
HEWLETT iii PACKARD

20854A
Timeshared BASIC/2000, Level F
Reference Manual

m
OJ .-
L
OJ
L~

'-

HP 20854A
Timeshared/BASIC 2000,

Level F

~
HEWLETT if PACKARD

HEWlETT·PACKARD COMPANY

Reference Manual

11000 WOLFE ROAD, CUPERTINO, CALIFORNIA. 95014

Printed: DEC 1975
PART NO. 02000·90073 Printed in U.S.A.

List of Effective Pages

The list of Effective Pages gives the most recent date on which the technical material on any given page was altered.
If a page is simply re-arranged due to a technical change on a previous page, it is not listed as a changed page. Within
the manual, changes are marked with a vertical bar in the margin.

Page Effective Date Page Effective Date

Title. Dec 1975 4-1 to 4-2 Oct 1974
ii Dec 1975 4-3 Dec 1975
iii . Oct 1974 4-4 to 4-7 Oct 1974
iv . Dec 1975 4-8 to 4-9 Feb 1975
v to xiii Oct 1974 4-10 . Dec 1975
1-1 to 1-3 Oct 1974 4-11 to 4-12 Oct 1974
1-4 Dec 1975 4-13 . Feb 1975
1-5 Feb 1975 4-14 to 4-28 Oct 1974
1-6 to 1-14 . Oct 1974 5-1 to 5-14 . Oct 1974
2-1 to 2-25 . Oct 1974 5-15 . Dec 1975
2-26 . Dec 1975 5-16 to 5-17 Oct 1974
2-27 to 2-33 Oct 1974 6-1 to 6-14 . Oct 1974
2-34 . Dec 1975 7-1 to 7-4 Oct 1974
2-35 . Feb 1975 8-1 to 8-18 . Oct 1974
2-36 to 2-37 Oct 1974 9-1 to 9-11 . Oct 1974
3-1 to 3-3 Oct 1974 A-I Oct 1974
3-4 Dec 1975 B-1 Oct 1974
3-5 Oct 1974 C-1 to C-6 Oct 1974
3-6 Dec 1975 D-1 to D-2 Oct 1974
3-7 to 3-19 . Oct 1974 E-1 to E-2 Dec 1975
3-20 . Feb 1975 E-3 to E-4 Oct 1974
3-21 to 3-25 Oct 1974 1-1 to 1-4 Oct 1974

ii DEC 1975

Preface

This manual is a reference text for people who want to use the Hewlett-Packard 20854A Timeshared
BASIC/2000, Level F programming language in a time shared environment at user terminals.

This manual is designed to serve both beginners and experienced BASIC programmers: the sample
programs were chosen for their teaching value (beginners are encouraged to try them "on-line"),
and the manual's sections progress from simple elements of BASIC to advanced usage.

Sections I and II introduce the timeshared BASIC system and the essentials of BASIC programming.
Section III discusses advanced features of the programming language. Sections IV through VIII des
cribe files, matrices, strings, logical operations, and formatted output, respectively. Section IX con
tains the Backus-Naur Form syntax for the programming language, and other information for the
professional user. Several appendices and an index conclude the manual.

While this manual is designed to support the use of the 20854A Timeshared BASIC/2000, Level F
programming language, it can be used as a programmer's guide to several, earlier, versions of
Hewlett-Packard Timeshared BASIC programming languages. The following table lists the 20854A
options which are equivalent to the earlier programming languages.

If the 20854A
ordered is:

20854A

20854A-00I

Then the programming features and capabilities in this manual
are equiValent to these languages:

2000F (options 200 and 5

2000F (options 205 and 505)

iii

Printing History

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the
title page and back cover changes only when a new edition is published. If minor corrections and updates are
incorporated, the manual is reprinted but neither the date on the title page and back cover nor the edition change.

First Edition .
Second Edition

Oct 1974
Dec 1975

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor
mance or use of this material.

K~IDI~ttDtlflJ """mIlles nu responsIbIlity for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1975 by HEWLETI·PACKARD COMPANY

iv
DEC 1975

Preface

Text Conventions

SECTION I Introduction to Timeshared BASIC

SPECIAL KEYS

PROMPT CHARACTERS

LOGGING ON AND OFF

Connection to the Computer

Checking the Connection

Identification Code

Password

Terminal Type Parameter

Logging On

Logging Off

THE BASIC LANGUAGE

Commands

Statements

Error Messages

Changing or Deleting a Statement

BASIC Programs

User's Work Area

Listing a Program

Running a Program

Deleting a Program

Documenting a Program

v

Contents

iii

xiii

1-1

1-2

1-3

1-3

1-3

1-4

1-5

1-5

1-5

1-5

1-7

1-7

1-7

1-7

1-8

1-9

1-9

1-10

1-10

1-11

1-12

1-13

SECTION II The Essentials of BASIC

TERM: NUMBER

TERM: E NOTATION

TERM: SIMPLE VARIABLE

T~RM: EXPRESSION

TERM: ARITHMETIC EVALUATION

THE ASSIGNMENT OPERATOR

ARITHMETIC OPERATORS

RELATIONAL OPERATORS

MIN AND MAX OPERATORS

THE AND OPERATOR

THE OR OPERATOR

THE NOT OPERATOR

EXECUTION ORDER OF PRECEDENCE

STATEMENTS

The Assignment Statement

REM Statement

GO TO and Multibranch GO TO Statements

IF ... THEN Statement

FOR ... NEXT Statement

READ, DATA, and RESTORE Statements

INPUT Statement

PRINT Statement

END and STOP Statements

SAMPLE PROGRAM

Running the Sample Program

COMMANDS

HELLO Command

BYE Command

ECHO Command

RUN Command

LIST Command

SCRATCH Command

RENUMBER Command

PUNCH and XPUNCH Commands

TAPE Command

KEY Command

vi

2-1

2-1

2-2

2-2

2-3

2-3

2-3

2-4

2-4

2-5

2-6

2-6

2-7

2-8

2-9

2-10

2-10

2-11

2-12

2-13

2-15

2-17

2-18

2-22

2-23

2-24

2-25

2-26

2-27

2-27

2-28

2-28

2-29

2-30

2-31

2-32

2-33

LPRINTER Command 2-33

---- TIME Command 2-36

MESSAGE Command 2-36

Break Key 2-37

SECTION III Advanced BASIC 3-1

TERM: ROUTINE 3-1

TERM: ARRAY 3-2

TERM: STRING 3-3

TERM: FUNCTION 3-3

TERM: WORD 3-3

STORING AND DELETING PROGRAMS 3-4

LENGTH Command 3-4

NAME Command 3-5

SA VE and CSA VE Commands 3-5

GET, GET-$, and GET-* Commands 3-6

KILL Command 3-7

APPEND Command 3-8

DELETE Command 3-9

LIBRARY, GROUP, and CATALOG Commands 3-10

SUBROUTINES AND FUNCTIONS 3-13

GOSUB ... RETURN Statement 3-13

Multibranch GOSUB Statement 3-14

FOR ... NEXT with STEP Statement 3-16

DEF FN Statement 3-16

General Mathematical Functions 3-18

Trigonometric Functions 3-19

LEN Function 3-19

TIM Function 3-20

CHAIN Statement 3-20

COM Statement 3-22

ENTER Statement 3-23

BRK Function 3-24

vii

SECTION IV Files

TERM: FILE

SERIAL FILE ACCESS

OPEN Command

KILL Command

FILES Statement

ASSIGN Statement

Serial File PRINT Statement

Serial File READ Statement

Resetting the File Pointer

TYP Function

Listing Contents of a File

TERM: END-OF-FILE

IF END# ... THEN Statement

PRINT# ... END Statement

STRUCTURE OF SERIAL FILES

TERM: RECORD

STORAGE REQUIREMENTS

MOVING THE POINTER

To Determine the Length of a File

SUBDIVIDING SERIAL FILES

USING THE TYP FUNCTION WITH RECORDS

To List the Contents of a Record

To Copy a File

TERM: RANDOM FILE ACCESS

PRINTING It RECORD

READING A RECORD

Modifying Contents of a Record

Erasing a Record

To Erase a File, Record by Record

Updating a Record in a File

An Alphabetically Organized File

FILE ACCESSING ERRORS

Viii

4-1

4-1

4-2

4-3

4-4

4-5

4-6

4-8

4-8

4-9

4-10

4-11

4-12

4-12

4-13

4-13

4-17

4-17

4-18

4-18

4-19

4-19

4-20

4-21

4-22

4-23

4-24

4-24

4-25

4-26

4-26

4-27

4-28

'--
SECTION V Matrices 5-1

STATEMENTS 5-2

DIM Statement 5-2

MAT ... ZER Statement 5-3

MAT ... CON Statement 5-4

INPUT Statement 5-5

MAT INPUT Statement 5-6

Printing Matrices 5-7

MAT PRINT Statement 5-8

READ Statement 5-9

MAT READ Statement 5-10

Matrix Addition 5-11

Matrix Subtraction 5-11

Matrix Multiplication 5-12

Scalar Multiplication 5-12

Copying a Matrix 5-13

Identity Matrix 5-13

Matrix Transposition 5-14

Matrix Inversion 5-15

MAT PRINT# Statement 5-16

MAT READ# Statement 5-17

SECTION VI Strings 6-1

TERM: STRING 6-1

TERM: STRING VARIABLE 6-2

TERM: SUBSTRING 6-3

STRINGS AND SUBSTRINGS 6-3

String DIM Statement 6-5

String Assignment Statement 6-6

String INPUT Statement 6-7

Printing Strings 6-8

Reading Strings 6-9

String IF Statement 6-10

The LEN Function 6-11

Strings in DATA Statements 6-12

Printing Strings on Files 6-13

Reading Strings From Files 6-14

Ix

SECTION VII Logical Operations 7-1 /

RELATIONAL OPERATORS 7-1

BOOLEAN OPERATORS 7-2

SECTION VIII Formatted Output 8-1

DEFINITIONS 8-1

STRING FORMAT SPECIFICATIONS 8-4

Format Characters Used 8-4

Combination Rules 8-4

INTEGER FORMAT SPECIFICATIONS 8-5

Format Characters Used 8-5

Combination Rules 8-5

FIXED-POINT FORMAT SPECIFICATIONS 8-6

Format Characters Used 8-6

Combination Rules 8-6

FLOATING-POINT FORMAT SPECIFICATIONS 8-7

Format Characters Used 8-7

Combinations Rules 8-7

POSITION OF THE SIGN 8-9

GROUPED FORMAT SPECIFICATIONS 8-9

FORMAT STRINGS 8-10

TERM: EXPRESSION LIST 8-10

PRINT USING Statement 8-10

MAT PRINT USING Statement 8-12

IMAGE Statement 8-13

USING CARRIAGE CONTROL 8-14

NUMERICAL OUTPUT 8-15

REPORT GENERATION 8-16

FATAL ERRORS 8-17

NON-FATAL ERRORS 8-18

SECTION IX For the Professional 9-1
SYNTAX REQUIREMENTS OF TSB 9-1

Legend 9-1

Language Rules 9-1

STRING EVALUATION BY ASCII CODES 9-10

MEMORY ALLOCATION BY A USER 9-11

x

APPENDIX A How to Prepare a Paper Tape Off-line A-1

APPENDIX B The X-ON, X-OFF Feature B-1

APPENDIX C Diagnostic Messages C-l

APPENDIXD Additional Library Features D-1

APPENDIX E User Terminal Interface E-1

Index Index-1

'-

xi

SAMPLE

PLEASE LOG IN

20 PRINT X, Y LIST

This section ...

line number PRINT X, Y

return line feed
control
break

Text Conventions

EXPLANATION

All capitals in examples indicates computer-output
information .. <

or a statement or command typed by the programmer.

Mixed upper and lower case is used for regular text.

Lower case italics indicates a general form, derived
from BASIC syntax requirements (Sect. IX).

Represents the terminal keys:
Return, Linefeed, Control,
and Break.

An element enclosed in brackets is optional.

xiii

SECTION I
Introduction to Timeshared BASIC

HP 20854A Timeshared BASIC/2000, Level F programming language is used in a timeshared
environment at user terminals. The Timeshared BASIC system (TSB) uses two computers --
a main computer for actual computation and an Input/Output processor computer to control
access to the main computer. Additional peripheral equipment is associated with the system at
the central site and is under control of the system operator. Up to 32 user terminals can be con
nected directly (hardwired) to the TSB system or connected remotely through dial-up telephone
modems.

This section describes how to log on and log off, how to enter statements and commands and how
to make corrections. Simple programs are used for illustration, but the actual programming language
is described in Section II.

This manual assumes that the user is familiar with the terminal's keyboard. Special keys with
particular functions in the TSB system are described in this section. The characteristics of particular
types of user terminals are given in Appendix E. A user's terminal may be one of several types.
Some terminals are equipped with a paper tape punch and reader. The user can enter programs
into the system either through the keyboard or through the paper tape reader. System output can
be typed out on the terminal as well as punched on paper tape. In addition, a line printer may be
connected to the system. If a line printer is available, system output can be printed on it. The
system is designed so that any user should experience no more than a few seconds delay between
entering a command and receiving a response from the system, even when all terminals are active.

The user can work in a simple interactive mode, entering and running programs and reading the
results from the user terminal, or he can take advantage of the large storage capacity of the TSB
system by using library programs and by storing his own programs for later use.

In this section only, characters typed by the computer are underlined to distinguish them from user
input. Subsequent sections assume that this distinction is clear to the user.

1-1

SPECIAL KEYS

Key

break

control

linefeed

return

control 0 (Oc)

control W (W c)

Function

Terminates a running program, listing, or punching operation.
This key may appear on·the keyboard as INTRPT, BRK,
ATTN, etc., depending on the user terminal type.

Converts normal keys to non-printing control character keys.
This key may appear as CTRL, CTL, CONTRL, etc., depending
on the user terminal type.

Causes the user terminal to advance one line. This key may
appear as LINEFEED, LF,etc., depending on the user terminal
type.

Must be pressed after every statement and command and after
some control characters. It terminates the line and causes the
terminal's printing element to return to the first print position.
TSB responds with a linefeed if the entered line is acceptable.
This key may appear as RETURN, CR, etc., depending on the
user terminal type.

Backspace. Deletes one preceding character for each +- typed
in. This key may be represented by the underscore ()
character on some types of user terminal.

Terminates an input loop during program execution. It must be
followed by return. Effectively, C c causes a jump to the END
statement. TSB responds by printing DONE followed by a
return and linefeed.

Generates a linefeed when used in a PRINT statement.

Generates a return when used in a PRINT statement.

Diverts output to user's terminal when the line printer is
designated as the output device.

Returns output to the line printer if output was previously
diverted via QC.

Deletes a line being typed from the user terminal. TSB
responds by printing a backslash (\) followed by a return and
linefeed.

1-2

PROMPT CHARACTERS

The TSB system uses a set of prompting characters to signal to the user that certain input is
expected or that a specific action is completed.

Character

?

??

???

\

Meaning

User input is expected during execution of an INPUT statement.

Further input is expected during execution of an INPUT statement.

A BASIC command was mistyped; re-enter it correctly.

Issued by TSB in response to the control character Xc. Indicates that
the line being typed just prior to entry of X c is deleted from the
user's work area.

LOGGING ON AND OFF

Connection to the Computer

To log on to the TSB system, connection must be established between the user terminal and the
computer. There are several ways of doing this, depending on the type of user terminal equipment
used.

ACOUSTIC COUPLER AND TELEPHONE:

1. Set terminal mode to ON-LINE and power switch to ON.

2. Set coupler power switch to ON.

3. If coupler has a duplex switch, set to FULL or FULL/UP.

4. If coupler has a line switch, set to ON-LINE.

5. Remove telephone handset and dial the computer telephone number.

6. When the computer responds with a high pitched tone, place the handset into the coupler
receptacle (the correct handset position should be marked on the coupler).

1-3

HALF-DUPLEX COUPLER AND TELEPHONE:

1. Set terminal mode to ON-LINE and power switch to ON.

2. Set coupler power switch to ON.

3. If coupler has a line switch, set to ON-LINE.

4. Remove telephone handset and dial the computer telephone number.

5. When the computer responds with a high pitched tone, place the handset into the coupler
receptacle (the correct handset position should be marked on the coupler).

DATA SET:

1. Set terminal mode to ON-LINE and power switch to ON.

2. Press the TALK button on the Data Set.

3. Remove the handset and dial the computer telephone number.

4. When the computer responds with a high pitched tone, press the DATA button on the
Data Set to light it, and replace the handset in its cradle.

Note: When connection is via telephone lines, the user must log on
within a time period (normally two minutes) determined by
the system operator.

DIRECT CONNECTION (HARDWIRED):

Set terminal mode to ON-LINE and power switch to ON.

Checking the Connection

This step is optional. The TSB system does not respond once connection is established. If you
wish to determine that connection has been made, type Xc. If the terminal and the computer are
connected, the system responds with" \". For further verification, type any numeral followed by
return. The TSB system will respond:

PLEASE LOG IN return linefeed

1-4 DEC 1975

Identification Code

An identification code is assigned to you by the system operator. The code consists of a single
letter followed by a three-digit number. When logging on, the identification code along with a
password and sometimes a terminal type parameter must be specified.

Password

The password is also assigned to you by the system operator. It consists of from one to six
printing or non-printing characters. The password can be kept confidential by using non-printing
characters. For example, on the terminal the password SECcRcETc prints as:

SEE

Note: The character EC should not be used in a password. It is a reserved
character for some types of terminals.

Terminal Type Parameter

The terminal type parameter informs TSB of the type of terminal being logged on. Failure to
specify the correct parameter may result in a loss of characters. Terminal type is specified as one
digit as follows:

Not specified, or 0 = HP 2600A or HP 2749A/B, HP 2640A or IBM 2741 (default)
1 = Execuport 300
2 = ASR-37
3 = TermiNet 300, TermiNet 1200, or HP 2762A/B
4 = Memorex 1240

Logging On

Once the terminal is connected and ready, the user may log on. To log on, type the HELLO
command. For example:

HELLO-H200 J JOHN J 1

H200, JOHN and 1 are sample parameters representing the identification code, the password, and
the terminal type. A comma must be typed between them. TSB responds with a system message
or the word READY. In either case, the user is logged on and can enter BASIC commands or
statements.

1-5

ERRORS DURING LOGGING ON: If a mistake is made during logging on, the system responds
with an appropriate error message. For example, if you forget to type the hyphen while entering
the HELLO command:

HELLOH200, JOHN, 1

TSB responds with the message:

ILLEGAL FORMAT

Re-enter the command in the correct form.

If the password is entered incorrectly:

HELLO-H200,JHN,1

TSB responds:

ILLEGAL ACCESS

Re-enter the command with the correct password.

The messages ILLEGAL ACCESS and ILLEGAL FORMAT indicate that some or all of the current
input is not acceptable to the system.

Spelling mistakes, format errors and incorrect parameters can be corrected while the line is being
entered if the error is noticed before return is pressed. The backspace character (+-) (underscore
(_) on some terminals) can be used to correct a few characters just typed, or the control character
Xc can be used to cancel the entire line and start over.

Suppose the command HELLO is misspelled during entry. The backspace (+-) will delete the last
character. The user retypes the character correctly and finishes the line. When you press return,
the line is entered correctly.

HELO+LO-H200,JOHN,1

If several characters have been typed after the error, the backspace character must be typed for each
character to be deleted. In the following example, four characters are deleted:

HELO-H2++++LO-H200,JOHN, 1

Another method is to use XC to cancel the entire line. X c must be typed before return is pressed.
To cancel a line, type Xc. The system responds with a backslash at the end of the line and then
produces a return and linefeed. The correct command can be entered on the new line:

HELO-~
HELLO-H200,JOHN,1

1-6

Logging Off

When a session at the terminal is completed, the user logs off with the BASIC command BYE.
To log off, type:

BYE

TSB responds by printing the total number of minutes the user was logged on. For example:

014 MINUTES OF TERMINAL TIME

THE BASIC LANGUAGE

There are many types of languages. English is a natural language used to communicate with people.
To communicate with a computer system we use a formal language, that is, a combination of
simple English and algebra. BASIC is a formal language used to communicate with the TSB
system. The TSB system employs BASIC statements with which to write programs and
BASIC commands for controlling program operation.

Commands

BASIC commands instruct the TSB system to perform certain control or utility functions such as
storing and listing programs or logging on and off the system. Commands differ from statements
used to write a program in the BASIC language. A command instructs the system to perform some
action immediately, while a statement is an instruction to perform an action only when the program
is executed (run). A statement is always preceded by a statement number; a command never is.

Any BASIC command can be entered once the logging on procedure is successfully completed.
Each command is a single word that can be abbreviated to the first three characters on entry.
Embedded blanks are ignored. If a command is misspelled, TSB returns three queRtion marks.

Following entry of each command, return must be pressed to signal that command entry is complete.

Some commands have parameters to further define command operation. For instance, BYE is a
command that signals completion of a user session at the terminal and results in logging the user off
the system and disconnection of the terminal from the system. BYE has no parameters. Another
command, LIST, results in a display of the current program in the user's work area. It may have
parameters to specify that only part of the program is to be printed.

Statements

BASIC statements are used to write a BASIC program that will be subsequently executed. Each
statement within the program performs a particular function. Every statement entered becomes
part of the current program and is kept until explicitly deleted or the user logs off the TSB system.
In addition, programs may be saved ip one of the system libraries for further use.

1-7

A statement is always preceded by a statement number. This number is an integer between 1 and
9999. The statement number indicates the order in which the statements will be executed. State
ments are ordered by BASIC from the lowest to the highest statement number. This order is main
tained by the TSB system. Thus, it is not necessary for the user to enter statements in execution
order so long as the statement numbers are in that order.

Following entry of each statement, return must be pressed to inform the system that the statement
is complete. The system generates a return and a linefeed to the next line to signal that the state
ment is acceptable. If an error is made while entering the statement, the computer prints an error
message.

BASIC statements are free form; blanks are ignored. For example, the following statements are
equivalent:

30 PRINT S
30 PRINT S
30PRINTS

3 0 P R I N T S

Error Messages

If an error is made in a statement line and the line is entered with return, TSB responds with a
message. The message consists of the word ERROR.

For example, if the line:

30 PRING S

is entered, the system will respond:

ERROR

The user may press return and re-enter the statement in the correct form. If the error is not
obvious, type any character after the message followed by return. The system will respond with a
diagnostic message:

30 PRING S
ERROR: MISSING ASSIGNMENT OPERATOR

Typing a colon causes the diagnostic message to be printed. Any other character could have been
typed with the same result.

1-8

Changing or Deleting a Statement

If an error is made before return is pressed, the error can be corrected with the backspace character
(+-) or the line may be cancelled with Xc. (See "Errors During Logging On", above.) After return
is pressed, the statement can be changed or deleted.

To change a statement, simply type the same statement number followed by the desired statement.
To change this statement:

30 PRINT X

Retype it as:

30 PRINT 5

A change of this type can be made any time before the program is run.

To delete a statement, type the statement number followed by a return:

30

Statement 30 is deleted.

The DELETE command described in Section III is useful to delet-e a group of statements.

BASIC Programs

Any statement or group of statements that can be executed constitutes a program. The last state
ment (the statement with the highest statement number) of every program must be an END
statement. The following is an example of a simple BASIC program:

15 F'P I t-n ::::5+5
25 E t-i II

15 and 25 are statement numbers. PRINT is a key word or instruction that tells TSB the kind of
action to perform. In this case, it prints the result of the expression that follows. 35+5 is an
arithmetic expression. It is evaluated by the system, and when the program is run, the result is
printed. END is also a key word. It informs TSB that this is the end of this program. An END
statement is required as the last statement within every program.

1-9

Usually, a program contains several statements. The following four statements are a program:

10 INPUT A~B~C~D~E
20 LET S=(A+B+C+D+E)/5
:30 PRHH S
40 Et·m

This program, which calculates the average of five numbers, is shown in the order of its execution.
It could be entered in any order if the statement numbers assigned to each statement were not
changed. The following program executes exactly like the program above:

40 Et'm
20 LET S=(A+B+C+D+E)/5
10 INPUT A~B~C~D~E
::::0 PPItH :~:

Generally, it is a good idea to number statements in increments of 10. This allows room to insert
additional statements as needed.

User's Work Area

When statements are entered at the terminal, these statements become part of the user's work area.
All statements in the user's work area constitute the current program.

Any statement in the user's work area can be edited or corrected; the resulting statement will then
replace the previous version in the user's work area. When the user logs off the TSB system, the
work area is cleared. Commands are available with which to retain the contents of the user's work
area in the user's library.

Listing a Program

At any time while a program is being entered, the LIST command can be used to produce a listing
of the statements that have been accepted by the TSB system. LIST causes the system to print a
listing of the current program at the terminal.

After deleting or changing a line, LIST can be used to check that the deletion or correction has
been made. For example, a correction is made while entering a program:

10 U~INPUT A~B~C~D~E
20 PP~~LET S=(A+B+C+D+E)/5
::::0 PPItH S
40 Et·m

1-10

To check the corrections, list the program:

LIST

10 INPUT A~B~C~D~E
20 LET S=(A+B+C+D+E)/5
:~: 0 PP I t'lT :~:

40 am

Should the statements be entered out of order, the LIST command will cause them to be printed
in ascending order by statement number. For example, the program is entered in this order:

20 LET S=(A+B+C+D+E)/5
:~: 0 P P ItH ::;::
40 am
10 INPUT A~B~C~D~E

The list will be in correct order of. execution:

LIST

10 INPUT A~B~C~D~E
20 LET S=(A+B+C+D+E)/5
:~: 0 PP I t'lT :~:

40 END

Running a Program

After the program is entered and, if desired, checked with LIST, it can be executed with the RUN
command. RUN will be illustrated with two sample programs.

The first program has two statements:

15 PPItH 35+5
25 ErlD

When run, the result of the expression 35+5 is printed:

40

1-11

Because the program contains a PRINT statement, the result is printed when the program is run.
When execution of a program is complete the system prints the message DONE at the user's
terminal.

The second sample program averages a group of five numbers. The numbers must be input by the
user:

10 INPUT A~B~C~D~E
20 LET S=(A+B+C+D+E)/5
:::: (I PP ItH :::
40 Et·m

Each of the letters following the word INPUT and separated by commas names a variable that will
contain a value input by the user from his terminal. When the program is run, TSB signals that
input is expected by printing a question mark. The user enters the values following the question
mark. They are entered with a comma between each successive value.

The statement LET S = (A+B+C+D+E)/5 assigns the value of the expression to the right of the
equal sign to the variable S on the left of the equal sign. The expression first adds the variable
values within parentheses and then divides them by 5. The result is the value of S.

When the program is run, the user enters input values and the computer prints the result:

Deleting a Program

If a program that has been entered.and run is no longer needed, it can be deleted from the user's
work area with the SCRATCH command. SCRATCH deletes whatever program has been entered
by the user during the current session.

The first program entered was:

15 PP ItH :35+5
25 E t-i II

1-12

This program should be scratched before entering the next program. Otherwise, statement numbers
may overlap causing undesirable results. In the latter case, when RUN is typed, the program will
execute in order of the statement numbers. The program will execute until the first END statement
is encountered. For example, if the program above remains in the user's work area and the user
enters a new program, as follows:

10 INPUT A~B~C~D~E
20 LET S=(A+B+C+D+E)/5
:::: 0 PP I t'lT :~:

4 (I Et'lD

Typing RUN produces the following results:

pun

The program executes statements 10 through 25, accepting input from the user but printing the
result of the expression 35+5.

A listing of the current program would appear:

10 InpUT A~B.C~D~E
15 PPItH J5+5
20 LET S=(A+B+C+D+E)/5
25 Et"iII
:~: (I P F: I tH :::
40 Et·m

Documenting a Program

Remarks that explain or comment can be inserted in a program with the REM statement. Any
remarks typed after the word REM will be printed in the program listing but will not affect pro
gram execution. As many REM statements can be entered as are needed.

1-13

The sample program to average five numbers can be documented with several remarks:

5 PEt'1
7 PH1
15 PH1
25 PEt'1

THIS PPOGRAM AVERAGES
F I',/E nUt'1E:EFS.
FIVE VALUES MUST BE InpUT.
S conTAIns THE AVERAGE.

The statement numbers determine the position of the remarks within the existing program. A listing
will show them in order:

LI:~:T

5 REM THIS PROGRAM AVERAGES
7 PEM FIVE nUMBERS.
10 InpUT A~B~C~D~E
15 REM FIVE VALUES MUST BE InpUT.
20 LET S=(A+B+C+D+E)/5
25 PEM S conTAIns THE AVERAGE.
::=: I) PR InT :~:

40 EnD

When run, the program will execute exactly as it did before the remarks were entered.

1-14

j

SECTION II
The Essentials of BASIC

This section contains enough information to allow you to use BASIC in simple applications, without
using the capability of storing programs.

Proceed at your own pace. The information in the vocabulary and operators subsections is included
for completeness; experienced programmers may skip these. Programmers with some knowledge of
BASIC may also concentrate on capabilities of the TSB system presented in the commands subsection.

The "Operators" subsections contain brief descriptions, rather than explanations, of the logical
operators. The novice should not expect to gain a clear understanding of logical operators from
this presentation. Section VII presents more details and examples of TSB logical operations.
Readers wishing to make best use of TSB logical capabilities should consult this section. Those
unfamiliar with logical operations should also refer to an elementary logic text.

