

Z80 Monitor Location (monbase)

Select the value for the monitor location that will be driven to
the target system on address lines A12-A15 during background
monitor operation. If bus cycles are visible to the target system
while running the monitor program (that is, the configuration

Getting Started 1-19

item moncyc is enabled), you can locate the monitor program at
an address range where memory reads will not cause undesir-
able interaction with the target system.

For example:

cf monbase= 6 - sets upper 4 address lines to 0110 (binary).

About The Other
Configuration
Items

Other items that are not configured with the cf command are de-
scribed in the following paragraphs.

Memory Map The memory map allows you to define whether memory located
in the target system, or memory located in the emulator will re-
spond to specific ranges of addresses. In addition, you can de-
fine an address range as RAM or ROM. Memory reads and
writes are permissible to RAM, but only reads are permissible
from ROM. The emulator will break to the monitor if a write
to ROM occurs, and a break on write to ROM is enabled (bc -e
rom). You can also define an address range as guarded (grd).
This is useful to detect a read or write to an address where mem-
ory is not used or is non-existent. A break to the monitor will
occur when guarded memory is accessed.

You can display and modify the Z80 emulator memory map us-
ing the "map" command. Each memory map term will automat-
ically be a multiple of 256-byte blocks. If you specify a term (the
number assigned to a mapped block of memory) that contains
only part of a 256-byte block, the Z80 emulator will increase the
allocation to include an entire block to the partial term. You
can specify a total of 16 terms.

1-20 Getting Started

Note Defining a memory map has no effect on I/O (input/output) ad-
dresses. I/O reads and writes access the target system.

For each memory mapper term, you can specify one of these
valid types:

• eram (emulation RAM)

• erom (emulation ROM)

• tram (target RAM)

• trom (target ROM)

• grd (guarded memory)

Any memory addresses not covered by a map term are defined
by the "other" term.

For example:

map - displays the current memory map

map 0..0ffh erom - defines range as emulation ROM

map other tram - defines other addresses as target system
RAM

map -d 4 - deletes term # 4 from the current map

map -d * - deletes all currently defined terms

If you mapped all of memory to emulation RAM, the memory
map would resemble:

remaining number of terms : 15

remaining emulation memory : 0h bytes

map 00000..0ffff eram #term 1

map other tram

Access And Display
Modes

The access mode refers to the type of processor data cycles that
the emulation monitor uses to access a portion of user memory.

Getting Started 1-21

Note For the Z80 emulator, the access mode is always set to "bytes"
because the Z80 only supports an 8-bit data bus.

The display mode setting determines the format for displaying
data. You can display either bytes, words, or mnemonics.

For example:

mo - displays current Z80 mode settings

mo -db - sets display mode to bytes

mo -dw - sets display mode to words (2 bytes)

mo -dm - sets display mode to processor mnemonics

mo -ab - sets access mode to bytes

Note When memory is displayed in word format, two memory loca-
tion are displayed as a 16-bit value. The low byte represents
the lower addressed memory location, and the high byte repre-
sents the higher addresssed location. This is consistent with
the way in which the Z80 loads a 16-bit register from memory.

Break Conditions If break conditions are enabled, when a specified break condi-
tion occurs the emulator will break to the monitor.

If break conditions are disabled, when a specified break condi-
tions occurs the emulator will not break into the monitor.

Possible break conditions include:

• bp - software breakpoints

• rom - write to ROM

• bnct - BNC trigger signal

1-22 Getting Started

• cmbt - CMB trigger signal

• trig1 - trig1 signal

• trig2 - trig2 signal

For example:

bc - displays current break conditions

bc -e [condition] [condition]... - enables break conditions

bc -d [condition] [condition]... - disables break conditions

Breakpoints Software breakpoints allow you to stop (break) program execu-
tion when the program has reached a certain point. You can dis-
play, set, and delete software breakpoints.

Note Software breakpoints must be enabled (with the command bc -
e bp) before you can set them.

For example:

bp - displays current breakpoints

bp 12 450 - sets breakpoints at addresses 12h and 450h

bp -r 450 7000 - removes breakpoints at 450h and 7000h

bp -r * - removes all breakpoints

bp -e - enables all breakpoints

bp -d - disables all breakpoints

The instruction LD B,B is used as a software breakpoint by the
Z80 emulator. Whenever you set a breakpoint, you will find
that the content of the breakpoint address location has been
modified to 40H. If your programs contain the instruction LD
B,B, program execution will stop when this instruction is exe-
cuted, and breakpoints are enabled.

Getting Started 1-23

Coordinated
Measurement Bus

Operation

The CMB is a connection between multiple emulators that al-
lows you to make synchronous measurements between the emu-
lators. You can determine whether the Z80 emulator will par-
ticipate in a coordinated measurement using the cmb command.

For example:

cmb - display current setting of CMB

cmb -e - enable CMB interaction

cmb -d - disable CMB interaction

The cmb command does not affect operation of the emulation
analyzer cross-triggering.

Refer to the CMB User’s Guide for additional details about the
CMB.

That’s All About
Configuration Items

This should be all you need to know about the Z80 emulator
configuration items to configure the Z80 for your needs. How-
ever, if you need additional details, refer to the Terminal Inter-
face User’s Reference.

The rest of this chapter shows you tasks you may want to per-
form with your Z80 emulator before using the emulator in-
depth.

How To Map Z80
Emulation
Memory

Before loading a program into memory, you must be sure that
the Z80 emulation memory map is configured properly to re-
ceive the data. To accomplish this:

TYPE: map

1-24 Getting Started

You should see:

remaining number of terms : 16

remaining emulation memory : 10000h bytes

map other eram

This is the default Z80 memory map.

TYPE: map 0..5ffh eram

NOW TYPE: map

You should now see:

remaining number of terms : 15

remaining emulation memory : fa00h bytes

map 00000..005ff eram # term 1

map other eram

You have just defined one term for the Z80 memory map.

TYPE: map 600..7fffh erom

NOW TYPE: map

You should see:

remaining number of terms : 14

remaining emulation memory : 8000h bytes

map 00000..005ff eram # term 1

map 00600..07fff erom # term 2

map other eram

Notice that two terms are mapped. As stated earlier, the Z80
memory mapper maps memory in 256-byte blocks. If you spec-
ify a value less than 256 bytes, the emulator will automatically al-
locate an entire block. Every time you add a new map specifica-
tion, you will see the new entry and a term number next to it.

Getting Started 1-25

The memory map you have just set up will work fine for the rest
of this tutorial, so let’s just leave it as is.

How To Load A
Sample Z80
Program

There are several ways to load a sample Z80 program. These
methods are described in detail in the following paragraphs.

1. If you are using the emulator with an RS-232 interface con-
nected to a data terminal only, you will manually modify Z80
memory locations. This is referred to as the Terminal Interface
in standalone mode.

2. If you are using the emulator with a host computer (HP 9000
Series 300, for example), you can create, assemble and link the
Z80 program on the host computer, and then download the ab-
solute file to Z80 emulation memory. In this case, data is sent
through the port that is connected to the host computer. This is
referred to as a transparent configuration.

3. If you use the host computer as a "remote" system, you can
still download the absolute file into emulation memory, but the
data will be sent through the same port where the emulator is
connected, rather than through the port connected to the host
computer. This is referred to as a remote configuration.

Refer to the HP 64700 Emulators Hardware Installation And
Configuration manual for details on these configurations.

Note Even if your emulator is connected to a host computer, you
don’t have to use the methods in steps 2 or 3 to load the pro-
gram into emulation memory. You could use step 1 if you pre-
fer.

