HP 64000
Logic Development
System

Model 64341
Real-Time High Level
Software Analyzer For
68000/68010

(ﬁﬁ HEWLETT

PACKARD

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment
from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s calibration facility, and to the calibra-
tion facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and workmanship
for a period of 90 days from date of installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no charge within HP service
travel areas. Outside HP service travel areas, warranty service will be performed at Buyer’s facility
only upon HP’s prior agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and
HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all ship-
ping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will ex-
ecute its programming instructions when properly installed on that instrument. HP does not war-
rant that the operation of the instrument, or software, or firmware will be uninterrupted or error
free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate main-
tenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the product, or improper site preparation or
maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard
products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

KPR $#: D200040972 Product: See product list on front cover. 02.01
Keywords: 2203

One-line description:
The analyzer does not work with #include statements in C or PASCAL

Problem:

The high level language analyzer does not work with code that contains
#include statements whose files contain executable code. The source
code of an included file is not available for display by the analyzer
software as it is now written. Included files which contain only type

declarations (or statements which are non-executable) pose no problems
for the analyzer.

Solution:

If it is necessary to debug code which uses #include statements of
files which contain executable code, the user (for the purposes of
debugging those executable statements) may merge in the file and
eliminate the include statement while he is debugging that portion of

the code. After debugging that portion of the code, he can replace the
code with the original include statement.

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair
of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this
manual violates safety standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to comply with these requirements.

GROUND THE INSTRUMENT.

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electri-
cal ground. The instrument is equipped with a three-conductor ac power cable. The power
cable must either be plugged into an approved three-contact electrical outlet or used with a
three-contact to two-contact adapter with the grounding wire (green) firmly connected to an
electrical ground (safety ground) at the power outlet. The power jack and mating plug of the
power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any
electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal
adjustments must be made by qualified maintenance personnel. Do not replace components
with the power cable connected. Under certain conditions, dangerous voltages may exist even
with the power cable removed. To avoid injuries, always disconnect power and discharge cir-
cuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first
aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or per-
form any unauthorized modification of the instrument. Return the instrument to a
Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features
are maintained.

DANGEROUS PROCEDURE WARNINGS.

Warnings, such as the example below, precede potentially dangerous procedures throughout
this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme cau-
tion when handling, testing, and adjusting.

SAFETY SYMBOLS

General Definitions of Safety Symbols Used on Equipment or in Manuals.

A\
i

Lo @

@

OR _L

WARNING

CAUTION

N RIS

NOTE:

Instruction manual symbol: the product is marked with this
symbol when it is necessary for the user to refer to the in-
struction manual in order to protect against damage to the
instrument.

Indicates dangerous voltage (terminals fed from the interior
by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electri-
cal shock in case of a fault. Used with field wiring terminals
to indicate the terminal which must be connected to ground
before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used
for a signal common, as well as providing protection against
electrical shock in case of a fault. A terminal marked with
this symbol must be connected to ground in the manner
described in the installation (operating) manual, and before
operating the equipment.

Frame or chassis terminal. A connection to the frame (chas-
sis) of the equipment which normally includes all exposed
metal structures.

Alternating current (power line).
Direct current (power line).
Alternating or direct current (power line).

The WARNING sign denotes a hazard. It calls attention to a
procedure, practice, condition or the like, which, if not cor-
rectly performed, could result in injury or death to personnel.

The CAUTION sign denotes a hazard. It calls attention to an
operating procedure, practice, condition or the like, which, if
not correctly performed or adhered to, could result in
damage to or destruction of part or all of the product.

The NOTE sign denotes important information. It calls atten-
tion to procedure, practice, condition or the like, which is es-
sential to highlight.

(D

OPERATING MANUAL

MODEL 64341
REAL-TIME HIGH LEVEL
SOFTWARE ANALYZER

FOR 68000/68010

© COPYRIGHT HEWLETT-PACKARD COMPANY 1985
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U. S. A.

ALL RIGHTS RESERVED

Manual Part No. 64341-90903 PRINTED: September 1985
E0985

PRINTING HISTORY

Each new edition of this manual incorporates all material updated since the previous edition.
Manual change sheets are issued between editions, allowing you to correct or insert information in
the current edition.

The print date changes only when each new edition is published. Minor corrections or additions
may be made as the manual is reprinted between editions. Vertical bars in a page margin indi-
cates the location of reprint corrections.

First Printing Feburary, 1985 (64341-90901)
Second Edition September, 1985 (64341-90903)

SOFTWARE VERSION NUMBER

Your HP 64000 software is identified with a version number in the form YY.XX. The version num-
ber is printed on a label attached to the software media or media envelope. This manual applies to
the following:

Model HP 64341BA Version 2.XX
Model HP 64341DA Version 2.XX
Model HP 64341GA Version 1.XX
Model HP 643411A Version 1.XX

Within the software version number, the digit to the left of the decimal point indicates the product
feature set. This manual supports all software versions identified with this same digit.

The digits to the right of the decimal point indicate feature subsets. These feature subsets normal-
ly have no affect on the manual. However, if you subscribe to the "Software Material Subscription”
(SMS), these subset items are covered in the "Software Response Bulletin” (SRB).

SOFTWARE MATERIALS SUBSCRIPTION

Hewlett-Packard offers a Software Materials Subscription (SMS) to provide you with the most time-
ly and comprehensive information concerning your HP 64000 Logic Development System. This
service can maximize the productivity of your HP system by ensuring that you have the latest
product enhancements, software revisions, and software reference manuals.

For a more detailed description of the SMS, refer to chapter 1.

DUPLICATING SOFTWARE

Before using the flexible disc(s) provided with this product, make a work copy. Retain the original
disc(s) as the master copy and use the work copy for daily use. The procedure for duplicating the
master flexible disc(s) is included in chapter 2 of this manual.

Specific rights to use one copy of the software product(s) are granted for use on a single, stand-
alone development station or a cluster of development stations which boot from a single mass
storage device.

Should your master copy become lost or damaged, replacement discs are available through your
Hewlett-Packard sales and service office.

TABLE OF CONTENTS

Chapter 1. GENERAL INFORMATION

OVERVIEW . i it it e et e e e et ettt 1-1
SAFETY CONSIDERATIONS . . i it it sttt ettt et e 1-1
MANUAL AP P LICABILITY ottt e i it ettt e e i ettt eneans 1-1
WHAT IS A REAL-TIME HIGH LEVEL SOFTWARE ANALYZERcvvu.. 1-2
HP 64340A Hardware Description i i 1-2
HP 64341 Software Description i i i e e 1-3
WHAT THE SOFTWARE ANALYZER ALLOWS YOUTODOt iiiiiiiin. 1-5
Trace MeasUremMeN S ittt i it e it et e e i et e e 1-5
TRACE MODULES . ..ot it e et et et ettt et e e 1-5
TRACE DATA FLOW . . ittt ittt et e et et e et e et et e e 1-6
TRACE STATEMENTS ..ttt it ettt e e e e 1-7
TRACE VARIABLESt i e et e e e et e e e et e et e e 1-8
Count/Time MeasUrEMENtSttt ittt ettt e et e e 1-9
TIME MODULES. . .ottt i et e e et et et e et e e 1-9
COUNT STATEMENT S . .t ittt ittt ettt et et e ettt e 1-10
Break Measurement i i i i e et et e e e 1-11
Emulation Control i e e e e e e e 1-11
100 71 I 1-12

[0 1-12

] Y 1-12

[] N e 1-12
BREAK ON MEASUREMENT COMPLETE ittt it it iie e 1-12
Software Control e e e e e 1-12
SHOW SOURCE . . . o i i et et et e et e e e et 1-12
DATABASE CHECK ..ttt ittt sttt et e et e et 1-12

DISP LAY VARIABLEottt ittt ittt et i e e 1-12
MODIFY VARIABLE ...ttt ittt e et ettt ettt i e 1-12
Measurement Control e e e e e 1-12
STARTING AND STOPPING MEASUREMENTS ittt i 1-13
CONTROLLING THE MEASUREMENT WINDOW. it 1-13
MODIFYING MEASUREMENT SETUPS AND DISPLAYEDDATA 1-13

IMB MEASUREMENT S i it e et et et et e e e e 1-13
MAKING HIERARCHICAL MEASUREMENTS ittt i 1-13
UNDERSTANDING THE EXAMPLES USED INTHIS MANUAL 1-14
SOFTWARE MATERIALS SUBSCRIPTION ittt e e e e e 1-14
Software Updates e 1-15
Reference Manual Updates.t i et e e e 1-15
Software Problem Reporting. 1-15
Software Release Bulletins it i e e 1-15
Software Status Bulletins e 1-15
General User Information it i i i it i et e 1-15

Chapter 2. INSTALLING THE SOFTWARE ANALYZER

OVERVIEW L. i e e 2-1
INTRODUCTION . .. e i i e e e 2-1
HARDWARE AND SOFTWARE REQUIRED FOR HIGH LEVEL SOFTWARE ANALYSIS. .. 2-1

Software Analyzer Software e 2-2

Real-Time High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont'd)

Software Analyzer Hardwaret 2-2
Additional 64000 System Components Requiredo, 2-3
INSTALLING ANALYZER HARDWARE i s 2-3
Configuring boards inthe station 2-3
Installing The Analyzer In A 64100 Development Station 2-3
Installing The Emulation System i il 2-4
Installing Other Analysis Boards., 2-4
LOADING ANALYZER SOFTWARE et 2-11
REMOVING SOFTWARE FROM THE SYSTEMDISC i 2-11
MAKING DUPLICATE COPIES OF FLOPPY DISC SOFTWARE 2-12
PERFORMING OPERATION VERIFICATION it e i 2-12

Chapter 3. GETTING STARTED

OVERVIEW . ittt e e 3-1
GENERAL INFORMATION . .o e et e e i et e s 3-1
MAJOR SOFTKEY LEVELS e e e 3-1
PREPARING THE SYSTEM FOR MEASUREMENTS 3-3
Initial Turn ON L. et e 3-3
Building Database Files 3-4
GENERATING COMP_DB FILES AT COMPILE AND LINKTIME 3-4
GENERATING COMP_DB FILES USING THE GENERATE_DATABASE UTILITY... 3-5

Files Required By The Generate Database Utility 3-5
Executing the Generate_Database Command 3-5
Loading And Executing A Program In Emulation 3-5
Selecting The Emulation Analysis Mode (64243,64245 Emulatorsonly) 3-
Accessing The Software Analyzer i, 3-6
PERFORMING A BASIC TRACE MODULES MEASUREMENT 3-8
Loading And Running A Programttt 3-8
Defining A Default Path (Optional) it 3-8
Setting Up The Trace Specification 3-11
Interpreting The Trace Listing e 3-12
SAVING THE CONFIGURATION . . . e e e e e 3-12
RECOMMENDED PROGRAMMING STYLE e 3-14

Chapter 4. BUILDING DATABASE FILES

OVERVIEW . e e e e e e 4-1
GENERAL INFORMATION . ..o e e e e e 4-1
SYMBOLIC INTERFACE e e e e e e e 4-1
COMP DB FILES ..ttt et e e e e e e e e e e e 4-2
BUILDING THE DATABASE FILE i i i ittt et e e 4.2
Compiling Files 4-2
COMPILER SYMBOL FILE. o e e e 4.2
ASSEMBLER SYMBOL FILE e e i e e 4-3
LinKing Files . .. o e e e e e 4-4
Using The Generate Database (gen_db)Command. 4-4
REQUIRED FILES. . . . e et s e e e i 4-5
GENERATE_DATABASE COMMAND SYNTAX 4-5

Real-Time High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont'd)

GENERATE_DATABASE COMMAND PARAMETERS\vvviteaneannnn ., 4.5
GENERATE_DATABASE COMMAND EXAMPLES otiitenneinennenn.s 4-6
VERIFYING DATABASE FILES\ttt ittt eie it it it 4-6
USING COMPILER DIRECTIVES ...\t ttttttit et eteet ettt aee e aeenn, 4-7
AMNESIA © .ttt ettt e e e 4.7
ASMB_ SYM . .ttt e e e e 4.7
FIXED_PARAMETERS (C ONIY) .t v ettt et et e et et et et e 4-8
LINE_NUMBERS & ..ottt ettt et e et et e et et et e e 4-8
OPTIMIZE vttt e e e e e e e e e e e e 4.8
FILES WRITTEN IN ASSEMBLY LANGUAGE 'voutetieieaeaeaeannnn, 4-8

Chapter 5. DEFINING MEASUREMENT PARAMETERS

OVERVIEW . . .o ettt et e e e e e e e e e e e e e e e 5-1
DEFAULT PATH...... S 5.2
COUNTER . .« . e ettt e e e e e e e e e 5.4
REAL_TIME. « .« e ettt et e e e e e e e e e e 5-5
ABSOLUTE _FILE & .\ttt ettt e e et e e e e e e e e 5-6
TRIGGER _ENABLE. . . .\ttt tt ettt e e et e e e et et 5-7

Chapter 6. QUALIFYING MEASUREMENTS

OVERVIEW . .t e e et e 6-1
GENERAL INFORMATION ...ttt e e e e et e 6-1
Measurement Enable i e e 6-2
Measurement Disable i e e 6-3
WiNAoWINg . ..o e e 6-4
Using Sequential Measurement Enable/Disable Terms 6-5
Using OR’ed Measurement Enable/Disable Terms, 6-6
Number of Enable/Disable Terms ittt 6-7
Interaction Between Measurement Enable/Disableand IMB 6-7
TRIGGER ENABLE RECEIVED.t o it e e e e 6-7
TRIGGER ENABLE DRIVEN e e e e e e e i 6-7
MEASUREMENT _ENABLE it et et e i anas 6-8
MEASUREMENT _DISABLE. ettt e e e e e 6-10
MEASUREMENT QUALIFICATION EXAMPLE i .. 6-13
Source Program Lines i ettt 6-13
Measurement Setup e 6-13
Measurement Displayt e e e e 6-14

Chapter 7. CONTROLLING THE EMULATOR

OVERVIEW L. e et e e e e e e 7-1
GENERAL INFORMATION ... i et e e et i it e e e 7-1
EMULATION INTERFACE ettt e e i e e e 7-1
Emulation Configuration File i i . 7-1
Loading The User Programttt ittt e it iee i 7-2
Selecting The Emulation Analysis Mode (64243,64245 Emulatorsonly) 7-2

Real-Time High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont'd)

Running The User Program ittt 7-3
RUNNING YOUR PROGRAM IN REAL-TIME OPTIONALMODE 7-3
RUNNING YOUR PROGRAM IN REAL-TIME REQUIRED MODE 7-3

COMMUNICATION BETWEEN THE SOFTWARE ANALYZER AND EMULATION 7-3
USING THE EMULATION MONITOR i i e i 7-3
BREAK COMMANDttt it e e s aas 7-5
LOAD COMMAND . .\ttt ettt e et e ettt e e e i as 7-6
RESET COMMANDt et e i i aas 7-8
RUN COMMAND e e e it i e i e i i e e 7-9

Running In Real-Time Optional Mode. 7-9

Running In Real-Time Required Mode i 7-9

Chapter 8. MAKING TRACE MEASUREMENTS

OVERVIEW . . e 8-1
GENERAL INFORMATION . . e i i ettt i i 8-1
TRACE DATA FLOW. .. i ittt e e e et e e 8-2
TRACE MODULES. . . . i et e i i et e s 8-7
TRACE STATEMENT S e et i it et e s 8-11
TRACE VARIABLES. e e e 8-19

Chapter 9. MAKING COUNT AND TIME MEASUREMENTS

OVERVIEW . . .o ettt e e e e e e e e e e e e e e 9-1
GENERAL INFORMATION . ..ottt ettt et e e et e e e 9-1
COUNT _STATEMENTS . . . ettt ettt e e e e et e e e e e e e 9-2
TIME_MODULES. e\ttt et et et e e e e e e e e e 9-6

Chapter 10. USING INTERACTIVE COMMANDS FOR PROGRAM DEBUGGING

OVERVIEW . . e e e 10-1
GENERAL INFORMATION . et ettt e 10-1
SETUP BREAK . ..o e e 10-2
DISP LAY <V AR > . . e e e 10-4
MO DIFY <V AR> . . e e 10-6

Chapter 11. MAKING INTERMODULE BUS MESUREMENTS

OVERVIEW . e e 11-1
INTRODUCGCTION ..ot i it e e it sttt e e e 11-1
INTERMODULE BUS SIGNALS e i e e e e 11-1
Master Enable e e e 11-2
MASTER ENABLE DRIVEN. e e e e 11-2
MASTER ENABLE RECEIVED i e e e 11-2
Trigger Enable e 11-2
TRIGGER ENABLE DRIVEN e et e i 11-2
TRIGGER ENABLE RECEIVED. i e e 11-2

vi

Real-Time High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont’d)

INTERACTION BETWEEN THE SOFTWARE ANALYZER AND THE IMB 11-3
TRIGGER ENABLE RECEIVED.o e e 11-3
TRIGGER ENABLE DRIVEN e e e e e e e 11-3

SOFTWARE ANALYZER TRIGGER ENABLECOMMAND 11-3
S N AX . o e 11-3
Command EXamplest e e 11-4

DRIVING TRIGGER ENABLE WITH THE SOFTWARE ANALYZER - EXAMPLE 11-5

Setting Up the Software Analyzerttt e 11-6

Setting Up the Emulator e 11-7

Executing the IMB Measurement i i 11-8

RECEIVING TRIGGER ENABLE FROM ANOTHER ANALYSIS MODULE - EXAMPLE . .11-10

SettingUpthe Emulator 11-10

Setting Up the Software Analyzer i 11-11

Executing the IMB Measurement 11-11

Chapter 12. SELECTING AND FORMATTING THE MEASUREMENT DISPLAY

OVERVIEW . e e e e e e e e e e 121
GENERAL INFOMATION .. e e ettt et e e e et 121
VIEWING DATA ON THE DISPLAY .. i e e ettt e e e e 12-1
DISPLAY FIELDS ... ittt e e ettt 12-2
Source Field e e e 12-2
Source Path Field e 12-2
Symbol Field ... e e 12-2
Symbol Path Field e e 12-2
Value Field ... e e 12-2
Status Field e 12-3
Count Field ... e e 12-3
TRACE MEASUREMENTS . .. et e e e e 12-3
COUNT STATEMENTS . . . e e e s e i 12-3
TIME MODULES. . . . e e e e e et e 12-3
INTERPRETING THE DISP LAY .. e e e ettt 12-4
Current Line . .. e e e 12-4
Displaying Pad Bytes e 12-5
Displaying Variant Records ittt 12-5
Field and Display Width e 12-6
lllegal Valuest e e e 12-6
Special Values 12-7
Incomplete Access To Variables it 12-7
STATE NUMBER ... e e e e e e e e e 12-7
DI P LAY e e e 12-8

OVERVIEW . . e e 13-1
GENERAL INFOMATION ... e e e et e et e 13-1
GETTING THE MEASUREMENT CONFIGURATION LASTUSED. 13-1
GETTING A MEASUREMENT CONFIGURATION

FROM A CONFIGURATION FILE . .ottt e ettt et e e 13-2

vii

Real-Time High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont’d)

Saving A Measurement Configurationo P 13-3
Loading A Measurement Configuration i iy 13-3
CONFIGURING A MEASUREMENT WITH ACOMMAND FILE 13-4

Chapter 14. USING SUPPORT COMMANDS

OVERVIEW . i i e e e e 14-1
GENERAL INFORMATION .. i ittt e ittt a e 14-1
SYSTEM SOFTWARE CONVENTIONS ittt e e e e e 14-1
User Identification i e e 14-1
Directed Syntax e e e 14-2
Entering Numeric Values ittt 14-2
Entering Module/Variable Names i e 14-2
File NamMEs et 14-2
SYSTEM UTILITIES .ot i ettt e e e et 14-3
Command Files 14-3
Logging Commands i 14-3
RecCall KBY .. i e e e e 14-3
TaD KBy Lt e e e e e 14-3
Insert Char And Delete Char Keys i it 14-4
Prompt Softkeyso e 14-4
SOFTWARE ANALYZER UTILITIES e e 14-4
(070 T 14-5
] o 14-7
EXECULE. . oo e e e e e 14-8
Halt . . e e 14-9
Setup Modify. . .. e e e 14-10
SROW. L oo e 14-11
L T 14-12

OVERVIEW L e e e e e 15-1

GENERAL INFOMATION . . e e ettt e e e e e e 15-1

SYMBOL CLASSIFICATIONS ... i e e e e et 15-1

Static Symbols e e 15-1

LOCAL AND GLOBAL VARIABLES. i e 15-1
PROGRAMS, MODULES, PROCEDURES,

AND FUNCTIONS . .. e e e ettt e e e e e 15-1

LABELS . . e e e e e e 15-2

LINE NUMBERS i et e e e e s e i 15-2

PATHS e e e i e e 15-2

PrOC . o o e e e e e 15-2

File . o e 15-2

Default Path 15-2

Dynamic Symbols e e e 15-2

LOCAL VARIABLES i et e e e e e e e e 15-2

REFERENCE PARAMETERS i e s e e i 15-3

VALUE PARAMETERS e e 15-3

Real-Time High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont'd)

SYMBOLIC DATA TYPES ... e e e ettt e et 15-3
INtrinSiC Data TYPeS . ..ottt i i et it i i s 15-3
Structured Data TYpPeSt e e e 15-5

ARRAY L e e e 15-5
POINTERS . .o e e e e 15-5
SET . e 15-5
RECORD/STRUCTURE et e e 15-5
VARIANT RECORDS/UNIONS i 15-5

Chapter 16. OPERATIONAL THEORY

OVERVIEW ot i et i ettt ettt et e e e e e e, 16-1
GENERAL INFORMATION . ..ttt it sttt ettt ettt et ea e 16-1
HIGH LEVEL LANGUAGE CONSTRUCTS ... ittt it i i et e e e et 16-1
ProCeaUIES .. ittt e e e e e e e e e e e 16-1
LY 22 4= o] =T 16-1
SYMOIS L oo 16-2
RECOGNITION RESOURCES AND COUNTERS ... ittt e e 16-2
TRACE MEASUREMENT THEORY . .. ittt it et et ettt e e e 16-2
Trace Modules Measurement ittt it e it et e e 16-3
Trace Data Flow Measurement it i i it e it e 16-4
Trace Variables Measurement i i e e e e 16-5
Trace Statements Measurement i e 16-7
Count Statements e e e 16-9
TiMe MOdUIES . . o e e 16-10
MORE ON RESOURCE ALLOCATION ... it et 16-10

Appendix A. OPERATING SYNTAX DIAGRAMS

Appendix B. STATUS, ERROR, AND SOFTKEY PROMPT MESSAGES

Appendix C. STACK ARCHITECTURE AND MEMORY STRUCTURE

INTRODUCTION . . et et e et e et e e e e e C-1
STACK ARCHITECTURE e ettt e e e e C-1
Pascal Compiler Considerations i C-1
C Compiler Considerations ittt ittt C-2

Appendix D. GLOSSARY OF SOFTKEY LABELS

Appendix E. RESOLVING MEASUREMENT PROBLEMS

INTRODUCTION .. e i et e e e et e e i e E-1
MEASUREMENT PROBLEMS AND SOLUTIONS E-1
Missing Source Statements. i i i e e e e E-1

Real-Time High Level Software Analyzer
Table of Contents

TABLE OF CONTENTS (Cont’d)

Missing Symbols On The Displayt i ittt e i E-2
Unexpected Analyzer Execution it i e e e E-3
Unexpected Emulation Operation i i i i E-4
Unexpected Error Or Status Message. ittt e e e e E-4
Unexpected Source Line. e E-6
Unexpected Symbols On The Displayo i e E-7
Unexpected Value On The Displayo vttt e et eie s E-7

Real-Time High Level Software Analyzer
Table of Contents

LIST OF ILLUSTRATIONS

1-1. HP 64340A Hardware Functional Block Diagram. 1-3
1-2. HP 64341 Software Functional Block Diagram, 1-4
1-3. Trace Modules Measurement Displayttt iiinnnenns 1-6
1-4. Trace Data Flow Measurement Display i, 1-7
1-5. Trace Statements Measurement Display i, 1-8
1-6. Trace Variables Measurement Display ittt it 1-9
1-7. Time Modules Measurement Displayttt ittt i e 1-10
1-8. Count Statements Measurement Display i 1-11
2-1. Cardcage Cover REmMOVvalttt e 2-5
2-2. Connecting the Interconnect Cables To The Acquisition Board. 2-5
2-3. Installing the 64340A Module Into the 64100A Station. 2-6
3-1. Utility Keys Used To Accessthe Analyzer 3-7
3-2. Listing of Example Pascal Program.ttt ittt i it 3-9
3-3. Software Analyzer Setup Display ittt e e 3-11
3-4. Trace Modules Measurement Displayc. ittt innnnens 3-13
4-1. Software Analyzer Symbolic Interface i 4-3
4.2. Generate Database Command Syntax Diagram e 4-5
4-3. Database check Command Syntax Diagram., 4-7
5-1. Setup Default Path Command Syntax 5-2
5-2. Setup Counters Command Syntax. ittt i et 5-4
5-3. Setup Real Time Command Syntaxttt 5-5
5-4. Setup Absolute_File Command Syntax i, 5-6
5-5. Setup Trigger_Enable Command Syntax. i, 5-7
6-1. Measurement Enable. e e 6-2
6-2. Measurement Disable. i et e 6-3
6-3. WINAOWING. . . .ottt it i et e e e e e 6-4
6-4. Using Sequential Enable/Disable Terms. ittt 6-5
6-5. Using OR’ed Enable/Disable Terms. i 6-6
6-6. Setup Measurement Enable Command Syntax. 6-8
6-7. Setup Measurement Disable Command Syntax 6-10
6-7. Setup Display For Trace Qualification Example 6-14
6-8. Measurement Display Showing ELSE Statement Execution 6-15
6-9. Measurement Display Showing THEN Statement Execution 6-15
7-1. Break Command Syntax Diagramt e e 7-5
7-2. Load Command Syntax Diagram.ttt e e e 7-6
7-3. Reset Command Syntax Diagramttt i i e 7-8
7-4. Run Command Syntax Diagram ottt e 7-10
8-1. Setup Trace Data Flow Syntax Diagram 8-3
8-2. Trace Data_Flow Setup Display oottt i i i e e et e 8-5
8-3. Trace Data_Flow Measurement Display.ttt iiinnneeennn. 8-6
8-4. Setup Trace Modules Syntax Diagram.ttt in it i it e i 8-7
8-5. Trace Modules Setup Display.o o ittt e e e 8-9
8-6. Trace Modules Measurement Display i, 8-10
8-7. Setup Trace Statements Syntax Diagram., 8-11

Xi

Real-Time High Level Software Analyzer
Table of Contents

LIST OF ILLUSTRATIONS (Cont’d)

8-8. Trace Statements Setup Display e e 8-14
8-9. Trace Statements Measurement Display (Real-Time Optional). 8-15
8-10. Trace Statements Measurement Display (Real-Time Required) 8-17
8-11. Trace Statements Don’t Care Display (Real-Time Required) 8-18
8-12. Setup Trace Variables Syntax Diagram i iiiiiiinnann. 8-19
8-13. Trace Variables Setup Display i i e e e 8-22
8-14. Trace Variables Measurement Display 8-23
9-1. Setup Count_Statements Command Syntax. oo oo 9-2
9-2. Count Statements Setup Display i 9-4
9-3. Count Statements Measurement Display oo i i 9-5
9-4. Setup Time_Modules Command Syntax.o 9-6
9-5. Time Modules Setup Display i e e 9-7
9-6. Time Modules Measurement Display ottt e e 9-8
10-1. Setup Break Syntax Diagram. i e e 10-2
10-2. Display Variables Syntax Diagramttt ittt e 10-4
10-3. Modify <VAR> Syntax Diagramt et e 10-6
11-1. Setup Trigger_Enable Command Syntax. i, 11-4
11-2. Pascal Procedure PASCAL_MAIN. i i i e 11-5
11-3. Assembly Language Module INIT_ACIA i 11-6
11-4. Measurement System Configuration i, 11-8
11-5. Software Analyzer Trace Statements Display 11-9
11-6. Internal Analysis Trace of Assembly Language Module 11-10
11-7. Internal Analyzer Trace of INIT_ACIA. 11-12
11-8. Software Analyzer Trace of Statements Following Call to INIT_ACIA. 11-13
12-1. Compiler Listing File For Program EXAMPLE i, 12-4
12-2. Sample Display Showing How Pad Bytes, Variant Records,

and Field Widths Are Displayed it i i et e i e e 12-5
12-3. Example Display Showing lllegal Values, Special Values,

and Incomplete AccesstoValues i 12-6
12-4. Display Command Syntax Diagramttt it 12-9
13-1. Configuration Syntax Diagram i i 13-3
14-1. Copy Command Syntax Diagram.ttt et ns 14-5
14-2. End Command Syntax Diagram. 14-7
14-3. Execute Command Syntax Diagram ittt 14-8
14-4. Halt Command Syntax Diagram.t it et et 14-9
14-5. Setup Modify Command Syntax Diagramciiiii i 14-10
14-6. Show Command Syntax Diagram ittt it 14-11
14-7. Wait Command Syntax Diagram i 14-12
16-1. Trace Modules Measurement Diagram. ittt 16-3
16-2. Trace Data Flow Measurement Diagram, 16-4
16-3. Trace Variables (Dynamic and Static). i .. 16-5
16-4. Trace Variables Measurement (Non-Real-Time) and Real-time) 16-6
16-5. Trace Statements Measurement Diagram (Real-Time) 16-7
16-6. Trace Statements Measurement Diagram (Non-Real-Time) 16-8

Xii

Real-Time High Level Software Analyzer
Table of Contents

LIST OF ILLUSTRATIONS (Cont’d)

16-7. Count Modules Measurement Diagram ittty 16-9
16-8. Time Modules Measurement Diagram ittt i 16-10
A-1. Software Analyzer Level Syntax Diagram i, A-2
A-2, Run Syntax Diagramottt e e A-3
A-3. Setup Syntax Diagram e e e e A-4
A-4. Setup Modify Syntax Diagram i e i e A-5
A-5. Setup Trace Data_Flow Syntax Diagram it A-5
A-6. Setup Trace Modules Syntax Diagram. ittt A-6
A-7. Setup Trace Statements Syntax Diagram. i e A-6
A-8. Setup Trace Variables Syntax Diagram A-7
A-9. Setup Count Statements Syntax Diagram i i i A-7
A-10. Setup Time Modules Syntax Diagram ittt e A-8
A-11. Setup Break Syntax Diagram.ot e A-8
A-12. Setup Measurement_Enable Syntax Diagramt A-9
A-13. Setup Measurement_Disable Syntax Diagram. oot A-10
A-14. Setup Default_Path Syntax Diagram A-10
A-15. Setup Counter Syntax Diagram ittt e, A-11
A-16. Setup Real Time Syntax Diagram.ttt et A-11
A-17. Setup Absolute File Syntax Diagram. i e A-11
A-18. Setup Trigger Enable Syntax Diagram A-12
A-19. Database _check Syntax Diagramttt ee e A-12
A-20. Display Syntax Diagram.t e e e e A-13
A-21. Modify Variables Syntax Diagramo e e A-14
A-22. Show Syntax Diagramttt e e A-14
A-23. Execute Syntax Diagram e e A-14
A-24. Wait Syntax Diagram e A-15
A-25. Halt Syntax Diagram i e A-15
A-26. Load Syntax Diagram ittt e e e A-15
A-27. Break Syntax Diagram.v ittt e A-15
A-28. Reset Syntax Diagramttt A-15
A-29. <CMDFILE> Syntax Diagram et it e A-16
A-30. Configuration Syntax Diagram.t i e A-16
A-31. Copy Syntax Diagramt et e A-17
A-32. End Syntax Diagramttt e e e e A-17
A-33. Variable Syntax Diagram i e A-17
A-34. Pascal Variable Syntax Diagram e e A-18
A-35. C Variable Syntax Diagramt e e e A-18
C-1. Pascal Stack Frame. i i e e et e e C-2
C-2. C Stack Frame (Fixed Parameters OptionsOn). it .. C-3
C-3. C Stack Frame (Fixed Parameters Options Off). C-4

Xiii

Real-Time High Level Software Analyzer
Table of Contents

21,

15-1.

B-1.
B-2.
B-3.

D-1.

LIST OF TABLES

HP 64340A Configurations, Current Usage, and Cable Options 2-7

Intrinsic Data TypPeso e 15-3
Status Messages i e B-1
BITOr MBS SAgES -+« v v it ittt e e B-5
Softkey Prompt Messages. i B-12
Software Analyzer Softkey Labels. i e e D-1

Xiv

Real-Time High Level Software Analyzer
Table of Contents

NOTES

XV

Real-Time High Level Software Analyzer
Using This Manual
USING THIS MANUAL
The contents of this manual are summarized below to aid you in locating information.
Chapter 1, General Information, provides an overview of the software analyzer.

Chapter 2, Installation, describes the system components required to run the analyzer package and
the procedures for installing those components.

Chapter 3, Getting Started, takes you through the entire measurement process step-by-step and
gives guidelines for writing code to achieve the best results from your software analyzer.

Chapter 4, Building Database Files, describes how to build database files, how to verify database
files are correct, and the implications of using compiler directives with the analyzer.

Chapter 5, Defining Measurement Parameters, describes how to define several analyzer global
parameters affecting measurements.

Chapter 6, Qualifying Measurements, describes the use of measurement enable and disable terms
to qualify measurements.

Chapter 7, Controlling the Emulator, gives information on loading and running programs with the
emulation system from within the software analyzer.

Chapter 8, Making Trace Measurements, gives descriptions of each of the trace measurements.

Chapter 9, Making Count and Time Measurements, describes in detail the Count Statements and
Time Modules measurements.

Chapter 10, Using Interactive Commands For Program Debugging, describes how to use hardware
breaks and the display and modify commands to interact with the user program.

Chapter 11, Making Intermodule Bus Measurements, gives detailed information, including ex-
amples, on making intermodule bus measurements.

Chapter 12, Selecting and Formatting the Measurement Display, describes the conventions and
features of the measurement display, and the commands used to format the measurement display.

Chapter 13, Configuring the Analyzer, describes how to both manually and automatically configure
the analyzer for measurements.

Chapter 14, Using Support Commands, describes system software conventions and utility com-
mands available within the software analyzer.

Chapter 15, Symbols and Data Types, provides information regarding the symbol storage classes
and data types that the software analyzer recognizes.

Chapter 16, Operational Theory, provides a description of how measurements are made and sys-
tem resources used.

Appendices A through E provide operating syntax diagrams, status and error messages, stack and
memory organization, softkey prompts, a softkey glossary, and solutions to measurement
problems.

An index is provided for quick reference to specific items.

Chapter 1

GENERAL INFORMATION

OVERVIEW
This chapter answers the following questions:

* Which products does this manual apply to?

®* What is a real-time high level software analyzer?

* What does the software analyzer allow you to do?

®* How can you use the software analyzer in heirarchical Measurements?
* What are the conventions used in examples in this manual?

®* What the software materials subsription can do for you?

SAFETY CONSIDERATIONS

This product is a Safety Class 1 instrument (provided with a protective earth terminal) and meets
safety standards IEC 348. Review the instrument and this manual for safety markings and instruc-
tions before operating the instrument.

MANUAL APPLICABILITY

This manual applies to the following Real-Time High Level Analyzer products:

HP 64341BA for use with HP 64242S Emulation Systems (for 68000 processors)

HP 64341DA for use with HP 64249S Emulation Systems (for 68010 processors)

HP 64341GA for use with HP 64243AA/AB Emulation Systems (for 68000 processors)

HP 643411A for use with HP 64245AA/AB Emulation Systems (for 68010 processors)
These real-time high level analyzers require that your have the HP 64340A Real-Time High Level
Analyzer hardware, the HP 64000 emulation system for your processor, and an HP 64815 Pascal

and/or HP 64819 C Cross Compiler. See chapter 2 for a detailed breakout of software an
hardware compatibility requirements.

1-1

Real-Time High Level Software Analyzer
General Information

NOTE

Unless otherwise specified, explanations and examples in this manual
apply to all real-time high level software analyzers listed in the preceding
paragraphs. Most examples in this manual were generated using the HP
64341BA Real-Time High Level Software Analyzer for 68000 processors.

WHAT IS A REAL-TIME HIGH LEVEL SOFTWARE ANALYZER

The real-time high level software analyzer (hereafter referred to as "software analyzer”) is a
hardware and software system with the ability to perform measurements in real-time on your soft-
ware executing in an HP 64000 emulation environment without interrupting execution of your
code. The special hardware and software of the HP 64340A Analyzer allows it to analyze emula-
tion bus signals in real time; routines can be timed, interrupt modules can be studied, and other
analyzers can be triggered while the emulator is running at full speed.

The software analyzer is a three board emulation bus analyzer, which uses the emulator subsys-
tem and the database file created by the HP Pascal and C compilers and linkers. The analyzer
performs measurements on Pascal or C programs running in the emulator in real time, without
halting the emulator, and displays the data in the same high level language constructs in which the
software designer wrote the code.

In real-time mode, the software analyzer is fully transparent to the system under test and meet all
criteria for real-time analysis. The processor is not halted, program execution is not stopped, and
additional code and traps are not added to the target software. By running in non-real time mode
(hardware breaks to the emulation monitor allowed), the software analyzer can access additional
information by breaking the emulator and examining registers or memory locations.

Hardware breaks are used to halt the emulator when necessary, either when specified by the
measurement or when running non-real time mode. The analyzer captures data in much the same
way as other real time analyzers. Data patterns or addresses on the emulation bus are recognized
by specialized high speed comparators, then the required information is stored in acquisition
memory. However, because of the complexity of the new measurements performed, a great deal of
specialized hardware is necessary.

HP 64340A Hardware Description

The HP 64340A hardware consists of three boards: a CPU board, an Acquisition board, and a
Control board. The CPU board contains a 68000 microprocessor used to control the analyzer, per-
form the measurements, and process the stored data. A custom HP integrated circuit chip
provides high speed complex recognition capabilities. The CPU board has 1/2 megabytes of dedi-
cated RAM for the 68000 processor to work with. The analyzer has a data storage capacity of 96
bits X 4K. The 96 channels consist of 24 emulation address bits, 16 data bits, 8 status bits, 24
program counter bits, 20 bits for a time/state tag, and 4 flag bits. This information is stored during
measurement execution. When the memory is full (or measurement complete) the 68000 proces-
sor postprocesses the data to remove unwanted information and to reference the source code.

Figure 1-1 is a functional block diagram of the software analyzer hardware. The on-board 68000
processor initializes and sets up the hardware for each measurement, communicates with the HP

1-2

Real-Time High Level Software Analyzer
General Information

64000 host processor, and is the computing engine of the analyzer. The high speed general
purpose state machines and function generators are the controllers of the measurement while it is
being executed. For example, these components determine if sequence conditions are met and
load the dynamic recognition resources, as well as perform numerous other tasks.

The static and dynamic recognition resources are custom high speed comparators, the only dif-
ference being that the dynamic recognition patterns must be loaded during execution. This is
necessary because the locations of dynamic variables are not known until execution.

Each stored state in the 96 channel data storage memory contains address and data information
from the emulation bus, time/state tags, flags from the state machines, and the computed PC. This
"last PC" is computed by using a special "opcode fetch" equate resource. At the start of an in-
struction, this equate goes true, and the current PC is saved until the start of the next instruction.

The final block on the diagram is labeled count statements. This special hardware consists of 256
counters 4K deep, and is devoted to this one measurement.

L s 1

COUNT LAST PC STATIC DYNAMIC
STATEMENTS A~ | PATTERN/RANGE PATTERN /RANGE
I RECOGNITION RECOGNITION
96 CHANNEL l 4
STATE
STORAGE g1 GENERAL DYNAMIC
PURPOSE PATTERN/RANGE
STATE MACHINES [€— GENERATION
AND FUNCTION
GENERATION
TIME /STATE
TAGS

68000 uP and
HOST
1/2 MBYTE </|::> PROCESSOR

OF RAM

Figure 1-1. HP 64340A Hardware Functional Block Diagram

HP 64341 Software Description

A functional block diagram of the HP64341 Software is shown in figure 1-2. The two main func-
tions of the software are to communicate with the HP 64000 host processor and to control the
measurements. The modules associated with the interface control the passing of messages back
and forth between the emulator and the software analyzer, setting up the IMB, and providing an
application monitor. The core of the application software is embodied in the block labeled

1-3

Real-Time High Level Software Analyzer
General Information

measurement controllers. This software sets up the analyzer to capture the correct data, and then
analyzes the captured data.

Since information flowing over the emulation bus is in low level code, much processing must be
done both to set up the measurement and to display the final result in high level symbols and
code. The on-board 68000 microprocessor performs this processing by accessing the database
and symbol files created at compile and link times. When the measurement is specified, in terms
of high level variables, procedure names, or line numbers, the processor must translate these into
the low level constructs to set up the hardware correctly. During the execution of the measure-
ment, the 68000 processor initiates the measurement and oversees the entire process. It is the in-
terface to the host processor and, through the host processor, the interface with the emulator.
Note: the emulator doesn’t participate actively in the acquisition of data.

When a measurement is complete, the 68000 processor postprocesses the data in acquisition
memory. Much of the data acquired may be irrelevant; prefetched instructions can be filtered out,
and much of the saved stack information may not be useful for a particular measurement.
Furthermore, the on-board processor displays the measurement in the original high level language
constructs. This requires referencing symbol tables and considerable processing on the part of the
on-board 68000 processor.

HOST PROCESSOR HP 64340 CPU — 68000 BASED OS

) MESSAGE MESSAGE |«
HANDLER <r T > HANDLER 4-’
EMULATION ' DATABASE
: ¢ A
— MOA'\L:TDOR N :] MONITOR MEASUREMENT
FILE MGR AN ; V]| (APPLYS) CONTROLLERS
INITIALIZATION X I—b DISPLAY ?

w K e

Figure 1-2. HP 64341 Software Functional Block Diagram

1-4

Real-Time High Level Software Analyzer
General Information

WHAT THE SOFTWARE ANALYZER ALLOWS YOU TO DO

Trace Measurements

The software analyzer has four trace measurement modes. Trace modules and trace data flow are
global measurements, giving you an overview of both program and data flow at the module level.
Trace statements and trace variables are local measurements which give the precise order of
statement execution or values of specific variables every time they are accessed.

TRACE MODULES. The trace modules measurements tracks program flow by capturing the entry
and exit points to the specified modules. This is useful in many situations: often modules are writ-
ten by different programmers and may even be in different high level languages. Tracing module
flow when the modules are first integrated shows what order they are called in and indicates pos-
sible locations of problems.

Either specifically named modules or all the modules in a file can be traced. Modules can be in up
to four non-adjacent or ten adjacent files. The analyzer can trace recursive calls indefinitely and
can trace both Pascal and C modules in the same measurement.

The trace modules measurement can run in both real-time and non-real time mode. In real-time
mode, all modules files can be traced to see program flow, including interrupt routines. Accurate
time tags are displayed which indicate the time spent in each module. Thus, you can quickly see
the order in which the modules are executed, when recursion occurred, how often an interrupt
routine was called, and how much time was spent in each module.

No information is lost running non-real time, however the emulator is halted approximately every
100mS and the time tags include this time. The benefits to running in non-real-time is that win-
dowing is allowed and more resources can be used when enabling the measurement using
sequenced terms (explained in the Measurement Control paragraphs later in this chapter).

This measurement is useful in locating problems to a general area of your program. If any module
execution deviates from expectations, another measurement can be made to localize the problem.

Figure 1-3 is a trace modules measurement display. The display shows entry and exit points of a
module, shows nesting and recursion, gives an accurate time/state count, and displays the source
line calling the module upon entry. Each field can be formatted to meet your requirements. Time
can be displayed in relative or absolute mode. Selection of time or state count must be specified
before the execution of a measurement.

1-5

Real-Time High Level Software Analyzer

General Information

64340 Software Analyzer: Slot 6 with emé8000 Emulator: Slot 4
Symbol Stat Time-rel Source
PROC1 entry 993.4 uS 230 PROC1 (COUNT,COUNT+2);
RECURSIVE PROC entry 313.3 uS 145 RECURSIVE_PROC (FPARM1, FPARM1,
RECURSIVE_PROC entry 623.0 uS 120 RECURSIVE PROC (RP1,RP2,RP3,RP4,
RECURSIVE_PROC entry 615.0 usS 120 RECURSIVE_PROC (RP1,RP2,RP3,RP4,
RECURSIVE_PROC entry 617.3 uS 120 RECURSIVE PROC (RP1,RP2,RP3,RP4,
RECURSIVE_PROC exit 6.557 mS
RECURSIVE PROC exit 6.020 mS
RECURSIVE_PROC exit 5.982 mS
RECURSIVE_PROC exit 5.932 mS
PROC1 exit 589.2 uS
PROC2 entry 12.3 uS 231 PROC2 (COUNT+2);
NESTED_PROC entry 11.2 uS 167 NESTED PROC (A);
NESTED_PROC exit 5.4 uS
PROC2 exit 5.9 us
STATUS: Awaiting Command 36 _ 16:45
run setup db check display modi fy show execute ---ETC---

Figure 1-3. Trace Modules Measurement Display

TRACE DATA FLOW. The trace data flow measurement traces the values of data at the entry and
exit points of a procedure. Both static and dynamic variables can be traced. Data pointed to by
up to seven levels of pointers can be accessed and displayed in this measurement. Unlimited
recursion can also be traced. Up to three different modules can be traced in one measurement,
with up to 10 symbols specified.

Local variables and variables passed by value cannot be displayed at the exit point of the proce-
dure. At this point, they are undefined (they have been popped off the stack). Since the traced
data is not accessible on the emulation bus at entry and exit points of a module, this measurement
must be run in non-real-time.

This measurement allows you to view data at entry and exit of a procedure, showing whether it
was modified within the module. The values of variables can be seen at each level of a recursive
procedure. This is very useful if a procedure is stuck in infinite recursion. The variable which
should cause an exit condition can be traced and the bug quickly found.

Figure 1-4 is a trace data flow measurement display. The specified variable values are displayed at

entry or exit points of modules (or both), and the source code line number that called the proce-
dure is displayed on entry.

1-6

Real-Time High Level Software Analyzer
General Information

64340 Software Analyzer: Slot 6 with emé8000 Emulator: Slot 4

Symbol Value Stat Source
PROC4 entry 183 PROC4(COUNT+2);
X -1
PROC4 exit
X -1
PROC10 entry 201 PROC10(X,X,Y,Y);
XV 10
XN 10
YV 00000300CH
YN 00000300CH
A[RED] RED
PROC10 exit
XN 11
YN 00000300CH
A[RED] RED
PROC4 entry 183 PROC4(COUNT+2);
STATUS: Awaiting Command 20 16:12
run setup db check display modify show execute ---ETC---

Figure 1-4. Trace Data Flow Measurement Display

TRACE STATEMENTS. The trace statements measurement traces statement flow within a single
module. The statements are displayed in the order of their execution and variable values are dis-
played. The measurement can run in both real-time and non-real-time. The statement range can
be defined as the entire procedure or a line range within a procedure. There is also a "don’t care”
specification, which traces everything flowing over the emulation bus. When using the "don’t care”
specification, no variable values are displayed. This specification should only be used in real-time
required mode. Otherwise the acquisition memory fills up with useless monitor information.

Only the values of static variables are displayed when running in real-time required mode.
Dynamic variables can be traced in non-real-time. Figure 1-5 is a trace statements measurement
display. Again, time tags are displayed which give an accurate execution time for each high level
statement.

This measurement is useful when a problem has been isolated down to a module. The display
gives a step-by-step view of the execution order of the high level statements much like a state dis-
play does with low level code. The debugging process can be greatly sped up, as all the relevant
information concerning the execution of a module is displayed. This is a highly effective way to
observe the interaction between program and data flow.

Real-Time High Level Software Analyzer
General Information

64340 Software Analyzer: Slot 6 with emé68000 Emulator: Slot 4

Source Symbol Value Stat Time-rel
Break for new stack information

82 PTR*.1 := PTR*.1-1; PTR 000003028H read 0.0 us
83 Y:=1; 4.3 us
84 D:=D-1; (*Scoped variable*) Y 1.00000E0 write 481.4 uS
85 P2:=SNN; (*STATIC CALLBYNAME * D 4 read 4.2 uS
3 write 2.4 uS
SNN 2 read 3.6 usS
86 P2:=SNN; (*STATIC CALLBYNAME * P2 2 write 1.3 usS
SNN 2 read 5.0 uS
87 P2:=SNV; (*STATIC CALLBYNAME * P2 2 write 1.2 uS
SNV 2 read 3.4 uS
88 P2:=SVN; (*STATIC CALLBYVALU * P2 2 write 1.0 usS
SVN 4 read 5.1 uS
89 P2:=SVV; (*STATIC CALLBYVALU * P2 4 write 1.0 us
STATUS: Awaiting Command 36 _ 16:12
run setup db check display modify show execute ---ETC---

TRACE VARIABLES.

Figure 1-5. Trace Statements Measurement Display

can be referenced, and only the values in the outer layer recursion are displayed.

Figure 1-6 shows a trace variables measurement display. Source line numbers are displayed,
making this a very useful localized debugging tool. A variable which is seen to have an incorrect
value can then be traced, and all the reads and writes to it displayed. It is then a simple matter to

determine where the program went astray.

1-8

The trace variables measurement allows you to trace all accesses to
specified variables during program execution. The measurement can run both in real-time and
non-real-time. The measurement functions for both modes are identical. No objects of pointers

Real-Time High Level Software Analyzer
General Information

64340 Software Analyzer: Slot 6 with emé8000 Emulator: Slot 4

symbol Value stat source
pred_result.enumera* red write 17 pred _result.enumerated = red;
pred_result.arr[0] 0 read 158 check = check + pred_result.arr([0]
pred_result.u8 50 read 28 pred_result.u8 = 0;
pred result.u8 0 write 28 pred result.u8 = 0;
pred result.arr[0] 0 read 162 check = check + pred_result.arr([0]
pred_result.s16 -7166 write 39 pred_result.s16 = -1BFEH;
pred_result.enumera* green write 166 pred result.enumerated = green;
pred result.arr[0] 0 read 167 check = check + pred result.arr[0]
pred_result.arr([1] 0 read 169 check = check + pred result.arr([1]
pred_result.enumera* blue write 171 pred_result.enumerated = blue;
pred result.ch "A" write 174 pred_result.ch = 'A';
pred_result.arr[0] 0 read 175 check = check + pred_result.arr([0]
pred_result.arr(1] 0 read 177 check = check + pred_result.arr([1]
pred_result.ch "a' write 179 pred_result.ch = 'a';
pred_result.s16 3700 write 85 pred_result.s16 = 3700;
STATUS: Awaiting Command 30 _ 16:12
run setup db check display modify show execute ---ETC---

Figure 1-6. Trace Variables Measurement Display

Count/Time Measurements

TIME MODULES. Figure 1-7 shows a time modules measurement display. The time modules
measurement can time up to four modules, and displays the minimum, maximum, and mean time
spent in each module. The time includes all time between entry of the specified module and exit
from that module, including time spent in subroutines and servicing interrupts. The software
analyzer can time recursive modules, up to 256 levels deep. The measurement can be run in both
real-time and non-real-time. In non-real-time the emulator is halted in the order of microseconds
every 100 milliseconds. Therefore, if the measurement is used for estimates, this will not affect the
results substantially.

This measurement is useful in a variety of cases. Modules can be tested to see if they are execut-
ing within specified times. Inefficient modules can be found and then optimized. Also, the effect
of interrupts on modules can be studied. The display also shows the number of times the module
was timed, giving an indication of the statistical accuracy of the measurement.

1-9

Real-Time High Level Software Analyzer
General Information

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

Minimum Maximum Mean Count Symbol Symbol path
47.21 mS 59.90 mS 59.79 mS 152 PROC1 PROCT1:NT1:TESTP
6.289 mS 59.04 mS 36.32 mS 1670 PROC2 PROC2:NT1:TESTP
59.89 mS 59.92 mS 59.90 mS 75 PROC4 PROC4:NT1:TESTP
8.8 us 9.2 us 9.0 us 75 PROC10 PROC10:NT1:TESTP
STATUS: Execution complete (saved = 8) 13:09
run setup db check display modify show execute ---ETC---

Figure 1-7. Time Modules Measurement Display

COUNT STATEMENTS. A count statements measurement display is shown in figure 1-8. The
count statements measurement counts the number of times each statement in a specified module
or line range is executed. Up to 255 statements can be counted but they all must be in one

module.

The main application of this measurement is in the area of software coverage testing. In the test-
ing phase of software development, it is often difficult to know whether all of the software has
been exercised. For example, a certain branch may never be taken or parts of a case statement
may never be executed. Count statements is a simple method to verify this coverage testing. If a
statement is never executed, either another test can be run to exercise it, or it can be removed if it
will never be executed. Also, the count statements is an easy way to verify the operation of loop
counters, allowing you to verify that the statements within the loop were executed the specified
number of times.

Real-Time High Level Software Analyzer
General Information

64340 Software Analyzer: Slot 6 with emé8000 Emulator: Slot 4

Count-abs Source

682 94 IF COUNT = 10
62 95 THEN COUNT:=0
0 96 ELSE
0 97 BEGIN
620 98 COUNT := COUNT+1;
620 99 COLOR_SET := COLOR_SET + [WHITE, GREEN I;

STATUS: Awaiting command 0 _ 13:09

run setup db check display modi fy show execute =---ETC---

Figure 1-8. Count Statements Measurement Display

Break Measurement

The break measurement allows up to nine user definable hardware breakpoints to be executed.

These are hardware breakpoints and can be set up anywhere in the user code, even in ROM. This
is a measurement; no other measurement can be set up concurrently. A hardware break can be
set up at the end of other measurements. That is discussed in the emulation control paragraphs in

this chapter.

The break measurement display shows the last line of executed code before the break was ex-
ecuted. A variable can then be displayed (useful for tracing pointer objects) or modified and
program execution then started again from the breakpoint. If the emulator is set up correctly,
these breaks can force a jump into any part of the user code instead of the monitor. This is useful
forcing interrupt routines to occur at specific times in the execution of the program.

Emulation Control

Many functions of the emulator can be initiated or controlled by the software analyzer. All of these
functions can be specified after the measurement is set up, and a few can be specified
beforehand.

1-11

Real-Time High Level Software Analyzer
General Information

LOAD. The load softkey is used to load the absolute file into emulation/user memory. It functions
the same as the load softkey in the emulation system.