A simple program is included at the end of this section for reference; it contains a running commen
tary on the uses of many of the BASIC statements presented in the section.

TERM: NUMBER

Defined: A positive or negative decimal number whose magnitude is between an approximate
minimum of 10-38 (2- 129) and an approximate maximum of 1038 (2 127

). Zero is included.

The precision of all numbers in TSB is 6 to 7 decimal digits (23 binary digits). If the user types a
BASIC statement which contains a number that is not representable in TSB, the system will print
a warning and change the number in the statement to the closest representable one.

If an executing program makes a calculation which results in a non-representable number, that
number will be set to the closest representable positive number and a warning message will be
printed.

2-1

TERM: E NOTATION

Defined: A means of expressing numbers having more than six decimal digits in the form of a
decimal number raised to some power of 10.

E notation is used to print numbers greater than six digits. (See PRINT.) It may also be used to
input any number. When entering numbers in E notation, leading and trailing zeros may be omitted
from the number; the +sign and leading zeros may be omitted from the exponent.

EXAMPLES:

1.00000E+06 is equivalent to 1000000 and is read:

"1 times 10 to the sixth power" (lx10 6).

1.02E+4 is equal to 10200

1.02000E-04 is equal to .000102

TERM: SIMPLE VARIABLE

Defined: A letter (from A to Z); or a letter immediately followed by a number (from 0 to 9).

Variables are used to represent numeric values. For instance, in the statement:

10 LET M5 = 96.7

M5 is a variable; 96.7 becomes the value of the variable M5.

There are two other types of variables in TSB, array and string variables; their use is explained in
Sections V and VI respectively.

EXAMPLES:

AO B
M5 C2

Z9 D

2-2

TERM: EXPRESSION

Defined: A combination of variables, constants and operators which has a numeric value.

EXAMPLES:

(P + 5)/27

(where P has previously been assigned a numeric value.)

Q - (N + 4)

(where Q and N have previously been assigned numeric values.)

TERM: ARITHMETIC EVALUATION

Defined: The process of calculating the value of an expression.

THE ASSIGNMENT OPERATOR

SYMBOL:

GENERAL FORM: LET variable = expression

variable = expression

The assignment operator assigns an arithmetic or logical value to a variable.

When used as an assignment operator, = is read "takes the value of," rather than "equals". It is,
therefore, possible to use assignment statements such as:

100 LET X = X+2

This is interpreted by TSB as: "LET X take the value of (the present value of) X, plus two."

Several assignments may be made in the same statement, as in statements 10 and 50 below.

See Section VII, "Logical Operations" for a description of logical assignments.

EXAMPLES:

10 LET A = B2 = C = 0
20 LET A9 = C5
30 Y = (N-(R+S))/T
40 N5 = A + B2
50 PS = P6 = P7 = A = B = 98.6

2-3

ARITHMETIC OPERATORS

SYMBOLS: t * / +-

Each symbol represents an arithmetic operation, as:

exponentiate: t
multiply: *

divide: /
add: +

subtract:

The" -" symbol is also used as a sign for negative numbers. It is good practice to separate arithmetic
operations with parentheses when unsure of the exact order of precedence. The order of precedence
(hierarchy) is:

t

* /
+-

with t having the highest priority. Operators on the same level of priority are acted upon from left
to right in a statement. See "Order of Precedence" in this Section for examples.

EXAMPLES:

40. LET Nl = X-5
50 LET C2 = Nt3
60 LET A = (B-C)/4
70 LET X = ((Pt2)-CyxX))/N+Q

RELATIONAL OPERATORS

SYMBOLS: = # <> > < >= <=

Relational operators determine the logical relationship between two expressions, as

equality:

inequality:

greater than:

less than:

greater than or equal to:

less than or equal to:

or: <>
>
<
>=
<=

2-4

Note: It is not necessary for the novice to understand the nature of
logical evaluation of relational operators at this point. The
comments below are for the experienced programmer.

Expressions using relational operators are logically evaluated, and assigned a value of "true" or
"false" (the numeric value is 1 for true, and 0 for false)., .

When the = symbol is used in such a way that it might have either an assignment or a relational
function, TSB assumes it is an assignment operator. For a description of the assignment statement
using logical operators, see Section VII, "Logical Operations."

EXAMPLES:

100 IF A=B THEN 900
110 IF A+B >C THEN 910
120 IF A+B < C+E tHEN 920
130 IF C>= D~~E THEN 930
140 IF C 9 < = G~:H THEN 940
ISO IF P2#C9 THEN 9S0
160 IF J <> K THEN 9S0

MIN AND MAX OPERATORS

SYMBOLS: MIN
MAX

The MIN or MAX operator selects the larger or smaller value of two expressions.

In the examples below, statement 110 selects and prints the larger value: since X = 7.5 and Y = 12.0,
the value of Y is printed. The evaluation is made first, then the statement type (PRINT) is executed.

EXAMPLES:

10 LET A=A9=P2=PS=C2=X=7.S
20 LET BS=D8=Q1=Q4=Y=B=12.0

80 PRINT (A MIN 10)
90 LET B=(A MIN 10)+100

100 IF (A MIN BS) > (C2 MIN D8) THEN 10
110 PRINT (X MAX Y)
120 IF (A9 MAX B) <= S THEN ISO

2-5

Note: It is not necessary for the novice to understand the nature of
logical evaluation of relational operators at this point. The
comments below are for the experienced programmer.

Expressions using relational operators are logically evaluated, and assigned a value of "true" or
"false" (the numeric value is 1 for true, and 0 for false).

When the = symbol is used in such a way that it might have either an assignment or a relational
function, TSB assumes it is an assignment operator. For a description of the assignment statement
using logical operators, see Section VII, "Logical Operations."

EXAMPLES:

100 IF A=B THEN 900
110 IF A+B >C THEN 910
120 IF A+B < C+E THEN 920
130 IF C>= O~E THEN 930
140 IF C9<= G::H THEN 940
150 IF P2#C9 THEN 950
160 IF J <> K THEN 950

MIN AND MAX OPERATORS

SYMBOLS: MIN
MAX

The MIN or MAX operator selects the larger or smaller value of two expressions.

In the examples below, statement 110 selects and prints the larger value: since X = 7.5 and Y = 12.0,
the value of Y is printed. The evaluation is made first, then the statement type (PRINT) is executed.

EXAMPLES:

10 LET A=A9=P2=P5=C2=X=7.5
20 LET B5=08=Q1=Q4=Y=B=12.0

80 PRINT (A MIN 10)
90 LET B=(A MIN 10)+100

100 IF (A MIN B5) > (C2 MIN 08) THEN 10
110 PRINT (X MAX y)
120 IF (A9 MAX B) <= 5 THEN 150

2-5

THE AND OPERATOR

SYMBOL: AND

The AND operator forms a logical conjunction between two expressions. If both are "true", the
conjunction is "true"; if one or both are "false", the conjunction is "false".

Note: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced
programmers.

The numeric values are: "true" = 1, "false" = O.

All non-zero values are "true". For example, statement 90 below would print either a 0 or a 1
(the logical value of the expression X and Y) rather than the actual numeric values of X and Y.

Control is transferred in an IF statement using AND, only when all parts of the AND conjunction
are "true". For instance, example statement 80 requires four "true" conditions before control is
transferred to statement 10.

See Section VII, "Logical Operations" for a more complete description of logical evaluation.

EXAMPLES:

60 IF A9<Bl AND C#5 THEN 100
70 IF T7#T AND J=27 THEN 150
80 IF PI AND R>1 AND NAND V2 THEN 10
90 PRINT X AND Y

THE OR OPERATOR

SYMBOL: OR

The OR operator forms the logical disjunction of two expressions. If either or both of the
expressions is "true", the OR disjunction is "true"; if both expressions are "false" the OR dis
junction is "false".

2-6

---~---

Note: It is not necessary for the novice to understand how this
operator works. The comments below are for experienced
programmers.

The numeric values are: "true" = 1, "false" = o.

All non-zero values are "true"; all zero values are "false".

Control is transferred in an IF statement using OR, when either or both of the two expressions
evaluate to "true".

See Section VII, "Logical Operations" for a more complete description of logical evaluation.

EXAMPLES:

100 IF A>l OR 8<5 THEN 500
110 PRINT C OR D
120 LET D = X OR Y
130 IF eX AND y) OR ep AND Q) THEN 600

THE NOT OPERATOR

SYMBOL: NOT

The NOT operator logically evaluates the complement of a given expression.

Note: It is not necessary for the novice to understand how this
operator works. The comments below are intended for experienced
experienced programmers.

If A = 0, then NOT A = 1; if A has a non-zero value, NOT A = o.

The numeric values are: "true" = 1, "false" = 0; for example, statement 65 below would print "1 ",
since the expression NOT (X AND Y) is "true".

2-7

Note that the logical specifications of an expression may be chansed by evaluating the complement.
In statement 35 below, if A equals zero, the evaluation would be "true" (1); since A has a numeric
value of 0, it has a logical value of "false", making NOT A "true".

See Section VII, "Logical Operations" for a more complete description of logical evaluation.

EXAMPLES:

30 LET X = Y = 0
35 IF NOT A THEN 300
45 IF (NOT C) AND A THEN 400
55 LET B5 = NOT P
65 PRINT NOT (X AND Y)
70 IF NOT (A=B) THEN 500

EXECUTION ORDER OF PRECEDENCE

The order of performing operations follows:

t highest precedence

NOT unary + unary

* /
+ -

MIN MAX

Relational Operators

AND

OR lowest precedence

If two operators in an expression are on the same level, the order of execution is left to right within
the statement.

5 + 6*7 is evaluated as: 5 + (6x7)

7/14*2/5 is evaluated as: (7/14)x2

5

Unary + and - may be used; parentheses are assumed by TSB. For example:

A++B

C:+--D

is evaluated as: A+(+B)

is evaluated as: C+(-D)

2-8

Leading unary plus signs are omitted from output resulting from program execution, but remain in
program listings.

A MIN B MAX C MIN D is evaluated as:

«A MIN B) MAX C) MIN D

Operations enclosed in parentheses are performed before any operations outside the parentheses.
When parentheses are nested, operations within the innermost pair of parentheses are performed
first.

STATEMENTS

Be sure you know the difference between statements and commands.

Statements are instructions to the system. They are contained in numbered lines within a program,
and execute in the order of their line numbers. Statements cannot be executed without running a
program. They tell the system what to do while a program is running.

Commands are also instructions. They are executed immediately, do not have line numbers, and
may not be used in a program. They are used to manipulate programs, and for utility purposes,
such as logging on and off.

Here are some examples mentioned in Section I:

Statements

LET

PRINT

INPUT

Commands

HELLO

BYE

LIST

Do not attempt to memorize every detail in the "Statements" subsection; there is too much
material to master in a single session. By experimenting with the sample programs, and attempting
to write your own programs, you will learn more quickly than by memorizing.

2-9

The ASSIGNMENT Statement

GENERAL FORM:

statement number LET variable = number or expression or string or variable . ..

or

statement number variable = number or expression or string or variable . ..

The ASSIGNMENT statement used to assign or specify the value of a variable. The value may be
an expression, a number, string or a variable of the same type.

Note that LET is an optional part of the assignment statement.

The assignment statement must contain:

1. The variable to be assigned a value.

2. The assignment operator, an = sign.

3. The number, expression or variable to be assigned to the variable.

Statement 20 in the example below shows the use of an assignment to give the same value (0) to
several variables. This is a valuable feature for initializing variables in the beginning of a program.

EXAMPLES:

10 LET A = 5.02
20 X = Y7 = Z = 0
3 0 B 9 = 5 :: (X t 2)
40 LET D = (3 XC2tN)/(AX(N/2))

REM Statement

GENERAL FORM: statement number REM any remark or series of characters

The REM statement allows insertion of a line of remarks or comment in the listing of a program.

The REM statement must be preceeded by a line number. Any series of characters may follow REM.

2-10

REM lines are saved as part of a BASIC program, and printed when the program is listed or
punched; however, they are ignored when the program is executing.

Remarks are easier to read if REM is followed by a punctuation mark, as in the example statements.

EXAMPLES:

10 REM--THIS IS AN EXAMPLE
20 REM: OF REM STATEMENTS
30 REM-----jjjjjXXXXX!!!!!
40 REM. STATEMENTS ARE NOT EXECUTED BY TSB

GO TO and Multibranch GO TO Statements

GENERAL FORM:

statement number GO TO statement number

statement number GO TO expression OF sequence of statement numbers

GO TO is used to transfer control to the statement specified.

GO TO expression . .. rounds the expression to an integer n and transfers control to the nth state
ment number following 0 F.

GO TO may be written: GO TO or GO TO.

GO TO must be followed by the statement number to which control is transferred, or expression OF,
and a sequence of statement numbers.

GO TO overrides the normal execution sequence of statements in a program.

If there is no statement number corresponding to the value of the expression, the GO TO statement
is ignored.

2-11

Useful for repeating a task infinitely, or "jumping" to (GOing TO) another part of a program if
certain conditions are present.

GO TO should not be used to enter FOR-NEXT loops; doing so may produce unpredictable results
or fatal errors.

EXAMPLES:

10 LET X = 20

40 GO TO X+Y OF 410,420,430
50 GOTO 100
80 GOTO 10
90 GO TO N OF 100,150,180,190

IF .. . THEN Statement

GENERAL FORM: statement number IF expression THEN statement number
;L

Control is transferred to a specified statement if a specified condition is true.
, . , , ~ i~ '~~'}., 't.' . .~,

Sometimes described as a conditional transfer; GO TO is implied by IF ... THEN, if the condition
is true. In the example above, if X < 10, the message in stat~ment 60 is printed.

Because numbers are not always represented exactly in the computer, the = operator should be
used carefully in IF ... THEN statements. < = ,:> =, etc. should be used in the IF expression,
rather than = , whenever possible.

If the specified condition for transfer is not true, then the p~ogram will continue executing in
sequence. In the example below, if X>=10, the message in statement 40 will be printed.

. ;, .

See "Logical Operations," Section VII for a more complete description of logical evaluation.

SAMPLE PROGRAM:

10 LET N = 10
20 READ X
30 IF X < N THEN 60
40 PRINT "X IS 10 OR OVER"
50 GO TO 80
60 PRINT "X IS LESS THAN 10"
70 GO TO 20
80 END

2-12

FOR ... NEXT Statement

GENERAL FORM:

or

statement number FOR simple variable = initial value TO final value STEP step value

statement number NEXT simple variable

Note: The same simple variable must be used in both the FOR and
NEXT statements of a loop.

The FOR ... NEXT statements allow repetition of a group of statements within a program.

Initial value, final value and step value may be any expression.

The simple variable is assigned the value of the initial value; the value of the simple variable is
increased by 1 (or by the optional step value) each time the loop executes. When the value of
the simple variable passes the final value, control is transferred to the statement following the
NEXT statement. If the loop is not executed (as in "FOR X ~ 1 TO ,2 STEP-1 "), none of the
statements in the loop is executed, and control is transferred to the statement following the
NEXT statement. ' ,

The initial value, final value and step value are all evaluated only when the loop is entered. Thus,
the final value and step value do not depend on results of executing the loop. For instance,
"FOR 1= 1 TO 100 STEP I" generates a constant step size of 1 (first value for I), not a step size
depending on the current value of I (1,2, 4, 8,).

STEP and step value are optional. For further details on the STEP feature, see "FOR ... NEXT
with STEP" in Section III.

2-13

NESTING FOR ... NEXT LOOPS: Multiple FOR ... NEXT statement loops may be used in the
same program; they may also be nested (placed inside one another). There are two important
features of FOR ... NEXT loops:

1. FOR ... NEXT statement loops may be nested .

Range of loop A1

Range of loop B2

Range of loop C3

...----10 FOR A1 = 1 TO 5

20 FOR B2 = N TO P

30 FOR C3 = X TO Y STEP R

80NEXTC3

90 NEXT B2

~-- 100 NEXT A1

2. The range of FOR ... NEXT statement loops may not overlap. The loops in the example above
are nested correctly. The following example shows improper and illegal nesting .

...----10 FOR I = 1 TO 5

The range of loops J

I and J overlap. 1
30 FOR J = 1 TO N

I--+-_ 50 NEXT I

90 NEXT J

Sample Program with a variable number of loops:

40 PPItH "HOI ..) /,lAW,' T!t'lE:S DO 'lOU 1 •. IAtH TO LOOP";
50 InpUT A
60 FOP J=l TO A
70 PPItH "THIS IS LOOP";J
80 PEAD nl,n2,n3
90 PP I tH "THESE DATA I TEI'lS: I!.IEPE PEAD:" N 1 ; t"12 ; N3
1 00 PP I tH ":S:U/,1 ="; t"i 1 +t'~2+~B
11 0 t·~D::r.J

120 DATA 5,6,7,8,9,10,11,12
130 DATA 1:3, 14 , 15 , 16 , 17 , 1 ::: , 19 ,20 ,21
140 DATA 22,23,24,25,26,27,28,29,30
150 DATA 31,:32,33,34
160 END

2-14

,_ EXAMPLES:

100 FOR PI = 1 TO 5

170 NEXT PI

120 FOR R2 = N TO X STEP 1

150 NEXT R2

110 FOR Q7 = N TO X
130 FOR S = 1 TO X STEP Y
140 NEXT S
160 NEXT Q7

READ, DATA, and RESTORE Statements

GENERAL FORM:

statement number READ variable, variable,

statement number DATA number or string, number or string,

statement number RESTORE

statement number RESTORE statement number

The READ statement instructs TSB to read an item from a DATA statement. READ statements
require at least one DATA statement in the same program.

The DATA statement is used for specifying data in a program. The data is read in sequence from
first to last DATA statements, and from left to right within the DATA statement. TSB maintains
a data pointer as each item is read. Items in a DATA statement must be separated by commas.
String and numeric data may be mixed. Programmers mixing string and numeric data may find
the TYP function useful. See "The TYP Function", Section IV.

DATA statements may be placed anywhere in a program. The data items will be read in sequence
as required. DATA statements do not execute; they merely specify data.

The RUN command automatically sets the data pointer to the first data item.

The RESTORE statement resets the data pointer to the first data item, allowing data to be re-read.
RESTORE followed by a statement number resets the pointer to the first data item, beginning at
the specified statement.

2-15

If you are not sure of the effects of READ, DATA, and RESTORE, try running the sample programs.

EXAMPLES:

Sample Program # 1

In this program, each data item is read only once. TSB keeps track of data with a pointer. When
the READ statement is encountered for the first time, the pointer indicates that the first item in
the DATA statement is to be read; then, the pointer is moved to the second item of data, and so on.
After the loop has executed five times, the pointer remains at the end of the data list.

15 FOR 1=1 TO 5
20 READ A
40 LET ::-::=At·2
45 PR I t-n A;" :~:OIJAF'ED ="; ::<
50 t·1E::<T 1
95 DATA 5.24,6.75,30.8,72.65,89.72
'39 EnD

Sample Program # 2

In this program, statements 55 through 80 are inserted into the program. The RESTORE statement
resets the pointer to the first data item, allowing data to be re-read for the second portion of the
program.

15 FOR 1=1 TO 5
20
40
45
50
C:-C:-
... .1._1

60

READ A
LET ::-::=A-t·2
PR I tH A;"
nnn I
RE:~:TDRE

SOUARED

FOR J=1 TO 5
READ E:

_'1 ••..• - ~ ,

LET 'y'=F.!-tA
PRInT I;;"
NE::<T .J

TO THE FOURTH POldER ="; \'

95 DATA 5.24,6.75,30.8,72.65,89.72
'39 Et·W

2-16

-- ~trrStatement

GENERAL FORM: statement number INPUT variable, variable,

The INPUT statement requests data to be input from the user terminal for subsequent assignment
to a variable. When the INPUT statement is encountered, the program comes to a halt and a
question mark is printed on the user's terminal. The program does not continue execution until
the input requirements are satisfied.

Only one question mark is printed for each INPUT statement. The statements:

10 INPUT A, B2, C5, D, E, F, G

and

20 I NPUT X

each cause a single question mark to be printed. Note that the question mark generated by state
ment 10 requires seven input items, separated by commas, while that generated by statement 20
requires only a single input item.

The only w~ to stop a program when input is required is to enter C c followed by a carriage return.
Note that C aborts the program; it must be restarted with the RUN command.

RELEV ANT DIAGNOSTICS: One of the following responses may be printed on the user terminal
following user input:

?? indicates that more input is required to
satisfy the INPUT statement.

??? indicates that TSB cannot decipher your
input.

EXTRA INPUT -W ARNING ONLY indicates that extra input was entered;
excess data items have been ignored; the
program is continuing execution.

2-17

Sample Program:

5 FD~~ til = 1 TO ;::
1 (I HWUT A
20 INPUT Al ~B2~C3~ZO~Z9~E5
:3 (I PP I ~H "1 .. .lHAT '·/ALUE :S:HOULD BE A:SS I G~~ED TO P";
4ft INPUT P
50 PPItH A ;A1 ;F.:2 ;c:::: ;ZO ;Z9 ;E5; "P=";P
.:. 0 t"iE::-::T t'1
70 EtlD

- RESULTS -

RU~1

?1

WHAT VALUE SHOULD BE ASSIGNED TO P?27
1 234 567

'71 .5

WHAT VALUE SHOULD BE ASSIGNED TO P?-QQ
1 .5
::: • 1

DONE

PRINT Statement

GENERAL FORM:

statement number PRINT expression, expression, " " "

or

statement number PRINT "any text" ; expression; " " "

or

4.5

F.~= 27

statement number PRINT "text" ; expression; "text", "text" ; " " "

or

6

statement number PRINT any combination of·text and/or expressions and/or TAB, LIN, and SPA

or

statement number PRINT

2-18

The PRINT statement causes the value(s) of the expression(s) to be output to the terminal device.
In addition, it causes the terminal device to skip a line when used without an operand and causes
text within quotes to be printed literally.

The terminal device may be a user terminal or the line printer.

Note the effects of , and ; on the output of the sample program. If a comma is used to separate
PRINT operands, up to five fields will be printed per line. These five fields begin in columns 0, 15,
30, 45, and 60. If semicolon is used, up to twelve "packed" numeric fields will be output per line;
the exact number depends on the size of each numeric field. If semicolons are used between text
in quotes, it is possible to print a full 72 characters on a line.

A carriage return and linefeed are output after the execution of any PRINT statement unless the
list of items to be printed is terminated by a comma or semicolon, in which case the next PRINT
statement will begin on the same line.

Values output by PRINT statements are in one of four possible numeric formats, depending on the
value. These values and their formats are:

Numeric Value Ranges Output Format Examples

-999 ~ integer ~ 999 -dddbb b733bb
-214bb

-32767bbb
-32767 ~ integer ~ -1000 -dddddbbb -1000bbbb
and b1000bbbb
1000 ~ integer ~ 37267 b37267bbb

.000001 ~ all other -dddddddbbbb -131072.bbbb
integers or real numbers (one d is a decimal b131072.bbbb
~ 999999.5 point, trailing O's b14.6bbbbbbb

are suppressed) -.003456bbbb

any number, n, where
n < .000001 -d.dddddE±ddbbb -6.91120E+ 15bbb
or
999999.5 ~ n

d is one decimal digit
- is the sign, if negative
± is the appropriate sign
b is a space

2-19

RUN

Insertion of the special functions TAB, S~~, and ~IN into the output list provides carriage control:

TAB (expression)

SP A (expression)

LIN (expression)

Causes the carriage to move to the specified print column (0-71). No
action is taken if the move would be to the left. The carriage moves to
the beginning of the next line if expression >71. (To TAB beyond
column 72 see PRINT USING statement.)

Causes carriage to skip specified number of spaces ("print that number of
blanks"). A negative expression does nothing. If more spaces are requested
than remain in the line, the carriage moves to the beginning of the next line.

Generates a carriage return and the specified number of linefeeds. If the
expression is negative, then no carriage return is generated. LIN (0) pro
duces a single carriage return.

OC printed in a character string causes a carriage return to be output instead.

NC printed in a character string causes a linefeed to be output instead.--

The PRINT USING statement, which provides increased output formatting capabilities, is described
in Section VIII.

Sample Program 1

10 FOR N=-5 TO 30
20 PRINT 2·H~;
:::: 0 t·~ E ::.:: T t~

40 END

- RESULTS -

f;

.03125 .125 .25 t:"
• "_I 1 2

4
4096

16

524288. 1.04858E+06

64

1.67772E+07 3.35544E+07
5.36871E+08 1.07374E+09

DONE

12::: 25E, 512 1024
::::c~7E.::: • 65536. 131072. 262144.
2.0'3715E+06 4.19430E+06 8.38861E+06

6 .71 0::::'3E + 07 1.34218E+08 2.68435E+08

2-20

Sample Program 2

1
2

4

LET A=B=C=D=E=F=G=14
LET Dl=E'3=20
PRINT A~Dl,B~C,E9
PRINT A/B,B/C/Dl+E9

0= ,_"
6
7u
:30

PR I tH "NOTE THE POI.oIER TO E",/ALUATE At'~ E::'::PF:E:SS I ON At'm PR I ~n "
PR I tH "THE "","ALUE I n THE SAt'1E :S:TATEt'1EtH."
PRItH
REt'1: "PR I tH" 1.0.1 I TH NO OPERAt'm CAIYSES THE TELEPR I tHER TO
REM: SKIP A LINE.
PRItH ""'A'" DI",/IDED B'r' "'E9'" =" ;A,"'-E9

FRItH
PRItH "11111", "2222c'" ,"33::;:::;:3", "AAAAA" ~ "BBBBB" ,"CCCCC"
PRItH "11111"; "22c'22"; "33333"; "AAAAA'; "BBBBB" ~ "CCCCC"
PRInT A,B,C~D,Di~E~F~E9~G
PRINT A;B;C;D;Dl;E;F;E9;G
PRItH

'30
100
110
120
130
140
150
160
170

PR UH TAB 0:: :::::0 ; "CARR I AGE" ; :S:PA 0:: '5::0 ; "CotHROL " ; L Hi(2::0 ; "FUtK:T I Dt--l:S:"
E~m

- RESULTS -

14 20 14 14
1 20.05

NOTE THE POWER TO EVALUATE AN EXPRESSIon AND PRINT
THE VALUE IN THE SAME STATEMENT.

11111 22222
cccce
111112222233333AAAAABBBBBCCCCC

14 14 14
14 14 20
14 14 14 14 20 14

CARRIAGE CotHROL

FUt'1CTIDt-C

2-21

14

AAAAA

14
14

20 14

20

BBBBB

20

END and STOP Statements

GENERAL FORM:

any statement number STOP

any statement number END

highest statement number in program END

Terminates execution of the program and returns control to TSB.

The highest numbered statement in the program must be an END statement.

END and STOP statements may be used in any portion of the program to terminate execution.

END and STOP have identical effects; the only difference is that the highest numbered statement
in a program must be an END statement.

EXAMPLES:

200 IF A # 27.5 THEN 350

300 5 TOP

350 LET A = 27.5

500 IF B # A THEN 9999

550 PRINT "B = A"
600 END
9999 END

2-22

SAMPLE PROGRAM

If you understand the effects of the statement types presented up to this point, skip to the
"COMMANDS" section.

The sample program on the next two pages uses several BASIC statement types.

Running the program gives a good idea of the various effects of the PRINT statement on terminal
device output. If you choose to run the program, you may save time by omitting the REM
statements.

After running the program, compare your output with that shown under "RUNNING THE SAMPLE
PROGRAM". If there is a difference, LIST your version and compare it with the one presented on
the next two pages. Check your PRINT statements for commas and semicolons; they must be used
carefully.