1-26 Getting Started

This program performs the following:

1. Defines a message to be output to memory.

2. Defines start location where the message will be displayed in
memory (3C00H).

3. Sets up a counter to keep track of the length of the message.

4. Loads the HL register with the first message character.

5. Loads the DE register with the first output location to write
the message character.

6. Loads count into counter register BC.

7. Temporarily loads the accumulator with a message character.

8. Stores the message character (in the accumulator) into the
output location.

9. Locates the next message character to be displayed.

10. Locates the next output location to store message character.

11. Decrements counter to keep track of number of characters.

12. Loads accumulator with value in upper half of counter.

"Z80" EXPAND
 GLB MSG,VIDEO,COUNT
 COMN
MSG DEFB "Z80 PROGRAM1"
VIDEO EQU 3C00H
COUNT EQU 12
 PROG
START LD HL,MSG
 LD DE,VIDEO
 LD BC,COUNT

LOOP LD A,[HL]
 LD [DE],A
 INC HL
 INC DE
 DEC BC
 LD A,B
 OR C
 JP NZ,LOOP
END JP END

Figure 1-3. An Example Z80 Program

Getting Started 1-27

13. Checks if upper half of counter (B) or’ed with lower half of
counter (C) equals 0.

14. If step 13 is not true (BC does not equal 0), there are more
message characters to process.

15. If step 13 is true (BC= 0), there are no more message charac-
ters to process. Therefore, the program ends.

We’ll go through the first step of loading a program into mem-
ory, so that you will learn to store your programs in memory,
whether the emulator is connected to a host computer or not.

Loading A Program
By Modifying Memory

Loading a program into emulation memory simply involves
modifying memory locations. Follow these steps. Press Enter
after each command.

1. Clear a range of memory by typing:

m 0..0ffh= 0

2. Type these lines:

m 0= 5A,38,30,20,50,52,4F,47,52,41,4D,31,21,00,00,11

m 10= 00,3C,01,0C,00,7E,12,23,13,0B,78,0B1,0C2,15,00,0C3

m 20= 1F,00

3. Run the program by typing:

r 0C

You must run the program from 0CH because the first 12 loca-
tions are ASCII strings.

1-28 Getting Started

Loading A Program
In Transparent
Configuration

Remember to refer to the HP 64700 Emulators Hardware Instal-
lation And Configuration manual for details about transparent
configurations.

Transferring code using transparent mode requires that:

1. your Z80 emulator and computer are properly connected to a
host computer. Refer to the Hardware Installation And Configu-
ration manual for a list of valid host computers.

2. your host computer is running the HP-UX operating system.

3. you are using an HP 64000 Hosted Z80 Assembler/Linker.

After these requirements are met....

1. Clear a range of memory by typing:

m 0..0ffh= 0

2. Establish communication with your host computer using the
transparent mode link provided by the system by typing: xp -s
31

The escape character is now set to "1". Pressing < ESC> 1 tog-
gles the transparent mode software capabilities for one com-
mand. The system prompt will r emain on screen.

3. Enable the transparent configuration link by typing: xp -e

4. Press the Enter key to get the host system login prompt.

5. Log on to your host computer.

6. Access an editor of your choice.

7. Create the example program, shown in figure 1-3, on your
host computer. This program will allow you to observe Z80
memory and register activity when you run it in the emulator..

8. Save the program to a file named tutor.S.

9. Assemble the program using the HP 64000 Hosted Z80 As-
sembler by typing: asm -oex tutor.S

Correct any errors that occur. This command generates an ex-
panded listing with a cross reference of the symbols used in your
program, and their references. A relocatable object file (file
with an extension of .R) is automatically created at this point.
The listing should resemble:

Getting Started 1-29

10. Link the relocatable file by typing:

lnk and pressing Enter

You must provide details for the link questions. Type the terms
in bold:

object files tutor

FILE: ~rs/bonnieh/tutor.S HEWLETT-PACKARD: Z80 Assembler V1.11
00001000
00002000 LOCATION OBJECT CODE LINE SOURCE LINE
00003000
00004000 1 "Z80" EXPAND
00005000 2
00006000 3 GLB MSG,VIDEO,COUNT
00007000 4
00008000 5 COMN
00009000 0000 5A38302050 6 MSG DEFB "Z80 PROGRAM1"
00010000 0005 524F475241
00011000 000A 4D31
00012000 3C00 7 VIDEO EQU 3C00H
00013000 000C 8 COUNT EQU 12
00014000 9
00015000 10 PROG
00016000 0000 210000 11 START LD HL,MSG
00017000 0003 113C00 12 LD DE,VIDEO
00018000 0006 01000C 13 LD BC,COUNT
00019000 14
00020000 0009 7E 15 LOOP LD A,[HL]
00021000 000A 12 16 LD [DE],A
00022000 000B 23 17 INC HL
00023000 000C 13 18 INC DE
00024000 000D 0B 19 DEC BC
00025000 000E 78 20 LD A,B
00026000 000F B1 21 OR C
00027000 0010 C20009 22 JP NZ,LOOP
00028000 0013 C30016 23 END JP END
00029000
00030000 Errors= 0
00031000 FILE: ~rs/bonnieh/tutor.S CROSS REFERENCE TABLE PAGE 2
00032000
00033000 LINE# SYMBOL TYPE REFERENCES
00034000
00035000 8 COUNT A 3, 13
00036000 24 END P 23
00037000 15 LOOP P 22
00038000 6 MSG C 3, 11
00039000 11 START P
00040000 7 VIDEO A 3, 12
00041000

Figure 1-4. Expanded Listing Of Assembled Z80 Program

1-30 Getting Started

library files Enter

load addresses: PROG,DATA,COMN 0CH,0,0

more files (y or n) n

absolute file name tutor

The Hosted Z80 Linker generates the absolute file required,
and stores it in tutor.X.

Note You can assemble and link your programs on the host com-
puter before enabling transparent mode. Then, enable trans-
parent mode and transfer the absolute file into the emulator.
The original absolute file remains on the host computer.

11. Transferring the absolute file into the emulator involves
three steps:

a. Disable transparent mode so that you can communicate di-
rectly with the emulator by pressing:

< ESC> 1 and then TYPE xp -d

"< ESC> 1" toggles transparent mode temporarily so that the
emulator can accept the command you typed. "xp -d" disables
transparent mode completely.

b. Initiate loading of the absolute file into the emulator by typ-
ing:

load -hbo and then press Enter

Getting Started 1-31

Caution Do not press the Enter key after the next command! If you
do, the file transfer may not work properly!

c. Initiate the file transfer by typing:

transfer -rtb tutor.X and pressing < ESC> 1

During the transfer process, the emulation system will display a
"pound sign" for each record transferred. You should see the
following on your display:

#

m

What occurred? The command "load -hbo" instructed the emu-
lator to initiate loading of the absolute file in HP binary file for-
mat, and to expect the data from the port connected to the host
computer. You then initiated the HP 64000 transfer utility and
transferred the absolute file using "transfer -rtb tutor.X.
"< ESC> 1" caused the system to return to the emulator after
the file transfer is complete.

12. Observe a portion of memory to verify that the absolute file
was loaded into the emulator correctly by typing:

m 0..21h

Your display should match:

00000..0000f 5a 38 30 20 50 52 4F 47 52 41 4D 31 21 00 00 11

00010..0001f 00 3C 01 0C 00 7E 12 23 13 0B 78 B1 C2 15 00 C3

00020..00021 1F 00

Figure 1-5. Content Of Z80 Memory After File Transfer

1-32 Getting Started

Run The Example
Program

If you have loaded the example program, take some time now to
run or step through the program. While you step through the
program, you can observe several actions taking place:

1. Display memory locations 3C00H through 3C0CH after each
single step (beginning at 0CH), to verify that the message "Z80
PROGRAM1" is being written to those locations.

2. Display registers after each step, to watch the contents
change as the program executes.

3. Watch the counter (register BC) decrement after each mes-
sage character is written to its memory location.

4. Use the HP 64700 Analyzer to trace program execution.

Remember To Use
The Manuals

If you run into a problem, other manuals are available to help
you. The HP 64700 Emulators Terminal Interface User’s Refer-
ence contains in-depth information about the Terminal Inter-
face commands that you use to control your Z80 Emulator/Ana-
lyzer. The HP 64700 Emulators Terminal Interface Analyzer
User’s Guide contains information about using the HP 64700
Analyzer commands. If all else fails, refer to the HP 64700 Emu-
lators Support Services manual.

Getting Started 1-33

Notes

1-34 Getting Started

2

How To Use The Z80 Emulator

What Is In This
Chapter?

• Modify And Display Z80 Memory

• Use The Z80 Run/Stop Features

• Display And Modify I/O Locations

• Display And Modify Registers

• Set Up, Execute, And Display A Trace

• Defining Logical Expressions

• Determining How Much Of Memory Is Accessed

• Making Coordinated Measurements

Note After entering each command, press Enter (or Return) to put
the command into effect.