RUN. The run command is similar to the emulation system run command. It starts the emulator
from a specified address, a symbolic location, the transfer address, or if nothing is specified, the
next PC. The program can be specified to run at execution, which causes the program to run
when the execute key is pressed and the measurement is initiated.

BREAK. The break key issues an immediate hardware break to the emulator.
RESET. The reset key immediately resets the emulator.

BREAK ON MEASUREMENT COMPLETE. When "break on measurement complete” is specified
before measurement initiation, the analyzer breaks the emulator at the end of the measurement.
The emulator can then be started at the next PC and no data will be lost. A measurement is com-
plete when either the acquisition memory is full, or the disable condition has occurred.

Software Control

Various features of the software analyzer allow you to examine and verify source code, and modify
program variables without exiting the software analyzer. These features save time. The ability to
modify high level variables helps greatly in the debugging process.

SHOW SOURCE. This command allows you to display any HP 64000 source file while using the
software analyzer. If no arguments are specified in the command, the default path source file is
displayed. Editing features are not available, but the user can scroll up and down through the file
or position the screen using a line number.

DATABASE CHECK. With this command, you can verify the software version that the analyzer is
using. All the absolute files being used are check against the comp_db files to make sure that the
files have not been recompiled but not reloaded.

DISPLAY VARIABLE. This command allows you to display the value of any variable. Pointer in-
direction can be traced through seven levels to reach the data object. In order to execute this
command, the emulator must be running in the monitor program and the variable must be scoped.

MODIFY VARIABLE. You can modify any high level variable that can be displayed, i.e., that is cur-
rently scoped. This allows you to change a variable without having to recompile and relink the
code. The emulator must be running in the monitor to perform this command.

Measurement Control

Measurement control features allow you to control when a measurement is executed, how much
data is collected, and what part of the user code that is executing should be measured.

1-12

Real-Time High Level Software Analyzer
General Information

STARTING AND STOPPING MEASUREMENTS. Standard analysis softkeys are used to start and
stop measurements. execute starts the measurement. The analyzer either searches for an enable
term or begins searching for and collecting measurement data. If IMB triggering is used,
measurement execution is tied to all other execute softkeys in the measurement system , enabling
synchronous measurement.

While the measurement is executing, two softkeys are present, wait and halt. the wait command
is used in command files so that a measurement can be executed from a command file, and then
more commands can be issued. The command file can wait for a specified number of seconds,
for any keystroke, or for the measurement to be completed. The halt command halts the execu-
tion of the measurement before all data has been acquired. After all data has been acquired, the
halt softkey remains while acquisition memory is unloaded and the data is being postprocessed.
The halt softkey does not generate a measurement complete flag.

CONTROLLING THE MEASUREMENT WINDOW. Measurement enable and disable terms control
the window of user code viewed by the analyzer. The measurement enable term allows up to six
levels of sequencing using symbols. Each level can also have OR’ed terms. In real-time mode,
the disable term can also have up to six levels of sequencing. Windowing to reenable the
measurement is not allowed. In non-real time, sequencial disable terms are not allowed. A single
disable term is allowed, and windowing can be specified to restart the measurement when the next
enable term is found.

MODIFYING MEASUREMENT SETUPS AND DISPLAYED DATA. The measurement setup and the
displayed data can be modified quickly and easily. The measurement specification or the enable
or disable specification can be modified without re-entering all the terms. This is useful with com-
plex measurements. The displayed data can also be modified. The width of the fields can be
changed if all the data can’t be displayed, and the values of variables can be displayed in different
bases or in ASCII characters.

IMB MEASUREMENTS. Analyzer measurements can control (or be controlled by) the trigger en-
able line on the intermodule bus (IMB). The IMB can be driven by the occurrence of either a
measurement enable or disable term. A received signal can either cause an enable or disable.

MAKING HIERARCHICAL MEASUREMENTS

Applying software analysis measurements in a top down sequence (hierarchical) is very useful
when there is little initial information about the cause of a software failure. At a coarse or global
level, the Trace Modules measurement can verify that procedures and functions are executed in
the proper sequence and at the appropriate nesting levels. If an incorrect sequence or nesting
level is found, the Trace Statements measurement can determine the precise location of a software
fault. If the modules occur in the correct sequence and level, the Trace Data Flow measurement
can point out incorrect parameter values and global variables passed to and from selected

modules.

Assuming module execution sequences and parameters values are correct, the Trace Statements
measurement displays program flow in more detail. The Trace Statements measurement, showing
executed source lines and values of referenced global and local variables, allows you to distinguish
between errors caused by programming flaws and those caused by unexpected variable values. A

1-13

Real-Time High Level Software Analyzer
General Information

Trace Variables measurement can then be applied to isolate the cause of improper variable
assignments.

Once the software is executing properly, the Count Statements and Time Modules measurements
allow coverage testing and performance analysis of the software modules. The Count Statements
measurement shows the number of times a source statement or range of source statements are
executed. The Time Modules measurement measures the real-time execution speeds of up to four
modules, pinpointing bottlenecks that may require recoding.

UNDERSTANDING THE EXAMPLES USED IN THIS MANUAL

The examples provided throughout this manual use the following structure:

PRESS (or press) edit MODULE (RETURN).

PRESS or press-- means you should enter a command by selecting the softkeys and/or typing in
any file names or other variables which are not provided in the softkey selections.

edit -- softkeys will appear in italics. Usually you will not be prompted to use the --——-ETC--- soft-
key to search for the appropriate softkey template.

MODULE -- this is the name of a file which you must type in. Softkeys are not provided for this
type of selection since it is variable. However, a softkey prompt such as, <FILE> will appear as a
softkey selection.

-- this indicates that the RETURN key, located on the keyboard, should be pressed.

SOFTWARE MATERIALS SUBSCRIPTION

Hewlett-Packard offers a Software Materials Subscription (SMS) to provide you with the most time-
ly and comprehensive information concerning your HP 64000 Logic Development System. This
service can maximize the productivity of your HP system by ensuring that you have the latest
product enhancements, software revisions, and software reference manuals.

Consult with your local HP Field Representative for a complete list of available software update
products (HP 64XXXAU), one-time product updates (HP 64XXXAX), and current prices.

By purchasing SMS, you will obtain the following:

Software Updates
Reference Manual Updates
Software Problem Reporting
Software Release Bulletins
Software Status Bulletins
General User Information

Real-Time High Level Software Analyzer
General Information

Software Updates

Software Updates may address specific anomalies in HP software or enhance the capability of the
HP software in your system.

Reference Manual Updates

Reference manual updates assure that you always have the most recent documentation on a time-
ly basis, and are aware of how to use any new features on the latest software releases.

Software Problem Reporting

Software problem reporting is provided so that you may inform HP of a discrepancy or problem
found in the HP 64000 software or documentation.

Software Release Bulletins

Software Release Bulletins document all fixes and enhancements that are incorporated in the latest
release of the HP 64000.

Software Status Bulletins

Software status bulletins contain timely information on the reported operational status of HP soft-
ware and documentation. These bulletins also provide temporary corrections or ways to work
around anomalies in HP software which have been located by HP personnel or HP 64000 users.
You may reference these bulletins to see if a solution is already documented.

General User Information

General user information is documentation that contains operational tips, programming techniques,

application notes, latest listings of software products and reference manuals, and other items of
general interest to HP 64000 users.

Real-Time High Level Software Analyzer
General Information

NOTES

Chapter 2

INSTALLING THE SOFTWARE ANALYZER

OVERVIEW

This chapter provides the following information:

* A complete list of software analyzer hardware and software
®* How to install the software analyzer hardware

®* How to install the software analyzer software

* How to make duplicate copies of floppy disc software

®* How to perform a software analyzer operation verification

INTRODUCTION

The software analyzer software is shipped on three floppy discs. In addition to the software, you
must have the Model 64340A Software Analyzer hardware,the HP 64000 hosted Pascal and/or C
cross compiler for 68000/68010 processors, and the HP 64000 Emulation System for your proces-
sor. If your Model 64100A development station has a serial number prefix lower than 2309A, you
also need a Model 64032A Memory Expansion Module in order to compile Pascal or C programs
on your development station.

HARDWARE AND SOFTWARE REQUIRED
FOR HIGH LEVEL SOFTWARE ANALYSIS

The following HP 64000 software and hardware products are required for real-time high level soft-
ware analysis.

2-1

Real-Time High Level Software Analyzer
Installing The Software Analyzer

Software Analyzer Software

HP 64341BA Software Analyzer Software for use with HP 64242S Emulation Systems (for
68000 processors) consisting of five (5) software modules contained on three (3) flexible

discs:

ANLY 341 68000 1
ANLY 341 68000 2
DB_ 68000
GEN_DB_PASCAL
GEN_DB_C

HP 64341DA Software Analyzer Software for use with HP 64249S Emulation Systems (for
68010 processors) consisting of five (5) software modules contained on three (3) flexible
discs:

ANLY 341 68010 _1
ANLY 341 68010 2
DB 68010
GEN_DB_PASCAL
GEN_DB_C

HP 64341GA Software Analyzer Software for use with HP 64243AA/AB Emulation Systems
(for 68000 processors) consisting of five (5) software modules contained on three (3)
flexible discs:

ANLY 341_68000D 1
ANLY 341 68000D 2
DB_68000
GEN_DB_PASCAL
GEN_DB_C

HP 64341IA Software Analyzer Software for use with HP 64245S Emulation Systems (for
68010 processors) consisting of five (5) software modules contained on three (3) flexible
discs:

ANLY 341 68010D_1
ANLY 341 68010D 2
DB_68010
GEN_DB_PASCAL
GEN_DB_C

Software Analyzer Hardware

2-2

64340A Software Analyzer hardware consisting of:

one (1) CPU/Memory board
one (1) Acquisition board
one (1) Control board

three (3) Interconnection cables

Real-Time High Level Software Analyzer
Installing The Software Analyzer

Additional HP 64000 System Components Required

In addition to the software analyzer components listed above, you will need the following HP
64000 system components:

Model 64242S 68000 Emulation System (if using 64341BA analyzer)

Model 64249S 68010 Emulation System (if using 64341DA analyzer)

Model 64243AA/AB 68000 Emulation System (if using 64341GA analyzer)

Model 64245AA/AB 68010 Emulation System (if using 64341IA analyzer)

Model 64155A Wide Address Memory Control Board

Model 64161A or 64162A or 64163A Static RAM Board(s)

Model 64815AF or 64815S Pascal Cross Compiler

Model 64819AF or 64819S C Cross Compiler

INSTALLING ANALYZER HARDWARE

Any servicing, adjustment, maintenance, or repair of this product must be
performed only by service-trained personnel who are aware of the
hazards involved.

Configuring boards in the station

Table 2-1 shows the preferred configuration of a 64100A development station containing a 64340A
High Level Software Analyzer with various system options installed. The 64340A boards must be
installed in the system from low to high numbered card slots as follows: The CPU board in the
lower numbered card slot, the Control board in the next slot, and the Acquisition board in the
higher numbered card slot. The lowest numbered card slot is closest to the front of the develop-
ment station. See figure 2-3.

Installing The Analyzer In A 64100 Development Station

CAUTION

The three 64340A circuit boards are susceptible to damage from static
discharge. To avoid damage, handle boards from the sides ONLY.
Never touch the bottom of a circuit board.

2-3

Real-Time High Level Software Analyzer
Installing The Software Analyzer

1. Turn off power to the 64100A station.

2. Remove the four screws securing the cardcage cover to the top of the 64100A station.
See figure 2-1.

3. Connect the three interconnection cables (W1) to J2, J3, and J4 of the Acquisition board
(A3). See figure 2-2.

4. Install the CPU board first. Note the position of the Acquisition board to relative to other
options installed in the station. See table 2-1.

5. Install the other two software analyzer boards in the station cardcage. The position for
the three board 64340A card set in the cardcage should always be the CPU board in the
lower numbered card slot, the Control board next, and the Acquisition board in the
higher numbered slot. See figure 2-3.

6. Connect the three interconnection cables (W1) that were connected the acquisition in
step 3 to the top of the 64340A Control and CPU boards. See figure 2-3.

Installing The Emulation System

The emulation boards (emulation control board, memory control board, memory board, etc.)
should be placed in lower numbered card slots in the cardcage than the software analyzer). See
Table 2-1 and the emulator operating manual for detailed installation procedures for the emulation

system.

Installing Other Analysis Boards.

Other emulation/analysis boards should be placed in higher numbered card slots than the 64340A
Software Analyzer. Refer to table 2-1 and the installation chapter of the specific emulator/analyzer
manual for detailed installation procedures.

NOTE

If you are using a model 64310A Software Performance Analyzer with the
real-time high level software analyzer, the 64310A software module
SW_PERF_ANALYZER must have a software revision number of 1.11 or
greater. The software analyzer is incompatible with earlier versions of the
64310A Software Performance Analyzer.

2-4

Real-Time High Level Software Analyzer
Installing The Software Analyzer

"""“"—‘,]REMOVE THESE TWO SCREWS

Figure 2-1. Cardcage Cover Removal

IMB BUS EDGE CONNECTOR EMULATION BUS EDGE CONNECTORS

A3 ACQ BOARD

Figure 2-2. Connecting The Interconnect Cables To The Acquisition Board

2-5

Real-Time High Level Software Analyzer
Installing The Software Analyzer

A3 ACQ BOARD

A2 CONTROL BOARD

A1 CPU BOARD

Figure 2-3. Installing The 64340A Module Into The 64100A Station

2-6

Real-Time High Level Software Analyzer
Installing The Software Analyzer

Table 2-1. HP 64340A Configurations, Current Usage, and Cable Options

64964A 64960A
OPT 013
/\
. | e B — SLOTO 64302 ANL 370 A
l!=ll rl=11 IQI 8 64340A ACQ 500 A
|| [7 64340A CONTL 500 A
|| | 6 64340A CPU 500 A
f] 5§ EMULATION SUBSYSTEM <6.20 A
| — 4 64155A WIDE-ADDRMC 3.80 A
f] 3 64161A 128K BYTE EM 160 A
I TOTAL CURRENT <3030 A
64960A
64964A 64960A

l / 5V
Q SLOT9 64303A IMB 180 A

|4
| — l‘=l 8 64340A ACO 500 A
| - 7 64340A CNTL 500 A
| - 6 64340A CPU 500 A
f f | 5 EMULATION SUBSYSTEM <620 A
— 4 64155A WIDE-ADDRMC 3.80 A
IJ=£1 3 G4161A 128K BYTE EM 160 A
] TOTAL CURRENT <2840 A
64960A
64964A 64960A
OPT 013
l / \ (+5 W)

— — O — SLOT9 64310A ANL 580 A
H IJ=L| Ig';Ll 8 64340A ACQ 500 A
|| 7 64340A CNTL 500 A
| 6 64340A CPU 500 A
f | 5 EMULATION SUBSYSTEM <620 A
— 4 64155A WIDE-ADDRMC 380 A
% 3 G4161A 128K BYTE EM 160 A
I TOTAL CURRENT <3240 A

2-7

Real-Time High Level Software Analyzer
Installing The Software Analyzer

Table 2-1. HP 64340A Configurations, Current Usage, and Cable Options (Cont’d)

64960A
OPT 013

g
—3 =

T—%

64960A

OPT 001
64964A 64960A
ik

OPT 001

64964A 64960A
OPT 010
L\
[\

ER=ar
 —

OPT 001

2-8

SLOT 9

o o

-~

SLOT 9

N W A 0 N

-

#5v
64310A ANL 5.80
64340A ACQ 5.00
64340A CNTL 5.00
64340 CPU 5.00

EMULATION SUBSYSTEM < 6.20
64155A WIDE-ADDRMC 380
64161A 128K BYTE EM 160
64161A 128K BYTE EM 1.60

> » > >

>

TOTAL CURRENT <£34.00
“#+5v

OPT 01120 CH ACQ

OPT 011 40 CH ACQ

646205 STATE CNTL 1040 A
64340A ACQ 500 A
64340A CNTL 500 A
64340A CPU 500 A
EMULATION SUBSYSTEM £6.20 A
641554 WIDE-ADDRMC 380 A
641614 128K BYTE EM 160 A
64161A 128K BYTE EM 160 A
TOTAL CURRENT <3860 A

“#+5v

OPT 012 40 CH ACQ
OPT 012 40 CH ACQ
646205 STATE CNTL 1220 A
64340A ACQ 500 A
64340A CNTL 500 A
64340A CPU 500 A
EMULATION SUBSYSTEM <620 A
641554 WIDE-ADDRMC 380 A
641614 128K BYTE EM 160 A
641614 128K BYTE EM 160 A
TOTAL CURRENT <4040 A

Real-Time High Level Software Analyzer
Installing The Software Analyzer

Table 2-1. HP 64340A Configurations, Current Usage, and Cable Options (Cont’d)

64962A 64960A
OPT 004 OPT 016
l / \ +5v
o I s B s | SLOTO 64302A ANL 370 A
H &=,1 f|=l| 8 64310A ANL 580 A
= 7 eeuon A0 500 A
|| - 6 64340A CNTL 500 A
|| | 5 64340A CPU 500 A
I 1 [4 EMULATION SUBSYSTEM <620 A
— 3 G4I55A WIDE-ADDRMC 380 A
% 2 64BIA 28KBYTEEM 160 A
IJ_'|1 1 G4BIA PBKBYTEEM 160 A
5491;0A TOTAL CURRENT <3770 A
OPT 001
64964A 64960A
OPT 004 OPT 013
Z \)
} \ SLOTO 64303 IMB 180 A
H 3 8 64310A ANL 580 A
i e B 7 eauon A0 50
- 6 64340A CNTL 500 A
- | 5 64340A CPU 500 A
[f] 4 EMULATION SUBSYSTEM <620 A
 — 3 64155A WIDE-ADDAMC 380 A
IL———']'I 2 646 128KBYTEEM 160 A
fl—"'1 1 G461A ©BKBYTEEM 160 A
649160!\ TOTAL CURRENT <3580 A
OPT 001
64964A 64960A
OPT 004 OPT 013
/ \ #5W
| - \ SLOTO 64303A IMB 180 A
H — — 8 643024 ANL 370 A
H fL-"I'I I'L—I'I 7 64340A ACQ 500 A
- | 6 64340A CNTL 500 A
| | 5 64340A CPU 500 A
| I | 4 EMULATION SUBSYSTEM <6.20 A
— 3 G4I55A WIDE-ADDRMC 380 A
?;H 2 64161A 128K BYTE EM 160 A
I'I_LI 1 G4I61A 12BKBYTEEM 160 A
mtm TOTAL CURRENT <3370 A

OPT 00t

2-9

Real-Time High Level Software Analyzer
Installing The Software Analyzer

Table 2-1. HP 64340A Configurations, Current Usage, and Cable Options (Cont’d)

64964A 64960A 5w
OPT Ot
[\ SLOTO OPT 01120 CH ACQ
/ \ 8 OPT 01140 CHACQ
/1 '/ \ 7 646205 STATE CNTL 1040 A
H s I — 6 64340A ACQ 500 A
- | 5 64340A CNTL 500 A
| | 4 64340A CPU 500 A
f] | 1 3 64304A EBPP 150 A
IEI H 2 EMULATION SUBSYSTEM <620 A
1 1 64155A WIDE-ADDRMC 380 A
% 0 64161A 128K BYTE EM 160 A
6491;% TOTAL CURRENT <3850 A
64964A 64960A +5v
OPT O
[\ SLOT9 OPT 012 40 CH ACQ
/ \ 8 OPT 012 40 CH ACO
/ / X 7 64620 STATE CNTL 1220 A
H 1 6 64340A ACQ 500 A
- - 5 64340A CNTL 500 A
| — 4 64340A CPU 500 A
f] |] 3 64304A EBPP 150 A
IJ=+L%L 2 EMULATION SUBSYSTEM <620 A
| — 1 64155A WIDE-ADDRMC 3.80 A
% 0 64161A 128K BYTEEM 160 A
6491;» TOTAL CURRENT <4030 A

2-10

Real-Time High Level Software Analyzer
Installing The Software Analyzer

LOADING ANALYZER SOFTWARE

With your 64341 Software Analyzer, you receive three flexible discs containing all of the software
analyzer software. Follow the instructions below to load this software on a clustered development

system using a hard disc.
1. Press the --BACK U P-- softkey.
2. Enter the command floppy sys_gen (RETURN).

3. Enter the command copy all from local disc <DISC #> to bus_disc <DISC#>
(RETURN).

On the left side of the display, you will see the name of the module being copied. When the
module has been copied, the module name is added to the list labeled "System modules on bus

disc" on the right side of the display. When all modules have been copied to the system disc, the
message "Copy complete" is displayed on the status line. Then enter the command:

end (RETURN

NOTE

Part of the software analyzer software is stored on the 64340A CPU
board. This software is loaded to the CPU board when the software
analyzer is first accessed . On subsequent accesses to the analyzer, this
software may not be reloaded. To ensure that the correct software is
loaded to the 64340A CPU board, always cycle power on your develop-
ment station after loading new software analyzer software on your sys-
tem disc.

REMOVING SOFTWARE FROM THE SYSTEM DISC

System software, such as the analyzer software, cannot be purged from the system and it cannot
be removed file-by-file. System software must be removed via the floppy sys_gen function using
the following procedure.

1. Press the --BACK U P-- softkey.
2. Enter the command floppy sys_gen (RETURN).
3. Enter the command show bus_disc <DISC #> (RETURN).

4. Press the key until you locate the module you want to remove. You can
remove or copy modules by their list number or by the module name.

5. Enter the command remove <MODULE> from bus_disc <DISC #> or the com-
mand remove <NUMBER> from bus_disc <DISC #>
(BRETURN).

Real-Time High Level Software Analyzer
Installing The Software Analyzer

6.

When the message "Removal complete” is displayed on the status line, enter the com-
mand end (RETURN).

MAKING DUPLICATE COPIES OF FLOPPY DISC SOFTWARE

Your software analyzer was shipped on three floppy discs. You should make another copy of the
floppy discs for your use and protect the original discs that you received from Hewlett-Packard.
The following procedure describes how to make duplicate floppy discs so that the original discs
may be stored for safekeeping.

To make a duplicate floppy disc, proceed as follows:

1.

Remove a new blank floppy disc from its container and label it SOFTWARE ANALYZER.
Do not write directly on the floppy disc; this can damage the floppy. Use stick-on labels,
if available, or a felt-tip pen.

Install the original disc for the software analyzer in disc drive O of your HP 64000 station.
Install the new blank SOFTWARE ANALYZER in disc drive 1.

From the system monitor softkey level, press the following softkeys in the sequence
shown:

-BACKUP-- floppy utilities

The CRT display will show an explanation of the floppy utilities routines. A floppy disc
must be formatted prior to use. Formatting initializes the disc, preparing it to receive in-
formation. To format the disc, press the format softkey and the "1" key, then press the

RETURN) key.

When disc 1 formatting is completed, press the duplicate softkey and the "0" key, then
press the key. The contents of the software analyzer disc will be duplicated on
the blank formatted disc in disc drive 1.

Perform the preceding steps for each of the software analyzer discs. This completes the proce-
dure for making user "SOFTWARE ANALYZER" discs.

PERFORMING OPERATION VERIFICATION

Performance verification for the HP 64340A Module is a subset of the system Option Test
Performance Verification. The system level PV tests all option modules that are located in the
development station cardcage. You must have the software module PV_64340 on your system
disc to run performance verification on your software analyzer. This module is supplied on floppy
disc with the 64340A hardware.

2-12

Real-Time High Level Software Analyzer
Installing The Software Analyzer

Procedure To Run Main Test Performance Verification:
To verify that the HP 64340A passes performance verification, perform the following:

1) Press the -—-ETC--- softkey until the opt_test softkey appears.

2) Press the opt_test softkey, followed by the key.

3) Select one of the three HP 64340A Software Analyzer boards, and type in its card slot
position, followed by the key. NOTE: It does not matter which board is selec-
ted. The same test will be executed regardless of which of the three boards is selected.

4) If IMB stimulus is present in the cardcage, the screen will ask for the IMB stimulus slot

number. Type in its slot position, followed by the key.

NOTE

By selecting the HP 64340A CPU board as the IMB stimulus, the IMB
tests will be bypassed.

5) Press the cycle softkey to test all three HP 64340A Software Analyzer boards.
6) Press the end softkey to stop the test and return to the opr_rest screen.
7) Press the end softkey again to leave performance verification.

If any of the three tests fail, refer to the troubleshooting flowchart in the 64340A service manual.

Real-Time High Level Software Analyzer
Installing The Software Analyzer

NOTES

2-14

Chapter 3

GETTING STARTED

OVERVIEW

This chapter contains information to help you become familiar with the operation of the software
analyzer. This chapter provides the following information:

* A description of the major software analyzer softkeys.

®* How to setup your development system for measurements.

* How to build required database files.

®* How to load and execute programs in emulation.

* How to access the software analyzer.

* How to execute a trace measurement.

®* How to save a measurement configuration.

* Recommended programming style for best analysis results.

GENERAL INFORMATION

This chapter contains information to help you become familiar with the operation of the software
analyzer. You will learn about the first level of analyzer softkeys and how to use them in specify-
ing a measurement. You will learn how to build the database files required by the analyzer. You
will also learn to enter measurement specifications in the software analyzer and to gather data as a
result of the measurement specifications you set up. In addition, you will learn to save a configura-
tion to a file and reload that configuration at a later time. Guidelines for writing code to achieve
the best results from the software analyzer are given at the end of this chapter.

If you have any difficulties or problems when using the software analyzer, see appendix E,
Resolving Measurement Problems, for possible solutions.

MAJOR SOFTKEY LEVELS

The software analyzer has a user-friendly interface designed to provide you with easily definable
options to examine Pascal and C programs. The interface provides a logical structural breakdown
and guided syntax softkeys that make definition of measurements easy.

3-1

Real-Time High Level Software Analyzer
Getting Started

The major softkey levels of the software analyzer are the setup, display, db_check, modify, show,
execute, end, run, break, reset, load, configure, and copy softkeys. These softkeys are discussed
briefly in the following paragraphs. This brief account of each key allows you to become familiar
enough with them to perform the familiarization exercises detailed later in this chapter. A detailed
explanation of all the softkeys used in, and under, the major softkey levels is given in later chap-
ters. Syntax diagrams for the major softkey level functions are given in appendix A.

setup The setup softkey allows you to specify; (1) the type of measurement to be made
with the parameters to be traced, (2) global measurement parameters, (3) the
break condition(s) to stop your program execution, (4) measurement enable and
disable conditions, (5) the default path to be used in measurement specifications,
i.e., the procedure and/or file information, and (6) IMB interactions.

display The display softkey allows you to display the the current value of a specified
Pascal or C variable or to modify the measurement display.

db_check The db_check softkey allows you to check database compatibility. See chapter 4.

modify The modify softkey enables you to modify the current value of a variable in
memory. The variable can be set to a specific value which must be entered as a
simple integer value less than or equal to 32 bits in width.

show The show softkey allows you to select either the setup display, the measurement
display, or the source file for display on the HP 64000 screen.

execute The execute softkey causes execution of a measurement.

end Pressing the end softkey one time causes the system to terminate the current
measurement session and places the HP 64000 station back into the measure-
ment system monitor. The software analyzer can be reentered from this level
simply by pressing the sw_anl N softkey. The end softkey also causes the
emulation command (emul_com) file to be updated..

run The run softkey allows you to start execution of the user program in emulation
without exiting the software analyzer. When the processor is in a reset state, the
run command causes the reset to release. When a from address is specified, the
processor is directed to that address. If the processor is running in emulation
monitor and real time optional mode is selected, executing the single keyword
run causes the processor to exit into the user program. If the software analyzer is
in real time required mode, executing the single keyword run causes the proces-
sor reset signal to be released.

break Pressing the break softkey causes the processor to be diverted from execution of
the user program to the emulation monitor. The break vector can be directed to
branch the program to a user routine and continue real-time execution, without
returning control to the emulator.

reset The reset softkey allows you to suspend target system operation and reestablish

initial emulator operating parameters. The reset signal is latched when active and
is released by the run command.

3-2

Real-Time High Level Software Analyzer
Getting Started

load The load softkey allows you to transfer absolute code from the HP 64000 system
disc into user RAM or emulation memory. The destination of the absolute code is
determined by the memory configuration map which was set up during emulation
configuration and the address specified during linking.

configure The configure softkey allows you to either save or load the complete analyzer
configuration to or from a file.

copy The copy softkey allows you to copy the measurement setup, measurement data,
or the current display to either a file or the printer.

<CMDFILE> The <CMDFILE> softkey is a prompt informing the user that a command file may
be executed at this level to automatically execute software analyzer commands.

PREPARING THE SYSTEM FOR MEASUREMENTS

The information contained in this section is provided to help you become familiar with the basic
operation of the software analyzer. You will be lead through the steps required to configure the
HP 64000 system for performing basic software measurements. You will learn how to gain access
to the analysis functions and how to setup the analyzer to make a simple trace modules
measurement.

Initial Turn On

NOTE

The following procedure assumes that you have installed the HP 64340A
software analyzer boards and an emulation system in your development
station, and you have loaded the software analyzer software on your sys-
tem disc.

1. Connect operating power to the development station.

2. Turn on the power switch. The associated indicator lamp (on HP 64110 development sta-
tions) will light.

3. You may, at this time, wish to assign a user identity code to your activity with the station.
The software records your userid and assigns any files you may make to your userid. The
userid must start with an upper case alphabetic character and is limited to six characters.
After the first letter, the other five characters may be alphanumeric. To assign your userid
press the ---ETC--- softkey twice, press the userid softkey, type in the userid you have
selected, and press the key. If no userid is selected, the default condition is a blank
userid.

-—ETC—- - ETC--- userid <USERID>

3-3

Real-Time High Level Software Analyzer
Getting Started

Building Database Files

The basis of the software analyzer measurements are the comp_db (compiler database) files. All
files to be debugged with the software analyzer must have an associated comp_db file. The
comp_db files allow the software analyzer to decode symbols into addresses and the addresses
back into symbols. Comp_db files provide information on the symbol types (used for display
purposes) and ownership of symbols by functions, procedures, or files. Comp_db files can be
generated in two ways; (1) by compiling the source file with option comp_sym and linking with
option comp _db, or (2) by using the generate_database utility (gen_db).

GENERATING COMP_DB FILES AT COMPILE AND LINK TIME. The most efficient method of
generating comp_db files for source files compiled on your HP 64000 Development Station is to
compile the files using the comp sym (compiler symbol) option and to link the files using the
comp db option. The following two steps build the comp_db file required by the software
analyzer.

1. Compile all files that you wish to debug using the comp sym option. This option specifies
the saving of the compiler symbol file, making it available to the software analyzer. The
command is:

compile MYFILE options .. comp sym

The "..." located between options and comp sym signifies that other options may be
specified in addition to the comp _sym option. However, the comp _sym option must be the
last in the list of options.

The compiler symbol file includes the following information; the processor for which the file
was compiled, the language the file was written in, the names, addresses, and data sizes for
modules, and the names, types, sizes and locations of variables unique to each module.
The compiler symbol file is not automatically saved after each compilation.

An asmb_sym (assembler symbol) file is created for every file compiled unless the nocode
option is included in the compile command. The contents of the asmb_sym file for a com-
piled file include local symbol names and relocatable or absolute addresses for those local
symbols. Also, the addresses for line numbers are recorded here. In order for the analyzer
to execute correctly, the asmb_sym file must be created for each file to be analyzed.

NOTE

DO NOT compile the file to be analyzed with the option nocode. This
suppresses the creation of an assembly symbol file, a file required for
proper operation of the software analyzer.

2. Next, the compiled files must be linked. The command is:
link LINK_COM_FILE options .. comp_db
The link_sym (linker symbol) file is created during the linking process and contains informa-
tion about all files included in the link command. Included are global symbol names and

their relocated addresses, source names and their relocated addresses, and a list of memory
space used by the linked files.

3-4

Real-Time High Level Software Analyzer
Getting Started

A database file is created at link time, when options comp _db is specified, for each file that
was compiled with the comp sym option. The comp db must be the last specified option
in the link command, as comp _sym is in the compile command.

GENERATING COMP_DB FILES USING THE GENERATE_DATABASE UTILITY. The
generate database utility allows you to generate a comp_db file for files developed in a hosted
environment using HP 64000 series hosted compilers. The utility also allows you to generate
comp_db files for source files developed on an HP 64000 development station, but not compiled
with the comp_sym option or linked with the comp_db option. The generate database utility
provides the necessary link for performing high level software analysis in an HP 64000
development station of programs developed in the hosted development environment.

Files Required By The Generate_Database Utility. The generate database utility requires the fol-
lowing files to be downloaded from the hosted development environment:

Pascal and C source files
Absolute files (.X)
Asmb_sym files (.A)
Link_sym files (.L)

A high level debug files transfer utility is available on the hosted system. This utility transfers all
files required by the generate database utility. See the Hosted Development System User’'s Guide
for detailed information on the transfer utility.

Executing the Generate_Database Command. Executing the following command generates a
comp_db file for source file MY_FILE:
generate_database MY_FILE using LINK_SYM_FILE

Where LINK_SYM_FILE is a valid link_sym file and MY_FILE is a source file referenced in
the link_sym file.

This command first executes pass 1 of the compiler to generate the required comp_ sym file. It
then uses the asmb_sym, comp_sym, and link_sym files to generate the comp_db file. If a valid
comp_sym file exists, then the following command may be executed:

generate_database comp _db MY_FILE using LINK _SYM_ FILE

This command uses the existing comp_sym file, eliminating compiler pass 1 execution.

Before attempting to use the software analyzer, read chapter 4, Building Database Files. This
chapter contains important information on compiling and linking files for analysis.

Loading And Executing A Program In Emulation

When the HP 64000 station is turned on, the softkey label line is displayed on the screen and con-
tains the meas_sys softkey label. When you press the meas sys softkey and the key, the
sw_anl__N softkey will appear on the softkey label line, along with the name(s) of any emulation
system in the development station. This is the measurement system level of softkeys. From here,
you will need to enter the emulation system so that you can create an emulation command file

3-5

Real-Time High Level Software Analyzer
Getting Started

which you will need to use the software analyzer. Refer to the emulator operating manual for
detailed instructions on creating emulation command files.

Selecting The Emulation Analysis Mode (64243,64245 Emulators only)

The emulator analysis mode must be set to bus cycle data in order to use the software analyzer.
From within the emulation subsystem, execute the command meodify analysis mode to
bus_cycle_data. If the emulation analysis mode is not set to bus_cycle data, the error message
"Incorrect analysis bus mode for this analyzer" is displayed on the status line when you attempt to
access the software analyzer.

Accessing The Software Analyzer

After you have generated an emulation command file in an emulation session, you are ready to ac-
cess the software analyzer. Leave the emulation system running and press the end softkey and
the key. This will bring you out to the measurement system level of softkeys. You can
now access the software analyzer by pressing the sw_anl N softkey, entering the name of the
emulation command file, and pressing (RETURN).

sw_anl_N <EMUL_COM_FILE>

If you omit the emulation command file in the command line, the software analyzer prompts you
for the file;

Emulation command file?
After entering the name of the emulation command file you generated in the emulation session and

pressing (RETURN), you access the software analyzer, ready to start your analysis session.

NOTE

On first accessing the software analyzer, you must specify an emulation
command file. During the analysis session, you can save the measure-
ment setup in a configuration file. On subsequent uses of the software
analyzer, you can specify either a configuration file or an emulation
command file in the sw_anl N command.

Figure 3-1 shows the utility softkeys used to gain access to the software analyzer and how to end
out of the analyzer and return to the system monitor level of softkeys. Pressing the end softkey
followed by once will return you to the measurement system level of software. The soft-
ware analyzer will retain its current measurement setup. To go to the system monitor level of
software press the end softkey again. It is now possible to perform operations at this level (edit,
copy, etc.). To reuse the analyzer, and still retain the current measurement setup, press the
meas_sys softkey and continue softkeys, then the key. This brings you to the measure-
ment system level of software. Now press the sw_anl__N softkey and then the key. You
are now back in the software analyzer with the current measurement setup retained.

3-6

Real-Time High Level Software Analyzer
Getting Started

NOTE

Pressing the sw_anl N softkey when the measurement system is en-
tered with the continue option restores the last measurement setup used
in the software analyzer if that session was terminated using the end
command and the emulator hardware is in the same state. The emulator
hardware will be in the same state it was left in provided that: (1) the HP
64000 station has not been turned off, (2) the emulator has not been
modified during an emulation session, or (3) opt_test has not been ex-
ecuted.

MONITOR LEVEL SOFTKEYS

edit compile assemble link meas_sys prom_prog run -—-ETC--

INTERMODULE LEVEL SOFTKEYS

em68000_4 sw_anl_6 print_dsp end

v

HIGH LEVEL SOFTWARE ANALYZER SOFTKEYS

run set_up db_check display modify show execute —-—-ETC——

HIGH LEVEL SOFTWARE ANALYZER SOFTKEYS

load break reset <CMDFILE> configure copy end -—-ETC--
1

Figure 3-1. Utility Keys Used To Access the Analyzer

Real-Time High Level Software Analyzer
Getting Started

PERFORMING A BASIC TRACE MODULES MEASUREMENT

The following measurement example is intended to familiarize you with the software analyzer as
well as show a meaningful measurement on a program written in Pascal. Figure 3-2 shows an out-
line of the program used in the following example. The program listing shows the procedure
declarations and entry and exit points of the procedures traced in the example measurement.

Loading And Running A Program

The first step in preparing to make a measurement is to load the absolute file we wish to analyze
into emulation memory. This source file must have been compiled using the comp sym option
and the absolute file linked using the comp db option as explained previously. These two options
create the symbolic data base required by the software analyzer to interpret and display measure-
ment data. The command is executed by pressing the load softkey, typing in the absolute file
name, and pressing the key.

load MYFILE
The next step is running the program in emulation. Entering the command

run at_execution from transfer_address
causes the user program MYFILE to begin running from its starting address when a measurement
is executed. The at_execution parameter is included here because we wish to ensure that we

trace all modules executed from the beginning of the program. Leaving out the at_execution pa-
rameter causes the user program to begin running immediately.

Defining A Default Path (Optional)

The next step in making a measurement with the software analyzer is defining the default path.
The default path may be a module within a file or a file itself. The default path is used by the soft-
ware analyzer when a command requires a path definition, but none is included in the command
statement itself. For this measurement example, the default path is defined as the file MYFILE
using the command:

setup default _path MYFILE

Therefore, for any commands being executed that do not include a file specification, the software
analyzer will look for the defined parameters in the default path file MYFILE.

3-8

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

42
43
44
45
46
47
48
49
50
51
52
53
54

55

o N O =

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000008
00000010
00000014
00000015
00000026
00000027
0000005C
0000005E
00000062
00000064
00000068
00000068

[G Y

S NN NN NN NN NN MNDN =S O @ @ e e e e e oed =3

Real-Time High Level Software Analyzer
Getting Started

"68000"

SWARN+$
SEXTENSIONS ON$
PROGRAM TESTP;

TYPE
INT = SIGNED 16;
PTR =7 INT;
SCALAR_TYPE =(BLACK,BROWN,RED,ORANGE,YELLOW,GREEN,BLUE,VIOLET,GREY ,WHITE);
DAY_OF_WEEK =(SUNDAY,MONDAY,TUESDAY,WEDNESDAY, THURSDAY, FRIDAY,SATURDAY);
SUBRANGE_TYPE =RED..YELLOW;
SET_TYPE =SET OF SCALAR_TYPE;
ARRAY _TYPEO =ARRAY[DAY OF WEEK] OF SCALAR_TYPE;
ARRAY_TYPE1 =ARRAY [SUBRANGE_TYPE] OF SCALAR_TYPE;
ARRAY_TYPE2 =ARRAY[-3..-11 OF BYTE;
ARRAY_TYPE3 =ARRAY[0..1] OF ARRAY_TYPE2;
REC_TYPE_PTR ="REC_TYPE;
REC_TYPE =RECORD
I :SIGNED_32;
REAL_NUMBER :REAL;
CHAR1 :CHAR;
FLAG :BOOLEAN;
SETT :SET_TYPE;
NEXT_REC :REC_TYPE_PTR;
CASE N :BYTE OF
1: (VARIANT1 :ARRAY_TYPE1);
2: (VARIANT2 :ARRAY_TYPE2);
3: (VARIANT3 :ARRAY_TYPE3);
END;
VAR
COLOR :ARRAY_TYPEO;
A,B :ARRAY_TYPE1;
c :ARRAY_TYPE2;
DAY :DAY_OF_WEEK;
E,F :ARRAY_TYPE3;
NEXT_COLOR:SCALAR_TYPE;
Q,R :REC_TYPE;
J,K :BYTE;
COUNT : INTEGER;
X INT;
Y :PTR;
$PAGES

Figure 3-2. Listing of Example Pascal Program

3-9

Real-Time High Level Software Analyzer
Getting Started

67 00000000 1 PROCEDURE INITHEAP(START,LENGTH:INTEGER);EXTERNAL;

72 00000000 1 PROCEDURE PROC1 (VAR FPARM1:INTEGER; FPARM2:INTEGER);

83 00000000 2 PROCEDURE RECURSIVE PROC(VAR RP1:INTEGER; RP2:INTEGER;

84 00000000 3 VAR RP3:INTEGER; RP4:INTEGER; VAR RP5:INTEGER;
85 00000000 3 RP6:INTEGER; VAR PTR:REC_TYPE PTR);

98 00000004 3 BEGIN (* RECURSIVE_PROC ENTRY *)

120 00000074 3 RECURSIVE_PROC (RP1,RP2,RP3,RP4,RP5,RP6,PTR);

132 0000015C 3 END; (* RECURSIVE_PROC EXIT *)

135 00000164 2 BEGIN (* PROCT ENTRY *)

145 000001A6 2 RECURSIVE_PROC (FPARM1, FPARM1, FPARM2, FPARM2, D, D,
146 00000000 2 REC_PTR*.NEXT_REC);

150 00000204 2 END; (* PROCT EXIT *)

153 00000000 1 PROCEDURE PROC2 (A:INTEGER);

160 00000000 2 PROCEDURE NESTED PROC (PARM:INTEGER);
161 0000020C 3

162 0000020C 3 BEGIN (* NESTED_PROC *)

164 00000210 3 END; (* NESTED_PROC *)

166 00000218 2 BEGIN (* PROC2 ENTRY *)

167 00000218 2 NESTED_PROC (A);

168 00000224 2 END; (* PROCZ2 EXIT *)

190 0000023C 1 BEGIN (* MAIN PROGRAM ENTRY *)

230 00000300 1 PROC1 (COUNT,COUNT+2);
231 00000312 1 PROC2 (COUNT+2);

242 00000390 1 END. (* MAIN PROGRAM EXIT *)

Figure 3-2. Listing of Example Pascal Program (Cont’d)

3-10

Real-Time High Level Software Analyzer
Getting Started

Setting Up The Trace Specification

The last step remaining before executing a trace measurement is setting up the trace specification.
Entering the command

setup trace modules all
will cause the software analyzer to be configured to trace all modules in the default path file
MYFILE. Had we wished to trace modules in a file other than the default path, we could have by

adding the file parameter followed by the file name to the setup command. We have now set up
the measurement and the complete setup display is shown in figure 3-3.

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

TRACE MODULES

module file
all MYFILE:TESTP

RUN_AT EXECUTION from
transfer_address

DEFAULT_PATH
file MYFILE:TESTP

REAL TIME
optional

COUNTER
counts_time

STATUS: Database search successful 16:19

setup trace modules all

run setup db check display modify show execute ---ETC---

Figure 3-3. Software Analyzer Setup Display

3-11

Real-Time High Level Software Analyzer
Getting Started

Interpreting The Trace Listing

Pressing the execute softkey followed by causes the software analyzer to initiate the trace
modules measurement and start execution of the user program. After the trace memory is filled,
the measurement stops, and the acquired data is processed and displayed on the screen. The
trace modules listing is shown in figure 3-4.

The symbol field contains the names of the modules traced. In this example, all modules are
Pascal procedures. The software analyzer looks up the module name in the compiler symbol file
corresponding to the traced address value in the data record and displays that symbol in the dis-
play symbol field. The status field shows whether the traced address is the entry point to the
module or the exit point from the module. The time-rel field shows the time between execution of
the first state of a line and execution of the first state of the preceding line. To display the source
field, the software analyzer looks up the source file line number contained in the assembler symbol
file and extracts that line from the source file for display. The number "36" displayed in the status
line indicates that the current trace line (displayed in inverse video in the center of the display) cor-
responds to acquisition state 36.

Looking at the program listing in figure 3-2, we see that the main program begins at line 190. The
first module traced is PROCH1, being called at line 230. The procedure INITHEAP defined at line 67
is a 68000 library function and is not included in the compiler symbol file for file MYFILE.
Execution of PROC1 begins at line 135 whereas the line number displayed in the listing is 230, the
line from which PROC1 was called. The called address of a module is considered the entry point.

The second line in the trace listing shows RECURSIVE_PROC being called at line 145. Note that
RECURSIVE_PROC is indented one column, indicating that it is called from within PROC1.
Nesting of modules is indicated by indentation. We see successive calls to RECURSIVE_PROC,
each indented one column from the other, followed by successive exits from the module. This in-
dicates that RECURSIVE_PROC is a recursive routine. This is verified by the program listing in
figure 3-2. After execution of RECURSIVE_PROC, the program exits PROC1 and the main
program then calls PROC2. PROC2, in turn, calls NESTED_PROC.

In this manner, the software analyzer provides an overview of program activity that enables you to
quickly determine whether the program is executing modules in the sequence intended or, if not,
in which module the program is in error. In the later case, the user can now use other software
analyzer measurements to isolate the error more precisely.

SAVING THE CONFIGURATION

If you wish to retrieve the measurement setup for use at a later time, you need to save it in a con-
figuration file. In this way you can begin to build a library of configurations and save a great deal
of time in future measurement sessions. Pressing the configure and save in softkeys in the se-
quence shown, typing in CONFIG1 and pressing the key will save the present configura-
tion in a file named CONFIG1.

configuration save_in CONFIG1 (RETURN

This allows you to change your configuration (or end the session) with the assurance that you can
retrieve your current configuration at a later time, if desired.

3-12

Real-Time High Level Software Analyzer
Getting Started

This completes the introduction to the software analyzer. You have seen how to load and execute
a program with the emulation system and how to perform a simple measurement. For more
specific and detailed measurements, refer to the information contained in the following chapters.

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

Symbol Stat Time-rel Source
PROC1 entry 993.4 uS 230 PROC1 (COUNT,COUNT+2);
RECURSIVE_PROC entry 313.3 uS 145 RECURSIVE_PROC (FPARM1, FPARM1,
RECURSIVE_PROC entry 623.0 uS 120 RECURSIVE_PROC (RP1,RP2,RP3,RP4,
RECURSIVE_PROC entry 615.0 uS 120 RECURSIVE_PROC (RP1,RP2,RP3,RP4,
RECURSIVE_PROC entry 617.3 uS 120 RECURSIVE_PROC (RP1,RP2,RP3,RP4,
RECURSIVE_PROC exit 6.557 mS
RECURSIVE PROC exit 6.020 mS
RECURSIVE_PROC exit 5.982 mS
RECURSIVE_PROC exit 5.932 mS
PROC1 exit 589.2 uS
PROC2 entry 12.3 uS 231 PROC2 (COUNT+2);
NESTED_PROC entry 11.2 uS 167 NESTED_PROC (A);
NESTED_PROC exit 5.4 us
PROC2 exit 5.9 us
STATUS: Awaiting Command 36 _ 16:45
run setup db check display modify show execute ---ETC---

Figure 3-4. Trace Modules Measurement Display

Real-Time High Level Software Analyzer
Getting Started

RECOMMENDED PROGRAMMING STYLE

The following programming style suggestions are recommended to achieve the best results from
your analysis session.

1. Put only one statement on each line, especially when variables are used in more than one
statement. The analyzer cannot determine which access has been made and only the first one

may be displayed.

2. Break up compound statements, such as "IF <exp> THEN <stmt> ELSE <stmt>" to at least one
line for each of the three parts.

3. Put comments on all "END" text to indicate to which structure it belongs. e.g. "END; /*FOR
count LOOP™/"

4. Use BEGIN/END pairs on separate lines to mark all control structures and statements. This is
redundant information in terms of compiler semantics and produces no additional code, but it
clarifies the source display in the measurement analysis.

5. Put subroutine calls with all parameters on one line when possible.

3-14

Chapter 4

BUILDING DATABASE FILES

OVERVIEW
This chapter provides the following information:

® A description of database files.

®* How to build database files at compile and link time.

®* How to build database files using the generate database command.
* Detailed command syntax for the generate database command.

* How to verify database files.

* Effects of using compiler directives.

®* How to trace variables within an assembly language module.

GENERAL INFORMATION

The software analyzer has a high level of interaction with the HP 64000 compilers. This chapter
describes the symbolic interface between the analyzer and compiler, and how the analyzer
database is built when a program is compiled and linked. It also describes how to verify that the
database file is correct. A list of compiler directives and the implications of their use with the soft-
ware analyzer is also discussed.

SYMBOLIC INTERFACE

The software analyzer provides the capability for the user who has developed programs using the
HP 64000 Logic Development System compilers, assemblers, and linker to specify measurements
in terms of the symbols used in the programs. The compilers, assemblers and linker produce
symbol tables that provide the analyzer with the information necessary to determine the physical
addresses associated with the user’s symbols.

The software analyzer accommodates both statically stored symbols (global variables and the
names of software modules such as programs, functions, and procedures) and dynamically stored
symbols (local variables, VAR parameters, and value parameters). The analyzer also allows you to
reference source statement line numbers. The different symbol storage classifications and data
types are explained in detail in chapter 15.

4-1

Real-Time High Level Software Analyzer
Building Database Files

COMP_DB FILES

The basis of the software analyzer measurements are the comp_db (compiler database) files. The
comp_db files allow the software analyzer to decode symbols into addresses and the addresses
back into symbols. The comp_db files provide information on the symbol types (used for display
purposes) and ownership of symbols by functions, procedures, or files.

Comp_db files can be generated in two ways; (1) by compiling the source file with option
comp _sym and linking with option comp_db, or (2) by using the generate_database utility. Due to
the time required to build the comp_db files, it is suggested that you keep only a small working set
of these files.

Since the linker creates a comp_db file for each comp_sym (compiler symbol) file it finds in the list
of files being linked, old comp_sym files that are not being used should be purged. For each
comp_sym file purged, the corresponding comp_db file should also be purged so that the soft-
ware analyzer will not use a file that is not up-to-date. Conversely, when you make changes to
files which are being tested and fail to either compile with the comp sym option or link with the
comp _db option, then unpredictable results can occur in the software analyzer measurements The
software analyzer has a database check command that allows you to verify that all comp_db files
are up-to-date. The database check command is described later in this chapter.

BUILDING THE DATABASE FILE

The procedure for building the symbol database required by the software analyzer is described in
the following paragraphs. The procedure is illustrated graphically in figure 4-1.

Compiling Files

All files that you wish to debug must be compiled with the comp sym option which specifies the
saving of the compiler symbol file. The command is:

compile <filename> options .. comp sym

The "..." located between options and comp_sym signifies that other options may be specified in
addition to the comp sym option. However, the comp sym option must be the last in the list of
options.

COMPILER SYMBOL FILE. A compiler symbol file is generated for each file compiled on the HP
64000 system. The compiler symbol file includes the following information; the processor for
which the file was compiled, the language the file was written in, the names, addresses, and data
sizes for modules, and the names, types, sizes and locations of variables unique to each module.
The compiler symbol file is not automatically saved after each compilation. The comp sym option
must be specified at compilation time which causes the compiler symbol file to be saved, making it
accessible to the software analyzer.

4-2

Real-Time High Level Software Analyzer

Building Database Files
source COMPILER
FILE i

options comp_sym

asmb_sym| [comp_sym reloc
FILE FILE FILE

SOFTWARE
ANALYZER

comp_.db

FILE)L LINKER

\ options comp_db)

link_sym absolute
FILE FILE

Figure 4-1. Software Analyzer Symbolic Interface

ASSEMBLER SYMBOL FILE. An asmb_sym (assembler symbol) file is created for every file com-
piled unless the nocode option is included in the compile command. The contents of the
asmb_sym file for a compiled file include local symbol names and relocatable or absolute address-
es for those local symbols. Also, the addresses for line numbers are recorded here. In order for
the analyzer to execute correctly, the asmb_sym file must be created for each file to be analyzed.

4-3

Real-Time High Level Software Analyzer
Building Database Files

NOTE

DO NOT compile the file to be analyzed with the option nocode. This will
suppress the creation of an assembly symbol file, a file required for
proper operation of the software analyzer.

Linking Files
Next, the compiled files must be linked. The command to use is:

link .. options .. comp_ db
The link_sym file is created during the linking process and contains information about all files in-
cluded in the link command. Included are global symbol names and their relocated addresses,
source names and their relocated addresses, and a list of memory space used by the linked files.
A compiler data base (comp_db) file is created at link time, when options comp db is specified,

for each file that was compiled with the comp sym option. The comp db must be the last
specified option in the link command, as comp_sym was in the compile command.

NOTE

When Pascal and C files are linked within the same absolute file, the
linker will execute faster if the Pascal and C files are linked in separate
blocks and not intermixed with each other.

Using The Generate Database (gen_db) Command.

The generate _database Command allows you to generate comp_sym and comp_db type files
without the overhead of recompilation and relinking. These files are optionally generated by the
HP 64000 hosted compilers and linkers. The generate database utility provides the capability to
generate the comp_sym and comp_db type files for source files developed in HP supported host-
ed environments other than the HP 64000 environment. The generate database utility provides
the necessary link for performing high level software analysis in an HP 64000 development station
of programs developed in the hosted development environment.

The utility can also be used to generate comp_db files for source files developed on an HP 64000
development station, but not compiled with the comp_sym option or linked with the comp_db op-
tion. This command first executes pass 1 of the compiler to generate the required comp_sym file.
It then uses the asmb_sym, comp_sym, and link_sym files to generate the comp_db file. If a
valid comp_sym file exists, you can specify that only the comp_db file be generated. The com-
mand then uses the existing comp_sym file, eliminating compiler pass 1 execution.

Specifying the keyword comp_sym allows you to perform syntax checking on a source program
without the overhead of compiling the program.

4-4

Real-Time High Level Software Analyzer
Building Database Files

NOTE

You do not need a compiler on your HP 64000 system to generate com-
p_sym and comp_db files using the generate database command.

REQUIRED FILES. The generate database utility requires the following files to be downloaded
from the hosted development environment:

Pascal and C source files
Absolute files (.X)
Asmb_sym files (.A)

Link _sym files (.L)

A high level debug files transfer utility is available on the hosted system. This utility transfers all
files required by the generate database utility. See the Files Transfer Utilities section of the Hosted
Development System User’s Guide for detailed information on the transfer utility.