1 0 PEt'lAP~::: .. PEMAPV" OF' .. PE~l" E: U:::ED TO nm I CATE PH1APVS OF.'
20 PEMARK: COMMENTS THE USER WANTS TO INCLUDE IN THE TEXT
30 PEM: OF HIS PPOGPAM. THE COMPUTEP LISTS AND PUNCHES THE
40 PH1: "PEt·lAF'~::·" LINE ~ BUT DOES t·mT E::<ECUTE IT.
50 PEt'l: .. PP I tH" ALm~E GEt~EPATE::: A .. RETUPt·~" m~D .. L I t·~EFEED" •
60 PPItH
7 I) PR I tH .. TH I ::: PROGPA~l \...1 I LL AVERAGE ANY GROUP OF t·HJt·lE:EPS"
:::: 0 PP I tH .. 'lOU :::PEC I F\' • IT \...1 I LL A:::V ALL NECE::::::AP\' OUE:ST I mE"
'30 PR I tH .. mm I;; I ' ... 'E I NSTPUCT I mE • PPESS THE PETURN VE\' AFTEP"
110 PR I ~n .. 'lOU T\'PE \'OUR PEPL\·."
120 PPINT LIN(2)
140 REM: FIRST~ ALL VARIABLES USED IN THE PROGPAM ARE IN-
150 PEM: ITIALIZED TO ZERO (THETP VALUE IS SET AT ZERO).
160 LET A=N=Rl=S=O
lsr REM: NOW THE USER WILL BE GIVEN A CHANCE TO SPECIFY HOW
19 REM: MANY NUMBEPS HE WANTS TO AVEPAGE.
20 PP ItH .. HO\...I ~lAN\' Nl.lt·lBEPS DO 'lOU '-'.lAtH TO A'.,.'EPAGE";
21 InpUT N
22 PPItH
23 PR ItH .. 0 • K • ~ T'r'PE n~ m~E OF THE .. ;r·i ; .. t·~Ut·lE:ERS AFTEP EACH"
24 PR I tH .. OUE:::T I ON t·lAPK. Don ... T FORGET TO PRESS THE RETUR~~"

241 PR I ~n .. ~:::E"'" AFTER EACH NUt'1BER!!!"
250 PPINT LIN(2)
260 PPItH "Nm.l~ LET···::: BEGIn"
270 PR ItH
2:::: 0 PP I tH
:;: 0 0 PEt'l: "N" I::: NmJ IY:ED TO :::ET UP A .. FOP-~iD::r" LOOP I.,.IH I CH
310 REM: WILL READ 1 TO N NUMBERS AND KEEP A PUNNInG TOTAL.
320 FOP 1=1 TO N
33 I) n~PUT A
340 LET :::=S+A
35 (I t·~E::<T I
36 0 RE~l: .. I" I S A '·lAR I ABLE USED AS A COUtHEP FOP THE NUt'lBEP
370 PEt'l: OF T I ~lE::: THE TA:::~::: :::PEC I F I ED I ~i THE "FOR-~~E>::T" LOOP
3:3 0 RE~l: IS D::ECUTED. .. A" I S A '· ... AP I ABLE U:::ED TO F.:EPPESEtH
400 PEt'l: THE t·~U~1BER TO BE A ... ·'ERAGED. THE ',,·'ALUE OF "A" IS
410 REM: CHANGED EACH TIME THE USER INPUTS A NUMBEP.

2-23

420 PH1: .. S" I .. .IAS CHOSEt"~ AS THE ',lAP I ABLE TO PEPPESEtH THE
430 REM: SUM OF ALL NUMBER TO BE AVEPAGED. AFTER THE LOOP
440 REt'l: E: E::<ECUTED .. t·r T H1ES ~ THE PF.'oGRAt'l CotH H1UE:S: •
460 REM: A SUMMARY IS PRINTED FOR THE USER.
470 PPItH
4:::0 PPItH
49 (I PP I tH N;" nUt'lBEPS !...lEPE I NFUT • "
500 PP ItH
51 0 PP I tH "THE I R SUt'l I :S: : " ;:s:
520 PPItH
53 (I PF: I tH "THE I P A',lERAGE I:::"; S····N
540 PRItH
550 PP I tH
570 PEM: NOW THE USER WILL BE GIVEN THE OPTION OF QUITTING
580 PEM: OP PESTAPTING THE PPoGRAM.
59 Pf::: I tH "DO 'lOU !..IAtH TO A"lEPAGE mmTHER GPOUP OF t·H..It'1:E:EP·::··;:-"
60 PPItH
E,1 PP I tH "T\'PE 1 IF \'E::: ~ 0 I F NO"
6i:: PP ItH "BE :S:UPE TO PRE:S:S THE PETUPN ~:::EY AFTEP 'lOUP F'EF'L'"(."
6:::: PP ItH
64 PPItH "'loUP PEPL\"';
65 It'WUT PI
66 IF Pl=1 THEN 120
67 PEM: THE FOLLOWING LINES ANTICIPATE A MISTAKE IN THE
671 PEM: PEPLY.
6:::: 0 IF P 1 ~~ 0 THEt'1 70(1
690 GoTO 720
7 (I (I F'P I tH "TO PE I TEPATE ~ 'lOU :::HoULD T'y'PE 1 IF 'y'E:S: ~ 0 I F NO ~ ~ ~ "
710 GoTo 640
720 Et·m

Running The Sample Program

THIS PPoGPAM WILL AVEPAGE ANY GPOUP OF NUMBERS
YOU SPECIFY. IT WILL. ASK ALL NECESSAPY QUESTIONS
AND GIVE INSTPUCTIoNS. PPESS THE PETUPN KEY AFTEP
YOU TYPE yoUP PEPLY.

HOW MANY NUMBERS DO YOU WANT TO AVEPAGE?5

O.K.~ TYPE IN ONE OF THE 5 NUMBEPS AFTER EACH
QUESTION MARK. DON~T FOPGET TO PRESS THE RETURN
KEY AFTER EACH NUMBER~~!

2-24

t·~m.l, LET ... :S: BEG I t~

'?92.7
·?7 13.5

5 NUMBERS WERE INPUT.

THEIR SUM IS: 442.8

THEIR AVERAGE IS: 88.56

DO YOU WANT TO AVERAGE ANOTHER GROUP OF NUMBERS?

TYPE 1 IF YES, 0 IF NO
BE SURE TO PRESS THE RETURN KEY ~FTER YOUR REPLY.

'y'OUR REPL'r'?2
TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF NO~~~
'y'OUR PEPL'y'? 0

COMMANDS

Remember the difference between commands and statements (See "Statements" in this section).

Commands are direct instructions to the system, and are executed immediately. They are used to
manipulate programs, and for utility purposes.

Note that all TSB commands may be abbreviated to their first three letters. If information is
required or permitted after a command, a hyphen "-" must be included. For example, when
logging in:

Do not try to memorize all of the details in the COMMANDS subsection. The various commands
and their functions will become clear to you as you begin writing programs.

2-25

I

HELLO Command

GENERAL FORM:

HELLO-idcode, password, terminal type

HEL-idcode, password

The HELLO command is used to log on to the TSB system. The user's idcode and password are
assigned by the system operator. The terminal type parameter informs TSB of the type of user
terminal being logged on. Terminal type is specified as one numeric digit as follows:

Not specified, or 0 = HP 2600A, HP 2749A/B, IBM 2741, or HP 2640A (default)
1 = Execuport 300 or Texas Instruments Silent 700
2 = ASR-37 or GE TermiNet 30
3 = GE TermiNet 300, GE TermiNet 1200, or HP 2762A/B
4 = Memorex 1240

Failure to specify the correct type number may result in a loss of characters.

Several users with the same idcode may be logged on to the computer simultaneously, using
different terminals.

EXAMPLES:

• HELLO-D007,POST C,2
HEL-Z123,TSB
HEL-A453,GEORGE,3

2-26 Dec 1975

BYE Command

GENERAL FORM: BYE

The BYE command is used to log off the TSB system.

Entry of this command logically disconnects the user from the TSB system. Telephone connection
is broken.

EXAMPLE:

BYE
009 MINUTES OF TERMINAL TIME

ECHO Command

GENERAL FORM:

ECHO-ON

or

ECHO-OFF

The ECHO command allows use of half-duplex terminal.

Users with half-duplex terminal equipment must first log on, then type the ECHO-OFF command;
then input and output becomes legible.

ECHO-ON returns a user to the full-duplex mode.

This command may be abbreviated to its first three letters.

EXAMPLES:

ECHO-OFF
ECH-ON

2-27

RUN Command

GENERAL FORM:

RUN

RUN- statement number

Entry of the RUN command starts execution of a program at the lowest numbered statement when
used without specifying a statement number. It starts execution of a program at the specified
statement when a statement number is used.

Note that when RUN- statement number is used, all statements before the specified statement will
be skipped. Variables defined in statements which have been skipped are therefore considered to be
undefined by TSB, and may not be used until they are defined in an assignment, INPUT, ENTER,
READ, or LET statement.

A running program may be terminated by pressing the break key; or, to terminate a running pro
gram at some point when input is required, type CC

•

EXAMPLE:

RUN

OR

RUN- 300

LIST Command

GENERAL FORM:

LIST

LIST- statement number

LIST- statement number, statement number

LIST-, statement number

LIST- statement number, statement number ,P

LIST- P

LIST - statement number, P

LIST-, statement number, P

This command produces a listing of all statements in a program (in statement number sequence)
when no statement number is specified.

2-28

When a statement number is specified, the listing begins at that statement.

When a second statement number is specified, listing ends with that statement.

When a "," and a statement number appear, listing starts at the beginning and ends with the
specified statement.

When "P" is specified, the listing is spaced for cutting into ll-inch sheets sized for binding or filing.
"P" must be the final parameter, and must be preceded by a comma if it follows other parameters.

A listing may be stopped by pressing the break key. Library programs designated "RUN ONLY"
(protected) by the System Master or'Group Master cannot be listed. LIST may be abbreviated to
its first three letters.

EXAMPLE:

LIST
LIST-IOO
LIST-laO, 200

SCRATCH Command

GENERAL FORM:

SCRATCH

or

SCR

This command deletes (from memory) the program currently being accessed from the user terminal.
The user's work area is cleared including the program name.

Scratched programs are not recoverable. For information about saving programs on paper tape or
in your personal library , see the NAME and SAVE commands in Section III, and the PUNCH
command in this section.

EXAMPLE:

SCRATCH

OR

SCR

2-29

RENUMBER Command

GENERAL FORM:

REN

or

REN-number assigned to first statement

or

REN-number assigned to first statement, interval between new statement numbers

or

REN-number assigned to first statement, interval between new statement numbers, starting
statement number, ending statement number

or

REN-number assigned to first statement, interval between new statement numbers, starting
statement number

The RENUMBER command is used to renumber statements in the current program.

Statement numbers referenced within GO TO, GOSUB ... Return, IF ... THEN, RESTORE, and
PRINT USING statements are automatically replaced with the appropriate new number.

Starting statement number and ending statement number refer to line numbers in the original pro
gram at which the renumbering is to start and end.

If ending statement number is not specified, it is assumed to be the last statement in the program.

If starting statement number is not specified, it is assumed to be the first statement in the program.

If both starting and ending statement numbers are omitted, the entire program is renumbered.

If no interval is specified, the new numbers are spaced at intervals of 10, from the beginning
statement.

If no parameters are stated, the entire program is renumbered starting with statement 10 at intervals
of 10.

RENUMBER can not be used to change the order of statements in a program.

Any parameter may be omitted, but all parameters following it must also be omitted.

2-30

EXAMPLES:

RENUMBER
REN
REN-IOO
REN-IO, 1
REN-20, 50
REN-IO, 10, 50, 100

PUNCH and XPUNCH Commands

GENERAL FORM;

PUN

PUN- statement number

PUN- statement number, statement number

PUN- statement number, statement number, P

PUN- , statement number

PUN-P

XPU

XPU- statement number

XPU- statement number, statement number

XPU- statement number, statement number, P

XPU- , statement number

XPU-P

These commands punch a program onto paper tape if the user terminal has a paper tape punch;
also punches the program name, and leading and trailing feed holes on the tape; lists the program
as it is punched. Punching can begin and/or end at specified statements; "P" provides the pagination
option (see LIST).

If the user terminal is not equipped with a paper tape reader/punch, only a listing is produced.

Remember to press the paper tape punch "ON" button before pressing the return after PUNCH.

2-31

XPUNCH produces the same results as punch, but adds an X-OFF character at the end of each line
(before return linefeed) to enable other BASIC programs to read the paper tape as data. (See
Appendix B.)

EXAMPLES:

PUNCH
PUN- 100 ... 200
PUN- 100 ... 200 ... P
PUN-65
PUN-.1 300
XPUNCH
XPU- 65 ... P
XPU- P

TAPE Command

GENERAL FORM:

TAPE

or

TAP

The TAPE command informs the system that following input (a group of BASIC statements) is
from paper tape.

TAPE suppresses any diagnostic messages which are generated by input errors, as well as the auto
matic linefeed after return. The KEY command, KEY return, (or any other command except
HELLO, BYE, or SCRATCH), causes the diagnostic messages to be output to the user terminal,
ending the TAPE mode.

TSB responds to the TAPE command with a linefeed after which the user may activate the tape
reader START switch.

This command is illegal if entered from an IBM 2741 Communication Terminal.

EXAMPLES:

TAPE
TAP

2-32

KEY Command

GENERAL FORM: KEY

The KEY command informs the system that following input will be from the user terminal key
board; used only after a TAPE (paper tape input) sequence is complete; causes error messages
suppressed by TAPE to be output to the terminal.

Any command (except HELLO, BYE, or SCRATCH), followed by a return has the same effect as
KEY. Commands substituted for KEY in this manner are not executed if diagnostic messages
indicating syntax errors in BASIC statements were generated during tape input.

EXAMPLE:

KEY

LPRINTER Command

GENERAL FORM:

LPRINTER[-character string]

or

LPR[-character string]

The LPRINTER command requests that system designate the line printer as the user's output
device.

If successful, a linefeed occurs at the user's terminal. The line printer performs a page eject and
the character string, if specified, is printed. The character string may be 1-132 characters in
length.

Once assigned to a user, the line printer is designated as that user's output device and output
generated by the next entered command is printed on the line printer. After the entered command
is executed, or when the program ends (or is terminated by the user) line printer control is returned
to the system and the message LP FREE is displayed on the user's terminal.

Whenever an LC is encountered in output to the line printer, the line printer performs a page
eject. (For example, whenever LC is embedded in a LPRINTER command character string,
or in a program listing or program output.)

2-33

I

LINE PRINTER CARRIAGE CONTROL: The line printer connected to the system may be one of
the following:

Model No. Carriage Width Print Speed

HP 2610A 132 columns 200lpm
HP 2613A 136 columns 300lpm
HP 2614A 132 columns 600lpm
HP 2617A 136 columns 600lpm
HP 2618A 132 columns 1200/1800 lpm
HP 2767A 80 columns 300lpm
HP 2778A 120/132 columns 300lpm

Data designated for line printer output should not exceed the carriage width of the line printer
because overprinting or truncation occurs (depending on the model used).

During execution of PRINT or PRINT USING statements (with the line printer designated as the
output device), those special characters which normally cause a return cause a line print with no
paper advance. Similarly, characters which normally cause a linefeed or returnllinefeed cause a
line print with paper advance.

All string characters except control characters and the DEL character are printed on the line
printer. Lowercase characters are printed as uppercase characters on line printers supporting the
64-character ASCII subset. Support of the 96-character ASCII subset can be obtained as an option
for the 2610A or 2614A; both lowercase and uppercase characters are printed if this option is
selected.

During execution of an ENTER statement (with the line printer designated as the output device),
an asterisk is displayed on the user's terminal to signal that data input is expected. Similarly, during
execution of an INPUT statement, an asterisk followed by a question mark is displayed on the
user's terminal. In addition, ANNOUNCE command messages from the system operator ,are not
sent to a user who has the line printer assigned as his output device.

When the line printer is designated as the output device, execution errors which result on~y in a
warning message cause the message to be printed on the line printer; execution with line printer
output continues. Errors fatal to execution result in loss of line printer control; execution halts
and control returns to the user's terminal. In addition, a system power failure results in loss of
line printer control.

CONTROL CHARACTERS: After line printer control has been established with the LPRINTER
command, mixing of output devices is permitted through use of two control characters:

Q C Suspends line printer output and routes subsequent output to the
user's terminal

WC Resumes line printer output

2-34 DEC 1975

These control characters must be entered before typing a command or when entering data during
execution of an INPUT or ENTER statement.

Messages

LP BUSY

LPDOWN

LP NOT AVAILABLE

LP FREE

ILLEGAL FORMAT

EXAMPLE:

Meaning

Displayed on user's terI!linal in response to LPRINTER
command if line printer is currently assigned to another
user.

Displayed on user's terminal if line printer becomes
disabled during output (printer power failure, out-of
paper condition, etc.). Line printer output resumes
after problem is corrected.

Displayed on user's terminal in response to LPRINTER
command if line printer is not connected to system
(notify system operator) or if line printer power is not
on.

Displayed on user's terminal when command or program
ends or when program is terminated by the user.

Displayed on user's terminal if the string specified in the
LPRINTER command exceeds 132 characters.

A user logs on the TSB System from an ASR-37 user terminal with idcode B003 and password
PSWD. He creates a BASIC program, requests control of the line printer, and enters the RUN
command.

The user terminal display appears:

READ,)-'
10 FOR X = 1 TO 10
15 PRItH "TE:S:TLP ";
20 ND::T >~
25 PRItH "EnD OF TEST"
:30 EnD
LPR-PR I ~nER TEST

RUN
LP FREE

DONE

User enters HELLO command

System response
User creates BASIC program

statement
by

statement
until complete

User enters LPRINTER command
(Response: CR/LF)

User enters RUN command
System response on completion of R UN

2-35

The line printer output appears:

(PAGE EJECT)

PRINTER TEST
TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP TESTLP
END OF TEST

TIME Command

GENERAL FORM: TIME

This command causes TSB to inform the user of terminal time used since log on, and total time
used for the account.

Time used by each idcode is recorded automatically by TSB. The system operator controls the
accounting system. Consult your system operator for information about your system's accounting
methods.

EXAMPLE:

TIME
CONSOLE TIME = 12 MINUTES. TOTAL TIME = 1193 MINUTES.

MESSAGE Command

GENERAL FORM:

MESSAGE-character string

or

MES-character string

The MESSAGE command sends a character string to the system operator, preceded by the user's
port number.

2-36

Can be used to request information from the system operator, or to have programs sanctified,
desecrated, copied, bestowed, or loaded from or dumped to magnetic tape (see Appendix D).

If the system operator's message storage area is full, the message:

CONSOLE BUSY

will be printed on the user's terminal, indicating that the message has not been sent and should be
entered again.

The maximum message size is 68 characters; additional characters are ignored.

EXAMPLE:

MES-PLEASE SANCTIFY PROGRAM "DUMMY", USER J122.

Break Key

GENERAL FORM: break (Press the break key.)

Pressing the break key terminates a program being executed (RUN) unless the break capability
has been disabled (see "BRK Function" in Section III), or terminates the execution of any
command producing output.

Pressing the break key signals the computer to terminate a program, producing the message: STOP.

Depending on the type of terminal, this key may appear on the keyboard as INTRPT, BRK, ATTN,
INTERRUPT, etc.

When break is pressed during a listing, the message STOP is output.

Pressing break will not terminate the program if it is awaiting input from the keyboard while
executing an INPUT or ENTER statement. In this case the only means of ending the program
is typing:

which produces the DONE message.

break will not delete a program except the HELLO program, or a program which was chained
to from HELLO. Type RUN to restart the program. (See also COM, Section III.)

2-37

SECTION III
Advanced BASIC

This section describes more sophisticated capabilities of BASIC.

The experienced programmer has the option of skipping the "Vocabulary" subsection, and briefly
reviewing the commands and functions presented here. The most important features of the TSB
system - - files, matrices, and strings are explained in the next three sections.

The inexperienced programmer need not spend a great deal of time on programmer-defined and
standard functions. They are shortcuts, and some programming experience is necessary before
their specifications become apparent.

TERM: ROUTINE

Defined: A sequence of program statements which produces a certain result.

Routines are used for frequently performed operations. Using routines saves the programmer the
work of defining an operation each time he uses it, and saves computer memory space.

A routine may also be called a program, subroutine, or sub-program.

The task performed by a routine is defined by the programmer.

Examples of routines and subroutines are given in this section.

3-1

TERM: ARRAY

Defined: An ordered collection of numeric data. A single program can have up to about 4900
total array elements (numeric values).

An array variable is any single alphabetic character, A through Z. Subscripted variables define
elements in an array. AI, written A(1), is the first element in the single-dimensioned array called A.
In array A below, the value of A(I) is 5.0:

Array A

Element Value

5.0

2 3.2

3 1.1

4 0.3

Double subscripts are used to define elements in two-dimensioned arrays, referring to a row and
column position within an array. Element B(I,3) in array B has the value appearing in the first row,
third column. In this case the value of B(I,3) is 4.

Array B

Column 1 Column 2 Column 3

Row 1 6 5 4

Row 2 3 2

Row3 o 9 8

Array B is a three-by-three array. Arrays need not be square.

If a one-dimensional array has more than ten elements or a two-dimensional array (matrix) has
more than 10 rows and 10 columns, a DIM (dimension) statement is required. The DIM statement
is described in Section V, which covers matrices; a matrix is a rectangular array of elements subject
to mathematical operations according to specified rules.

3-2

-'

TERM: STRING

Defined: 0 to 72 characters enclosed by quotation marks.

Quotation marks may not be used within a string, except when the string is input using an ENTER
statement, described later in this section.

Sample strings: "ANY CHARACTERS!?* / ---"
"TEXT 1234567 ... "

TERM: FUNCTION

Defined: The mathematical relationship between two variables (X and Yfor example) such that
for each value of X there is one and only one value of Y.

The independent variable is called an argument; the dependent variable is the function value. For
instance, in the statement:

100 LET Y = SQR(X)

X is the argument; the function value is the square root of X; and Y takes the value of the positive
root.

TERM: WORD

Defined: The equivalent of approximately two BASIC characters or one-half of a number.

The term "word" is used to define the basic unit of computer storage. The TSB system operates on
computers having a word structure of 16 binary bits. Each character in BASIC occupies 8 bits of
computer storage; each number (when used in computation) occupies 32 bits. A numeral that
appears in a literal string (Section VI) is not used for computation, and is considered to be a
character.

Therefore, two characters will fit into one computer word, while one number will require two
computer words. Actually, the TSB system requires a few additional computer words of storage,
so programs and files will require slightly more storage than one word for each two characters or
two words for each number. Each user has a working area of 10,000 words. The user need not
normally be concerned about computer words.

3-3

STORING AND DELETING PROGRAMS

Up to this point manipulation of programs has been limited to the "current" program, that is, the
program being written or run at the moment. The only means of saving a program introduced thus
far is the PUNCH command.

The commands on the following pages allow the user to create his own library of programs on the
Time Shared BASIC system. Library programs are easily accessed, modified, and run.

The experienced programmer need only review the commands briefly - they do what their names
imply: NAME, SAVE, etc.

A word of caution for the inexperienced programmer: it is wise to make a "hard" copy (on paper
tape) of programs you wish to use frequently. Although it is easy and convenient to store programs
"on-system", you will make mistakes as you learn, and may accidentally delete programs. It is
much less time consuming to enter a program from paper tape than to rewrite it!

LENGTH Command

GENERAL FORM: LEN

The LENGTH command causes TSB to print the number of words in the program currently being
accessed from the terminal. This is the amount of "storage space" needed to SAVE the program.

Each user has a working space of over 10,000 words (20,000 characters or 5,000 numbers).
LENGTH is a useful check on total program length when writing Long programs. During execution,
programs have temporary tables, buffers, etc. which require additional storage space. This larger
total length is not permitted to exceed the user's working area. See "Memory Allocation by a
User," Section IX.

EXAMPLES:

LENGTH
3172 WORDS
LEN

• 0151 WORDS

3-4 DEC 1975

NAME Command

GENERAL FORM:

NAME-Program name of 1 to 6 characters

or

NAM-Program name of 1 to 6 characters

This command assigns a name to the program currently being accessed from the teleprinter.

The first character of the program named may not be $ or *. These symbols are used to access the
System Library ($) and the Group Library (*). The comma (,) and quote mark (") may not be used
in the name of a program.

The program name must be used in certain TSB operations (see the SAVE, CSAVE, KILL, GET,
and APPEND commands in this section).

Note: If NAME- is entered with no program name or if the hyphen
is omitted, the program cannot be stored with the SA VE or
CSA VE commands.

EXAMPLES:

NAME-PROG.l
NAM-ADDER
NAM-MYPROG

SAVE AND CSAVE Commands

GENERAL FORM: CSAVE orCSA

SAVE orSAV

These commands are used to save a copy of the current program in the user's private library.
(CSAVE stores the program in semi-compiled form so that it will CHAIN more quickly. See CHAIN.)

A program must be named before it can be saved. (See NAME, this section.)

3-5

•

No two programs in a user's library may have the same name. The procedure for saving a changed
version of a program is as follows (the program name is SAMPLE):

KILL-SAMPLE
NAME-SAMPLE
SAVE

(Deletes the stored version)
(Names the current program)
(Saves the current program, named SAMPLE)

For instructions on opening a file, see Section IV, "FILES."

EXAMPLES:

SAVE
SAY
CSA

GET, GET-$, and GET-* Commands

GENERAL FORM

GET- name of a program in user's library

GET-$ name of system library program

GET -* name of group library program

GET- retrieves the specified program, making it the program currently accessed from the user's
terminal.

GET-$ retrieves the specified program from the system library, making it the program currently
accessed from the user's terminal.

GET-* retrieves the specified program from the group library.

GET- performs an implicit SCRATCH. The program that was the current program prior to using
GET - can not be recovered from the system unless it was previously saved with either SAVE or
CSAVE.

For more information on publIC library programs, see "Library" and "Group" in this section.

EXAMPLES:

GET-MYPROG
GET-$PUBLIC
GET-$NAMES
GET -~: DA T E S

3-6 DEC 1975

KILL Command

GENERAL FORM:

KILL-program or file to be deleted

or

KIL-program or file to be deleted

This KILL command deletes the specified program or file from the user's library. (Does not delete
the program currently being accessed from the user's terminal, even if it has the same name.)

Caution: Files have only one version, the stored one. A killed
file is not recoverable.

A file may not be killed while it is being accessed by another user.

KILL should be used carefully, as the killed program can not be recovered from the system unless
the killed program was also the current program.

The SCRATCH command deletes the program currently being accessed from the user terminal
while KILL deletes a program or file stored on-system. The stored and current versions of a pro
gram occupy separate places in the system. They may differ in content, even though they have the
same name.

The sequence of commands for changing and storing a program named PROG** is:

GET-PROG** (Retrieves the program.)
(make changes)
KILL-PROG** (Deletes the stored version.)
SA VE (Saves the current version.)

, ,

EXAMPLE:

KILL-PROG12
KIL-EXMPLE
KIL-FILEIO

3-7

----~

APPEND Command

GENERAL FORM:

APPEND-program name

or

APP-program name

or

APP-$system library program name

or

APP-*group library program

This command retrieves the named program from the user's own library, or the group or public
libraries and appends it (attaches it) to the program currently being accessed from the user's
terminal.

The lowest statement number of the appended program must be greater than the highest statement
number of the current program.

Programs saved by a CSA VE command may not be referenced in an APPEND command.

Caution: If an appended public library program is "run-only",
the entire program to which it is appended becomes
"run-only". ("Run-only" programs may not be
listed, punched, or saved.)

The $ preceding system library program names is needed to append them; the * is needed to append
group library programs. For details, see "Library" in this section.

EXAMPLES:

APPEND-MYPROG
APP-MYPROG
APPEND- $ PUB LI C
APP-$SYSLI B
APP-::GPROG

3-8

DELETE Command

GENERAL FORM:

DEL-statement number at which deletion starts

or

DEL-statement no. at which deletion starts, statement no. at which deletion ends

DEL-statement number erases the current program statements after and including the specified
statement. DEL-l has the same effect as SCRATCH, except that DEL-l does not remove the
protected-program state, or the program name.

DEL-statement number, statement number deletes all statements in the current program between
and including the specified statements. If both statement numbers are the same, only that state
ment is deleted.

It is sometimes useful to save or punch the original version of a program which is being modified,
before using the DELETE statement.

Deleted statements are not recoverable (unless a copy of the program in the user swap area also
resides on the disc).

EXAMPLES:

DELETE-27
DEL-27, 50
DEL-27,27

3-9

LIBRARY, GROUP, and CATALOG Commands

GENERAL FORMS:

LIBRARY

or

LIB

GROUP

or

GRO

CATALOG

or

CAT

These commands are used to print an alphabetic listing of programs and files stored by the system.
LIBRARY or LIB produces a list of system programs and files. GROUP or GRO produces a list
of group programs and files. CATALOG or CAT produces a list of programs and files stored in the
user's own program library.

In the examples below, the code letters preceding LENGTH indicate:

F - the entry is a file.

C - the entry is a program in semi-compiled form. If neither a C nor an F appears,
the entry is a program.

P - the entry is "protected," may be either a program or a file.

S - the entry is "sanctified," may be either a program or a file. (See Appendix D.)

Code letters may be combined as in the first entry, AAA in the LIBRAR Y listing.

Length is given in words for programs, records for files.

Protected system or group programs may be run but not listed, saved or punched. Protected
system or group files may not be accessed by other users. A user's own programs may not be
protected, but may be sanctified by the operator.

3-10

Each user has access to the three libraries described. He has complete control over his own library,
using any of the commands used to store, delete, or retrieve programs and files.

Each user is part of a group, all having IDcodes with the same letter and same first digit. The user
whose IDcode ends in 00 is the group librarian, or Group Master. The Group Master is responsible
for maintaining the group library, entering and deleting programs in the same manner as the System
Master controls the system library.

The system library is under the control of the System Master, user AOOO. Only the System Master
(actually any user with access to the password for IDcode AOOO) can enter programs or files into
the system library, or delete programs and files from the system library.

The System Master and all Group MaSters have the responsibility of controlling access to their
libraries. Regular users can not make entries to, deletions from, or changes to either the system
library or their group library. The System Master and all Group Masters have access to special
commands called PROTECT, which makes specified programs available on a run-only basis and
files unavailable to regular users, and UNPROTECT, which reverses the procedure. These special
commands are described in the 20854A Timeshared BASIC/2000, Level F system operator's
manual, part number 02000-90074.

A user can call a program from the system library by typing GET-$, followed by the program name
exactly as it appears in the LIBRARY, or append the program by typing APP-$ followed by the
program name. GET-* and APP-* are used to access group programs.