Modify Z80
Memory

Before running a program, you must enter that program into
emulation memory. This is the process of modifying memory lo-

How To Use The Z80 Emulator 2-1

cations. Just to learn how to use the Z80 emulator, let’s use this
simple program as an example:

LD A,4
LD B,8

LOOP INC A
DJNZ LOOP

END JP END

To enter this program into memory beginning at location 0....

TYPE: m 0= 3e,04,06,08,3c,10,0fd,0c3,07,00

Observe that memory was modified, and that your program was
entered as you expected....

TYPE: m -dm 0..8

This will show a listing of your program as it appears in emula-
tion memory. The -dm option causes the content of memory lo-
cations you specify to be displayed in mnemonic form. The re-
sult is:

 00000 3e04 LD A,04
 00002 0608 LD B,08
 00004 3c INC A
 00005 10fc DJNZ 0004
 00007 c30000 JP 0007

Use The Z80
Run/Stop Features

Now to run this program....

TYPE: r 0

The prompt will change from M> to U> to indicate that a
"User" program is running.

You can also run the program by stepping one instruction at a
time. Here’s how:

2-2 How To Use The Z80 Emulator

TYPE: s 1 0; reg

This command steps 1 instruction from address 0, then displays
the contents of the Z80 registers.

The result is:

00000 3e04 LD A,04

PC = 00002

reg a=04 f=08 bc=0000 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0002

Notice that the a registser contains 4. The prompt will change
from U> to M> to indicate that the emulator is running in the
monitor.

Continue stepping through the program and observe the results
after each step.

Note You can recall the last command(s) by pressing ̂ r (pressing
the CTRL key, then pressing r). You can press ^ r instead of
typing s 1;reg, to step through the rest of the program.

Type the commands in bold (or press ^ r), and watch the screen
as the command and register results are displayed.

s 1;reg

00002 0608 LD B,08

PC = 00004

reg a=04 f=08 bc=0800 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0004

s 1;reg

00004 3c INC A

PC = 00005

reg a=05 f=00 bc=0800 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0005

How To Use The Z80 Emulator 2-3

s 1;reg

00005 10fd DJNZ 0004

PC = 00004

reg a=05 f=00 bc=0700 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0004

s 1;reg

00004 3c INC A

PC = 00005

reg a=06 f=00 bc=0700 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0005

s 1;reg

00005 10fd DJNZ 0004

PC = 00004

reg a=06 f=00 bc=0600 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0004

s 1;reg

00004 3c INC A

PC = 00005

reg a=07 f=00 bc=0600 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0005

s 1;reg

00005 10fd DJNZ 0004

PC = 00004

reg a=07 f=00 bc=0500 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0004

s 1;reg

00004 3c INC A

PC = 00005

reg a=08 f=08 bc=0500 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0005

s 1;reg

00005 10fd DJNZ 0004

PC = 00004

reg a=08 f=08 bc=0400 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0004

2-4 How To Use The Z80 Emulator

s 1;reg

00004 3c INC A

PC = 00005

reg a=09 f=08 bc=0400 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0005

s 1;reg

00005 10fd DJNZ 0004

PC = 00004

reg a=09 f=08 bc=0300 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0004

s 1;reg

00004 3c INC A

PC = 00005

reg a=0a f=08 bc=0300 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0005

s 1;reg

00005 10fd DJNZ 0004

PC = 00004

reg a=0a f=08 bc=0200 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0004

s 1;reg

00004 3c INC A

PC = 00005

reg a=0b f=08 bc=0200 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0005

s 1;reg

00005 10fd DJNZ 0004

PC = 00004

reg a=0b f=08 bc=0100 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0004

s 1;reg

00004 3c INC A

PC = 00005

reg a=0c f=08 bc=0100 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0005

How To Use The Z80 Emulator 2-5

s 1;reg

00005 10fd DJNZ 0004

PC = 00007

reg a=0c f=08 bc=0000 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0007

s 1;reg

00007 c30700 JP 0007

PC = 00007

reg a=0c f=08 bc=0000 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0007

To stop execution of the Z80, and put it in the reset state....

TYPE: rst

The Z80 emulator will remain in the reset state until you cause
it to release from that state by entering the monitor, or running
a program. To run the emulator from reset, just type r . To
break the emulator into the monitor, just type b.

To put the Z80 emulator in reset, then have it begin executing
in the monitor automatically....

TYPE: rst -m

The Z80 will reset, then begin executing in the monitor.

Display And
Modify I/O
Locations

You can observe data at the emulation processor I/O ports.
You can also modify the data at those ports.

2-6 How To Use The Z80 Emulator

Note To transfer valid data to or from I/O ports, you must have the
emulator connected to the target system. Also, if the emulator
is in the reset state, you cannot modify the data at the I/O
ports.

The data at your processor I/O locations may be different than
those shown in the examples.

To display I/O data at address 400h in byte format....

TYPE: io -db 400

You will see:

00400 ff

Note A 16-bit address may be used as an I/O port address.

To display I/O data in at address 800h in word format....

TYPE: io -dw 800

You will see:

00800 00ff

Note Specifying I/O word format has no meaning to the Z80, but is
not flagged as an error. Z80 ports are strictly 8 bits wide. The
two zeros preceding the address indicate you have specified
word format.

How To Use The Z80 Emulator 2-7

To modify I/O data at location 400h to 20....

TYPE: io 400h= 20

To display multiple locations, and modify one location in a sin-
gle command....

TYPE: io 100h 101h 102h= 20

You will see:

00100 00ff

00101 00ff

When you modify an I/O location, the result is not automat-
ically displayed.

Display And
Modify Z80
Registers

You can observe the Z80 emulator registers to verify exactly
what is going on with your program while it is executing. You
can also change the value of a register to see what effect it has
on your program.

To display the contents of the primary Z80 registers....

TYPE: reg

The result is:

reg a=3a f=02 bc=0100 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=0acb

To display a single Z80 register by specifying its name....

TYPE: reg a

Only the content of the Z80 "a" register will be displayed.

The result is:

reg a=3a

2-8 How To Use The Z80 Emulator

To display the a register, modify the bc register, and display the
set of alternate Z80 registers in a single command....

TYPE: reg a bc= 0ffffh alt

The result is:

reg a=3a
reg a’=00 f’=00 bc’=0000 de’=0000 hl’=0000

Note When you modify a register, the result is not automatically dis-
played.

To display just the set of alternate Z80 registers....

TYPE: reg alt

The result is:

reg a’=00 f’=00 bc’=0000 de’=0000 hl’=0000

To display just the set of interrupt Z80 registers....

TYPE: reg int

The result is:

reg i=00 iff2=00 imode=00

To display all of the Z80 registers....

TYPE: reg all

The result is:

How To Use The Z80 Emulator 2-9

reg a=3a f=02 bc=0100 de=0000 hl=0000 ix=0000 iy=0000 sp=0000 pc=7663 r=7d

reg a’=00 f’=00 bc’=0000 de’=0000 hl’=0000 i=00 iff2=00 imode=00

To modify the Z80 bc register to 1234....

TYPE: reg bc= 1234

NOW TYPE: reg bc

The result is:

reg bc=1234

To modify multiple Z80 registers in a single command....

TYPE: reg a= 0 bc= 1234 hl= 5678 imode= 1

To observe the result....

TYPE: reg all

The result is:

reg a=00 f=02 bc=1234 de=5678 hl=0000 ix=0000 iy=0000 sp=0000 pc=81b3 r=5b
reg a’=00 f’=00 bc’=0000 de’=0000 hl’=0000 i=00 iff2=00 imode=01

Set Up, Execute,
And Display A
Trace

When setting up a trace, you should first initialize the analyzer.
Doing this ensures that the analyzer is starting from the default
state.

To initialize the analyzer to the default state....

TYPE: tinit

The emulator will not display any messages.

2-10 How To Use The Z80 Emulator

Execute A Trace If you want to trace program execution from the beginning of
the program, start the trace before the program. The emulator
can be running a user program when you start the trace.

Start the analyzer tracing.

TYPE: t

The emulator will display the message: "Emulation trace
started". If you have modified memory with the short example
program shown earlier, start that program running.

TYPE: r 0

If the prompt did not resemble "U> " before, it should now.

Display The Trace To display the trace you just made of your program execution....