GENERATE_DATABASE COMMAND SYNTAX. The command syntax for the generate database
command is shown in figure 4-2.

@enerate_database} <FILE> —(using <FILE> <RETURN>

<FILE>

comp__sym

Figure 4-2. Generate_Database Command Syntax Diagram

GENERATE_DATABASE COMMAND PARAMETERS. The following parameters can be specified in
the generate database command.

comp_db comp _db specifies that only a comp_db file be generated.
comp_sym comp _sym specifies that only a comp_sym file be generated.
<FILE> <FILE> must be the name of a C or Pascal source file for which the

comp_sym and/jor comp _db files are to be generated. In order for the
database generator to distinguish between the two, C source files must have
"C" for their first line and Pascal files must have "PASCAL" for their first line.

using <FILE> using <FILE> specifies the link_sym file (generated by a previous link) to be
used in generating the comp_db file.

4.5

Real-Time High Level Software Analyzer
Building Database Files

GENERATE_DATABASE COMMAND EXAMPLES. The following command examples illustrate
how to use the generate_database command.

generate_database C_SOURCE using C_LINKSYM

The files C_SOURCE:comp_sym and C_SOURCE:comp_db are generated. C_SOURCE is
a C source file and C_LINKSYM is a link_sym file generated by a previous link of
C_SOURCE with other relocatables.

generate_database comp sym PASCAL_SOURCE
The file PASCAL_SOURCE:comp_sym is generated.
generate_database comp db PASCAL_SOURCE using PASCAL_LINKSYM

The file PASCAL_SOURCE:comp_db is generated.

VERIFYING DATABASE FILES

For proper operation of the software analyzer, the database information provided by the compiler
and linker must be current for the files being analyzed. The database check command is provided
to systematically verify whether the database files associated with the current absolute file are up-
to-date. The following paragraphs describe how database files are verified. The database check
command syntax is shown in figure 4-3.

The normal sequence of creating files is described in the previous section of this chapter, Building
the Database Files. This process generates the following files in the order listed: 1) the comp sym
file, 2) the reloc file, and 3) the asmb_sym file. The reloc files are then linked with option com-
p_db specified. This generates, in order, the link_sym, absolute, and comp_ db files.

During the normal operation of a link, the link_sym file will always be dated before or with the
same date and time as the absolute file. The database check function compares the modify date
of the current absolute file with the modify date of the link_sym file associated with that absolute
file. If the absolute file’s modify date and time is earlier than that of the link_sym file, a database
error exists. This error will be displayed and the database check will be terminated.

Since a relocatable file may be linked to any number of absolute files, the comp_db file for each
file compiled with options comp_sym will contain the file name of the last absolute file it was
linked to. With this information, the database_check performs the following operations:

1. Obtains the names of all linked files from the link_sym file.

2. Determines if the named files have comp_db files (i.e., if they were compiled with option
comp _sym and linked with option comp _db).

3. Verifies that comp_db files were generated for the current absolute file by comparing the
name of the currently loaded absolute file with the absolute file name contained in the
comp_db files.

4. Verifies that all files were generated in the proper sequence by comparing the modify date
and time for each file type.

4-6

Real-Time High Level Software Analyzer
Building Database Files

5. Reports any discrepancies in the database.

(dotobose_check 3 <RETURN>

listfile

printer

<FILE>

append

Figure 4-3. Database_check Command Syntax Diagram

The following example commands illustrate use of the dartabase check command:
database_check listfile display

database check listfile printer
database_check listfile DATABASE CHECK append

NOTE

To ensure that each file has the correct modify date, always keep your
system clock set to the current date and time. This is done using the
date&time utility command at the system monitor level of softkeys.

USING COMPILER DIRECTIVES

There are certain compiler directives that must be in the ON state for the Software Analyzer to
operate correctly and others that may cause unexpected results.

AMNESIA

When the AMNESIA option is OFF, there may be accesses to variables that could be missed
because they are stored in registers. The default value is OFF.

ASMB_SYM

ASMB_SY M must be ON. The default value is ON.

4-7

Real-Time High Level Software Analyzer
Building Database Files
FIXED _PARAMETERS (C only)

When FIXED PARAMETERS is OFF the software analyzer may display a parameter as being
accessed when it was not. This occurs when the calling routine does not pass all the parameters
to the called routine. The default value is OFF.

LINE_ NUMBERS

LINE _NUMBERS must be ON. The default value is ONV.

OPTIMIZE

If the OPTIMIZE option is ON, some accesses to variables may be missed because they are
stored in registers. The default value is OFF.

FILES WRITTEN IN ASSEMBLY LANGUAGE

If a module is written in assembly language and you wish to trace a variable within the assembly
language module, the variable must be declared as external in some other Pascal or C file. When
the assembly language variable is not declared external, its address will not appear in the data
base of any file and the analyzer will not be able to find the variable when a measurement is

specified.

4-8

Chapter 5

DEFINING MEASUREMENT PARAMETERS

OVERVIEW

This chapter describes how to define the following measurement parameters.
® default path
* counter
* real time
® absolute_file

® trigger_enable

INTRODUCTION

The serup command allows you to define several parameters that affect how the software analyzer
performs measurements. These parameters are default _path, counter, real _time, absolute file,
and trigger enable.

5-1

Real-Time High Level Software Analyzer
Defining Measurement Parameters

— default path -

default _path specifies the software path to be used by the software analyzer when a command
requires a path definition, but none is included in the command statement itself. The default path
may be a procedure or function (module) within a source file or the source file itself. Using
default path to specify a particular segment of your software can simplify the setup commands
used during a measurement session. When path parameters (proc and file, or file) are omitted
from a command, the default path is used to locate variables and procedures in the program under
test.

Syntax

The command syntax for setting up a default path is shown in figure 5-1.

(setup)—={default_path) <FILE> |~ <RETURN>

Default Value

Parameters

none

file

<FILE>

proc

<PROC>

proc <PROC>

Figure 5-1. Setup Default_Path Command Syntax

file indicates that the name of a source file follows. NOTE: A colon ()
may be used in place of pressing the file softkey.

<FILE> specified the source file to be used as the default path.

proc indicates that a procedure or function name follows that defines the
procedure or function to which a variable belongs. NOTE: an "@" may
be use in place of proc.

<PROC> is an optional parameter that specifies a procedure or function
within a source file as the default path. If <PROC> is defined in the
setup default _path command, it may be omitted in the measurement
command line. If <PROC> is not specified in either the default path or
the measurement command line, the analyzer assumes that any specified
variables are global variables defined at the main program level.

5-2

Real-Time High Level Software Analyzer
Defining Measurement Parameters

default path —

T (cont'd)

Examples

setup default path proc SORT_ELEMENTS file SORT
setup default path file MATRIX

5-3

Real-Time High Level Software Analyzer
Defining Measurement Parameters

— counter

counter allows you to define how the software analyzer time-state counters are used.
to_count_state specifies that the counters count state transactions (bus cycles). to_count_time
specifies that the counters count time.

Syntax

The command syntax for setting up the counters is shown in figure 5-2.

counter

to_count_states <RETURN>

to_count__time

Figure 5-2. Setup Counters Command Syntax

Default Value

count_time
Parameters
to_count_states to_count_states specifies that the hardware counter is to count bus
cycles.
to_count_time to_count_time specifies that the hardware counter is to count time.
Examples

setup counter to_count_states
setup counter to_count time

5.4

Real-Time High Level Software Analyzer
Defining Measurement Parameters

real time —

The real time parameter allows you to specify whether or not the software analyzer is allowed to
break to the emulation monitor during a measurement. The parameter also determines whether or
not the emulator can be halted during a run to check emulator status. real _time optional allows
the analyzer to break to the emulator monitor or to halt the emulator during a measurement.
real _time requived specifies that the analyzer cannot break to the emulator monitor or halt the
emulator during a measurement. Specifying real time required limits the type and quantity of
measurements that the analyzer can perform. See the detailed measurement descriptions for in-
formation on how real time affects specific measurements.

Syntax

The command syntax for defining the real_time parameter is shown in figure 5-3.

real_time optional <RETURN>

required

Figure 5-3. Setup Real_time Command Syntax

Default Value

Value is taken from the emulation command file.

Parameters
optional optional allows the analyzer to break to the emulator monitor.
required required prohibits the analyzer from breaking to the emulator monitor.
Examples

setup real _time optional
setup real time required

5-5

Real-Time High Level Software Analyzer
Defining Measurement Parameters

— absolute file

The absolute_file parameter allows you to specify an absolute file to be traced in the event that no
absolute file is loaded via any HP 64000 analysis subsystem. For example, this command could
be used to specify a file that is stored in ROM installed in the target system. This command is also

used to specify one absolute file to be traced when multiple files are loaded into emulation
memory.

Syntax

The command syntax for specifying an absolute file is shown in figure 5-4.

absolute_file }—— <FILE> <RETURN>

Figure 5-4. Setup Absolute_file Command Syntax

Default Value

none if no setup absolute file or load command has been executed, otherwise the last file
loaded.

Parameters
<FILE> <FILE> is the name of the absolute file to be traced by the software
analyzer.
Example

setup absolute file MATRIX

5-6

Real-Time High Level Software Analyzer
Defining Measurement Parameters

trigger enable —

trigger enable is used with the serup command to define the IMB interaction between the soft-
ware analyzer and other measurement subsystems installed in the HP 64000 development station.
The software analyzer must be in real time required mode in order to interact with the

Intermodule Bus (IMB).

Syntax

The command syntax for specifying the trigger enable condition is shown in figure 5-5.

trigger_enable

driven__only measurement__disable

received measurement__enable

L—» <RETURN>

Figure 5-5. Setup Trigger_Enable Command Syntax

Default Value

always

Parameters

always

driven_only

measurement_disable

measurement _enable

always specifies that trigger enable is always true. This, in effect,
removes the analyzer from the IMB (Intermodule Bus).

driven_only specifies that the IMB trigger_enable line is to be driven
on measurement_enable or measurement_disable.

measurement _disable specifies that the IMB trigger enable line is to be
driven when the specified measurement disable condition is true or
received to initiate looking for the measurement disable condition. If
no measurement disable condition is specified, the trigger enable is
ignored.

measurement _enable specifies that the IMB trigger enable line is to be
driven when the specified measurement enable condition is true or
received to initiate looking for the measurement enable condition. If
no measurement enable condition is specified, the trigger enable is
ignored.

5-7

Real-Time High Level Software Analyzer
Defining Measurement Parameters

trigger enable

(Cont'd)
received received specifies that the analyzer measurement will start looking for the
measurement disable or enable condition when the IMB trigger enable line
is set true by another HP 64000 measurement subsystem.
Examples

setup trigger enable always
setup trigger enable driven_only measurement disable
setup trigger enable received measurement_enable

5-8

Chapter 6

QUALIFYING MEASUREMENTS

OVERVIEW

This chapter describes the following measurement functions used to qualify measurement data
acquisition.

* measurement_enable
®* measurement_disable

* windowing

GENERAL INFORMATION

The measurement enable and measurement disable commands allow you to enable or disable
measurement execution on specified terms, 'OR’ed combinations of terms, or sequences of
terms. A term may be a source program line number, entry to a program module, exit from a
program module, or any state (used in conjunction with trigger enable). The
measurement _disable command allows you to define a measurement window, enabling you to
make repetitive measurements over a specified program range.

6-1

Real-Time High Level Software Analyzer
Qualifying Measurements

Measurement Enable

The measurement enable command allows you to qualify data acquisition as shown in figure 6-1.
Measurement enable is AND’ed with the measurement specification condition. This allows you to
define more precisely the location in program execution that is to be traced. During measurement
execution, data is acquired only when both the measurement specification is satisfied and the
measurement is enabled. While both conditions are true, the software analyzer acquires data until
its trace memory is filled, until a measurement disable term is encountered, or until the measure-
ment is halted by the user. Both a full trace memory and occurrence of a measurement disable
term results in measurement completion as defined for the setup break and wait commands. The
measurement enable function can be used in both real time optional mode and real time
required mode. In real time required mode, the measurement enable term is displayed if it is part
of the program segment being traced. In real time optional mode, the measurement enable term
may not be displayed on the measurement display.

Measurement enable can be viewed as a sequential term used with the measurement specification,
i.e.,, find the measurement enable condition and then start the measurement. Once set true,
measurement_enable remains true unless a specified measurement disable condition is found.

While the measurement specification is EXAMPLE: setup trace statements PROC2
satisfied and measurement__enable true, setup measurement__enable on 111
PROGRAM qata is acquired until trace memory |.s
filled (measurement complete) or until
(T measurement is halted.
ENTRY1 P A N
]]]
[1]
eroct | —————— ' L _ MEASUREMENT SPECIFICATION SATISFIED
1 1]
1 1 1
' ! ! - MEASUREMENT ENABLED
EXITY | |]
1 ! 1
y 1 1
(T —J
ENTRY2
PROC2
UNE M
UNE 1D
UNE 15
EXIT2 On subsequent passes of
,\J repetitive modules, data is
ey acquired over entire specified
ENTAY] measurement range,
PROC3 ']
— | S | I L _ .MEASUREMENT SPECIFICATION SATISFIED
1
I f - -MEASUREMENT ENABLED
EXIT. J
y————

Figure 6-1. Measurement Enable

6-2

Real-Time High Level Software Analyzer
Qualifying Measurements

Measurement Disable

The measurement _disable command allows you to stop a measurement on execution of a specific
event or sequence of events. This lets you halt program execution and view program activity lead-
ing up to the measurement disable term. The measurement disable function is illustrated in figure
6-2. When a measurement disable term is found, data acquisition is halted and the measurement
is completed. [f the trace memory is filled before the disable condition is found, data acquisition
stops and the measurement is completed. Both conditions cause measurement completion as
defined for the setup break and wait commands. The measurement disable function can be used
in both real-time optional mode and real-time required mode. In both modes, the disable term
will be displayed on the measurement display if it is part of the program segment being traced,
e.qg., setup trace modules PROC1, setup measurement _disable on PROC1 exit. Sequential disable
terms are not allowed in real _time optional mode.

EXAMPLE: setup trace statements PROC2
setup measurement_disable on 115
PROGRAM Data is acquired until measurement__disable
occurs or trace memory is filled. Either

f\’ condition results in measurement complete.
ENTRY1 p

i__ - - - MEASUREMENT SPECIFICATION SATISFIED

PROC1

L

EXIT1 -=-

™~
("

ENTRY2

- - . MEASUREMENT DISABLED

I I

—> - - -1 -

PROC2

LINE115

EXIT2

(\)
T

ENTRY3

PROC3

EXIT3

Figure 6-2. Measurement Disable

6-3

Real-Time High Level Software Analyzer
Qualifying Measurements

Windowing

The setup measurement _disable window command allows you to re-enable a measurement on an
measurement enable term. Figure 6-3 shows the window function. When the measurement en-
able term occurs, the measurement is enabled. Measurement data is acquired while the
measurement specification is satisfied. When the measurement disable term occurs, the
measurement is disabled, and the analyzer searches for the next occurrence of the enable term.
When the enable term is found, the analyzer acquires more data until disabled again. In this man-
ner, repetitive measurements can be made on a code segment defined in the window. Windowing
can only be used in real-time optional mode.

EXAMPLE: setup trace statements PROC2
setup real-time optional
setup measurement_enable on 111

PROGRAM setup measurement__disable window on 120
(T 1 1
— 1]

ENTRYI 1<—DATA ACQUIRED—>1___ wAITING FOR MEASUREMENT ENABLE

]]
pROCI | —8 | 1 L _ MEASUREMENT SPECIFICATION SATISFIED
L L

EXIT1 ! ‘ ! _ WINDOW
(A

ENTRYZ

PROC2 MEASUREMENT
TINE 71 ENABLED

LINE 120 MEASUREMENT DISABLED

EXIT2 DATA ACQUIRED DURING WINDOWS
— FOR REPETITIVE MODULES

——

ENTRY3

PROC3

- -MEASUREMENT SPECIFICATION SATISFIED

EXT3 1 1 .1 __wmoow

Figure 6-3. Windowing

Real-Time High Level Software Analyzer
Qualifying Measurements

Using Sequential Measurement Enable/Disable Terms

Sequential measurement enable and disable terms can be defined using the followed by param-
eter. Sequential enable and disable terms enable you to uniquely define a software path in your
code as the measurement enable or disable term. The terms may be source program lines or the
entry and/or exit states of program modules. The functional operation of sequential terms is il-
lustrated in figure 6-4.

EXAMPLE: setup measurement_disable

PROGRAM on PROC1 exit followed by
(T PROC2 entry followed_ by
ENTRY1 PROC?2 exit

PROC!

EXITH Measurement is disabled only
ey, after all three events are found
(T in the specified sequence

ENTRYZ
PROC2

l__ MEASUREMENT DISABLE

LINE 115

EXIT2

T
(T

ENTRY3

PROC3

EXIT3

Figure 6-4. Using Sequential Enable/Disable Terms

6-5

Real-Time High Level Software Analyzer

Qualifying Measurements

Using OR’ed Measurement Enable/Disable Terms

You can specify measurement enable/disable terms as OR’ed combinations of terms. When

OR’ed terms are used, the measurement is enabled or disabled on the first occurrence of any one
of the OR’ed terms. The use of OR’ed terms is shown in figure 6-5.

EXAMPLE: setup measurement_enable

PROGRAM on PROC1 entry or
e PROC2 entry or PROC2 exit

ENTRY1

PROCI

EXIT1 Measurement is enabled by first
) occurrence of any of the OR'ed
(T events

ENTRY2

PROC2

— - o MEASUREMENT ENABLE

EXIT2

—
(T

ENTRY3

PROC3

EXIT3

Figure 6-5. Using OR’ed Enable/Disable Terms

6-6

Real-Time High Level Software Analyzer
Qualifying Measurements

Number of Enable/Disable Terms

A combined total of up to six enable and disable terms can be specified in real-time required
mode. These six terms can be used in any combination of OR’ed or sequential terms. In real-
time optional mode, six enable terms are available and six or less disable terms are available. The
number of disable terms available will vary, depending upon the measurement specified.

Interaction Between Measurement Enable/Disable and IMB

The software analyzer can interact with other HP 64000 system modules via the intermodule bus
(IMB). This interaction is defined with the serup trigger enable command, and the setup
measurement _enable and setup measurement disable commands. A measurement enable or dis-
able condition must be defined in order to make interactive measurements over the IMB. If the
enable or disable term is set to any _state, the IMB specification (setup trigger enable) controls the
measurement enable or disable function of the software analyzer. If an enable or disable term is
defined, that term is combined with the setup trigger enable condition to define a sequential en-
able or disable condition. The any _state parameter should be used only when making interactive
measurements over the IMB. When any state is specified, one state must occur before the
measurement is enabled. When operating your software analyzer stand-alone, this may cause data
to be lost at the beginning of your measurement.

See chapter 11 for detailed information on IMB measurements.

TRIGGER ENABLE RECEIVED. If trigger_enable received is specified, a trigger enable must be
received from another HP 64000 analysis subsystem before the software analyzer starts looking for
the measurement enable or disable condition. The trigger enable becomes the first term in a
sequential measurement enable or disable condition.

TRIGGER ENABLE DRIVEN. If trigger _enable driven_only is specified, the software analyzer first
looks for its measurement enable or disable condition. Upon finding the measurement enable or
disable condition, the software analyzer drives the trigger enable line high, enabling another HP
64000 analysis subsystem, if one is set up to receive trigger enable.

6-7

Real-Time High Level Software Analyzer
Qualifying Measurements

— measurement enable

measurement _enable is used with the setup command to define conditions that must be met to en-
able execution of the specified software analyzer measurement.

Syntax

The command syntax for the setup measurement enable command is shown in figure 6-6.

measurement__enable off r <RETURN>

{ \ v

>(any_state)
~
file <FILE> —J

| <MODULE>
file <FILE>

<LINE>

o—
followed_by }—f

Figure 6-6. Setup Measurement_Enable Command Syntax

Default Value

off

6-8

Real-Time High Level Software Analyzer
Qualifying Measurements

Parameters

any_state

entry

exit

file

<FILE>

followed by

<LINE>

<MODULE>

off

on

or

Examples

measurement enable —

(Cont'd)

any _state specifies that measurement enable is to be set true on any state
occurring in program execution. This is intended for use with IMB
measurements. The off parameter should be used with stand-alone soft-
ware analyzer measurements.

entry specifies that the measurement be enabled on entry to the specified
module.

exit specifies that the measurement be enabled on exit from the specified
module.

file indicates that the name of a source file follows. NOTE: A colon (:) may
be used in place of pressing the file softkey. If the module or line is in the
defined default path, file may be omitted in the command statement.

<FILE> is an optional parameter that refers to the source file containing the
line or module specified in the command statement. If the module or line is
in the defined default path, the <FILE> parameter may be omitted in the
command statement.

followed by is used to specify sequential enable conditions.

<LINE> represents the line number of a Pascal or C statement in the source
program. If the specified <LINE> contains only comments (no executable
code), the analyzer will associate the line number with the first line containing
executable code following it.

<MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure, function or the main program within a specified file. In
C, a module can be the name of a function within a specified file.

of f turns off the measurement enable function. This causes the analyzer to
always be enabled.

on is a delimiter that indicates the measurement enable conditions im-
mediately follow on the command line.

or is a logical operator for inclusive ORing of terms for the measurement en-
able conditions.

setup measurement_enable on 111 file BUB_SORT

setup measurement _enable on PROC2:BUB_SORT exit or 115
followed by PROCS3 entry

setup measurement enable any state

setup measurement _enable off

6-9

Real-Time High Level Software Analyzer
Qualifying Measurements

— measurement _disable

measurement _disable is used with the serup command to define conditions that must be met
to disable execution of the specified software analyzer measurement.

Syntax

The command syntax for the setup measurement _disable command is shown in figure 6-7.

measurement_disable \f 1 off <RETURN>

==

(\ v

(any_state)
file <FILE> ——J

<MODULE>
|

file <FILE>

<LINE>

@—
followed_ by)(—j

Figure 6-7. Setup Measurement_Disable Command Syntax

-

Default Value

off

6-10

Real-Time High Level Software Analyzer
Qualifying Measurements

Parameters

any_state

entry

exit

file

<FILE>

followed_by

<LINE>

<MODULE>

off

on

or

window

measurement disable —

(Cont'd)

any _state specifies that measurement disable is to be set true on any state
occurring in program execution. This is intended for use with IMB
measurements. The off parameter should be used with stand-alone soft-
ware analyzer measurements.

entry specifies that the measurement be disabled on entry to the specified
module.

exit specifies that the measurement be disabled on exit from the specified
module.

file indicates that the name of a source file follows. NOTE: A colon (:) may
be used in place of pressing the file softkey. If the module or line is in the
defined default path, file may be omitted in the command statement.

<FILE> is an optional parameter that refers to the source file containing the
line or module specified in the command statement. If the module or line is
in the defined default path, the <FILE> parameter may be omitted in the
command statement.

followed by is used to specify sequential disable conditions.

<LINE> represents the line number of a Pascal or C statement in the source
program. If the specified <LINE> contains only comments (no executable
code), the analyzer will associate the line number with the first line containing
executable code following it.

<MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure, function or the main program within a specified file. In
C, a module can be the name of a function within a specified file.

off turns off the measurement disable function.

on is a delimiter that indicates the measurement disable conditions im-
mediately follow on the command line.

or is a logical combinatoric for inclusive ORing of terms for the measurement
disable conditions.

window allows the software analyzer to re-enable on the measurement en-
able condition after the measurement disable condition has been met. win-
dow allows you to make repetitive measurements in the program execution
range specified by the "window".

Real-Time High Level Software Analyzer
Qualifying Measurements

— measurement disable

(Cont'd)

Examples

setup measurement_disable on PROC2:BUB_SORT exit followed_by
PROC3 entry

setup measurement disable window on 115

setup measurement _disable any_state

setup measurement disable off

6-12

Real-Time High Level Software Analyzer
Qualifying Measurements

MEASUREMENT QUALIFICATION EXAMPLE

The following measurement example shows how the measurement enable and disable conditionals
can be used to qualify the data acquired by the software analyzer.

Source Program Lines

The following source program segment is used in the measurement example:

80
81
82
83
84

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
1M
112

BEGIN (*PROC2 MAIN BODY*)

PTR*.I := PTR".I-1;
Y:=1;
D:=D-1; (*Scoped variable*)

COLOR_SET:= [BLACK,BROWN];

IF COUNT = 10
THEN COUNT:=0
ELSE
BEGIN
COUNT := COUNT+1;
COLOR_SET := COLOR_SET + [WHITE,
PROC2(SNN, SNV, SVN, SVV,DN,DV,PTR);
END;

T:=P2;
S:=T*pP2;
NEW VALUE :=T-S;

IF P2 <> 0 THEN Y:=Y/P2;

IF NEW _VALUE <> 0 THEN TIME_VARIABLE
U.FLAG := TRUE;

IF U.FLAG = TRUE THEN U.N:=T+S;

END; (*PROC2 MAIN BODY*)

Measurement Setup

GREEN 1;

1= T*((S+Y)/NEW_VALUE);

For this measurement example, the software analyzer is setup to repetitive trace execution of the
IF .. THEN .. ELSE statement on source program lines 94 through 101. This is done by tracing
statements in procedure PROC2 with a window defined around the IF .. THEN .. ELSE statement.
This is accomplished with the following series of commands:

setup
setup
setup
setup

real time optional

measurement _enable on 94
measurement _disable window on 100
trace statements PROC2

6-13

Real-Time High Level Software Analyzer
Qualifying Measurements

Note that real time optional is required when using the window function. The file option is
omitted in the command statements because PROC2 is contained in the default path. See the
setup display in figure 6-7.

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

TRACE STATEMENTS

module / line file
PROC2 NT1:TESTP
ENABLE on

line 94 file NT1:TESTP

DISABLE window on
line 100 file NT1:TESTP

RUN_ AT _EXECUTION from
transfer_address

DEFAULT_PATH
file NT1:TESTP

STATUS: Database search successful 16:19

setup trace statements PROC2

run setup db check display modi fy show execute ---ETC---

Figure 6-7. Setup Display For Trace Qualification Example

Measurement Display

Executing the measurement results in the measurement display shown in figure 6-8. Note that the
analyzer has repetitive traced lines 94,98,99, and 100, program execution of the ELSE statement in
the program listing. This is what we expect to see, since the value of COUNT is not equal to 10.
(See Symbol and Value fields opposite line 99. The Symbol and Value fields are offset from their
corresponding statements because of processor instruction prefetch.) By rolling the measurement
display up until we see a COUNT value of 10 (figure 6-9), we see the THEN statement being ex-
ecuted at line 95. Since the disable condition is in the ELSE statement which is not executed, the
analyzer continues to trace statements after line 100.

This example illustrates how measurement qualification can be used to trace program execution at
precisely the location you need to look at, simplifying your software analysis task.

6-14

Real-Time High Level Software Analyzer
Qualifying Measurements

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

Source Symbol Value Stat Time-rel
Break for new stack information
94 IF COUNT = 10 0.0 us
98 COUNT := COUNT+1; 1.3 us
99 COLOR_SET := COLOR_SET + [WHIT* COUNT 0 read 1.2 usS
99 " COUNT 1 write 2.6 usS
100 PROC2(SNN,SNV,SVN,SVV,DN,DV,PTR* COLOR_SET [BLACK,BROW* read 2.3 uS
Break for new stack information
- Window disable occurred --
Break for new stack information
94 IF COUNT = 10 0.0 us
98 COUNT := COUNT+1; 1.5 us
99 COLOR _SET := COLOR_SET + [WHIT* COUNT 1 read 1.2 uS
99 " COUNT 2 write 2.4 uS
100 PROC2(SNN,SNV,SVN,SVV,DN,DV,PTR* COLOR_SET [BLACK,BROW* read 2.1 us
Break for new stack information
STATUS: Awaiting Command 30 _ 16:12
run setup db check display modify show execute ---ETC---
Figure 6-8. Measurement Display Showing ELSE Statement Execution
64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4
Source Symbol Value Stat Time-rel
Break for new stack information
94 IF COUNT = 10 0.0 us
98 COUNT := COUNT+1; 1.3 us
99 COLOR_SET := COLOR_SET + [WHIT* COUNT 0 read 1.2 usS
99 " COUNT 1 write 2.6 usS
100 PROC2(SNN,SNV,SVN,SVV,DN,DV,PTR* COLOR_SET [BLACK,BROW* read 2.3 uS
Break for new stack information
- Window disable occurred --
Break for new stack information
94 IF COUNT = 10 0.0 us
98 COUNT := COUNT+1; 1.5 us
99 COLOR_SET := COLOR_SET + [WHIT* COUNT 1 read 1.2 us
99 " COUNT 2 Write 2.4 us
100 PROC2(SNN,SNV,SVN,SVV,DN,DV,PTR* COLOR_SET [BLACK,BROW* read 2.1 us
Break for new stack information
STATUS: Awaiting Command 30 _ 16:12
run setup db check display modify show execute ---ETC---

Figure 6-9. Measurement Display Showing THEN Statement Execution

6-15

Real-Time High Level Software Analyzer
Qualifying Measurements

NOTES

6-16

Chapter 7

CONTROLLING THE EMULATOR

OVERVIEW

This chapter provides the following information:
* A description of the software analyzer/emulator interface

* An explanation of how the analyzer and emulator communicate with each
other.

* How to use the emulation monitor

® Detailed descriptions of the emulation commands executable from the
software analyzer.

GENERAL INFORMATION

The software analyzer uses the emulation subsystem or your target system as an execution en-
vironment. The software analyzer includes a subset of the emulator commands to enable you to
control emulation from within the analyzer. These commands are break, load, reset, and run.
These are the four basic commands needed to control a user’'s program running in emulation
memory. The incorporation of the emulator commands simplify the interface between you and the
system by providing the means for you to control the emulator without exiting the software

analyzer.

EMULATION INTERFACE

Emulation Configuration File

When you invoke the software analyzer with the sw_anl N command, you must specify a file
name. This file name can be the name of a emulation command file or the name of a software
analyzer configuration file. When both file types exist with the same file name, the software
analyzer configuration file is used.

The emulation command file is the command file that was used in emulation to configure the
emulator for a particular application. This file is generated during the emulation session and con-
tains your answers to a series of questions ending with "Command file name?". This command
file name is used to create a file of type "emul_com" (emulation command). The software analyzer
uses this command file to determine which emulator is used for software analysis. This configura-
tion file is also used to determine the state of the emulator. When an emulation command file is

7-1

Real-Time High Level Software Analyzer
Controlling the Emulator

specified, the software analyzer is always reconfigured to the specified emulator. The current
software analyzer configuration is lost.

The software analyzer configuration file is created with the configuration save_in command
during a software analysis session. The software analyzer uses the configuration file to determine
which emulator is used for software analysis. The configuration file also configures the software
analyzer for a measurement.

When no file is specified, the software analyzer prompts you with the question "Emulation com-
mand file?". You must specify an emulation command file before the system will allow you ac-

cess to the software analyzer.

Loading The User Program

User programs can be loaded from within the software analyzer module (refer to the descriptions
of the emulation commands and their syntax in this chapter). After the emulation configuration is
complete, load the absolute file into emulation memory using the lead command. If the address
range into which a program is to be loaded resides entirely in internal emulation memory, the
processor remains in the reset state. If any portion of the program resides in memory which has
been mapped as external user memory, the processor is released from the reset state. After load-
ing all portions of the file which are to reside in emulation memory, a handshake is performed to
determine if the processor is executing in the emulation monitor program and, if not, a break is
performed. When the processor is in the monitor, the user memory portion of the program is
loaded. This sequence can be performed manually by using the options of the lead command
which specify the portion of memory to be loaded.

If your program resides in ROM in your target system, the absolute file name must be specified
with the setup absolute file command in order for the software analyzer to perform measure-
ments on the code.

NOTE

When using the HP 64243AA/B or HP 64245AA/AB emulators, the ab-
solute file will be loaded to the last address space specified in the
emulator, i.e. supervisor or user program space, supervisor or user data
space, etc.

NOTE

When the emulator is running in the monitor, the processor must be reset
before an absolute file containing the emulation monitor program can be
loaded.

Selecting The Emulation Analysis Mode (64243,64245 Emulators only)

The emulator analysis mode must be set to bus_cycle _data in order to use the software analyzer.
From within the emulation subsystem, execute the command medify analysis _mode_to
bus_cycle_data. If the emulation analysis mode is not set to bus_cycle_data, the error message
"Incorrect analysis bus mode for this analyzer" is displayed on the status line when you attempt to
access the software analyzer.

7-2

Real-Time High Level Software Analyzer
Controlling the Emulator

Running The User Program

Once the program has been loaded, release the processor from the reset state with the run com-
mand. If the command is issued as the single keyword run, the processor will use the start-up vec-
tor or routine to start execution in the emulation monitor. The status line will display "Running in
monitor" indicating that the HP 64000/monitor handshake is being performed.

RUNNING YOUR PROGRAM IN REAL-TIME OPTIONAL MODE. From the emulation monitor, you
can use the single keyword run to start execution of the your program in real time optional
mode. When the command run is given, program execution begins at the transfer address
specified in the source program. Thereafter, run will cause execution to begin at the address con-
tained in the program counter (PC) register.

RUNNING YOUR PROGRAM IN REAL-TIME REQUIRED MODE. In real time required mode, ex-
ecuting the single keyword run will release the processor reset line. To start execution of the user
program, you must specify a from state in the run command statement.

COMMUNICATION BETWEEN THE SOFTWARE
ANALYZER AND EMULATION

The software analyzer communicates with the emulation processor by transferring data to and
from emulation memory. Data transfer is accomplished through the memory controller board into
the emulation memory boards. The memory controller contains a hardware mapper that is
programmed by the emulation command file to map the emulation processor address space into
emulation or user memory spaces designated as RAM and/or ROM memory.

The software analyzer controls the emulation processor reset and break functions directly through
the emulation control board. Refer to your HP 64000 System Emulation/Analysis manual for a
more detailed description of how the HP 64000 host processor controls emulation.

The software analyzer and the emulator communicate the status of the emulator hardware to each
other. Whenever the emulation hardware is modified by either the software analyzer or the
emulator, the hardware change is reflected when the other module is entered. Note that the status
of the hardware is communicated to the other module only if the modules are exited using the end
softkey.

USING THE EMULATION MONITOR

The software analyzer makes extensive use of the emulation monitor in the real time optional
mode. If real _time optional is specified, the emulation monitor must be linked with your program
and must reside in emulation memory. The emulation monitor is not required in the real time
required mode. The monitor supplied with the emulation software is designed to work with the
software analyzer. If you have modified this monitor, it is possible that the software analyzer may
not function properly. To verify that a modified monitor is functioning properly, perform the follow-
ing procedure:

7-3

Real-Time High Level Software Analyzer

Controlling the Emulator
1. Access the emulator and load the absolute file containing the modified monitor.
2. Set the emulator such that it is running in the emulation monitor.

3. Verify that the display registers, modify memory, and display memory commands execute
correctly.

4. Verify that program execution is transferred to the monitor and that the "running in monitor"
message is displayed when a break is executed.

All of the preceding features and functions must execute correctly to ensure proper operation of
the software analyzer. If any of the above steps fail, modify your emulation monitor until the
problem is corrected.

7-4

Real-Time High Level Software Analyzer
Controlling the Emulator

break —

The break command causes the processor to be diverted from execution of the user program to
the emulation monitor. A break is defined as a transition from execution of a user’s program to the
Emulation Monitor.

Syntax

The syntax for entering the break command is shown in figure 7-1.

(break } <RETURN>

Figure 7-1. Break Command Syntax Diagram

Default Value

None

Parameters

None

Break Command Example

break

7-5

Real-Time High Level Software Analyzer
Controlling the Emulator

— load

The load command transfers absolute code from the HP 64000 system disc into user RAM or
emulation memory. The destination of the absolute code is determined by the memory configura-
tion map which was set up during emulation configuration and the address specified during link-
ing. When using the HP 64243AA/B or HP 64245AA/AB emulators, the absolute file will be loaded
to the last address space specified in the emulator, i.e., supervisor or user program space, super-
visor or user data space, etc.

NOTE

When the emulator is running in the monitor program and a /lead com-
mand is given which reloads the monitor, the results are unpredictable. If
a reload of the monitor is required, first put the emulator in the reset
mode.

Syntax

The load command syntax is shown in figure 7-2.

(load)~ > <FILE> <RETURN>
\—{emulation_memo@—/

user __memory

Figure 7-2. Load Command Syntax Diagram

Default Value

all memory

Parameters

emulation_memory emulation _memory specifies that absolute code is to be loaded into
emulation memory. The destination of the absolute code is determined by
the address specified during linking.

7-6

Real-Time High Level Software Analyzer
Controlling the Emulator

load —

(Cont'd)

<FILE> <FILE> is the identifier of the absolute file to be loaded from the HP 64000
system memory into user RAM or emulation memory The syntax require-
ments for <FILE> are discussed in Appendix B.

user_memory user _memory specifies that the absolute program be loaded into user RAM
in the target system. In the context of the load command, user__memory

refers to target system memory.

Load Command Examples

load TESTP
load emulation _memory TESTP
load user _memory TESTP

7-7

Real-Time High Level Software Analyzer
Controlling the Emulator

—reset

The reset command suspends target system operation and reestablishes initial operating para-
meters, such as reloading control registers. The reset signal is latched when active and is released

by the run command.

Syntax

The command syntax for executing the reser command is shown in figure 7-3.

(reset) <RETURN>

Figure 7-3. Reset Command Syntax Diagram

Default Value

None

Parameters

None

Reset Command Example

reset

7-8

Real-Time High Level Software Analyzer
Controlling the Emulator

run —

When the processor is in a reset state, run causes the reset to be released, and if a from address
is specified, the processor is directed to that address. The program can either be run from (1) the
transfer address of the user’s program, (2) a specified address, (3) a specified line number in the
source code, (4) from the entry point of a specified module, (5) from the address currently stored in
the processor’s program counter, or (6) from a global symbol.

When the single keyword run is executed when the processor is reset, the reset vector directs
program execution to the emulation monitor. When run is executed after a break, program execu-
tion begins with the next PC.

RUNNING IN REAL-TIME OPTIONAL MODE.
In real time optional mode, executing the single keyword run while in the emulation monitor
causes the user program to start executing from the transfer address specified in the source

program.

RUNNING IN REAL-TIME REQUIRED MODE.

In real _time required mode, executing the single keyword run while in the emulation monitor sim-
ply restarts the emulation monitor through the reset vector. A from term must be specified to
begin execution of the user program when in the emulation monitor with real-time required.

RUN AT_EXECUTION. A "run at_execution” command causes the user’s program to start running
after the execute softkey has been pressed. This enables the trace measurement to be started
before beginning program execution, ensuring that the analyzer can trace all code executed start-
ing with the "run from" location.

NOTE

When using the run at execution command, do not configure your
measurement for measurement_enable on any state (unless used with
trigger enable) or trace statements "don’t care". Either of these con-
figurations may cause the analyzer to acquire invalid data (the emulation
monitor).

Syntax

The syntax for executing the run command is shown in figure 7-4.

Default Value

If no from option is specified with the run command, the emulator will begin program execu-
tion at the current address specified by the processor’s program counter.

7-9

Real-Time High Level Software Analyzer

Controlling the Emulator

— un

(Cont'd)

<RETURN>

run
’*ﬁ{ at_execution })I off

~
A

from

Parameters

address

<ADDRESS>

at_execution

file

<FILE>

from

<LINE>

off

> <LINE>

—>{ <SYMBOL> L-(fle)| <FILE>
) J

;»(transfer_address)

<ADDRESS> 1

Figure 7-4. Run Command Syntax Diagram

address indicates the information that follows is an address constant
specified in binary, octal, decimal, or hexadecimal.

<ADDRESS> represents an address within the absolute file loaded into
user or emulation memory from which the processor will begin program
execution. The syntax allows specification of a positive or negative offset
from the absolute address.

at_execution causes the program to start running from a specified loca-
tion at execution of a trace measurement.

file indicates that the name of a source file follows. NOTE: A colon ()
may be used in place of pressing the file softkey.

<FILE> represents the name of the source file containing the address,
line, or symbol from which the processor is to begin program execution.

from specifies that the location in the user’s program from which
program execution will begin follows in the command line.

<LINE> allows you to specify a line number in the source code as the
starting point for program execution. Program execution begins at the
absolute address containing the first executable instruction associated
with the source line.

of f turns off the at_execution parameter.

7-10

Real-Time High Level Software Analyzer
Controlling the Emulator

run —

(Cont'd)

<SYMBOL> <SYMBOL> allows you to specify program execution to run from a
specified symbol. If a file name is specified with <SYMBOL>, the
analyzer assumes that the symbol is a module in the specified file. If no
file is specified with <SYMBOL>, the analyzer first looks for the address
of a global symbol in the link_sym file associated with the currently
loaded absolute file. If no global symbol is found there, the analyzer then
searches for a module in the current default file.

transfer_address transfer _address specifies that the emulator begin program execution at
the address stored in the transfer buffer (XFR_BUF). This is the starting
address of the user program.

Run Command Examples

run
run at_execution from transfer_address
run from 173 file TESTP

run from PROC2

run from address 3490H

Real-Time High Level Software Analyzer
Controlling the Emulator

NOTES

7-12

Chapter 8

MAKING TRACE MEASUREMENTS

OVERVIEW

This chapter describes the following software analyzer trace measurements:
®* Trace data_flow
®* Trace modules
® Trace statements

®* Trace variables

GENERAL INFORMATION

The software analyzer has four trace measurement modes. These modes are (1) trace data_flow ,
(2) trace modules, (3) trace statements, and (4) trace variables. This chapter provides detailed
descriptions of each trace measurement mode, including a general description of the measure-
ment, any anomalies that may exist in the measurement, syntax diagrams, softkeys used in each
operating mode, and examples of each measurement.

If you have any difficulties or problems when executing trace measurements, see appendix E,
Resolving Measurement Problems, for possible solutions.

NOTE

The software analyzer does not distinquish between supervisor and user
modes. If these modes are used to map multiple physical addresses to
one logical address, the software analyzer will correlate all physical ad-
dresses with the last program loaded. This will probably result in er-
roneous data being displayed in the measurement display.

8-1

Real-Time High Level Software Analyzer
Making Trace Measurements

— trace data flow

The trace data_flow measurement traces the values of specified variables or parameters on entry
to and exit from selected procedures or functions in a program. The traced variables must be ac-
cessible at the procedure entry point, exit point, or both. Static variables can always be accessed.
Local variables can be accessed only if the variable (1) belongs to a parent procedure, (2) is a
pass-by-reference parameter to the specified procedure, or (3) is a pass-by-value parameter and
measurement is with procedure entry.

If the variable is local to the associated module, it can never be accessed since none of a module’s
local variables are created until after module entry and they are removed from the stack before
module exit. Value parameters are active only at procedure entries, and reference parameters are
always active with respect to their procedure. If a value parameter is requested on exit to its pro-
cedure, a warning message will be displayed and no values of that parameter will be displayed.

Up to ten symbols may be specified in the setup trace data_flow command in combinations of
procedures (functions) and variables. A maximum of three procedures can be traced. For ex-

ample, the setup command could call for nine variables to be traced in one procedure, four vari-
ables to be traced in each of two procedures, or a total of seven variables to be traced in three

procedures.

Command Syntax

The command syntax for setting up the trace data_flow measurement is shown in figure 8-1.

Parameters

The following paragraphs define the parameters used in the setup trace data_flow command.

c_variable c_variable may be any valid C variable in the of the following expression
format.

c_variable

P
()

. >

entry entry specifies that data be traced only on entry to the specified
module(s). The default value is to trace data on both entry to and exit
from a module.

exit exit specifies that data be traced only on exit from the specified
module(s).

8-2

Real-Time High Level Software Analyzer
Making Trace Measurements

trace data flow —

T (Cont'd)

trace data_ flow

setup
N
<MODULE>
file <FILE> entry
exit
(p_variable (>
¢_variable J
proc <PROC> file <FILE>
L 2\ J
N
<RETURN>
Figure 8-1. Setup Trace Data_Flow Syntax Diagram
file file indicates that the name of a source file follows. NOTE: A colon (:)
may be used in place of pressing the file softkey.
<FILE> <FILE> is an optional parameter that refers to the source file containing
the specified <MODULE>, <VAR>, or <PROC> called out in the command
statement. If the <MODULE>, <VAR>, or <PROC> is in the defined
default path, the <FILE> parameter may be omitted from the command
statement.
<INDEX> Represents an index value (integer or scalar value) specifying a com-
ponent of an array.
<MODULE> <MODULE> represents the name of a contiguous segment of code with a

single entry point and a single exit point. In Pascal, a module can be the
name of a procedure or a function within a specified file. In C, a module
can be the name of a function within a specified file. The trace data_flow
measurement traces the specified variables on entry to and/or exit from
the <MODULE> as specified in the command line. A given module can
only be specified once.

8-3

Real-Time High Level Software Analyzer
Making Trace Measurements

(Cont'd)

proc

<PROC>

p_variable

<VAR>

trace data flow

proc indicates that a procedure or function name follows that defines the
procedure or function to which a variable belongs. NOTE: an "@" may be
used in place of proc.

<PROC> is an optional parameter that refers to a procedure or function in
which <VAR> is declared. If <PROC> is defined in the setup default path
command, it may be omitted in the setup trace data flow command. If
<PROC> is not specified in either the default path or the setup trace
data_flow command, the analyzer assumes that <VAR> is a global variable
defined at the main program level.

p_variable may be any valid Pascal variable in the following expression
format.

p_variable -

<INDEX>

<VAR> represents the name of a variable or parameter to be traced on
entry to and/or exit from a <MODULE>. <VAR> can be any valid Pascal
or C variable expression.

Setup Command Examples

The following command examples illustrate how to use the setup trace data flow command to
define measurements.

setup trace data_flow PROC2(COUNT,D proc PROC1,PTR proc PROC2)

setup trace data_flow PROC1 (SN proc PROCI , SV proc PROC1)
PROC2 (SNN proc PROC2 , SVN proc PROC2 , COUNT)

setup trace data_flow PROC1 (AR[1,2,3], RC.E1.EZ)

setup trace data_flow PROC1 (A*B*.C")

setup trace data_flow proc2 (*a->b->C)

Trace Data_Flow Measurement Example

The following example shows several lines of a program, a setup trace data_flow command for
the program segment, and the resulting trace display.

8-4

Real-Time High Level Software Analyzer
Making Trace Measurements

trace data flow —

T (Cont'd)
SOURCE PROGRAM LINES. The following source program segment is traced in the trace
data_flow measurement example.

137 PROCEDURE PROC4(A:INTEGER);

143 PROCEDURE PROCT0(XV:INT; VAR XN:INT; YV:PTR; VAR YN:PTR);

151 BEGIN (*MAIN PROGRAM*)

183 PROC4 (COUNT+2);

201 PROCTO(X,X,Y,Y);
SETUP MEASUREMENT COMMAND. The following setup trace data_flow command results in
the setup display shown in figure 8-2. Note that since A[RED] and X are defined at the program
level, they are not associated with a "proc" in the setup display.

setup trace data_flow PROC10 (XV proc PROC10, XN proc PROC10, YV proc

PROC10, YN proc PROC10, A[RED]) PROC4 (X)

64340 Software Analyzer: Slot 6 with emé68000 Emulator: Slot 4

TRACE DATA_FLOW

module variable proc file

PROC10 entry_exit NT1:TESTP
XV PROC10 NT1:TESTP
XN PROC10 NT1:TESTP
YV PROC10 NT1:TESTP
YN PROC10 NT1:TESTP
A[RED] NT1:TESTP

PROC4 entry_exit NT1:TESTP
X NT1:TESTP

ENABLE off

DISABLE off

STATUS: Database search successful 16:19

setup trace data_flow PROC10 (XV proc PROC10 , XN proc PROC10 , YV proc PROC1
0 , YN proc PROC10 , A[RED]) PROC4 (X)

run setup db check display modify show execute ---ETC---

Figure 8-2. Trace Data_Flow Setup Display

8-5

Real-Time High Level Software Analyzer
Making Trace Measurements

— trace data flow

(Cont'd)

MEASUREMENT DISPLAY. Figure 8-3 shows the measurement display resulting from the preced-
ing setup specification. The trace list shows that PROC4 is called from line 183 and PROC10 is
called from line 201. The values of the variables are shown immediately following the entry or exit
of the corresponding module. Note that when PROC10 is exited, XV and YV are not active and are

not displayed.

Note also that YV and YN are pointers and their values are the values of the pointers themselves,
not the objects of the pointers. The software analyzer will trace the object of a pointer. If the vari-
able YN~ (*yv in C) had been specified, the value of the object pointed to by pointer YV would have
been displayed in the trace list. The software analyzer can trace seven levels of indirection.

In the C programming language, array parameters without an explicitly defined size cannot be
traced as a whole.

Source lines displayed by trace data_flow measurements are not affected by instruction prefetch
mechanisms. Source lines are not shown for exits.

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

Symboll Value Stat Source
PROC4 entry 183 PROC4(COUNT+2);
X -1
PROC4 exit
X -1
PROC10 entry 201 PROC10(X,X,Y,Y);
XV 10
XN 10
YV 00000300CH
YN 00000300CH
A[RED] RED
PROC10 exit
XN 1"
YN 00000300CH
A[RED] RED
PROC4 entry 183 PROC4(COUNT+2);
STATUS: Awaiting Command 20 16:12
run setup db check display modify show execute ---ETC---

Figure 8-3. Trace Data_Flow Measurement Display

8-6

Real-Time High Level Software Analyzer
Making Trace Measurements

trace modules —

The trace modules measurement provides an overview of a program’s control flow at the module
level. This measurement allows you to isolate a problem to a specific module and provides a his-
tory of the module calls leading up to the problem. The entry and exit points of procedures and
functions are traced and displayed with indentation used to indicate the level of nesting of the
traced modules. The measurement can be set up to measure all modules or selected modules
within a file or group of files. A total of 135 to 279 modules can be traced, depending on the

number of files being traced.

When tracing recursive modules, each successive level of recursion is indented in the trace list.
For large numbers of recursion levels, this may result in the data being shifted off the right side of
the trace list display. This is indicated by an asterisk (*) displayed in the last display column.
Recursive modules are indented relative to the outermost recursion level traced.

If a module name is longer than the symbol field width or the recursion level is deep, an asterisk is

displayed in the last column of the symbol field. To display the entire name of a module, increase
the symbol field width using the display command.

Command Syntax

The command syntax for setting up the trace modules measurement is shown in figure 8-4.

setup trace modules

<

> all } <RETURN>

]\—‘

<MODULE > file)——> <FILE>
e
_/

Figure 8-4. Setup Trace Modules Syntax Diagram

CEEEE—

Parameters

The following definitions describe the parameters used in the setup trace modules command.

all all specifies that all modules in the designated file or default path be
traced. A maximum of 255 modules may be traced in one file.

8-7

Real-Time High Level Software Analyzer
Making Trace Measurements

file

<FILE>

<MODULE>

trace modules

(Cont'd)

file indicates that the name of a source file follows. NOTE: A colon (:) may
be used in place of pressing the file softkey.

<FILE> is an optional parameter that refers to the source file containing the
specified modules called out in the command statement. If the <MODULE>
is in the defined default path, the <FILE> parameter may be omitted from the
command statement.

<MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure or a function within a specified file. In C, a module can
be the name of a function within a specified file. The trace modules
measurement traces the entry and exit points of the specified modules.

Setup Command Examples

The following command examples illustrate how to use the setup trace modules command to
define measurements.

setup trace modules all

setup trace modules all file BSORT , all file TESTP ,
PROC1 , PROC2

setup trace modules PROC1 , PROC4 , PROCS

Trace Modules Measurement Example

The following example shows the use of the setup trace modules command and shows a sample
setup display and the resulting measurement display.

SETUP MEASUREMENT COMMAND. The following setup trace modules command specifies that
the software analyzer trace all modules in file Util and in file Fact.

setup trace modules all file Fact, all file Util

Figure 8-5 shows the setup display resulting from execution of the setup command.

8-8

Real-Time High Level Software Analyzer
Making Trace Measurements

trace modules —

(Cont'd)

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

TRACE MODULES

module file
all Fact:TESTP
all Util:TESTP

RUN_AT_EXECUTION from
transfer_address

DEFAULT_PATH
file TEST_68:TESTP

REAL_TIME
optional

STATUS: Database search successful 16:19

setup trace modules all file Fact , all file Util

run setup db check display modify show execute ---ETC---

Figure 8-5. Trace Modules Setup Display

MEASUREMENT DISPLAY. The trace list in figure 8-6 shows the sequence of entries and exits for
all modules in source files Util and Fact. In this example procedure factorial is recursive. The
recursive descent can be seen in the succession of "entry"s in the Status field and also by the in-
dentation of the procedure name in the Symbol field. The recursive ascent is shown in a similar
manner.

Source lines displayed by trace modules measurements are not affected by instruction prefetch
mechanisms. Source lines are not shown for exits.

8-9

Real-Time High Level Software Analyzer
Making Trace Measurements

trace modules

(Cont'd)

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

Symbol Stat Time-rel Source
swap_elements_a entry 12.6 uS 105 swap_elements_at (large_index,cu
swap_elements_a exit 5.3 us
sort exit 5.2 us
factorial entry 171.0 uS 133 factorial (value);
factorial entry 579.0 us 121 else { descend_factor = value *
factorial entry 580.7 uS 121 else { descend_factor = value *
factorial entry 579.5 us 121 else { descend_factor = value *
factorial entry 580.9 uS 121 else { descend factor = value *
factorial entry 577.6 us 121 else { descend_factor = value *
factorial entry 580.1 us 121 else { descend_factor = value *
factorial entry 579.5 uSs 121 else { descend factor = value *
factorial entry 580.3 us 121 else { descend_factor = value *
factorial exit 13.7 us
factorial exit 13.6 us
factorial exit 13.8 us
STATUS: Awaiting Command 20 16:12
run setup db check display modify show execute ---ETC---

Figure 8-6. Trace Modules Measurement Display

8-10

Real-Time High Level Software Analyzer
Making Trace Measurements

trace statements —

The trace statements measurement gives you a detailed view of a small section of code. The
measurement traces the execution of source language statements and variables in each statement
in a defined source program line range or a specified module. Each source statement is displayed
with its line number and the value of variables referenced in the source statement. NOTE: the
value of dynamic variables are not displayed in real-time required mode.

Some processors prefetch instructions prior to their execution. Prefetches have the following ef-
fects on the trace statements measurements:

1. Accesses to variables by instructions executed immediately prior to the address range being
traced will appear as accesses occurring within the address range.