Files are accessed with the FILES statement, described in Section IV.

Any of these listings may be terminated by pressing the break key.

The system prints an error message if the user attempts to access a non-existent program, list or
punch or save a protected program, or GET or APPEND a file.

3-11

EXAMPLES:

LI BRARY

NAME

AAA

BAC

BBB

BUDGEU

CC

FFF

GOGO

GROUP

NAME

B

CAl CAL

CATALOG

NAME

BLOCK2

LENGTH

FPS 2

F

F

F

P

F

F

6

46

12

31

34

151

LENGTH

30

4004

LENGTH

128

NAME

AB

BAD

BFILE

C

CCC

GARY1

G5

NAME

B1

CALC

NAME

CHECK

LENGTH

F 230

C 18

F 128

F 31

F 31

95

F 128

LENGTH

F 128

C 4081

LENGTH

C 55

3-12

NAME LENGTH

BAA F 2

BB F 46

BUDGE 12

C.R S 1220

D F 100

GARY2 83

STRING F 1

NAME LENGTH

B2 F 128

MBLOCK 1655

NAME LENGTH

800

NAME

BAB

BBA F

BUDGET

CB F

F1 F

GARY3

XY F

NAME

BLOCK2 F

SP 1 F

NAME

TEST

P

LENGTH

13

2

3431

230

64

188

256

LENGTH

128

400

LENGTH

3

SUBROUTINES AND FUNCTIONS

The following pages show TSB features useful for repetitive operations - subroutines, programmer
defined and standard functions.

The programmer-controlled features, such as multibranch GOSUB's, FOR ... NEXT with STEP,
and DEF FN become more useful as the user gains experience, and learns to use them as shortcuts.

Standard mathematical and trigonometric functions are convenient timesavers for programmers at
any level. They are treated as numeric expressions by TSB.

The utility functions TAB, SPA, LIN, SGN, TYP, and LEN also become more valuable with
experience. They are used to control or monitor the handling of data by TSB, rather than for
performing mathematical chores.

GOSUB ... RETURN Statement

GENERAL FORM:

statement number GOSUB statement number starting subroutine

statement number RETURN

The GOSUB statement transfers control to the specified statement number.

The RETURN statement transfers control to the statement following the GOSUB statement which
transferred control.

GOSUB ... RETURN eliminates the need to repeat frequently used groups of statements in a
program.

The portion of the program to which control is transferred must end with a RETURN statement.

RETURN statements may be used at any desired exit point in a subroutine. There may be more
than one RETURN per GOSUB.

Variables have the same meaning as in the main program.

3-13

EXAMPLE:

50 READ A2

60 IF A2<100 THEN 80

70 GOSUB 400

380 5 TO P (STOP frequently precedes the first statement of a subroutine,
to prevent accidental entry.)

390 REM--THIS SUBROUTINE A5K5 FOR A 1 OR 0 REPLY.

400 PRINT "A2 15>100"

410 PRINT "DO YOU WANT TO CONTINUE";

420 INPUT N

430 IF N #0 THEN 450

440 LET A2 = 0

450 RETURN

600 END

Multibranch GOSUB Statement

GENERAL FORM:

statement number GOSUB expression OF sequence of statement numbers . ..

GOSUB expression rounds the expression to an integer n and transfers control to the nth statement
number following OF.

Subroutines should be exited only with a RETURN statement.

The expression indicates which of the specified subroutines will be executed. For example, state
ment 20, above transfers control to the subroutine beginning with statement 300. The expression
specifies which statement in the sequence of five statements is used as the starting one in the
subroutine.

The expression is evaluated as an integer. Non-integer values are rounded to the nearest integer.

If the expression evaluates to a number greater than the number of statements specified, or less
than 1, the GOSUB is ignored.

Statement numbers in the sequence following OF must be separated by commas.

3-14

EXAMPLE:

50 READ A2

60 IF A2<100 THEN 80

70 GOSUB 400

380 S TO P (STOP frequently precedes the first statement of a subroutine,
to prevent accidental entry.)

390 REM--THIS SUBROUTINE ASKS FOR A 1 OR 0 REPLY.

400 PRINT "A2 IS>100"

410 PRINT "DO YOU WANT TO CONTINUE";

420 INPUT N

430 IF N #0 THEN 450

440 LET A2 = 0

450 RETURN

600 END

Multibranch GOSUB Statement

GENERAL FORM:

statement number GOSUB expression OF sequence of statement numbers . ..

GOSUB expression rounds the expression to an integer n and transfers control to the nth statement
number following OF.

Subroutines should be exited only with a RETURN statement.

The expression indicates which of the specified subroutines will be executed. For example, state
ment 20, above transfers control to the subroutine beginning with statement 300. The expression
specifies which statement in the sequence of five statements is used as the starting one in the
subroutine.

The expression is evaluated as an integer. Non-integer values are rounded to the nearest integer.

If the expression evaluates to a number greater than the number of statements specified, or less
than 1, the GOSUB is ignored.

Statement numbers in the sequence following OF must be separated by commas.

3-14

EXAMPLES:

20 GOSUB 3 OF 100,200,300,400,500
60 GOSUB N+1 OF 200,210,220
70 GOSUB N OF 80,180,280,380,480,580

Nesting GOSUB Statements

Nested GOSUB ... RETURN statements allow selective use of subroutines within subroutines.

GOSUB statements may be nested logically to a level of nine. More than nine exits without a
return may cause an error message.

RETURN statements may be used at any desired exit point in a subroutine. Note, however, that
nested subroutines are exited in the order in which they were entered. For example, if subroutine
250 (below) is entered from subroutine 200, 250 is exited before subroutine 200.

EXAMPLES:

100 GOSUB 200

200 LET A = R2/7
210 IF A THEN 230
220 GOSUB 250

250 IF A>B THEN 270
260 RETURN
270 GOSUB 600

3-15

FOR ... NEXT with STEP Statement

GENERAL FORM:

statement number FOR simple variable = expression TO expression STEP expression

This statement allows the user to specify the size of the increment of the FOR variable.

The step size need not be an integer. For instance,

100 FOR N = 1 to 2 STEP .01

is a valid statement which produces approximately 100 loop executions, increII}enting N by .01 each
time. Since no binary computer represents all decimal numbers exactly, round-off errors may
increase or decrease the number of steps when a non-integer step size is used.

A step size of 1 is assumed if STEP is omitted from a FOR statement.

A negative step size may be used, as shown in statement 40 below.

EXAMPLES:

20 FOR 15 = 1 TO 20 STEP 2
40 FOR N2 = 0 TO -10 STEP -2
80 FOR P = 1 TO N STEP R
90 FOR X = N TO W STEP (Nt2-V)

DEF FN Statement

GENERAL FORM:

statement no. DEF FN single letter A to Z (simple var.) = expression

This command allows the programmer to define functions.

3-16

~--

The simple variable is a "dummy" variable whose purpose is to indicate where the actual argument
of the function is used in the defining expression. After a function has been defined, the value of
that function is referenced whenever the function is used by the programmer. For example, in this
sequence M is a dummy variable:

10 LE T Y = 100
20 DEF FNA (M) = MilO
30 PRINT FNA (Y)
40 END
RUN
10

When FNA (Y) is called for in statement 30, the formula defined for FNA in statement 20 is used to
determine the value printed.

A maximum of 26 programmer-defined functions are possible in a program (FNA to FNZ).

Any operand in the program may be used in the defining expression; however, such circular
definitions as:

10 DEF FNA (Y) = FNB (X)
20 DEF FNB (X) = FNA (y)

cause infinite looping.

See the vocabulary at the beginning of this section for a definition of "function."

EXAMPLES:

60 DEF FNA (B2) = At2 + (B2/C)
70 DEF FNB (B3) = 7~B3t2
80 DEF FNZ (X) = XIS

3-17

General Mathematical Functions

The use of common mathematical functions is facilitated by pre-defining them as follows:

ABS (expression)

EXP (expression)

INT (expression)

LOG (expression)

RND (expression)

SQR (expression)

SGN (expression)

the absolute value of the expression

the constant e raised to the power of the expression value in statement 642
below, etN)

the largest integer';;;; the expression (INT (-3.5) would result in -4)

the logarithm of the expression to the base e

a random number between 0 and 1

the positive square root of the positively valued expression

returns: a 1 if the expression is greater than 0, a 0 if the expression equals 0,
a -1 if the expression is less than O.

All these functions may be used as expressions or as parts of expressions. LOG and SQR expressions
must have a positive value or a fatal error will occur. A random sequence can be achieved if the
sequential call to RND has a positive argument. Specification of a negative argument gives a
predictable result. A sequence of random numbers is repeatable if the initial call to RND has a
negative argument and is followed by a sequential call to RND with a positive argument.

EXAMPLES:

642 PRINT EXP(N)! ABS(N)
652 IF RND (0»=.5 THEN 900
662 IF INT (R) # 5 THEN 910
672 PRINT SQR (X); LOG (X)

3-18

Trigonometric Functions

The use of common trigonometric functions is facilitated by pre-defining them, as:

SIN (expression)

COS (expression)

TAN (expression)

ATN (expression)

the sine of the expression (in radians)

the cosine of the expression (in radians)

the tangent of the expression (in radians)

the arctangent (in radians) of the expression.

The trigonometric functions may be used as expressions, or parts of an expression.

The expressions (arguments) for SIN, COS, and TAN are interpreted as angles measured in radians.
ATN returns the angle in radians.

EXAMPLES:

500 PRINT SIN(X); COS(Y)
510 PRINT 3~SIN(B); TAN (C2)
520 PRINT ATN (22.3)
530 IF SIN (A2) <1 THEN 800
540 IF SIN (B3) = 1 AND SIN(X) <1 THEN 90

The LEN Function

GENERAL FORM:

The LEN function may be used as an expression, or part of an expression. The function form is

LEN (string variable)

The LEN function returns the length (number of characters) currently assigned to a string variable.

Note the difference between the LEN function and the LENGTH command. The command is used
outside a program, and returns the working length of the current program in two-character words.
The LEN function may be used only in a program statement.

EXAMPLES:

580 IF LEN (B$) >= 21 THEN 9999
800 IF LEN (C$) = R THEN 1000
850 PRINT LEN (N$)
880 LET P5 = LEN (N$)

3-19

The TIM Function

GENERAL FORM: TIM (X)

where if X = 0, TIM (X) = current minutes (0 to 59)

X = 1, TIM (X) = current hour (0 to 23)

X = 2, TIM (X) = current day (1 to 366)

X = 3, TIM (X) = current year (0 to 99)

The TIM function returns the current minute, hour, day or year.

Note the difference between the TIM function and the TIME command. The TIME command is
used outside a program and gives the console time and total time used. The TIM function can only
be used within a program statement.

The argument must be an integer in the range 0-3. Otherwise, an error results.

EXAMPLES:

580 IF TIM (0) - A > 15 THEN 9000
700 LET A3 = TIM (B)
800 PRINT "MINUTE" ,TIM (0), "HOUR", TIM (1), "DAY", TIM (2), "YEAR", TIM (3)

CHAIN Statement

GENERAL FORM:

statement number CHAIN "character string"

or

statement number CHAIN string variable

or

statement number CHAIN "character string" , expression

statement number CHAIN string variable, expression

This statement is used to link programs together. "Character string" or string variable specifies a
program in the user's own library, the group library or the system library, which is retrieved
(replacing the current program) and run.

3-20

Strings and string variables are described in Section VI. As applied to the CHAIN statement,
"character string" is the name of a program in one of the libraries; string variable is an alphabetic
character followed by a $ that leads to a character string that is the name of a program. Expression
is a line number in the named program. In the examples below, lines 20, 97, and 150 contain charac
ter strings. The other examples contain string variables.

If the first character of the program name, however defined, is $, the system will search the system
library; if the first character is *, the system will search the user's group library. If the first character
is neither $ or *, the system will search the user's own library. Note that the $ has different meanings
as the first character in a program name and when used to define a string variable.

If expression is not specified, the prpgram will be retrieved from the proper library and executed
normally - examples 20 and 50. Expression may be an actual line number as in examples 150 and
230, may be a variable as in example 97, or may be computed as in example line 200.

In any of the above cases common storage is allocated if used. (See COM.) Before execution can
begin, the program chained to must be compiled. Programs which are often chained to should be
stored in semi-compiled form by use of the CSAVE command. This significantly reduces the time
required to execute CHAIN statements.

Execution of the CHAIN statement can produce the same errors produced in executing the GET
command. Such errors terminate execution of the program attempting the chaining, which will
remain as the current program, with its common area (if any) intact.

EXAMPLES:

20 CHAIN "PROG2"
50 CHAIN V$
97 CHAIN "---", A

150 CHAIN "MELVIN", 80
200 CHAIN N$,Q+14
230 CHAIN A$,110

3-21

COM Statement

GENERAL FORM:

statement number COM list of variables, dimensioned arrays and strings

The COM statement is used to designate data that can be passed between two or more programs
without intermediate storage. A number of programs may be run sequentially, all accessing and
possibly changing data in the common area.

The equivalence of common variables in different programs is determined by their relative order in
the COM statements. Thus, if one program contains the statement

10 COM A,B1,C$(10)

and a second program contains the statements

1COMX
2 COM Y,Z$(10)

and the two programs are run in order, identifiers A and X refer to the same variable, as do identi
fiers B1 and Y, C$ and Z$.

There are certain restrictions on the use of COM:

1. COM statements must be the lowest numbered statements in the program.

2. A variable that is declared common in one program can be accessed by another program only
if all preceding common variables in both programs are of the same type and size. If the
common area in one program is smaller than that in another program to be run sequentially,
only the common variables in the smaller area will be preserved.

3. Arrays and strings which are to be in common must be dimensioned in the COM statement
- and they must not also appear in DIM statements.

Variables in COM should be initialized by the first program that uses them. After that, other pro
grams containing equivalent COM definitions can be executed by GET and RUN or CHAIN. The
COM variables will still have the same values. When a program with a common area terminates
(whether normally, or because of an execution error or because the user presses break) the variables
in common storage retain their values and will remain available until the user calls a program
(GET command) with a different common area, enters a BASIC statement, or deletes a file
(KILL command).

3-22

EXAMPLES:

10 COM A,B,C,Q$(63),F(3,6),Sl (In program A) All variables in common

10 COM J,K,L,C$(63),C(3,6),V (In program B)

10 COM A,B,C,Q$(63),F(3,6),Sl (In program A) Three variables in common

10 COM H,N,M,O (In program B)

10 COM A,B,C (In program A) No variables in common

10 COM S$(45),A,B,C (In program B)

10 COM A,B,C (In program A) All variables in common.

10 COM V (In program B)

30 COM B,C

ENTER Statement

GENERAL FORM:

statement number ENTER # variable 1

statement number ENTER expression, variable 2, variable 3

statement number ENTER # variable 1, expression, variable 2, variable 3

Allows the program to limit the time allowed for run-time data input, to check the actual time
taken to respond, to read in one string or numeric variable, to determine whether the input is of
the correct type, and/or to determine the current user's terminal number.

The form ENTER # sets variable 1 to the terminal number (between 0 and 31) of the user.

Expression sets the time limit; it should have a value between 1 and 255 seconds. Zero is treated as
1 and numbers greater than 255 are treated modulo 256. Timing starts when all previous statements
have been executed and any resultant output to the user terminal is completed.

Variable 2 returns the approximate time the user took to respond. If the user's response was of
the wrong type, such as alphabetic when numeric is expected, the value is the negative of the
response time. If the user failed to respond in time, the value is set to -256.

3-23

Variable 3, the data input variable, may be either a numeric or a string variable. A character string
being entered should not be enclosed in quotes, but may contain quotes, leading or trailing blanks
and embedded blanks. Only one data item can be entered per ENTER statement.

The ENTER statement differs from the INPUT statement in that a "?" is not printed on the user
terminal, and the TSB System returns to the program if the user does not respond within a specified
time limit. Also, the system does not generate a linefeed after the user types return.

A carriage return is a legitimate input to a string variable request.

A string that is too long to be assigned to a requested string variable is truncated from the right, and
the response time is negated.

Note: If the user fails to respond in time, the variable which was to be
input is not changed; if it was a number it may be undefined.

EXAMPLES:

100 ENTER #V
200 ENTER A,B,C$
300 ENTER #V,Kl,K2,K3
400 ENTER 25,L,Q

The BRK Function

GENERAL FORM: BRK(x)

where x < 0 returns current status of the BREAK capability.

x = 0 disables the BREAK capability.

x > 0 enables the BREAK capability.

The BREAK capability (key) may be disabled or enabled by execution of the BRK function within
the user's program. At the beginning of program execution, the BREAK capability is enabled
(default). Once disabled, it remains disabled until program execution is completed, the program
terminates because of an execution error, the BREAK command is entered by the system operator,
CC is typed into an input, or until the BRK function is executed with an argument greater than zero.

Because program execution may be completed before accumulated output is exhausted, care should
be taken when re-enabling the BREAK capability. To ensure that program output will not be
interrupted and lost, either an INPUT statement or an ENTER statement can be included in the
program just prior to the statement containing the BREAK enable function. This will cause the

3-24

program to pause until output is complete before continuing execution. For example, the following
program segment will disable the BREAK capability and print the value of "I" twenty times. On
encountering the ENTER statement, the program will pause until printed output is complete before
execution continues from statement 30.

5 Y=BRK(O)
10 FOR 1=1 TO 20
15 PRINT 111=11; I
20 NEXT I
25 ENTER I,A,B
30 Z=BRK(I)

99 END

For arguments equal to or greater than zero, the value returned after evaluation of the expression
depends on the previous condition of the BREAK capability. This value will be 1 if the capability
was previously enabled, or 0 if the capability was previously disabled.

To find the current status of the BREAK capability, enter an argument less than zero. If currently
enabled, a 1 is returned. If currently disabled, a 0 is returned.

If a program is in an infinite loop during execution and the BREAK capability is disabled, the
system operator can enter a BREAK command to enable the BREAK capability.

For terminals connected to the system through telephone lines, a loss of carrier for longer than two
seconds causes the user to be disconnected and automatically logged off the system. Similarly,
hardwired terminals that drop carrier and/or data set ready signals when turned off cause the user
to be automatically logged off the system. In either case, a disabled BREAK capability is returned
to the enabled condition.

EXAMPLES:

935 LET B = BRK(O)
940 Z = BRK(A+M)
945 PRINT BRK(Y)

3-25

SECTION IV
Files

For those problems that require permanent data storage external to a particular program, the TSB
system provides a data file capability. This allows flexible, direct manipulation of large volumes of
data stored within the system itself. Special versions of the READ, PRINT, MAT READ, MAT
PRINT, and IF statements allow you to read from and write onto mass storage files.

File programming offers two levels of complexity. Many problems can be solved using files treated
simply as serial access storage devices. In this case, the program reads or writes a serial list of data
items (either numbers or strings of characters) without regard to the underlying structure of the
file. However, with additional programming effort, any file can be used as a random access storage
device. In this case, the program breaks the file into a series of logical subfiles that can be modified
independently.

This section deals with the serial use of files, then internal file structure and random access use.
Explanatory programming samples follow each series of commands in this section.

TERM: FILE

Defined: An area of memory external to the program where numbers and strings of characters can
be stored and retrieved. Files are created by, and belong to, a particular user.

The user determines the name and size of a file. Files vary in size from 1 record to a maximum
determined by the device used to store them. The maximum size for files that are to be
sanctified is 32 records. (See Appendix D.) A record contains between sixty-four and 256 16-bit
words.

When a program stores some information in a file, the information remains there until it is changed
or the file is eliminated. Any program of a particular user can be written to access this information.

Each program must declare its files with a FILES statement before it can access them. Each pro
gram can access up to 16 different files at one time. Files being accessed by a program can be
changed by use of the ASSIGN statement.

4-1

For each file declared in the program, there is a file pointer that keeps track of the item in the file
currently being accessed by that program. The RUN command causes all these pointers to be reset
to the beginning of the file. The ASSIGN statement repositions the pointer to the beginning of a
specified file. As the program reads or writes on a file, the pointer for the file is moved through
the file.

SERIAL FILE ACCESS

This program writes all the data items out into the file in serial order. Each write operation begins
where the previous one left off. Then, to retrieve one of these items, the program resets the pointer
to the beginning of the file and reads through the items until it comes to the desired item. There is
only one pointer for each file. When the pointer is repositioned by either a READ or a PRINT
statement, it remains pointing to the next item in the file until it is repositioned by another file
control statement.

Try this example. It should print out the same numbers you type in.

EXAMPLE OF SERIAL FILE ACCESS:

OPEN-GHIJK,50

NAM-PROGI

100 FILES GHIJK

200 INPUT A,B,C,O

300 PRINT #l;A,B,C,O

400 INPUT A,B,C,O

500 PRINT #l;A,B,C,D

4-2

The OPEN command creates a new file.
GHIJK is the name of the file.
The file is 50 records long.

The FILES statement links the file
into the program. From now on, the
file is referenced by number; GHIJK
is file # 1.

This is a serial file PRINT statement.
It is identical to the normal PRINT
statement except that a file number
appears and the values of the variables
are written onto the file, not the
terminal.

This PRINT stores the new values of
the variables immediately following
the previous values in the file.

--- 600 READ #1,1

700 READ #1; H1,H2,H3

800 PRINT H1,H2,H3

900 READ #1; H1,H2,H3,H4,H5

1000 PRINT H1,H2,H3,H4,H5

2000 END

OPEN Command

GENERAL FORM:

This is a reset operation; it resets the
pointer for file # 1 to the beginning
of the file.

This is a serial file READ statement.
It assigns the first three values in the
file to the three variables specified.

This READs the remaining five values
in the file into the five variables given.
The values in the file are not disturbed.

OPEN- 1 to 6 character file name, number of records in file

OPE- 1 to 6 character file name, number of records in file, record size

OPE- 1 to 6 character file name, number of records in file

The OPEN command creates a file with a specified number of records of a specified size, and
assigns it a name.

The me that is opened is accessible only by the user idcode that opened it. The file remains open
until the same user kills it.

Note: Unprotected system library files can be read by all users,
and unprotected group files can be read by all members
of the group.

File names must conform to the same rules as program names except that a quotation mark (")
may appear in a file name.

The size of the file may vary from a minimum of 1 record to a maximum determined by the
peripheral devices on the system, the amount of unused storage, and the user's personal storage
limit.

DEC 1975 4-3

I

The size of a record must be between 64 and 256 words. If not specified, the system assumes
256 words. In any case, each record consumes 256 words of system storage.

If the system does not have enough storage space for the new file, the OPEN command is rejected
and an error message is printed:

SYSTEM OVERLOAD

If the user does not have enough space left for the new file in the amount set for him by the system
operator, the OPEN command is rejected and an error message is printed:

LIBRARY SPACE FULL

If the name given in the OPEN command equals the name of an existing file or program, the com
mand is rejected and an error message is printed:

DUPLICATE ENTRY

The OPEN command marks each record of the new file as empty. If the system is heavily loaded,
this process could take several minutes for very large files.

EXAMPLES:

OPEN-FILE27, 20, 64
OPEN-SAMPLE, 128

KILL Command

GENERAL FORM:

KILL-file to be deleted

KIL-file to be deleted

This command removes the named file from the user's library and releases the space it occupied
for further storage. Users can kill only their own files.

Files have only one version, the stored one. When a file is killed, all the information in it is lost.

4-4

If the file named is currently being accessed by a user on another terminal, the KILL command is
rejected and an error message is printed:

FILE IN USE

EXAMPLES:

KILL-NAMEXX
KILL-EXMPLE
KIL-FILEIO

FILES Statement

GENERAL FORM:

statement number FILES file namel,file name2,' .. ,file name16

The FILES statement declares which files will be used in a program; assumes that the files will be
opened (see OPEN command) before the program is RUN.

Up to four FILES statements can appear in a program, but only 16 files total can be declared
(duplicate entries are legal). The files are assigned numbers (from 1 to 16) in the order they are
declared in the program. In the EXAMPLES below, MATH is file #1 and #9, FILE27 is #7 and
DATA is#10.

These numbers are used in the program to reference the files. For instance, in the same example,

100 PRINT #2; A

would print the value of A into the file named SCORE. This feature allows most programming to
be done independently of the files to be used. The FILES statements may be added any time
before running the program.

Public or group library files to be read (they cannot be written on) must also be declared in a
FILES statement but with a $ or * preceding the file name. In the example, DATA is a public file;
GRP is a group file. When * is used without a program name as one of the arguments in a FILES
statement, the position occupied by the * symbol is reserved for a file to be specified later by an
ASSIGN statement. ASSIGN statements are described on the following page.

4-5

Users with the same I.D. number can share files, but only one user can write on a file at a time.
I.D. codes beginning with an "A" (e.g., A067) are an exception to the rule; they may read or write
on files at the same time.

EXAMPLES:

10 FILES MATH, SCORE, AND, SQRT, NAMES
20 FILES :~GRP, FILE27, SAMPLE
30 FILES MATH, $DATA, :~ , :~

ASSIGN Statement

GENERAL FORM:

statement number ASSIGN file name, file number, return variable, mask

statement number ASSIGN file name, file number, return variable

The ASSIGN statement is used to change the file referred to by a specified file number during the
execution of a program.

The parameters of an ASSIGN statement are:

file name

file number

return variable

The name of a file - - a literal string of up to six characters (seven if
the first character is $ or *) enclosed in quotes, or a string variable
leading to a literal string. The symbol $ as a first character indicates
a system file; * as a first character indicates a group file.

A number, variable or expression whose value is between 1 and 16,
indicating a file position. The file number should not exceed the
number of files declared in the FILES statements of the program.

One of the following values will be returned to this variable when
the statement is executed, depending upon the outcome of the
execution:

o - the file is available for reading and writing.
,

1 - the file is available on a read-only basis bec~use it is being
accessed by another terminal. For users AOOO through A999,
a return code of 1 indicates only that the named file is being
accessed by another terminal. The file -is still available for
reading and writing.

4-6

mask

2 - the file is available on a read-only basis because it is a system
library or group library file.

3 - the requested file does not exist or it is protected (and the user
attempting to ASSIGN it is not the owner).

4 - the file number in the ASSIGN statement is out of range; it does
not correspond to one of the positions reserved by the FILES
statements.

5 - the requested file has records which are larger than those of the
file previously in this position.

If the value given to the return variable is 3, 4, or 5, any access to the
requested file will cause a fatal error. If the r~turn value is 2, any print
attempt to the file will cause a fatal error. If the returned value is 1,
a print attempt by any user other than Axxx users will cause a fatal
error.

An optional parameter that can be used to ensure security of data in
the file. Mask can be either a literal string of up to six characters or
a string variable of up to six characters used to form a mask through
which data is written to or read from the file. If the same mask is
used to read a data item that was used to write the item, the results
are the same value that was written.

When the ASSIGN statement is executed, the named file replaces the file previously referenced
by the file number in the statement. Subsequent file references using this number will apply to
the new file. Data written to the old file will be intact.

EXAMPLES:

20 ASSIGN A$, 3, 81, C$
30 ASSIGN "NEWFL", S2, J
40 ASSIGN "$F2", 6, C, "AX1532"

4-7

Serial File PRINT Statement

GENERAL FORM:

statement number PRINT #file number formula; data item, data item, . ..

This statement is used to print variables, numbers, or strings of characters consecutively on the
specified file, starting after the last item previously read or printed.

The file number formula may be any expression; it is rounded to the nearest integer (from 1
through 16). If the value is n, then the nth file declared in the FILES statements (or the file most
recently assigned to the nth position) is used.

The serial file PRINT always writes the indicated data items into the next available space in the file.
However, since character strings may vary in length and each string must be wholly contained with
in a record, some space in each record may be left unused. You can calculate the number of words
occupied by any string with a formula described under "Storage Requirements" in this section.
Following the print list items an EaR (end-of-record) mark is written on the file.

After a serial file PRINT operation, the file pointer is updated so that it points to the next available
space.

The information written in a file remains there even when the program terminates. Therefore, the
user can return a day or week later and access the data at that time. If a program terminates be
cause of an error or if the user types break, the files may not have been completely updated.

Matrices can also be written on files using a MAT PRINT # statement described in Section V.

EXAMPLES:

125 PRINT #5; A1~B2~C$
130 PRINT #5; D~E~F~ "B~C,D~E"
140 PRINT #M+Ni B

Serial File READ Statement

GENERAL FORM:

statement number READ #file number formula; data item, data item, ...

This statement is used to read numbers and strings into variables consecutively from the specified
file, starting after the last item read.

4-8

The file number formula is evaluated as in the serial file PRINT.

Both strings and numbers can be read, but the order of variable types must match the order of data
item types exactly. The TYP Function provides a means of determining the type of the next item.

The serial file READ moves from record to record within a file automatically, as necessary to find
the next data item. After a READ, the file pointer is updated, and a subsequent READ will start
with the next consecutive data item. Record boundaries and unused portions of records are ignored.

Matrices can also be read from files using a MAT READ # statement described in Section V.

Note: Following a serial file PRINT, the pointer must be reset
to the beginning of the file before the data that was just
written can be read. This is done using the reset operation
described on the next page. A serial READ should not
directly follow a serial PRINT.