TYPE: tl 0..30

The result is:

Line addr,H Z80 Mnemonic,H xbits,H count,R seq
 ----- ------ ------------------------------ ------- --------- ---
 0 0000 LD A,04 0000 --- +
 1 0001 04 operand 0000 0.440 uS .
 2 0002 LD B,08 0000 0.240 uS .
 3 0003 08 operand 0000 0.440 uS .
 4 0004 INC A 0000 0.280 uS .
 5 0005 DJNZ 0004 0000 0.400 uS .
 6 0006 FD operand 0000 0.520 uS .
 7 0004 INC A 0000 0.760 uS .
 8 0005 DJNZ 0004 0000 0.400 uS .
 9 0006 FD operand 0000 0.560 uS .
 10 0004 INC A 0000 0.760 uS .
 11 0005 DJNZ 0004 0000 0.400 uS .
 12 0006 FD operand 0000 0.520 uS .
 13 0004 INC A 0000 0.760 uS .
 14 0005 DJNZ 0004 0000 0.400 uS .
 15 0006 FD operand 0000 0.560 uS .
 16 0004 INC A 0000 0.760 uS .
 17 0005 DJNZ 0004 0000 0.400 uS .
 18 0006 FD operand 0000 0.520 uS .
 19 0004 INC A 0000 0.760 uS .
 20 0005 DJNZ 0004 0000 0.400 uS .
 21 0006 FD operand 0000 0.560 uS .
 22 0004 INC A 0000 0.760 uS .
 23 0005 DJNZ 0004 0000 0.400 uS .
 24 0006 FD operand 0000 0.520 uS .
 25 0004 INC A 0000 0.760 uS .
 26 0005 DJNZ 0004 0000 0.400 uS .
 27 0006 FD operand 0000 0.560 uS .
 28 0007 JP 0007 0000 0.240 uS .
 29 0008 07 operand 0000 0.440 uS .
 30 0009 00 operand 0000 0.320 uS .

How To Use The Z80 Emulator 2-11

You could have just as well requested a default trace list by just
typing tl . Typing tl multiple times would then allow you to see
the entire trace in multiple viewings.

Stepping Through A
Trace List

You can step the same program and trace after each instruction
execution if you like. To do this, for example....

TYPE: t

The emulation trace is started.

TYPE: s 1 0

The result is:

00000 3e04 LD A,04
 PC = 00002

TYPE: tl

The result is:

Line addr,H Z80 Mnemonic,H xbits,H count,R seq
 ----- ------ ------------------------------ ------- --------- ---
 0 0000 LD A,04 0000 --- +
 1 0001 04 operand 0000 0.440 uS .
 2

TYPE: s 1

The result is:

00002 0608 LD B,08
PC = 00004

TYPE: tl

The result is:

Line addr,H Z80 Mnemonic,H xbits,H count,R seq
 ----- ------ ------------------------------ ------- --------- ---
 3 0003 08 operand 0000 0.440 uS .
 4

TYPE: s 1

2-12 How To Use The Z80 Emulator

The result is:

00004 3c INC A
 PC = 00005

TYPE: tl

The result is:

Line addr,H Z80 Mnemonic,H xbits,H count,R seq
 ----- ------ ------------------------------ ------- --------- ---
 3 0003 08 operand 0000 0.440 uS .
 4

Continue stepping and tracing if you desire.

Defining Logical
Expressions

Equates are logical expressions. The equ command allows you
to equate logical expressions to names that you choose.

You can add, observe, delete and modify logical expressions us-
ing the equ command. You can also put multiple equate com-
mands on a single line. This is the syntax.

equ name= < value>- equate a name to a number or pattern

equ name- display defined equate

equ -d name- delete defined equate

equ -d *- delete all defined equates

equ *- list all defined equates

equ- list all defined equates

equ name1= < value> name2- define and modify equates

How To Use The Z80 Emulator 2-13

For the Z80 emulator, these equates are defined upon powerup:

equ busack=0xxxx1111y
equ dataread=0xxxx0100y
equ datawrite=0xxxx0101y
equ grd=11xx0x0xy
equ illegal=0xxxx0010y
equ im0=0xxxx1000y
equ im1=0xxxx1001y
equ im2=0xxxx1010y
equ input=0xxxx0110y
equ monitor=0xxxxxxxy
equ nmi=0xxxx1011y
equ opcode=0xxxx0000y
equ operand=0xxxx0001y
equ output=0xxxx0111y
equ refresh=0xxxx1100y
equ user=1xxxxxxxy
equ wrrom=1x1x0101y

These logical expressions are used to define values for the emu-
lation analyzer label "stat".

You can define other types of logical expressions using the equ
command.

For example:

To define a logical expression for running from the start of a
program at address 100h....

TYPE: equ start= 100h

To make sure the start equate was added to the list of equates....

TYPE: equ

To start the program....

TYPE: r start

To use the start equate in defining a trigger pattern for the emu-
lation analyzer....

TYPE: tpat p1 addr= start

2-14 How To Use The Z80 Emulator

This defines pattern 1 to be the address equal to the value of
start.

To delete the start equate....

TYPE: equ -d start

To make sure the start equate was deleted to the list of equates...

TYPE: equ

For additional details on equates refer to the Terminal Interface
User’s Reference.

Note For additional details on using the analyzer, refer to the HP
64700 Analyzer User’s Guide.

Determining How
Much Of Memory
Is Accessed

You can determine how much of a range of emulation memory
is accessed by your program using the coverage (cov) command.
Here is how it works.

First, clear the coverage memory....

TYPE: cov -r

To determine how much memory the simple loop program in lo-
cations 0 through 7 uses....

TYPE: cov 0..0fh

You will see:

percentage of memory accessed: % 0.0

How To Use The Z80 Emulator 2-15

To start executing the program so that a coverage measurement
can be made....

TYPE: s 1 0

You will see:

0000 3e04 LD A,04
 PC = 0002

TYPE: cov 0..0fh

You will see:

percentage of memory accessed: % 18.7

Run the rest of the program....

TYPE: r

To see what percentage of memory is used now....

TYPE: cov 0..0fh

percentage of memory accessed: % 62.5

For additional details on making coverage measurements, refer
to the HP 64700 Emulators Terminal Interface User’s Reference.

2-16 How To Use The Z80 Emulator

3

In-Circuit Emulation

What Is In This
Chapter?

• How To Install The Z80 Emulator Probe

• Perform Z80 Emulation Functions In-Circuit

• In-Circuit Emulation Specifics

• Modifying Operation Of The Monitor Program

• High Speed CMOS Target System Interface

If you have never used an emulator in-circuit before, this chap-
ter should be a great benefit to you. If you have used an emula-
tor in-circuit, hopefully this chapter will still be of some help.

What Is In-Circuit
Emulation?

In-circuit emulation is the process of connecting the emulator
probe into the microprocessor socket of your target system, so
that you can use the emulator features to create and debug your
target system hardware and software.

By operating your emulator in-circuit, you can manipulate mem-
ory, I/O ports, and registers on the target system, allowing your
development process to become easier and faster. When modify-

In-Circuit Emulation 3-1

ing registers while running the emulator in-circuit, you are
modifying the emulation processor’s registers, because the HP
64753 emulator replaces the target system microprocessor.

You can map all of memory to the target system, allowing you
to do all of your work in target system memory, such as copying
programs from target system ROM to target system RAM to
make changes and debug. You also can copy programs in target
system ROM or RAM to emulation RAM so that programs
may be analyzed or altered.

Default
Configuration Item

Definitions

The default emulator configuration items are defined for target
system use, as most in-circuit emulation customers would typi-
cally need. If you find that some of the configuration items are
not defined as required by your target system, you can redefine
any of them to suit your particular target system needs.

Typing cf allows you to see all of these default configuration
items.

clk=int (select emulation or target system clock)
rrt=dis (emulator not restricted to real-time runs)
qbrk=dis (quickly break the emulator)
trfsh=dis (trace on refresh cycles)
tbusack=dis (trace on bus acknowledge cycles)
busreq=en (enable or disable bus request)
int=en (enable or disable interrupts)
nmi=en (enable or disable non-maskable interrupt)
waitem=en (enable or disable target system waits)
wrdata=dis (enable or disable data writes to target system)
moncyc dis (enable or disable target system recognition of
 emulator monitor cycles)
monbase=0 (location of the monitor program)

See chapter 1 for details about these configuration items.