2. Accesses to variables by the last instructions executed within the address range being traced
may not appear.

3. The symbol and value fields in the display may be offset from their corresponding source
lines.

The trace statements measurement only displays variables accessed by the statements being
traced. Any accesses caused by procedures or functions outside of the traced range are not
shown. For example, if a variable is modified by a compiler library, that variable will not appear in
the trace statements trace list.

A "don’t care" trace statements measurement can be set up by entering a trace statements com-
mand with no parameters (setup trace statements). When the measurement is enabled,
the software will trace all bus states, including emulation monitor code and library routines. This
measurement can be useful in determining which library files are called by a source statement and
in determining where your program may have went "into the weeds". NOTE: ALWAYS use this
measurement in REAL_TIME REQUIRED mode.

Command Syntax

The command syntax for setting up the trace statements measurement is shown in figure 8-7.

<LINE> <LINE>
<MODULE> m <FILE>

<RETURN>

Figure 8-7. Setup Trace Statements Syntax Diagram

Real-Time High Level Software Analyzer
Making Trace Measurements

— trace statements

(Cont'd)

Parameters

The following definitions describe the parameters used in the setup trace statements command.

file

<FILE>

<LINE>

<MODULE>

file indicates that the name of a source file follows. NOTE: A colon (:)
may be used in place of pressing the file softkey.

<FILE> is an optional parameter that refers to the source file containing
the specified <MODULE> or line range called out in the command state-
ment. If the <MODULE> or line range is in the defined default path, the
<FILE> parameter may be omitted from the command statement.

<LINE> represents the line number of a Pascal or C statement in the
source program. The two line numbers specified are the boundaries of
the trace measurement. The first line is inclusive and is traced. The
second line (following the to in the measurement specification) is nonin-
clusive and is not traced. If the specified <LINE> contains only com-
ments (no executable code), the analyzer will associate the line number
with the first line containing executable code following it. Any comment
lines preceding the first line of executable code in a procedure or func-
tion are not recognized by the software analyzer. All lines in the
specified line range must be contained within a single module. This
module may be a procedure or function, or the main program block.

<MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure or a function within a specified file. In C, a module
can be the name of a function within a specified file. The trace state-
ments measurement traces source level statements and all variables
referenced in the source statements contains in the specified
<MODULE>.

Setup Command Examples

The following command examples illustrate how to use the setup trace statements command to

define measurements.

setup trace statements PROC2 file TESTP
setup trace statements 74 to 102

Trace Statements Measurement Example

The following example shows several lines of a program, a setup trace statements command for
the program segment, and the resulting trace display.

8-12

Real-Time High Level Software Analyzer
Making Trace Measurements

trace statements

(Cont'd)
SOURCE PROGRAM LINES. The following source program segment is traced in the trace state-
ments measurement example.

68 FUNCTION PROC1(VAR SN:INTEGER; SV:INTEGER):INTEGER;

69 VAR D:INTEGER;

70 MESSY:REC_TYPE PTR;

71

72 PROCEDURE SETUP(VAR SNN:INTEGER; SNV:INTEGER; VAR SVN:INTEGER;
73 SVV:INTEGER; VAR DN:INTEGER; DV:INTEGER;VAR PTR:REC_TYPE_PTR);
80 BEGIN (*SETUP MAIN BODY*)

81

82 PTR".1 := PTR*.I-1;

83 Y:=1;

84 D:=D-1; (*Scoped variable*)

85 P2:=SNN; (*STATIC CALLBYNAME CALLBYNAME*)

86 P2:=SNN; (*STATIC CALLBYNAME CALLBYNAME*)

87 P2:=SNV; (*STATIC CALLBYNAME CALLBYVALUY*)

88 P2:=SVN; (*STATIC CALLBYVALU CALLBYNAME*)

89 P2:=SVV; (*STATIC CALLBYVALU CALLBYVALU*)

90 P2:=DV; (* DYNAMIC CALLBYVALU*)

91 P2:=DN; (* DYNAMIC CALLBYNAME*)

92 COLOR_SET:= [BLACK,BROWN 1;

93

94 IF COUNT = 10

95 THEN COUNT:=0

96 ELSE

97 BEGIN

98 COUNT := COUNT+1;

99 COLOR_SET := COLOR_SET + [WHITE, GREEN J;
100 SETUP(SNN, SNV, SVN,SVV,DN,DV,PTR);

101 END;

;;; BEGIN (*PROCT MAIN BODY*)

;éé SETUP (SN,SN,SV,SV,D,D,MESSY".NEXT_REC);
;é% END; (*PROC1 MAIN BODY*)

;;; BEGIN (*MAIN PROGRAM*)

;éé X:=PROCT(COUNT,COUNT+2);

éé; END. (*MAIN PROGRAM*)

SETUP MEASUREMENT COMMAND. The following setup trace statements command results in the
setup display shown in figure 8-8.

setup trace statements SETUP file MAIN

8-13

Real-Time High Level Software Analyzer
Making Trace Measurements

— trace statements

(Cont'd)

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

TRACE STATEMENTS

module / Lline file
SETUP MAIN:TESTP

RUN_AT_EXECUTION from
transfer_address

DEFAULT_PATH
file MAIN:TESTP

REAL_TIME
optional

COUNTER
counts_time

STATUS: Database search successful 16:19

setup trace statements SETUP file MAIN

run setup db check display modi fy show execute ---ETC---

Figure 8-8. Trace Statements Setup Display

MEASUREMENT DISPLAY. Figure 8-9 is a trace statements measurement listing showing the
source lines that were executed and and the values of the variables accessed or modified in the
source lines. "Break for new stack information” indicates that the analyzer has started tracing a
different occurrence (activation) of the procedure.

Accessed Variables Not Traced. Some variables accessed in a source line are not traced. This
includes variables that are maintained in registers rather than in memory. This may occur if the
compiler AMNESIA option is off. In the C programming language, array parameters without an ex-
plicitly defined size are not traced. The value of a pointer variable is traced but the object of the
pointer is not traced.

Effects of Prefetch. The following limitations apply when the analyzer is used with a target
processor which has an instruction prefetch mechanism and an emulator that does not dequeue
the prefetch.

1. Symbols may not line up with the source line that accessed them. This is seen in the sample
display in figure 8-9.

Real-Time High Level Software Analyzer
Making Trace Measurements

trace statements —

(Cont'd)

2. Executed source lines may not be displayed if the number of program fetches for the source
line is less than the depth of the prefetch queue.

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

Source Symbol Value Stat Time-rel

Break for new stack information

82 PTR".1 := PTR".I1-1; PTR 000003028H read 0.0 us
83 Y:=1; 4.3 usS
84 D:=D-1; (*Scoped variable*) Y 1.00000E0 write 481.4 uS
85 P2:=SNN; (*STATIC CALLBYNAME * D 4 read 4.2 usS
3 write 2.4 uS

] SNN 2 read 3.6 us

86 P2:=SNN; (*STATIC CALLBYNAME * P2 2 write 1.3 us
SNN 2 read 5.0 us

87 P2:=SNV; (*STATIC CALLBYNAME * P2 2 write 1.2 uS
SNV 2 read 3.4 us

88 P2:=SVN; (*STATIC CALLBYVALU * P2 2 Write 1.0 us
SVN 4 read 5.1 us

89 P2:=SVV; (*STATIC CALLBYVALU * P2 4 write 1.0 us
STATUS: Awaiting Command 36 _ 16:12
run setup db check display modify show execute ---ETC---

Figure 8-9. Trace Statements Measurement Display (Real-Time Optional)

In a prefetch environment, the source line may be off by plus or minus one line or variables may
be displayed with the wrong source line.

Source Line Blanking. Whenever statements are repeated sequential on the screen, the source line
is displayed only for the first occurrence of the statement. For the 2nd through nth occurrence of
the line, only a quote mark " " " is displayed in the source field. Statements may be repeated for
the following reasons:

1. The statement causes multiple data accesses.

2. The statement contains an implicit loop (e.g., assignment of a large data structure).

3. The statement contains an explicit loop (e.g., WHILE FLAG TRUE DO...).

8-15

Real-Time High Level Software Analyzer
Making Trace Measurements

— trace statements

(Cont'd)

Real-Time Optional Vs. Real_Time Required. The trace statements measurement can be made in
either real-time optional or real-time required modes. However, executing a measurement with
real _time required mode selected, only static variables can be acquired and displayed. The effects
on the measurement can be seen by comparing the display in figure 8-10 with that in figure 8-9.
Note that no dynamic variables were captured in real time required mode (figure 8-10).

Unexpected Symbol Names Displayed In Real-Time Required Mode. When executing a trace
statements measurement in real time required mode, you may see unexpected symbol names
displayed in the symbol field of the measurement display. This occurs if a static variable defined at
the program level is passed by reference to the procedure or function being traced. Since the
analyzer does not have access to the variable name declared within the procedure (breaking
program execution to read the stack frame is not allowed in real-time required mode), the global
symbol assigned to the parameter address passed to the procedure or function is used.

This effect can be seen in figure 8-10. the symbol COUNT is displayed in the symbol field for
source program lines 85 and 86, although the symbol being read in the source line is SNN.
Referring back to the source program listing, we see that SNN is a pass-by-reference parameter
(line 72). The parameter name passed to procedure SETUP from Function PROC1 is SN (see the
procedure call at line 123). Similarly SN is a pass-by-reference parameter to PROC1 (line 68). In
the calling statement to PROC1 (line 182), we see that the main program passed the global vari-
able COUNT to PROCH1. This is the symbol displayed in the symboil field.

Note that the Symbol SNN is display in the trace listing in figure 8-9. Since this trace was ex-
ecuted in real_time optional mode, the analyzer executed a break at the start of the procedure to
read the stack frame information. This enabled the analyzer to access variables local to the
procedure.

8-16

Real-Time High Level Software Analyzer
Making Trace Measurements

trace statements —

(Cont'd)

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4
Source Symbol Value Stat Time-rel
82 PTR™.I := PTR".1-1; 0.0 us
83 Y:=1; 3.8 usS
84 D:=D-1; (*Scoped variable*) 482.0 us
85 P2:=SNN; (*STATIC CALLBYNAME * COUNT 2 read 4.7 uS
86 P2:=SNN; (*STATIC CALLBYNAME * COUNT 2 read 6.7 us
87 P2:=SNV; (*STATIC CALLBYNAME * 6.1 usS
88 P2:=SVN; (*STATIC CALLBYVALU * 4.4 us
89 P2:=SVV; (*STATIC CALLBYVALU * 6.1 usS
90 P2:=DV; (* DYNAMIC * 4.5 usS
91 P2:=DN; (* DYNAMIC * 4.5 usS
92 (* IS A OF COLOR SET*)(* A B C** 5.7 uS
94 IF COUNT = 10 COUNT 2 read 3.4 usS
98 COUNT := COUNT+1; 6.5 us
99 COLOR_SET := COLOR_SET + [WHIT* COUNT 2 read 1.1 usS
STATUS: Awaiting Command 36 _ 16:12
run setup db check display modify show execute ~---ETC---

Figure 8-10. Trace Statements Measurement Display (Real-Time Required)

TRACE STATEMENTS DON’T CARE DISPLAY. A example trace statements "don’t care” display is
shown in figure 8-11. In a "don’t care" measurement, the analyzer may trace states in the user
program which do not correspond to source statements or states that are outside the user
program. Note the two display lines immediately following line 100 in the display. The message
"No source line found (PC= 00001...)" is displayed, indicating that these lines are overhead
generated by the compiler for procedure entry. The message "???? File not found, file = ..." is dis-
played on the lines following source line 83. This message is displayed when states are traced in a
file for which there is no database. The file name is displayed with the PC value executed. In this
case, the file is the library routine SFLOAT:LR68K. Other messages may be displayed in a trace
statements "don’t care" display. See Appendix B for an explanation of status and error messages.

NOTE

Do not use trace statements don’t care in real_time optional mode. This
measurement should always be executed in real _time required mode.

Real-Time High Level Software Analyzer

Making Trace Measurements

trace statements

(Cont'd)
64340 Software Analyzer: Slot 6 Wwith em68000 Emulator: Slot 4
Source Source Path
94 IF COUNT = 10 NT1:TESTP
98 COUNT := COUNT+1; NT1:TESTP
99 COLOR_SET := COLOR_SET + [WHITE, GREEN 1; NT1:TESTP
100 PROC2(SNN,SNV,SVN,SVV,DN,DV,PTR); NT1:TESTP
?2?? No source line found (PC= 000001000H) NT1:TESTP
???? No source line found (PC= 000001002H) NT1:TESTP
82 PTR".1 := PTR".I1-1; NT1:TESTP
83 Y:=1; NT1:TESTP
??2?? File not found, file= SFLOAT:LR68K:comp_db (PC= 000002* SFLOAT:LR68K
???? File not found, file= SFLOAT:LR68K:comp_db (PC= 000002* SFLOAT:LR68K
??2?? File not found, file= SFLOAT:LR68K:comp_db (PC= 000002* SFLOAT:LR68K
??7?? File not found, file= SFLOAT:LR68K:comp_db (PC= 000002* SFLOAT:LR68K
???? File not found, file= SFLOAT:LR68K:comp db (PC= 000002* SFLOAT:LR68K
?2??? File not found, file= SFLOAT:LR68K:comp _db (PC= 000002* SFLOAT:LR68K
STATUS: Awaiting Command 52 12:04
run setup db check display modify show execute ---ETC---

Figure 8-11. Trace Statements Don’t Care Display (Real-Time Required)

8-18

Real-Time High Level Software Analyzer
Making Trace Measurements

trace variables —

The trace variables measurement allows you to trace specified variables and parameters and dis-
play their values, along with the source statement that accessed them. The variables are displayed
in their declared data type format, i.e., as integers, reals, boolean values, characters, etc. The vari-
able must be uniquely defined as to the module where it is declared. If the variable is defined out-
side a module, i.e., a program variable in Pascal or an outer level variable in C, then only the file
name is required. When multiple variables map to the same memory location, only the first vari-
able specified in the setup command is displayed.

A maximum of 10 adjacent symbols or 9 non-adjacent symbols may be traced.

Command Syntax

The command syntax for setting up the frace variables measurement is shown in figure 8-12.

trace

; variable } 7 7 > <RETURN>

LGxoc <PROC> L—Qli)——’ <FILE>

Figure 8-12. Setup Trace Variables Syntax Diagram

variables

Parameters

The following paragraphs define the parameters used in the setup trace variables command.

file file indicates that the name of a source file follows. NOTE: A colon ()
may be used in place of pressing the file softkey.

<FILE> <FILE> is an optional parameter that refers to the source file containing
the specified <VAR> or <PROC> called out in the command statement.
If the <VAR> or <PROC> is in the defined default path, the <FILE> pa-
rameter may be omitted from the command statement.

8-19

Real-Time High Level Software Analyzer
Making Trace Measurements

(Cont'd)

<INDEX>

proc

<PROC>

read

<VAR>

variable

write

trace variables

Represents an index value (integer or scalar value) specifying a component of
an array.

proc indicates that a procedure or function name follows that defines the
procedure or function to which a variable belongs. NOTE: an "@" may be
used in place of proc.

<PROC> is an optional parameter that refers to a procedure or function in
which <VAR> is declared. If <PROC> is defined in the setup default _path
command, it may be omitted in the setup trace variables command. If
<PROC> is not specified in either the default path or the setup trace variables
command, the analyzer assumes that <VAR> is a variable defined at the main

program level.

read specifies that only memory read accesses to the specified variable be
traced. The default condition is to trace both memory read and memory
write accesses to the specified variable.

<VAR> represents the name of a variable or parameter to be traced. <VAR>
can be any valid Pascal or C variable expression. Pointer variables cannot
be traced in the trace variables measurement mode.

Variable may be any valid C or Pascal variable other than pointer types.
Pointer variables cannot be traced with the trace variables measurement.

variable)

(e
(N

write specifies that only memory write accesses to the variable be traced.

8-20

Real-Time High Level Software Analyzer
Making Trace Measurements

trace variables —

(Cont'd)

Setup Command Examples

The following command examples illustrate how to use the setup trace variables command to
define measurements.

setup trace variables pred_result proc proc2
setup trace variables COUNT , SNN proc PROC2 , Q.FLAG file TESTP

Trace Variables Measurement Example

The following example shows several lines of program, a setup trace variables command and the
resulting trace display.

SOURCE PROGRAM LINES. The following source program segment is traced in the trace variables
measurement example.

166 pred _result.enumerated = green

167 check = check + pred_result.arr[0]
168 check = check - result.arr[0];

169 check = check + pred-result.arr[1];

170 check = check - result.arr[1];
171 pred result.enumerated = blue
172

173 ul6(y;

174 pred_result.ch = 'a';

175 check = check + pred result.arr([0];
176 check = check - result.arr([0];

177 check = check + pred_result.arr[1];
178 check = check - result.arr(1];

179 pred_result.ch = 'a';

8-21

Real-Time High Level Software Analyzer
Making Trace Measurements

—— trace variables

(Cont'd)

SETUP MEASUREMENT COMMAND. The following setup trace variables command specifies that
the software analyzer trace all occurrences of variable pred_results.

setup trace variables pred_result

Figure 8-13 show setup display resulting for executing the setup command.

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

TRACE VARIABLES

variable proc file status
pred _result P_CHECK:TESTP read_write

RUN_AT EXECUTION from
transfer_address

DEFAULT_PATH
file P_CHECK:TESTP

REAL_TIME
optional

COUNTER
counts_time

STATUS: Database search successful 16:19

setup trace variables pred_result

run setup db check display modi fy show execute ---ETC---

Figure 8-13. Trace Variables Setup Display

8-22

Real-Time High Level Software Analyzer
Making Trace Measurements

trace variables —

(Cont'd)

MEASUREMENT DISPLAY. The trace list in figure 8-14 shows all accesses to the variable
pred_result where pred_result is a structure. The value of the variable and the source line from
which it was accessed are shown.

The read and subsequent write of pred_result.u8 at source line 28 is due to the read then write na-
ture of the instruction used by the target processor to clear a memory location.

pred_result.s16 is set to hexadecimal value -1BFE on line 39 in the source field but is displayed as
decimal value -7166 in the value field. The default base for numeric data types is decimal.

64340 Software Analyzer: Slot 6 with emb68000 Emulator: Slot 4

symbol Value stat source
pred_result.enumera* red write 17 pred_result.enumerated = red;
pred_result.arr[0] 0 read 158 check = check + pred_result.arr([0]
pred result.u8 50 read 28 pred result.u8 = 0;
pred result.u8 0 write 28 pred result.u8 = 0;
pred_result.arr([0] 0 read 162 check = check + pred_result.arr(0]
pred_result.s16 -7166 write 39 pred_result.s16 = -1BFEH;
pred_result.enumera* green write 166 pred result.enumerated = green;
pred result.arr([0] 0 read 167 check = check + pred result.arr[0]
pred_result.arr[1] 0 read 169 check = check + pred _result.arr([1)
pred_result.enumera* blue write 171 pred_result.enumerated = blue;
pred_result.ch "A" write 174 pred_result.ch = 'A';
pred_result.arr (0] 0 read 175 check = check + pred_result.arr([0]
pred result.arr[1] 0 read 177 check = check + pred _result.arr([1]
pred result.ch “"a" write 179 pred result.ch = 'a';
pred_result.s16 3700 write 85 pred_result.s16 = 3700;
STATUS: Awaiting Command 30 _ 16:12
run setup db check display modify show execute ~---ETC---

Figure 8-14. Trace Variables Measurement Display

8-23

Real-Time High Level Software Analyzer
Making Trace Measurements

NOTES

8-24

Chapter 9

MAKING COUNT AND TIME MEASUREMENTS

OVERVIEW
This chapter describes the following software analyzer measurements.

®* count statements

* time modules

GENERAL INFORMATION

The Count Statements and Time Modules measurements allow you to perform coverage testing
and performance analysis of software modules. The Count Statements measurement shows the
number of times a source statement or range of source statements are executed. The Time
Modules measurement measures up to four modules for real-time execution speed, identifying bot-
tlenecks that may require recoding of modules.

9-1

Real-Time High Level Software Analyzer
Making Count and Time Measurements

— count statements

The Count Statements measurement enables you to measure the number of times that selected
source code lines are executed. You may specify a range of up to 255 source code lines to be
counted within a single software module. The measurement display shows the specified source
lines along with the number of times each source line was executed.

Syntax

The command syntax for setting up a Count Statements measurement is shown in figure 9-1.

count_statements)—j
<LINE> <LINE> J <RETURN>

file <FILE>

| <MODULE>

Figure 9-1. Setup Count_Statements Command Syntax

Parameters

file file indicates that the name of a source file follows. NOTE: A colon ()
may be used in place of pressing the file softkey.

<FILE> <FILE> specified the source file to be used as the default path. When the
<FILE> parameter is omitted from a measurement command, the file
specified as the default path is used.

<LINE> <LINE> represents the line number of a Pascal or C statement in the
source program. Any comment lines preceding the first line of ex-
ecutable code in a procedure or function are not recognized by the soft-
ware analyzer. All lines in the specified line range must be contained
within a single module. This module may be a procedure or function in
Pascal or a function in C, or the main program block.

<MODULE> <MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure, function or the main program within a specified
file. In C, a module can be the name of a function within a specified file.

to to is used to specify a line range to be counted in a source program. All
lines in the specified range must be contained in a single module. The to-
tal number of lines must not exceed 255, and the total address space the
range covers cannot exceed 4096.

9-2

Real-Time High Level Software Analyzer
Making Count and Time Measurements

count statements —

(Cont'd)

Setup Command Examples
setup count statements 112 to 131 file SORT
setup count_statements MATRIX
Count Statements Measurement Example
The following example shows several lines of a program, a setup count__statements command for

the program segment, and the resulting setup and measurement displays.

SOURCE PROGRAM LINES. The following source program segment is measured in the
count_statements measurement example.

94 IF COUNT = 10

95 THEN COUNT:=0

96 ELSE

97 BEGIN

98 COUNT := COUNT+1;

99 COLOR_SET := COLOR _SET + [WHITE, GREEN 1;
100 PROC2(SNN, SNV, SVN, SVV,DN,DV,PTR);

101 END;

SETUP MEASUREMENT COMMAND. The following setup count statements command results in
the setup display shown in figure 9-2. The measurement will count the number of times each
statement in the IF.. THEN.. ELSE compound statement is executed.

setup count _statements 94 to 100

9-3

Real-Time High Level Software Analyzer
Making Count and Time Measurements

— count statements

(Cont'd)

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

COUNT STATEMENTS

module / line file
94 to 100 NT1:TESTP

ENABLE off
DISABLE off

RUN_AT_EXECUTION from
transfer_address

DEFAULT_PATH
file NT1:TESTP

REAL_TIME

STATUS: Database search successful 16:19

setup count_statements 94 to 100

run setup db check display modify show execute ---ETC---

Figure 9-2. Count Statements Setup Display

MEASUREMENT DISPLAY. Figure 9-3 shows the measurement display resulting from the preced-
ing setup specification. From looking at the source program listing, we expect that the ELSE
statement will be executed 10 times for each execution of the THEN statement. In addition, the
number of times the IF statement is executed should be equal to the sum of the executions of the
ELSE and THEN statements. The count for each statement in the display verifies that the IF..
THEN.. ELSE statement did execute properly.

9-4

Real-Time High Level Software Analyzer
Making Count and Time Measurements

count statements

(Cont'd)
64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4
Count-abs Source
682 94 IF COUNT = 10
62 95 THEN COUNT:=0
0 96 ELSE
0 97 BEGIN
620 98 COUNT := COUNT+1;
620 99 COLOR_SET := COLOR_SET + [WHITE, GREEN 1;
STATUS: Awaiting command 0 _ 13:09
run setup db check display modify show execute ---ETC---

Figure 9-3. Count Statements Measurement Display

Real-Time High Level Software Analyzer
Making Count and Time Measurements

— time _modules

The Time Modules measurement shows the execution time of software modules executing at the
processor’s full operating speed. The Time Modules measurement times up to four modules simul-
taneously. Both single and multiple measurements may be made. If a module occurs more than
once during a measurement, measurement statistics (minimum, maximum, and mean execution
time, and number of occurrences of the module) are displayed automatically. The measurement

can trace up to 256 levels of recursion.

Syntax

The command syntax for setting up a time modules measurement is shown in figure 9-4.

time__modules)—)

[<MODULE> <RETURN>
(tie y— <FilE>
(e
N
Figure 9-4. Setup Time_Modules Command Syntax
Parameters
file file indicates that the name of a source file follows. NOTE: A colon ()
may be used in place of pressing the file softkey.
<FILE> <FILE> specified the source file to be used as the default path. When the
<FILE> parameter is omitted from a measurement command, the file
specified as the default path is used.
<MODULE> <MODULE-> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure function or the main program within a specified file.
In C, a module can be the name of a function within a specified file.
Examples

setup time_modules SORT_ELEMENTS file SORT
setup time modules MATRIX , BUB_SORT

9-6

Real-Time High Level Software Analyzer
Making Count and Time Measurements

time modules —

(Cont'd)

Time modules Measurement Example
The following example shows a setup time_modules command with the resulting setup and

measurement displays.

SETUP MEASUREMENT COMMAND. The following setup time _modules command results in the
setup display shown in figure 9-5. The measurement will measure the execution times of modules
PROC1, PROC2, PROC4, and PROC10.

setup time_modules PROC1 , PROC2 , PROC4 , PROC10

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

TIME MODULES

module file

PROC1 NT1:JGREEN

PROC2 NT1:JGREEN

PROC4 NT1:JGREEN

PROC10 NT1:JGREEN
ENABLE off

DISABLE off

RUN_AT_EXECUTION from
transfer_address

DEFAULT_PATH

STATUS: Database search successful 16:19

setup time_modules PROC1 , PROC2 , PROC4 , PROCTO

run setup db check display modify show execute ---ETC---

Figure 9-5. Time Modules Setup Display

MEASUREMENT DISPLAY. Figure 9-6 shows the measurement display resulting from the preced-
ing setup specification. The display shows the minimum, maximum and mean execution time for
the specified modules and the number of times (count field) each module was executed.

9-7

Real-Time High Level Software Analyzer
Making Count and Time Measurements

— time modules

(Cont'd) —

64340 Software Analyzer: Slot 6

with emb68000

Emulator: Slot 4

Minimum Maximum Mean Count Symbol Symbol path
47.21 mS 59.90 mS 59.79 mS 152 PROCI PROC1:NT1:TESTP
6.289 mS 59.04 mS 36.32 mS 1670 PROC2 PROC2:NT1:TESTP
59.89 mS 59.92 mS 59.90 mS 75 PROC4 PROC4:NT1:TESTP
8.8 us 9.2 us 9.0 us 75 PROC10 PROC10:NT1:TESTP
STATUS: Execution complete (saved = 8) 13:09
run setup db check display modify show execute --ETC---

Figure 9-6. Time Modules Measurement Display

9-8

Chapter 10

USING INTERACTIVE COMMANDS
FOR PROGRAM DEBUGGING

OVERVIEW
This chapter describes the following software analyzer measurements that allow you to interact
with the HP 64000 emulation system.
¢ Setup break
* Display <VAR>

* Modify <VAR>

GENERAL INFORMATION

The software analyzer has three commands that allow you to interact with the emulator without ex-
iting the analyzer. These commands are setup break, display <VAR>, and modify <VAR>.
Detailed descriptions of how to use these commands are given in this chapter.

10-1

Real-Time High Level Software Analyzer
Using Interactive Commands

— setup break

The setup break command provides you with two separate functions. The break on
measurement _complete command is a setup specification that specifies that the analyzer is to
break program execution on completion of the specified measurement. The break on <LINE> or
break on <MODULE> is a measurement that breaks program execution at the specified program

location.

By defining and executing a series of breakpoints you can locate a position in the program under
test to a combination of sequential events. Up to nine hardware breakpoints may be defined in the

setup break command.

Command Syntax

The command syntax for defining hardware breaks is shown in figure 10-1.

(setup } > break } > off)} > <RETURN>

measurement__complete) A
<LINE> [M
file <FILE>
| <MODULE>
file <FILE>
L (or)<)
o/

Figure 10-1. Setup Break Syntax Diagram

10-2

Real-Time High Level Software Analyzer
Using Interactive Commands

Default Value

setup break —

(Cont'd)

setup break off (affects break on measurement _complete only)

Parameters

The following definitions describe the parameters used in the setup break command.

entry

exit

file

<FILE>

<LINE>

<MODULE>

off

on

entry defines the breakpoint to be the entry point to the specified
module.

exit defines the breakpoint to be the exit point from the specified module.

file indicates that the name of a source file follows. NOTE: A colon (i)
may be used in place of pressing the file softkey.

<FILE> is an optional parameter that refers to the source file containing
the specified <MODULE> or line called out in the command statement. If
the file containing the <MODULE> or line is the defined default path, the
<FILE> parameter may be omitted from the command statement.

<LINE> represents the line number of a Pascal or C statement in the
source program. If the specified <LINE> contains only comments (no
executable code), the analyzer will associate the line number with the first
line containing executable code following it. Any comment lines preced-
ing the first line of executable code in a procedure or function are not
recognized by the software analyzer.

<MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure or a function within a specified file. In C, a module
can be the name of a function within a specified file.

of f disables the setup break on measurement complete command.

on allows you to define the conditions on which to break.

Setup Command Examples

The following command examples illustrate how to use the setup break command to define

measurements.

setup break
setup break
setup break
setup break

on PROC2 entry

on measurement_ _complete
on RECURSIVE_PROC exit or 134

10-3

Real-Time High Level Software Analyzer
Using Interactive Commands

— display <VAR>

The display <VAR> command displays the current value of a variable in memory. The vari-
able is displayed in the data type that they were declared in the Pascal or C source file, i.e., as
integers, reals, boolean values, characters, etc. The variable must be uniquely defined as to
the module where it is declared. If the variable is defined outside of a module, i.e., a program
variable in Pascal or outer level variable in C, then only the file name is required. The user
program must be halted and the emulator running in the emulation monitor before the dis-
play<VAR> command can be executed. The variable to be displayed must be accessible
based upon the next address the program will execute. Local variables are accessible only if
(1) the next program counter is within the user code of the procedure that defined the variable
or (2), the variable belongs to a parent procedure of the current executing procedure.

Command Syntax

The command syntax for the display <V4R> command is shown in figure 10-2.

By

c variable

¢)
1——)(proc)—><PROC>J 1—{ file >—> <FILE>J

Figure 10-2. Display Variables Syntax Diagram

<RETURN>

display

Parameters

The following paragraphs define the parameters used in the display <V 4 R> command.

c_variable c_variable may be any valid C variable in the following expression format.

c_variable
ll

.

©

file file indicates that the name of a source file follows. NOTE: A colon (:)
may be used in place of pressing the file softkey.

10-4

Real-Time High Level Software Analyzer
Using Interactive Commands

display <VAR> —

(Cont'd)

<FILE> <FILE> is an optional parameter that refers to the source file containing
the specified <VAR> and <PROC> called out in the command statement.
If the <VAR> and <PROC> is in the defined default path, the <FILE> pa-
rameter may be omitted from the command statement.

<INDEX> Represents an index value (integer or scalar value) specifying a com-
ponent of an array.

proc proc indicates that a procedure or function name follows that defines the
procedure or function to which a variable belongs. NOTE: an "@" may
be used in place of proc.

<PROC> <PROC> is an optional parameter that refers to a procedure or function
in which <VAR> is declared. If <PROC> is defined in the setup
default _path command, it may be omitted in the display command. If
<PROC> is not specified in either the default path or the display com-
mand, the analyzer assumes that <VAR> is a variable defined at the main
program level.

p_variable p_variable may be any valid Pascal variable in the following expression
format.

p_variable

<VAR> <VAR> represents the name of a variable or parameter to be displayed.
<VAR> can be any valid Pascal or C variable expression.

Display Command Examples

The following command examples illustrate how to use the display <V AR> command to display
the value of variables.

display SNN”~ proc PROC2 file NT1
display Q.FLAG proc CONTROLT
display A[1] file TESTP

display A~.B*.C"

display ™*a->b->C

10-5

Real-Time High Level Software Analyzer
Using Interactive Commands

— modify <VAR>

The modify <VAR> command allows you to modify the current value of variables in memory.
Values must be specified in binary, octal, decimal, or hexadecimal notation. The variable must be
uniquely defined as to the module where it is declared. If the variable is defined outside of a
module, i.e., a program variable in Pascal or an outer variable in C, then only the file name is
required. The user program must be halted and the emulator running in the emulation monitor
before the modify <VAR> command can be executed. The maximum variable size that can be
modified with a single command is 32 bits. Larger variables must have their subelements modified
individually with multiple commands. The variable must be accessible based upon the next ad-
dress the program will execute. Local variables are accessible only if (1) the next program counter
is within the user code of the procedure that defined the variable or (2), the variable belongs to a
parent procedure of the current executing procedure.

Command Syntax

The command syntax for the modify <V AR> command is shown in figure 10-3.

c-variable

proc)| <PROC> file y»{ <FILE> —J

L@_> <VALUE> || <RETURN>

Figure 10-3. Modify <VAR> Syntax Diagram

10-6

Real-Time High Level Software Analyzer
Using Interactive Commands

Parameters

modify <VAR> —

(Cont'd)

The following paragraphs define the parameters used in the modify command.

c_variable

file

<FILE>

<INDEX>

proc

<PROC>

c_variable "
(®

c_variable may be any valid C variable in the following expression format.

file indicates that the name of a source file follows. NOTE: A colon (:)
may be used in place of pressing the file softkey.

<FILE> is an optional parameter that refers to the source file containing
the specified <VAR> and <PROC> called out in the command statement.
If the <VAR> and <PROC> is in the defined default path, the <FILE> pa-
rameter may be omitted from the command statement.

Represents an index value (integer or scalar value) specifying a com-
ponent of an array.

proc indicates that a procedure or function name follows that defines the
procedure or function to which a variable belongs. NOTE: an "@" may
be used in place of proc.

<PROC> is an optional parameter that refers to a procedure or function
in which <VAR> is declared. If <PROC> is defined in the setup
default _path command, it may be omitted in the display command. If
<PROC> is not specified in either the default path or the modify com-
mand, the analyzer assumes that <VAR> is a variable defined at the main
program level.

10-7

Real-Time High Level Software Analyzer
Using Interactive Commands

— modify <VAR>

(Cont'd)
p_variable p_variable may be any valid Pascal variable in the following expression
format.
p_variable f -
<INDEX>
<VALUE> <VALUE> represents the value that the specified variable is to be chang-
ed to. <VALUE> must be specified as an integer value.
<VAR> <VAR> represents the name of a variable or parameter to be modified.

<VAR> can be any valid Pascal or C variable expression.

Modify Command Examples

The following command examples illustrate how to use the modify command to change the value
of program variables.

modify Q.CHAR1 proc LTRSORT = 41H
modify NEXTINT = 0124H

modify A~B".C* = 15

modify *a->b->c = 15

10-8

Chapter 11

MAKING INTERMODULE BUS MEASUREMENTS

OVERVIEW

This chapter describes the intermodule measurement capabilities of the Real-Time High Level
Software Analyzer. The following topics are covered in this chapter:

° Intermodule bus signals

. Interaction between the software analyzer and the IMB
* Software analyzer trigger enable command

® Driving trigger enable with the software analyzer

° Receiving trigger enable from another analysis module

INTRODUCTION

Intermodule measurements are measurements involving two or more analysis modules.
Intermodule measurements are coordinated between analysis modules by means of a high speed
intermodule bus (IMB). The IMB coordinates triggering, windowing of functions, and synchroniza-
tion of execute and halt commands for all modules involved in a measurement via the intermodule
bus cable connected to the IMB connectors on each analyzer control board.

When the HP 64000 development station power is switched on, there is no intermodule specifica-
tion between the software analyzer and other analysis modules. In order to execute intermodule
measurements, the software analyzer must be setup to receive or drive the intermodule trigger en-
able signal. The software analyzer can receive a trigger enable from other analyzers in the system.
The software analyzer can also drive the IMB trigger enable line to provide a trigger enable for
other anaizyers.

INTERMODULE BUS SIGNALS

The software analyzer can interact with two of the intermodule bus signals, master enable and
trigger enable. These signals are described in the following paragraphs. Refer to the
Measurement System Reference Manual for more detailed information concerning measurement
system interaction.

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

Master Enable

The master enable line is shared by all analysis modules included in a measurement. When master
enable is true, it enables all modules that receive it. When master enable is false, it disables all
modules that receive it. The master enable signal synchronizes measurement start in all analysis
modules used in an IMB measurement. At the start of a measurement, all analysis modules hold
the master enable line false. As each analyzer becomes ready to start, it releases the master en-
able line. The master enable line will go true only when the last analysis module releases the line.
This starts all analysis modules synchronously.

MASTER ENABLE DRIVEN. Master enable can be driven in either one of two modes. The default
mode is run synchronization, i.e., controlled by the execute and halt softkeys. In this mode, master
enable remains false until all modules are ready to begin execution. Master enable then goes true
and remains true until all modules have completed their measurements or until a halt command is
executed. The execute and halt commands can be entered from either the measurement system
level of softkeys or from within one of the analysis modules participating in the measurement.

In the other mode, master enable is driven by one designated module. Master enable still remains
false until all modules are ready to begin execution, but it is controlled by the driving module once
the measurement is in process. In this mode, master enable may change logical states any num-
ber of times during the measurement. The software analyzer cannot be designated as the driving
module.

MASTER ENABLE RECEIVED. All modules involved in the intermodule measurement automatically
receive master enable with the exception of the driver, if one is specified. The software analyzer
always receives master enable when used in an IMB measurement.

Trigger Enable

The trigger enable signal windows (enables and disables) the trigger function within each module
that receives it. When the trigger enable signal is true, it enables the receiving modules to recog-
nize their triggers, if they occur. When the trigger enable signal is false, it disables trigger recogni-
tion in the receiving module. The trigger enable line can alternate between true and false during a
measurement to allow the controlling analysis module to window the measurement activity in other
modules where trigger recognition can occur. The software analyzer can drive the trigger enable
signal or receive it from another module on the IMB.

TRIGGER ENABLE DRIVEN. Only one module can drive the trigger enable line during a measure-
ment. If no module is designated to drive the trigger enable signal, it defaults to the true state. If
more than one module is specified, the measurement cannot be executed.

TRIGGER ENABLE RECEIVED. Trigger Enable can be received by any module other than the
driver.

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

INTERACTION BETWEEN THE SOFTWARE ANALYZER AND THE IMB

The interaction between the software analyzer and other HP 64000 system modules via the IMB
(intermodule bus) is defined with the setup trigger_enable command, and the setup
measurement _enable and setup measurement disable commands. A measurement enable or dis-
able condition must be defined in order to make interactive measurements over the IMB. If the
enable or disable term is set to any _state, the IMB specification (setup trigger enable) controls the
measurement enable or disable function of the software analyzer. If an enable or disable term is
defined, that term is combined with the setup trigger enable condition to define a sequential en-
able or disable condition. The any state parameter should be used only when making interactive
measurements over the IMB. When any state is specified, one state must occur before the
measurement is enabled. When operating your software analyzer stand-alone (no IMB measure-
ment specified), this may cause data to be lost at the beginning of your measurement. See
Chapter 6 for detailed information about the setup measurement enable and setup
measurement _disable commands.

TRIGGER ENABLE RECEIVED. If trigger enable received is specified, a trigger enable must be
received from another HP 64000 analysis subsystem before the software analyzer starts looking for
the measurement enable or disable condition. The trigger enable becomes the first term in a
sequential measurement enable or disable condition.

TRIGGER ENABLE DRIVEN. If trigger enable driven only is specified, the software analyzer first
looks for its measurement enable or disable condition. Upon finding the measurement enable or
disable condition, the software analyzer drives the trigger enable line high, enabling another HP
64000 analysis subsystem, if one is set up to receive trigger enable.

SOFTWARE ANALYZER TRIGGER ENABLE COMMAND

The setup trigger enable command is used to define the IMB interaction between the software
analyzer and other measurement subsystems installed in the HP 64000 development station. The
software analyzer must be in real _time required mode in order to interact with the Intermodule
Bus (IMB).

Syntax

The command syntax for specifying the trigger_enable condition is shown in figure 11-1.

11-3

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

trigger _enable

driven_only measurement__disable

measurement__enable

L—) <RETURN>

received

Figure 11-1. Setup Trigger_Enable Command Syntax

Default Value

always

Parameters

always

driven_only

measurement_disable

measurement_enable

received

Command Examples

always specifies that trigger enable is always true. This, in effect,
removes the analyzer from the IMB (Intermodule Bus).

driven_only specifies that the IMB trigger enable line is to be driven
on measurement_enable or measurement_disable.

measurement_disable specifies that the IMB trigger enable line is to be
driven when the specified measurement disable condition is true or
received to initiate looking for the measurement disable condition. If
no measurement disable condition is specified, the trigger enable
command is not permitted.

measurement__enable specifies that the IMB trigger enable line is to be
driven when the specified measurement enable condition is true or
received to initiate looking for the measurement enable condition. If
no measurement enable condition is specified, the trigger enable
command is not permitted.

received specifies that the analyzer measurement will start looking for
the measurement disable or enable condition when the IMB trigger en-
able line is set true by another HP 64000 measurement subsystem.

setup trigger enable always
setup trigger enable driven only measurement disable
setup trigger enable received measurement enable

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

DRIVING TRIGGER ENABLE WITH THE SOFTWARE ANALYZER - EXAMPLE

The following measurement example illustrates how to execute an IMB measurement where the
software analyzer is setup to trigger another HP 64000 analysis module. This example shows how
an assembly language module called in a Pascal program can be traced. In this example, the
software analyzer traces a Pascal procedure (figure 11-2) that calls an assembly language module
(figure 11-3) to initialize a serial 1/O port. The software analyzer is used to trigger the HP 64302A
Internal Analyzer at the point in the Pascal program (line 145) where the assembly language
module is called. The internal analyzer then traces execution of the assembly language module.

140 BEGIN {* main routine *)

141

142 POSITION := 'T'; ({initialize to position characters)}

143 TOP_ROW := ' '; ({write to leftmost of top row of LED's)}
144

145 INIT_ACIA; {set up the RS-232-C serial port)

146 HOWLONG := 220; {initialize length of WAIT loop}

147 TEN := 10;

148

149 FOR I := 1 TO WINDOW_SIZE DO <{blank out message window in memory)
150 WINDOW[I]:=' 1;

151

152 BLANK_ARRAY; {initialize test message from DATA_AREA 0}
153 SET_ARRAY; {set up the message for scrolling}

154 MARQUEE; {write the message)

155

156 END.

Figure 11-2. Pascal Procedure PASCAL_MAIN

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

AR KAKKAKAKA A A AR KA AKAAAIIKAAKIAKRAAII KA KA KA AA A IR A A I kA Ahhhhh bk khhhhkhkhkhhkhkkk