EXAMPLES:

65 READ #5; A~B~C
70 READ #3; B$
80 READ #N; A~B$~ CC5~6)
90 READ #CN+l); A~B$~C

Resetting the File Pointer

GENERAL FORM:

statement number READ #file number formula, 1

The READ statement in this form is used to reset the file pointer to the beginning of the file
specified by the file number formula.

READ #N,l is used after a serial PRINT to prepare for a serial READ.

Note: Do not use PRINT # 1, 1 to reset, as this erases the first
record of the file.

EXAMPLES:

100 READ #l~l
200 READ #2~1
300 READ #M+N~l

4-9

_w __ " £4G

The TYP Function

GENERAL FORM:

TYP may be used as an expression or as part of an expression; the function form is:

TYP (file number formula)

The TYP function determines the type of the next data item in the specified file so that the program
can avoid a type mismatch on a file READ.

There are three possible responses:

1 = next item is number

2 = next item is character string

3 = next item is "end of file."

If the file number formula is negated «O), the TYP function also detects "end of record" con
ditions (explained later under "Random Access") and returns a value of 4 for them.

If the file number formula equals zero, the TYP function references the DATA statements. In this
case, TYP returns these values for the next data item:

1 = number

2 = string

3 = "out of data" condition.

EXAMPLES:

• 100 IF TYP (1)=2 THEN 1000
250 IF TYP (6)=3 THEN 500
300 GO TO TYP(S) OF 400~600~800

4-10 DEC 1975

Listing Contents of a File

Here is a sample program that lists a file of unknown contents. It assumes that the file (DATUMS)
has been previously filled serially by some other program.

NAM - LI S T

100 FILES DATUMS

200 DIM A$[72]

300 IF END #1 THEN 1000

500 IF TYP(l)=l THEN 600

550 IF TYP(1)=2 THEN 700

600 READ #l;A

650 PRINT A

675 GO TO 500

700 READ #l;A$

750 PRINT A$

775 GO TO 500

1000 PRINT "FILE LIST COMPLETED"

2000 END

4-11

The IF END statement tells the pro
gram where to go if it comes to the
end of file # 1. Without this state
ment, the program would quit at the
end of the file and give an error
message.

TYP checks whether the next data
item is a number (1) or a string (2).

Reads a number from file # 1 into
variable A.

Reads a string from file # 1 into
variable A$.

The program comes here when it
reaches the end of file # 1.

TERM: END·OF·FILE

If a program attempts to PRINT beyond the physical end of a file or attempts to READ more
values than are present in the file, the TSB system detects an end-of-file condition and terminates
the program.

The OPEN command causes end-of-file marks to be written at the start of every record in the file.
End-of-file marks can also be written by the user (as explained later under "END").

Note: If the user or an error (such as end-of-file) stops a program
abnormally, it is not possible to know which file PRINT
operations of the program were in fact performed.

To avoid termination of a program because of end-of-file, use the IF END statement below. If this
is done, all of the values preceding the end-of-file are transferred successfully.

IF END# ... THEN Statement

GENERAL FORM:

statement number IF END #file number formula THEN statement number

This statement form defines a statement to be branched to if an "end-of-file" occurs on a specified
file.

The IF END statement defines an exit procedure which remains in effect until another IF for the
same file changes it, or until an ASSIGN statement containing the same file number is executed.

A dif.ferent exit procedure can be defined for each file.

IF END is also used with random access to provide exit procedures when an "end-of-record" occurs.
(See "Random Access.")

If a program, does not contain an IF END statement for a file and an "end-of-file" occurs on that
file, the program is terminated and an error message is printed:

END OF FILE/END OF RECORD IN STATEMENT xxxx

EXAMPLES:

300 IF END #N THEN 800
310 IF END #2 THEN 830
320 IF END #3 THEN 9999

4-12

PRINT# ... END Statement

GENERAL FORM:

statement number PRINT #file number formula; data item list, END

This statement form places a logical "end-of-file" marker after the last value written on the file;
END is ignored if it is not the last item in the statement.

The "end-of-file" marker written by this statement is a logical marker; each file also has a physical
end-of-file which marks the physical boundary of the file. An EOR (end-of-record) mark is not
written in this case.

The "end-of-file" mark is overlaid by the first item in the next serial PRINT statement. An "end-of
file" condition that aborts the program or triggers an IF END statement occurs only on an attempted
READ operation beyond the available data or an attempted PRINT operation beyond the physical
end-of-file.

END and IF END can be used to modify a serial file.

EXAMPLES:

9S PRINT #N: A,B2,END
100 PRINT #CX+1); R3,Sl,N$, "TEXT" , END
110 PRINT #2; GS,H$,P, END

STRUCTURE OF SERIAL FILES

When a file is opened, you can think of it as looking like this:

OPEN-INFO,S

INFO = IEOFI I PEOFI

t

EOF is a mark that shows the end of the data.

PEOF is the physical end of the file, beyond which no data can be written.

t is the position of the file pointer.

4-13

When information is written into the file, the pointer moves and space in the file is used up.

100 FILES INFO
200 PRINT #1; A,B,C,F$,Q1, END

INFO = I AlB Ie IF$IQ1IEOFI IPEOFI
t

The file is filled solidly from the beginning.

When more information is printed, it follows the previous data and the pointer is changed.

300 PRINT #1; G1,G2,G$,H$,Z,END

INFO = I AI B Ie IF$IQ1IG11 G2IG$IH$lz IEOF I I PEOFI
t

To read this data, the pointer must be reset.

400 READ #1,1

INFO = I AI BleIF$IQ1IG11 G2IG$IH$lz IEOF I IPEOFI
t

Now the data can be read.

500 READ #1; Ml,M2

INFO = I AIBleIF$IQ1IG1IG2IG$IH$lzIEOFI I PEOFI
t

M1 now contains the value of A

M2 now contains the value of B

4-14

At this point, the program continues to read the data.

600 READ #1; Dl

INFO = IAIB Ie IF$IQ11 G11G21 G$IH$I z I EOF I IPEOF I

t

D1 now contains the value of e

However, if you PRINT anything in the file at this point, the rest of the file is effectively lost as
far as serial access is concerned.

700 PRINT #1; D2,END

INFO = I PEOF I

t

The correct way to modify an item in the middle of serial file is to READ all the succeeding items,
then PRINT them and the new value out again.

INFO =

INFO =

700 READ #1; M$, PI, P2, P3, p$, R$, P4

(read the values)

750 READ # 1, 1 (reset the pointer)

800 READ #1; A, B, C

(move the pointer out to the correct item)

I PEOF I

t

900 PRINT #1; 02 (print the new item)

1000 PRINT #1; PI, P2, P3, p$, R$, P4, END

(print the old values out)

I PEOFI

t

4-15

EXAMPLE OF SERIAL FILE MODIFICATION:

(When the file is opened, "end-of-file" markers are written into every record.)

OF'Et'1- DATUt'E ~ 12:::

nm'1-ADD I T

lor FILES rpTU~S
c: (I I) D n~ PH 72 J
?CIC IF om ~~1 THEt-! 15C'C'
400 REM: T~IS PRDGPA~ FIRST FINDS THE END OF FILE. IT ASKS
410 REM: THE USER FOR A STRING A~D A NUMBER. IF THIS IS
420 REM: nOT THE PHYSICAL EnD OF THE FILE~ IT ADDS THEM TO
430 REM: THE END OF THE FILE. THEN, ThE PROGRAM ASKS THE
440 RH": THE U::::EF IF HE I.IJA t-1T.S: TO ADD l=tt·r·· .. t'1OPE ITEt·E. IF
450 REM: THE USER ANSWERS YES. THE PROGRAM REPEATS THE
460 REM: INPUT AnD WRITE LCOP.
::: (I 0 F~EAD ~~ 1. ; A$ ~ A
:::5 (I 1:30TO e (I (I
1500 IF nlD ~~1 THEt-i 2000
16 (I (I FR ItH ":S:TR It1i:::" ;
165 (! HiPUT A$
17 I) (I F'R un "t'~Ut'1BER";
1 75 0 I t'iPUT R
1:::00 FRItH ~~1 ;A:l.R ~ HiD
19 (I (! F'R ItH "t'1DRE";
195 (I I t'iPUT At
1960 IF P'f.;="'y·E:S:" THEn 1600
1'37 (I :S:TOP
2000 PRHn "PH'y':~:ICAL. nUl OF THE: FILE"
5000 HiD

Note: If the file is empty, the first thing the program finds is
an end-of-file. Therefore, it begins filling the file from
the first location.

The IF END statement (line 300) is changed once the end-of-file marker is found. The program is
then looking for the physical end-of-file.

You can use the sample program for "Listing Contents of a File" to check the contents of the file.

4-16

'-

TERM: RECORD

Defined: A physical division -of a file; consisting of from 64 to 256 words.

The number of records in a file is subject to several constraints, but in no case may it exceed 32767.

File =

where PEOR

EOR

EOF

PEOF

PEOR PEOR PEOR

the physical end of the record.

the end-of-record marker written by the system.

the end-of-file marker written by the system.

the physical end of the file.

PEOR PEOF

Following the data in a record, there is always an end-of-record marker. Every record also has a
physical end. (When the record is completely full, this also acts as the logical end-of-record
marker.)

During serial access the end-of-record markers act as skip markers that say to look in the next record
for the data item, but during random access they cause an end-of-file condition. This will be
explained later.

STORAGE REQUIREMENTS

Numerical data items require two words of storage space per item. If a full-size record is filled
completely with numbers, it contains 128 items.

Strings can be of varying sizes: they require about 1/2 word of storage per character in the string.
The exact formula for the number of words needed to store a string is:

If the number of characters is odd, then

1 + number of characters in the string + 1
2

If the number of characters is even, then

1
number of characters in the string

+ 2

4-17

Eight 62-character strings will completely fill a 256-word record. Strings and numbers can be mixed
within a record, but each item must fit completely within the bounds of the record. For example,
a 256-word record could contain five strings of 72 characters (each using 37 words) and a maximum
of 35 numbers (leaving one word of the record unused).

MOVING THE POINTER

GENERAL FORM:

statement number READ #file number formula, record number formula

The statement in this form moves the pointer to the beginning of a specified record within a file;
rounds the file number formula and the record number formula to integers.

The READ #M,N statement only generates an end-of-file condition at the physical end of the file,
not for end-of-file markers.

After moving the pointer to the start of a record, you can use the serial READ and PRINT state
ments normally.

EXAMPLES:

200 READ #l,N
300 READ #M,N
400 READ #3~:J,9

To Determine the Length of a File

Here is a sample program that determines the number of records in a file. It uses the READ #M,N
statement through the records until it comes to the physical end of the file.

nAt'1-LEt"lGTH
1 REM: THIS PROGRAM PRInTS OUT THE LEnGTH In RECORDS OF ANY FILE.
2 F I LE:S: DATUt'E
3 REM: ~DATUMS~ IS THE FILE WHOSE LEnGTH IS SOUGHT.
4 IF HHI ~~l. THEn ::;::(1
5 FOR R=l TO 32767
6 READ ~~1 ~R

7 t"jE::<T R
:;:: PR ItH "LEt-113TH Hi RECDF'D:S::"; R-l
'3'-' Et·m

4-18

SUBDIVIDING SERIAL FILES

Serial files can be divided into smaller serial files by moving the pointer and using the PRINT END
statement. For example, a file of six records could be treated as two files of three records.

File:

a record
~

DATA DATA
E

DATA 0
F

E
DATA DATA DATA 0

F

~~------------~v~----------------~I ~~------------~v~----------------~I
first subdivision second subdivision

To switch from the first subdivision to the second, use this statement

100 READ #1, 4

since the fourth record is the start of the second subdivision.

When using this technique, you must be careful that you do not print more data into the sub
division than it will hold. If you print too much, the data will overflow into the next subdivision
and destroy its contents.

A logical extension of this concept is to make each subdivision equal to a single record. The TYP
function detects end-of-record markers. The random access versions of PRINT# and READ#
statements (described later) allow you to access random records within a file without overflowing
the bounds of the record.

USING THE TYP FUNCTION WITH RECORDS

GENERAL FORM:

TYP is a function and can be used as an expression or a part of an expression.

TYP (-file number formula)

Returns a code telling the type of the next item in a specified file.

TYP(- X) 1 for a number

2 for a string

3 for an end-of-file

4 for an end-of-record

4-19

The file number formula must be negated to detect the end of record. If it is positive or zero,
different results are returned. See "TYP Function" in this section.

EXAMPLES:

100 GO TO TYP(-I) OF 200~ 250~ 300, 400
2000 A=TYP(-5) + SX2

To List the Contents of a Record

Here is a sample program that lists the exact contents of any record in a file.

t·~At'l-PL I :~:T
1 PEM: THIS PROGRAM LISTS THE CONTENTS OF ANY RECORD OF THE FILE.
5 D I t'l A$[72]
10 FILES DATUMS
20 IF Et·m ~~ 1 THEt'j .:. I)
30 PP I tH "RECORD NUt'lE:ER";
.40 n~PUT R
50 IF P>O AND R=INT(R) THEN 80
Eo 0 PR I tH "I t'j',,iAL I D PECOPD nUt'1BER."
70 GOTO 30
:::: 0 PEAD ~~ 1 ,P
100 GOTO TYP(-l) OF 110~150~220,200

110 PPItH "t'Wt'1E:EP:";
120 PEAD ~~ 1 ; ::.::
130 PPltH ::-:;
140 GO TO 100
150 PPltH ":~:TRING:";
160 PEAD ~~1 ;A$
170 PRltH A$
180 GOTO 100
200 PP I tiT "END OF PECORD !'lARI<."
210 STOP
220 PR I tH "Et·m OF FILE t'lAP~::."

230 Etm

4-20

To Copy a File

Here is a sample program that copies one file into another using only the statements and functions
covered so far: IF END, TYP, FILES, READ #M,N, serial READ, and serial PRINT.

NAM-CDP'r'

1 PE~1: TH I :S: PPOGPA~1 COP I ES: FILE ~~ 1 I tHO FILE
10 FILES SAM1~SAM2
20 I1I~1 A$[72]
:::: 0 IF Et·m ~~ 1 THEt·j 170
40 IF Et·m ~~2 THEN 1:::: 0
50 FOP 1=1 TO 32767
60 PEAII ~~ 1 ~ I
7 I) PP I tH ~~2 ~ I
::::0 GOTO TYP(-l) OF 90~120~150~160
9 (I PEAII ~~ 1 ;::.::
100 PPItH ~~2 ;::.::
110 GOTO::::O
120 PEAII ~~ 1 ; A$
130 PPItH ~~2 ;A$
140 GOTO :::0
150 pPI~n ~~2; nm
16 I) NEi-::T I
170 S:TDP
1 ::: 0 PP I ~n .. SECmm FILE TOO :S:~1ALL."

190 ENII

4-21

.... :. "rL- _

TERM: RANDOM FILE ACCESS

Defined: A READ or PRINT access of a file is "random" if it specifies a particular record within
the file.

Serial Access: 100 READ #l;A,B,C
(Reads from the file pointer)

Random Access: 100 READ #1,5;A,B,C
(Moves to record 5 before reading)

When files are accessed serially, the record structure of files is ignored. Serial READ operations
skip over end-of-record markers to the next record and act as if all data were in a continuous list.

The TSB System does, however, provide statements that take advantage of this record structure.
The file pointer can be moved to the beginning of any record. Also, any record can be read or
printed independently of the rest of the file using random access versions of READ# and PRINT#
statements. The TYP function and IF END statement can detect end-of-record conditions. These
extensions to BASIC constitute a random access file capability.

EXAMPLE OF RANDOM FILE ACCESS:

This sample program fills each record with two strings of up to 30 characters each and five numbers.
Then it lists the contents of any record.

OPEN-RNDFL~20

NAM-PROG2
100 FILES RNDFL

DIM A$[:30],B$[:30]
IF Etm ~~1 THEN 1000
FOR .J=l TO 20
INPUT A$~B$,A,B,C~D,E
PRINT =l,J;A$,B$,A,B,C,D,E
NE~'::T .J

150
200
:300
400
500
600
700
750
760
770
780
7'30
800
1000

PR I NT "I. • .IH I CH RECOFUI ~.lDULD 'lOU
INPUT J
READ ~~1 d ;A$,B$,A ,B ,C ~D ~E
PRINT A$
PRINT E:$
PRINT A~B,C,D,E
GOTO 700

END

4-22

)
This loop reads in two strings
and five numbers from the user,
then it writes the Jth record
of the file.

LIKE TO :S:EE";

)
This section will read and list
the contents of record N.

PRINTING A RECORD

GENERAL FORM:

statement number PRINT # file number formula, record number formula; list of data items

The PRINT statement in this form prints a specified list of data items into a specific record of a
file, starting at the beginning of the record. (The record number formula is rounded to the nearest
integer.)

The previous contents of the record are destroyed. An end-of-record marker is written after the
data. If an END occurs in the data list, it acts as an end-of-record marker too. The random PRINT
operation cannot change the content~ of any record except the one specified. The entire list of
data items must fit within the record. Otherwise, an end-of-file condition occurs which terminates
the program and prints an error message:

END OF FILE/END OF RECORD

An IF END statement establishes an exit procedure. See "IF END" in this section.

Matrices are printed using the random version of MAT PRINT # statement described in Section V.
Note, however, that the matrix must fit within a single record, so a maximum of 128 numerical
items can be printed. If this rule is violated, an end-of-file condition occurs.

EXAMPLES:

165 PRINT #N,X;G2,H,I,"TEXT"
170 PRINT #1,3;X,Y4,Z,6127,B
175 PRINT #(N+2),(X+2);F,P5
180 PRINT #2,5;A,B,C,D,END

4-23

READING A RECORD

GENERAL FORM:

statement number READ # file number formula, record number formula,' list of data items

The READ statement in this form reads data from a specified record of a file, starting at the
beginning of the record. (The file number formula and record number formula are rounded to
integers.)

The contents of the file are not changed.

If the READ operation encounters an end-of-record marker before filling all the data items, an
end-of-file occurs. The program is terminated unless an IF END statement has been defined pre
viously. (See IF END in this section.)

Matrices are read from records using a random version of MAT READ# statement described in
Section V. If the READ operation requests more items than the record contains, an end-of-file
condition occurs.

EXAMPLES:

100 READ #2,3jA,B,C3,X$
110 READ #N,2jN1,N2,N3
120 READ #M,NjR2,P7,A$,T(35)
130 READ #CM+l),CN+l)jX,Y,Z

Modifying Contents of a Record

Principle: The contents of a recol'd can be changed only by reading the entire record into the
program, modifying the items desired, then printing it back on the file again.

Caution: When the strings are replaced by longer strings, the
result may no longer fit within a record. If this
happens, an end-of-file condition occurs.

4-24

EXAMPLE:

100 READ #l,S;A,B,C,Z$
200 LET A = QX 2+CM/S)
300 LET Z$ = M$
500 PRINT #l,S;A,B,C,Z$

A,B,C, and Z$ are the entire contents of record 5.

Erasing a Record

GENERAL FORM:

statement number PRINT #file number formula, record number formula

The PRINT statement in this form erases the contents of a specified record in a file by printing an
end-of-record marker at the beginning of the record.

The file pointer is moved to the start of the specified record.

Only the contents of the specified record are erased; the rest of the file is unchanged. The erased
record still exists, however, and can be filled with new data.

Do not confuse this erase operation with the KILL command which permanently eliminates the
entire file.

EXAMPLES:

320 PRINT #M+N, R+S
330 PRINT #1,2
340 PRINT #12,Q1

4-25

To Erase a File, Record by Record

Here is a sample program that uses the erase operation to erase an entire file, record by record.

NA~1-EF.:A:S:E

1 REM: THIS PROGRAM ERASES A FILE BY ERASING EVERY RECORD.
10 FILES >::
20 IF E~m ~~1 THE~~ ':;.0
30 FOR 1=1 TO 32767
40 PRHn ~~1, I
50 t'~D::T I
60 END

Updating a Record in a File

File programming is simplified if every record of a file has the same data structure. For example,
each record might contain a string (e.g., a person's name) and a number (e.g., the amount of money
he owes). Here is a sample program that manipulates such a file. The program searches through the
file until it finds a specified string; then it updates the number in the record to a new value.

nAt1E -UPDATE

10 FILES DATA
20 DIM A$[72] ,B$[72]
30 IF Et·m ~~1 THE~~ 160
40 PR ItH "~~AME";

50 INPUT A$
60 FOR 1=1 TO 32767
70 PEAD ~~1, I
:30 IF T'"r'P(-l >~~2 THE~~ 150
90 READ ~~1 ;B$
100 IF B$~~A$ THH~ 150
11 0 PR I ~n "~~EI!.I NUMBEF.:";
12 0 H~PUT N
130 PPHn ~~l;N
140 STOP
150 NEXT I
160 PRItH "NAME NOT m~ FILE. ,,'
170 END

4-26

An Alphabetically Organized File

Suppose the first item of every record in a file is a string. The records can be ordered alphabetically.
Here is a program that inserts a new record where it alphabetically belongs. The rest of the file must
be moved up one record. In this example, record 1 contains the record number of the last item.

10 FILES DATA
20 DIM G$[72],H$[72]
:;:0 IF nUl ~q THEn 2'30
4 (I PEAD ~~ 1 , 1 ; t"i
45 IF nUl ~~1 THEn 270
50 PEAD ~~ 1 ,n+2
60 PPItH ":~:TPHH:;";

70 InpUT I~$

72 IF tWO THEn ::::0
74 P=2
76 I~OTO 1 :::: 0
::: 0 F=2
':-"0 L=tHl
100 p=InT«F+L)/2)
110 PEAD ~~1 ,p ;H$
120 IF G$<H$ THEn 210
130 IF G$>H$ THEn 230
140 FOR I=n+l TO P STEP -1
150 PEAD ~~l,I;H$

160 PF.: ItH ~~ 1 , 1+1 ; H$
170 t"jE::<T I
1::::0 PPItH ~~1 ,p ;6$
1'30 PP It;H ~~ 1 , 1 HH 1
200 :~:TOP

210 L=R
;:::20 I F F~~L THEt"j 1 (10
225 GOTO 140
230 F=R
240 IF L-F>1 THEn 100
250 P=R+l
255 IF L-F~~1 THEt"i 140
260 F=F+1
;:::65 I~OTO 10(1
270 PPItH "FILE FULL."
2:30 STOP
2':-" 0 t"j= 0
300 I~OTO 45
::::10 nUl

4-27

FILE ACCESSING ERRORS

1£ a data error occurs while the computer is performing a requested file read or write, the program
will be terminated and one of the following messages will be printed:

BAD FILE READ IN LINE nn

BAD FILE WRITE DETECTED IN LINE nn

As is the case with other errors which terminate a running program, the specific contents of any
file written on during execution cannot be easily predicted.

Most of the information in the file on which the data error occurred may be recoverable. If file
errors persist, the information should be copied item by item or record by record to another file.

4-28

SECTION V
Matrices

A matrix is a rectangular array of data elements arranged in rows and columns. Arrays are described
in Section III. This section describes a series of special instructions used to manipulate matrices.
Instructions starting with MAT refer to an entire matrix, or to two or more matrices. Instructions
such as PRINT and INPUT refer to specific elements of the array by row and column. The DIM
statement is used to define the dimensions of the matrix and to reserve storage space for it. Some
typical matrix operations are:

MAT READ A,B,C

MAT INPUT A,B

MATC= ZER

MATC=CON

MAT C = IDN

MAT PRINT A,B;C

MATB=A

MATC=A+B

MATC=A-B

MATC=A*B

MAT C = TRN(A)

MAT C = (K)*A

MAT C = INV(A)

Read the three matrices, their dimensions having been previously
defined. Data is stored in the matrix row by row.

Input matrices A and B from the user terminal. Data is stored in
the matrix row by row.

Fill matrix C with zeros.

Fill matrix C with ones.

Set up matrix C as an identity matrix.

Print the three matrices, with A and C in the regular format, but
B closely packed.

Set matrix B equal to matrix A.

Add two matrices, A and B; set matrix C to the result.

Subtract matrix B from matrix A; set matrix C to the result.

Multiply matrix A by matrix B; set matrix C to the result.

Transpose matrix A; set matrix C to the result.

Multiply matrix A by K. K, which must be in parentheses, may
be a formula; set matrix C to the result.

Invert matrix A; set matrix C to the result.

5-1

MAT PRINT #5;A

MAT READ #M,N+2;D

Print matrix A onto a file.

Read matrix D from a file, row by row - same restrictions as
MAT READ.

Use of these statements is described in this section. Formatted printing of matrices is described in
Section VIII.

STATEMENTS

DIM Statement

GENERAL FORM:

statement number DIM matrix variable (integer) ...

or

statement number DIM matrix variable (integer, integer) . ..

The DIM statement sets upper limits on the amount of working space used by an array or a matrix
in the TSB system.

The integers refer to the number of array elements if only one dimension is supplied, or to the
number of row and column elements respectively, if two dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Some matrix operations permit the initialization of an array or matrix within the operation call if
the dimensions are 10 elements or less for one dimensional arrays or 10 rows and 10 columns or
less for two-dimensional arrays. Otherwise, a DIM statement is required.

The working size of a matrix may be smaller than its physical size. For example, an array declared
9 x 9 in a DIM statement may be used to store fewer than 81 elements; the DIM statement supplies
only an upper bound on the number of elements. When the working size of a matrix is changed
using one of the MAT statements described on the following pages, the values of excluded positions
are lost.

The absolute maximum matrix size is about 4900 elements; a matrix of this size is practical only in
conjunction with a very small program.

EXAMPLES:

110 DIM A (50), 8(20,20)
120 DIM Z (5,20)
130 DIM S (5,25)
140 DIM R (4,4)

5-2

MAT ..• ZER Statement

GENERAL FORM:

statement number MAT matrix variable = ZER

or

statement number MAT matrix variable = ZER (expression)

or

statement number MAT matrix variable = ZER (expression, expression)

This statement sets all elements of the specified matrix equal to zero.

The matrix specified may be initially dimensioned within the MAT ZER statement if the
dimensions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for
two-dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be established; the new working size in a MAT ... ZER is an implicit DIM
statement within the limits set by the DIM statement on the total number of elements.

Since 0 has a logical value of "false", MAT ... ZER is useful in logical initialization.

The expressions in new size specifications should evaluate to integers. Non-integers are rounded to
the nearest integer value.

EXAMPLES:

305 MAT A = ZER
310 MAT Z = ZER (N)
315 MAT X = ZER (30, 10)
320 MAT R = ZER (N, p)

5-3

MAT ... CON Statement

GENERAL FORM:

statement number MAT matrix variable = CON

or

statement number MAT matrix variable = CON (expression)

or

statement number MAT matrix variable = CON (expression, expression)

This statement sets up a matrix with all elements equal to one.

The matrix specified may be initially dimensioned with the MAT ... CON statement if the dimen
sions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for two
dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be specified, within the limits of the original DIM statement on the total
number of elements.

Note that since 1 has a logical value of "true", the MAT ... CON statement is useful for logical
initialization.

The expressions in new size specifications should evaluate to integers. Non-integers are rounded to
the nearest integer value.

EXAMPLES:

205 MAT C = CON
210 MAT A = CON (N,N)
220 MAT Z = CON (5,20)
230 MAT y = CON (50)

5-4

INPUT Statement

GENERAL FORM:

statement number INPUT matrix variable (expression) ...

or

statement number INPUT matrix variable (expression, expression) ...

The INPUT statement allows input of a specified matrix element(s) from the user terminal.

An expression should be an integer. Non-integers are rounded to the nearest integer value.

The subscripts (expressions) used after the matrix variable designate the row and column of the
matrix element. Do not confuse these expressions with working size specifications, such as those
following a MAT INPUT statement.

See MAT INPUT and DIM in this section for further details on matrix input.

See ENTER, Section III for an additional means of inputting specific matrix elements.

EXAMPLES:

600 INPUT A(5)
610 INPUT BC5,8)
620 INPUT RCX), N$, AC3,3)
630 INPUT ZCX,y), P3, W$
640 INPUT ZCX,Y), ZCX+l, Y+l), ZCX+R3, Y+S2)

5-5

MAT INPUT Statement

GENERAL FORM:

statement number MAT INPUT matrix variable

or

statement number MAT INPUT matrix variable (expression) . ..

or

statement number MAT INPUT matrix variable (expression, expression) ...

The MAT INPUT statement allows input of an entire matrix from the user tetminal.

The matrix specified may be initially dimensioned within the MAT INPUT statement if the dimen
sions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for two
dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be specified, within the limits of the DIM statement on total number of
elements.

Do not confuse the size specifications following MAT INPUT with element specifications. For
example, INPUT X(5,5) causes the fifth element of the fifth row of matrix X to be input, while
MAT INPUT X(5,5) requires input of the entire matrix called X, and sets the working size at 5
rows of 5 columns.

Example statements 360 through 375 require input of the specified number of matrix elements,
because they specify a new size.

Elements being input must be separated by commas.

When a MAT INPUT statement is executed, "?" is generated regardless of the number of elements.
A "??" response to an input item means that more values are required.

MAT INPUT causes the entire matrix to be filled from teleprinter input in the (row, col.) order:
1,1;1,2;1,3; etc.

EXAMPLES:

355 MAT INPUT A
360 MAT INPUT 6(5)
365 MAT INPUT Z(5,5)
370 MAT INPUT A(N)
375 MAT INPUT 6(N,M)

5-6

Printing Matrices

GENERAL FORM:

statement number PRINT matrix variable (expression) ...

or

statement number PRINT matrix variable (expression. expression) ...