3-2 In-Circuit Emulation

How To Install
The Z80 Emulator
Probe

To install the emulator probe....

1. Power down the target system and emulator.

2. Remove any tape, foam, or plastic from the end of the emula-
tor probe.

3. Examine all pins on the protective socket connected to the
emulation probe to verify that they are straight.

4. If any of the pins on the probe are bent, carefully straighten
them. If a pin breaks on the socket, replace the socket.

5. Locate pin 1 on the emulator probe. It is at the tip of the
probe.

6. Locate pin 1 on your target system microprocessor socket.

7. Carefully match the pins on the emulator probe with the tar-
get system microprocessor socket.

8. Depending on what type of socket is in your target system,
either press down on the emulator probe, or push the lever on
the socket to make a stable connection between the emulator
probe and target system Z80 microprocessor socket.

9. Power up the emulator.

10. Power up the target system.

Now the emulator is ready to operate in your target system.

Continue on to get started.

In-Circuit Emulation 3-3

Perform Z80
Emulation
Functions
In-Circuit

Look at the emulator configuration by typing: cf

Note You can change any of the configuration items. Only you can
decide if the default configuration items are appropriate for
your target system operation. For more information on the
Z80 emulator configuration, see chapter 1.

If you want to delete all current memory map terms, map all
other memory as target system RAM, and use the target system
(external) clock, execute the in-circuit emulation macro....

TYPE: incircuit

You should see:

rst ; map -d * ; map other tram ; cf clk=ext

An Example
Target System

Now, let’s imagine a target system that contains a Z80 micro-
processor, ROM (locations 0 to 7ffh), RAM (locations 800h to
0fffh), 8 input switches, 8 output LEDs, a counter timer circuit,
and a hard reset switch, along with other control circuitry and
buffers. Also, the target system input lines are hardwired to 0
through 7fh. Furthermore, the target system program generates
only mode 2 interrupts.

3-4 In-Circuit Emulation

Let’s assume that the program is designed to turn on an LED
each time it successfully completes a certain step. Eventually
the LEDs are supposed to light up in a defined pattern, and
keep repeating the pattern.

Here are some things you could do with this target system:

Observe part of the program in target system ROM....

TYPE: m -dm 0..2fh

Run the program in target system ROM....

TYPE: r 0

The LEDs would light up in the order defined by the program.

Stop target system execution, and cause the emulator to begin
executing in the monitor....

TYPE: b

The prompt changes to "M> " to indicate that the emulator is
executing in the monitor. Whenever the emulator breaks to the
monitor, the target system stops running.

Start the program running from target system reset....

TYPE: r rst

If the target system contains a hard reset button, pressing it
would now start the program running from reset. The target sys-
tem will accept a "run from reset" command (r rst) while the
emulator is running a user program, running in the monitor, or
is in the reset state. After issuing a r rst command, when you
press the reset button on the target system, it will continue run-
ning the target system program.

Copy the program into target system RAM so that you could
make changes....

TYPE: cp 800h= 0..065h

This command indicates that the original program is located at
locations 0 through 65 hexadecimal in target system ROM. The
program will be copied to target system RAM starting at 800
hexadecimal (the starting address of target system RAM).

Step through the program that you just copied into RAM....

In-Circuit Emulation 3-5

TYPE: s 1 800h

This command steps one instruction from the start of the pro-
gram.

Continue stepping....

TYPE: s 1

When the program writes to certain locations (with an "OUT
< location> , A" instruction), you would see an LED light up.

To trace activity of the program, start the program running,
then....

TYPE: t

The message "Emulation trace started" would be displayed.

Display the trace of the program....

TYPE: tl

Store only trace activity of the interrupt mode 2 signal....

TYPE: tsto stat= im2

Check the content of the Z80 imode register....

TYPE: reg imode

The content would be 02 because the Z80 has been pro-
grammed to use interrupt mode 2.

Display and modify Z80 emulator I/O ports....

Note With the Z80 microprocessor, I/O port addresses 0 through
0ffffh are available for sending data to and receiving data from
a target system. The Z80 microprocessor communicates with
memory and the I/O ports individually.

To display multiple I/O locations communicating with the tar-
get system in byte format....

3-6 In-Circuit Emulation

TYPE: io -db 0 1 2 7fh

You would see something like:

00000 ff
00001 ff
00002 ff
0007f ff

If the input switches on the target system were set to 44, I/O lo-
cations 0 through 7fh would contain data of 44.

To modify I/O location 0 to 0....

TYPE: io 0= 0

When To Modify I/O
Locations

A write to an I/O port indicates that the Z80 emulator holds
valid data to be stored at the addressed I/O location. Therefore,
you should send data to I/O locations when you want to cause an
action in the target system.

When modifying an I/O location you need only to specify an I/O
port address and supply a data value to send to the port.

The emulation processor must not be halted.

The target system must be ready to receive the data. If the
/WAIT signal is active, the target system is not ready for the data
to be transferred.

The emulation processor must acknowledge the target system
bus request. Once it acknowledges the bus request, the target
system can take control of the /RD, /WR, and /IORQ lines, and
then transfer data.

In-Circuit Emulation 3-7

In-Circuit
Emulation
Specifics

The HP 64753 Z80 Emulator can perform emulation in real-
time or nonreal-time with a target system connected. If real-
time performance of your target system is important, you should
perform Z80 emulation in real-time.

Emulation may be required to run in real-time because running
in nonreal-time with proper emulator operation may not always
possible (such as with target systems that process interrupts
and/or depend on a real-time clock for operation). Target sys-
tems like these cannot be emulated thoroughly if you do not
specify real-time emulation. Therefore, you should be aware of
the types of emulator commands that will cause the emulator to
operate in nonreal-time.

In addition, you should understand the implications of using
part or all of emulation memory for emulation. The use of emu-
lation memory could affect real-time emulation, depending on
the implementation of your target system.

Some guidelines for in-circuit emulation include:

Select the external clock during emulation configuration so that
your target system program will execute relative to your target
system clock.

If memory exists on your target system, map that memory as tar-
get memory (tram or trom) when you configure the emulator.
This is important so that all activities you perform on memory
are automatically done in the target system memory.

3-8 In-Circuit Emulation

Emulation Memory
and Target System

Memory

The use of emulation memory and/or target system memory can
significantly affect the operation of the emulator. Ideally emula-
tion of a microprocessor should be done with as much of the fi-
nal target system hardware as possible. Because this is not feasi-
ble at the start of the development cycle, the HP 64753 Z80 emu-
lator provides the feature for emulation memory to replace tar-
get system memory during the project development stage.

The final target system memory may not have the same specifica-
tions as the emulator. Therefore, we recommend that you use
the external clock, whenever possible, to assure synchronous op-
eration between the emulator and your target system.

Modifying
Operation Of The
Monitor Program

When the emulator breaks from the user program it begins run-
ning the monitor program. The purpose of the monitor is to al-
low access to internal Z80 registers and to provide a path to ac-
cess memory and input/output ports in the target system.

When the emulator stops running the user program, any sup-
port that is provided by the user program to the target system
will also stop, including support of interrupts. This may be a
problem, particularly with target systems that have real-time re-
quirements.

Make Bus Cycles
Visible

There are several ways that you can alter the operation of the
monitor program to satisfy some specific requirements of your
target system. The first step is to make the bus cycles that the
Z80 performs while running the monitor, visible to the target
system, by setting the monitor cycle configuration item.

For example, you would type: cf moncyc= en

In-Circuit Emulation 3-9

Define Addresses

Your target system will require this if it has dynamic memories
that must be refreshed by the Z80. You can define the range of
addresses driven to the target system by setting the monitor base
configuration item.

For example, you would type: cf monbase= 7

This command causes these addresses to be in the range 7000H
through 7FFFH, while running in the monitor.

Reduce Monitor
Program Access Time

A second way to modify the operation of the monitor is to re-
duce the amount of time that the monitor program runs when a
temporary break occurs. A temporary break occurs when the
emulator breaks to the monitor to display registers or to display
target memory. An automatic return to running the user pro-
gram follows the break. By setting the quick break configura-
tion item (by typing cf qbrk= en) the amount of time spent in
the monitor for a temporary break can be reduced from about 6
milliseconds to about 200 microseconds, depending upon proc-
essor clock speed.