* INITIALIZE 6850 ACIA SERIAL PORT *
AAKKKKKAKKAKAAEAAARKEAAA KA AAAAAKAAA AR IAARIAA R A A AR A Ak hh ki hhhhkhrkhkhkhkdkhhkkkkkkx
ORG 10041H
ACIA_STATUS ; NOTE: Both symbols at same addr
ACIA_CONTROL DS.B 1
ORG 10043H
ACIA_DATA DS.B 1
PROG
Zstartprogram MOVE.L #0,A5 ; Initialize heap, user
MOVE.L #0,A6 ; stack pointer and
LEA Zstack,A7 ; supervisory stack pointer
JMP [AO] ; Jump to start of PASCAL_MAIN
INIT _ACIA
MOVE .B #043H,ACIA_CONTROL
* ~ RESET ACIA
MOVE .B #00010101B,ACIA_CONTROL
* ~~ DIVIDE BY SIXTEEN CLOCK
* ~~~ 8 BIT DATA, 1 STOP BIT
* ~ RECEIVE INTERRUPT DISABLE
RINIT_ACIA RTS
EINIT_ACIA
END

Figure 11-3. Assemble Language Module INIT_ACIA

Setting Up the Software Analyzer

To make an IMB measurement, the software analyzer must be operating in real-time mode. For
this measurement, the software analyzer measurement is started by the IMB master enable signal.
Therefore run at _execution is turned off. Since we wish to see the Pascal statements leading up
to the assembly language module, the software analyzer is set up to trace statements in procedure
PASCAL_MAIN. The measurement disable term is defined to be line 145, where we wish to trigger

the HP 64302 Internal Analyzer to trace execution of the assembly language routine. The following
sequence of commands set up the software analyzer for the IMB measurement:

setup real time requived

run at_execution off

setup trace statements PASCAL MAIN
setup measurement disable on 145

setup trigger enable driven only measurement disable

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

Setting Up the Emulator
For all IMB measurements, emulator run control must be set up in the emulation module. If the
emulator command file does not set up the emulator to receive the trigger enable signal, this must

also be done in the emulator. To set up the emulator you must end out of the software analyzer
and enter the emulator:

end

em68000_5
To set up the emulator to receive the trigger enable signal, enter the command:

modify configuration
Cycle through the questions until the question Modify interactive measurement specification? no
appears on the display. Enter yes and press (RETURN). The interactive measurement specification

setup will be displayed on the HP 64000 screen.

Again cycle through the questions until Trigger enable? is displayed. Enter receive and press
(RETURN). Cycle through the remaining questions until you return to the emulation softkey level.

To set up emulator run control, enter the following commands:
specify run from PASCAL MAIN

specify trace

The HP 64000 development station is now set up for the IMB measurement. At this point, you can
exit the emulator and view the current measurement system configuration. See figure 11-4. Note
that the software analyzer is set up to drive the trigger enable signal and the emulator is set up to
receive the trigger enable signal.

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

Measurement System: Current Configuration

Module Slot Status Description
emé68000 5 completed ! Emulator for M68000
sw_anl 6 completed ! High Level Software Analyzer
Intermodule Bus Driver(s) Receiver(s) | Emulation
master enable exec/halt em68000_5 sw_anl_6 | Start
I
trigger enable sw_anl_6 em68000_5 |
I
trigger |
I
storage enable | Bnc Ports
| 1.
delay clock | 2.
| 3.
| 4.
STATUS: Awaiting measurement system request userid HAIRBA 13:41
emb68000 5 sw anl 6 sW _anly print dsp execute end

Figure 11-4. Measurement System Configuration

Executing the IMB Measurement

The execute command may be given from within the emulation module, the software analyzer
module, or from the the measurement system softkey level. Once the measurement is completed
(or halted), you can go back and forth between the software analyzer module and the emulator
module without specifying an emulation command file to view the measurement results.

The results of this measurement are shown in figures 11-5 and 11-6. Figure 11-5 shows the soft-
ware analyzer trace list. Note that line 145, the call to the assemble language module and the
measurement disable term, is the last line displayed. Execution of this line triggered the HP
64302A internal analyzer. The first line in the internal analyzer trace list is the beginning of the as-
sembly language module INIT_ACIA.

11-8

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

Source Symbol Value Stat Time-rel
137 END; 0.0 us
142 POSITION := 'T!'; ({initialize t* 8.6 uS
143 TOP ROW := ' '; ({write to lef* DATA AREA 1* 54H write 2.7 usS
145 INIT ACIA; {set up the R* TOP ROW " " write 2.2 uS

STATUS: Awaiting Command 28 --- 12:04
run setup db check display modify show execute ---ETC---

Figure 11-5. Software Analyzer Trace Statements Display

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

Trace: mnemonic break: none count:
line# address opc/data mnemonic opcode or status time, relative
after 001014 13FC MOVE.B #043H,0010041H
+001 0051F8 0000 supvr data write wd 1. us
+002 0051FA 1244 supvr data write wd 1. us
+003 001016 0043 supvr pgm read wd 1. us
+004 001018 0001 supvr pgm read wd 1. us
+005 00101A 0041 supvr pgm read wd <1. us
+006 00101cC 13FC MOVE.B #015H,0010041H 1. us
+007 010041 43 supvr data write lb 1. us
+008 00101E 0015 supvr pgm read wd 1. us
+009 001020 0001 supvr pgm read wd 1. us
+010 001022 0041 supvr pgm read wd 1. us
+011 001024 4ET7S5 RTS 1. us
+012 010041 15 supvr data write Lb 1. us
+013 001026 4ES56 LINK A6,#missing operand, prefetch? 1. usS
+014 0051F8 0000 supvr data read wd 1. us
+015 0051FA 1244 supvr data read wd 1. us
STATUS: M68000--Running in monitor Trace complete 0:59
run trace step display modify break end ---ETC---

Figure 11-6. Internal Analysis Trace of Assembly Language Module

RECEIVING TRIGGER ENABLE FROM ANOTHER ANALYSIS MODULE - EXAMPLE

The following measurement example illustrates how to execute an IMB measurement where the
software analyzer is triggered by another analysis module. Using the example programs from the
preceding section, the following example shows how to trigger the software analyzer from the HP
64302A Internal Analyzer. In this example, the internal analyzer traces the assembly language
module INIT_ACIA. On completion of module execution, the software analyzer is triggered, show-
ing the statements executed upon return to the Pascal procedure.

Setting Up the Emulator

To set up the emulator to drive the trigger enable signal, enter the emulator and execute the
modify configuration command as in the previous example. This time, in response to the ques-
tion " Trigger enable?, answer drive.

Set up emulator run control with the following commands:

specify run from PASCAL MAIN

specify trace before RINIT ACIA

11-10

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements
Setting Up the Software Analyzer
End out of the emulator and enter the software analyzer:
end
sw_anl_6
To set up the software analyzer to be triggered by the HP 64302A Internal Analyzer, modify the
software analyzer setup configuration as follows:
setup measuvement disable off
setup measurement enable on any _state
setup trigger enable veceived measurement enable
These commands turn off the measurement disable function and gives control of the software
analyzer’'s measurement enable function to the IMB.
Executing the IMB Measurement
Entering the execute command causes measurement execution, resulting in the measurement dis-
plays shown in figures 11-7 and 11-8. In figure 11-7, we see that the HP 64302A traced assembly
language execution through the end of INIT_ACIA. In figure 11-8, the software analyzer trace

shows execution of Pascal statements beginning with line 146, the first statement after the call to
INIT_ACIA.

11-11

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

11-12

Trace: mnemonic break: none count:
lLine# address opc/data mnemonic opcode or status time, relative
-015 00123E 5273 supvr pgm read wd <1. us
-014 001240 4EBA JSR 0001014H 1. us
-013 005273 20 supvr data write lb 1. us
-012 001242 FDD2 supvr pgm read wd 1. us
-0 001014 13FC MOVE.B #043H,0010041H 1. us
-010 0051F8 0000 supvr data write wd 1. us
-009 0051FA 1244 supvr data write wd 1. us
-008 001016 0043 supvr pgm read wd <1. us
-007 001018 0001 supvr pgm read wd 1. us
-006 00101A 0041 supvr pgm read wd 1. us
-005 00101C 13FC MOVE.B #015H,0010041H 1. us
-004 010041 43 supvr data write lb 1. us
-003 00101E 0015 supvr pgm read wd <1. us
-002 001020 0001 supvr pgm read wd 1. usS
-001 001022 0041 supvr pgm read wd 1. us
before 001024 4LETS RTS 1. us
STATUS: M68000--Running in monitor Trace complete _0:59
run trace step display modify break end --ETC---

Figure 11-7. Internal Analyzer Trace of INIT_ACIA

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

64340 Software Analyzer: Slot 6 with em68000 Emulator: Slot 4

Source Symbol Value Stat Time-rel
146 HOWLONG := 220; {initialize L* 0.0 us
147 TEN := 10; HOWLONG 220 write 1.5 us
149 FOR I := 1 TO WINDOW SIZE DO {(* TEN 10 write 2.2 us
150 WINDOW([I):=' '; 1 1 write 2.1 us
150 " I 1 read 2.1 usS
150 " WINDOW[1] "M owrite 4.4 uS
150 " I 1 read 1.5 us
150 " I 1 read 3.0 us
152 BLANK_ARRAY; {initialize t* I 2 write 0.5 us
150 WINDOW[I1:="' '; I 2 read 1.4 uS
150 " WINDOW[2] "o ogrite 5.8 usS
150 " I 2 read 1.5 usS
150 " I 2 read 3.0 uS
152 BLANK_ARRAY; {initialize t* I 3 write 0.5 us

STATUS: Awaiting Command 52 1:37
run setup db check display modify show execute ---ETC---

Figure 11-8. Software Analyzer Trace of Statements Following
Call to INIT_ACIA"

11-13

Real-Time High Level Software Analyzer
Making Intermodule Bus Measurements

NOTES

11-14

Chapter 12

SELECTING AND FORMATTING
THE MEASUREMENT DISPLAY

OVERVIEW

This chapter provides the following information about the measurement display:
* How to view data on the display
® Description of display fields
®* How to interpret the displayed information

¢ Disptay command syntax

GENERAL INFOMATION

This chapter describes how to select the data displayed in the measurement display and how to
format the information to increase its usability. The measurement results are automatically dis-
played upon completion of a measurement. When the measurement results are displayed, you can
format the results on the screen using the display command. The display command allows you
to select which data fields are displayed, the width of the fields, and the numeric base in which
symbol values are displayed.

This chapter also describes the show and copy commands. The show allows you to select the
setup display, measurement display, or the source program for display. The copy command al-
lows you to copy the display, setup, or measurement results to the system printer or a listing file
on the system disc.

If you have any difficulties or problems when using the software analyzer, see appendix E,
Resolving Measurement Problems, for possible solutions.

VIEWING DATA ON THE DISPLAY

The (ROLL UP), (ROLL DOWN), (NEXT PAGE), and (PREV_PAGE) keys allow the user to scroll through the
trace listing line-by-line or in page increments. The left and right cursor (&=} and (=)) keys used
with the key allow the user to move the display left or right on the screen. Pressing
with no command left justifies the display. In addition, the user can enter an integer value
(>= 0) that specifies the state in the trace data buffer to be centered on the display (highlighted in
inverse video). If the state is not the first state in a display line, the software analyzer will attempt
to align the display to the first state in the line. If the display seems incorrect, try display
positioning to return it to normal.

12-1

Real-Time High Level Software Analyzer
Selecting and Formatting the Measurement Display

DISPLAY FIELDS

The measurement display can consist of up to eight different information fields; source, sour-
ce_path, symbol, symbol path, value, status, and count. The following paragraphs describe the
information fields.

Source Field

The source field is made up of source file statements corresponding to line numbers contained in
the asmb_sym file created when the file was compiled. The software analyzer compares address-
es in the trace record with addresses associated with symbols in the analyzer data base. If the
analyzer detects an address corresponding to a line number symbol in the data base, it extracts
the source statement with its line number from the source file and stores it in the display buffer for
display in the trace list. If a source line is not found, "????" is displayed in place of the line num-
ber and a message explaining the reason is displayed in the source field.

Source Path Field

The source path field contains the file name and userid of the source file from which the source
statement for the current display line was extracted.

Symbol Field

The symbol field contains the symbols traced by the software analyzer. In the trace modules
measurement, the symbols are the names of the modules traced. In the trace data flow
measurement, the symbol field consists of a module name with the symbol field of subsequent
lines containing the names of the parameters and variables being traced on entry to or exit from
the named module. In the trace variables and trace statements measurements, the symbol field
consists of variable and parameter names. In the time modules measurement, the symbol field
contains the names of the modules being measured. The symbol field is not displayed in the
count statements and break measurements.

Symbol Path Field

The symbol _path field shows the path in which the symbol is defined. For modules, the symbol
path contains a file name and userid. For variables and parameters, the symbol path may be a
module name and file name with userid, or a file name and userid, depending upon the level at
which the symbol is defined.

Value Field

The value field contains the values of the variables and parameters traced in the trace data_flow,
trace statements, or trace variables measurements. This field is not valid in the trace modules
measurement and cannot be displayed in the trace list display for that measurement. The default
value field shows the data values in the data type notation specified in the Pascal or C source
program, i.e., integers are displayed as integer values, real numbers as mantissa and exponent por-
tions, boolean values as true or false, etc.

12-2

Real-Time High Level Software Analyzer
Selecting and Formatting the Measurement Display

You can display values in ascii, binary, octal, decimal, hexadecimal, or the default format using the
display base command. Variables with data structures greater than eight bytes in size can only be
displayed in hexadecimal or default format. If any other base is selected, the variable will be dis-
played in default format. In ASCIl display format, non-printable characters are displayed as
hexadecimal values and any byte values greater than 7F (hexadecimal) are displayed as
hexadecimal values followed by a question mark (?). Hlegal values, partial values, and pad bytes
are always displayed as hexadecimal values followed by a question mark (?). Changing the base
causes the value field in all measurement modes to be changed.

When modifying variables such as sets, it is useful to display values in binary or hexadecimal to
determine the value to use in the modify <VAR> command.

Status Field

The starus field indicates whether the traced operation is an entry or exit from a module if the
traced symbol is a module name, or the traced operation is a read from or write to memory if the
traced symbol is a variable or parameter.

Count Field

The information displayed in the count field is dependent on the type of measurement being made.
The count fields for different measurements are described in the following paragraphs.

TRACE MEASUREMENTS In the trace modules, trace statements, and trace variables measure-
ments, the count field contains the number of bus states or the time measured from the first state
of the current display line to the first state of the immediately preceding line (relative mode) or to
the first state in the trace memory (absolute mode). If the counter is set to_count states, the field
will be labeled "Count-rel” or "Count-abs". If the counter is set to_count time, the field is labeled
"Time-rel" or "Time-abs". Absolute or relative display mode is selected with the display command
explained in this chapter. The count field is not available in the trace data flow measurement.

COUNT STATEMENTS. In the count statements measurement display, the count field displays the
number of times the associated source program line was executed. The counter parameter is au-
tomatically defaulted to to_count states when a count statements measurement is specified. The
count field is labeled "count-abs" on the display.

TIME MODULES. In the time modules measurement display, the field displays the maximum, min-
imum, and mean execution times of the specified modules and the number of times the module
was traced. The counter parameter is automatically set to to_count time when a time modules
measurement is specified.

12-3

Real-Time High Level Software Analyzer

Selecting and Formatting the Measurement Display

The following examples describe conventions and features of a trace list when displayed or copied
to a list file. The examples were generated using the measurement command trace variables B
file EXAMPLE. Most of the discussion is applicable to displays generated by any software
analyzer measurement. Part of the list file generated when file EXAMPLE was compiled is shown

in figure 12-1. The TYPE and VAR definitions in the program must be understood before the

sample displays can be understood.

10
"
12
13
14
15

*XXXWARNING ??

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

508:

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

warning:

TYPE
SHAPE

POLYGON
SHAPE_SET
POLY_ ARRAY

-

PTR
REC
FOO
TIME
FIGURE1
FIGURE2
]
CHAR1
FLAG
SETT
N
CASE M
2:(VARIANT2
1: (VARIANT?
END;

VAR
A,B :REC;

== =2 2 VNN DN NN S

field or entry alignment;

INTERPRETING THE DISPLAY

=(LINE, TRIANGLE, SQUARE ,PENTAGON, HEXAGON,

HETAGON, OCTAGON, CIRCLE);

EC;

=RECORD

:PTR;

:REAL;
:SHAPE;
:SHAPE;
:POLY_ARRAY;
:CHAR;
:BOOLEAN;
:SHAPE_SET;
:UNSIGNED_16;
:SIGNED_16 OF
:SIGNED_16);
:SIGNED_8);

record or

=TRIANGLE..OCTAGON;
=SET OF SHAPE;
=ARRAY[-2..0] OF POLYGON;

~508

array comparisons may not work

Figure 12-1. Compiler Listing File For Program EXAMPLE

Current Line

In the trace list shown in figure 12-2, the underscored line in the center of the display is the current
line. The number "912" on the status line is the first acquisition state for the current line. The

number of states required for one line of display is variable.

12-4

Real-Time High Level Software Analyzer
Selecting and Formatting the Measurement Display

64340 Software Analyzer: Slot 6 with emé8000 Emulator: Slot 4

Symbol Value Stat Source Source path

B.FOO 000012EF6H write 53 B:=A; NT2:TEST

B.TIME 1.20000E-4 write 53 B:=A; NT2:TEST

B.FIGURE1 CIRCLE write 53 B:=A; NT2:TEST

B.FIGUREZ2 PENTAGON write 53 B:=A; NT2:TEST

B.P[-2] SQUARE write 53 B:=A; NT2:TEST

B.P[-1] TRIANGLE write 53 B:=A; NT2:TEST

B.P[0] OCTAGON write 53 B:=A; NT2:TEST

B.P[01H?] 72H write 53 B:=A; NT2:TEST

B.CHAR1 " write 53 B:=A; NT2:TEST

B.FLAG TRUE write 53 B:=A; NT2:TEST

B.SETT [LINE,SQUAR* write 53 B:=A; NT2:TEST

B.N 100 write 53 B:=A; NT2:TEST

B.M 1 write 53 B:=A; NT2:TEST

B.VARIANT1 0 write 53 B:=A; NT2:TEST

B.+0017H? O0OH write 53 B:=A; NT2:TEST

Status: Awaiting command 912 _ 14:49
run setup db check display modify show execute ~---ETC---

Figure 12-2. Sample Display Showing How Pad Bytes, Variant Records,
and Field Widths Are Displayed

Displaying Pad Bytes

Line 53 in source file EXAMPLE moves variable A in its entirety to variable B. The symbol field in
the eighth line of the display contains a question mark ("?"). A question mark in the symbol field
indicates that a complete symbolic name does not exist for the value. The compiler warning in the
type definition of POLY_ARRAY indicates that the physical size of a variable of type POLY_ ARRAY
is larger than the logical size. This is done to ensure that the subsequent field begins on an even
byte boundary. The result is a "hole" or "pad byte" in variable B which has no symbolic name.
The analyzer recognizes that the byte is physically part of array P but that an index of 1 is not
valid. A question mark will always be displayed when the analyzer traces a pad byte correspond-
ing to a "508" warning from the compiler.

Displaying Variant Records

The question mark in the 15th line is slightly different. In Pascal, a record is physically large
enough to accommodate its largest variant. In C, a structure is physically large enough to ac-
comodate its largest union. In this case, the record B must be large enough to accomodate
VARIANT2 which is two bytes long. Unless a specific variant is requested in the setup command,
the analyzer defaults to displaying a record with the first variant (C language) or the last variant
(Pascal language). The byte which is offset 17H bytes from the first byte of B is defined with
respect to VARIANT2 but not with respect to VARIANT1. The analyzer always displays undefined
bytes as +nnH?, where nn is a byte offset from the first byte of the record.

12-5

Real-Time High Level Software Analyzer
Selecting and Formatting the Measurement Display

Field and Display Width

The "*" in the ralue field of the 11th line of the display indicates that the field is not large enough to
display the entire value of B.SETT. The size of the field may be increased by using the display
command to specify a larger width. The asterisk may appear as the last character in any field, in-
dicating that there is additional information that is not being displayed. The display may be refor-
matted with a greater width for the field containing the asterisk. Each display field can have a
maximum width of 132 characters. The display has a maximum width of 220 characters. The dis-
play window may be moved for viewing by using the SHIFT key with the left or right arrow.

lllegal Values

Figure 12-3 shows another display resulting from the trace variables B file EXAMPLE
measurement. Question marks in the value field generally indicate that the value of a symbol is il-
legal with respect to the symbol type, i.e., it is out of range. The "07H?" in the seventh line is out
of range because the value 7 (CIRCLE) is not a legal value for a POLYGON. In the ninth line,
"81H" is not a legal ASCII character. In the 10th line, "OCH" is not a valid boolean value. The
"0OAH" in the 11th line indicates that the bit for the 10th element of B.SETT was set but there is no
10th element in the definition of the set (first element = element 0).

64340 Software Analyzer: Slot 6 with emé8000 Emulator: Slot 4

Symbol Value Stat Source Source path

B.FOO ???72EF6H write 53 B:=A; NT2:TEST

B.TIME -Infinity write 53 B:=A; NT2:TEST

B.FIGURE1 CIRCLE write 53 B:=A; NT2:TEST

B.FIGUREZ2 PENTAGON write 53 B:=A; NT2:TEST

B.P[-2] SQUARE write 53 B:=A; NT2:TEST

B.P[-11 OCTAGON write 53 B:=A; NT2:TEST

B.P[0] 07H? write 53 B:=A; NT2:TEST

B.P[01H?] 72H write 53 B:=A; NT2:TEST

B.CHAR1 81H? write 53 B:=A; NT2:TEST

B.FLAG OCH? write 53 B:=A; NT2:TEST

B.SETT [LINE,OAH?] write 53 B:=A; NT2:TEST

B.N 100 write 53 B:=A; NT2:TEST

B.M 2 write 53 B:=A; NT2:TEST

B.VARIANT1 0 write 53 B:=A; NT2:TEST

B.+0017H? 00H write 53 B:=A; NT2:TEST

Status: Awaiting command 912 14:49
run setup db check display modify show execute ~---ETC---

Figure 12-3. Example Display Showing lllegal Values, Special
Values, and Incomplete Access to Values.

12-6

Real-Time High Level Software Analyzer
Selecting and Formatting the Measurement Display

Special Values

B.TIME in the second line of the display has a value of "-infinity". Real numbers may also have the
special values "+infinity" and "not a number".

Incomplete Access To Variables

The four question marks in the value of B.FOO indicate that the analyzer has seen an incomplete
access to the variable and has acquired only part of its value. In this example, the partial value is
due to the analyzer beginning data capture in the middle of the two bus cycles that wrote to
B.FOO. The asynchronous nature of the measurement resulted in the first write cycle not being

captured.

Partial values also occur when the executing code accesses one traced variable and then a second
traced variable without having accessed all of the first variable. A common example is when the
measurement is tracing two 32-bit integers where one is assigned to the other. If the code does
the assignment with word moves, partial values result from the second variable being written to
before all of the first variable is read. Similarly, partial values are common when tracing two struc-
tured variables where one is assigned to the other.

Errors may occur in trace statements measurements when partial values are displayed adjacent to
a complete value of the same variable. The software analyzer groups bus cycles together into
what it considers to be one logical access. This grouping may be incorrect when a access is ad-
jacent to complete accesses. The user may alter the grouping by specifying a new integer position
to be shown on the center line of the display. The software analyzer uses this integer position as
the initial condition in its grouping algorithm. This will alter the manner in which the bus cycles are

grouped.

STATE NUMBER
When the measurement is displayed, you may enter an integer value from 0 to 9999 specifying the
position in the measurement buffer to be displayed and centered on the screen.

344

12-7

Real-Time High Level Software Analyzer
Selecting and Formatting the Measurement Display

— trace display

The display command is used to specify the format of the information displayed in the trace list-
ing. This command allows the user to select which fields to display, the sequence in which the
fields are displayed, field width, and other parameters described below.

Command Syntax

The display command syntax is shown in figure 12-4.

Parameters

The following paragraphs describe the parameters used in the display command.

absolute

ascii

base

binary

count

decimal

default

hex

modify

octal

absolute specifies that counts or times be displayed as an absolute count
from the beginning of the trace to the current line.

ascii is used with the display base command to display values in the
value field as ASCII characters.

base is used to specify the base that the value field is to be displayed in.
The choices are default (native type assigned in the source program), as-
cii, binary, octal, decimal, or hex.

binary is used with the display base command to display values in the
measurement display value field as binary numbers.

count specifies that the count/time field be displayed in the measurement
display. The count/time field may be displayed in relative, absolute, and
statistics mode, depending upon the type of measurement made.

decimal is used with the display base command to display values in the
measurement display value field as decimal numbers.

display default specifies that the measurement display be displayed in
the default format. display base default specifies that the value field be
displayed in the default base, i.e., in the data type assigned in the source
program.

hex is used with the display base command to display values in the
measurement display value field as hexadecimal numbers.

modify is used with the display command to modify the current display
definition. The display modify command recalls the current display
definition to the command line for editing, eliminating the need to re-
enter an entire display command.

octal is used with the display base command to display values in the
measurement display value field as octal numbers.

12-8

Real-Time High Level Software Analyzer
Selecting and Formatting the Measurement Display

display —

(Cont'd)

ascii

decimal

—}

hex

> source) d <WIDTH>
> source__path -

symbol

—>{ symbol__path)
> value)

\

N

A\

N

absolute

relative

statistics
(e e
N — then)} o

Figure 12-4. Display Command Syntax Diagram

12-9

Real-Time High Level Software Analyzer
Selecting and Formatting the Measurement Display

— display

(Cont'd)

relative

source
source_path
statistics
status

symbol

symbol path

then

value

<WIDTH>

relative specifies that counts or times on a line should be displayed rela-
tive to the count or time on the preceding line of the measurement
display.

source specifies that the source field is to be displayed in the trace list.

source__path specifies that a field is to be displayed showing the source
file name that the source statement was extracted from.

statistics specifies that the statistics field (minimum, maximum, mean,
and count) be displayed on the measurement display. This field is valid
only for time modules measurements.

status specifies that the status field is to be displayed in the trace list.
symbol specifies that the symbol field is to be displayed in the trace list.

symbol _path specifies that a field is to be displayed showing the path in
which the symbol is defined. For modules, the source path contains a
file name. For variables and parameters, the source _path may be a file
or a module and file, depending upon the level at which the symbol is
defined.

then is used as a delimiter to separate field definitions when more than
one field is specified in the display command line.

value specifies that the value field is to be displayed in the trace list. The
values are displayed in the notation of the data type declared in the
source program.

<WIDTH> is a prompt for the user to define the width of a displayed field
in columns. Width must be an integer value from zero to 132 columns.

Display Command Examples

The following examples illustrate how to use the display command to format the trace list display.

display default

display source 40 then symbol 10 then value

display symbol 10
source_path

then value 10 then source then

12-10

Chapter 13

CONFIGURING THE ANALYZER

OVERVIEW

This chapter describes the following three methods of configuring the software analyzer:
* Getting the measurement configuration last used
* Getting a measurement from a configuration file

® Configuring a measurement with a command file

GENERAL INFOMATION

This chapter explains how to configure the software analyzer. The analyzer can be configured
manually each time it is used or it can be configured automatically. There are three methods that
you can use to load the analyzer configuration automatically when you first enter the analyzer: (1)
you can use the options continue feature to recall the measurement setup you used to perform the
last tests, (2) you can use any measurement setup that has been previously stored in a configura-
tion file, or (3) you can use a measurement system command file. Each of these methods are dis-
cussed in this chapter.

NOTE

The software analyzer recomputes the addresses of symbols each time
the analyzer is configured from a configuration file. If any programs
referenced in a configuration file are changed such that symbol names
are modified or deleted, the configuration file may no longer be valid.
Errors will occur if symbols are no longer present or have been modified.

GETTING THE MEASUREMENT CONFIGURATION LAST USED

When you are running a measurement session and you press the end softkey the first time, the
analyzer keeps the current measurement configuration in on-board RAM and moves you to the
measurement system software level. You can enter the other analysis functions available at this
level if you wish. To return to the software analyzer softkey level, press the sw_anl N softkey,
then the key.

13-1

Real-Time High Level Software Analyzer
Configuring the Analyzer

Pressing the end softkey a second time brings you out of the measurement system level software
to the system monitor level software. Here you can use the system monitor level softkey functions
without disturbing the measurement setup you ended out of as long as you do not press the
opt_test softkey at the monitor level. You can reenter the software analyzer measurement ses-
sion with the last configuration used at any time by pressing the meas_sys and continue softkeys,
and then the key.

NOTE

If you do not include the options continue statement in your command,
your present measurement configuration will be purged.

The options continue function will not perform the function described
above after the key has been pressed twice, or after a power
down or power fail, or after running performance verification.

If you have entered the same emulator used by the analyzer after ending
the analysis session and modified the emulation setup (i.e. loaded a new
file while in emulation), an attempt to reenter the software analyzer using
the options continue statement may fail.

GETTING A MEASUREMENT CONFIGURATION
FROM A CONFIGURATION FILE

The analyzer can store complete measurement configurations in disc memory so that you can
keep a library of test setups and measurement data on hand for your measurement needs. You
can then load a selected measurement configuration to suit your current need without having to
build a new configuration for each measurement session. If you have a configuration file that is
close to the configuration you need, you can load it and then modify it, saving time by eliminating
the requirement to enter some basic parameters. The following paragraphs describe the
procedures used to store and recover these measurement configurations. The syntax for saving or
loading a configuration is shown in figure 13-1.

13-2

Real-Time High Level Software Analyzer
Configuring the Analyzer

<FILE> ~
<FILE> e ~
write _protected %

<RETURN>

Figure 13-1. Configuration Syntax Diagram

Saving A Measurement Configuration

1. Set up any desired measurement configuration in your software analyzer. It is a good idea
to set up a good basic configuration that can be stored, then loaded and used as a building
block for other measurement configurations.

2. Press the configure and save in softkeys, then type in an A in answer to the <FILFE>
softkey prompt. Now press the key. The analyzer will now save its present
measurement configuration in the trace file you have just named A. The file will be stored
under the current USERID.

3. Now you can change the setup any way you like. Your original measurement configuration
will still be saved exactly as you stored it in file A. You can use this procedure to make as
many configurations as you may require. These, in turn, can also be stored in configuration
files for access at a later time.

If you used the write_protected option when you saved your configuration and you ever want to
purge that file, you must return to the system monitor level software to accomplish the purge. To
accomplish this press the end softkey, then the key (in that sequence) two times. This will
return you to the system monitor level software. You can now purge the unwanted file.

Loading A Measurement Configuration

If you are starting a session (or are at the measurement system monitor level) and want to load a
configuration you have previously stored in a file, proceed as follows: press the sw_anl N softkey,
type in the name of the configuration file you want to use, and press the key. You will
gain access to the software analyzer and it will automatically search the disc and load the con-
figuration you stored in the file you requested.

If you are operating the software analyzer in a measurement session and you want to load a con-
figuration you have stored in a file without ending out of the analyzer, proceed as follows: press
the configure and load _from softkeys, type in the name of the file you want to use, and press the
key. This will cause the analyzer to purge the present measurement setup and load the
configuration from the file you requested.

13-3

Real-Time High Level Software Analyzer
Configuring the Analyzer

CONFIGURING A MEASUREMENT WITH A COMMAND FILE

The command file must contain the sequence of command lines required to create the setup from
the monitor level. Using the parameter passing feature of command files will allow the emul_cmd,
absolute, and source files required by the software analyzer to be specified in the command file.
An example is shown below:

PARMS &CMD_FILE &ABS_FILE &SOURCE_FILE
measurement_system

sw_anl_6 &CMD FILE

load &ABS FILE

setup default_path &SOURCE_FILE

setup trace statements line 82 to 100
run at_execution from transfer_address
execute

wait measurement_complete

copy measurement to MEASURE append

Where:
CMD FILE is the emulation command file
ABS FILE is the linked absolute file to be traced
SOURCE_FILE is the source file to be debugged

The command file can be run from the system monitor level. To run the command file, type in the
file name and the file names for the emulation command file, absolute file, and source files to be

used.
<CMDFILE> STEP2 NT1 NT1
If the file names are not entered, the prompts:
Define parameter &CMD_FILE:
Define parameter &ABS_ FILE:
Define parameter &SOURCE_ FILE:

will appear on the command line.

13-4

Chapter 14

USING SUPPORT COMMANDS

OVERVIEW

This chapter contains the following information:
* System software conventions
* System utilities available from within the software analyzer

* Software analyzer utilities

GENERAL INFORMATION

This chapter describes the software conventions used to make keyboard entries for operating the
software analyzer and how the analyzer directs the entries you make. Also described are the utility

softkeys, the utility keyboard keys, and the prompt softkeys.

SYSTEM SOFTWARE CONVENTIONS

This section contains information concerning the system software as it relates to any of the sub-
systems installed in a particular mainframe.

User ldentification

The user identification (userid) command is the means of identifying yourself to the HP 64000 sys-
tem software as a unique individual who will be using the system for your own analysis/develop-
ment projects. Signing onto the system with your own userid immediately identifies which group
of files the system is to work with.

The userid syntax is a string of up to six (6) alphanumeric characters which start with an upper
case alpha character. If you select a userid with more than six characters, the system will recog-
nize only the first six. If you do not select a userid, the default condition is a blank userid. A blank
userid limits your ability to designate a file because if more than one file is given the same name,
and that file is called up, the system will recognize the first one it sees (which may or may not be
the one you want).

14-1

Real-Time High Level Software Analyzer
Using Support Commands

Directed Syntax

The system software causes a row of softkey labels to be displayed across the bottom line of the
CRT display. These softkey labels identify the functions to be obtained by pressing corresponding
keys in the row at the top of the keyboard. When you press one of the softkeys (selecting a pa-
rameter), the names of all the softkey labels change. The new softkey names offer selections that
can be made to complete the command entry.

By directing the syntax of your entries, syntactical errors are virtually eliminated. The softkey label
line always identifies appropriate entries to be made at any point during the process of formulating
a command. The software analyzer softkeys always prompt the user with a <R ETUR N> softkey
label when a valid command statement has been entered. If the softkey label line contains more
labels than the <R ETUR N> softkey prompt, then the command statement may either continue or
be terminated by pressing the key, as determined by the specific requirement of the
command being formulated.

Entering Numeric Values

You can enter numbers into an analysis specification in any of the four standard number bases.
Place the applicable letter symbol (B, O or Q, D, H) at the end of your number to define its base.
Refer to the following examples:

1000B = 1000 binary

10000 or 1000Q = 1000 octal
1000H = 1000 hexadecimal
1000D or 1000 = 1000 decimal

Hexadecimal numbers beginning with a letter must be preceded with a numeric zero. For
example:

3FAH, OFFH, OF44H (but not F44H)

NOTE

Decimal is assumed if no base is specified when a number is entered.

Entering Module/Variable Names

You can enter module and variable names into an analysis specification exactly as it appears in the
source program with one exception. If the module or variable name is lower case and is identical
to a software analyzer keyword, it must be specified in quotes, e.g., "entry". Otherwise the
analyzer interprets the name as a keyword and generates an error message.

File Names

File names may consist of from one up to nine alphanumeric characters, starting with an upper
case letter. Underscores (_) are also permissible. Alpha characters, after the first character, may
be upper or lower case.

14-2

Real-Time High Level Software Analyzer
Using Support Commands

SYSTEM UTILITIES

Several system utilities and features can be used within the software analyzer. These features are
described in the following paragraphs.

Command Files

A command file is a source file containing a sequence of commands as they would appear on the
command line if entered manually from the softkeys or keyboard. A command file is used to cre-
ate a particular measurement configuration programatically. A command file provides a self-
documenting record of a measurement setup and allows easy editing and modification. By using
the wait command described in this chapter, command files can be set up to perform some auto-
mated measurements which require no operator interaction.

A semicolon (;) is used in the command file to denote comments. The analyzer software will not
read any material following a ";" in any line of a command file. It will start loading new instructions
only after it finds the next carriage return.

In the example:
run from transfer_address; causes program execution to begin

only the command line text "run from transfer_ address" will be acted on.

Logging Commands

The HP 64000 Logic Development System has the capability to log commands to a command file.
This feature is especially useful for building command files that will carry out the entire measure-
ment setup automatically. To log commands for a measurement setup session from the system
monitor level software, press the log and ro softkeys, type in the name of the file you want to use,
and press the key. From this point until you are once again back in the system monitor
software and press the log and off softkeys, and the key, all of the valid commands you
entered are logged into the log file. You may then conduct a software analysis session which will
build a command file for later use or for modification.

Recall Key

The key will cause the analysis module to return the preceding valid command line to the
screen. The analysis module has a command line memory which the key accesses. Each
time you press the key, the analyzer steps one execution further back into its memory of
command lines.

Tab Key
The key is used to move the cursor rapidly through the command line on screen. This key is
useful when you are making modifications to long specifications. By pressing (TAB), you step the

cursor from entry to entry forward through the specification on the command line. By pressing the
key and then the key, you step the cursor backwards through the specification.

14-3

Real-Time High Level Software Analyzer
Using Support Commands

Insert Char And Delete Char Keys

The (NSERT_CHAR) and (DELETE CHAR) keys are used to edit the content of the command line. The
key will open a space before the present position of the cursor so that you can add
entries in the command line. The remainder of the line will automatically shift to the right with
each new entry that you make. The key function will remain in effect until it is
pressed again or until any other utility key is pressed (except (&), (=), or (CAPS LOCK)). The
key is used to eliminate entries from the the command line without losing the entire
specification. When you press the key, the entry directly over the cursor will be
eliminated and the remainder of the specification will shift left. Holding the key down
will cause muitiple character deletions as characters are shifted left, over the cursor position.

Prompt Softkeys

Any softkey name enclosed in angle-brackets "<>" is a prompt for the operator. If you press a
prompt softkey, the STATUS line of the display will explain the meaning of the prompt. The soft-
ware analyzer softkey label prompts and their corresponding status line prompt messages are
given in appendix B.

SOFTWARE ANALYZER UTILITIES

The software analyzer utility commands are copy, end, execute, halt, setup modify, show, and
wait. These softkeys allow the user to execute a measurement, copy and display information con-
cerning the current session, and to end the analysis session without losing the current measure-
ment specification. In addition they allow the user to halt a measurement in progress or to disable
commands while a measurement is in progress. These softkey commands are described in the fol-
lowing paragraphs.

14-4

Real-Time High Level Software Analyzer
Using Support Commands

copy —

The copy command is used to copy the current display, setup, or all or part of the measurement
data (trace list) to a listing file or to the system printer. The information may be appended to an ex-

isting listing file.

Command Syntax

The copy command syntax is shown in figure 14-1.

measurement <STATE #>

display N

printer

<RETURN>

<FILE>

Figure 14-1. Copy Command Syntax Diagram

Parameters
The following definitions describe the parameters used in the copy command.

append ap pend specifies that the display, setup or measurement being copied be
appended to the end of the listing file.

14-5

Real-Time High Level Software Analyzer
Using Support Commands

(Cont'd)

display

<FILE>

measurement

printer

setup

<STATE #>

thru

copy

display specifies that an image of the current display be copied to the
specified file or system printer.

<FILE> is a prompt for the user to enter the file name of the listing file that
the display or trace list is to be copied to.

measurement specifies that the measurement trace list or specified portion of
the trace list be copied to the listing file or system printer.

printer specifies that the display or trace list be copied to the system printer.

setup specifies that the measurement setup information be copied to the list-
ing file or system printer.

<STATE #> is a prompt to the user that a integer specifying a location in the
measurement data buffer may be entered, specifying the measurement data
from the current line on the display (displayed in inverse video) to the
specified state be copied.

thru is used to specify which portion of the trace listing is to be copied. thru
end specifies the first line of the current display through the end of the trace
list. thru start specifies the start of the trace list through the last line of the
current display. thru <STATE#> specifies a record position in the trace
measurement buffer. The trace list from the record position to the top or bot-
tom of the current display will be copied, depending on whether the specified
record position occurs after or before the currently displayed data. The min-
imum data that can be copied is the current display.

Copy Command Examples

The following examples illustrate how to use the copy command.

copy display to printer

copy setup to SETUP2

copy measurement thru 50 to TRACE1 append
copy measurement thru start to printer

When a copy command is executed, the acquisition state for each line of the measurement display
or measurement listing is copied along with the line.

14-6

Real-Time High Level Software Analyzer
Using Support Commands

end —

When you press the end softkey, the HP 64000 station exits the software analyzer and returns to
the measurement system level software. Pressing the end softkey a second time causes the soft-
ware to enter the system monitor level of software. You can make use of the system monitor level
softkey functions without disturbing the measurement you ended from as long as you do not press
the opt_test softkey at the monitor level.

If you pressed the end softkey only once, the instrument is at the measurement system software
level. From here you can reenter the analysis module by pressing the sw_anl N softkey and the
key. If you pressed the end softkey twice the instrument is at the system monitor software
level. From here you can reenter the analysis module by pressing the meas_sys and continue

softkeys and the key.

Command Syntax

The end command syntax is shown in figure 14-2.

v

<RETURN>

end

Figure 14-2. End Command Syntax Diagram

14-7

Real-Time High Level Software Analyzer
Using Support Commands

— execute

The execute softkey causes the analyzer to initiate a measurement based on the parameters
defined in the measurement setup specification. Pressing the execute softkey, then the
key causes the analyzer to search for and acquire data as specified in the trace setup specification.
While the measurement is in progress, the STATUS line displays "Executing real-time ..". When
the measurement is complete, the STATUS line displays " unloading acquisiton memory (count =
nnnn)" while the acquired data is being read to the measurement file. "formatting display" is dis-
played while the data is being formatted for display. When formatting is completed, the measure-
ment will appear on the screen. Whenever the execute command is given, the last measurement

file is deleted.

Command Syntax

The execute command syntax is shown in figure 14-3.

(exemﬂe/) <RETURN>

repetitively

Figure 14-3. Execute Command Syntax Diagram

Parameters
The execute command has one optional parameter, repetitive.

repeat repetitive specifies that the measurement be executed repetitively until a
halt command is given.

14-8

Real-Time High Level Software Analyzer
Using Support Commands

halt —

The halt softkey is used to (1) halt execution of the current measurement or (2) halt unloading of
the acquisition memory. The halt command is executed by pressing the halt softkey, then the

RETURN) key.

Termination of a measurement by halting does not cause measurement completion as defined for
the setup break on measurement _complete and wait measurement _complete commands.

Command Syntax

The halt command syntax is shown in figure 14-4.

(halt }

y

<RETURN>

Figure 14-4. Halt Command Syntax Diagram

14-9

Real-Time High Level Software Analyzer
Using Support Commands

— setup modify

The setup modify command recalls the last measurement setup, measurement enable, or
measurement disable to the display command field for editing. This enables you to edit the com-
mand without having to retype the entire command.

Command Syntax

The setup modify command syntax is shown in figure 14-5.

. VP
~ { measurement } > <RETURN>

measurement__enable

[

I
[

easurement__disable

Figure 14-5. Setup Modify Command Syntax Diagram

Parameters
The following definitions describe the parameters used in the setup modify command.

measurement measurement specifies that the last setup measurement command be
recalled to the display field for editing.

measurement_enable measurement _enable specifies that the last setup measurement enable
command be recalled to the display field for editing.

measurement_disable measurement disable specifies that the last setup measurement dis-
able command be recalled to the display field for editing.

14-10

Real-Time High Level Software Analyzer
Using Support Commands

show —

The show command is used to select the measurement, setup, or a source program for display.

Command Syntax

The syntax for the show command is shown in figure 14-6.

measurement » <RETURN>
source [
<FILE>
Figure 14-6. Show Command Syntax Diagram
Parameters
The following definitions describe the parameters used in the show command.
<FILE> <FILE> prompts the user to enter the name of the source file to be dis-

played. If no file name is entered, the default path file is displayed.

measurement measurement is specified in the show command to display the current
measurement results.

setup setup is specified in the show command to display the software analyzer
setup.

source source is used in the show command to display a source file. If no
source file is entered in the command statement, the default path file is
displayed.

Show Command Examples
The following command examples illustrate how to use the show command.
show setup

show measurement
show source BUB_SORT

14-11

Real-Time High Level Software Analyzer
Using Support Commands

— wait

The wait command causes the software analyzer to disable all software analzyer commands until
the wait condition is cleared. wait enables the user to create command files that can execute
repetitive measurements, storing the measurement results between measurement executions. This
command provides the capability to automatically make measurements, unattended by the user,
with the results stored in listing files for future analysis.

The wait measurement _complete command causes the software analyzer to disable all software

analyzer commands until the measurement is completed. When used in a command file, the wait
measurement _complete command suspends execution of the command file until the measurement

is completed.

The wait <SECONDS> enables you to execute a wait from one second to 65535 seconds (ap-
proximately 18.2 hours) in duration. If a larger value is entered, the analyzer truncates the value to
its 16 least significant bits, e.g., 65537 seconds would be truncated to one second.

Pressing the key when a wait condition is enabled will stop execution of the command file.
Pressing any other key will clear the wait.

Command Syntax

The wait command syntax is shown in figure 14-7.

< wait > A 7 <RETURN>
\—><measurement_oomplet€>——’

~—> <SECONDS> ———~

Figure 14-7. Wait Command Syntax Diagram

14-12

Real-Time High Level Software Analyzer
Using Support Commands

wait —

(Cont'd)

Parameters
The following definitions describe the parameters used in the wait command.

measurement_complete measurement _complete causes suspension of command file execu-
tion until the current measurement is completed.

<SECONDS> <SECONDS> prompts the user to specify the number of secoanGto
-1

wait before again accepting commands. A value from Oto 2
(65535) seconds may be specified.

Wait Command Examples

The following command examples illustrate how to use the wait command.

wait
walt measurement _complete
wait 120

14-13

Real-Time High Level Software Analyzer
Using Support Commands

NOTES

14-14

Chapter 15

SYMBOLS AND DATA TYPES

OVERVIEW

This chapter contains the following information about symbols and data types supported by the
software analyzer:

* Supported symbol classifications (static and dynamic)

* Supported data types

GENERAL INFOMATION

This chapter describes the storage classes and data types that the software analyzer recognizes.
Symbols are categorized by whether the location of the symbol is known at link time (static) or
whether the location changes during run time (dynamic). The scalar and structured data types that
can be symbolically referenced by the software analyzer are described.

SYMBOL CLASSIFICATIONS

Static Symbols

LOCAL AND GLOBAL VARIABLES. Static variables (both local and global) are defined as those
whose base locations are allocated at link time. The software analyzer expects that these locations
will not change during run time.

PROGRAMS, MODULES, PROCEDURES, AND FUNCTIONS. A module is a set of program state-
ments that can be invoked (or referred to) by name. In Pascal, "module” may refer to the main
program of a file, or to individual procedures or functions within a program. In C, "module" can
refer only to functions. The key elements of a module, as required by the analyzer, are (1) the
module must be a contiguous segment of code with a single entry point and a single exit point,
and (2) all the code for the module must fall within the range of the entry and exit points. The
entry point is defined in terms of the assembly code which is generated after compilation of the
high level language module. It is the first executable instruction of the module (this includes any
compiler overhead which may have to be done before the assembly code performing the actual
module operations begins). The address of the entry instruction becomes the lower boundary of
the address range for the module. The exit point is defined as the last executable instruction of
the code segment and its address becomes the upper boundary of the address range for the
module.

15-1

Real-Time High Level Software Analyzer
Symbols and Data Types

LABELS. The entry point into a module’s assembly code must have a label associated with it
which must be the module name (e.g. MAIN). The exit point must also have a label associated
with it which is identical in the first 14 characters to the entry point label except that an "R" is ap-
pended to the front of the label (e.g. RMAIN). It is these labels, found in the symbol files, that the
analyzer keys on to perform a table lookup of the address range associated with the module, as
well as its entry and exit points. The compilers follow these design rules but may, under certain
conditions, create identical labels. These conditions are as follows:

1. procedures and functions in Pascal which are on different levels (i.e. nested procedures)
may have identical names.

2. Due to the creation of the "R" or exit point labels, procedures and/or functions identical in
the first 14 characters on any level will produce identical "R" labels.

The analyzer always keys on the first label it encounters that matches the specified label.
Therefore, in order to avoid having the analyzer key on the wrong label, it is recommended that
you always make your procedure and/or function names unique within the first 14 characters.