A PRINT statement causes the specified matrix element(s) to be printed.

The expressions (subscripts) should be integers. Non-integers are rounded to the nearest integer
value.

A trailing semicolon packs output into twelve elements per teleprinter line, if possible. A trailing
comma prints five elements per line.

Subscripts following the matrix variable designate the row and column of the matrix element. Do
not confuse these with new working size specifications, such as those following a MAT INPUT
statement.

This statement prints individual matrix elements. MAT PRINT is used to print an entire matrix.

EXAMPLES:

800 PRINT A(3)
810 PRINT A(3,3)j
820 PRINT F(X)jE$j C5jR(N)
830 PRINT G(X,Y)
840 PRINT l(X,Y), l(I,5), l(X+N, Y+M)

5-7

MAT PRINT Statement

GENERAL FORM:

statement number MAT PRINT matrix variable

or

statement number MAT PRINT matrix variable, matrix variable . ..

A MAT PRINT statement causes an entire matrix to be printed.

Matrices referenced in a MAT PRINT statement must first be dimensioned in a DIM statement.

The MAT PRINT statement causes the matrix elements to be printed row by row across the page.
Each matrix row starts a new line. The spacing between row elements is controlled by the use of ,
and ; in the same manner as for the PRINT statement. Rows containing more elements than can
be printed on a line are continued on consecutive lines. Each row of a matrix is started on a new
line and is separated from the previous row by a blank line. Thus the instruction:

MAT PRINT A, B;C

will cause the three matrices to be printed A and C with five components to a line and B with up to
twelve.

Singly subscripted arrays may be interpreted as column vectors. Vectors may be used in place of
matrices, as long as the above rules are observed. Since a vector like V(I) is treated as a column
vector by BASIC, a row vector has to be introduced as a matrix that has only one row, namely row
1. Thus

DIM X(7), Y(1,5)

introduces a 7-component column vector and a 5-component row vector.

A column vector will be printed one element to the line with double spacing between lines. A row
vector will be printed in the manner indicated by the form of the statement. For example: if V is
a row vector then, "MAT PRINT V" or "MAT PRINT V," will print Vasa row vector, five numbers
to the line, while "MAT PRINT V;" will print V as a row vector with up to twelve numbers to the
line.

EXAMPLES:

500 MAT PRINT A
505 MAT PRINT A· I
515 MAT PRINT A/B;C
520 MAT PRINT A,B,C;

5-8

READ Statement

GENERAL FORM:

statement number READ matrix variable (expression)

or

statement number READ matrix variable (expression. expression) ...

The READ statement causes the specified matrix element to be read from the current DATA
statement.

Expressions (subscripts) should evaluate to integers. Non-integers are rounded to the nearest
integer.

Subscripts following the matrix variable designate the row and column of the matrix element. Do
not confuse these with working size specifications, such as those following MAT INPUT statement.

The MAT READ statement is used to read an entire matrix from DATA statements. See details in
this section.

EXAMPLES:

900 READ A(6)
910 READ A(9 .. 9)
920 READ C(X); p$; R7
930 READ C(X .. Y)
940 READ Z(X .. Y) .. P(R2 .. 55) .. X(4)

5-9

MAT READ Statement

GENERAL FORM:

statement number MAT READ matrix variable

or

statement number MAT READ matrix variable (expression) . ..

or

statement number MAT READ matrix variable (expression, expression)

The MAT READ statement reads an entire matrix from DATA statements.

The matrix specified may be initially dimensioned within the MAT READ statement if the dimen
sions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for two
dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be specified, within the limits of the original DIM statement.

MAT READ causes the entire matrix to be filled from the current DATA statement in the (row, col.)
order: 1,1; 1,2; 1,3; etc. In this case the DIM statement controls the number of elements read.

EXAMPLES:

350 MAT READ A
370 MAT READ B(5),C,D
380 MAT READ Z (5,8)
390 MAT READ N (P3,Q7)

5-10

Matrix Addition

GENERAL FORM:

statement number MAT matrix variable = matrix variable + matrix variable

Matrix addition establishes a matrix equal to the sum of two matrices of identical dimensions; addi
tion is element-by-element.

Each matrix referenced must be previously mentioned in a DIM statement. Dimensions of the re
sultant matrix must be the same as the component matrices.

The same matrix may appear on both sides of the = sign, as in example statement 320.

EXAMPLES:

310 MAT C = B + A
320 MAT X = X + Y
330 MAT P = N + M

Matrix Subtraction

GENERAL FORM:

statement number MAT matrix variable = matrix variable - matrix variable

Matrix subtraction establishes a matrix equal to the difference of two matrices of identical dimen
sions; subtraction is element-by-element.

Each matrix referenced must be previously mentioned in a DIM statement. Dimensions of the re
sultant matrix must be the same as the component matrices.

The same matrix may appear on both sides of the = sign, as in example statement 560.

EXAMPLES:

550 MAT C = A B
560 MAT B = B Z
570 MAT X = X A

5-11

Matrix Multiplication

GENERAL FORM:

statement number MAT matrix variable = matrix variable * matrix variable

Matrix multiplication establishes a matrix equal to the product of the two specified matrices.

Each matrix referenced must be previously dimensioned.

Following the rules of matrix multiplication, if the dimensions of matrix B = (P ,N) and matrix C =
(N,Q), multiplying B*C results in a matrix of dimensions (P,Q).

Note that the resulting matrix must have an appropriate working size.

The same matrix variable may not appear on both sides of the = sign.

EXAMPLES:

930 MAT
940 MAT
950 MAT

Z
X
C

= B
= A
= Z

Scalar Multiplication

GENERAL FORM:

.-
C ..

.-
A ..

.-
B ..

statement number MAT matrix variable = (expression) * matrix variable

Scalar multiplication establishes a matrix equal to the product of the matrix multiplied by a speci
fied number, that is, each element of the original matrix is multiplied by 'the number.

Each matrix referenced must be previously dimensioned. The same matrix variable may appear on
both sides of the = sign. Both matrices must have the same working size.

EXAMPLES:

110 MAT A (5) .-
B = ..

115 MAT C (10) .- c = ..
120 MAT C (N/3) .-

X = ..
130 MAT p = (Q7~:N5) .. R

5-12

- Copying a Matrix

GENERAL FORM:

statement number MAT matrix variable = matrix variable

A specified matrix may be copied into a matrix of the same dimensions; copying is element-by
element.

Each matrix referenced must be previously dimensioned. Both must have the same dimensions.

EXAMPLES:

405 MAT B = A
410 MAT X = y
420 MAT Z = B

Identity Matrix

GENERAL FORM:

statement number MAT array variable = IDN

or

statement number MAT array variable = IDN (expression, expression)

A MAT ... IDN statement is used to establish an identity matrix (all O's, with a diagonal of alII's).

The matrix specified may be initially dimensioned within the MAT ... IDN statement if the dimen
sions are 10 elements or less for one-dimensional, or 10 rows and 10 columns or less for two
dimensional arrays. Otherwise, a DIM statement is required.

A new working size may be specified within the limits of the original DIM statement. The IDN
matrix must be two dimensional and square.

Specifying a new working size has the effect of a DIM statement.

Sample identity matrix: 1 0 0
0 1 0
0 0 1

EXAMPLES:

205 MAT A = INO
210 MAT B = ION (3,3)
215 MAT Z = ION (Q5, Q5)
220 MAT S = ION (6, 6)

5-13

Matrix Transposition

GENERAL FORM:

statement number MAT matrix variable = TRN (matrix variable)

A MAT ... TRN statement can be used to establish a matrix as the transposition of a specified
matrix; transposes rows and columns.

Each matrix referenced must be previously dimensioned.

Sample transposition:

Original Transposed

1 2 3 1 4 7

4 5 6 2 5 8

7 8 9 3 6 9

Note that the dimensions of the resulting matrix must be the reverse of the original matrix. For
instance, if A has dimensions of 6,5 and MAT C = TRN (A), C must have dimensions of 5,6. The
same matrix can not be on both sides of the "=" sign.

EXAMPLES:

959 MAT Z = TRN (A)
969 MAT X = TRN (B)
979 MAT Z = TRN (C)

5-14

Matrix Inversion

GENERAL FORM:

statement number MAT matrix variable = INV (matrix variable)

A MAT ... INV statement is used to establish a square matrix as the inverse of the specified square
matrix of the same dimensions.

Each matrix referenced must be previously dimensioned.

I

A matrix may be inverted into itself, as in example statement 400 below.

In performing the inversion, the system must generate an additional internal matrix, so that an
additional amount of storage equal to that needed for the original matrix is required. It may not
be possible to invert an extremely large matrix.

Sample Inversion:

Original

1 3 4

4 1 8

6 9 1

EXAMPLES:

380 MAT A = INV(B)
390 MAT C = INV(A)
400 MAT Z = INV(Z)

Inverted

-.392265 .18232

.243094 -.127072

.165746 4.97238E-02

DEC 1975 5-15

.110497

4.41989E-02

-6.07735E-02

MAT PRINT # Statement

GENERAL FORM:

statement number MAT PRINT # file number formula; matrix variable . ..

or

stat. no. MAT PRINT # file no. form. , record no. form. ; matrix var.

The MAT PRINT # statement prints an entire matrix on a file, or on a specified record within a file.

Matrices referenced in a MAT PRINT # statement must be previously dimensioned.

A random matrix file print (i.e., with a record number specified) cannot transfer more than 128
numeric values because that is the maximum a record can hold. Attempting to exceed this generates
an end-of-file condition.

A serial matrix file print, however, can transfer as many elements as will fit in the entire file.

Note: A matrix may also be printed with formatted output.
See PRINT USING, Section VIII.

EXAMPLES:

520 MAT PRINT #5; A
530 MAT PRINT #6, 3; B
540 MAT PRINT #4,M; A
550 MAT PRINT #N,M; A

5-16

MAT READ # Statement

GENERAL FORM:

statement number MAT READ # file formula number; matrix variable . ..

or

statement no. MAT READ # file formula no. , record no. formula; matrix variable . ..

or

statement no. MAT READ # file form. no. , record no. form. ; matrix var. (expression) . ..

or

stm t. no. MAT READ # file form. no. , record no. form. ; matrix var. (expr. , expr.) ...

A MAT READ # statement reads a matrix from a file, or specified record within a file.

A new working size may be specified within the limits of the original DIM statement.

MAT READ # fills the entire matrix in a row-by-row sequence of elements as: 1,1; 1,2; 1,3; 1,4 ...

Remember that a maximum of 128 numbers may be transferred on a random read.

EXAMPLES:

720 MAT READ #2jA
730 MAT READ #2,3;B
740 MAT READ #M,N;B(5)
750 MAT READ #M,N;B(P7,R5)

5-17

SECTION VI
Strings

A string is a set of characters such as "DDDDDE" or "45T,#". BASIC contains special variables and
language elements for manipulating string quantities. This section explains how to use the string
features of BASIC. There is little difference in the form of statements referencing numeric quantities
and those referencing strings. One important difference, however, is the use of subscripts which is
explained later.

Lower-case alphabetic characters can be input from or output to user terminals having this capa
bility. When lower-case characters are output to a terminal not capable of printing them, most
terminals will print such characters as the upper case equivalent. Lower-case characters are auto
matically converted to upper case by the system, except when they occur in strings or REM state
ments. Lower-case characters in strings used as file names in ASSIGN statements or program names
in CHAIN statements are also converted to upper case when used.

The examples and comments in this section emphasize modifications in statement form or other
special considerations in handling strings.

If you are familiar with the concepts "string", "string variable", and "substring", skip directly to
"The String DIM Statement".

TERM: STRING

Defined: A set of 1 to 72 characters enclosed by quotation marks or the null string (no characters).

Typical Strings: "ABCDEFGHIJKLMNOP"

"12345"

Null String:

"BOB AND TOM"

"MARCH 13, 1970"

" "

Quotation marks cannot be used within a string because quotation marks are used as string delimiters.

Note: Quotation marks are accepted in strings by the ENTER
statement.

6-1

Apostrophes and control characters are legal as string characters.

A null string has no value, as distinguished from a blank space which has a value.

Strings are manipUlated in string variables. For example:

100A$ "THIS IS A STRING"

t t
string string

variable

200 B$ A$(1,10)
t t

string substring
variable (defined later)

300 C$ " "
t t

string null string
variable

TERM: STRING VARIABLE

Defined: A variable used to store strings; consists of a single letter (A to Z) followed by a $. For
example: A$, Z$, M$.

String variables must be declared before being used if they contain strings longer than one char
acter. See "The String DIM Statement".

When a string variable is declared, its "physical" length is set. The "physical" length is the maxi
mum size string that the variable can accommodate. For example:

710 DIM A$(72),B$(20)~C$(50)

During execution of a program, the "logical" length of a string variable varies. The "logical" length
of the variable is the actual number of characters that the string variable contains at any point. For
example:

100 DIM A$(72)

200 A$ "SAMPLE STRING"

(Sets physical length of A$)

(Logical length of A$ is 13)

300A$ "LONGER SAMPLE STRING" (Logical length of A$ is now 20)

6-2

TERM: SUBSTRING

Defined: A single character or a set of contiguous characters from within a string variable. The sub
string is defined by a su bscript string variable.

A substring is defined by subscripts placed after the string variable. Characters within a string are
numbered from the left starting with one. Subscripts must be positive, non-zero, and less than
32768. Non-integer subscripts are rounded to the nearest integer.

Two subscripts, separated by a comma, specify the first and last characters of the substring. For
example:

100 Z$ = "ABCDEFGH"

200 PRINT Z$(2,6)

prints the substring

BCDEF

A single subscript specifies the first character of the substring and implies that all characters
following are part of the substring. For example:

300 PRINT Z$(3)

prints the substring

CDEFGH

Two equal subscripts specify a single character substring. For example:

400 PRINT Z$(2,2)

prints the substring

B

If subscripts specify a substring larger than the physical length of the original string, blanks are
appended.

STRINGS AND SUBSTRINGS

A string can be made into a null string. This is done by assigning it the value of a substring whose
second subscript is one less than its first. For example:

100 A$ = B$(6,5) (A$ now contains a null string)

This is the only case in which a smaller second subscript is acceptable in a substring.

6-3

Substrings can become strings. For example:

100A$ "ABCDEFGH"

200 B$ = A$(3,5)

300 PRINT B$

prints the string

CDE

because the substring of A$ is now a string in B$.

Substrings can be used as string variables to change characters within a larger string. For example:

100 A$ "ABCDEFGH"

200 A$(3,5) "123"

300 PRINT A$

prints the string

AB123FGH

Strings, substrings, and string variables can be used with relational operators. They are compared
and ordered as entries are in a dictionary. For example:

100 IF A$ B$ THEN 2000

200 IF A$.;;;;; "TEST" THEN 3000

3000 IF A$(5,6) ~ B$(7,8) THEN 4000

See the STRING IF statement description in this section.

6-4

The String DIM Statement

GENERAL FORM:

statement number DIM string variable (number of characters in string)

The string DIM statement reserves storage space for strings longer than 1 character; also for matrices
(arrays).

The number of characters specified for a string in its DIM statement must be expressed as an integer
from 1 to 72.

Each string having more than 1 character must be mentioned in a DIM statement before it is used in
the program.

Strings not mentioned in a DIM statement are assumed to have a length of 1 character.

The length mentioned in the DIM statement specifies the maximum number of characters which
may be assigned; the actual number of characters _assigned may be smaller than this number. See
"The LEN Function" in this section for further details.

Matrix dimension specifications may be used in the same DIM statement as string dimensions
(example statement 45 below).

EXAMPLES:

35 DIM A$ (72)~ B$(60)
40 DIM Z$ (10)
45 DIM N$ (2)~ R(5~ 5)~ P$(8)

6-5

The String Assignment Statement

GENERAL FORM:

statement number LET string variable = " string value"

or

statement number LET string variable = string or substring variable

or

statement number string variable = " string value"

or

statement number string variable = string or substring variable

The string assignment statement establishes a value for a string; the value may be a literal value in
quotation marks, or a string or substring value.

Strings contain a maximum of 72 characters, enclosed by quotation marks. String variables having
more than 1 character must be mentioned in a DIM statement.

Special purpose characters, such as *-, Xc, or quotation marks may not be string characters.

If the source string is longer than the destination string, the source string is truncated at the
appropriate point.

EXAMPLES:

200 LET A$ = "TEXT OF STRING"
2 lOS $ = " ~: ~n: T EXT !!! 11

220 LET C$ = A$(1~4)
230 D$ = S$(4)
240 F$(3~8)=N$

6-6

The String INPUT Statement

GENERAL FORM:

statement number INPUT string or substring variable . ..

The string INPUT statement allows string values to be entered from the user terminal.

Placing a single string variable in an INPUT statement allows the string value to be entered without
enclosing it in quotation marks.

If multiple string variables are used in an INPUT statement, each string value must be enclosed in
quotation marks, and the values separated by commas. The same convention is true for substring
values. Mixed string and numeric values must also be separated by comm.as.

If a substring subscript extends beyond the boundaries of the input string, the appropriate number
of blanks are appended.

Numeric variables may be used in the same INPUT statement as string variables (example state
ment 55 below).

EXAMPLES:

Note: The ENTER statement (Section III) can be used to input a
character string. When using the ENTER statement for
character strings, the string being entered should not be
enclosed in quotation marks, but may contain quotation
marks.

50 INPUT R$
55 INPUT A$, B$, C9, DIO
60 INPUT A$(I,S)
65 INPUT B$(3)

6-7

Printing Strings

GENERAL FORM:

statement number PRINT string or substring variable, string or substring variable . ..

A string PRINT statement causes the current value of the specified string or substring variable to be
output to the user's terminal device. The terminal device may be a user terminal or the line printer.

String and numeric values may be mixed in a PRINT statement (example statements 115 and 130
below).

Specifying only one substring parameter causes the entire substring to be printed. For instance, if
the value of B3 = 642 and C$ = "WHAT IS YOUR NAME?", example statement 120 prints:

WHAT IS

while statement 115 prints

YOUR NAME?END OF STRING 642

Numeric and string values may be "packed" in PRINT statements without using a "semicolon", as
in example statement 115.

OC and NC generate a return and linefeed respectively when printed as string characters.

Note: The PRINT USING statement (Section VIII) can be used
to provide greater control of format over strings and sub
strings.

EXAMPLES:

105 PRINT A$
110 PRINT A$~ 8$~ Z$
115 PRINT C$(8) "END OF STRING" 83
120 PRINT C$(l J 7)
130 PRINT "THE TOTAL IS:";X5

6-8

Reading Strings

GENERAL FORM:

statement number READ string or substring variable, string or substring variable,

A string READ statement causes the value of a specified string or substring variable to be read from
a DATA statement.

A string variable (to be assigned more than 1 character) must be mentioned in a DIM statement
before attempting to READ its value.

String or substring values read from a DATA statement must be enclosed in quotation marks, and
separated by commas. See "Strings in DATA Statements" in this section.

Only the number of characters specified in the DIM statement may be assigned to a string. Blanks
are appended to substrings extending beyond the string dimensions.

Mixed string and numeric values may be read (example statement 310 below); see "The TYP
Function", Section IV for description of a data type check which may be used with DATA
statements.

EXAMPLES:

300 READ C$
305 READ X$, Y$, Z$
310 READ Y$(5), A,B,C5,N$
315 READ Y$(1,4)

6-9

String IF Statement

GENERAL FORM:

statement no. IF string var. relationaloper. string var. THEN statement no.

A string IF statement compares two strings. If the specified condition is true, control is transferred
to the specified statemen t.

Strings are compared one character at a time, from left to right; the first difference determines the
relation. If one string ends before a difference is found, the shorter string is considered the smaller
one.

Characters are compared by their ASCII representation. (See STRING EVALUATION BY ASCII
CODES, Section IX.)

If substring subscripts extend beyond the length of the string, null characters (rather than blanks)
are appended.

String compares may appear only in IF ... THEN statements and not in conjunction with logical
operators (Section VII).

EXAMPLES:

340 IF C$<O$ THEN 800
350 IF C$>=O$ THEN 900
360 IF C$#O$ THEN 1000
370 IF N$C3,5)<R$C9) THEN 500
380 IF A$ClO)="ENO" THEN 400

6-10

The LEN Function

GENERAL FORM:

statement number statement type LEN (string variable)

The LEN function supplies the current (logical) length of the specified string, in number of
characters.

DIM merely specifies a maximum string length. The LEN function allows the user to check the
actual number of characters currently assigned to a string variable.

Note that LEN is a directly executable command (see Section III), while LEN (... $) is a pre
defined function used only as an operand in a statement. The LEN command gives the working
program length; the LEN function gives the current length of a string.

EXAMPLES:

469 PRINT LEN (A$)
479 PRINT LEN (X$)
489 PRINT "TEXT"; LEN(A$); B$, C
499 IF LEN (p$) #5 THEN 600
509 IF LEN (p$) = 5 THEN 609
519 IF LEN (p$) = 5 OR LEN (p$) = 10 THEN 10
529 LET X$(LEN(X$)+I) = "ADDITIONAL SUBSTRING"

600 STOP
609 PRINT "STRING LENGTH = "; LEN (p$)

6-11

Strings in DATA Statements

GENERAL FORM:

statement number DATA" string text", "string text" ...

The DATA statement specifies data in a program (numeric values may also be used as data).

String values must be enclosed by quotation marks and separated by commas.

String and numeric values may be mixed in a single DATA statement. They must be separated by
commas (example 520 below).

Strings up to 72 characters long may be stored in a DATA statement.

See "The TYP Function", Section IV, for description of a data type (string, numeric) check Which
may be used with DATA statements.

EXAMPLES:

500 DATA "NOW IS THE TIME."
510 DATA "HOW", "ARE", "YOU,"
520 DATA 5.172, "NAME?", 6.47,5071

6-12

Printing Strings on Files

GENERAL FORM:

statement number PRINT # file number, record number formula; string variable . ..

or

statement number PRINT # file number formula, record number formula; " string text"

or

statement number PRINT # file number formula; string variable or substring variable . ..

The PRINT # statement prints string or substring variables on a file.

String and numeric variables may be mixed in a single file or record within a file (example state
ment 360 below).

The formula for determining the number of 2-character words required for storage of a string on
a file is:

number of characters in string
1 + 2 if the number of characters is even;

number of characters in string + 1
1 + if the number of characters is odd.

2

See "The TYP Function", Section IV for description of a data type check.

EXAMPLES:

350 PRINT #5; "THIS IS A STRING."
355 PRINT #8; C$, B$, X$, Y$, D$
360 PRINT #7,3; X$, p$, "TEXT", 27.5,R7
365 PRINT #N,R; p$, N, AC5,5), "TEXT"

6-13

Reading Strings from Files

GENERAL FORM:

statement no. READ # file no. formula, record no. formula; string or substring variable . ..

or

statement no. READ # file no. formula; string or substring variable . ..

The READ # statement reads string and substring values from a file.

String and numeric values may be mixed in a file and in a READ number statement; they must be
separated by commas.

See "The TYP Function," Section IV for description of a data type check.

EXAMPLES:

710 READ #1, S; A$, B$
71S READ #2; C$, AI, B2, X
720 READ #3,6; C$CS),X$C4,7),Y$
730 READ #N,P; C$, V$C2,7),R$C9)

6-14

SECTION VII
logical Operations

Logical evaluation simply determines whether a given statement or expression is true or false. When
applied to numeric values, any non-zero expression is considered "true"-; a value of zero is considered
"false. "

When an expression or statement is logically evaluated by the TSB system, it is assigned one of two
numeric values-a 1 if the expression or statement is logically "true," or a 0 if the expression or state
ment is logically "false."

Logical decisions are used to select one of two or more paths of execution through a program. Exe
cuting an IF statement, described in this section, causes the system to perform a specified statement
next if the condition in the IF statement is true, and a different statement if the condition is false.

The truth or falsity of a statement or expression can also be determined and printed as a 1 for true
or a 0 for false.

RELATIONAL OPERATORS

There are two ways to use the relational operators in logical evaluations:

1. As a simple check on the numeric value of an expression.

EXAMPLES:

150 IF B=7 THEN 600
200 IF A9#27.65 THEN 700
300 IF CZ/I0»=0 THEN 800

When a statement is evaluated, when the "IF" condition is currently true (for example, in statement
150, if B=7), then control is transferred to the specified statement. When the condition is false, the
next sequential statement after 150 is executed.

7-1

Note that the numeric value produced by the logical evaluation is unimportant when the relational
operators are used in this way. The user is concerned only with the presence or absence of the con
dition indicated in the IF statement.

2. As a check on the numeric value produced by logically evaluating an expression, that is:
"true" = 1, "false" = O.

EXAMPLES:

610 LET X=27
615 PRINT X=27
620 PRINT X#27
630 PRINT X>=27

The example PRINT statements give the numeric values produced by logical evaluation. For instance,
statement 615 is interpreted by TSB as "Print 1 if X equals 27, 0 if X does not equal 27." There are
only two logical alternatives; 1 is used to represent "true," and 0 "false."

The numeric value of the logical evaluation is dependent on, but distinct from, the value of the
expression. In the example above, X equals 27, but the numeric value of the logical expression X=27
is 1, since it describes a "true" condition.

BOOLEAN OPERATORS

There are two ways to use the Boolean operators.

1. As logical checks on the value of an expression or expressions.

EXAMPLES:

510 IF Al OR B THEN 670
520 IF B3 AND C9 THEN 680
530 IF NOT C9 THEN 690
540 IF X THEN 700

Statement 510 is interpreted: "if either Al is true (has a non-zero value) or B is true (has a non-zero
value) then transfer control to statement 670."

Similarly, statement 540 is interpreted: "if X is true (has a non-zero value) then transfer control to
statement 700."

7-2

The Boolean operators evaluate expressions for their logical values only; these are "true" = any
non-zero value, "false" = zero. For example, if B3 = 9 and C9 = -5, statement 520 would evaluate
to "true," since both B3 and C9 have a non-zero value.

2. As a check on the numeric value produced by logically evaluating an expression, that is:
"true" = 1, "false" = O.

EXAMPLES:

490 LET B = e = 7
500 PRINT BAND e
510 PRINT e OR B
520 PRINT NOT B

Statements 500 - 520 returns a numeric value of either: 1, indicating that the statement has a logical
value of "true," or 0, indicating a logical value of "false."

Note that the criteria for determining the logical values are:

true any non-zero expression value

false an expression value of O.

The numeric value 1 or 0 is assigned accordingly.

EXAMPLES:

The following examples show some of the possibilities for combining logical operators in a statement.

It is advisable to use parentheses whenever possible when combining logical operators.

310 IF CA9 MIN B7)<0 OR CA9 MAX B7»100 THEN 900
310 PRINT CA>B) AND CX<Y)
320 LET e = NOT D
330 IF Ce7 OR D4) AND CX2 OR Y3) THEN 930
340 IF CAl AND B2) AND CX2 AND Y3) THEN 940

7-3

The numerical value of "true" or "false" may be used in algebraic operations. This sequence counts
the number of zero values in a file:

90 LET X = 0
100 FOR I = 1 TO N
110 READ #1; A
120 LET X = X+(A=O)
130 NEXT I
140 PRINT N; "VALUES WERE READ."
15 a PR I NT X; "WERE ZEROES."
1 6 0 P R I NT (/'J - X); "w ERE NON Z E R 0 . "

Note that X is increased by 1 or 0 each time A is read; when A = 0, the expression A = 0 is true, and
X is increased by 1. N must have been given a value earlier in the program.

7-4

SECTION VIII
Formatted Output

The PRINT USING and IMAGE statements give the user more explicit and exact control over the
format of his output. Numbers can be printed in three forms - - integer, fixed-point, or floating
point - - with control of + and - signs. Strings may be printed in specified fields. Blanks can be
inserted wherever needed. Carriage return and linefeed can be controlled. PRINT USING requires
more programming effort than a simple PRINT, but it provides the ability to output data in what
ever format the programmer needs.

DEFINITIONS

Term

FORMATTED OUTPUT

EXPRESSION LIST

FORMAT STRING

FORMAT SPECIFICATION

Delmed in TSB

Similar to normal output (PRINT statement) except
that, in addition to an expression list of output
values, the PRINT USING statement also specifies
a format string that determines the form in which
the values are printed. Formatted output can be used
to print lines of any character length, up to the maxi
mum capability of the output device used.

A list of expressions and string variables separated
by commas and optionally interspersed with space
functions. An expression list must not contain
literal strings.

A string of up to 72 characters, consisting of an
optional carriage control character followed by a
list of format specifications separated by commas
or slashes (f).

A series of format characters and repetition
factors that determines the format (field width,
decimal point, sign, etc.) of one item in the
expression list. Can also be a literal string in
certain situations. Format specifications can be
gathered into a repeatable group through the use
of parentheses.

8-1

Term

FORMAT CHARACTERS

REPETITION FACTOR

SLASH

LITERAL STRING

SP ACE FUNCTIONS

CARRIAGE CONTROL
CHARACTERS

Defined in TSB

The characters A, X, D, S, ., and E are used to
specify output fields for strings and numbers.