Even though interrupts are not serviced while the emulator is
running in the monitor, it may be possible to return the emula-
tor to the user program in time to service interrupts satisfacto-
rily.

Note This mode of breaking affects CMB operation because other
emulators on the CMB will not break to the monitor when this
emulator breaks in the quick mode.

3-10 In-Circuit Emulation

Tailoring The
Monitor For Target

System Interaction

If the target system requires constant interaction, even while the
emulator is running the monitor, the monitor program itself can
be tailored by you. One example of a target system need of this
type is a "watchdog timer" that will reset the target system if it is
not written to periodically. In this case, you could modify the
monitor program to write to the timer while it is running, in the
same way that the user program writes to the timer. Another
possibility is to turn off the timer when a break to the monitor
occurs, and turn it on again when the emulator returns to the
user program. Both of these requirements can be satisfied by
adding user code to the monitor program.

Using The Load -g Command

The user code is supplied by you in the form of four possible
Z80 assembly language subroutines. You then load this code by
using the -g option with the load command. Refer to the HP
64700 Emulators Terminal Interface User’s Reference for details
about the load command.

Subroutine # 1: Reset Entry To Monitor

The first subroutine will be called once when the monitor pro-
gram is entered from reset. This will occur when a reset com-
mand (rst) is followed by a break (b), run (r), or step (s) com-
mand, or with a reset to monitor command (rst -m).

Subroutine # 2: Break Entry To Monitor

The second subroutine will be called once when the emulator
breaks from running the user program into the monitor.

Subroutine # 3: Monitor Loop

The third subroutine will be called once for each time the moni-
tor program cycles through its main loop.

Subroutine # 4: Exit From Monitor

The last subroutine will be called once when the emulator exits
the monitor and returns to the user program.

In-Circuit Emulation 3-11

Note It is not necessary that you provide all four subroutines. Any
subroutine that is not included in the loaded code will be de-
faulted to a "return from subroutine" (RET) when the load is
performed.

Restrictions Code that you add to the monitor is limited by the following re-
strictions:

User Code Separate From Monitor Code

Code that you add to the monitor is completely separate from
your user program. The user monitor code does not reside in
the user address space, nor can it call or jump to any part of
your program.

Location Of The Subroutines

The four subroutines must begin at the following addresses:

0300H - reset entry to monitor subroutine

0400H - break entry to monitor subroutine

0500H - monitor loop subroutine

0600H - exit from monitor subroutine

Note Each subroutine must end with a return from subroutine in-
struction RET). The entire user monitor code must reside
with the address range 0300H through 06FFH. The user moni-
tor code must not jump to or access any monitor locations out-
side this range.

3-12 In-Circuit Emulation

Note The addresses where the subroutines must be located are not
affected by the setting of the "cf monbase" configuration ques-
tion.

Communication With Target System I/O ports

The user monitor code can communicate with target system
memory and I/O (input/output) ports. The following instruc-
tions must be used when this communication is desired. No
other instructions will access the target system.

INSTRUCTION FUNCTION OF INSTRUCTION

LD HL,(nnnn) Loads HL with target memory locations
nnnn and nnnn+ 1.

LD (nnnn),HL Writes contents of HL to target memory
locations nnnn and nnnn+ 1.

LD r,(HL) Loads register with target memory
address pointed to by HL. "r" indicates
register A, B, C, D, E, H, or L.

LD (HL),r Writes register content to target memory
pointed to by HL.

IN r,(C) Loads register with input port value
pointed to by the C register.

OUT (C),r Writes register content to I/O port pointed
to by C.

Table 3-1. Instructions Used With A Target System

In-Circuit Emulation 3-13

You Cannot Use Some Instructions

The following instructions must not be used anywhere in the
user monitor code because they are reserved for control of the
Z80 emulator. Unexpected operation of the emulator will occur
if you use any of these instructions:

JP nnnn
RST n
LD A,(BC)
LD D,D
LDIR
LDDR

Registers Used By The User Monitor Code

The user monitor code may only use the following Z80 regis-
ters: A, flags, BC, DE, and HL

The content of these registers is not maintained by the monitor
from one call to the user routines to the next. Any data storage
required must share monitor memory addresses in the range
0300H through 06FFH with the user monitor code. Instruc-
tions used to access data stored in monitor memory must not
use the instructions for target memory communication listed
above.

A Stack Is Provided

A stack is provided so that you may include subroutines in the
user monitor code. The stack is used only for the purpose of
calling the user monitor subroutines, and for their operation.
The stack size is limited to 64 bytes. The stack is always auto-
matically initialized before a call is made to a user monitor sub-
routine.

No Access To Emulation Memory

The user monitor code cannot access emulation memory.

3-14 In-Circuit Emulation

Caution If the user monitor subroutines do not adhere to the restric-
tions listed above, erratic operation of the emulator may result.

Creating/Loading
The User Monitor

Subroutines

You can develop the user monitor subroutines with the same
tools that are used for the user application program. Any one of
the subroutines, or all four, can be included in the same file. It
is important that each subroutine be ORGed at its specified ad-
dress (refer to the appropriate Assembler Manual for details
about the ORG command).

The subroutines are then loaded into the emulator with the -g
option to the load command. For example, if the user monitor
code is in HP ASCII format and being loaded from the other
port (not the command port), the command would be: load -
ghxo

Note The load command will fail if the address specified in the file is
not in the range 0300H through 06FFH.

Observe Monitor
Operation

After the user monitor code has been loaded, the emulation ana-
lyzer can be used to monitor its operation. You can enable trac-
ing of background monitor cycles by changing the clock specifi-
cation.

For example, you would type: tck -ub

Refer to the Terminal Interface User’s Reference for details.

In-Circuit Emulation 3-15

Note If the emulator is reinitialized (with the init command), the
user monitor code will be lost, and must then be reloaded.

High-Speed
CMOS Target
System Interface

The HP 64753 Z80 emulator is designed for both CMOS capa-
bility, and operation at clock speeds up to 10 MHz. To meet
these requirements, high speed CMOS buffer circuitry is used to
drive the address, data, and status signals on the emulator cable
to the target system.

These CMOS buffers generate extremely fast rise and fall times.
Some Z80 target systems may exhibit erratic operation with the
Z80 emulator installed, such as target systems which do not
have power and ground layers on their printed circuit boards.
This may occur with a prototype that is wire-wrapped.

To minimize the effects of this problem, Hewlett-Packard sug-
gests that you add the circuit shown in figure 1. Figure 2 shows
one possible implementation of the circuit.

Consult your local Hewlett-Packard Sales and Service Office for
more information.

3-16 In-Circuit Emulation

Figure 3-1. High-Speed CMOS Circuit Schematic

In-Circuit Emulation 3-17

Figure 3-2. Example Build Of Circuit

3-18 In-Circuit Emulation

A

Z80 Emulator Characteristics

• Z80 Signals

• Timing Characteristics Of The Z80 Emulator And Micro-
processor

• Specifics On Z80 Emulator Interaction With A Target Sys-
tem

Timing diagrams A-1 through A-7 and table A-1 are: repro-
duced by permission copyright 1983 Zilog, Inc. This material
shall not be reproduced without the written consent of Zilog,
Inc.

Z80 Emulator Characteristics A-1

Figure A-1. Opcode Fetch Cycle Timing

A-2 Z80 Emulator Characteristics

Figure A-2. Data Memory Read/Write Cycle Timing

Z80 Emulator Characteristics A-3

Figure A-3. Input/Output Read And Write Timing

A-4 Z80 Emulator Characteristics

Figure A-4. Bus Request/Acknowledge Timing

Z80 Emulator Characteristics A-5

Figure A-5. Interrupt Request/Acknowledge Timing

A-6 Z80 Emulator Characteristics

Figure A-6. Halt Acknowledge Cycle Timing

Z80 Emulator Characteristics A-7

Figure A-7. Reset Timing

A-8 Z80 Emulator Characteristics

Note All times in table A-1 are measured at the target system end of
the emulation probe cable with external clock selected.

All times are in nanoseconds.