LINE NUMBERS. The software analyzer provides symbolic lookup of line numbers. These line
numbers correspond to the line numbers found in the compiled listing file. The analyzer only ac-
cepts line numbers having executable code associated with them. If a line number has several in-
structions associated with it, the first instruction is the instruction associated with that line number.
Lines that are intermixed in high level code, but contain only comments, do have executable code
associated with them. These lines will be associated with the executable code immediately follow-
ing them. Any comments that occur before the beginning and after the end of a module do not
have executable code associated with them and do not exist for purposes of the software analyzer.

PATHS. A path consists of a module name and source file name that uniquely identifies a variable.
Possible module names include function names in C programs, and procedure and function
names in Pascal programs. The procedure or function name may be qualified by a file name. In
Pascal, the main program path is defined by the file name.

Proc. The keyword proc is found in the commands modify <VAR> proc .., display <VAR> proc
w, Setup trace variables <VAR> proc .., and setup trace data_flow ... The keyword proc is used
to specify an element of the variable’s path, i.e., proc defines the procedure or function the vari-
able belongs to and enables unique identification of the variable.

File. The keyword file is used to describe the file a variable belongs to. If only a file is given with
no proc specified, the variable belongs to the outermost level by default. In Pascal, the outermost
level is the program level.

Default Path. A default path may be set up before an actual measurement command is given.
Then, if no path name is specified in the measurement command, the default path is used as the
path definition for the measurement. If no default path is defined, the path must be specified in
the measurement command.

Dynamic Symbols
LOCAL VARIABLES. Dynamically activated local variables are those that are assigned to the stack

when the procedure is invoked and taken off when the procedure ends. The variable can be in
different places at different times during run time.

15-2

Real-Time High Level Software Analyzer
Symbols and Data Types

REFERENCE PARAMETERS. A parameter that is passed by reference causes the address of the
parameter to be passed. If a variable passed by reference is traced, the changes that occur to that
variable will be seen within the subroutine the parameter was passed from. The variable will also

be displayed with the name it acquired after being passed as a parameter.

VALUE PARAMETERS. Value parameters are not active on exit from procedures since they are
treated in the same manner as local variables by the compiler. In C, all parameters except arrays

are passed by value.

SYMBOLIC DATA TYPES

Many types of data can be symbolically referenced by the software analyzer. The following para-
graphs describe the data types recognized by the software analyzer.

Intrinsic Data Types

Table 15-1 describes the intrinsic data types recognized by the software analyzer.

Table 15-1. Intrinsic Data Types

Scalar Data Types

Pascal C Description

BOOLEAN Not applicable An 8-bit value whose low-order bit represents
the value TRUE (1) or FALSE (0).

BYTE short An 8-bit signed integer in the range -128 to
+127.

SIGNED_8 short An 8-bit signed integer in the range -128 to
+127.

UNSIGNED_8 unsigned short An 8-bit unsigned integer in the range O to
255.

SIGNED_16 int A 16-bit signed integer in the range -32768 to
+32767.

UNSIGNED_ 16 unsigned A 16-bit unsigned integer in the range O to
65535.

SIGNED_ 32 long A 32-bit signed integer in the range

-2,147,483,648 to +2,147,483,647.

15-3

Real-Time High Level Software Analyzer

Symbols and Data Types

Table 15-1. Intrinsic Data Types (Cont’d)

Pascal

UNSIGNED_32

CHAR

INTEGER

REAL

LONGREAL

Pascal

SCALAR TYPE

SUBRANGE TYPE

Scalar Data Types (Cont’d)

c

unsigned long

char

long

float

double

Description

A 32-bit unsigned integer in the range O to
+4,294,967,295.

An 8-bit value in the set of characters defined
by the 8-bit ASCII character set.

A 32-bit signed integer in the range
-2,147,483,648 to +2,147,483,647.

A 32-bit binary value representing a floating
point number in IEEE simple precision
format.

A 64-bit binary value representing a floating-
point number in [EEE double precision
format.

User-Definable Data Types

[]

enum

Not Applicable

Description

A type that defines an ordered set of values
by enumerating the identifiers which denote
these values.

A type that is identified as a subrange of a
previously defined ordinal type (char, byte, in-
teger, or scalar) in which the smallest and
largest values are user defined.

15-4

Real-Time High Level Software Analyzer
Symbols and Data Types

Structured Data Types

The following paragraphs describe the structured data types recognized by the software analyzer.

ARRAY. An array is a structure consisting of a number of components which are all of the same
type (called the component type), in which the components (elements of the array) are accessed
by index expressions. The array type definition specifies the component type and, in Pascal, the
index type.

In Pascal, the component type may be of any type. Multidimensional arrays may be represented
as "ARRAY OF ARRAY (OF ARRAY..)" with an arbitrary number of indices. The index type must be
a simple type such as scalar or subrange type.

In C, the component type may also be of any type. Multiple dimensions may be specified by mul-
tiple brackets, i.e., [size] [size] [size]. The index type must always be integer. In C, an array
passed as a parameter with undefined size cannot be traced with the software analyzer.

POINTER. A pointer is a variable that contains the address of a dynamic variable such that the
dynamic variable can be accessed via the pointer variable. In C, arrays are not considered pointers
for the purposes of this manual. Pointers can be traced in all software analyzer measurements
that trace variables. Pointer expressions (the dynamic variable accessed via the pointer variable)
can be traced only with the trace data _flow measurement. Pointer expressions can be displayed
or modified using the modify and display commands.

SET (Not Applicable to C). A set is a structure defining the set of values that is the power set of its
base type,(i.e., the set of all subsets of values of the base type). The base type must be a scalar or
subrange type.

RECORD/STRUCTURE. A record (structure in C) is a data type consisting of a fixed number of
components, called fields (members in C), each of which can be of any type. For each field/mem-
ber, the record/structure definition specifies a field/member name identifier and the field/member
type. For the remainder of this discussion, the Pascal terminology will be used.

VARIANT RECORDS/UNIONS. When the Pascal or C compiler allocates space for variant record
fields, every field in the variant section is allocated the amount of space necessary to accom-
modate the largest variant field. Padding is used to fill up unused space for those variant fields
which are smaller than the largest variant field.

If a variant field is to be displayed, the specific name of the variant field should be specified in the
measurement. If it is not (i.e. the record as a whole is specified), the analyzer will display the
record in terms of the first (C source code) or last (Pascal source code) variant field. Therefore,
padded space could be displayed as meaningful contents or vice versa.

Using the following program example, tracing AREC.SECOND would display a 32-bit value.

However, if AREC was traced, the display would show the 16-bit field in AREC followed by 48 bits
shown as padded space.

15-5

Real-Time High Level Software Analyzer
Symbols and Data Types

EXAMPLE: (Pascal)
TYPE
VREC = RECORD
CASE TAG : INTEGER OF
1: (FIRST: A_16 BIT_SIZE);
2: (SECOND: A_32 BIT_SIZE);
3: (THIRD: A_64 BIT_SIZE);
END;
VAR
AREC : VREC;
VAR1 : A_16 BIT_SIZE;
VAR2 : A 32 BIT_SIZE;
VAR3 : A 64 BIT SIZE;

BEGIN

CASE AREC.TAG OF
1: AREC.FIRST := VAR1T;
2: AREC.SECOND := VARZ2;
3: AREC.THIRD := VAR3;
END;

END;

During compilation, padding may take place automatically to handle memory alignment. For ex-
ample, in a record defined as having an eight-bit field followed by a 16-bit field, the eight bits be-

tween the two fields may be padded to accommodate word boundaries.

1
st PADDING

FIELD

2nd
FIELD

o 7|8 15|16

3|

If the entire record was displayed, it would contain an 8-bit field of padding. See chapter 8 for an

example of how pad bytes are displayed.

15-6

Chapter 16

OPERATIONAL THEORY

OVERVIEW

This chapter provides information on the operational theory of the software analyzer to aid you in
understanding why some measurements function as they do. This chapter provides the following
information:

®* A description of high level constructs that the analyzer uses.

° A discussion of software analyzer recognition resources/counters.

° Measurement operational theory.

® More on resource allocation.

GENERAL INFORMATION

This chapter describes the operation of the software analyzer. Performing high level software
analysis is not a simple task; complex hardware and software are required, and tradeoffs must be
made. Understanding how the software analyzer accomplishes measurements and uses its
resources will enable you to use the software analyzer more effectively.

Appendix C contains information on stack architecture and memory structures that will help you
understand how the software analyzer functions.

HIGH LEVEL LANGUAGE CONSTRUCTS

To understand how the software analyzer works, you need to understand the definitions of some
high level language constructs with which the software analyzer interacts. The following para-
graphs describe these high level constructs.

Procedures

Procedures have defined entry and exit points and can be associated with both their source code
line numbers and their physical addresses at link time.

Variables

From the viewpoint of the software analyzer, variables are considerably more complex than

procedures. Variables can be of different types and can have more that one data element, e.g.,

16-1

Real-Time High Level Software Analyzer
Operational Theory

arrays and records. Variables can be pointers, which do contain not data but addresses where
data (or other pointers) can be found.

All types of variables can also either be static or dynamic. Static means that their location is fixed,
i.e., a static variable is associated with a fixed address (or addresses) by the linker. A dynamic
variable, on the other hand, is allocated at run time, either using the stack or the heap (the heap is
an area of memory allocated at link time just for this use). Variables defined local to a procedure
are dynamic; they are given a location on the stack when the program is executed.

Tracing dynamic variables is more complex than tracing static ones, especially in real-time. The
software analyzer cannot be set up to look at a dynamic variable until the variable is defined
(scoped). This doesn’t occur until run time. Thus, the software analyzer has specialized hardware
which can be initialized "on the fly". These dynamic recognition resources are separate from the
static resources in the software analyzer; these hardware resources cannot be shared.

The software analyzer can trace all types of variables. The data pointed to by a pointer, however,
can only be accessed in the non-real-time trace data flow and display variable measurements.
Seven levels of indirection are supported in these two measurements, i.e., the analyzer can display
the data value being pointed to by a string of six pointers. The other measurements can only dis-
play the address located in the pointer location.

Symbols

A symbol is a procedure name, a program line number, or a variable name. An array or record is
considered one symbol if traced as a whole, but if individual elements are traced, each counts as
one symbol. For each measurement, up to ten symbols can be entered when the setup is being
specified.

RECOGNITION RESOURCES AND COUNTERS

The software analyzer has 18 static low level recognition resources and four dynamic low level
recognition resources. A low level resource is defined as an "equate”. In other words, an IC chip
is used to watch the emulation bus and compare address/status or data bit patterns with a
predifined pattern. It is important to understand these low level resources and how each
measurement utilizes them, as sometimes they can be used up.

The counting and timing is done with a 20-bit floating point grey code counter. These 20 bits
make up the time tag for every stored state. The counter has a 100 nS accuracy.

TRACE MEASUREMENT THEORY

Each software analyzer measurement uses the low level recognition resources to look for specific
data, addresses, or ranges. Whenever possible, the number of resources used is minimized; ad-
jacent variables and modules can sometimes use just one range resource. Adjacent variables or
modules must be adjacent in the emulation/user memory, not necessarily adjacent in code.

16-2

Real-Time High Level Software Analyzer
Operational Theory

Trace Modules Measurement

Figure 16-1 shows the resources used in a "trace modules PROC1 , all file FILE_A , PROC4"
measurement. Both address ranges and data equates are used to detect module entry and
module exit. The data equates are what actually determine these entry and exit points. Using
"hooks" provided by the compiler, these equates are set up to recognize the first and last instruc-
tions of a module. The way HP compilers are written, unique instructions indicate entry or exit
points of modules. Address ranges are then used to qualify the entry and exit points so that only
the ones in the specified modules are saved.

Address ranges are set up around the addresses associated with the specified modules; they can-
not include code space for another module or else the trace would catch unwanted data. In this
example, even though three symbols were specified, only two ranges are needed. All modules in a
single file are adjacent, and it happens that PROC4 is adjacent to FILE_A.

Finally the results of the recognition resources are ANDed together, data associated with an entry
or exit point is stored in trace memory. With processors that use prefetching, sometimes data is
stored which is not a true entry; The software analyzer detects this when it postprocesses the data
and filters out these points.

Ten explicitly named modules can be traced. This limitation is imposed by the overall 10 symbol
limit in trace specifications. However, if the specified modules are not adjacent, only four can be
traced (there are only four range resources). If all the modules in a file are specified, up to 255
different modules can be traced.

PROGRAM EXAMPLE:
trace modules PROC1, all file FILE_A, PROC4
ENTRY1
PROC1 ADDR. RANGE 5] ENTRY[DATA EQUATE
w HOOK

EXITT o9

/\/ z 8 @

.3'_: T exr
/_/ Z HOOK | DATA EQUATE
[[ENTRY2 |]
PROC2
5 EXIT2
g ENTRY3

PROC3 | |— [ADDR. RANGE
EXIT3

ENTRY4 TRACE

PROC4 MEMORY
EXIT4 \l/

- NOTE THAT PROC4 IS
TN ADJACENT TO FILE_A STOP ANALYZER WHEN TRACE MEMORY FULL

SO ONLY 1 RANGE \l/
IS NEEDED HERE
UNLOAD COMPLETED MEASUREMENT AND SEND
THROUGH POST—-PROCESSING FILTER

Figure 16-1. Trace Modules Measurement Diagram

16-3

Real-Time High Level Software Analyzer
Operational Theory

Trace Data Flow Measurement

Figure 16-2 shows the resources used in the trace data flow measurement. This measurement can
only run in non-real-time mode because the software analyzer needs information that is not avail-
able on the emulation bus. Address equates are used for each module, limiting the number of
modules that can be specified to three. For each module, one equate is used for the entry and
one for the exit. Another equate is used for each module, to recognize an address at the end of
user code, just before the address of the module exit. This accommodates tracing infinite

recursion.

Upon entry to a module, a frame is created. This frame contains information required by the
analyzer, such as where the stack is located. Up to 256 frames can be stacked at a time.
Whenever a recursive routine calls itself, a new frame is created and stored. When the recursive
routine returns, the old frame is available at module exit.

This 256 state memory limits some measurements to only only 255 levels of recursion. In trace
data flow measurements, since the emulator can be halted, frames can be created anywhere within
the module. By having an equate set up to look for an address that occurs within a module, but
before the exit, a frame can be created when this address is recognized. This address is chosen to
be at the end of the user code so that any calls would have occurred previous to the address.
Therefore, unlimited recursion be supported. Anytime frame information is lost because the level
of recursion exceeds 255, it can be recreated when returning to the module.

For this reason, three equates are needed for each module being traced. When any of these
equates are satisfied, the analyzer is halted, and the values of specified variables are read from
emulation or user memory, and stored in trace memory. Then the analyzer and emulator is
restarted.

The only limit imposed on the number of variables specified, is the 10 symbol limit on entering the
measurement. Variables that are not scoped at module entry or exit cannot be traced.

PROGRAM

—~_ (NON—REAL—-TIME)
ENTRY1 . EQUATE STOP ANALYZER AND
PROCI
S e ADDR._EQUATE BREAK EMULATOR
EXITI ADDR. EQUATE
DETERMINE WHICH PROCEDURE
AND ENTRY/EXIT CAUSED BREAK
N
/ UNLOAD SCOPED VARIABLE, STATIC
VARIABLES, PARAMETERS AS PER
ENTRY2 [aD0R._EQUATE SPECIFIED BY MEASUREMENT
(READ FROM MEMORY BY EMULATOR)
PROC2
USR EXIT2 ADDR. EQUATE
EXIT2 ADDR. EQUATE RESTART ANALYZER AND EMULATOR
IF MEASUREMENT TRACE IS NOT
/\J COMPLETE

Figure 16-2. Trace Data Flow Measurement Diagram

16-4

Real-Time High Level Software Analyzer
Operational Theory

Trace Variables Measurement

The trace variables measurement functions the same way in real-time as in non-real time. Figure
16-3 shows the resources used in this measurement. Static Variables are comparatively easy to
trace. Address equates are used for any static variable that is one byte wide, and ranges are used
on longer variables such as records and arrays. The analyzer will also use one range over any ad-
jacent variables. If the range is accessed, the address and values are stored.

Dynamic variables function in much the same way. However, since the number of dynamic recog-
nition resources is less, one range is used to cover all variables, even if they are not adjacent.
During postprocessing, the unwanted accesses are filtered out. The software analyzer must locate
the stack reference and the actual memory locations for these variables, which is not defined until

the program is executing.

STACK

STACK — " DYN. EQUATE |
REFERENCE ['-~----==-

DYNAMIC v
VARIABLES
X &Y X

STATIC DATA @

TRACE
MEMORY

stanc [—
BYTE —[A ADDR. EQUATE
VARIABLE

STOP ANALYZER
WHEN TRACE
MEMORY FULL

ADDR. RANGE

STATIC — R
RECORD

L~

Figure 16-3. Trace Variables Measurement Diagram (Dynamic and Static)

UNLOAD COMPLETED
MEASUREMENT

16-5

Real-Time High Level Software Analyzer
Operational Theory

Figure 16-4 shows how the dynamic variable locations are determined by the software analyzer.
One dynamic equate is used to locate the entry to the procedure where the dynamic variables of
interest are defined. From this point the software analyzer can determine the first data write onto
the stack. This provides an immediate stack reference, and is stored in trace memory. From the
database file, the offsets of the dynamic variables are known. Therefore, locations of the variables
can be loaded using this stack reference and and offsets to the dynamic range resource. This is
done before any of the variables have been read or written to by the user program. The dynamic
equate is then reloaded, enabling the software analyzer to recognize the location on the stack of
the procedure’s return address. All accesses to the range of locations are stored in trace memory
until the equate indicates that the return address has been read (popped off the stack). After this
point the variable no longer exists and the sequence is started up again.

PROGRAM
ENTRY1 | DYN. EOUATEl
PROC1 DYNAMIC VARIABLES
=T FIND PROC1 ENTRY
TN FIND 1st DATA WRITE (THIS WILL BE TO
STACK THE STACK). STORE STACK REFERENCE
N IN TRACE MEMORY FOR USE LATER
RETRN | | -
ADDRESS ' DYN. EQUATE ! LOAD UP DYNAMIC ADDRESS RANGE
_________________ BASED ON STACK REFERENCE & OFFSETS
STACK — . DYN. EQUATE |
REFERENCE _ LOAD UP DYNAMIC ADDRESS EQUATE
DATA WRITE WITH ADDRESS OF LOCATION OF PROCI
STATUS RETURN ADDRESS
o [T LOKD | STt s To D
VARIABLE DYN. RANGE
X &Y X
WHEN RETURN ADDRESS IS TAKEN OFF
THE STACK THE VARIABLE NO LONGER
EXISTS.
) \1/

RESTART THE SEQUENCE

Figure 16-4. Trace Variable Measurement Diagram
(Non-Real-Time and Real-Time)

16-6

Real-Time High Level Software Analyzer
Operational Theory

Trace Statements Measurement

Trace statements can be viewed as two measurements , a real-time measurement and a non-real-
time measurement. The real-time measurement is less complex conceptually because the
emulator is never broken, and all information is flowing over the emulation bus. Figure 16-5 shows
a real-time trace statements measurement over procedure PROC1. One address range resource is
used to detect the window start and stop points. The special address equate which is set up to
detect an opcode is used to detect the execution of code. These two resources are ANDed
together. When the two resources are true, a "window" is is opened and all the data flowing over
the emulation bus is stored in trace memory. When the address range signals that the program is
out of the specified line range, the storing "window" is closed. A trace statements using the "don't
care" specification simply causes the analyzer to execute with the window continuously open.
During postprocessing, the data is interpreted and the lines are displayed in their executed order.

PROGRAM
/\/

ENTRY1

® TRACE STATEMENTS ON A
PROCEDURE IS IDENTICAL

| procs EXCEPT ADDRESS RANGE IS
OVER ENTIRE PROCEDURE

® TRACE STATEMENTS
"DON’T CARE" IS SIMPLY
WHERE THE WINDOW IS
CONTINUOUSLY OPEN

EXIT1
IN out |

RANGE OF
{ADDR. EQUATE l

RANGE
V / OPCODE
@ FETCH STATUS
WINDOW TRACE

START STOP MEMORY
STORING STORING

Figure 16-5. Trace Statements Measurement Diagram (Real-Time)

16-7

Real-Time High Level Software Analyzer
Operational Theory

In non-real-time (figure 16-6), the trace statements measurement provides more data to the user.
This is a more complex measurement. Because the analyzer can halt the emulator and determine
where the stack is (create frames), dynamic and local variable values can be captured. The use of
the one address range to determine a storage "window" is the same in non-real-time, but in addi-
tion, two address equates are used to detect entry and exit points. Whenever the program enters
the specified module, the emulator is halted and the new stack information is stored for
postprocessing later.

PROGRAM
T ~—

ENTRY1 ADDR. EQUATE

STOP ANALYZER

AND BREAK
EMULATOR
— | procs or !

IF MEMORY FULL THEN
QUIT MEASUREMENT
IF ENTRY THEN:

— UNLOAD DATA
EXITI. ADDR. EQUATE T A ONTEXT

IN out
RANGE oF T~ — STACK PREVIOUS CONTEXT
RANGE IF EXIT THEN:
{ADDR. EQUATEl — UNLOAD DATA
/ — THROW AWAY
OPCQODE IRaCE CURRENT CONTEXT
AND FETCH STATUS A - UNSTACK PREVIOUS
MEMORY CONTEXT
FULL
WINDOW TRACE \
START STOP MEMORY RESTART ANALYZER AND EMULATOR
STORING STORING ‘ IF MEASUREMENT NOT COMPLETE

"DON’T CARE" TRACE

Figure 16-6. Trace Statements Measurement Diagram (Non-Real-Time)

16-8

Real-Time High Level Software Analyzer
Operational Theory

Count Statements

The count statements measurement uses the same address range resource as the other measure-
ments, but also has some dedicated hardware. The measurement can trace 255 lines in one
module, but the traced portion of the program cannot exceed 4K bytes of memory. The reason is
that one of the dedicated functions is a 4K to 256 "bucket" mapper. The "bucket" refers to the
12-bit counters associated with each source line. The measurement works by assigning the ad-
dress range resource over the specified module/line range. Before the measurement is executed,
the mapper is loaded, using the line number information found in the comp_db file. When the
measurement is executed, the appropriate counter or "bucket" is incremented when the first
machine code statement of a given line number is executed. Thus a line that contains many in-
structions (which could even loop and execute a number of times) is incremented only once.

PROC1 4K TO
CODE 256
— BUCKET
MAPPER
[[ENTRY1 0]
0
| LINE 10 | !
_______ 0
0
| LINE 17] 2
_______ 0
[ADDR. RANGE |—{ [7777 7] 0 - 5. o 228
_______ o BUCKETS
....... 8 /NCREMENT
------- 0 APPROPRIATE
...... i o BUCKET
| LINE 12 | 3
0
LINE 13 4
| [ExiT 0 || NOTE:
0 IS THE GARBAGE
L BUCKET

Figure 16-7. Count Modules Measurement Diagram

16-9

Real-Time High Level Software Analyzer
Operational Theory

Time Modules

The time modules measurement uses two address equates for each module. Thus, a limit of four
modules can be traced. These equates simply look for entry and exit points, and when true store
the state. The 20-bit counter is started at the beginning of the measurement, and the absolute
time for every exit and entry point is saved as a time tag with the stored state. When the
measurement is complete, these time tags are used to determine time spent in each module, and
then the statistical results are determined.

PROGRAM
/_/
ENTRY1 [A0DR. EQUATE |
PROC1
EXIT1 [ADDR. EQUATE |
/__/
TRACE
[~ MEMORY
ENTRY2 ADDR. EQUATE |
PROC2 OR
EXIT2 ADDR. EQUATE / STOPEAN:;.ICZER
ENTRY3 R. AT WHEN
ACDR. EQUATE MEMORY FULL.
PROC3 \l/
UNLOAD COMPLETED
MEASUREMENT
EXITS [ADDR. EQUATE | AN;%;%"CL;‘TE
/'—\/

Figure 16-8. Time Modules Measurement Diagram

MORE ON RESOURCE ALLOCATION

Because of resource allocation, each measurement has different limits. A measurement’s limits is
also affected by the measurement enable and disable functions, which use the same range and
equate recognition resources. This will cause measurement limits to vary from measurement to
measurement. For each level of sequencing, one equate is used in either an enable or disable
term. When in non-real-time, the enable equates can be reloaded before the measurement is in-
itiated. Thus they do not take any resources away from the measurement specification. However,
when specifying complex measurements in real time, the allocation of resources may involve
tradeoffs.

16-10

Appendix A

OPERATING SYNTAX DIAGRAMS

INTRODUCTION

This appendix contains the operating syntax diagrams for the software analyzer. These diagrams
are based on the guided-syntax softkeys that appear when the software analyzer is being used.

The following syntax diagrams are provided in this appendix.

Figure No.

A-1.

A-2.

A-3.

A-4.

A-5.

A-6.

A-7.

A-8.

A-9.
A-10.
A-11.
A-12.
A-13.
A-14,
A-15.
A-16.
A-17.
A-18.
A-19.
A-20.
A-21.
A-22.
A-23.
A-24.
A-25.
A-26.
A-27.
A-28.
A-29.
A-30.
A-31.
A-32.
A-33.
A-34.
A-35.

Description

Software Analyzer Level
Run

Setup

Setup Modify

Setup Trace Data_ Flow
Setup Trace Modules
Setup Trace Statements
Setup Trace Variables
Setup Count Statements
Setup Time Modules
Setup Break

Setup Measurement Enable
Setup Measurement Disable
Setup Default_Path
Setup Counter

Setup Real Time
Setup Absolute_file
Setup Trigger_enable
Database check
Display

Modify

Show

Execute

Wait

Halt

Load

Break

Reset

<CMDFILE>
Configuration

Copy

End

Variable

Pascal Variable

C Variable

Page No.

A-2
A-3
A-4
A-5

A-6

A-6

A-7

A-7

A-8

A-8

A-9
A-10
A-10
A-11
A-11
A-11
A-12
A-12
A-13
A-14
A-14
A-14
A-15
A-15
A-15
A-15
A-15
A-16
A-16
A-17
A-17
A-17
A-18
A-18

A-1

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

51—

A-2

s

N

P
——
setup

~——>(database_check)————

- Comon)
- Croan
G
D
‘—’ﬁ

— =
G
)

L——>C configuration >—>

end

— G —

see figure A-2
see figure A-3
see figure A-19
see figure A-20
see figure A-21
see figure A-22

see figure A-23

see figure A-26
see figure A-27
see figure A-28
see figure A-29
see figure A-30
see figure A-31

see figure A-32

Figure A-1. Software Analyzer Level Syntax Diagram

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

f r <RETURN>
I_w-(at_execution)} J off

> <LINE> o

> <SYMBOL> ——J> 1~—>(file <FILE> ——{

‘—»(transfer_addressJ\ 7

Figure A-2 Run Syntax Diagram

A-3

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

data_ flow)—>

H(modules)—>

;)(statements)—>

;—>< variables)—*

L

time_modulesy

:

break

measurement__enable)

count__statements) >
)
)

L1

measurement__disable

) >
J

!

)

default_pathj
N

set_counter)

A

[

real__time)

N

I

absolute_fllej

N

!

trigger_enable/

!

Figure A-3. Setup Syntax Diagram

see figure A-4
see figure A-5
see figure A-6
see figure A-7
see figure A-8
see figure A-9
see figure A-10
see figure A-11
see figure A-12

see figure A-13

see figure A-14
see figure A-15
see figure A-16
see figure A-17

see figure A-18

N

|

m

{ measurement }

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

;—@easwement_enable

[

easurement__disab

<RETURN>

le

[

Figure A-4. Setup Modify Syntax Diagram

data_flow

<MODULE>

file <FILE> entry
exit
(p_variable (>
¢_variable]
proc <PROC> file <FILE>
. (e
N

See figures A-34 and A-35 for c¢_variable and p_variable syntax.

Figure A-5. Setup Trace Data_Flow Syntax Diagram

<RETURN>

A-5

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

trace modules

<RETURN>

> all)

At
<MODULE> L(file)—» <FILE>

=

e
/-

Figure A-6. Setup Trace Modules Syntax Diagram

statements)

<LINE>

‘ <LINE>

<MODULE>

A-6

| I—

(

Figure A-7. Setup Trace Statements Syntax Diagram

<RETURN>

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

variable

proc)—»

<PROC>

—

—{_file }—

<FILE>

|/

See figure A-33 for variable syntax.

<RETURN>

Figure A-8. Setup Trace Variables Syntax Diagram

count_statements)———j

<LINE>

to

<MODULE>

<LINE> [

file

Figure A-9. Setup Count Statements Syntax Diagram

<RETURN>

<FILE> -—[

A-7

Real-Time High Level Software Analyzer

Operating Syntax Diagrams

time__modules h

(<MODULE>

<RETURN>

<FILE>

Figure A-10. Setup Time Modules Syntax Diagram

break

setup

(e)
)
NN

<RETURN>

measurement_complete)

N

<LINE>

—> <MODULE>

file

<FILE> ——J

file)

<FILE>

(or
o/

Figure A-11. Setup Break Syntax Diagram

A-8

A

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

measurement__enable off > <RETURN>

—) A

(any_state)

<LINE> -
file >—> <FILE> J

<MODULE>

file <FILE>

-

[)
l——(followed_by ><—J

Figure A-12. Setup Measurement_Enable Syntax Diagram

A-9

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

measurement_disable

off

a

on

(any_state)

<LINE>

file

<FILE>

i

<MODULE>

file)—» <FILE>

(or)

O

L]

followed__by

)
\J

Figure A-13. Setup Measurement_Disable Syntax Diagram

<RETURN>

(setup }—(default_path)

proc <PROC>

<FILE>

<RETURN>

Figure A-14. Setup Default_Path Syntax Diagram

A-10

Real-Time High Level Software Analyzer

counter

to_count_states

to_count_time

Figure A-15. Setup Counter Syntax Diagram

real_time optional

required

Figure 16. Setup Real_Time Syntax Diagram

Operating Syntax Diagrams

<RETURN>

<RETURN>

absolute_file }— <FILE>

Figure A-17. Setup Absolute_File Syntax Diagram

<RETURN>

A-11

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

trigger__enable

driven_only measurement__disable

received measurement__enable

(—’ <RETURN>

Figure A-18. Setup Trigger_Enable Syntax Diagram

@otabase_check 2

<RETURN>

listfile

display

printer

<FILE>

Figure A-19. Database_check Syntax Diagram

A-12

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

display p_variable <RETURN>

c_variable)

C)
I—»(proc <PROC> L—»(file >——> <FILE> J
ascil

decimal

A4

hex

octal

> source }
—>(source__path)
——{ symbol }
N—(symbol_path }
> value }

|

N

\.

N

N

absolute

relative

statistics
~ { then)= /
N

See figures A-34 and A-35 for ¢_variable and p_variable syntax.

Figure A-20. Display Syntax Diagram

A-13

Real-Time High Level Software Analyzer

Operating Syntax Diagrams

p-variable

c-variable

proc)_)

<PROC>

J

*

file >

<FILE> ‘J

<VALUE>

—> <RETURN>

See figures A-34 and A-35 for ¢_variable and p_variable syntax.

Figure A-21. Modify Variables Syntax Diagram

measurement

<RETURN>

source

<FILE>

-

Figure A-22. Show Syntax Diagram

(execute }

repetitively

<RETURN>

Figure A-23. Execute Syntax Diagram

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

(wait)}

measurement_complete

<SECONDS>

Figure A-24. Wait Syntax Diagram

<RETURN>

(halt }

Figure A-25. Halt Syntax Diagram

<RETURN>

(load)} 7
\{emulotion_memo@—/

user_memory

Figure A-26. Load Syntax Diagram

<FILE>

<RETURN>

y

(break)}

Figure A-27. Break Syntax Diagram

<RETURN>

(reset)

Figure A-28. Reset Syntax Diagram

<RETURN>

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

<CMDFILE>

L

<PARMS>

-

Figure A-29. <CMDFILE> Syntax Diagram

(configurotion)

A-16

load_from

\——>< save_in >—>

Figure A-30. Configuration Syntax Diagram

<FILE>

<RETURN>

<FILE>

~
1(write_protected %
y

£

<RETURN>

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

measurement <STATE #>

start

display .

printer

<RETURN>
<FILE>
Figure A-31. Copy Syntax Diagram
end <RETURN>
Figure A-32. End Syntax Diagram
variable ———{ <VAR> ~ <

<VAR>

o 1)

L-e®—[_> <INDEX> J (1)
(e
—/

v

Figure A-33. Variable Syntax Diagram

Real-Time High Level Software Analyzer
Operating Syntax Diagrams

.

p_variable —s <VAR> —

<VAR>

<INDEX>

Figure A-34. Pascal Variable Syntax Diagram

a

C_variable <VAR> —

<VAR>

_@—[—> <INDEX>
N\

\J”

Figure A-35. C Variable Syntax Diagram

A-18

Appendix B

STATUS, ERROR AND
SOFTKEY PROMPT MESSAGES

INTRODUCTION

This appendix contains a list of the status and error messages, and the softkey prompts and their
corresponding messages. All these messages are displayed on the CRT as a result of the software
analyzer software. An explanation of each message is given. Table B-1 provides a list of status
messages, table B-2 provides a list of error messages, and table B-3 provides a list of the softkey
prompts. Status messages are displayed on the screen to provide an indication of operating
status. Error messages are displayed on the screen to indicate an improper operating condition or
invalid entry on the command line. The softkey prompts are provided on the softkey label line to
prompt the user to input the required information.

Table B-1. Status Messages

Status Message Meaning

Awaiting command Displayed when the software analyzer is in a
quiescent state, ready to accept a new command
in its command line.

Copy complete Displayed when a copy command has been
completed.
Copying Displayed when the software analyzer is copying

a display, setup, or measurement to a listing file
or the system printer.

Database check, files = nn, errors = ee Displayed during execution of the
database _check command, where nn = the num-
ber of files checked and ee = the number of er-

rors found.

Database search successful Displayed when the analyzer has successfully
completed the database search for the requested
command.

Disable occurred Displayed when the specified measurement dis-

able term has been found and the measurement
has been disabled (terminated).

Executing non-real-time Displayed during execution of a measurement
when real_time opitonal mode is selected
(breaks to the emulation monitor may occur
during execution of user program).

B-1

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Executing real-time

Executing (waiting for enable state # n)

Executing (acquired = n)

Execution completed (saved = n)

Execution halted (saved = n)

Formatting display

Formatting next page

Formatting previous page

Initiating cold start...

Executing power-up sequence...
Initializing 64340 hardware...

Loading 64340 measurement software...
Bootstrapping on-board processor...
Initializing measurement data structures...
Initiating emulation communication...

Loading configuration

B-2

Displayed during execution of a measurement
when real time required mode is selected
(breaks to the emulation monitor are not
allowed).

Displayed after a measurement is started, but
before all measurement enable terms are found.
The software analyzer does not capture data until
all measurement enable terns are found.

Displayed during measurement execution. "n" is
the number of states captured up to the current
time.

This status message is displayed after a
measurement has completed normally.

This message is displayed when a measurement
is terminated by a Halt command.

Displayed while the acquired data is being for-
matted for display after completion of a
measurement or after execution of a display
command.

Displayed while the next page of acquired data is
being formatted for display after the
key has been pressed.

Displayed while the previous page of acquired
data is being formatted for display after the
key has been pressed.

These status messages are displayed during the
initialization of the software analyzer.

Displayed when the software analyzer is in the
process of configuring (either upon entry to the
analyzer or during execution of a configuration
load _from command).

Loading the hardware

Memory load complete

M68000--Reset

M68000--Running

M68000--Running in monitor

No stack information - dynamic variables
cannot be displayed

Save complete

Saving configuration

Searching database for file: <FILE>

Searching database for line: <LINE>

Searching database for module: <MODULE>

Searching database for variable: <VAR>

Unloading acquisition memory (count = n)

Waiting for any keystroke

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Displayed after the execute command is given,
while the analzyer hardware is being setup for
the specified measurement.

Displayed after execution of lead command, in-
dicating that the absolute file was successfully
loaded into memory.

Indicates that the emulator was reset when last
checked by the analyzer.

Indicates that the emulator was executing the
user program when last checked by the analyzer.

Indicates that the emulator was running in the
emulation monitor routine when last checked by
the analyzer.

Dynamic variables cannot be displayed when a
measurement is started from a standing start
from within a module or if a emulation break is
recognized after the exit record occurs.

Displayed upon completion of a configuration
save_in command.

Displayed when the software analyzer is in the
process of saving a measurement configuration
as a result of a configuration save _in command.

Displayed when the analyzer is collecting
database information for the named file.

Displayed when the analyzer is collecting
database information for the specified line or line
range.

Displayed when the analyzer is collecting
database information for the named module.

Displayed when the analyzer is collecting
database information for the named variable.

Displayed while the data acquisition memory is
being unloaded to the analyzer's on-board
memory for postprocessing. "n" indicated the
number of states unloaded.

Displayed when a wait command has been ex-
ecuted. When used in a command file, wait
suspends execution of the command file until a
key is pressed on the HP 64000 keyboard.

B-3

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Waiting for any keystroke or delaying n
seconds

Waiting for any keystroke or measurement
complete

-- Window disable occurred --

B-4

Displayed when a wait <SECONDS> command
has been executed. When used in a command
file, wait <SECONDS> suspends execution of the
command file until a key is pressed on the HP
64000 keyboard or the specified number of
seconds elapse.

Displayed when a wait measurement complete
command has been executed. When used in a
command file, wait measurement complete
suspends execution of the command file until a
key is pressed on the HP 64000 keyboard or the
current measurement is completed.

Displayed in the trace list to indicate where a
measurement window was disabled by the
specified measurement_disable window term.

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Table B-2. Error Messages

Error Message

Access guarded mem.

Access to variable: <VAR> not allowed at
procedure

Address range must be <= 4K bytes

Analyzer not in real time mode

Bad line range

Boot failure for on-board processor

Communication data overflow

Configuration file corrupt

Counter mode may not be changed for this
measurement

Duplicate module names in this file

Duplicate module names specified:

<MODULE>

Emul_com file <FILE> is inconsistent with
hardware

Meaning

Displayed when Memory is accessed that was
not mapped in the emulation configuration file.

Indicates that the specified variable cannot be
accessed at the requested procedure entry or
exit point.

Displayed when a line range contains more that
4096 bytes in a count statements measurement.

Displayed if any IMB specifications are requested
when the software analyzer has not been put in
real time required mode.

Indicates that the line numbers specified are at
the same address or the second line number’s
address is less than the address of the first line
number.

Indicates that the on-board processor failed to
boot correctly. If repeated failures occur, execute
option_test to verify that the analyzer is operat-
ing correctly.

Displayed if the on-board processor’'s com-
munications with the host processor fail.

Indicates that the configuration file specified to
be loaded is corrupted and cannot be used.

Indicates that the counter mode has been preset
for the count or time measurement and cannot
be changed using the setup counter command.

Indicates that the file contains two modules with
names that are identical in the first 15 characters.
Duplicate module names are not supported by
the software analyzer. The file must be modified
to eliminate the duplicate names.

Displayed when a module is specified multiple
times in the setup specification. Modify the setup.

Displayed when the locations and/or board types

in the station do not match the specification
defined in the emulation command file

B-5

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Fatal system error

File exists, wrong module type

File is write protected

File not found file= <FILE> :comp_db

File not found file= <FILE>:comp_db (PC=
nnnnH)

Hardware configuration error

IMB drive/receive specifications must be
turned off

IMB execution error

IMB halt error -hardware error

Incomplete multi-module specification

Incorrect type for variable: <VAR>

B-6

Displayed if there is a fatal error in the software
analyzer. Exit to the system monitor and re-enter
the module. If repeated failures occur, execute
option_test to verify that the analyzer is in work-
ing condition.

Indicates that a file of type "trace" with the
specified name exists, but is not a software
analyzer configuration file.

Indicates that the configuration file is write
protected and cannot be overwritten with another
configuration file. To remove the configuration
file, you must purge or rename it.

Displayed when no comp_db file exists for the
specified file. Relink absolute file using options
comp _db. Note: in C, this message appears at
the call to "main" (e.g., in the command trace
modules all..). The module "entry" which calls
"main" does not have a comp_db file. For this
case, this message is normal and does not indi-
cate an error condition.

Displayed when no comp_db file exists for
<FILE>. <FILE> may be an assembly language
file or a file for which no comp_db file was
created. The PC address is the address within
the file that caused the access to occur.

A multiple module measurement execution
command failed due to a hardware configuration
error.

All IMB specifications must be removed (setup
trigger enable always) before the software
analyzer may be put in real time optional
mode.

An error has occurred in an execution of a multi-
ple module measurement.

Displayed if there was a hardware error as a
result of a halt command in a multiple module
measurement.

execution
IMB

A multiple module measurement
command failed due to an incomplete
specification.

Displayed when the symbol specified is not a
variable type that can be used in the specified
context such as specifying an array index on a
pointer variable.

Invalid field for this measurement

Invalid symbol type encountered

Line not found: <LINE>

Line numbers are not in the same module

Line range must be <= 255

Local variables not allowed: <VAR>

Main program illegal for this measurement:
<MODULE>
accomplished

Measurement cannot be

real-time

Measurement data not available

Module not found: <MODULE>

Monitor <ERROR>, Code:

<CODE>

System Error:

Multiple drivers defined on trigger enable

No absolute file defined

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Displayed when the display field selected is not
valid for the current measurement.

Displayed when the database encounters a sym-
bol type that is invalid.

Indicates that the specified line has no code as-
sociated with it.

Indicates that the two line numbers specified are
not contained in the same module.

Displayed when a line range contains more that
255 lines in a ‘"setup count statements”
measurement.

Displayed when variables local to the procedure
being traced in a trace data_flow measurement
are requested. Local variables are not active on
entry or exit and cannot be traced.

The main program cannot be traced in a trace
data_flow measurement.

Ths message is displayed when an attempt is
made to execute a measurement in real-time
mode that can only be executed in non-real-time
mode. Redefine the measurement or select non-
real-time mode.

Indicates that no measurement has been taken,
and therefore a "show measurement" command
may not be executed.

Displayed when the specified module cannot be
found in the file indicated.

The software analyzer has had an internal soft-
ware error. Please record <ERROR> and
<CODE> to give to your HP representative.

Displayed if an IMB specification has been setup
which results in multiple modules driving trigger
enable. The error occurs when an execute is
requested.

Displayed when an execute or run is requested
with no absolute file defined. An absolute file
may be defined by loading one in any of the
64000 modules, or be using the setup ab-
solute_file <FILE> command.

B-7

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

No absolute file loaded

No code generated for module: <MODULE>

No file defined

No matching enable/disable defined, trig-
ger_enable ignored

No modules in file: <FILE>

No module name found (PC= nnnnH)

No monitor program

No path defined

No source line found (PC= nnnnH)

No transfer address - absolute file not loaded

On-board processor failed to respond

Only one disable sequence state allowed
non-real-time

B-8

Displayed when a database check command is
requested when no absolute file has been
loaded. Note: a setup absolute file <FILE>
command will not satisfy the requirements, a
load command must be used.

Displayed when the module entry address is
equal to the module exit address.

Displayed if a show source command is requested
with no file name given, and no default file
defined.

Displayed when a trigger enable has been
defined without first setting up the measurement
enable/disable that it is associated with. The
condition is corrected once the measurement
enable/disable is setup.

Indicates that the file specified to be traced con-
tains no modules.

Indicates that the data base, absolute file, or
source file has been modified since the
measurement was made. PC indicates that a
program counter was executed which does not
map to a module name.

Displayed when no emulation monitor program
has been loaded in emulation memory. Relink
your absolute file to include the emulation
monitor program and reload the absolute file.

Displayed when no path has been defined for a
symbol. A symbol must have a path definition
specified, either in the default path specification
or as part of the symbol specification in the
command line.

Indicates that the PC is part of a source file but
has no source line associated with it (e.g. the
overhead generated by the compiler for proce-
dure entries when the procedure is the first ex-
ecutable code in the file).

Displayed when a run from transfer address
command is requested and no absolute file has
been loaded.

Displayed if the host processor’s communica-
tions with the on-board processor fail.

More than one measurement disable term has be
specified in non-real-time mode. Redefine the
measurement disable specification.

On-board processor failure

Out of dynamic resources - simplify
measurement
Out of high level resources - simplify
measurement
Out of low level resources - simplify

measurement

Processor not in monitor

Processor not supported

Program execution outside of absolute file
(PC= nnnnH)

Real time required; specify run at_execution
from emulator

Run at execution must be removed

Setup specification overflow, simplify request

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Indicates a failure of the on-board processor to
respond to the host system. option_test should
be run to verify that the analyzer is in working
condition.

The specified measurement requires more
dynamic resources than are available in the soft-
ware analyzer. Redefine the measurement so
that it requires fewer dynamic resources.

The specified measurement requires more high
level resources than are available in the software
analyzer. Redefine the measurement.

The specified measurement requires more low
level resources Than are available in the software
analyzre. Redefine the measurement.

An attempt has been made to execute a com-
mand requiring the emultion monitor to be run-
ning while the user program is executing. Break
the processor before attempting to execute the
command.

Indicates that the software analyzer does not
support the processor for which the current
emulation command file is set up, or that the
software analyzer software for that processor is
not loaded on your system disc.

Displayed when the emulator is executing code
outside of the address space defined for the ab-
solute file.

Displayed when the analyzer is in a real time
required mode and run at_execution is request-
ed. The action may be simulated by executing
the measurement with the emulator not yet run-
ning the user program, exiting the software
analyzer module, and then entering emulation
and executing a run there.

A pending run at _execution command must be
removed before the software analyzer may be
put in a real_time required mode.

Indicates that the setup command requested is
larger than the analyzer can accept. This is espe-
cially possible with the all specification on files
that have a large number of procedures.

B-9

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Specify run at_execution from emulator for
IMB measurements

Sub-element not found for variable: <VAR>

Symbol is too big, modify sub-elements

individually

Symbol(s) type information is too big

Syntax invalid

Too many symbols specified

Type information too big for variable: <VAR>

Unable to access monitor

Undefined size for variable: <VAR>

Unsupported type for variable: <VAR>

Variable access not allowed at procedure for:
<VAR>

Variable access not allowed from current PC

Variable expression has too

indirections

many

B-10

An attempt has been made to specify a run
at_execution command from within the software
analyzer when it is configured for an IMB
measurement. When making IMB measure-
ments, you must specify run at_execution from
the emulator.

Displayed when the variable expression specified
is not found for the variable specified.

Displayed when the requested variable is greater
than 4 bytes. Modify variable in smaller units.

Indicates that the type information describing the
symbol(s) to be traced or displayed exceeds the
maximum size allowed.

Displayed when an attempt is made to execute a
syntactically invalid command.

Indicates that more than the maximum number
of symbols are specified in the setup.

Indicates that the type information describing the
symbol to be used exceeds the maximum size
allowed.

The software analyzer is unable to access the
emulation monitor program. Verify that the
emulation monitor is loaded to emulation
memory.

The variable is a C array with unspecified size
and cannot be traced.

Indicates that the specified variable’s type is not
supported by the software analyzer.

Indicates that the specified variable cannot be
accessed at the requested procedure.

Indicates that the variable is a local variable and
is not scoped to this location in the program.

The variable expression exceeded the maximum
number of indirections supported by the software
analyzer.

Variable not found: <VAR>

Warning: multiple drivers defined on trigger
enable

Warning: value parameters will not be dis-
played on module exit

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Displayed when the specified variable cannot be
found in the procedure and/or file indicated.

Displayed if an IMB specification has been setup
which results in multiple modules driving trigger
enable. Execution of a measurement will not be
allowed as long as this condition exists.

Indicates that a value parameter was requested in
a trace data_flow measurement on a procedure
exit. The variable is not active on procedure exit
and cannot be displayed.

B-11

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

Softkey Prompt

<ADDRESS>

<CMD_FILE>

<FILE>

<FILE>

<FILE>

<INDEX>

<INVALID>

B-12

Table B-3. Softkey Prompt Messages

Message and Meaning

Any addvress constant

<ADDRESS> is any valid address within the absolute file loaded into user or
emulation memory.

A command file name

<CMDFILE> prompts the user to enter the name of a command file contain-
ing valid software analyzer commands to automatically configure the
analyzer or execute a measurement.

Filename[:Userid][:Disc#]

When used with the "load" command, <FILE> is the name of the absolute file
to be loaded from the 64000 system memory in user RAM or emulation
memory.

Filename[:Userid] [:Disc#]

When used with the "copy" command or "database check" command,
<FILE> is the name of the listing file that the display, setup, measurement, or
database information is to be copied to.

A source file name. Note:’.’ may replace ’file’

<FILE> is an optional parameter that refers to the source file containing the
specified <MODULE>, <VAR>, <PROC>, <LINE>, or line range specified in
the command statement. If the <MODULE>, <VAR>, <PROC>, <LINE>, or
line range is in the defined default path, the <FILE> parameter may be omit-
ted from the command statement.

An index value or scalar

An index value (integer or scalar value) specifying a component of an array.

Command syntax is invalid

The portion of the command between the beginning of the command and the
cursor contains errors in syntax and must be corrected before the command
may be entered.

<LINE>

<MODULE>

<PARMS>

<PROC>

<RETURN>

<SECONDS>

<STATE #>

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

A program line number

<LINE> represents the line number of a Pascal or C statement in the source
program. If the specified <LINE> contains only comments (no executable
code), the analyzer will associate the line number with the first line containing
executable code following it. Any comment lines preceding the first line of
executable code in a procedure or function are not recognized by the soft-
ware analyzer. All lines in the specified line range must be contained within a
single modules. This module may be a procedure or function in Pascal or a
function in C, or the main program block.

A program or module name

<MODULE> represents the name of a contiguous segment of code with a
single entry point and a single exit point. In Pascal, a module can be the
name of a procedure function or the main program within a specified file. In
C, a module can be the name of a function within a specified file. If a
module name is the same as a software analyzer keyword, e.g. entry, you
must enclose the module name in quotes ("entry”) in the command
statements.

Command file parameters

The parameters passed to a command file.

A procedure name. Note: @’ may replace ’proc’

<PROC> is an optional parameter that refers to a procedure or function. If
<PROC> is defined in the default path, it may be omitted in the command
line. If <PROC> is not specified in either the default path or the command,
the analyzer assumes that <VAR> is a global variable defined at the main
program level.

Command syntax is valid to cursor

The portion of the command between the beginning of the command and the
cursor contains no errors in syntax and can be entered if no further options
are desired.

A number of seconds to delay

Used with the "wait" command to specify the number of seconds to pause
before again accepting commands.

An integer value

A positive integer value within the range 0 thru 9999 used to select a position
in the measurement data for copy or display. The value specifies the number
of bytes offset from the start of the measurement data.

B-13

Real-Time High Level Software Analyzer
Status, Error, and Softkey Prompt Messages

<SYMBOL>

<VALUE>

<VAR>

<VAR>

<WIDTH>

A valid global or local (specify file) symbol

<SYMBOL> allows the user to specify program execution to run from a
specified symbol. If a file name is specified with <SYMBOL>, the analyzer as-
sumes that the symbol is a module in the specified file. If no file is specified
with <SYMBOL>, the analyzer first looks for the address of a global symbol in
the link_sym file associated with the currently loaded absolute file. If no