An unsigned integer (e.g., 3, 6, 12,32) that is
placed before a format character or group of
format specifications in order to repeat it
(e.g., 3A = AAA; 2(3A,4A) = 3A,4A,3A,4A).
The repetition factor must be between 1 and 72
inclusive.

A delimiter (/) used to separate specifications when
a carriage return-linefeed is desired before processing
the next specification. Multiple slashes may be
used (/ / /).

Any sequence of characters, other than quote
marks ("), that is surrounded by quote marks and
is to be printed as it appears.

Three functions can appear in an expression list:

TAB(x) - Tabs out to column x before printing
next item. (x> 72 is legal only in a
PRINT USING statement.)

LIN(x) - Skips I x I lines before printing next
item. (If x < 0, no carriage return is
generated. If x=O, only a carriage
return is generated.)

SPA(x) - Skips x spaces before printing next
item.

At the beginning of any format string there may
appear one of three optional chhracters set off
by a comma:

+ means to suppress linefeed.

- means to suppress carriage return.

means to suppress carriage return and linefeed.

These characters specify action to be taken after
the PRINT USING statement is complete. If no
character is specified, the default condition is
a carriage return and linefeed.

8-2

~'--

Summary

FORMAT CHARACTERS
& REPETITION FACTORS

~---------Vv------------J'

FORMAT SPECS

CARRIAGE CONTROL
CHARACTERS DELIMITERS: / and,

,
y I

FORMAT STRING

PRINT USING 1 D I EXPRESSION LIST I

EXAMPLES:

PRINT USING

\.

PRINT USING STATEMENT
FORMATTED OUTPUT

"000.000" ; ZI --FORMAT STRING EXPRESSION LIST

PRINT USING "2X,3C3D.3D,2X)" ; ZI,Z2,Z3

FORMAT STRING EXPRESSION LIST

8-3

I

STRING FORMAT SPECIFICATIONS

Format Characters Used

A - calls for one ASCII character to be output from a string in the expression list.

X - specifies that a blank be printed next.

nA - calls for n ASCII characters (n = repetition factor).

nX - specifies that n blanks be printed.

Combination Rules

Any combination of X's, A's, and repetition factors specifies a legal STRING FORMAT
SPECIFICATION. When such a specification is encountered in a format, the next item in the
expression list must be a string.

FORMAT EXAMPLES:

AAAA
4A
2A2A

} equivalent

4X
AXAXAXA
2X20A

special case (all blanks, so no variable required)
alternate characters and blanks

OUTPUT EXAMPLES:

Format Spec

6A
SA
8A
2X6A
AXAXAXAXAXA

Contents of
String Variable

ABCDEF
ABCDEF
ABCDEF
ABCDEF
ABCDEF

Format of Output

ABCDEF
ABCDE
ABCDEF A.I\

A.I\ ABCDEF
A",B",C"D", E",F

The string is left-justified in the field and any leftover spaces are filled with blanks. If the string
variable contains more characters than the specification allows, characters on the right are truncated.

8-4

INTEGER FORMAT SPECIFICATIONS

Format Characters Used

D - calls for one decimal digit to be printed from a number in the expression list.

nD - calls for n contiguous decimal digits to be printed from a number in the expression list.

X - specifies that a blank is to be printed within the field for the number (nX is also allowed).

S - specifies that the sign (+ or -) of the number is to be printed.

Combination Rules

Any combination of X and D is allowed, but at least one D must be present and only one S is
allowed. When such a specification occurs in a format, the next item in the expression list must be
a number. This number is rounded to an integer and printed right-justified. Although the requested
number of digits will be printed, only six can be guaranteed to be significant.

FORMAT EXAMPLES:

DDDD
4D
2DDD
2D2D

2DX3D
5DDD
54D
DX3D5

I equivalent

OUTPUT EXAMPLES:

Format Spec

40
54D
40S
5D
4D
OXDDO
5100
05000
50
4D

Value Format of Output

1234 1234
1234 +1234
1234 1234+
1234 ,,.,1 2 34
1234.8 1235
1234 1,,234
1234 /\/\/\/\/\/\ +1234
1234 1+234
-1234 -1234
1234.2 1234

8-5

If there is not enough room in the field for the number (i.e., the number of digits is greater than the
number of D's in the format spec), then the value is printed on a separate line in a floating-point
format (SD.5DE) so that the programmer can analyze what went wrong.

If an S precedes all D's, the sign is printed immediately preceding the first digit of the number.
If an S appears past the first D, the sign is printed at the location of the S.

If an S is not included in the format, then an extra D should be provided if the value could possibly
be negative. When the value is negative, the - sign is always printed preceding the most significant
digit and a space must be provided for it with a D or the field may overflow.

The ability to insert blanks can be combined with the ability to overprint (carriage control) in order
to produce useful results. For example, large numbers can be printed with blanks left in the correct
spots for commas to be inserted after each group of three digits (e.g., $10,937).

FIXED-POINT FORMAT SPECIFICATIONS

Format Characters Used

Same as INTEGER FORMAT, plus

. - specifies the location of the decimal point.

Combination Rules

Any combination of D and X to the left and right of the decimal point is allowed, but at least one
D must be present and only one S and one"." are allowed. For this specification, the next item in
the expression list must be a number. The digits to the right of the decimal point are rounded to
fit in the field. Leading zeros to the left are suppressed, but trailing zeros are always printed.

FORMAT EXAMPLES:

DDD.DDD
DDD.3D
3D.3D
3D.DDD

} equivalent

53D.3D
DXDXDX.DDXD
XD6X4D.8D
DD5DD.3D

8-6

OUTPUT EXAMPLES:

Format Spec

30.40
40.20
40.30
50020.0
520.40
5.40
0.40
20.40

Value

465.465
465.465
-465.465
465.465
.465
.465
-.465
-.465

Format of Output

465.4650
,.,465.47
-465.465
,.,+465.5
,.,+0.4650
+.4650
-.4650
-0.4650

If the number to be printed has no digits to the left of the decimal point but D's are provided to the
left, then a zero ("0") will be printed in the rightmost D on the left side. If an S is provided to the
left, it is moved to the right through D's and X's until it comes to the first non-blank character. If
an S is not provided and the number is negative, then one of three things will happen: 1) no D's to
the left causes overflow; 2) one D to the left will be used for the "-" sign and the "0" will not be
printed; or 3) two or more D's to the left, then the "-" and "0" will be printed in the positions
reserved by the rightmost two D's.

FLOATING-POINT FORMAT SPECIFICATIONS

Format Characters Used

Same as FIXED-POINT FORMAT, plus

E - signifies floating point format.

X - as defined earlier may follow E.

Combination Rules

Any legal INTEGER or FIXED-POINT format specification followed by an E is a legal FLOATING
POINT format. The E stands for "exponent" and signifies a four-character field consisting of an
"E" followed by "+" or "-" and two decimal digits. When 10 is raised to the power printed after
E and multiplied by the number in the integer or fixed-point field, the result is the value being
output. This format is useful for numbers that are very large or very small. For example,
.00005 = .5 x 10-4 = .5E-4. X's may follow the E and they cause Blanks to be printed between
the E and the exponent sign.

8-7

FORMAT EXAMPLES:

SD.SDE
DDD.DDDXEX
SD.8DXE
S6DE
S6D.E
S6D.XE
S6D.DDDE

OUTPUT EXAMPLES:

Format Spec

SDXE
DDDD.DDE
S5DX.X5DEX
SD.5DE
S.10DE3X

Value

4.82716 X 10 21

SAME
SAME
SAME
SAME

Format of Output

+5"E+21
4827.16E+18
""" +48 "." 27159E,,+20
+4.82716E+21
+.4827159382E"",,+22

Note again that the format can specify an unlimited number of digits in a specification, but only
six of these are guaranteed accurate. When more than six digits are requested, non-significant digits
are printed as in the preceding examples.

To produce the output, the output value from the expression list is multiplied or divided by 10,
the number of times necessary to fit the value into the field. It is then rounded from the right,
and the exponent is adjusted to account for the multiplications or divisions.

If the format allows for more digits than there are significant digits in the output value, two rules
are folfowed:

1. If there are more than 6D's on the right side of the decimal point, the l'eftmost digit is printed
in the first D (if any) to the left of the decimal point or the first D to the right of the decimal
point; extra D's beyond 7 on the right are filled with non-significant digits. In the following
examples, the arrow indicates the position of the leftmost digit printed:

DDAOD

t
XX.DD40D

t
40DDAOD

t

2. If there are less than 7 D's on the right side of the decimal point, the leftmost digit is printed
in the seventh D position from the right (or the leftmost if there are not 7). In the following
examples, the arrow indicates the position of the leftmost digit printed:

6DDDD.DDDD

t
DD.DD

t

8-8

D.6D

t

POSITION OF THE SIGN

1. When S is used.

If S precedes any D, the sign position is moved to the right through X's and D's and is printed
immediately to the left of the first non-blank character. If the number to be printed is a
fraction with no digits to the left of the decimal point and any D's appear on the left of the
decimal point, then a "0" appears in the rightmost D and the sign floats up to that "0".

If S is preceded by one or more D's, the sign is printed at the position of the S and does not
float.

2. When S is not used.

When the number is negative, an extra D must be present to reserve a place for the sign. The
position of the sign is moved through unused D's and X's to the first non-blank character.
If not enough D's are provided for all the significant digits and sign of a negative number,
then the field overflows and the number is printed on a separate line in SD.5DE format.

GROUPED FORMAT SPECIFICATIONS

One or more format specifications can be gathered within parentheses to make a group. This group
must be repeated by prefacing it with a repetition factor between 1 and 72 inclusive. Within the
parentheses, the specifications must be separated by commas or slashes and the group must be set
off from other specifications by a comma or slashes, just as if it were a single specification. Groups
can be nested two levels deep.

EXAMPLES:

4(lOA,2X,4D,2X//)
3(lOD,2(3DX,4DX),4A)
3D.3D//3(20A,6D,4(2A2X)/)

8-9

FORMAT STRINGS

Defined: A collection of format specifications (or groups of format specifications) set off by
commas or slashes and optionally preceded by a carriage control character set off by a comma.
One format string is used by one PRINT USING statement. The first character of a format string
must not be a slash (J) or a comma.

EXAMPLES:

+,20A,2X,S4D.2D
6D,2X,6DSX,13AXAX,2(4D,2X,3AX)
-,20A/20X20A/40A20X/

TERM: EXPRESSION LIST

Defined: The list of items to be printed using the format string. The items must be separated by
commas (not semicolons), and the list must not contain any literal strings. The types of the items
(numerical or string) must match the types of items called for in the format string. Space functions
(SPA,LIN,TAB) may appear in the list.

PRINT USING Statement

GENERAL FORM:

statement number PRINT USING format string; expression list

This statement is used to print out data according to a specified format.

The format string can be specified in one of three ways:

a. an actual string ("6D,X20A")

b. a string variable containing the format string (A$,B$(5,20»

c. the statement number of an IMAGE statement containing the format string (200).

The expression list is a list of expressions separated by commas; the semicolon and expression list
are optional.

When the PRINT USING statement is executed, the format string is examined and the carriage
control character, if any, is saved. Each specification is extracted and examined. If it calls for a
string or numerical item, the next expression in the expression list is taken and printed according
to the specification.

8-10

'--.-

If there are no more specifications or the specification is of the wrong type, execution of PRINT
USING terminates.

If the specification does not require an item from the list (e.g., a blank or literal specification), the
specification is printed without examining the expression list.

If the end of the format string is reached before the end of the expression list, processing continues
from the beginning of the format string.

When all expressions have been printed, a carriage return and linefeed (modified by the carriage
control character) are printed.

EXAMPLES:

300 PRINT USING 200jA,B4,C$,TAB(50),67.78
400 PRINT USING A$jA,A3,C$,D$
500 PRINT USING "6DX,25A"jA,A$

In the following examples, the variables have these values: A = +12345, B = -1234, C = 123,
D = 12, E = -12345, F = 123456, G = -1, H = 1234.

100 PRINT USING "3(S6D2X)/ "jA,B,C,D,E,F

Output

"+ 12 345 """" -1234 """"" + 12 3
"""" + 12 """ -12345"" + 1 2 3 4 5 6

100 PRINT USING "3(S6D2X)/"jA,G

Output

,,+12345 """"""" -1

50 IMAGE "MONEY ",6DX,"COST ",6DX,"INPUT ",6DX
100 PRINT USING 50jH,D

Output

MONEY""" 1234"COST """"" 12

8-11

MAT PRINT USING Statement

GENERAL FORM:

statement number MAT PRINT USING format string; matrix list

This statement is used to print out data from matrices in a specified format.

Matrices referenced in MAT PRINT USING statements must be previously dimensioned.

The format string is the same as in PRINT USING except that it must not contain any string
specifications.

The matrix list is a list of matrices separated by commas. (The semicolon and matrix list are
optional.) Space functions are allowed in the matrix list.

As in MAT PRINT, the matrices are printed in row by row order.

EXAMPLES:

200 MAT PRINT USING 300;A,B,SPA(M),C
350 MAT PRINT USING A$; B,N,M
400 MAT PRINT USING "SD.5DE2X";K

10 DIM AC5,5)

100 PRINT USING "6(SD.5DE)/";A

8-12

FORMAT IN A STRING VARIABLE: One way to specify the format string in a PRINT USING or
MAT PRINT USING statement is by using a string variable that contains the format string. This
allows the programmer to change the format during the execution of the program. The following
excerpt from a sample program shows what can be done: '

100 LET A$ = "DD, /\/\/\/\/\ DD"
110 IF X<Y THEN 130
120 A$(4,8) = "SD.E,"
130 PRINT USING A$;

If X is not less than Y, then the format string becomes

DD,SD.E,DD

instead of

DD,DD

IMAGE Statement

GENERAL FORM:

statement number IMAGE format string

The IMAGE statement is used to specify a format to be used in a PRINT USING statement.

An IMAGE statement is one means by which a literal string can be introduced into a format string.
Literal strings are printed exactly as they appear in the format string, similar to the way blanks are
printed in a blank specification.

The format string is any legal format string; it is not enclosed in quotes and can therefore contain
literal strings as format specifications.

EXAMPLES:

100 IMAGE 6D,"LITERAL STRING",SD.5DE
200 IMAGE XDDXDD.DDE,20A,3D

8-13

USING CARRIAGE CONTROL

This example demonstrates the use of the LIN function (statement 5), the carriage control characters
(statements 20, 40, and 60), and literal strings in IMAGE statements.

PROGRAM:

5 pPI~n Llt-~(5)

10 PPINT USING 20
20
:30
40
50
60
70

90

I t'1AGE
pPI~n

It'1AGE
PPItH.
I~1AGE

pPI~n

I t'1AGE
am

OUTPUT:

.... II • f
~ .. , .,,,

USI~H3 40
- ~ .. :S:UPPF'ES:S:E:S: L I NEFEED At-m CARP I AGE PH~"

USlt-H3 60
+ ~ .. - SUPPPESSES: CAPP I AGE PH~"

U:S: I ~H3 ::: 0
.. At-iD + SUPPRES:S:E:S: L I t-~EFEErl ...

~~ :SUF'PPE:~::S:E:S: L I NEFEED At-m CAPP I AGE F'Hl
AND + SUPPF'ESSES LINEFEED. - SUPPPESSES CAPPI~GE FTN

DDNE

8-14

NUMERICAL OUTPUT

This example program prints out the values of 2tN and (-2)tN, where N varies from - 5 to 20.
Floating-point and integer formats are used (statement 350).

PROGRAM:

200 PRINT USING 210
210 HHil;iE" t"1 ., <:::<, "2 TO THE W' ,:~:::<, "-;::: TO THE t"1"
300 FOR t"1=-5 TO 20
350 PR ItH US H~G "3D, c:::< ,:~:D • 5DE ,;:::::< <D • 5DE" ;r'l ,2'H~ , .:: -2 >t-N
360 t"1E::<T t"1
1000 am

OUTPUT:

N .:' TO THE t·~ -2 TO THE n L..

-5 +.-::' 12500E-02 - -::: 1'-'1:' OE-02 '-' · - · -=.._1

-4 +6 .2500 (IE - 0;::: +6 .250 OE-02
- ~: +1 .25000E-0l. -l. .250 OE-01
-2 +2 .50000E-01 +2 .500 OE-01
-1 +5 00000E-01 - I:' 000 OE-01 · -, · 0 +1 · OOOOOE+OO +1 · 000 OE+OO

1 +2 · OOOOOE+OO -2 · 000 OE+OO
.-, +4 0 OOOE+OO +4 000 OE+OO c · ·
:~: +::: • (I OOOE+OO -::: · 000 OE+OO
4 +1 • ':1 OOOE+ 0 1 +1 .600 OE+01
I:' +.-::' .-, 000E+01 - .-, .200 OE+01 '-' '-' .c .:.,

6 +6 .4 000E+01 +6 .400 OE+01
-:0 +1 .2::'OOOE+02 -1 .2:::0uOE+02 ..
::: +2 .56000E+02 +2 .56000E+02
'3 +5 · 12000E+02 -5 · 12000E+02

1 0 +1 · 02400E+03 +1 · 0240 OE + O:~:
1 1 +2 04::: 0 OE + 0:::: .-, 04::: 0 OE + 03 · -c ·
12 +4 · 09600E+03 +4 · 09600E+03
1'-::' '-' +':' '-' · 19200E+03 -::: · 1 '3;:::00E+ 03
14 +1 .63:::4 OE + 04 +1 .63:::40E+04
15 +.:' .276:::: OE + 04 - .276:::: OE + 04 '-' - :,::

16 +6 .55360E+04 +6 .55360E+04
1-:0 .. +1 .31 072E+05 -1 .31 072E+05
1':' '-' +2 .62144E+05 +2 .62144E+05
1'3 +5 • 242:::::::E + 05 -5 • 242:::::::E + 05
20 +1 · 04:::5:::E + 06 +1 · 04:::5:::E + 06

8-15

REPORT GENERATION

This program is a sample report generator. It first requests a school number from the terminal, then
reads and prints out information about the school's teachers from a file. Note that a carriage control
character is used to advantage (statement 100), slashes (/) are used (statement 200), string and
fixed-point fields are used (statement 210), and an error occurs in the output for the eighth teacher
(number too large for field; therefore, it is printed in E format on a separate line).

PROGRAM:

10
50
60
100
150
175
200
210
2:~:0

250
260
270
500
550
<:"E:" .::-
._I._I.~)

'::-E:""'" "_'o_J !"

560
600
620
1000

REM: THIS PROGRAM GENERATES A REPORT ON TEACHERS.
DIM A$[25J~B$[19J~C$[19J
FILES SCHl ~SCH2~SCH3~SCH4~SCH5

I t'lAGE ~~ ~ .. EtHER :::CHOOL Nut·mER:"
I t'lAGE .. TEACHER" ~ 13::< ~ .. :::UB.JECT" ~ 1 :::::< ... SALAP'''''' • 4::·: ~ .. ATn-m ...
I t'lAGE .. ------- .. ~ 13>:: ~ .. ------- .. ~ 1 :~:;:.:: ~ .. ------ .. ~ 4>< ~ .. ------
H1AGE "CEtHRAL CIT'r' SCHOOL DISTRICT DAIL'y· REP[lPT OF .. ~,:::5R.··.····

H1AGE 20A ~20A ~ "$" ~DDD .DD ~DD .DDDD
PRltH U:::lt'jl;; 100
It'WUT Z
READ ~~Z; A$ ~ t'l
PRItH LH1(6)
PRINT USING 200;A$
PR I tH U::: I t'jG 15 (I
PPItH U:~:ING 175
FOR Al=l TO N
PEAD ~q ;E:$ ~C$ ~A ~B
PRINT USING 210;B$~C$~A~TAB<5(1)~B
NE::<T A1

Et-lD

8-16

OUTPUT:

ENTER SCHOOL NUMBER:?l

CENTRAL CITY SCHOOL DISTRICT
DAILY REPORT OF B. BAKER HIGH SCHOOL

TEACHER

MISS BROOKS
MISS CRABTREE
MISS GRUNDIE
MRS. HUMPREY
COLONEL MUSTARD
MISS PEACH
PROF. PLUM
MISS H. PRYNNE
+5.00500E+02

MISS SCARLETT
MR. SIR
MR. T. TIM
MR. WEATHERBY

FATAL ERRORS

SUBJECT

ENGLI SH
REM. READING
HISTORY
SPE LLI NG
CRIMINOLOGY
LIFE PREPARATION
AGRICULTURE
SOCIAL STUDIES

P • E •
HOME ROOM
MUSIC
ECONOMICS

SALARY

$450.34
$400.00
$350.00
$700.00
$700.00
$232.00
$777.77
$100.25

$205.10
$890.00
$ 10.99
$767.99

ATTND.

12.5000
64.3200

1.0010
99.9900
21.4500
23.2320
65.0050

25.0000
99.9000

0.0500
10.0400

These errors cause termination of execution of the PRINT USING statement. An appropriate
message is printed, along with the format specification that caused the error.

1. The replicator is outside the range 1";;; n";;; 72.

2. Appearance of a D,S,E or . in a string specification.

3. Appearance of an A in an integer specification, a fixed specification, or a floating specification.

4. Appearance of any character other than A,X,D,S,E,/ or . in any specification but literal.

5. A comma followed by a slash.

6. More than two levels of parentheses.

7. No D in a fixed or floating specification.

8. An S in a blank specification.

9. String expression attempted to output in non-string format.

10. A slash followed by a comma.

11. Two or more E's or. in a specification.

8-17

12. Literal string not separated by delimiters.

13. Missing quotes in a literal.

14. Specifications enclosed in parentheses without a replicator.

15. Specified statement is not IMAGE.

16. Attempt to print number with string format.

NON·FATAL ERRORS

These errors do not cause termination of the PRINT USING statement. The action taken is
indicated.

1. String specification field too narrow - - truncate string on right.

2. Field too narrow for integer or integer part of fixed specification - - number is printed in
SD.5DE format on next line and printing resumes on following line.

3. Field too narrow for fraction part of fixed or floating specification - - round from right to
fit into field.

4. Specification requires the printing of more than 46 digits - - 46 digits will be printed preceded
by blanks filling the rest of the field.

5. More than one S - - subsequent S's are ignored.

8-18

SECTION IX
For the Professional

This section contains the most precise reference authority - - the syntax requirements of Time
shared BASIC. The syntax requirements are explicit and unambiguous. They may be used in all
cases to clarify descriptions of BASIC language features presented in other sections.

The other subsections give technical information of interest to the sophisticated user.

SYNTAX REQUIREMENTS OF TSB

Legend

"is defined as ... "

"or"

< > enclose an element of Time Shared BASIC

Language Rules

1. Exponents have 1 or 2 digit integers only.

2. A <parameter> primary appears only in the defining formula of a <DEF statement>.

3. A <sequence number> must lie between 1 and 9999 inclusive.

4. An array bound must lie between 1 and 9999 inclusive; a string variable bound must lie
between 1 and 72 inclusive.

9-1

5. The character string for a <REM statement> may include the character".

6. An array may not be transposed into itself, nor may it be both an operand and the result
of a matrix multiplication.

7. A character string that is not a literal can contain the character", through the use of the
ENTER statement.

8. A replicator must lie between 1 and 72 inclusive.

Note: Parentheses, () , and square brackets [J , are accepted
interchangeably by the syntax analyzer.

9-2

<constant>

<number>

<decimal number>

<i nteger>

<di git>

<exponent part>

<literal string>

<character string>

<character>

<variable>

<simple variable>

<letter>

<subscripted variable>

<sublist>

<string variable>

<string simple variable>

<expression>

<conj uncti on>

<relation>

<minmax>

<s urn>

<term>

<subterm>

.. -

-

-

-

-

-

-

-

-

<number>I+<number>I-<number>l<literal string>

<decimal number>l<decimal number><exponent part>

<integer>l<integer>. l<integer>.<integer>I.<integ~r>

<digit>l<integer><digit>

E<integer>IE+<integer>IE-integer (see rule 1)

"<character string>"

<character> I <character string><character>
(See Rule 7.)

Any ASCII character except null, line feed,
return, x-off, +-, Ii, rubout, and under
score

<simple variable> I <subscripted variable>

<letter>l<letter><digit>

A\B\C\DIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVI w X y Z

<letter>«sublist»

<expression> I <expression> ,<expression>

<string simple variable>l<string simple variable>
«sublist»

<1 etter>$

<conjunction> I <expression>OR<conjunction>

<relation> I <conjunction>ANO<relation>

<minmax>l<minmax><relational operator><minmax>

<sum> I <minmax>MIN<sum> I <minmax>MAX<sum>

<subterm> I <term>*<subterm> I <term>/<subterm>

<denial>l<signed factor>

9-3

<leftpart>

<IF statement>

<decision expression>

<comparison string 1>

<comparison string 2>

<GOTO statement>

<sequence 1 i s t>

<GOSUB statement>

<RETURN statement>

<FOR statement>

<for vari ab 1 e>

<initial value>

<final value>

<step size>

<NEXT statement>

<STOP statement>

<END statement>

<DATA statement>

<READ statement>

<va ri ab 1 eli s t>

<read variable>

<INPUT statement>

- <variable>=I<leftpart><variable>=

IF<decision expression>THEN<sequence number> I
IF END #<file formula>THEN<sequence number>

<expression> I
<comparison string l><relational operator>

<comparison string 2>

<string variable>

<string variable>l<literal string>

GOTO<sequence number>
GOTO<expression>OF<sequence list>

<sequence number>l<sequence list>,<sequence number>

GOSUB<sequence number> I
GOSUB<expression>OF<sequence list>

RETURN

FOR<for variable>=<initial value>TO<final value>1
FOR<for variable>=<initial value>TO<final value>

STEP<step size>

<simple variable>

<expression>

<expression>

<expression>

NEXT<for variable>

STOP

END

DATA<constant> I <DATA statement>,<constant>

READ<variable list>!READ<file reference>!
READ<file reference>;<variable list>

<read variable>!<variable list>,<read variable>

<variable>!<destination string>

INPUT<variable list>

9-5

<ENTER statement>

<PRINT statement>

<type statement>

<print 1 >

<pri nt 2>

<print 3>

<print expression>

<A part>

< D part>

< X part>

< repl i cator>

<empty>

<string spec. comp.>

<string spec. 1>

<string spec. 2>

<string spec.>

<integer spec. comp.>

<integer spec.>

<fraction spec.>

<fixed spec.>

ENTER #<variable>/
ENTER<expression>,<variable>,<variable>/
ENTER<expression>,<variable>,<string variable>/
ENTER #<variable>,<expression>,<variable>,

<variable>/
ENTER #<variable>,<expression>,<variable>,

<string variable>

<type statement>/<file write statement>/
PRINT<file reference>

- <print l>/<print 2>
/

PRINT/<print 2>,/<print 2>;/<print 3>

<print l><print expression>/<print 3>

<type statement><literal string>

<expression>/<special function>/
<source stri ng>

A/<A part>A/<replicatoY><A part>

D/ < D part> D/ < repl i catoY>< D part>

X/<X part>X/<replicatoY><X part>

<integer>

<A part>/<X part>

<string spec. comp.>/
<string spec. comp.><string spec. 1>

<string spec. 1>/
<empty>

<string spec. 2><A part><string spec 2>

<D part>/<X part>/SI<empty>

<D part>l<integer spec. comp>
<integer spec.><integer spec. comp.>

<integer spec. comp.>/
<fraction spec.><integer spec. comp.>

<integer spec.><fraction spec.>1
<fraction spec.>.<integer spec.>

9-6

<floating spec>

<format list element>

<format 1 i st>

<carriage control>

<format s tri ng>

<special function type>

<special function>

<expression list>

<expression list element>

<PRINT USING 1>

<PRINT USING statement>

<IMAGE statement>

<file write statement>

<write expression>

<RESTORE statement>

<DIM statement>

<fixed spec.>E/<integer spec.>E/
<floating spec.><X part>

<string spec.>/<fixed spec.>/
<floatin9 spec.>/<integer spec.>/
<x part>l<literal string>

<format list element>/
<format list element>,<format list>/
<replicator>«format list»/
<format list>/<format list element>/
<format 1 i st>/

+/-/#
<format list>/<carriage control>,

<format 1 i st>

TAB! LIN! SPA

<special function type>«expression»

<expression list element>!
<expression list>,<expression list element>

=<expression>!<special function>

PRINT USING"<format string>ll!
PRINT USING<sequence number>j
PRINT USING<string variable>

<PRINT USING l>;<expression list>!
<PRINT USING 1>

IMAGE<format string>

PRINT<file reference>;<write expression>!
<file write statement>,<write expression> I
<file write statement>;<write expression> I
<file write statement><literal string>]
<file write statement><literal string>

<write expression>

<expression>!END!<source string>

RESTORE!RESTORE<sequence number>

DIM<dimspec>!<DIM statement>,<dimspec>

9-7

<COM statement>

<com list element>

<dimspec>

<bound>

<DEF statement>

<FILES statement>

<name>

<REM statement>

<CHAIN statement>

<MAT statement>

<MAT READ statement>

<actual array>

<dimensions>

<MAT INPUT statement>

<MAT PRINT statement>

<MAT PRINT 1>

. -=

.. =

COM<com list element> I
<COM statement>,<com list element>

<simple variable>l<string simple variable>1
<dimspec>

<array identifier>«bound» I
<array identifier>«bound>,<bound»
<string simple variable>«bound»

<integer> (see rule 4)

DEF<function identifier>«parameter»=<expression>

FILES<name>IFILES $<name>I
FILES~ name>IFILES*1
<FILES statement>,<name>I
<FILES statement>,$<name>I
<FILES statement>,*<name>I
<FILES statement>,*

a string of up to 6 printing <character>'s
except comma, and not beginning with "$" or
"*"

.. = REM<character string> (see rule 5)

.. = CHAIN<source string>1
CHAIN<source string>,<expression>

- <MAT READ statement> I <MAT INPUT statement> I
<MAT PRINT statement> I
<MAT initialization statement> I
<MAT assignment statement>

MAT READ<actual array> I
MAT READ<file reference>;<actual array>
<MAT READ statement>,<actual array>

<array identifier> I <array identifier>«dimensions»

<expression>l<expression>,<expression>

MAT INPUT<actual array> I
<MAT INPUT statement>,<actual array>

<MAT PRINT 1> I <MAT PRINT 2>

MAT PRINT<array identifier> I
MAT PRINT<file reference>;<array identifier> I
<MAT PRINT 2><array identifier>

9-8

<MAT PRINT 2>

<MAT PRINT USING statement>

<MAT PRINT USING 1>

<array identifier list>

<array identifier list element>

<MAT initialization statement>

<initialization function>

<MAT assignment statement>
(rule 6)

<mat operator>

<ASSIGN statement>

<MAT PRINT 1>, 1 <MAT PRINT 1>;

<MAT PRINT USING 1>1
<MAT PRINT USING l>;<array identifier list>

<MAT PRINT USING<II>format string>1I1
<MAT PRINT USING><sequence number> I
<MAT PRINT USING><string variable>

<array identifier list element>/
<array identifier list>,

<array identifier list element>

<array identifier>/<special function>

MAT<array identifier>=<initialization function> I
MAT<array identifier>=<initialization function>

«dimensions»

ZER / CON 1 ION

MAT<array identifier>=<array identifier>/
MAT<array identifier>=<array identifier>
<mat operator><array identifier>
MAT<array identifier>=INV«array identifier»/
MAT<array identifier>=TRN«array identifier»,
MAT<array identifier>=«expression»*<array

i dentifi er>

+/-/*
• ASSIGN<source string>,<expression>,<variablp.>/

ASSIGN<source string>,<expression>,<variable>,
<source string>

9-9

STRING EV ALUATION BY ASCII CODES

Each user terminal character is represented by an A.S.C.I.!. (American Standard Code for Information
Interchange) number except 2741.