Number Symbol Parameter 64753A

 min max

1 TcC Clock Cycle Time 100* DC

2 TwCh Clock Pulse Width (High) 45 DC

3 TwCl Clock Pulse Width (Low) 45 DC

4 TfC Clock Fall Time - 10**

5 TrC Clock Rise Time - 10**

6 TdCr(A) Clock rising to Address Valid Delay - 110

7 TdA(MREQf) Address Valid to LMREQ falling Delay 10 -

8 TdCf(MREQf) Clock falling to LMREQ falling Delay - 90

9 TdCr(MREQr) Clock rising to LMREQ rising Delay - 90

10 TwMREQh LMREQ Pulse Width (High) 30* -

11 TwMREQl LMREQ Pulse Width (Low) 75* -

12 TdCf(MREQr) Clock falling to LMREQ rising Delay - 90

13 TdCf(RDf) Clock falling to LRD falling Delay - 100

14 TdCr(RDr) Clock rising to LRD rising Delay - 90

15 TsD(Cr) Data Setup Time to Clock rising 30 -

16 ThD(RDr) Data Hold Time to LRD rising 0 -

17 TsWWAIT(Cf) LWAIT Setup Time to Clock falling 50 -

18 ThWAIT(Cf) LWAIT Hold Time after Clock falling 10 -

19 TdCr(Mlf) Clock rising to LM1 falling Delay - 100

20 TdCr(Mlr) Clock rising to LM1 rising Delay - 100

21 TdCr(RFSHf) Clock rising to LRFSH falling Delay - 125

22 TdCr(RFSHr) Clock rising to LRFSH rising Delay - 115

23 TdCf(RDr) Clock falling to LRD rising Delay - 90

24 TdCr(RDf) Clock rising to LRD falling Delay - 90

25 TsD(Cf) Data Setup to Clock falling during 30 -

M2, M3, M4, or M5 Cycles

Table A-1. Performance Characteristics

Z80 Emulator Characteristics A-9

 min max

26 TdA(IORQf) Address Stable prior to LIORQ falling 50* -

27 TdCr(IORQf) Clock rising to LIORQ falling Delay - 85

28 TdCf(IORQr) Clock falling to LIORQ rising Delay 90

29 TdD(WRf) Data Stable prior to LWR falling -20* -

30 TdCf(WRf) Clock falling to LWR falling Delay - 90

31 TwWR LWR Pulse Width 75* -

32 TdCf(WRr) Clock falling to LWR rising Delay - 90

33 TdD(WRf) Data Stable prior to LWR falling -65* -

34 TdCr(WRf) Clock rising to LWR falling Delay - 85

35 TdWRr(D) Data Stable from LWR rising 5* -

36 TdCf(HALT) Clock falling to LHALT rising or falling - 255

37 TwNMI LNMI Pulse Width 60 -

38 TsBUSREQ(Cr) LBUSREQ Setup Time to Clock rising 60 -

39 ThBUSREQ(Cr) LBUSREQ Hold Time after Clock rising 10 -

40 TdCr(BUSACKf) Clock rising to LBUSACK falling Delay - 110

41 TdCf(BUSACKr) Clock falling to LBUSACK rising Delay - 110

42 TdCr(Dz) Clock rising to Data Float Delay - 110

43 TdCr(CTz) Clock rising to Control Outputs Float - 110

Delay (LMREQ, LIORQ, LRD, and LWR)

44 TdCr(Az) Clock rising to Address Float Delay - 110

45 TdCTr(A) LMREQ rising, LIORQ rising, LRD rising, 5* -

and LWR rising to Address Hold Time

46 TsRESET(Cr) LRESET to Clock rising Setup Time 65 -

47 ThRESET(Cr) LRESET to Clock rising Hold Time 10 -

48 TsINTf(Cr) LINT to Clock rising Setup Time 65 -

49 ThINTr(Cr) LINT to Clock rising Hold Time 10 -

50 TdM1f(IORQf) LM1 falling to LIORQ falling Delay 200* -

51 TdCf(IORQf) Clock falling to LIORQ falling Delay - 90

52 TdCf(IORQr) Clock rising to LIORQ rising Delay - 90

53 TdCf(D) Clock falling to Data Valid Delay - 145

Table A-1. Performance Characteristics (Cont’d)

A-10 Z80 Emulator Characteristics

*For clock periods other than the minimum shown in the table, calculate parameters
using the following expressions. Calculated values above assumed TrC = TfC = 10
nS. All timings assume equal loading on pins with 50 pF. Timings are subject to
change.

**When the clock frequency is 10 MHz, the maximum clock rise and fall time is 10
nS. With slower clock speeds, the rise and fall time can be up to 30 nS.

Notes to Z80 AC Characteristics

Number Symbol 64753A

1 TcC TwCh + TwCl + TrC + TfC

7 TdA(MR) TwCh + TfC - 45

10 TwMRh TwCh + TfC - 25

11 TwMR1 TcC - 25

26 TdA(IR) TcC - 50

29 TdD0(WRm) TcC - 120

31 TwWR TcC - 25

33 TdD0(WRi) TwCl + TrC - 120

35 TdWR(D0) TwCl + TrC - 50

45 TdCT(A) TwCl + TrC - 50

50 TdM1(IR) 2TcC + TwCh + TfC - 55

Z80 Emulator Characteristics A-11

Notes

A-12 Z80 Emulator Characteristics

B

Z80 Emulator Specific Syntax

What Is In This
Appendix?

• Z80 Specific Syntax Diagrams And Variables

• Descriptions Of The Syntax Options

• Examples Of Command Use

Note For details about common emulation command syntax, refer to
the HP 64700 Emulators Terminal Interface User’s Reference.

Z80 Specific
Syntax Diagrams
And Variables

Syntax diagrams unique to the Z80 emulator include:

CONFIGURATION ITEMS

I/O

Variables used in the syntax diagrams that are unique to the Z80
emulator include:

Z80 Emulator Specific Syntax B-1

ADDRESS

DISPLAY MODE

REGISTER CLASS

Z80 Emulator
Configuration Items

The Z80 configuration items allow you to set up the emulator in
a way that best suits your system needs. You will likely use
some of the configuration items more often than others. Most
of the items allow you to set up the emulator to work properly
with your target system. In addition, most of the configuration
items are either enabled or disabled.

B-2 Z80 Emulator Specific Syntax

When connecting the emulator to a target system, you may be in-
terested in modifying all of the configuration items. That all de-
pends on your target system requirements. If your target system
has a clock, we recommend that you set the clock to "external",
so that operation of your program will be relative to the target
system clock.

For example:

To select the target system clock, type: cf clk= ext

To allow the emulator to break into the monitor only when a re-
set, break, run, or step command is received, type: cf rrt= en

To cause the emulator to ignore a target system request for bus
access, type: cf busreq= dis

To allow the emulator to write data to the target system during
all read cycles from emulation memory, type: cf wrdata= en

I/O The Z80 I/O command allows you to send data to and receive
data from a target system (I/O device).

The Z80 processor addresses I/O ports separate from memory,
and has two sets of instructions for I/O read and write opera-
tions. You can display and modify data at the I/O port ad-
dresses. When displaying the data at I/O ports, you can specify
that the display format be in bytes or words.

For example:

To display I/O location 0 in word format, type: io -dw 0

Z80 Emulator Specific Syntax B-3

Note The Z80 microprocessor ports are 8 bits wide. Therefore, us-
ing the "word format option" has no effect on the I/O display.

To display multiple I/O locations, type: io 0 1 2

To modify a single I/O location, type: io 0ffffh= 44

To modify multiple I/O locations, type: io 0= 1 2= 1 3= 1

Note The In-Circuit Emulation chapter in this manual also contains
information on I/O.

Address When you see the address variable in various syntax diagrams, it
is unique for the Z80 emulator. The address variable indicates
that you should type in an address in a form recognized by the
Z80 emulator.

Valid Z80 address include 0 through 0ffffh. This is true for both
memory and I/O addresses. When no base letter is specified,
such as "o", the default is hexadecimal ("h").

For example:

To display memory at a single address, type: m 100

To observe a range of memory locations in hexadecimal byte for-
mat, type: m -db 0..0ffh

B-4 Z80 Emulator Specific Syntax

To set memory location 00ffh to 0, type: m 0= 0ffh

To display a block of memory starting at address 0000h, type: m
0..

To modify multiple memory locations to a pattern, type: m
100h= 1,2,3,4

Display Mode The display mode variable indicates that you can display mem-
ory and I/O locations in various formats with the Z80 emulator.