global symbol is found there, the analyzer then searches for a module in the
current default file.

An integer value (32 bits or less)

<VALUE> represents the value that the specified variable is to be changed to
in a "modify <VAR>" command. <VALUE> must be specified as an integer
value.

A valid variable identifier with pointers

Used with the "display <VAR>", "modify <VAR>", and "setup trace data_flow"
commands. <VAR> represents the name of a valid program variable, local
variable, or parameter. <VAR> can be any valid Pascal or C variable expres-
sion, including pointers. If a variable name is the same as a software
analyzer keyword, e.g. entry, you must enclose the variable name in quotes
("entry") in the command statements.

A valid variable identifier

Used with the "setup trace variables", "setup measurement_enable access
<VAR>", and ‘"setup measurement_disable access <VAR>" commands.
<VAR> represents the name of a valid program variable, local variable, or pa-
rameter. <VAR> can be any valid Pascal or C variable expression. No point-
ers are allowed. If a variable name is the same as a software analyzer
keyword, e.g. entry, you must enclose the variable name in quotes ("entry")
in the command statements.

An integer width from 0 to 132 columns

An integer value from O to 132 used with the "display" command to specify
the width in columns of the specified field.

Appendix C

STACK ARCHITECTURE AND MEMORY STRUCTURE

INTRODUCTION

In order for high level software analysis to be performed on more than one processor it is neces-
sary to tailor the analyzer software to the particular processor. Processor specific capabilities are
needed for several reasons. Primarily, since most processors have different architectures and in-
struction sets, compiler designers will often define the stack architecture for their compiler based
on the characteristics of the processor the compiler is targeted for. Consequently, the information
required for high level analysis that must be obtained from the stack is not the same from proces-
sor to processor. Additionally, the location of compiler generated code used to build the stack
varies from compiler to compiler based on the compiler designer’s decisions. This affects the way
in which the stack reference point is established for analysis, i.e., if the stack is built prior to calling
a procedure, upon entry to the procedure the stack pointer is located in a different relative position
on the stack than if the stack is built after entry to the procedure.

In addition to the stack architecture, physical memory allocation can vary from one processor to
the next making it necessary to be able to accurately interpret the basic structure of the memory.
These requirements indicate the need for software personality modules designed to interpret the
stack structure of each compiler so that location of parameters, variables and parental information
is readily obtainable during analysis of program execution as well as to interpret the physical
memory allocation for the processor.

STACK ARCHITECTURE

Pascal Compiler Considerations

The stack architecture for the Pascal compiler is illustrated by the stack frame diagram in figure
C-1. A stack frame is created for each procedure call during program execution. Register A6 is
used as the base pointer for the stack. Register A7 is the stack pointer. The base pointer is es-
tablished prior to subroutine calls and is used directly as the reference point for obtaining the
needed information from the stack. As the data base is being built during link time, stack address-
ing information is entered in the data base as an offset from register A6. During run time, when
the procedure or function is entered, a software break, set up by the software analyzer, occurs and
register A6 is read and saved. In this manner, the stack information required by the measurement
may be addressed by adding the offset from the data base to the address contained in register A6.

The static link pointer is created only if the procedure described by the stack frame is nested (level
2 or greater). The static link points to the parent routine’s static link. If a parameter is passed by
reference, its 4-byte address is placed on the stack in the parameter field. If the parameter is
passed by value and is shorter than or equal to 4 bytes, its value is placed in the parameter field. If
a value parameter is longer than 4 bytes in size, it is placed in the large value parameter field. If a
function returns a value longer than 4 bytes in size, the address of the value is placed in the op-
tional function return value address field. Otherwise the value is returned in a register and the field
is not created. The variable 1 through variable N fields contain local variables. The previous frame

C-1

Real-Time High Level Software Analyzer
Stack Architecture and Memory Structure

pointer points to the stack frame of the calling routine. The temporary storage buffer is used by
the compiler.

STATIC LINK 4 BYTES
ADDRESS OR VALUE OF > OR 4 BYTES IF VALUE
PARAMETER 1 4 BYTES IF ADDRESS
PARAMETER
FIELD
ADDRESS OR VALUE OF
PARAMETER N
OPTIONAL FUNCTION RETURN |, gy1es
VALUE ADDRESS
RETURN ADDRESS 4 BYTES
PREVIOUS FRAME POINTER 4 BYTES
A6
LARGE VALUE PARAMETER >4 BYTES
LARGE VALUE
PARAMETER
FIELD
LARGE VALUE PARAMETER
1
VARIABLE N
VARIABLE 1
TEMPORARY STORAGE
A7

Figure C-1. Pascal Stack Frame

C Compiler Considerations

All parameters in C programs are passed by value, except arrays, which are effectively passed by
reference. If arrays are passed as parameters with an unspecified length, they will be unbounded
in the compiler symbol table. Consequently, the software analyzer will be unable to trace the pa-
rameter "A" if "A" is an array of unspecified length. In order for the software analyzer to trace an
unbounded array passed as a parameter, the user must specify a specific element of the array
"A[N]" where N specifies an element of an array of unspecified length.

C-2

Real-Time High Level Software Analyzer
Stack Architecture and Memory Structure

The stack frame structure for the C compiler is very similar to that of the Pascal stack frame. With
the FIXED PARAMETERS compiler option ON (figure C-2), the stack frame structure is identical
except that, since C does not permit nested functions, no static link field is created. If the
FIXED PARAMETERS option is OFF (figure C-3), the order in which parameters are placed on the
stack is reversed.

ADDRESS OR VALUE OF 2 OR 4 BYTES IF VALUE
PARAMETER 1 4 BYTES IF ADDRESS
PARAMETER |
FIELD '
ADDRESS OR VALUE OF
PARAMETER N
OPTIONAL FUNCTION RETURN | 4 gyTes
VALUE ADDRESS
RETURN ADDRESS 4 BYTES
PREVIOUS FRAME POINTER |, ovTes
A6
7 LARGE VALUI'-EI PARAMETER >4 BYTES
LARGE VALUE
PARAMETER]
FIELD
LARGE VALUE PARAMETER
1
VARIABLE N
VARIABLE 1
TEMPORARY STORAGE
A7

Figure C-2. C Stack Frame (Fixed Parameters Options On)

C-3

Real-Time High Level Software Analyzer
Stack Architecture and Memory Structure

- ADDRESS OR VALUE OF
PARAMETER N
PARAMETER _|
FIELD
ADDRESS OR VALUE OF
PARAMETER 1
OPTIONAL FUNCTION RETURN
VALUE ADDRESS
RETURN ADDRESS
PREVIOUS FRAME POINTER
A6
7 LARGE VALUE PARAMETER
1
LARGE VALUE
PARAMETER
FIELD
LARGE VALUE PARAMETER
N
VARIABLE N
VARIABLE 1
TEMPORARY STORAGE
A7

2 OR 4 BYTES IF VALUE
4 BYTES IF ADDRESS

4 BYTES

4 BYTES

4 BYTES

>4 BYTES

Figure C-3. C Stack Frame (Fixed Parameters Options Off)

C-4

Appendix D

GLOSSARY OF SOFTKEY LABELS

INTRODUCTION

Table D-1 contains a list of the softkey labels provided in the software analyzer software. The cor-
responding command line message is given for each softkey label and an explanation of the soft-
key label follows. An example is also given which shows the message as it would appear on the
command line.

Table D-1. Software Analyzer Softkey Labels

Softkey Label Command Line Message
absolute absolute

Used to define that counts or times should be displayed absolute with respect to the beginning
of the trace.

display count absolute

absolute absolute_file

Used to define an absolute file name in the event that none was loaded via any 64000 analysis
subsystem.

setup absolute file NT1:TEST

address address

Used with the run command to indicate that the information that follows is an address constant
specified in binary, octal, decimal, or hexadecimal.

run from address 2476H
run at _execution from address 3744Q

all all

Used with the setup trace modules command to specify that all modules in a file will be traced.
If no file is specified in the command, all modules in the default file are traced.

setup trace modules all

D-1

Real-Time High Level Software Analyzer
Glossary of Softkey Labels
always always

Used to define IMB (intermodule bus) as being always enabled. This has the effect of taking
the analyzer off the IMB.

setup trigger enable always

any_state any _state

Used in setting up measurement enables/disables as a condition which is true on any state
encountered.

setup measurement enable on any_state

append append

Used with the copy and database check commands to append information to an existing list-
ing file.

copy display to DSPL append
database_check listfile DBC append
ascii ascii

Used with the display base command to display values in the measurement display value field
as ASCII characters.

display base ascii

at_exec at_execution

Used with the run command to start running the user’s software in emulation from a specified
location at execution of a trace measurement.

run at_execution from PROC2

binary binary

Used with the display base command to display values in the measurement display value field
as binary numbers.

display base binary

D-2

Real-Time High Level Software Analyzer
Glossary of Softkey Labels
break break
Used in three ways:
1. To define a break measurement.
setup break on 123 or PROC2
2. To define whether or not to break the user’s program on completion of a measurement.

setup break off
setup break on measurement _complete

3. To break the user’s program forcing the emulator back into the monitor.

break

cnt_state to_count_states

Used in the setup counter command to specify that the hardware counter is to count bus
cycles.

setup counter to_count_state

cnt_time to count time
Used in the setup set _counter command to specify that the hardware counter is to time.

setup counter to_count time

configure configuration

Used to save the analyzer configuration in, or load the analyzer configuration from a file. The
file type is trace and contains the entire configuration for the analyzer.

configuration load from SETUP:USER
configuration save _in SETUP:USER protected
copy copy
Used to copy the setup, measurement, or the current display to a listing file or to the printer.

copy measurement to printer
copy setup to LISTFILE

D-3

Real-Time High Level Software Analyzer
Glossary of Softkey Labels
count count
count__statements
Used in two ways:
1. To define a count statements measurement.
setup count_statements PROC2

2. To define the mode to display count/time information on the display. The choices are rela-
tive, absolute, and statistics.

display count relative

counter counter

Used to define whether the hardware counter is to count time or count bus cycles during the
execution of a measurement. The default value is count time.

setup counter to_count time

data_flow data_flow

Used with the setup trace command to specify the trace data flow measurement.

setup trace data_ flow PROC2 (X,Y,Z)

db_check database check
Used to specify a database compatibility check.

database check listfile display

decimal decimal

Used with the display base command to display values in the measurement display value field
as decimal numbers.

display base decimal

default default

Used with the display command to display a measurement in the default format or with the
display base command to display the value field of the measurement in the default base.

display default
display base default

D-4

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

dflt_path default _path
Used with the serup command to define a default path (a module within a file or a file itself).
The default path is used when a path is needed for a measurement and is not included in the
measurement command itself.

setup default _path proc PROC1 file NT1:TEST

disable measurement _disable

Used in five ways:

1. In the setup command to define the condition which, if found, will result in the termination of
the measurement.

setup measurement disable on 123 or PROC1
2. In the setup command to remove a defined disable condition.
setup measurement disable off

3. In the setup trigger enable received command to specify that trigger enable should be
received on format ment disable.

setup trigger enable received measurement disable

4. In the setup trigger enable driven_only command to specify that trigger enable should be
driven on measurement disable.

setup trigger_enable driven_only measurement disable

5. In the setup modify command to modify the current definition of the
measurement_disable condition.

setup modify measurement disable

display display
Used in four ways:

1. To display the value of variables in a specified procedure and/or file. If no procedure or file
is specified in the command, the software searches for the variable(s) in the default path.

display A[3] proc PROC1 file AVER

2. To selectively format and display fields in the measurement display (default, modify, source,
source_path, value, symbol, symbol_path, count, status).

display value then symbol then symbol path

D-5

Real-Time High Level Software Analyzer
Glossary of Softkey Labels
3. To copy a display to a file or to the system printer.
copy display to printer
4. To list the database check results to the display.

database _check listfile display

driven driven_only

Used in the IMB specification to define whether trigger enable is to be driven on measurement
enable or measurement disable.

setup trigger enable driven_only measurement enable

emulation emulation_memory

Used with the load command to load absolute code from the 64000 system disc into emulation
memory. The destination of the absolute code is determined by the address specified during

linking.

load emulation _memory AVER

enable measurement _enable

Used in five ways:

1. In the setup command to define the condition which, if found, will enable the software
analyzer to execute the specified measurement.

setup measurement enable on 123 or PROC1
2. In the setup command to remove a defined enable condition.
setup measurement enable off

3. In the sefup trigger enable received command to specify that trigger enable should be
received on measurement enable.

setup trigger enable received measurement enable

4. In the setup trigger enable driven only command to specify that trigger enable should be
driven on measurement enable.

setup trigger enable driven_only measurement enable

5. In the setup modify command to modify the measurement_enable specification.

setup modify measurement enable

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

end end

Used in two ways:

1. With the copy measurement command to copy the measurement from the current trace data
location (indicated on the status line) through the end of the measurement data.

copy measurement thru end to printer
2. To end a software analysis session.

end

entry entry

Used in two ways:

1. With the setup trace data_flow command to specify that variables be traced only on entry
to the specified module(s). The default condition is to trace variables on both entry to and exit

from a module.
setup trace data flow PROC1 entry (AB)

2. With the setup measurement enable and setup measurement _disable commands to specify
that the measurement be enabled or disabled on entry to the specified module.

setup measurement _enable on PROC2 entry

execute execute

Starts execution of a measurement. The repetitive option causes the measurement to be
repetitively executed.

execute
execute repetitive
exit exit

Used in two ways:

1. With the setup trace data flow command to specify that variables be traced only on exit
from the specified module(s). The default condition is to trace variables on both entry to and

exit from a module.

setup trace data_flow PROC2 exit (AB)

2. With the setup measurement enable and setup measurement disable commands to specify
that the measurement be enabled or disabled on exit from the specified module.

setup measurement_disable on SORT:BUB_SORT exit

D-7

Real-Time High Level Software Analyzer
Glossary of Softkey Labels
file file

Used to indicate that the name of a source file follows. NOTE: A colon (:) may be used in
place of pressing the file softkey.

setup default path file TESTP
display SAM proc PROC4:NT1:TEST
followed followed by

Used with the setup measurement enable and setup measurement_disable commands to
specify sequential enable or disable conditions.

setup measurement _enable on PROC1 followed_ by SORT

from from

Used with the run command to specify the location in the user’s program from which program
execution will begin in emulation.

run from transfer address

halt halt

Used to halt the measurement currently in process, or to halt the unloading of the data acquisi-
tion memory. The data collected before the halt command was executed is displayed.

halt

hex hex

Used with the display base command to display values in the measurement display value field
as hexadecimal numbers.

display base hex

listfile listfile

Used with the database check command to select one of three output devices for listing
results; the display, the printer, or a file.

database_check listfile RESULTS append

load load

Used to load absolute files from the 64000 system disc into user RAM or emulation memory.

D-8

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

load emulation _memory TESTP

load_from load from

Used with the configuration command to configure the software analyzer as specified in the
configuration file being loaded. The configuration file is of type trace.

configuration load from SETUP:USER

measure measurement
Used in three ways:
1. In the setup modify command to modify the current measurement definition.
setup modify measurement
2. In the show command to show the current measurement data.

show measurement

3. In the copy command to copy the current measurement data to the printer or to a file.

copy measurement to RESULTS append

meas__comp measurement _complete

Used in two ways:

1. With the setup break on command to break the user’'s program when a measurement is
completed.

setup break on measurement complete

2. With the wait command to suspend execution of a command file until the current measure-
ment is completed.

wait measurement _complete

modify modify
Used in three ways:

1. To modify the current value of a variable in emulation or user memory.

modify Q.CHAR1 proc LTRSORT = 41H

D-9

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

2. With the display command to modify the current display definition. The display modify
command recalls the current display definition to the command line for editing, eliminating the
need to re-enter an entire display command.

display modify

3. With the serup command to modify the current measurement, measurement_enable, or
measurement_disable definition.

setup modify measurement enable

modules modules

Used with the setup trace command to specify that modules (functions or procedures) are to
be traced.

setup trace modules all

octal octal

Used with the display base command to display values in the measurement display value field
as octal numbers.

display base octal

off off

Used in four ways:

1. In the setup break command to turn off a break on measurement complete.
setup break off

2. In the setup measurement_disable command to turn it off.
setup measurement disable off

3. In the setup measurement enable command to turn it off.
setup measurement enable off

4. In the run command to turn off the ar_execution parameter.

run at_execution off

D-10

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

on on

Used in four ways:

1. In the setup break measurement to define the conditions on which to break.
setup break on 123 or PROCH1

2.In the setup break on measurement complete command.
setup break on measurement complete

3. In the setup measurement disable command to define the conditions on which to disable.
setup measurement _disable on 123 or PROC1

4. In the setup measurement enable command to define the conditions on which to enable.

setup measurement _enable on 123 or PROCH1

optional optional

Used in the setup real time command to enable the analyzer to break to the emulation
monitor.

setup real time optional

or or

Used as a logical combinatoric for inclusive ORing of conditions for the setup break on
measurement, and setup measurement_disable on and setup measurement enable on
conditionals.

setup break on 123 or PROCH1
setup measurement _enable on PROC2 or 115
printer printer
Used in two ways:

1. In the copy command to specify that the display, setup, or measurement be copied to the
system printer.

copy display to printer
2. In the database_check command to specify that the results be copied to the system printer.

database_check listfile printer

D-11

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

proc proc

Used to indicate that a procedure or function name follows that defines the procedure or func-
tion to which a variable belongs. NOTE: an "@" may be used in place of proc.

setup trace varviables FLAG1 proc FUNCTIONX

protected write_protected
Used with the configuration save in <FILE> command to prevent the accidental modification
of the file with a later configuration save in command. The file is protected against writes

only within the software analyzer. It can still be purged, renamed, or copied into from the sys-
tem monitor level.

configuration save _in SETUP:USER write_protected

read read

Used to specify that only memory read accesses to a variable be traced. The default condition
is to trace both memory read and memory write operations on a specified variable.

setup trace variables QFLAG read

real_time real _time

Used in the serup command to specify whether the analyzer is allowed to break to the emula-
tion monitor during a measurement.

setup real time required

received received

Used in the setup trigger_enable command to define that trigger_enable is to be tied to either
measurmement disable or measurement enable.

setup trigger enable received measurement enable

relative relative

Used to define that counts or times should be displayed relative with respect to the proceeding
count or time in the trace.

display count relative

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

repeat repetitive

Used in the execute command to specify that trace measurements are to be executed repeti-
tively until a halt command is issued.

execute repetitive

required required

Used in the setup real time command to define that the analyzer may NOT break to the
emulation monitor.

setup real time required

reset reset

Used to suspend emulation system operation and reestablish initial operating parameters. The
reset signal is latched when active and is released by the run command.

reset

run run

If the processor is in a reset state, run will cause the reset to be released and, if a from ad-
dress is specified, the processor will begin program execution at that address. If the processor
is running in the emulation monitor, the run command causes the processor to exit into the

user program.

run from address 312EH

save_in save_in

Used with the configuration command to save the software analyzer configuration in a file.
This file is of type trace.

configuration save in SETUP:USER

setup setup
Used in three ways:

1. To specify the measurement parameters and conditions with which the software analyzer
will run. These include trace, count, time, break, measurement_enable, measurement_disable,
counter, real _time, default path, and trigger enable.

setup default path NT1:TEST

setup trace modules PROC1, PROC2
setup measurement enable on 123H
setup real time optional

D-13

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

2. In the show command to display the software analyzer setup.

show setup

3. In the copy command to copy the measurement setup to the system printer or to a file.

copy setup to printer

show show

Used to specify what information is to be displayed. You may show the software analyzer
setup, the current measurement data, or a source file.

show measurement

show setup
show source NT1.TEST

source source

Used in two ways:

1. In the show command to display a source file. If no source file is entered, the default path
file is used.

show source NT1.TEST

2. In the display command to display the source field in the measurement trace listing.

display source

src__path source _path

Used in the display command to display the source path field in the measurement trace list-
ing showing the source file name that the source statement was extracted from.

display source path

start start

Used with the copy measurement command to specify that measurement results from the start
of the trace to the current line be copied to a file or the system printer.

copy measurement thru start to LIST

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

statement statements

Used in the setup trace command to set the software analyzer measurement mode to trace
statements.

setup trace statements PROC2

statistic statistics

Used in the display command to display the statistics field (minimum, maximum, mean, and
count) in the trace listing on the measurement display. This field is only valid for a time
modules measurement.

display count statistics

status status

Used in the display command to display the status field in the measurement trace listing.

display value then status

sw_anl_N sw_anl N
Used in the measurement system level of softkeys to enter the software analyzer. May be fol-
lowed by an optional software analyzer configuration file name specifying a configuration file

from which the analyzer is to be configured from or an emulation command file name of file
type emul_com. N is the number of the 64000 card slot containing the software analyzer

CPU board.

sw_anl 6 SETUP_1

symbol symbol

Used in the display command to display the symbol field in the measurement trace listing.

display symbol then status then source

symb_path symbol _path

Used in the display command to display the symbol_path field in the trace list, showing the
path in which the symbol is defined. For modules, the symbol path contains a file name. For
variables and parameters, the symbol_path may be a file or a module and file, depending upon
the level at which the symbol is defined.

display symbol then symbol path

D-15

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

then then

Used as a delimiter to separate sequential field specifications in the display command.

display source then symbol then status

thru thru

Used with the copy measurement command to specify a range of data in the trace listing to be
copied to a file or to the system printer. The minimum amount of data copied is the contents

of the current display.

copy measurement thru end to printer

time time_modules
Used in the setrup command to specify a time modules measurement.

setup time modules PROC1, PROC2

to to
Used in three ways:

1. With the setup trace statements command to specify a line range to be traced in a source
program. All lines in the specified range must be contained in a single module.

setup trace statements 57 to 86
2. In the setup count _statements command to to specify a line range to be counted in a source
program. All lines in the specified range must be contained in a single module. The total num-

ber of lines must not exceed 255, and the total address space the range covers must not ex-
ceed 4096.

setup count _statements 57 to 86
3. With the copy command to specify either a listing file or the system printer.

copy display to printer

trace trace

Used with the setup command to specify the trace measurement mode to be executed by the
software analyzer. The measurement modes are trace data_flow, trace modules, trace state-
ments, and trace variables.

setup trace statements PROCEDURE1 file TESTP

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

transfer transfer address

Used with the run command to specify that the emulator begin program execution at the ad-
dress stored in the transfer buffer (XFR_BUF). This is the starting address of the user program.

run at_execution from transfer_address

trig_enab trigger enable

Used with the serup command to define the IMB interaction. Options are always, received, and
driven_only.

setup trigger enable driven_only measurement enable

user user__memory

Used with the load command to specify that the absolute program be loaded into user RAM in
the target system.

load user _memory FILENAME:USER

value value
Used in the display command to display the value field in the measurement trace listing.
display value
variables variables

Used with the serup trace command to specify that the software analyzer operate in the trace
variables mode.

setup trace variables A,B,C
wait wait

Causes execution of a command file to be suspended until the current measurement being ex-
ecuted is completed. measurement complete option must be used with the wait command.

wait measurement _complete

write write

Used with the "setup trace variables" command to specify that only memory write accesses to
the variable be traced. The default condition is to traace both memory read and memory write
operations on a specified variable.

setup trace variables QFLAG write

Real-Time High Level Software Analyzer
Glossary of Softkey Labels

NOTES

D-18

Appendix E

RESOLVING MEASUREMENT PROBLEMS

INTRODUCTION

This appendix describes measurement problems you may encounter while using the software
analyzer, their possible causes, and suggested solutions. Measurement abnormalities may result
from the use of certain compiler directives, improper use of compiler and linker options, use of
breaks, how measurements are implemented in the software analyzer, and many other causes.
This appendix lists the most common problems, their causes, and suggested solutions to the
problem. Programming style can also affect how the analyzer traces data. The section,
Recommended Programming Style, in chapter 3 gives guidelines for writing code to achieve the
best results from your software analyzer.

MEASUREMENT PROBLEMS AND SOLUTIONS
Missing Source Statements

Problem: An expected "go to" statement is not displayed in trace statements. The analyzer
may miss a "go to" statement if a multiword access is on the preceding source line.

Solution: Execution of the "go to" is seen in the change of source line numbers. To see the
"go to" statement, structure the code so that a multiword access is not on the
preceding source line.

Problem: A statement containing an "end" (in Pascal) or "} (in C) is not displayed. The
analyzer uses the "end" or "}" to indicate the end of user code. This can cause un-
expected results in the trace display.

Solution: Place the "end" statement of a procedure in Pascal or the "}" terminator in a C func-
tion on a separate line containing no code.

Problem: After tracing statements in real time required mode, source lines between data ac-
cesses disappear when trying to position measurement data on the screen by
specifying a state number. Specified state is within a multibyte variable access and
is not the first state of the variable access.

Solution: Use display positioning (roll keys, page keys, specifying state numbers) to find a
location in the trace data that causes the source lines to reappear. Repetitively
decrement the state number by 2 until source lines appear. Alternatively, try rolling
the center display line off the screen.

Real-Time High Level Software Analyzer
Resolving Measurement Problems

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

When executing trace statement "don’t care”, only emulation monitor code is
acquired.

(1) Select real time required mode. (2) Do not use at_execution parameter in run
command. (3) Do not specify setup measurement enable on any _state.

When tracing statements with a single line specified, only one source line appears al-
though the line is executed more than once.

Make sure that the measurement display includes additional fields along with the
source field, e.g., count and/or value field.

Missing data during recursive calls in trace modules. Data is not displayed during
recursive calls in trace modules when the recursive level is so deep that indentation
causes the module not to appear on the display.

Expand the screen width of the symbol field with the "display" command. In some
cases, the number of recursive levels may cause enough indentation that the maxi-
mum field width may be exceeded and the data cannot be shown.

In the trace variables measurement, the source line is missing for the entry of the
first procedure in a file when large value parameters are being passed and the vari-
able is being traced. The compiler overhead for entry into the procedure is execut-
ing. The source line is undefined for these instructions.

None.

Source lines are not displayed when, in non-real time mode, a break is executed
within a procedure and then a trace statements measurement is executed from a
standing start, i.e., measurement starts within a module with run at_execution (from
next_pc) specified. Non-real time trace statements measurements from a standing
start can cause missing source lines.

None.

Missing Symbols On The Display

Problem:

Solution:

Problem:

Solution:

E-2

The software analyzer cannot display a variable maintained in a register.

Turn the compiler option AMNESIA on.

The software analyzer cannot display an array parameter in C without an explicitly
defined size.

Declare the maximum size required for the array.

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Real-Time High Level Software Analyzer
Resolving Measurement Problems

The software analyzer cannot display the object of a pointer in the trace statements
and trace variables measurements.

Break the processor in locations where you want to look at the pointer and use the
display command. The trace data flow measurement can also be used trace the ob-
ject of a pointer.

The software analyzer only displays the first specified variable of differently named
variables mapped to the same location.

When setting up a measurement, specify first the more important variables that you
want to see.

If a break is executed within a procedure and then a trace variables measurement is
executed from a standing start (run at exection from next pc), all dynamic variable
accesses are lost until an entry point to the procedure is detected.

The entry point of the procedure must be seen by the analyzer. Run the program
from the point just before the recursive calls begin. Alternatively, declare the stack in
the source program and trace the stack. Type information will not be available but
the values will be displayed.

Function return values are not displayed.

The assignments to variables that receive function return values can be traced with
the trace statements or trace variables measurement. Using a temporary variable .
within the function to compute the function value may be a useful way to trace func-
tion return values.

In a trace statements measurement, accesses to variables by the last instructions ex-
ecuted within the address range do not appear with prefetched processors.

If you are tracing a line range, add a couple of lines to the end of the range. If you
are tracing a module, adding a dummy assignment statement at the end of the pro-
cedure will solve the problem.

A variable accessed by a source statement containing a type conversion is not dis-
played. The type conversion was accomplished by a call to a library routine and
cannot be displayed.

None.

Unexpected Analyzer Execution

Problem:

Solution:

The analyzer doesn’t capture any data. The measurement may be set up incorrectly.

Check run parameters. Try resetting the emulator and reloading the file.

E-3

Real-Time High Level Software Analyzer
Resolving Measurement Problems

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

The comp_db file is not current with the absolute file.

Run the db_check and correct the indicated errors.

When running in real time required mode, the analyzer stops acquiring data, but the
measurement does not complete. The program has halted or an emulation error has
occurred.

Use the halt command to stop the analyzer and view the measurement results. Run
the program in non-real time to see why the program halted and to see emulation
status and error messages.

A local variable cannot be modified. The variable is not scoped to the current
program counter.

Execute a break in the code where it is valid to access the variable, run until the
break, then modify the variable.

Real, character, or scalar variables can not be modified in their native type. Only
variables that are 32 bits or less can be modified and only numerically.

None.

When executing a trace statements measurement in real-time required mode, no
dynamic variables are displayed. In real-time required mode, the analyzer has to ac-

cess to stack information.

Define an external array (static variable) that maps to the stack space.

Unexpected Emulation Operation

Problem:

Solution:

An error occurs on execution of a measurement after an absolute file containing the
emulation monitor program is loaded and the emulator is currently running in the
monitor. A load cannot be done correctly while code is running.

The processor must be reset before loading an absolute file containing the emulation
monitor program.

Unexpected Error Or Status Message.

Problem:

Solution:

E-4

In real time optional mode, The program runs until completion in the emulator and
in the software analyzer the message "running" is the only one given. The soft-
ware analyzer only checks the status of the emulator during an execute command, a
show setup command, or on execution of a reset, break, or run command.

Perform one of the above operations to update the status of the emulator.

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Real-Time High Level Software Analyzer
Resolving Measurement Problems

The program being traced crashes, the software analyzer gives only the error mes-
sage "access to guarded memory", and no trace data is displayed. Something is
fundamentally wrong with the program. No source code is able to execute. For ex-
ample, the stack may have been placed in a section of memory that was guarded.

Exit the software analyzer and use the emulation subsystem to discover the problem.
Assembly language tracing is required.

An absolute file was loaded without the emulator being reset.

Reset the emulator, then reload the absolute file.

The error message "access to guarded memory" appears on execute. The comp_ db
file is not current with the absolute file.

Run the db_check and correct the indicated errors.

The error message "File not found file= <FILE>:comp db(PC=nnnnH)" is displayed
and the link process generated no errors or a C program is run and the message ap-
pears for FILE "entry". A comp_db file does not exist for the assembly language file.
No source data can be returned.

None.

An apparently correct variable or procedure name is included in a trace specification
and the error message “"Variable not found:<VAR>" or "Module not
found:<MODULE>" is displayed. User error.

Check all elements of the path given for the variable or procedure. Make sure all

elements of the path are there and are correct. Verify that the default path and
loaded absolute refer to the same file.

A "Bad line range" error message is displayed at execution of a trace measurement.
The lines specified may be at the same address in the program.

Increment the last line in the range.

An apparently correct command does not work when a lower case identifier is used.
The lower case identifier is identical to one of the software analyzer commands.
Identifiers cannot have the same name as software analyzer commands.

Put the lower case identifier in quotes ("), e.g. "entry".

E-5

Real-Time High Level Software Analyzer
Resolving Measurement Problems

Problem:

Solution:

Problem:

Solution:

The error message "Program execution outside of absolute file (PC=nnnnH)" is dis-
played and no symbolic information is shown. The software analyzer does not dis-
play symbolic information when more than one absolute file is loaded and files in
any absolute file other than the last one loaded are being traced. The software
analyzer can provide symbolic information only for files in the last absolute file
loaded.

Ensure that the files you want to trace are in the absolute file listed on the software
analyzer setup display.

The error message "Symbol not found" is displayed for a known C variable. The
specified variable is a block variable (a variable defined within an inner block of a
procedure). The software analyzer does not support block variables.

Declare the variable at the procedure level.

Unexpected Source Line

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

E-6

The source line is not the line associated with the symbol in a trace variables
measurement. The software analyzer shows a prefetched line as causing the
access.

The correct source line is the previous source line displayed in the trace.

Comments are displayed as source lines. The comment spans multiple lines.

Start and end each comment line with a comment delimiter.

The source statement shown at the beginning of a procedure is an "end" statement
from the previous procedure. The compiler overhead for entry into the procedure is
executing. The source line is undefined for these instructions, however, the line

preceding the procedure declaration is shown.

None

A state position is requested and an unexpected state position is displayed.

Use a position from the status line rather than a randomly selected state position.

A prefetched source line immediately following a looping construct is displayed in
the looping construct in a trace statements measurement.

None

Real-Time High Level Software Analyzer
Resolving Measurement Problems

Unexpected Symbols On The Display

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

A variable name is shown on the display that is different than the expected name.
When a variable is passed by reference to a procedure, the procedure accesses that
variable under an alias.

None.
Extra accesses to a record are shown without a field name or with an extra index to

an array field. This is caused by pad bytes the compiler inserts in records to align
the fields.

Create records that don’t have pad bytes.

Unexpected reads/writes at the beginning or end of a procedure caused by compiler
overhead.

Check an assembly listing file of the program. These reads/writes may be operations
done by the compiler to set up stacks, transfer parameters, etc.

Unexpected Value On The Display

Problem:

Solution:

Problem:

Solution:

Problem:

Solution:

The value of the symbol is illegal for the symbol type.

None.

Incomplete access to variables. This can occur when the software analyzer is trac-
ing two 32-bit integers and one is assigned to the other or when the software
analyzer is tracing two structured variables where one is assigned to the other.

The complete value can be determined by noting the partial values and their loca-
tions. Alternatively, set up a break on the next source line after the assignment and
display the variable.

Partial values are displayed or incorrect complete values in the trace variables
measurement. The trace data begins part of the way through a variable access or
the user positions the display to the middle of a variable access.

Use the display positioning to find a location that makes the partial values disappear.
If that doesn’t work, piece together the whole value from the partial values.
Alternatively, setup a break on the next source line after the assignment and display
the variable.

E-7

Real-Time High Level Software Analyzer
Resolving Measurement Problems

Problem: The absolute count does not change between lines although source lines are being
shown. Resolution of the count causes small changes to disappear.

Solution: Display the count field in relative mode to see the count between lines.

E-8

INDEX

a
ADSOIULE . . . o e e e 12-8,D-1
absolute count does not change betweenlines. i . E-8
absolute file (PC=nnnnH) displayed i e E-6
absolute file loaded without emulator beingreset E-5
absolute file. e 5-6,D-1
accesses to variables not displayed e E-3
accessing the software analyzer e 3-6
active variable e e 8-2
additional 64000 system components e 2-3
P2 o Lo [= 7= 7-10,D-1
<ADDRESS>. . .. 7-10,B-12
Al e e e 8-7,D-1
AW AY S .« oo e e 5-7,11-4,D-2
AMNESIA .« . e e 4-7,8-14
analyzer does not capture data E-3
any state. e 6-9,6-11,D-2
apparently correct command does notwork L e E-5
APPENA. . . e e 14-5,D-2
array parameter in C not displayed i e e E-2
= 2) 15-5
= 1o 12-8,D-2
ASMB SYM . . e e e e 4-7
assembly language e 4-8
at exeCUlioN e 7-10,D-2

b
DS . . e e 12-8
DAaSE Y P . . o e e 15-5
o 11 = 12 12-8,D-2
DOOIEaN . . e e e 15-3
break . .. 1-12,7-5,10-2,15-1,D-3
break command SYyNntaX e 7-5
break measurement 1-11
break on measurement complete. e 1-12
break softkey e e 3-2
break, setUp 10-2
building database files e, 3-4,4-1
building the symbol database. 4-2
BY T . e 15-3

(¢
cvariable e e e 8-2,10-4,10-7
cardcage CoVEr reMOVAl.ttt et et e e e 2-5
CHAR . L e 15-4
<CMDFILE> SOftkey . . . oo 3-3,B-12

I-1

Real-Time High Level Software Analyzer

Index

cnt state e D-3
CNt time. L . e e D-3
command files e 13-4,14-3
comments displayed as source lines E-6
COMP_ b ee 3-4,4-4
comp_dbfilenotourrent. E-4
comp dbfiles e 4-2
comp dboption e 3-4
COMIP SYM . L ottt ittt e e e 3-4,4-2
COMP_SYmM OptioN e 3-4
compiler direCtivesS L. e e 4-1
compiler symbol file. . . . e 3-12
compiling files e e 4-2
CoNfigUIatioNo e e D-3
configuration files. e 3-12,13-2
configure load from e e 13-3
CONfIQUIE SAVE M. . . . o ettt e e 13-3
configure SOftKEY oot e e 3-3
configuring boards inthe station 2-3
configuring the analyzer. e e 13-1
connecting the interconnect cables to the acquisitionboard 2-5
controlling the emulator. e 71
controlling the measurement window i e e 1-13
Lo 0 3 D-3
COPY COMMANG . . oottt it ettt ettt et et et et ean 14-5
COPY SOftKBY. . oo e e 3-3
COUNE . . e e e 12-8,D-4
count fleld e 12-3
count statements e 1-10
count statements measurement display. e e 1-11
count statements measurement theory 16-9
count_statements e 9-2
COUNE BT . L o o e e e 5-4,D-4
COUNM OIS . L . e e 16-2
CUITENT M. . o o e e e e e 12-4

d

data missed on recursive call exit E-3
data types e e 15-1
data flow. e D-4
database fille. e 3-5,4-4
database _check. e e 1-12,D-4
database check command syntax. i e e 4-7
db_check softkey.o e e 3-2
deCimal . .. e e e e 12-8,D-4
default e 12-8.D-4
default path e 5-2,15-2
default_path. e e 3-8,D-5
definingadefault path e 3-8
DELETE CHAR KeY . . e e e e ettt e i e e ees 14-4
directed syntax. e e 14-2
ISl . v e s D-5

Real-Time High Level Software Analyzer

Index
AiSplay . . . e e e 14-6,D-5
display Command. e e 12-8
display fields e 12-2
display SOftKeY e 3-2
display <VAR> COMMAaNd. o e e 10-4
display variable. e 1-12
displaying pad bytes e 12-5
displaying variant records 12-5
AOUDIE . .o e e e 15-4
Lo 15 177 o 1 D-6
driven _Only e 5-7,11-4,D-6
driving trigger enable with the software analyzer............ i il 11-5
dynamiC SYMDbOIS e e 15-1
dynamic variables are not displayed intrace statements o oL E-4
dynamically stored symbols. e 4-1

e

EMUIAt ON . . L e e D-6
emulation analysis MOde e e e 30-6,7-2
emulation command file. e e e 3-5,7-2
emulation configuration 7-2
emulation configuration file e 7-1
emulation Control. e 1-11
emulation interface.o e e e 7-1
emulation monitoristraced e e E-2
eMUIAtioN MeMOrY e 7-6,D-6
emulator status message notupdated E-4
ENADIE . L e e D-6
enable/disable terms, number Of e e e 6-7
1= T D-7
end COmMMaANG e e e e e e e 14-7
eNd SOMKEY . . . e e e 3-2
end statement displayed at beginning of procedure. i ol E-6
entering module/variable names e 14-2
entering NUMEriC values. o e e e 14-2
=T 011 6-9,6-11.8-2,10-3,15-1,D-7
eNtry POINt . o e e e 3-12
1T 0 U 0 15-4
error message : XXX is not found’ isdisplayed. E-5
error message 'access to guarded memory’ displayed i i e E-5
error message 'bad line range’ displayed. e E-5
error message ’file not found, file= <FILE>:comp db E-5
error message '‘program executionoutside of o i E-6
error message 'symbol not found' displayed e E-6
eITOr MESSAJESttt it it it e i e e e e s e e B-5
error occurs on execution of measurement. L E-4
executable code. e e e e 15-2
BXECULE . . L e e D-7
execute SOftKeY e 3-2,14-8
eXeCUtion eNVIFONMENt. 4-1
Xt L e 6-9,6-11,8-2,10-3,15-1,D-7
expected goto notdisplayed. e e E-1

Real-Time High Level Software Analyzer

Index
extra accesses to arecord displayed E-7
extra index to an array field displayed e E-7
f
field and display width L 12-6
111 D-8
<EILE> .« o e e e e e e e e e e B-12
file NAMES. . . . e 14-2
fixed parameters e 4-8
float . . e e 15-4
fOlOWE . . o e e D-8
followed by e 6-9,6-11,D-8
L7 2.2 TS 7-10,D-8
function return values not displayed e E-3
fUNCHIONS . . . e e 15-1
g
general user information 1-15
generate_database command e 4-5
generate_database utility. e 3-5,4-4
generate_database utility, execution L o 3-5
generate database utility, required files. 3-5,4-5
getting started 3-1
global variables 15-1
h
Ralt. . e D-8
halt command 14-9
hardware description, HP B4340A e e 1-2
hardware functional block diagram e 1-3
X et e e 12-8,D-8
hierarchical measurements e 1-13
high level language constructs. e 16-1
i
IEEE Simple precCision 15-4
illegal values. e e e 12-6
IMB-measurement enable/disable interaction. 6-7
IMB/software analyzer interaction i e e 11-3
IMB measurements e 1-13
incomplete access to variables. 12-7
incomplete access to variables. E-7
incorrect values displayed e E-7
<INDE X > o e e e e e e B-12
INitial tUrmn ON L L e e e 3-3
INSERT CHAR KeY . ..ttt e e e e e e e e e e e 14-4

I-4

Real-Time High Level Software Analyzer

Index
installing analyzer hardware e 2-3
installing other analysisboards 2-4
installing the 64340A module into the 64100A station i, 2-6
installing the analyzer in a 64100 development station 2-3
installing the emulation system 2-4
installing the software analyzer e 2-1
]] 15-3
101 (=T 1= 15-4
intermodule bus SiIgnals e 11-1
interpreting the trace listing 3-12
intrinsic data types.o e 15-3
<INV A LD > . o oot e e e e B-12

|
= o =Y 15-2
<LINE> . o e e e e e e B-13
NE NUMDEIS . . . oo et e 15-2
LINE NUMBERS . . . e e e e e e e e e e e e e e e 4-8
K EMe . L e e 15-1
K _Sym file. e 3-4,4-4
NKING .o e 3-3
NKING fileS e 4-4
Stfile . .o e e e e D-8
0 7= Lo 1-12,D-8
load COMMAND. e 7-6
load command syntax diagram 7-6
load SOftKEYo e e e 3-3
load frOM .. e e e e e D-9
loading a measurement configuration 13-3
loading analyzer software e 2-11
loading and executing a program inemulation L e 3-5
loading and runNiNg @ Programttt et e et e 3-8
loading the user Program. e e e 7-2
local variable cannot be modified. E-4
local variables e e e e e e 8-2,15-1
10gging COmMmMANASo 14-3
ONg L e 15-3
oNgreal e 15-4
lower case module/variable Nnames i e e e e 14-2
m

mMajor SOftkey levels e 3-2
making duplicate copies of floppy disc software i i ., 2-12
master enable e e 11-2
=T TR oo o o o D-9
MNBASUINE . L o ot ittt et ittt ettt e D-9
MeaSUrEMENT . L . L e e D-9
measurement configuration e 13-1
measurement CONtrol. e e e e 1-12
measurement disable. e e e 6-3

Real-Time High Level Software Analyzer

Index
measurement Enable e 6-2
MeasuremMent MOUESt ittt ettt e et 8-1
measurement NEVEr ENAS. e e e e E-4
measurement problems and conditions. e E-1
measurement_complete e 14-13
measurement _disable 5-7,6-10,11-414-10,D-5
measurement_enable. i i 5-7,6-8,11-4,14-10.D-6
101201 o =1 15-5
missing data during recursive calls e E-2
MISSING SOUICE liNE ettt e E-2
source line missing for entry of first procedure inafile........... E-2
source lines between data accesses disappeart i i e e e E-1
statement containing 'end’ or 'y notdisplayed. oo o oo oL E-1
tracingasingleline e e E-2
missing source statements. L E-1
emulation monitoris traced. e e E-2
expected goto not displayed. e E-1
missing data during recursive Calls i et E-2
missing symbols onthe display i i e E-2
accesses to variables not displayed. e e E-3
array parameter in C not displayed E-2
data missed onrecursive call exit e E-3
function return values not displayed e E-3
object of pointer not displayed e e E-3
register variable not displayed E-2
type conversion not displayed. e E-3
variables mapped to same location not displayed i oL, E-3
T o 13 37/ 12-8,D-9
MOdify SOftKEY . . . oo e e e 3-2
MOdify <VARS> L . e e e e 10-6
modify variable. 1-12
modifying measurement setups. L 1-13
modifying the display e e e 1-13
SMODULE> . ..o e e e e e e e e e e e e B-13
module characteristics e e 15-1
MOAUIE VS, PrOC . . o v i ittt e e e e e e e e e et e et e e e 15-1
module/variable Nnames, lIOWer CasSeo vttt e 14-2
MOAUIES . . o e e e e 15-1,D-10
modules/variable names, entering e 14-2
n
number of enable/disable terms. i e e e e 6-7
NUMENIC VAIUES. . . oottt i ittt ittt e ettt ittt e tanane e 14-2
o
object of pointer not displayed. e e E-3
OCtal. . o e e e 12-8,D-10
Off e e e e D-10
0 o D-11
operating syntax diagramst e e e e A-1

I-6

Real-Time High Level Software Analyzer

Index
OPTIMIZE . ..t e e e 4-8
o 01 To o - | 5-5,D-11
optioNs CONtINUE e 13-2
o 6-9,6-11,D-11
or'ed measurement enable/disable terms. o 6-6

p
pPovaniable e e e 8-4,10-5,10-8
padded fields e e e e 15-6
3 Lo e [o T 15-6
P ARM S >, . .o e e B-13
partial values displayed e e e E-7
PAtNS . . e 15-2
(PC=nnnnH) displayed i e e e e E-5
performing a trace modules measurement. 3-8
performing operation verification e e e 2-12
0 1101 (-1 15-5
preferred 64100A station configuration 2-3
PrefetCh . . oo e e e e e 8-6,8-9
prefetch effects e 8-14
prefetched source line displayed i E-6
preparing the system for measurements i i 3-3
LT =T 14-6,D-11
1o o D-12
P RO . . ot e e e e e e e e B-13
PrOCEAUIES . . o o oottt e 15-1,16-1
program activity OVerview. o e 3-12
Program COUNETo it i ittt e sttt 7-3
Program Crashes i i i it e s e e e E-5
] e = 12 0 - 15-1
prompt sOftKeys 14-4
r

7=7- Lo I 8-20,D-12
=T | 15-4
real time e 5-5,D-12
RECALL KBY . ittt e 14-3
=101 7= o [N 5-8,11-4,D-12
receiving triggerenable e 11-10
rECOGNItION FESOUICES. . . . o o ottt ittt 16-2
recommended programming style L 3-14
(=T o0 o PP 15-5
T o B 1 3-12
reference manual updates e 1-15
reference parameters e e 15-3
register variable not displayed e E-2
(1= = (1= 12-10,D-12
removing software from the systemdisc............. i i il 2-11
TEPEttIVE . . . e e e 14-8,D-13
1= 181 =T o 5-5,D-13

Real-Time High Level Software Analyzer

Index

= T=1= 1-12,D-13
reset CommaNd e 7-8
reset CoOmMmMaANd SYNtaX.ttt 7-8
reset SOftkey. e 3-2
resource allocation. L 16-10
SRETURN . ot et e e e e e e e e B-13
o 1-12,D-13
runat_ exeCultion e 7-9
FUN COMMIANG . .ottt et e e et e et i 7-9
run command syntax diagram e e e 7-9
TUN SOMtKY . . o oo e 3-2
TUN M . L e e i e i e 15-1
running in real-time optional mode e 7-9
running in real-time required mode L e 7-9
running programs in real-time optionalmode i o o i i i iii i 7-3
running the USer program i e e, 7-3

S

safety considerations e 1-1
BAVE M .. e D-13
saving the configuration. 3-12
scalar data tyPes o e e e e e e 15-1
<SECOND S > . oo e e e 14-13,B-13
selecting the emulation analysismode. 3-6,7-2
sequential measurement enable/disable terms. 6-5
S 15-5
setting up the trace specification 3-11
SBIUD - .. e e 14-6,14-11,D-13
setup absolute_file command syntax. 5-6
setup count_statements command syntax 9-2
setup counters command Syntax. e e 5-4
setup default_path command syntax. i i e 5-2
SetUD display e e e 3-11
setup display <VAR> e e . 10-4
setup measurement_disable command syntax i i e 6-10
setup measurement_enable command syntax. i e 6-8
setup modify command e e 14-10
setup real_time command syntax i e e e 5-5
Setup SOftKeY . . o o e e e e 3-2
setup trigger_enable command syntax i 5-7,11-4
setup, absolute_file e 5-6
setup, count_statements 9-2
SetUD, COUNTEr . . . e e e e e e e e 5-4
setup, default path e e 5-2
setup, measurement_disable. et e 6-10
setup, measurement_enable e 6-8
setup, Modify <VAR> e e e e 10-6
setup, real_time. e 5-5
setup, time_modules e e 9-6
setup, trigger_enable. e e e e e 5-7
=] T o 15-3
SOW L e e e e D-14

Real-Time High Level Software Analyzer

Index
SHOW COMMANGttt e 14-11
ShOW SOftKEY . . .o 3-2
SNOW SOUICE. . o i ittt ettt e e 1-12
SIGNED B . ..ttt e 15-3
SIGNED 16 . .ottt e 15-3
SIGNED 32 . .o e e e 15-3
SOftkey Prompts . . . B-12
software analyzer hardware i 2-2
software analyzer hardware and software i i 2-1
software analyzer software. e 2-2
software CONtIOl. 1-12
software description, HP 64341 1-3
software functional block diagram 1-4
software materials subscription e 1-14
software problem reporting 1-15
software release bulletins. e 1-15
software status bulletins. 1-15
software Updates e 1-15
F=To 1 1 o3 = N 12-10,14-11,D-14
SOUrCe field e 12-2
source line is not line associated with symbol E-6
source line missing for entry of first procedureinafile............. L. E-2
source lines between data accesses disappear i i E-1
SOUICE _Path. ..o e e e e 12-10
source_path field. o 12-2
SPECIAl ValUBS. . . . o e 12-7
SIC_Path. . e D-14
Start . L e e e D-14
start-Up VECtOr e 7-3
starting and stopping measurements. 1-13
O T AT > ottt ettt e e e e 14-6,B-13
state nuUMber L e 12-7
statement containing 'end’ or ') notdisplayed. i E-1
statements e D-15
static symbols 15-1
static variables e e e 8-2,15-1
statically stored symbols e 41
Statistics o e e 12-10,D-15
StatUS . . o e 12-10
StalUS . . . e e D-15
status field e e 12-3
status messages. B-1
Storage Classes i 15-1
SHTUCHUNE. .« o o e e e 15-5
structured data typeso e e 15-1,15-5
SUBRANGE TYPE e ettt e e e e 15-4
SW_aNnl N L e e s D-15
SYMIDOL . L L e 12-10,D-15
SYMBOL > e e 7-11,B-14
SYymMbOl field e 12-2
symbol_path e 12-10,D-15
symbol _path field e 12-2
symbolic data base e e 3-8
symbolic data types e e 15-3

Real-Time High Level Software Analyzer

Index

symbolicinterface i e e 4-1,4-3
SYMBOIS .« L o e e e 15-1,16-2
syntax diagram, break e 7-5
syntax diagram, [0ad e e 7-6
syntax diagram, reset. e 7-8
syntax diagram, TUNt i e e e e 7-9

t

TAB KEY .« ot vttt et e e e 14-3
LT o 12-10,D-16
L4 0 14-6,D-16
MG L L e e e D-16
HME MOAUIES e e e 1-9
time modules measurement display. i e 1-10
time modules measurement theory i e 16-10
time_modules e 9-6
B0 it e e 9-2,D-16
to_count_states. e 5-4
to_count time e 5-4
L= 1] = D-16
trace data flow e e e e 1-6
trace data flow measurement display. 1-7
trace data flow theory e 16-4
trace data _flow e e e e 8-2
trace measurement theory i e e e e e e 16-2
trace measurements. e e e e e e 1-5
trace MOdUIES e e e 1-5
trace modules measurement e e 8-7
trace modules measurement display i i e 1-6
trace modules theory e e 16-3
trace statements. L e e 1-7
trace statements don'tcare L e e 8-11
trace statements don’tcare display 8-17
trace statements measurement e 8-11
trace statements measurement theory L L 16-7
trace variables e e e e 1-8
trace variables measurement L e 8-19
trace variables measurement theory. 16-5
tracingasingle line e e E-2
raANSTOr. . e e D-17
transfer address oo e e e 7-3
transfer_address e e 7-11
trigger enable. et 11-2
trigger enable driven e 6-7,11-3
trigger enable received. e e 6-7,11-3
trigger_enable e 5-7,11-3,D-17
type conversion not displayed e e e E-3

1-10

Real-Time High Level Software Analyzer

Index
u

unexpected analyzer execution e e E-3
analyzerdoes notcapturedata. i E-3
comp dbfilenotcurrent. e E-4
dynamic variables are not displayed in trace statements. ool E-4
local variable cannot be modified e E-4
measurement NeVEr BNAS it e e E-4
variables cannot be modified in their native type. o o E-4
unexpected emulation operation e E-4
error occurs on execution of measurement. L e E-4
unexpected erroror statusmessage e E-4
(PC=nnnnH) displayed i e E-5
absolute file (PC=nnnnH) displayed i E-6
absolute file loaded without emulator beingreset L, E-5
apparently correct command doesnotwork.o E-5
error message : XXX is not found’ is displayed. i, E-5
error message 'access to guarded memory’ displayed i E-5
error message 'bad line range’ displayed i i E-5
error message 'file not found, file= <FILE>:comp_db i E-5
error message 'program executionoutside of oo E-6
error message 'symbol not found’ displayed. i o i E-6
Program Crashes i e E-5
understanding the examples used inthismanual 1-14
unexpected position displayed. e e E-6
unexpected read/write operations e E-7
unexpected soUrce liNe e e E-6
comments displayed as source lines i e e E-6
end statement displayed at beginning of procedure il E-6
prefetched source line displayed e E-6
source line is not line associated withsymbol. E-6
unexpected position displayed. e E-6
unexpected symbols onthedisplay. i E-7
extra accesses to arecord displayed. e E-7
extra index to an array field displayed e E-7
unexpected read/write operations e e E-7
variable name different from expected name. L e E-7
unexpected value onthe display i e e E-7
absolute count does not change betweenlines. E-8
incomplete access to variables e E-7
incorrect values displayed e e e E-7
partial values displayed o e e e e E-7
value of symbolisillegal e E-7
UNIOMS o ottt e e e 15-5
UNSIGNEA . . oo e e 15-3
UNSIGNEd IONG . .. oo e e e 15-4
UNSIGNED 8. . . e ettt ettt e e e i i 15-3
UNSIGNED 6. . .ottt e e ettt ettt e e e e 15-3
UNSIGNED B2, . . e e e e e e e e e e e e 15-4
user vs. supervisor memory space, HP 64234/HP 64245 7-2
user-definable e 15-4
LU 11T S 10T 0 [7-7,D-17
USEII . . oo e e e e e e e 3-3,14-1
using compiler direCtiveso i i e e 4-7

Real-Time High Level Software Analyzer

Index

USiNg sUPPOrt COMMANASt e 14-1
using the emulation monitor 7-3
utility commands e 14-4
utility keys used for transportation. 3-7

v
VaAlUE Lt e e e e e e e e 12-10,D-17
VAL > . o e e e 10-8,B-14
value field. e e e e 12-2
value of symbolisillegal e E-7
value parameters e 8-2,15-3
VA R > Lo e e e e 8-4,8-20,10-510-8
variable name different from expected name. e E-7
variable/module names, entering 14-2
variable/module Names, IOWEN CASE i ittt et e e 14-2
VaNADIES . . o i e e e e e e e e e 8-20,16-1,D-17
variables cannot be modified in their native type E-4
variables mapped to same location not displayed E-3
VAN ANt FECOIAS . . . o ot e e e e e e e e 15-5
viewing dataonthedisplay e e 12-1
w

WAl L e e e e e e D-17
wait SOftKeY . . . e e e e 14-12
what is a real-time high level software analyzer. i ... 1-2
what the software analyzer allows youtodo............. 1-5
WD L e e e e e e 12-10
WINAOW . e e e e e e 6-11
WINAOWING . . .o e e 6-4
11072 1 (= 8-20,D-17
write_protected e 13-3,D-12

I-12

343H 4104

K

HEWLETT
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET
Operating Manual, Model 64341
Real-Time High Level Software Analyzer 68000/68010
64341-90903 E0985, September 1985

Your comments are important to us. Please answer this questionnaire and return it to us. Circle the
number that best describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 45 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 45 Exactly right

3. The information in this book is:
Difficuilt to find 1 2 3 4 5 Easy to find

4. The Index and Table of Contents are useful:
Missing or inadequate 1 2 3 4 5 Helpful

5. What about the "how-to" procedures and examples:
No help 1 2 3 45 Very Helpful

Not enough 1 2 3 45 Too many

6. What about the writing style:
Confusing 1 2 3 4 5 Clear

7. What about organization of the book:
Poor order 1 2 3 4 5 Good order

8. What about the size of the book:
Too small 1 2 3 4 5 Too big

Comments:

Particular pages with errors?
Name:
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this
card.

343H 4104

K

HEWLETT
PACKARD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1303 COLORADO SPRINGS, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD

Logic Product Support Dept.
Attn: Technical Publications Manager

Centennial Annex - D2
P.O. Box 617
Colorado Springs, Colorado 80901-0617

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD HERE

Your cooperation in completing and returning this form
will be greatly appreciated. Thank you.

READER COMMENT SHEET
Operating Manual, Model 64341
Real-Time High Level Software Analyzer 68000/68010
64341-90903 E0985, September 1985

Your comments are important to us. Please answer this questionnaire and return it to us. Circle the
number that best describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

Doesn’t cover enough 1 2 3 45 Covers everything
(what more do you need?)

2. The information in this book is accurate:
Too many errors 1 2 3 45 Exactly right

3. The information in this book is:
Difficuilt to find 1 2 3 4 5 Easy to find

4. The Index and Table of Contents are useful:
Missing or inadequate 1 2 3 4 5 Helpful

5. What about the "how-to" procedures and examples:
No help 1 2 3 45 Very Helpful

Not enough 1 2 3 45 Too many

6. What about the writing style:
Confusing 1 2 3 4 5 Clear

7. What about organization of the book:
Poor order 1 2 3 4 5 Good order

8. What about the size of the book:
Too small 1 2 3 4 5 Too big

Comments:

Particular pages with errors?
Name:
Job title:
Company:
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this
card.

Product Line Sales/Support Key

Key Product Line

A Analytical

CM Components
Computer Systems

Medical Products

s *OoEMO

Electronic Instruments & Measurement Systems

Personal Computation Products
Sales only for specific product line
Support only for specific product line

IMPORTANT:These symbols designate general product line
capability.They do not insure sales or support availability for all
products within a line, at all locations.Contact your local sales
office for information regarding locations where HP support is

available for specific products.

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these

headquarters offices.

NORTH/CENTRAL AFRICA
Hewlett-Packard S.A.

7, rue du Bois-du-Lan

CH-1217 MEYRIN 1, Switzerland
Tel: (022) 83 12 12

Telex: 27835 hmea

Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd.
47/F, 26 Harbour Rd.,
Wanchai, HONG KONG
G.P.0. Box 863, Hong Kong
Tel: 5-8330833

Telex: 76793 HPA HX
Cable: HPASIAL TD

CANADA

Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430

Telex: 610-492-4246

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1

P.0.Box 72

A-1222 VIENNA, Austria
Tel: (222) 2500-0

Telex: 1 3 4425 HEPA A

NORTHERN EUROPE
Hewlett-Packard S.A.
Uilenstede 475

P.0.Box 999

NL-1183 AG AMSTELVEEN
The Netherlands

Tel: 20 437771

Telex: 18 919 hpner nl

SOUTH EAST EUROPE
Hewlett-Packard S.A.

World Trade Center

110 Avenue Louis Casai

1215 Cointrin, GENEVA, Switzerland
Tel: (022) 98 96 51

Telex: 27225 hpser

MEDITERRANEAN AND
MIDDLE EAST
Hewlett-Packard S.A.
Mediterranean and Middle East
Operations

Atrina Centre

32 Kifissias Ave.
Paradissos-Amarousion, ATHENS
Greece

Tel: 682 88 11

Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Athens

UNITED KINGDOM
Hewlett-Packard Ltd.

Nine Mile Ride
Easthampstead, WOKINGHAM
Berkshire, IRGII 3LL

Tel: 0344 773100

Telex: 848805

EASTERN USA
Hewlett-Packard Co.

4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 258-2000

MIDWESTERN USA
Hewlett-Packard Co.

5201 Tollview Drive

ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

SOUTHERN USA
Hewlett-Packard Co.
2000 South Park Place
P.O. Box 105005
ATLANTA, GA 30348
Tel: (404) 955-1500

WESTERN USA
Hewlett-Packard Co.
3939 Lankershim Bivd.
P.O. Box 3919

LOS ANGELES, CA 91604
Tel: (213) 506-3700

OTHER INTERNATIONAL
AREAS

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304

Tel: (415) 857-1501

Telex: 034-8300

Cable: HEWPACK

SALES & SUPPORT OFFICES

ANGOLA

Telectra Angola LDA

Empresa Tecnica de Equipamentos
Rua Conselheiro Julio de Vilhema, 16
Caixa Postal 6487

LUANDA

Tel: 35515,35516

Telex: 3134

EC*

ARGENTINA
Hewlett-Packard Argentina S.A.
Montaneses 2140/50

1428 BUENOS AIRES

Tel: 783-4886/4836/4730
Cable: HEWPACKARG
ACCMEP

Biotron S.A.C.L.e.l.

Av. Paso Colon 221, Piso 9
1399 BUENOS AIRES

CM

Laboratorio Rodriguez
Corswant S.R.L.

Misiones, 1156 - 1876
Bernal, Oeste

BUENOS AIRES

Tel: 252-3958, 252-4991
A

Argentina Esanco S.R.L.
Avasco 2328

1416 BUENOS AIRES

Tel: 541-58-1981, 541-59-2767
A

AUSTRALIA

Adelaide, South Australia
Office

Hewlett-Packard Australia Ltd.
153 Greenhill Road

PARKSIDE, S.A. 5063

Tel: 272-5911

Telex: 82536

Cable: HEWPARD Adelaide
A*CCMEM,P

Brisbane, Queensland
Office

Hewlett-Packard Australia Ltd.
10 Payne Road

THE GAP, Queensland 4061
Tel: 30-4133

Telex: 42133

Cable: HEWPARD Brisbane
AC.CMEM,P

Canberra, Australia
Capital Territory

Office

Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSHWICK, A.C.T. 2609

Tel: 80 4244

Telex: 62650

Cable: HEWPARD Canberra
C.CM.EP

Melbourne, Victoria
Office

Hewlett-Packard Australia Ltd.
31-41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 895-2895

Telex: 31-024

Cable: HEWPARD Melbourne
AC.CMEM,P

Perth, Western Australia
Office

Hewlett-Packard Australia Ltd.
261 Stirling Highway
CLAREMONT, W.A. 6010

Tel: 383-2188

Telex: 93859

Cable: HEWPARD Perth
A.C.CMEM,P

Sydney, New South
Wales Office
Hewlett-Packard Austialia Ltd.
17-23 Talavera Road

P.O. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 888-4444

Telex: 21561

Cable: HEWPARD Sydney
ACCMEMP

AUSTRIA
Hewlett-Packard Ges.m.b.h.
Verkauisblro Graz
Grottenhofstrasse 94
A-8052 GRAZ

Tel: (0316) 291 56 60
Telex: 32375

CE

Hewlett-Packard Ges.m.b.h.
Lieblgasse 1

P.0. Box 72

A-1222 VIENNA

Tel: (0222) 2500-0

Telex: 134425 HEPA A
ACCMEMP

BAHRAIN

Green Salon

P.O. Box 557
MANAMA

Tel: 255503-255950
Telex: 8441

-]

Wael Pharmacy

P.O. Box 648
MANAMA

Tel: 256123

Telex: 8550 WAEL BN
EM

Zayani Computer Systems
218 Shaik Mubarak Building
Government Avenue

P.0. Box 5918

MANAMA

Tel: 276278

Telex: 9015

P

Arranged alphabetically by country

BELGIUM

Hewlett-Packard Belgium S.A./N.V.
Bivd de la Woluwe, 100

Woluwedal

B-1200 BRUSSELS

Tel: (02) 762-32-b

Telex: 23-494 paloben bru
ACCMEM,P

BERMUDA

Applied Computer Technologies
Atlantic House Building
Par-La-Ville Road

Hamilton 5

Tel: 295-1616

P

BRAZIL

Hewlett-Packard do Brasil
l.e.C. Ltda.

Alameda Rio Negro, 750
Alphaville

06400 BARUERI SP

Tel: (011) 421.1311

Telex: (011) 33872 HPBR-BR
Cable: HEWPACK Sao Paulo
ACCMEM,P

Hewlett-Packard do Brasil

l.e.C. Ltda.

Praia de Botafago 228

6° Andar-conj 614

Edificio Argentina - Ala A

22250 RIO DE JANEIRO

Tel: (021) 552-6422

Telex: 21905 HPBR-BR

Cable: HEWPACK Rio de Janeiro
ACCMEP*

Convex/Van Den

Rua Jose Bonifacio
458 Todos Os Santos
CEP 20771

RIO DE JANEIRO, RJ
Tel: 591-0197

Telex: 33487 EGLB BR
A

ANAMED I.C.E.. Ltda.
Rua Bage, 103

04012 SAO PAULO, SP
Tel: (011) 572-6537
Telex: 24720 HPBR-BR
M

Datatronix Electronica Ltda.
Av. Pacaembu 746-C11
SAO PAULO, SP

Tel: (118) 260111

CM

CAMEROON
Beriac

B.P. 23
DOUALA

Tel: 420153
Telex: 5351

CP

CANADA

Alberta

Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 6T7
Tel: (403) 235-3100
A.C.CM,E* M,P*

Hewlett-Packard (Canada) Ltd.
11120-178th Street
EDMONTON, Alberta T5S 1P2
Tel: (403) 486-6666
ACCMEM,P

O

A

SALES & SUPPORT OFFICES

Arranged alphabetically by country

CANADA (Cont'd)

British Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
RICHMOND,

British Columbia V6X 2W7
Tel: (604) 270-2277

Telex: 610-922-5059
A.C,CME* M,P*

Hewlett-Packard (Canada) Ltd.

121 - 3350 Douglas Street
VICTORIA, British Columbia V8Z 3L 1
Tel: (604) 381-6616

c

Manitoba

Hewlett-Packard (Canada) Ltd.
1825 Inkster Blvd.

WINNIPEG, Manitoba R2X 1R3
Tel: (204) 694-2777
AC.CM,EM,P*

New Brunswick
Hewlett-Packard (Canada) Ltd.

814 Main Street

MONCTON, New Brunswick E1C 1E6
Tel: (506) 855-2841

C

Nova Scotia

Hewlett-Packard (Canada) Ltd.
Suite 111

900 Windmill Road

DARTMOUTH, Nova Scotia B3B 1P7
Tel: (902) 469-7820

C,CME* M,P*

Ontario

Hewlett-Packard (Canada) Ltd.
3325 N. Service Rd., Unit 3
BURLINGTON, Ontario L7TN 3G2
Tel: (416) 335-8644

CM*

Hewlett-Packard (Canada) Ltd.
496 Days Road

KINGSTON, Ontario K7M 5R4
Tel: (613) 384-2088

[

Hewlett-Packard (Canada) Ltd.
552 Newbold Street

LONDON, Ontario N6E 2S5

Tel: (519) 686-9181
AC.CME* MP*

Hewilett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
ACCMEM.P

Hewlett-Packard (Canada) Ltd.
2670 Queensview Dr.
OTTAWA, Ontario K2B 8K1

Tel: (613) 820-6483
A.C.CME* M,P*

Hewlett-Packard (Canada) Ltd.
The Oaks Plaza, Unit #9

2140 Regent Street
SUDBURY, Ontario, P3E 558
Tel: (705) 522-0202

[

Hewlett-Packard (Canada) Ltd.
3790 Victoria Park Ave.
WILLOWDALE, Ontario M2H 3H7
Tel: (416) 499-2550

C

Quebec

Hewlett-Packard (Canada) Ltd.
17500 Trans Canada Highway
South Service Road
KIRKLAND, Quebec H9J 2X8
Tel: (514) 697-4232
AC.CMEM,P*

Hewlett-Packard (Canada) Ltd.
1150 rue Claire Fontaine
QUEBEC CITY, Quebec G1R 5G4
Tel: (418) 648-0726

c

Hewlett-Packard (Canada) Ltd.

130 Robin Crescent

SASKATOON, Saskatchewan S7L 6M7
Tel: (306) 242-3702

C

CHILE

ASC Ltda.

Austria 2041

SANTIAGO

Tel: 223-5946, 223-6148
Telex: 340192 ASC CK
CP

Isical Ltda.

Av. ltalia 634 Santiago
Casilla 16475

SANTIAGO 9

Tel: 222-0222

Telex: 440283 JCYCL CZ
CM.EM

Metrolab S.A.

Moniitas 454 of. 206
SANTIAGO

Tel: 395752, 398296
Telex: 340866 METLAB CK
A

Olympia (Chile) Ltda.

Av. Rodrigo de Araya 1045
Casilla 256-V

SANTIAGO 21

Tel: 225-5044

Telex: 340892 OLYMP

Cable: Olympiachile Santiagochile
CP

CHINA, People’s
Republic of

China Hewlett-Packard, Ltd.
47/F China Resources Bldg.
26 Harbour Road

HONG KONG

Tel: 5-8330833

Telex: 76793 HPA HX
Cable: HP ASIA LTD
A*M*

China Hewlett-Packard, Ltd.

P.O. Box 9610, Beijing

4th Floor, 2nd Watch Factory Main
Bidg.

Shuang Yu Shu, Bei San Huan Rd.
Hai Dian District

BEWING

Tel: 28-0567

Telex: 22601 CTSHP CN

Cable: 1920 Beijing
AC.CMEMP

COLOMBIA
Instrumentacién

H. A. Langebaek & Kier S.A.
Carrera 4A No. 52A-26
Apartado Aereo 6287
BOGOTA 1, D.E.

Tel: 212-1466

Telex: 44400 INST CO

Cable: AARIS Bogota
CMEM

Nefromedicas Ltda.

Calle 123 No. 9B-31
Apartado Aereo 100-958
BOGOTAD.E., 10

Tel: 213-5267, 213-1615
Telex 43415 HEGAS CO
A

Compumundo
Avenida 15 # 107-80
BOGOTAD.E.

Tel: 214-4458

Telex: 45466 MARICO
-]

Carvajal, S.A.

Calle 29 Norte No. 6A-40
Apartado Aereo 46

CALI

Tel: 368-1111

Telex: 55650

CEP

CONGO
Seric-Congo
B. P. 2105
BRAZZAVILLE
Tel: 815034
Telex: 5262

COSTARICA

Cientifica Costarricense S.A.
Avenida 2, Calle 5

San Pedro de Montes de Oca
Apartado 10159

SAN JOSE

Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CMEM

CYPRUS

Telerexa Ltd.

P.0. Box 4809

14C Stassinos Avenue
NICOSIA

Tel: 62698

Telex: 2894 LEVIDO CY
EMP

DENMARK
Hewlett-Packard A/S
Datavej 52

DK-3460 BIRKEROD
Tel: (02) 81-66-40
Telex: 37409 hpas dk
ACCMEMP

Hewlett-Packard A/S
Rolighedsvej 32

DK-8240 RISSKOV, Aarhus
Tel: (06) 17-60-00

Telex: 37409 hpas dk

CE

DOMINICAN REPUBLIC
Microprog S.A.

Juan Toméas Mejla y Cotes No. 60
Arroyo Hondo

SANTO DOMINGO

Tel: 565-6268

Telex: 4510 ARENTA DR (RCA)

P

ECUADOR

CYEDE Cia. Ltda.
Avenida Eloy Alfaro 1749
y Belgica

Casilla 6423 CCI

QuITo

Tel: 450-975, 243-052
Telex: 22548 CYEDE ED
CM.EP

Medtronics

Valladolid 524 Madrid
P.0. 9171, QUITO

Tel: 223-8951

Telex: 2298 ECKAME ED
A

Hospitalar S.A.

Robles 625

Casilla 3590

QuiTo

Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito
M

Ecuador Overseas Agencies C.A.
Calle 9 de Octubre #818

P.O. Box 1296, Guayaquil
QuITo

Tel: 306022

Telex: 3361 PBCGYE ED

M

EGYPT

Sakrco Enterprises
70, Mossadak Str.
Dokki, Giza
CAIRO

Tel: 706440
Telex: 93146

C

International Engineering Associates
24 Hussein Hegazi Street
Kasr-el-Ain

CAIRO

Tel: 23829, 21641

Telex: 93830 IEA UN

Cable: INTEGASSO

EM*

S.8.C. Medical

40 Gezerat El Arab Street
Mohandessin

CAIRO

Tel: 803844, 805998, 810263
Telex: 20503 SSC UN

M*

EL SALVADOR
IPESA de El Salvador S.A.
29 Avenida Norte 1223
SAN SALVADOR

Tel: 26-6858, 26-6868
Telex: 20539 IPESA SAL
ACCMEP

ETHIOPIA
Seric-Ethiopia
P.0. Box 2764
ADDIS ABABA
Tel: 185114
Telex: 21150
C.P

FINLAND
Hewlett-Packard Oy
Piispankalliontie 17
02200 ESPOO

Tel: 00358-0-88721

Telex: 121563 HEWPA SF
ACCMEMP

FRANCE
Hewlett-Packard France
Z.|. Mercure B

Rue Berthelot

13763 Les Milles Cedex
AIX-EN-PROVENCE

Tel: (42) 59-41-02
Telex: 410770F
ACEMP*

Hewlett-Packard France
64, rue Marchand Saillant
61000 ALENCON

Tel: (33) 29 04 42

Hewlett-Packard France
28 rue de la Republique
Boite Postale 503

25026 BESANCON Cedex
Tel: (81) 83-16-22

Telex: 361157

CM

Hewlett-Packard France
Chemin des Mouilles

Boite Postale 162

69130 ECULLY Cedex (Lyon)
Tel: (78) 833-81-25

Telex: 310617F

ACEM

Hewlett-Packard France

Parc d'activités du Bois Briard
2, avenue du Lac

91040 EVRY Cedex

Tel: 6 077-96 60

Telex: 692315F

E

Hewlett-Packard France

5, avenue Raymond Chanas
38320 EYBENS (Grenoble)

Tel: (76) 62-57-98

Telex: 980124 HP GRENOB EYBE
C

Hewlett-Packard France
Rue Fernand. Forest
Z.A. Kergaradec

29239 GOUESNOU

Tel: (98) 41-87-90

Hewlett-Packard France
Centre d'affaires Paris-Nord
Batiment Ampére

Rue de la Commune de Paris
Boite Postale 300

93153 LE BLANC-MESNIL
Tel: (1) 865-44-52

Telex: 211032F

CEM

Hewlett-Packard France

Parc d'activités Cadera

Quartier Jean-Mermoz

Avenue du Président JF Kennedy
F-33700 MERIGNAC (Bordeaux)
Tel: (56) 34-00-84

Telex: 550105F

CEM

Hewlett-Packard France
Immueble “Les 3 B”
Nouveau chemin de la Garde
ZAC du Bois Briand

44085 NANTES Cedex

Tel: (40) 50-32-22

Telex: 711085F

c

Hewlett-Packard France

125, rue du Faubourg Bannier
45000 ORLEANS

Tel: (38) 68 01 63

FRANCE (Cont'd)

Hewlett-Packard France

Zone Industrielle de Courtaboeuf
Avenue des Tropiques

91947 Les Ulis Cedex ORSAY
Tel: (6) 907-78-25

Telex: 600048F

ACCMEM,P

Hewlett-Packard France

Paris Porte-Maillot

15, boulevard de L’Amiral-Bruix
75782 PARIS Cedex 16

Tel: (1) 502-12-20

Telex: 613663F

CMP

Hewlett-Packard France
124, Boulevard Tourasse
64000 PAU

Tel: (59) 80 38 02

Hewlett-Packard France

‘2 Allée de la Bourgonnette
35100 RENNES

Tel: (99) 51-42-44

Telex: 740912F
C.CM.EMP*

Hewlett-Packard France
98 avenue de Bretagne
76100 ROUEN

Tel: (35) 63-57-66
Telex: 770035F

c

Hewlett-Packard France

4, rue Thomas-Mann

Boite Postale 56

67033 STRASBOURG Cedex
Tel: (88) 28-56-46

Telex: 890141F

C,EM,P*

Hewlett-Packard France

La Péripole Il

20, chemin du Pigeonnier de la Cépiére
F-31083 TOULOUSE Cedex

Tel: (61) 40-11-12

Telex: 531639F

ACEP*

Hewlett-Packard France
9, rue Baudin

26000 VALENCE

Tel: (75) 42 76 16

Hewlett-Packard France
Carolor

ZAC de Bois Briand
57640 VIGY (Metz)

Tel: (8) 771 20 22

c

Hewlett-Packard France

Parc d'activité des Prés

1, rue Papin

59658 VILLENEUVE D’ASCQ Cedex
Tel: (20) 47 78 78

Telex: 160124F

CEMP*

GABON
Sho Gabon
P.O. Box 89
LIBREVILLE
Tel: 721 484
Telex: 5230

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Geschaftsstelle
Keithstrasse 2-4

D-1000 BERLIN 30

Tel: (030) 21 99 04-0
Telex: 018 3405 hpbin d
ACEMP

Hewlett-Packard GmbH
Vertriebszentrun SUdwest
Schickardstrasse 2
D-7030 BOBLINGEN

Tel: (07031) 645-0

Telex: 7265 743 hep
ACCMEM,P

Hewlett-Packard GmbH
Vertriebszentrum West
Berliner Strasse Il
D-4030 RATINGEN 3
Tel: (02102) 494-0
Telex: 589 070 hprad
ACEMP

Hewlett-Packard GmbH
Geschaftsstelle
Schieefstr. 28a

D-4600 DORTMUND-41
Tel: (0231) 45001
Telex: 822858 hepdad
ACE

Hewlett-Packard GmbH
Vertriebszentrum Mitte
Hewlett-Packard-Strasse
D-6380 BAD HOMBURG
Tel: (06172) 400-0
Telex: 410 844 hpbhg
ACEMP

Hewlett-Packard GmbH
Vertriebszentrum Nord
Kapstadtring 5

D-2000 HAMBURG 60

Tel: (040) 63804-1

Telex: 021 63 032 hphh d
ACEMP

Hewlett-Packard GmbH
Geschaftsstelle
Heidering 37-39
D-3000 HANNOVER 61
Tel: (0511) 5706-0
Telex: 092 3259
AC.CMEMP

Hewlett-Packard GmbH
Geschdftsstelle
Rosslauer Weg 2-4
D-6800 MANNHEIM

Tel: (0621) 70 05-0
Telex: 0462105

ACE

Hewlett-Packard GmbH
Geschaftsstelle
Messerschmittstrasse 7
D-7910 NEU ULM

Tel: (0731) 70 73-0

Telex: 0712816 HP ULM-D
ACE*

Hewlett-Packard GmbH
Geschaftsstelle
Emmericher Strasse 13
D-8500 NORNBERG 10
Tel: (0911) 5205-0
Telex: 0623 860 hpnbg
CCMEMP

Hewlett-Packard GmbH
Vertriebszentrum Std
Eschenstrasse 5
D-8028 TAUFKIRCHEN
Tel: (089) 6120 7-0
Telex: 0524985
ACCMEMP

Hewlett-Packard GmbH
Geschéftsstelle
Ermlisallee

7517 WALDBRONN 2
Tel: (07243) 602-0
Telex: 782 838 hepk
ACE

GREAT BRITAIN
See United Kingdom

GREECE

Hewlett-Packard A.E.

178, Kifissias Avenue

6th Floor

Halandri-ATHENS

Greece

Tel: 6471543, 6471673, 6472971
Telex: 221 286 HPHLGR
ACCM** EM,P

Kostas Karaynnis S.A.

8, Omirou Street

ATHENS 133

Tel: 32 30 303, 32 37 371
Telex: 215962 RKAR GR
AC*CME

Impexin

Intelect Div.
209 Mesogion
11525 ATHENS
Tel: 6474481/2
Telex: 216286
p

Haril Company

38, Mihalakopoulou
ATHENS 612

Tel: 7236071
Telex: 218767

M*

Hellamco

P.O. Box 87528
18507 PIRAEUS
Tel: 4827049
Telex: 241441
A

GUATEMALA

IPESA

Avenida Reforma 3-48, Zona 9
GUATEMALA CITY

Tel: 316627, 314786

Telex: 3055765 IPESA GU
ACCMEMP

HONG KONG

Hewlett-Packard Hong Kong, Ltd.

G.P.O. Box 795

5th Floor, Sun Hung Kai Centre
30 Harbour Road

HONG KONG

Tel: 5-8323211

Telex: 66678 HEWPA HX
Cable: HEWPACK Hong Kong
ECP

CET Ltd.

10th Floor, Hua Asia Bldg.
64-66 Gloulester Road
HONG KONG

Tel: (5) 200922

Telex: 85148 CET HX

CM

Schmidt & Co. (Hong Kong) Ltd.
18th Floor, Great Eagle Centre
23 Harbour Road

HONG KONG

Tel: 5-8330222

Telex: 74766 SCHMC HX

AM

ICELAND
Hewlett-Packard Iceland
Hoefdabakka 9

110 Reykjavik

Tel: (1) 67 1000
ACCMEMP

INDIA

Computer products are sold through
Blue Star Ltd.All computer repairs and
maintenance service is done through
Computer Maintenance Corp.

Blue Star Ltd.

Sabri Complex 2nd Floor
24 Residency Rd.
BANGALORE 560 025
Tel: 55660, 578881
Telex: 0845-430

Cable: BLUESTAR
AC*.CM,E

Blue Star Ltd.

Band Box House
Prabhadevi

BOMBAY 400 025

Tel: 4933101, 4933222
Telex: 011-71051
Cable: BLUESTAR
AM

Blue Star Ltd.

Sahas

414/2 Vir Savarkar Marg
Prabhadevi

BOMBAY 400 025

Tel: 422-6155, 422-6556
Telex: 011-71193 BSSS IN
Cable: FROSTBLUE
AC*'CMEM

Blue Star Ltd.

Kalyan, 19 Vishwas Colony
Alkapuri, BORODA, 390 005
Tel: 65235, 65236

Cable: BLUE STAR

A

Blue Star Ltd.

7 Hare Street
CALCUTTA 700 001
Tel: 230131, 230132
Telex: 021-7655
Cable: BLUESTAR
AM

Blue Star Ltd.

133 Kodambakkam High Road
MADRAS 600 034

Tel: 472056, 470238

Telex: 041-379

Cable: BLUESTAR

AM

Blue Star Ltd.

13 Community Center
New Friends Colony
NEW DELHI 110 065
Tel: 633773, 634473
Telex: 031-61120
Cable: BLUEFROST
AC*.CMEM

3
Q]

Blue Star Ltd.

15/16 C Wellesley Rd.
PUNE 411 011

Tel: 22775

Cable: BLUE STAR

A

Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500 003
Tel: 72057, 72058

Telex: 0155645

Cable: BLUEFROST

AE

Blue Star Ltd.

T.C. 7/603 Poornima
Maruthunkuzhi
TRIVANDRUM 695 013
Tel: 65799, 65820
Telex: 0884-259
Cable: BLUESTAR

E

Computer Maintenance Corporation
Ltd.

115, Sarojini Devi Road
SECUNDERABAD 500 003

Tel: 310-184, 345-774

Telex: 031-2960

c*e

INDONESIA

BERCA Indonesia P.T.
P.O.Box 496/ Jkt.

JI. Abdul Muis 62
JAKARTA

Tel: 21-373009

Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
p

BERCA Indonesia P.T.
P.0.Box 2497/ Jkt

Antara Bldg., 12th Floor

JI. Medan Merdeka Selatan 17
JAKARTA-PUSAT

Tel: 21-340417, 341445
Telex: 46748 BERSAL IA
ACEM

BERCA Indonesia P.T.
Jalan Kutai 24

SURABAYA

Tel: 67118

Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
A" EM,P

IRAQ

Hewlett-Packard Trading S.A.
Service Operation

Al Mansoor City 98/3/7
BAGHDAD

Tel: 551-49-73

Telex: 212-455 HEPAIRAQ IK
C

IRELAND
Hewlett-Packard Ireland Ltd.
82/83 Lower Leeson Street
DUBLIN 2

Tel: 0001 608800

Telex: 30439
ACCM,EM,P

Cardiac Services Ltd.
Kilmore Road

Artane

DUBLIN 5

Tel: (01) 351820
Telex: 30439

M

A

SALES & SUPPORT OFFICES

Arranged alphabetically by country

ISRAEL

Eldan Electronic Instrument Ltd.
P.0.Box 1270

JERUSALEM 91000

16, Ohaliav St.

JERUSALEM 94467

Tel: 533 221, 553 242

Telex: 25231 AB/PAKRD IL
AM

Computation and Measurement
Systems (CMS) Ltd.

11 Masad Street

67060

TEL-AVIV

Tel: 388 388

Telex: 33569 Motil IL
CCMEP

ITALY

Hewiett-Packard Italiana S.p.A
Traversa 99C

Via Giulio Petroni, 19

1-70124 BARI

Tel: (080) 41-07-44

CM

Hewlett-Packard Italiana S.p.A.

Via Emilia, 51/C

1-40011 BOLOGNA Anzola Dell'Emilia
Tet: (051) 731061

Telex: 511630

CEM

Hewlett-Packard ltaliana S.p.A.
Via Principe Nicola 43G/C
1-95126 CATANIA

Tel: (095) 37-10-87

Telex: 970291

C

Hewlett-Packard Italiana S.p.A.
Via G. Di Vittorio 9

1-20063 CERNUSCO SUL
NAVIGLIO

(Milano)

Tel: (02) 4459041

Telex: 334632

ACCMEMP

Hewlett-Packard ltaliana S.p.A.
Via C. Colombo 49

1-20090 TREZZANO SUL
NAVIGLIO

(Milano)

Tel: (02) 4459041

Telex: 322116

c

Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A

1-80131 NAPOL!

Tel: (081) 7413544

Telex: 710698

A**CEM

Hewlett-Packard Italiana S.p.A.
Viale G. Modugno 33

1-16156 GENOVA PEGLI

Tel: (010) 68-37-07

Telex: 215238

CE

Hewlett-Packard ltaliana S.p.A.
Via Pelizzo 15

1-35128 PADOVA

Tel: (049) 664888

Telex: 430315

ACEM

Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340

1-00144 ROMA EUR

Tel: (06) 54831

Telex: 610514

ACEMP*

Hewlett-Packard Italiana S.p.A.
Via di Casellina 57/C

1-50018 SCANDICCI-FIRENZE
Tel: (055) 753863

CEM

Hewilett-Packard Italiana S.p.A.
Corso Svizzera, 185

1-10144 TORINO

Tel: (011) 74 4044

Telex: 221079

A*CE

IVORY COAST
SITEL

Societe Ivoirienne de
Telecommunications
Bd. Giscard d'Estaing
Carrefour Marcory
Zone 4.A.

Boite postale 2580
ABIDJAN 01

Tel: 353600

Telex: 43175

E

SITI

Immeuble “‘Le General”
Av. du General de Gaulle
01 BP 161

ABIDJAN 01

Tel: 321227

CP

JAPAN
Yokogawa-Hewlett-Packard Ltd.
152-1, Onna

ATSUGI, Kanagawa, 243

Tel: (0462) 25-0031

C.CME

Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei Bldg. 6F

3-1 Hon Chiba-Cho

CHIBA, 280

Tel: 472 25 7701

CE

Yokogawa-Hewlett-Packard Ltd.
Yasuda-Seimei Hiroshima Bidg.
6-11, Hon-dori, Naka-ku
HIROSHIMA, 730

Tel: 82-241-0611

Yokogawa-Hewlett-Packard Ltd.
Towa Building

2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBE, 650

Tel: (078) 392-4791

CE

Yokogawa-Hewlett-Packard Ltd.
Kumagaya Asahi 82 Bldg

3-4 Tsukuba

KUMAGAYA, Saitama 360

Tel: (0485) 24-6563

C.CME

Yokogawa-Hewlett-Packard Ltd.
Asahi Shinbun Daiichi Seimei Bldg.
4-7, Hanabata-cho

KUMAMOTO, 860

Tel: (096) 354-7311

CE

Yokogawa-Hewlett-Packard Ltd.
Shin-Kyoto Center Bidg.

614, Higashi-Shiokoji-cho
Karasuma-Nishiiru

Shiokoji-dori, Shimogyo-ku
KYOTO, 600

Tel: 075-343-0921

CE

Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bldg

4-73, Sanno-maru, 1 Chome
MITO, Ibaraki 310

Tel: (0292) 25-7470

C.CME

Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei Kokubun Bldg. 7-8
Kokubun, 1 Chome, Sendai
MIYAGI, 980

Tel: (0222) 25-1011

CE

Yokogawa-Hewlett-Packard Ltd.
Nagoya Kokusai Center Building
47-1, Nagono, 1 Chome
Nakamura-ku

NAGOYA, 450

Tel: (052) 571-5171

C.CMEM

Yokogawa-Hewlett-Packard Ltd.
Saikyoren Building

1-2 Dote-machi, OHMIYA
Saitama 330

Tel: (0486) 45-8031

Yokogawa-Hewlett-Packard Ltd.
Chuo Bldg.,

4-20 Nishinakajima, 5 Chome
Yodogawa-ku

0SAKA, 532

Tel: (06) 304-6021

Telex: YHPOSA 523-3624
AC.CMEM,P*

Yokogawa-Hewlett-Packard Ltd.
27-15, Yabe, 1 Chome
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311

Yokogawa-Hewlett-Packard Ltd.
Daiichi Seimei Bldg.

7-1, Nishi Shinjuku, 2 Chome
Shinjuku-ku, TOKYO 160

Tel: 03-348-4611

CE

Yokogawa-Hewlett-Packard Ltd.
29-21 Takaido-Higashi, 3 Chome
Suginami-ku TOKYQ 168

Tel: (03) 331-6111

Telex: 232-2024 YHPTOK
ACCMEM,P*

Yokogawa Hokushin Electric Corp.

9-32 Nokacho 2 Chome

2 Chome Musashino-shi
TOKYO, 180

Tel: (0422) 54-1111

Telex: 02822-421 YEW MTK J
A

Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei

Utsunomiya Odori Building

1-5 Odori, 2 Chome
UTSUNOMIYA, Tochigi 320

Tel: (0286) 33-1153

CE

Yokogawa-Hewlett-Packard Ltd.
Yasuda Seimei Yokohama Nishiguchi
Bidg.

30-4 Tsuruya-cho, 3 Chome
YOKOHAMA 221

Tel: (045) 312-1252

CE

JORDAN

Scientific and Medical Supplies Co.
P.O. Box 1387

AMMAN

Tel: 24907, 39907

Telex: 21456 SABCO JO

CEMP

KENYA

ADCOM Ltd., Inc., Kenya
P.0.Box 30070

NAIROBI

Tel: 331955

Telex: 22639

EM

KOREA

Samsung Hewlett-Packard Co. Ltd.
Dongbang Yeoeuido Building
12-16th Floors

36-1 Yeoeuido-dong
Yongdeungpo-ku

SEOUL

Tel: 784-2666, 784-4666

Telex: 25166 SAMSAN K
AC.CMEMP

Young In Scientific Co., Ltd.
Youngwha Building

547 Shinsa Dong, Kangnam-ku
SEOUL 135

Tel: 5467771

Telex: K23457 GINSCO

A

KUWAIT

Al-Khaldiya Trading & Contracting
P.0. Box 830

SAFAT .

Tel: 424910, 411726

Telex: 22481 AREEG KT

Cable: VISCOUNT

EMA

Gulf Computing Systems
P.O. Box 25125

SAFAT

Tel: 435969

Telex: 23648

P

Photo & Cine Equipment
P.0. Box 270

SAFAT

Tel: 2445111

Telex: 22247 MATIN KT
Cable: MATIN KUWAIT
P

W.J. Towell Computer Services
P.O. Box 5897

SAFAT

Tel: 2462640

Telex: 30336 TOWELL KT

C

LEBANON

Computer Information Systems S.A.L.
Chammas Building

P.0. Box 11-6274 Dora

BEIRUT

Tel: 89 40 73

Telex: 42309

CEMP

LIBERIA
Unichemicals Inc.
P.O. Box 4509
MONROVIA

Tel: 224282
Telex: 4509

E

MADAGASCAR
Technique et Precision
12, rue de Nice

P.0. Box 1227

101 ANTANANARIVO
Tel: 22090

Telex: 22255

<]

LUXEMBOURG
Hewlett-Packard Beigium S.A./N.V.
Bivd de la Woluwe, 100

Woluwedal

B-1200 BRUSSELS

Tel: (02) 762-32-00

Telex: 23-494 paloben bru
ACCMEMP

MALAYSIA

Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.

9th Floor

Chung Khiaw Bank Building

46, Jalan Raja Laut

KUALA LUMPUR

Tel: 03-986555

Telex: 31011 HPSM MA
ACEM,P*

Protel Engineering
P.0.Box 1917

Lot 6624, Section 64

23/4 Pending Road
Kuching, SARAWAK

Tel: 36299

Telex: 70904 PROMAL MA
Cable: PROTELENG
AEM

MALTA

Philip Toledo Ltd.
Birkirkara P.0. Box 11
Notabile Rd.

MRIEHEL

Tel: 447 47, 455 66
Telex: 1649

EMP

MAURITIUS
Blanche Birger Co. Ltd.
18, Jules Koenig Street
PORT LOUIS

Tel: 20828

Telex: 4296

P

MEXICO

Hewlett-Packard de Mexico, S.A.
Francisco J. Allan #30

Colonia Nueva

Los Angeles 27140

COAHUILA, Torreon

Tel: 37220

P

Hewlett-Packard de Mexico, S.A.
Monti Morelos 299

Fraccionamiento Loma Bonita 45060
GUADALAJARA, Jalisco

Tel: 316630/314600

Telex: 0684 186 ECOME

P

MEXICO (Cont'd)
Microcomputadoras Hewlett-Packard,
S.A

Monti Pelvoux 115

LOS LOMAS, Mexico, D.F.

Tel: 520-9127

P

Hewilett-Packard Mexicana, S.A.
de C.V.

Av. Periferico Sur No. 6501
Tepepan, Xochimilco

16020 MEXICO D.F.

Tel: 6-76-46-00

Telex: 17-74-507 HEWPACK MEX
AC.CMEM,P

Hewlett-Packard De Mexico (Polanco)
Avenida Ejercito Nacional #579
2day3er piso

Colonia Granada 11560

MEXICO D.F.

Tel: 254-4433

P

Hewlett-Packard De Mexico, S.A.
de C.V.

Czda. del Valle

409 Ote. 4th Piso

Colonia del Valle

Municipio de Garza Garcid
66220 MONTERREY, Nuevo Le6n
Tel: 78 42 41

Telex: 038 410

P

MOROCCO

Etablissement Hubert Dolbeau & Fils
81 rue Karatchi

B.P. 11133

CASABLANCA

Tel: 3041-82, 3068-38

Telex: 23051, 22822

E

Gerep

2, rue Agadir

Boite Postale 156
CASABLANCA 01
Tel: 272093, 272095
Telex: 23 739

[

Sema-Maroc
Dept. Seric

6, rue Lapebie
CASABLANCA
Tel: 260980
Telex: 21641
C.P

NETHERLANDS
Hewlett-Packard Nederland B.V.
Startbaan 16

1187 XR AMSTELVEEN

P.O. Box 667

NL1180 AR AMSTELVEEN

Tel: (020) 547-6911

Telex: 13 216 HEPA NL
ACCMEMP

Hewlett-Packard Nederland B.V.
Bongerd 2

NL 2906VK CAPELLE A/D NSSEL
P.0. Box 41

NL 2900AA CAPELLE A/D WSSEL
Tel: (10) 51-64-44

Telex: 21261 HEPAC NL

CE

Hewlett-Packard Nederland B.V.
Pastoor Petersstraat 134-136
NL 5612 LV EINDHOVEN

P.O. Box 2342

NL 5600 CH EINDHOVEN

Tel: (040) 326911

Telex: 51484 hepae nl
ACEMP

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
5 Owens Road

P.O. Box 26-189

Epsom, AUCKLAND

Tel: 687-159

Cable: HEWPAK Auckland
C.CMEP*

Hewlett-Packard (N.Z.) Ltd.

4-12 Cruickshank Street
Kilbirnie, WELLINGTON 3

P.O. Box 9443

Courtenay Place, WELLINGTON 3
Tel: 877-199

Cable: HEWPACK Wellington
C.CMEP

Northrop Instruments & Systems Ltd.

369 Khyber Pass Road
P.O. Box 8602
AUCKLAND

Tel: 794-091

Telex: 60605

AM

Northrop Instruments & Systems Ltd.

110 Mandeville St.
P.O. Box 8388
CHRISTCHURCH
Tel: 488-873
Telex: 4203

AM

Northrop Instruments & Systems Ltd.

Sturdee House

85-87 Ghuznee Street
P.0. Box 2406
WELLINGTON

Tel: 850-091

Telex: NZ 3380

AM

NIGERIA

Elmeco Nigeria Ltd.

46, Calcutta Crescent Apapa
P.O. Box 244and

LAGOS

E

NORTHERN IRELAND
See United Kingdom

NORWAY

Hewlett-Packard Norge A/S
Folke Bernadottes vei 50

P.0. Box 3558

N-5033 FYLLINGSDALEN (Bergen)
Tel: 0047/5/16 55 40

Telex: 76621 hpnas n

CEM

Hewlett-Packard Norge A/S
Osterndalen 16-18

P.O. Box 34

N-1345 OSTERAS

Tel: 0047/2/17 11 80
Telex: 76621 hpnas n
ACCMEMP

OMAN

Khimjil Ramdas

P.0. Box 19

MUSCAT/SULTANATE OF OMAN
Tel: 745601

Telex: 5289 BROKER MB MUSCAT
P

Suhail & Saud Bahwan
P.0.Box 169
MUSCAT/SULTANATE OF OMAN
Tel: 734201

Telex: 5274 BAHWAN MB

E

Imtac LLC

P.O. Box 8676
MUTRAH/SULTANATE OF OMAN
Tel: 601695

Telex: 5741 Tawoos On

ACM

PAKISTAN

Mushko & Company Ltd.
House No. 16, Street No. 16
Sector F-6/3

ISLAMABAD

Tel: 824545

Cable: FEMUS Islamabad
AEMP*

Mushko & Company Ltd.
Oosman Chambers

Abdullah Haroon Road
KARACHI 0302

Tel: 524131, 524132

Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
AEMP*

PANAMA

Electronico Balboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929

PANAMA 5

Tel: 64-2700

Telex: 3483 ELECTRON PG
ACM,EM,P

PERU

Cla Electro Médica S.A.

Los Flamencos 145, Ofc. 301/2

San Isidro

Casilla 1030

LIMA 1

Tel: 41-4325, 41-3705

Telex: Pub. Booth 25306 PEC PISIDR
CMEMP

SAMS

Arenida Republica de Panama 3534
San Isidro, LIMA

Tel: 419928/417108

Telex: 20450 PE LIBERTAD

ACP

PHILIPPINES

The Online Advanced Systems Corp.
2nd Floor, Electra House

115-117 Esteban Street

Legaspi Village, Makati

P.0. Box 1510

Metro MANILA

Tel: 815-38-10 (up to 16)

Telex: 63274 ONLINE PN
ACEMP

PORTUGAL

Mundinter Intercambio

Mundial de Comércio S.A.R.L.
Av. Antonio Augusto Aguiar 138
Apartado 2761

LISBON

Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p

M

Soquimica

Av. da Liberdade, 220-2
1298 LISBOA Codex
Tel: 56-21-82

Telex: 13316 SABASA
A

Telectra-Empresa Técnica de
Equipmentos Eléctricos S.A.R.L.
Rua Rodrigo da Fonseca 103
P.O. Box 2531

LISBON 1

Tel: (19) 68-60-72

Telex: 12598

CME

CP.CS.

Rua de Costa Cabral 575
4200 PORTO

Tel: 499174/495173
Telex: 26054

CP

PUERTO RICO
Hewlett-Packard Puerto Rico
101 Mufioz Rivera Av

Esu. Calle Ochoa

HATO REY, Puerto Rico 00918
Tel: (809) 754-7800
AC.CMMEP

QATAR

Computer Arabia
P.0. Box 2750
DOHA

Tel: 428555

Telex: 4806 CHPARB
=]

Nasser Trading & Contracting
P.0.Box 1563

DOHA

Tel: 422170

Telex: 4439 NASSER DH

M

SAUDI ARABIA

Modern Electronics Establishment
Hewlett-Packard Division

P.0. Box 281

Thougbah

AL-KHOBAR 31952

Tel: 895-1760, 895-1764

Telex: 671 106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
CEM

Modern Electronics Establishment
Hewlett-Packard Division

P.O. Box 1228

JEDDAH

Tel: 644 96 28

Telex: 4027 12 FARNAS SJ
Cable: ELECTA JEDDAH
AC.CMEM,P

Modern Electronics Establishment
Hewlett-Packard Division
P.0.Box 22015

RIYADH 11495

Tel: 476-3030

Telex: 202049 MEERYD SJ
ACCMEMP

Abdul Ghani E! Ajou Corp.
P.O. Box 78

RIYADH

Tel: 40 41 717

Telex: 200 931 EL AJOU
P

SCOTLAND
See United Kingdom

SENEGAL

Societe Hussein Ayad & Cie.
76, Avenue Georges Pompidou
B.P. 305

DAKAR

Tel: 32339

Cable: AYAD-Dakar

E

Moneger Distribution S.A.
1, Rue Parent

B.P. 148

DAKAR

Tel: 215 671

Telex: 587

P

Systeme Service Conseil (SSC)
14, Avenue du Parachois
DAKAR ETOILE

Tel: 219976

Telex: 577

CP

SINGAPORE
Hewlett-Packard Singapore (Sales)
Pte. Ltd.

08-00 Inchcape House

450-2 Alexandra Road
Alexandra P.O. Box 58
SINGAPORE, 9115

Tel: 4731788

Telex: 34209 HPSGSO RS
Cable: HEWPACK, Singapore
ACEMP

Dynamar International Ltd.
Unit 05-11 Block 6

Kolam Ayer Industrial Estate
SINGAPORE 1334

Tel: 747-6188

Telex: 26283 RS

CM

SOUTH AFRICA
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 120

Howard Place CAPE PROVINCE 7450
Pine Park Center, Forest Drive, Pine-
lands

CAPE PROVINCE 7405

Tel: (021) 53 7954

Telex: 57-20006

ACCMEMP

Hewlett-Packard So Africa (Pty.) Ltd.
2nd Floor Juniper House

92 Overport Drive

DURBAN 4067

Tel: (031) 28-4178

Telex: 6-22954

C

Hewlett-Packard So Africa (Pty.) Ltd.
6 Linton Arcade

511 Cape Road

Linton Grange

PORT ELIZABETH 6001

Tel: 041-301201

Telex: 24-2916

c

3

Q'

SALES & SUPPORT OFFICES

Arranged alphabetically by country

SOUTH AFRICA (Cont'd)
Hewlett-Packard So Africa (Pty.) Ltd.
Fountain Center

Kalkden Str.

Monument Park Ext 2

PRETORIA 0105

Tel: (012) 45 57258

Telex: 3-21063

CE

Hewlett-Packard So Africa (Pty.) Ltd.
Private Bag Wendywood

SANDTON 2144

Tel: 802-5111, 802-5125

Telex: 4-20877 SA

Cable: HEWPACK Johannesburg
ACCMEMP

SPAIN

Hewlett-Packard Espafola S.A.
Calle Entenza, 321

08029 BARCELONA

Tel: 3/322 24 51, 321 73 54
Telex: 52603 hpbee
ACEMP

Hewlett-Packard Espafiola S.A.
Calle San Vicente S/N

Edificio Albia II-78

48001 BILBAO

Tel: 4/423 83 06

ACEM

Hewlett-Packard Espafiola S.A.
Crta. de la Corufa, Km. 16, 400
Las Rozas

E-MADRID

Tel: (1) 637.00.11

Telex: 23515 HPE

CM

Hewlett-Packard Espafiola S.A.
Avda. S. Francisco Javier, S/N
Planta 10. Edificio Sevilla 2
41005 SEVILLA

Tel: 54/64 44 54

Telex: 72933

ACMP

Hewlett-Packard Espafiola S.A.
Isabel La Catolica, 8

46004 VALENCIA

Tel: 0034/6/351 59 44

C.P

SWEDEN

Hewilett-Packard Sverige AB
Ostra Tullgatan 3

$-21128 MALMO

Tel: (040) 70270

Telex: (854) 17886 (via Spanga
office)

cpP

Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista

Box 19

§-16393 SPANGA

Tel: (08) 750-2000

Telex: (854) 17886

Telefax: (08) 7527781
ACCMEM,P

Hewlett-Packard Sverige AB
Frotallsgatan 30

§-42132 VASTRA-FROLUNDA (Gothen-
burg)

Tel: (031) 49-09-50

Telex: (854) 17886 (via Spanga

office)

ACCMEMP

SUDAN

Mediterranean Engineering & Trading

Co. Ltd.

P.O. Box 1025
KHARTOUM
Tel 41184
Telex: 24052
cP

SWITZERLAND
Hewlett-Packard (Schweiz) AG
Clarastrasse 12

CH-4058 BASEL

Tel: (61) 33-59-20

A

Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan

Case postale 365

CH-1217 MEYRIN 1

Tel: (0041) 22-83-11-11
Telex:27333 HPAG CH

C.CM

Hewlett-Packard (Schweiz) AG
Allmend 2

CH-8967 WIDEN

Tel: (0041) 57 31 21 11

Telex: 53933 hpag ch

Cable: HPAG CH
A.C,CM,EM,P

SYRIA

General Electronic Inc.

Nuri Basha Ahnaf Ebn Kays Street
P.O. Box 5781

DAMASCUS

Tel: 33-24-87

Telex: 411 215

Cable: ELECTROBOR DAMASCUS

E

Middle East Electronics
P.0.Box 2308

Abu Rumaneh
DAMASCUS

Tel: 33 45 92

Telex: 411 771

M

TAIWAN

Hewlett-Packard Taiwan
Kaohsiung Office

11/F, 456, Chung Hsiao 1st Road
KAOHSIUNG

Tel: (07) 2412318

CE

Hewlett-Packard Taiwan

8th Floor, Hewlett-Packard Building

337 Fu Hsing North Road
TAIPEI

Tel: (02) 712-0404

Telex: 24439 HEWPACK
Cable:HEWPACK Taipei
A.CCMEMP

Ing Lih Trading Co.

3rd Floor, 7 Jen-Ai Road, Sec. 2
TAIPE! 100

Tel: (02) 3948191

Cable: INGLIH Taipei

A

THAILAND

Unimesa Co. Ltd.

30 Patpong Ave., Suriwong
BANGKOK 5

Tel: 235-5727

Telex: 84439 Simonco TH

Cable: UNIMESA Bangkok
ACEM

Bangkok Business Equipment Ltd.
5/5-6 Dejo Road

BANGKOK

Tel: 234-8670, 234-8671

Telex: 87699-BEQUIPT TH

Cable: BUSIQUIPT Bangkok

P

TOGO

Societe Africaine De Promotion
Immeuble Sagap

22, Rue d'Atakpame

B.P. 4150

LOME

Tel: 21-62-88

Telex: 5304

P

TRINIDAD & TOBAGO
Caribbean Telecoms Ltd.

Corner McAliister Street &
Eastern Main Road, Laventille
P.O. Box 732

PORT-OF-SPAIN

Tel: 624-4213

Telex: 22561 CARTEL WG
Cable: CARTEL, PORT OF SPAIN
CM.EMP

Computer and Controls Ltd.
P.0. Box 51

66 Independence Square
PORT-OF-SPAIN

Tel: 62-279-85

Telex: 3000 POSTLX WG, ACCT
LOO90 AGENCY 1264

AP

Feral Assoc.

8 Fitzgerald Lane
PORT-OF-SPAIN

Tel: 62-36864, 62-39255
Telex: 22432 FERALCO
Cable: FERALCO

M

TUNISIA

Precision Electronique S.A.R.L.
31 Avenue de la Liberte
TUNIS

Tel: 893937

Telex: 13238

[

Tunisie Electronique S.A.R.L.
94, Av. Jugurtha, Mutuelleville
1002 TUNIS-BELVEDERE

Tel: 280144

Telex: 13238

CEP

Corema S.A.

23, bis Rue de Marseille
TUNIS

Tel: 253-821

Telex: 14812 CABAM TN
M

TURKEY

EM.A

Mediha Eldem Sokak No. 41/6
Yenisehir

ANKARA

Tel: 319175

Telex: 46912 KTX TR

Cable: EMATRADE ANKARA
M

Teknim Company Ltd.
Iran Caddesi No. 7
Kavaklidere

ANKARA

Tel: 275800

Telex: 42155 TKNM TR
ECM

Saniva Bilgisayar Sistemleri A.S.
Buyukdere Caddesi 103/6
Gayrettene

ISTANBUL

Tel: 1727030

Telex: 26345 SANI TR

CcP

Best Inc.

Esentepe, Gazeteciler Sitesi
Keskin Kalemy

Sokak 6/3, Gayrettepe
ISTANBUL

Tel: 1721328

Telex: 42490

A

UNITED ARAB
EMIRATES

Emitac Ltd.

P.O. Box 1641

SHARJAH

Tel: 591181

Telex: 68136 EMITAC EM
Cable: EMITAC SHARJAH
ECMPA

Emitac Ltd.

P.0. Box 2711

ABU DHABI

Tel: 820419-20

Cable: EMITACH ABUDHABI

Emitac Ltd.
P.0. Box 8391
DUBAI,

Tel: 377591

Emitac Ltd.

P.0. Box 473
RAS AL KHAIMAH
Tel: 28133, 21270

UNITED KINGDOM

GREAT BRITAIN
Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM
Cheshire WA14 1NU
Tel: 061 928 6422
Telex: 668068
ACEM,P

Hewlett-Packard Ltd.
Miller House

The Ring, BRACKNELL
Berks RG12 1XN

Tel: 0344 424898
Telex: 848733

E

Hewlett-Packard Ltd.

Elstree House, Elstree Way
BOREHAMWOOD, Herts WD6 1SG
Tel: 01 207 5000

Telex: 8952716

CE

Hewlett-Packard Ltd.

Oakfield House, Oakfield Grove
Clifton BRISTOL, Avon BS8 2BN
Tel: 0272 736806

Telex: 444302

CEP

Hewlett-Packard Ltd.
Bridewell House

9 Bridewell Place
LONDON EC4V 6BS
Tel: 01 583 6565
Telex: 298163

C.P

Hewlett-Packard Ltd.

Pontefract Road

NORMANTON, West Yorkshire WF6 1RN
Tel: 0924 895566

Telex: 557355

C.P

Hewlett-Packard Ltd.
The Quadrangle

106-118 Station Road
REDHILL, Surrey RH1 1PS
Tel: 0737 68655

Telex: 947234

CEP

Hewlett-Packard Ltd.

Avon House

435 Stratford Road

Shirley, SOLIHULL, West Midlands
B90 4BL

Tel: 021 745 8800

Telex: 339105

CEP

Hewlett-Packard Ltd.
West End House

41 High Street, West End
SOUTHAMPTON
Hampshire S03 3DQ

Tel: 0703 476767

Telex: 477138

CP

Hewlett-Packard Ltd.

Harmon House

No. 1 George Street
UXBRIDGE, Middiesex UX8 1YH
Tel: 895 720 20

Telex: 893134/5

C.CMEM,P

Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG11 5AR
Tel: 0734 784774
Telex: 847178
ACEMP

IRELAND

NORTHERN IRELAND
Hewlett-Packard (Ireland) Ltd.
Carrickfergus Industrial Centre
75 Belfast Road, Carrickfergus
BELFAST BT38 8PH

Tel: 09603 67333

Telex: 747626

CE

SCOTLAND
Hewlett-Packard Ltd.
8 Woodside Place
GLASGOW, G3 7QF
Tel: 041 332 6232
Telex: 779615

CE

Hewlett-Packard Ltd.
SOUTH QUEENSFERRY
West Lothian, EH30 9TG
Tel: 031 331 1188
Telex: 72682
C.CMEMP

UNITED STATES

Alabama

Hewlett-Packard Co.

700 Century Park South, Suite 128
BIRMINGHAM, AL 35226

Tel: (205) 822-6802

ACM,P*

Hewlett-Packard Co.
420 Wynn Drive
HUNTSVILLE, AL 35805
Tel: (205) 830-2000
C.CM,EM*

Alaska
Hewlett-Packard Co.
3601 C St., Suite 1416
ANCHORAGE, AK 99503
Tel: (907) 563-8855
CE

Arizona

Hewlett-Packard Co.

8080 Pointe Parkway West
PHOENIX, AZ 85044

Tel: (602) 273-8000
AC.CMEMP

Hewlett-Packard Co.
3400 East Britannia Dr.
Bldg. C, Suite 124
TUCSON, AZ 85706
Tel: (602) 573-7400
CEM**

California
Hewlett-Packard Co.
99 South Hill Dr.
BRISBANE, CA 94005
Tel: (415) 330-2500
C

Hewlett-Packard Co.

5060 E. Clinton Avenue, Suite 102
FRESNO, CA 93727

Tel: (209) 252-9652

CM

Hewlett-Packard Co.
1421 S. Manhattan Av.
FULLERTON, CA 92631
Tel: (714) 999-6700
CCM.EM

Hewlett-Packard Co.
7408 Hollister Ave. #A
GOLETA, CA 93117
Tel: (805) 685-6100
CE

Hewlett-Packard Co.
5400 W. Rosecrans Bivd.
LAWNDALE, CA 90260
Tel: (213) 643-7500
Telex: 910-325-6608
CM

Hewlett-Packard Co.
2525 Grand Avenue
Long Beach, CA 90815
Tel: (213) 498-1111

C

Hewlett-Packard Co.
3155 Porter Drive
PALO ALTO, CA 94304
Tel: (415) 857-8000
CE

Hewlett-Packard Co.

4244 So. Market Court, Suite A
SACRAMENTO, CA 95834

Tel: (916) 929-7222

A*CEM

Hewlett-Packard Co.
9606 Aero Drive

SAN DiEGO, CA 92123
Tel: (619) 279-3200
CCMEM

Hewlett-Packard Co.
5725 W. Las Positas Blvd.
Pleasanton, CA 94566
Tel: (415) 460-0282

C

Hewilett-Packard Co.
3003 Scott Boulevard
SANTA CLARA, CA 95054
Tel: (408) 988-7000
Telex: 910-338-0586
AC.CME

Hewlett-Packard Co.

2150 W. Hillcrest Dr.
THOUSAND 0AKS, CA 91320
(805) 373-7000

C.CME

Colorado

Hewlett-Packard Co.

2945 Center Green Court South
Suite A

BOULDER, CO 80301

Tel: (303) 938-3005

ACE

Hewlett-Packard Co.

24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 649-5000
ACCMEM

Connecticut
Hewlett-Packard Co.
500 Sylvan Av.
BRIDGEPORT, CT 06606
Tel: (203) 371-6454
CE

Hewlett-Packard Co.

47 Barnes Industrial Road South
WALLINGFORD, CT 06492

Tel: (203) 265-7801
AC.CMEM

Florida

Hewlett-Packard Co.

2901 N.W. 62nd Street

FORT LAUDERDALE, FL 33309
Tel: (305) 973-2600
C.EMP*

Hewlett-Packard Co.

6800 South Point Parkway
Suite 301

JACKSONVILLE, FL 32216
Tel: (904) 398-0663

C* M

Hewlett-Packard Co.
6177 Lake Ellenor Drive
ORLANDO, FL 32809
Tel: (305) 859-2900
A,C.CMEP*

Hewilett-Packard Co.
4700 Bayou Blvd.
Building 5
PENSACOLA, FL 32503
Tel: (904) 476-8422
ACM

Hewilett-Packard Co.
5550 W. Idlewild, 150
TAMPA, FL 33614
Tel: (813) 884-3282
CEMP

Georgia
Hewlett-Packard Co.
2000 South Park Place
ATLANTA, GA 30339
Tel: (404) 955-1500
Telex: 810-766-4890
A.C.CM.EM,P*

Hewlett-Packard Co.
3607 Parkway Lane
Suite 300

NORCROSS, GA 30092
Tel: (404) 448-1894
CEP

Hawaii

Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Street
HONOLULU, HI 96813

Tel: (808) 526-1555
ACEM

Idaho
Hewlett-Packard Co.
11309 Chinden Bivd.
BOISE, ID 83707

Tel: (208) 323-2700
c

llinois
Hewlett-Packard Co.
304 Eldorado Road

P.O. Box 1607
BLOOMINGTON, IL 61701
Tel: (309) 662-9411
CM**

Hewlett-Packard Co.
525 W. Monroe, 1308
CHICAGO, IL 60606
Tet: (312) 930-0010
C

Hewlett-Packard Co.
1200 East Diehl Road
NAPERVILLE, IL 60566
Tel: (312) 357-8800
c

Hewlett-Packard Co.

5201 Tollview Drive

ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

Telex: 910-687-1066
ACCMEM

Indiana
Hewlett-Packard Co.
11911 N. Meridian St.
CARMEL, IN 46032
Tel: (317) 844-4100
ACCMEM

Hewlett-Packard Co.
3702 Rupp Drive

FT. WAYNE, IN 46815
Tel: (219) 482-4283
CE

lowa

Hewlett-Packard Co.
4070 22nd Av. SW
CEDAR RAPIDS, 1A 52404
Tel: (319) 390-4250
CEM

Hewiett-Packard Co.

4201 Corporate Dr.

WEST DES MOINES, 1A 50265
Tel: (515) 224-1435

AT CM**

Kansas

Hewlett-Packard Co.

7804 East Funston Road, 203
WICHITA, KS 67207

Tel: (316) 684-8491

CE

Kentucky

Hewlett-Packard Co.

10300 Linn Station Road, 100
LOUISVILLE, KY 40223

Tel: (502) 426-0100

ACM

Louisiana
Hewlett-Packard Co.
160 James Drive East
ST. ROSE, LA 70087
P.O. Box 1449
KENNER, LA 70063
Tel: (504) 467-4100
ACEMP

Maryland
Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, MD 21227
Tel: (301) 644-5800
Telex: 710-862-1943
ACCMEM

Hewlett-Packard Co.

2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
AC.CM.EM

Massachusetts
Hewlett-Packard Co.
1775 Minuteman Road
ANDOVER, MA 01810
Tel: (617) 682-1500
A.C.CM.EM,P*

Hewlett-Packard Co.
32 Hartwell Avenue
LEXINGTON, MA 02173
Tel: (617) 861-8960
CE

Michigan
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, MI 49506
Tel: (616) 957-1970

CM

Hewlett-Packard Co.

39550 Orchard Hill Place Drive
NOVI, MI 48020

Tel: (313) 349-9200

ACEM

Hewlett-Packard Co.

1771 W. Big Beaver Road
TROY, MI 48084

Tel: (313) 643-6474

c

Minnesota
Hewlett-Packard Co.
2025 W. Larpenteur Ave.
8T. PAUL, MN 55113

Tel: (612) 644-1100
ACCMEM

Missouri

Hewlett-Packard Co.

1001 E. 101st Terrace Suite 120
KANSAS CITY, MO 64131-3368
Tel: (816) 941-0411

AC.CMEM

Hewlett-Packard Co.
13001 Hollenberg Drive
BRIDGETON, MO 63044
Tel: (314) 344-5100
ACEM

Nebraska
Hewlett-Packard

10824 Old Mill Rd., Suite 3
OMAHA, NE 68154

Tel: (402) 334-1813

CEM

New Jersey
Hewlett-Packard Co.
120 W. Century Road
PARAMUS, NJ 07653
Tel: (201) 265-5000
A.C.CMEM

Hewlett-Packard Co.

20 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 562-6100
ACCME

New Mexico
Hewlett-Packard Co.

7801 Jefferson N.E.
ALBUQUERQUE, NM 87109
Tel: (505) 292-1330

CEM

New York
Hewlett-Packard Co.

5 Computer Drive South
ALBANY, NY 12205

Tel: (518) 458-1550
ACEM

Hewlett-Packard Co.
9600 Main Street
CLARENCE, NY 14031
Tel: (716) 759-8621
CE

Hewlett-Packard Co.

200 Cross Keys Office Park
FAIRPORT, NY 14450

Tel: (716) 223-9950
A.C.CMEM

Hewlett-Packard Co.
7641 Henry Clay Bivd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
ACCMEM

Hewlett-Packard Co.

No. 1 Pennsylvania Plaza
55th Floor

34th Street & 8th Avenue
MANHATTAN NY 10119
Tel: (212) 971-0800

CM*

Hewlett-Packard Co.

15 Myers Corner Rd.
Hollowbrook Park, Suite 20
WAPPINGER FALLS, NY 12590
CM,E

Hewlett-Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 684-6100
C.CME

Hewlett-Packard Co.

3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 682-7800
ACCMEM

A

a3

SALES & SUPPORT OFFICES

Arranged alphabetically by country

UNITED STATES (Cont'd)

North Carolina
Hewlett-Packard Co.
305 Gregson Dr.
CARY,NC 27511
Tel: (919) 467-6600
C.CM,EM,P*

Hewlett-Packard Co.
9600-H Southern Pine Bivd.
CHARLOTTE, NC 28210

Tel: (704) 527-8780

c

Hewlett-Packard Co.
5605 Roanne Way
GREENSBORO, NC 27420
Tel: (919) 852-1800
AC,CMEM,P*

Ohio

Hewlett-Packard Co.
2717 S. Arlington Road
AKRON, OH 44312

Tel: (216) 644-2270
CE

Hewlett-Packard Co.
23200 Chagrin Bivd #100
BEACHWOOD, OH 44122
Tel: (216) 292-4677

C.P

Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CM

Hewlett-Packard Co.
16500 Sprague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
ACCMEM

Hewlett-Packard Co.
9080 Springboro Pike
MIAMISBURG, OH 45342
Tel: (513) 433-2223
ACCME*M

Hewlett-Packard Co.

One Maritime Plaza, 5th Floor
720 Water Street

TOLEDO, OH 43604

Tel: (419) 242-2200

c

Hewlett-Packard Co.
675 Brooksedge Bivd.
WESTERVILLE, OH 43081
Tel: (614) 891-3344
C.CME*

Oklahoma
Hewlett-Packard Co.

3525 N.W. 56th St.

Suite C-100

OKLAHOMA CITY, OK 73112
Tel: (405) 946-9499

CE'M

Hewlett-Packard Co.

3840 S. 103rd E. Ave., 100
TULSA, OK 74146

Tel: (918) 665-3300

A** CEM*P*

SEPT. 1985

Oregon
Hewlett-Packard Co.
9255 S. W. Pioneer Court
WILSONVILLE, OR 97070
Tel: (503) 682-8000
ACE'M

Pennsylvania
Hewlett-Packard Co.

50 Dorchester Rd.
HARRISBURG, PA 17112
Tel: (717) 657-5900

c

Hewlett-Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782-0400
ACEM

Hewlett-Packard Co.
2750 Monroe Boulevard
VALLEY FORGE, PA 19482
Tel: (215) 666-9000
ACCMEM

South Carolina
Hewlett-Packard Co.
Brookside Park, Suite 122
1 Harbison Way
COLUMBIA, SC 29210

Tel: (803) 732-0400

CM

Hewlett-Packard Co.
555 N. Pleasantburg Dr.
Suite 107

GREENVILLE, SC 29607
Tel: (803) 232-8002

c

Tennessee
Hewlett-Packard Co.
One Energy Centr. 200
Pellissippi Pkwy.
KNOXVILLE, TN 37932
Tel: (615) 966-4747
ACM

Hewlett-Packard Co.
3070 Directors Row
Directors Square
MEMPHIS, TN 38131
Tel: (901) 346-8370
ACM

Hewilett-Packard Co.

220 Great Circle Road, Suite 116
NASHVILLE, TN 37228

Tel: (615) 255-1271

CM,P*

Texas
Hewlett-Packard Co.
1826-P Kramer Lane
AUSTIN, TX 78758
Tel: (512) 835-6771
CEP*

Hewlett-Packard Co.
5700 Cromo Dr

EL PASO, TX 79912

Tel: (915) 833-4400
CE* M**

Hewlett-Packard Co.
3952 Sandshell Drive
FORT WORTH, TX 76137
Tel: (817) 232-9500

C

Hewlett-Packard Co.
10535 Harwin Drive
HOUSTON, TX 77036
Tel: (713) 776-6400
A.CEM,P*

Hewlett-Packard Co.

511 E. John W. Carpenter Fwy.

Royal Tech. Center 100
IRVING, TX 75062

Tel: (214) 556-1950
CE

Hewlett-Packard Co.

109 E. Toronto, Suite 100
McALLEN, TX 78503

Tel: (512) 630-3030

C

Hewlett-Packard Co.
930 E. Campbell Rd.
RICHARDSON, TX 75081
Tel: (214) 231-6101
AC.CMEM,P*

Hewlett-Packard Co.

1020 Central Parkway South
SAN ANTONIO, TX 78216
Tel: (512) 494-9336
ACEM,P*

Utah

Hewlett-Packard Co.

3530 W. 2100 South

SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
ACEM

Virginia
Hewlett-Packard Co.
4305 Cox Road

GLEN ALLEN, VA 23060
Tel: (804) 747-7750
ACEMP*

Hewlett-Packard Co.
Tanglewood West Bldg.
Suite 240

3959 Electric Road
ROANOKE, VA 24018
Tel: (703) 774-3444
CEP

Washington
Hewlett-Packard Co.
15815 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
ACCMEM

Hewlett-Packard Co.

708 North Argonne Road
SPOKANE, WA 99212-2793
Tel: (509) 922-7000

C

West Virginia
Hewlett-Packard Co.

501 56th

CHARLESTON, WV 25304
Tel: (304) 925-0492
ACM

Wisconsin
Hewlett-Packard Co.
275 N. Corporate Dr.
BROOKFIELD, W1 53005
Tel: (414) 784-8800
ACE*M

URUGUAY

Pablo Ferrando S.A.C. e I.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO

Tel: 80-2586

Telex: 802586

ACMEM

Olympia de Uruguay S.A.
Maquines de Oficina
Avda. del Libertador 1997
Casilla de Correos 6644
MONTEVIDEO

Tel: 91-1809, 98-3807
Telex: 6342 OROU UY

=]

VENEZUELA

Hewlett-Packard de Venezuela C.A.
3A Transversal Los Ruices Norte
Edificio Segre 2 & 3

Apartado 50933

CARACAS 1071

Tel: 239-4133

Telex: 251046 HEWPACK
ACCMEMP

Hewlett-Packard de Venezuela, C.A.
Centro Civdad Comercial Tamanaco
Nivel C-2 (Nueva Etapa)

Local 53H05

Chuao, CARACAS

Tel: 928291

P

Albis Venezolana S.R.L.
Av. Las Marias, Ota. Alix,
El Pedregal

Apartado 81025
CARACAS 1080A

Tel: 747984, 742146
Telex: 24009 ALBIS VC
A

Tecnologica Medica del Caribe, C.A.

Multicentro Empresarial del Este
Ave. Libertador

Edif. Libertador

Nucleo “C" - Oficina 51-52
CARACAS

Tel: 339867/333780

M

Hewlett-Packard de Venezuela C.A.
Residencias Tia Betty Local 1
Avenida 3 y con calfe 75
MARACAIBO, Estado Zulia

Apartado 2646

Tel: (061) 75801-75805-75806-
80304

Telex: 62464 HPMAR

CE*

Hewlett-Packard de Venezuela C.A.
Urb. Lomas de Este

Torre Trebol — Piso 11

VALENCIA, Estado Carabobo
Apartado 3347

Tel: (041) 222992/223024

CP

YUGOSLAVIA
Do Hermes

General Zdanova 4
YU-11000 BEOGRAD
Tel: 340 327, 342 641
Telex: 11433

ACEP

Hermes

Titova 50

YU-61000 LJUBLJANA
Tel: 324 856, 324 858
Telex: 31583

CEMP

Elektrotehna

Titova 51

YU-61000 LJUBLJANA
CM

ZAIRE

Computer & Industrial Engineering
25, Avenue de la Justice

B.P. 12797

KINSHASA, Gombe

Tel: 32063

Telex: 21552

CP

ZAMBIA

R.J. Tilbury (Zambia) Ltd.
P.O. Box 32792
LUSAKA

Tel: 215590

Telex: 40128

E

ZIMBABWE

Field Technical Sales (Private) Limited
45, Kelvin Road North

P.O. Box 3458

HARARE

Tel: 705 231

Telex: 4-122 RH

EP

Manual Part Number 64341-90903

Printed in U.S.A.,, SEPTEMBER 1985

E0985 [ﬁ HEWLETT
Replaces 64341-90901, February 1985 I” PACKARD

	Front
	cover
	inside

	Software Notice
	notice-1/notice-2

	Safety Sheet
	safety-1
	safety-2

	Contents
	title
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	xiv
	xv
	xvi

	Chapter 1
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16

	Chapter 2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14

	Chapter 3
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14

	Chapter 4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8

	Chapter 5
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8

	Chapter 6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16

	Chapter 7
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12

	Chapter 8
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24

	Chapter 9
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8

	Chapter 10
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8

	Chapter 11
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14

	Chapter 12
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10

	Chapter 13
	13-1
	13-2
	13-3
	13-4

	Chapter 14
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14

	Chapter 15
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6

	Chapter 16
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	16-9
	16-10

	Appendix A
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18

	Appendix B
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14

	Appendix C
	C-1
	C-2
	C-3
	C-4

	Appendix D
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18

	Appendix E
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8

	Index
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	index-7
	index-8
	index-9
	index-10
	index-11
	index-12

	Comment Sheet
	comment-1
	comment-2
	comment-3
	comment-4

	Sales Offices
	sales-1
	sales-2
	sales-3
	sales-4
	sales-5
	sales-6
	sales-7
	sales-8

	Back
	cover