You can display memory in bytes, words, or mnemonics.

You can display I/O locations in bytes or words.

For example:

To display memory locations 0 through 200 decimal in byte for-
mat, type: m -db 0..200t

To display memory locations 800 through 0fff hexadecimal in
word format, type: m -dw 800h..0fffh

To display memory locations 800 through 810 octal in mne-
monic format, type: m -dm 800o..810o

To display I/O location 7fh in byte format, type: io -db 7fh

Z80 Emulator Specific Syntax B-5

Note When memory is displayed in words, the low byte of the word
that is displayed is from the specified address. The high byte is
from the next higher addressed memory location. This is con-
sistent with the way the Z80 loads a 16-bit register from mem-
ory.

Register Class The register class variable indicates that each emulator has its
own unique set of registers. For the Z80 emulator, registers are
grouped into classes, including: primary registers, alternate reg-
isters, interrupt registers, and all of the registers.

For example:

To display the primary set of registers, type reg or reg *

To display the Z80 set of alternate registers, type: reg alt

To display the Z80 set of interrupt registers, type: reg int

To display all of the Z80 registers, type: reg all

You can specify a single register name, such as the hl register, by
typing: reg hl

B-6 Z80 Emulator Specific Syntax

C

Z80 Error Messages

What Is In This
Appendix?

This appendix contains a list of error messages specifically for
the HP 64753 Z80 emulator. Each error message has its own
unique error number, located in the left column. Following
each message is information for how to recover from that state.

Z80 Unique Error
Messages

140 Legal values for iff2 are 0 and 1

Both of the interrupt enable flip flops signal the Z80 interrupt
status. Interrupt enable flip-flop iff2 stores the content of inter-
rupt enable flip-flop iff1 during /NMI service. Because the val-
ues for iff1 can only be 0 (disables interrupts) or 1 (enables inter-
rupts), the content of iff2 can only be 0 or 1.

141 Legal values for imode are 0 through 2

The maskable interrupt /INT has three programmable response
modes available. The interrupt mode register indicates which of
these modes the Z80 is programmed to respond to, when an in-
terrupt occurs. You cannot modify the imode register to a value
other than 0, 1, or 2.

Z80 Error Messages C-1

Real-Time Error
Messages

40 Restricted to real time runs

Because the emulator is restricted to real-time runs, you cannot
perform the action you have just taken. Emulator features not
performed in real-time include displaying, loading, modifying
and storing target system memory, displaying or modifying regis-
ters and single stepping. If you try to perform any of these ac-
tions while the emulator is restricted to real-time runs, you will
receive this message. All other features are performed in real-
time.

Reset Error
Messages

60 Waiting for target system reset

The emulator will not execute (or continue to execute) the tar-
get system program until you reset the target system. After you
press a hard reset button on the target system program execu-
tion will continue.

61 Emulator is in the reset state

Because the emulator is reset, you cannot perform emulation
functions that require the monitor program to run. This in-
cludes displaying or modifying processor registers, target system
memory, or I/O ports. To recover from this error, type b to start
the emulator executing in the monitor.

C-2 Z80 Error Messages

Monitor Error
Messages

100 No response from monitor

The emulator will not accept your command until it is executing
properly in the monitor. Try issuing the b command to break
into the monitor. If that doesn’t work, try issuing the rst -m
command to first reset the emulator, then begin executing in the
monitor.

102 Monitor failure; no clock input

When there is no clock input to the emulator, the monitor pro-
gram cannot run.

104 Monitor failure; bus grant

The monitor cannot run because the emulator has granted the
bus.

105 Monitor failure; halted

The emulation processor is waiting in a HALT state for either a
/INT or /NMI before it resumes operation.

106 Monitor failure; wait state

The Z80 emulation processor is waiting for the target system to
complete its data transfer.

142 User monitor code must be in the range 0300H thru 06FFH

The load address specified in the "download monitor" command
is not in the specified range.

Unknown Or Fatal
Errors

120 Unknown emulator error

The cause of the error is unknown. Reset the emulator.

Z80 Error Messages C-3

Notes

C-4 Z80 Error Messages

Index

A access mode, 1-21
access to emulation memory not allowed, 3-14
address syntax, B-4
analysis, 1-3

B break conditions, 1-22
break entry to monitor subroutine, 3-11
breakpoints, 1-3, 1-23
bus request, 1-17

C characteristics, A-1
clock (clk), 1-15
clock speeds, 1-3
CMB, 1-24
communication with target system I/O ports, 3-13
configuration items, 1-13, B-2
configure the Z80 emulator, 1-12
coordinated measurement bus operation, 1-24
coverage command, 2-15
create your own macros, 1-9
creating/loading user monitor subroutines, 3-15

D data write to target system (wrdata), 1-18
default configuration item definitions, 3-2
define addresses driven to target system, 3-10
define logical expressions, 2-13
display I/O locations, 2-6
display mode, 1-21
display mode syntax, B-5
display registers, 2-8
display the trace, 2-11

Index-1

E emulation components, 1-4
emulation memory, 1-3, 3-9
emulator probe, 3-3
equates, 2-13
error messages, C-1
example target system, 3-4
example Z80 program, 1-27
execute a trace, 2-11
exit from monitor subroutine, 3-11

F features of the Z80 emulator, 1-3

G getting started, 1-1

H help command, 1-5
help on configuration items, 1-14
high-speed CMOS target system interface, 3-16
how to use the Z80 emulator, 2-1

I I/O port addresses, 3-6
I/O syntax, B-3
illegal opcode detection, 1-3
in-circuit emulation, 3-1
in-circuit emulation specifics, 3-8
incircuit macro, 1-7, 3-4
initialize the Z80 emulator, 1-12
install the Z80 emulator probe, 3-3
instructions for accessing target system, 3-13
instructions not to be used, 3-14
interrupt (int), 1-17

L limitations, 1-4
load -g command, 3-11
load a sample Z80 program, 1-26
location of the subroutines, 3-12
logical expressions, 2-13

M macros, 1-7
map Z80 emulation memory, 1-24
memory map, 1-20

2-Index

modify I/O locations, 2-6, 3-7
modify registers, 2-8
modify Z80 memory, 2-1
modifying memory, 1-28
monitor cycles (moncyc), 1-19
monitor error messages, C-3
monitor location (monbase), 1-19
monitor loop subroutine, 3-11
monitor operation, 3-15
monitor program, 3-9
monitor program access time, 3-10

N non-maskable interrupt (nmi), 1-18

O outcircuit macro, 1-7

P probe, 3-3

Q quick break (qbrk), 1-16

R real-time error messages, C-2
real-time operation, 1-4
recall the last command, 2-3
reduce monitor program access time, 3-10
register class syntax, B-6
register support, 1-3
registers used by the user monitor code, 3-14
reset button, 3-5
reset entry to monitor subroutine, 3-11
reset error messages, C-2
reset support, 1-3
reset the emulator, 2-6
restrict to real-time runs (rrt), 1-15
restrictions, 1-4
restrictions on adding monitor code, 3-12
run the example program, 1-33
run/stop features, 2-2

Index-3

S single-step, 1-3
stack provided for including subroutines, 3-14
step the program, 2-3
step through a trace list, 2-12
subroutines for the monitor, 3-11
supported microprocessors, 1-3
syntax, B-1
syntax diagrams and variables, B-1
system prompts, 1-11

T tailoring the monitor, 3-10
target system, 1-11, 3-4
target system interface, 3-16
target system memory, 3-9
target system wait (waitem), 1-18
tbrk macro, 1-7
timing diagrams, A-1
trace, 2-10
trace bus acknowledge cycles (tbusack), 1-17
trace refresh cycles (trfsh), 1-16
transparent configuration, 1-29

U unknown errors, C-3
use the manuals, 1-33
user code separate from monitor code, 3-12
user interface, 1-4
using the "cf" command, 1-14
using the load -g command, 3-11
using the Z80 emulator, 1-10

Z Z80 microprocessor, 1-1
Z80 emulator characteristics, A-1

4-Index

	Using This Manual
	Contents
	Getting Started
	How To Use The Z80 Emulator
	In-Circuit Emulation
	Z80 Emulator Characteristics
	Z80 Emulator Specific Syntax
	Z80 Error Messages
	Index