Strings are compared by their A.S.C.I.I. representation.

The A.S.C'!'!. sequence, from lowest to highest is:

Lowest: bell

space 5 J u

6 K a v
II 7 L b w
8 M c x
$ 9 N d Y
% 0 e z
& P f {

< Q 9
(= R h }

) > S i Highest

* ? T j

+ @ U k

A V

B W m

C X n

/ 0 y 0

0 E Z P
F [q

2 G \ r

3 H] s

4 I t t

9-10

MEMORY ALLOCATION BY A USER

Approximate space available for user allocation: 10,000 2-character words.

Examples of User-Determined Allocation

Note: This is variable "system overhead"; it is not included in
word counts produced by the LEN command.

a. Introduction of each simple, string, or matrix variable uses 4 words.

b. A 9 word stack is reserved for GOSUB's.

c. 6 X (maximum level of FOR ... NEXT loop nesting).

d. Each file name mentioned in a FILES statement reserves as many words for buffer space as
there are words in each logical record of the file. Each "*,, in a FILES statement reserves
256 words of BUFFER space; each file and "*,, also reserves 15 words of table space.

e. An approximate estimate of space required for a program is:

11 words per BASIC statement

+2X(number of matrix elements dimensioned)

+1/2X(number of string characters used)

Semicompiled programs require slightly more space than that shown by the LEN command.
CATALOG gives the actual length of CSAVED programs.

9-11

APPENDIX A

How to Prepare A Paper Tape Off-Line

To prepare a BASIC program on paper tape for input:

1. Set terminal status to "LOCAL."

2. Press the ON button on the paper tape punch.

3. Press @c (or HERE IS if available) several times to put leading feed holes on the tape.

4. Type the program as usual, following each line with return linefeed.

5. Press @c (or HERE IS) several times to put trailing feed holes on the tape.

6. Press the OFF button on the paper tape punch.

The standard on-line editing features, such as line delete and character delete, may be punched on
paper tape.

Pressing the BACKSPACE button on the paper tape punch, then the RUBOUT or DEL key on the
keyboard, physically deletes the previous character from the paper tape.

Programs punched onto paper tape in the above manner, or produced by the PUNCH command,
may be input to the system through the paper tape reader after typing the TAPE command. They
may not be input as data using INPUT or ENTER statements. (See Section II and Appendix B.)

A-I

APPENDIX B
The X-ON, X-OFF Feature

Terminals equipped with the X-ON, X-OFF feature must be used if it is desired to input data from
a paper tape while a program is running.

Data is punched on paper tape in this format:

line of data items separated by commas x-off return linefeed

(x-off, return and linefeed are user terminal keys.)

Remember that each line of data must end with x-off return linefeed.

The X-OFF character causes the paper tape reader to stop reading tape after each carriage return
until more input is requested by the program. Lines output by PRINT and PRINT USING state
ments are terminated by the X-off character

Programs on paper tape produced by the XPUNCH command are in the correct format to be input
as data strings from terminals with the X-ON, X-OFF feature. No line of such a program should
exceed 72 characters (not counting X-OFF, carriage return, and linefeed), since each must fit into
a single string. Programs produced by XPUNCH are not suitable for input in TAPE mode (Appendix
A) from terminals with the X-ON, X-OFF feature.

B-1

USER COMMAND ERROR MESSAGES

APPENDIX C
Diagnostic Messages

Error messages are listed below with the command which may invoke them. The message ILLEGAL
FORMAT may be typed in response to many commands. The message PLEASE LOG IN is typed if
a command (other than HELLO) or a line of syntax is entered from a port on which no user is logged
in.

APPEND

INV ALID NAME
NO SUCH PROGRAM
ILL-STORED PROGRAM
ENTR Y IS A FILE
SEMI-COMPILED PROGRAM
NO COMMON AREA ALLOWED
PROGRAM TOO LARGE
UN ABLE TO RETRIEVE FROM LIBRARY
SEQUENCE NUMBER OVERLAP

CATALOG

CAN'T READ DIRECTORY

CSAVE

See SAVE.

DELETE

NOTHING DELETED

C-l

GET

GROUP

HELLO

KILL

INV ALID.N AME
NO SUCH PROGRAM

l .' ~'!

ILL-STORED PROGRAM
ENTIty IS A FILE
PROG'RAM TOO LARGE
UNABLE TO RETRIEVE FROM LIBRARY

See CATALOG.

ILLEGAL ACCESS
NO TIME LEFT

ILLEGAL NAME
NO SUCH ENTRY
FILE IN USE

LIBRARY

See CATALOG.

LIST

RUN ONLY

LPRINTER

LP BUSY
LPDOWN
LP FREE
LP NOT AVAILABLE

MESSAGE

NAME

CONSOLE BUSY

ONL Y 6 CHARACTERS ACCEPTED
ILLEGAL FIRST CHARACTER

C-2

OPEN

NAME TOO LONG
ILLEGAL FIRST CHARACTER
LIBRARY SPACE FULL
SYSTEM OVERLOAD
DUPLICATE ENTRY
UNSUCCESSFUL; KILL AND REPEAT.

PROTECT

PUNCH

PRIVILEGED COMMAND
INV ALID NAME
NO SUCH ENTRY

See LIST.

RENUMBER

RUN

SAVE

TAPE

SEQUENCE NUMBER OVERFLOW/OVERLAP
BAD PARAMETER

See Execution Errors.

RUN ONLY
NO PROGRAM NAME
NO PROGRAM
OUT OF STORAGE IN LINE n
LIBRARY SPACE FULL
SYSTEM OVERLOAD
DUPLICATE ENTRY
UNSUCCESSFUL; KILL AND REPEAT.

If entered from an IBM 2741 Selectric:
ILLEGAL

UNPROTECT

See PROTECT.

XPUNCH

See LIST.

C-3

LANGUAGE PROCESSOR ERROR MESSAGES

The following messages are output by the BASIC language processor to indicate errors or possible
errors in users' BASIC programs.

Syn tax Errors

One of the following error messages will be typed by the system after the entry of a BASIC state
ment with incorrect syntax. In all cases but the last, the line will be deleted.

OUT OF STORAGE
ILLEGAL OR MISSING INTEGER
EXTRANEOUS LIST DELIMITER
MISSING ASSIGNMENT OPERATOR
CHARACTERS AFTER STATEMENT END
MISSING OR ILLEGAL SUBSCRIPT
MISSING OR BAD LIST DELIMITER
MISSING OR BAD FUNCTION NAME
MISSING OR BAD SIMPLE VARIABLE
MISSING OR ILLEGAL 'OF'
MISSING OR ILLEGAL 'THEN'
MISSING OR ILLEGAL 'TO'
MISSING OR ILLEGAL 'STEP'
MISSING OR ILLEGAL DATA ITEM
ILLEGAL EXPONENT
SIGN WITHOUT NUMBER
MISSING RELATIONAL OPERATOR
ILLEGAL READ VARIABLE
ILLEGAL SYMBOL FOLLOWS 'MAT'
MATRIX CANNOT BE ON BOTH SIDES
NO '*' AFTER RIGHT PARENTHESIS
NO LEGAL BINARY OPERATOR FOUND
MISSING LEFT PARENTHESIS
MISSING RIGHT PARENTHESIS
PARAMETER NOT STRING VARIABLE
UNDECIPHERABLE OPERAND
MISSING OR BAD ARRAY VARIABLE
STRING VARIABLE NOT LEGAL HERE
MISSING OR BAD STRING OPERAND
NO CLOSING QUOTE
72 CHARACTERS MAX FOR STRING
ST ATEMENT HAS EXCESSIVE LENGTH
MISSING OR BAD FILE REFERENCE
'PRINT' MUST PRECEDE 'USING'
ILLEGAL OPERAND AFTER 'USING'
V ARIABLE MISSING OR WRONG TYPE
OVER/UNDERFLOWS-WARNING ONLY

C-4

--

Execution Errors

This section lists messages output to indicate errors detected during program execution. Such errors
cause termination of the execution.

UNDEFINED STATEMENT REFERENCE
NEXT WITHOUT MATCHING FOR
SAME FOR-VARIABLE NESTED
FUNCTION DEFINED TWICE
V ARIABLE DIMENSIONED TWICE
LAST STATEMENT NOT 'END'
UNMATCHED FOR
UNDEFINED FUNCTION
ARRA Y TOO LARGE
ARRA Y OF UNKNOWN DIMENSIONS
OUT OF STORAGE
DIMENSIONS NOT COMPATIBLE
CHARACTERS AFTER COMMAND END
BAD FORMAT OR ILLEGAL NAME
MISSING OR PROTECTED FILE
GOSUBS NESTED TEN DEEP
RETURN WITH NO PRIOR GOSUB
SUBSCRIPT OUT OF BOUNDS
NEGATIVE STRING LENGTH
NON-CONTIGUOUS STRING CREATED
STRING OVERFLOW
OUT OF DATA
DATA OF WRONG TYPE
UNDEFINED VALUE ACCESSED
MATRIX NOT SQUARE
REDIMENSIONED ARRAY TOO LARGE
NEARLY SINGULAR MATRIX
LOG OF NEGATIVE ARGUMENT
SQR OF NEGATIVE ARGUMENT
ZERO TO ZERO POWER
NEGA TIVE NUMBER TO REAL POWER
ARGUMENT OF SIN OR TAN TOO BIG
TOO MANY FILES STATEMENTS
NON-EXISTENT FILE REQUESTED
WRITE TRIED ON READ-ONLY FILE
END-OF -FILE/END OF RECORD
STATEMENT NOT IMAGE
NON-EXISTENT PROGRAM REQUESTED
CHAIN REQUEST IS A FILE
PROGRAM CHAINED IS TOO LARGE
COM STATEMENT OUT OF ORDER
ARGUMENT OF TIM OUT OF RANGE
BAD FORMAT STRING SUBSCRIPT
BAD FILE READ
BAD FILE WRITE DETECTED

C-5

CAN'T READ PROGRAM CHAINED TO
ILL-STORED PROGRAM CHAINED TO
PROGRAM BAD
MISSING FORMAT SPECIFICATION
ILLEGAL OR MISSING DELIMITER
NO CLOSING QUOTE
BAD CHARACTER AFTER REPLICATOR
REPLICATOR TOO LARGE
REPLICA TOR ZERO
MULTIPLE DECIMAL POINTS
BAD FLOATING SPECIFICATION
ILLEGAL CHARACTER IN FORMAT
~LEGALFORMATFORSTmNG

MISSING RIGHT PARENTHESIS
MISSING REPLICATOR
TOO MANY PARENTHESIS LEVELS
MISSING LEFT PARENTHESIS
ILLEGAL FORMAT FOR NUMBER

Execu tion Warnings

The following messages are printed by the system to inform the user of conditions which may be
unexpected or undesirable. These conditions do not terminate execution.

BAD INPUT, RETYPE FROM ITEM XXXX
LOG OF ZERO-WARNING ONLY
ZERO TO NEGATIVE POWER-WARNING
DIVIDE BY ZERO-WARNING ONLY
EXP OVERFLOW-WARNING ONLY
OVERFLOW-WARNING ONLY
UNDERFLOW-W ARNING ONLY
EXTRA INPUT-WARNING ONL Y
READ-ONLY FILES:

C-6

APPENDIX D
Additional library Features

Normally, programs and files in a user's library are stored on a mass storage device called a disc,
which is external to the computer. Only the current program and portions of currently accessed
files occupy the user's "working space" in the computer. TSB also makes use of another, usually
smaller, mass storage device called a drum, on which many system tables are stored. There may
also be room on the drum for a limited number of user programs and files. In certain cases, programs
and particularly files which reside on the drum have improved (shorter) access times over those on
the disc.

The system operator has control over placement and removal of programs and files on the drum.
He also has several other program and file movement capabilities of which the user should be aware.
These operator commands, and their functions, are listed here.

SANCTIFY

DESECRATE

This command enables the operator to move a program (no longer than 8192
words) or a file (no longer than 32 records) from the disc to the drum. The
area on the disc where it resided is retained. The entry will remain on the drum
until it is removed by the operator (see below) or killed by the user who owns
it. Only entries whose access times are critical should be santified.

Note: The system operator cannot SANCTIFY programs or files if
the TSB system is the base system (20854A) or option 001
(20854A-00l).

This command moves a sanctified file from the drum back to its original
location on the disc, or deletes the drum copy of a sanctified program. (The
disc copy of the program is retained.)

Notes: 1) If a sanctified program cannot be retrieved from a user's
library because of a data error on the drum, it may be
possible to DESECRATE the program and retrieve the
copy from the disc.

2) The system operator is not able to DESECRATE programs
or files if the TSB system is the base system (20854A) or
option 001 (20854A-001).

D-1

BESTOW

COpy

LOAD
DUMP

This command enables the operator to remove a program or file from one user's
library and place it in another user's library, or to transfer ownership of an
entire library.

This command is used to make a duplicate copy of any user program or file in
the library of any other user (or the same user). The copy may be given a new
name.

The LOAD command enables the operator to load selected programs and files
or entire user libraries from magnetic tape. DUMP allows the operator to
write such programs, files or libraries onto magnetic tape. This can be done
only at system start-up time (commonly once a day) and is a convenient way
of transferring entries between 2000 systems, or dumping TSB files for other
utility purposes.

Note: Except as noted, any of the above may be requested using the
MESSAGE command. All pertinent idcodes and program or
file names must be included.

D-2

I

APPENDIX E
User Terminal Interface

User terminals can be operated in either of two modes, on-line or off-line. In on-line mode,
connection to the computer is established, a log on procedure is performed, and the user is in con
tact with the computer through the TSB system. This system accepts and executes any legal com
mand entered by the user. Illegal commands are rejected, usually with an informative message
printed or displayed on the terminal.

To enter a command, type either the short or full form of the command; if additional parameters
are required or permitted, type a hyphen, then the parameters. Terminate the command by pressing
return. Some commands cause an obvious response from the system such as a listing or punching
operation. Other commands result in computer operations; the only response is the generation of
a linefeed, indicating that the system has accepted the command and is ready for another entry.

Terminals with paper tape punching capabilities may be used to prepare paper tape in off-line mode.
Off-line operation of these terminals is described in Appendix A.

Several types of user terminals can be connected to the TSB system. Most generate ASCII code and
one generates CALL 360 or PTTC/EBDC (non-ASCII) code.

The following user terminals generate ASCII code:

• HP 2762A/B Terminal Printer

• HP 2600A Keyboard-Display Terminal

• HP 2640A Interactive Display Terminal

• HP 2749A/B Teleprinter Terminal

• General Electric TermiNet 300 Data Communications Terminal, Model B(10/15/30 cps
transfer rates) with Paper Tape Reader/Punch, Option 2

Note: The terminal must be strapped for "ECHO-PLEX".

• GE TermiNet 1200 Communications Terminal

• GE TermiN et 30 Matrix Impact Printer

• Memorex 1240 Communications Terminal (10/15/30 cps transfer rates)

Note: The terminal must be equipped with the even parity
checking option.

E-1 DEC 1975

I • Texas Instruments Silent 700

• Execuport 300 Data Communications Transceiver Terminal

• ASR-37 Teleprinter Terminal with Paper Tape Reader/Punch

Note: If the terminal is equipped with the Shift Out (SO) feature,
so must be disabled because the TSB system does not
allow use of this feature.

The following user terminal generates non-ASCII code:

• IBM 2741 Communication Terminal

Note: The terminal must be connected to the system over telephone
lines. In addition, the terminal must be equipped with the
following features:

1. Interrupt, Receive (IBM #4708) and Transmit (IBM #7900)
associated with the terminal's ATTN key.

2. Dial-Up (IBM #3255) to enable system connection through
a 103A modem or acoustic coupler.

Any terminal equipped with the automatic linefeed feature (operator selectable) must be operated
with this feature OFF.

Note: Although cursor, form feed, horizontal and vertical tabulation,
and various special function keys are provided on specific types
of user terminals, these capabilities are not supported by the
High Speed option. Some of these operations may be requested
from the keyboard, but results are unpredictable. Features
provided by the TSB system, such as the TAB, SPA, and
LIN functions, and the PRINT and PRINT USING statements,
should be used to control output format. However, terminals
equipped with automatic linefeed after carriage return or on
end of line may cause unpredictable results. These functions and
statements are described in other sections of this manual.

IBM 2741 COMMUNICATION TERMINAL INTERFACE

Because the IBM 2741 terminal generates non-ASCII code, special consideration must be given to
the representation of several ASCII characters and functions which are not available in the 2741
character set.

E-2 DEC 1975

For input from a 2741 terminal, these characters (and some of the functions) are simulated by
entry of a two-character code. The first character of this code is the cent symbol (¢). The cent
symbol is followed by one of several alphanumeric or special characters to compose a unique code
representing one ASCII character or function.

On input from a 2741 terminal, the two-character code is translated into the internal ASCII code.
On output to a 2741 terminal, ASCII code is translated into the appropriate two-character
representation.

The TAPE command is not allowed from ports configured for 2741 terminals. If entered, the
system responds with the message ILLEGAL.

The IBM 2741 Communications Terminal must be equipped with the interrupt feature associated
with the ATTN key. This key represents the break function; it is used to terminate program or
command execution. The underline character (_) is equivalent to a back arrow (*""") and represents
the delete character on the IBM 2741 Communications Terminal.

Any CALL/360 or PTTC/EBCD characters that do not have an equivalent ASCII character are
ignored on input.

Table 1-1 shows 2741 terminal representation of ASCII characters and functions.

Table 1-1. IBM 2741 ASCII Character Simulation

ASCII IBM 2741 IBM 2741

Graphic Control Character Representation User Terminal Character Representation

Character
Function

CALL/360 PTTC/EBCD CALL/360 PTTC/EBCD

[¢(¢(controfV ¢C ¢C

\ ¢/ ¢/ break ATTN key ATTN key

1 ¢) ¢)

A t ¢A
, ¢' ¢'

{ ¢O ¢O

} ¢S ¢S
~ ¢T ¢T

CD CD
- - -

ESC ¢E
.

¢E

FS ¢F ¢F

GS ¢G ¢G

RS ¢R ¢R

US ¢U ¢U

CD Underline character, used as delete character (*""").

Q) Code must be followed by an appropriate alphabetic character; otherwise, it is ignored.

E-3

EXAMPLES:

Action

System input request termination (control C)

Input line deletion (control X)

Character deletion (backspace)

Code Required

¢CC

¢CX (See NOTE)

(underline)

Note: This entry must be followed by return. Otherwise, it is ignored.

E-4

A

ABS function, 3-18
Acoustic Coupler, 1-3
Addition symbol, 2-4
Additional library features, D-1
AND operator, 2-5
APPEND, 3-8
Array, defined, 3-2
Arithmetic Evaluation, 2-3
Arithmetic Operators, 2-4
ASCII code, string evaluation, 9-10
ASSIGN,4-6
Assignment operator, 2-10,6-6
Assignment statement, 2-10
ATN function, 3-19

B

Backus Naur Form, BASIC language, 9-3
BASIC command, 1-7
BASIC language

Backus Naur Form,9-3
defined,1-7
syntax, 9-1

BASIC programs, 1-9
BASIC Statements, 1-7
Bestowing files, D-2
Boolean operators, 7-2
Branching

to statements, 2-11
to subroutines, 3-14

break key, 2-37
BRK function, 3-24
BYE,2-27

c

CC,1-2
Carriage control, 8-14
Carriage control characters, defined, 8-2
Carriage spacing, output, 2-20
CATALOG,3-10
CHAIN,3-20

Index-1

Index

Changing a statement, 1-9
Changing file references during execution, 4-6
Character deletion, 1-2
Character spacing, 8-2
Clearing the user work area, 2-29
COM,3-22
Command, definition, 2-25
Command error messages, C-1
Commands, BASIC, 1-7
Communicating with system operator, 2-36
Conditional branching, 2-12,4-12,6-10
Connection to computer

via telephone, 1-3
direct, 1-4

Control characters, 1-2
control key, 1-2
Copying a file, 4-21, D-2
COS function, 3-19
Creating files, 4-3
CSAVE, 3-5

D

DATA, 2-15, 6-12
DATA, strings, 6-12
Data input, matrix, 5-6
Data set, 1-4
DEF FN, 3-16
Defining functions, 3-16
DELETE,3-9
Deleting

files, 4-4
programs, 1-12, 3-4, 3-7
statements, 1-9, 3-9

Desecrating files (Options 210/215 only), D-1
Determining file length, 4-18
Diagnostic messages, C-1
DIM, 5-2, 6-5
Dimensioning

matrix, 5-2
strings, 6-5

Division symbol, 2-4
Documenting a program, 1-13
DUMP, selective, D-2

E

-E notation, defined, 2-2
ECHO, 2-27
END, 2-22
End-of-file, defined, 4-12
ENTER,3-23
Erasing

files, 4-26
records, 4-25

Error messages, 1-8, C-1
Equality symbol, 2-4
Execution

error messages, C-5
warning messages, C-6

EXP function, 3-18
Exponentiation symbol, 2-4
Expression, defined, 2-3
Expression list, defined, 8-1, 8-10

F

File
accessing errors, 4-28
BESTOW, D-2
COPY, D-2
copying, 4-21
defined,4-1
DESECRATE (Option 210/215 only), D-1
erasing, 4-26
length determination, 4-18
matrix printing, 5-16
matrix reading, 5-17
pointer, 4-13
pointer manipulation, 4-18
SANCTIFY (Option 210/215 only), D-1
selective LOAD/DUMP, D-2
storage requirements, 4-17

FILES, 4-5
Fixed-point format specifications, 8-6
Floating-point format specifications, 8-7
FOR ... NEXT, 2-13
FOR ... NEXT with STEP, 3-16
Format characters

defined, 8-2
fixed-point, 8-6
floating-point, 8-7
integer, 8-5
string, 8-4

Format specification
defined, 8-1
grouped, 8-9

Format string, defined, 8-1, 8-10
Formatted output, 8-1
Function, defined, 3-3, 3-13

G

General mathematical functions, 3-18
GET,3-6

Index-2

GO TO, 2-11
GOSUB. .. RETURN, 3-13
Greater than symbol, 2-4
Greater than or equal to symbol, 2-4
GROUP, 3-10
Group library, 3-10
Grouping format specifications, 8-9

H

Half-duplex coupler, 1-4
Hardwired connection, 1-4
HELLO, 2-26

I

Identification code, user, 1-5
Identity matrix, 5-13
IF ... THEN, 2-12, 6-10
IF END# ... THEN,4-12
IMAGE,8-13
Inequality symbol, 2-4
INPUT, 2-17, 5-5,6-7
INPUT, matrix, 5-5
Input, program data, 2-17
INT function, 3-18
Integer format specifications, 8-5
Interface, user terminal, E-1

K

KEY, 2-33
Keyboard mode, 2-33
KILL, 3-7, 4-4

L

Language processor error messages, C-4
LEN function, 3-19, 6-11
LENGTH,3-4
Length, string, 6-11
Less than symbol, 2-4
Less than or equal to symbol, 2-4
LET, 2-10,6-6
UBRARY, 3-10
UN function, 8-2
Line deletion, 1-2
Line printer

access, 2-33
carriage control, 2-34
control characters, 2-34
messages, 2-35

Line spacing, 2-20, 8-2
linefeed, 1-2
UST,2-28
Listing

file contents, 4-11
programs, 1-10, 2-28
record contents, 4-20

Literal string, defined, 8-2

LOAD, selective, D-2
LOG function, 3-18
Logging off, 1-3, 2-27
Logging on, 1-3, 2-26
Logical evaluation, 7-1
Looping, 2-13
LPRINTER, 2-33

M

Masking files, 4-7
MAT INPUT, 5-6
MAT PRINT, 5-8
MAT PRINT USING, 8-12
MAT PRINT#, 5-16
MAT READ, 5-10
MAT READ#, 5-17
MAT ... CON, 5-4
MAT .. .IDN, 5-13
MAT .. .INV, 5-15
MAT ... TRN, 5-14
MAT ... ZER, 5-3
matrix

addition, 5-11
copy, 5·13
defined, 5-1
inversion, 5-15
multiplication, 5-12
print, 5-8
scalar multiplication, 5-12
subtraction, 5-11
transposition, 5-14

MAX operator, 2-5
Memory allocation, 9-11
MESSAGE, 2-36
Messages, diagnostic, C-1
MIN operator, 2-5
Mode

paper tape, 2-32
keyboard, 2-33

Modifying a record, 4-24
Multibranch GO TO, 2-11
Multibranch GOSUB, 3-14
Multiplication symbol, 2-4

N

~,1-2
NAME, 3-5
Naming a program, 3-5
Nested FOR ... NEXT, 2-14
Nested GOSUB. .. RETURN, 3-15
Nested loops, 2-14
NOT operator, 2-7
Null string, defined, 6-1
Number, defined, 2-1
Numeric output, 8-15

Index-3

o
OC,1-2
One's matrix, 5-4
OPEN,4-3
OR operator, 2-6
Order of precedence, execution, 2-8
Output, numeric, 8-15

p

Paper tape input mode, 2-32
Paper tape preparation, off-line, A-1
Paper tape punching, 2-31
Password, user, 1-5
Precedence, order of execution, 2-8
PRINT, 2-18, 5-7, 6-8
PRINT USING

defined, 8-10
errors, 8-17
matrix output, 8-12

PRINT#,6-13
PRINT# ... END, 4-13
Printing

data, 2-18
matrices, 5-7, 5-16
records, 4-23
serial files, 4-8
strings, 6-8
strings on files, 6-13

Program
break,1-2
deletion, 1-12
documentation, 1-13
end, 1-11, 2-22
execution, 2-28
listing, 1-10
running, 1-11, 2-22

Prompt characters, 1-3
PUNCH, 2-31

Q

R

Random file access, defined, 4-22
READ, 2-15, 5-9,6-9
READ, matrix, 5-10
READ#,6-14
Reading

data, 2-15
records, 4-24
serial files, 4-8
strings, 6-9
strings from files, 6-14

Record
defined,4-17
erasing, 4-25
listing contents, 4-20
modification, 4-24
print, 4-23
read,4-24
update, 4-26

Relational operators, 2-4, 7-1
REM, 2-10
Remarks, 2-10
RENUMBER, 2-30
Report generation, 8-16
Resetting the file pointer, 4-9
RESTORE, 2-15
Restoring input data, 2-15
Retrieving programs, 3-6
RETURN statement, 3-13
return, 1-2
RND function, 3-18
Routine, defined, 3-1
RUN, 1-11, 2-28

s
Sanctifying files (Options 210/215 only), D-1
SAVE,3-5
Saving programs, 3-5
Saving semi-compiled programs, 3-5
SCRATCH, 2-29
Selective DUMP, D-2
Selective LOAD, D-2
Semi-compiled programs, 3-5
Serial file

access, 4-2
writing, 4-8
reading, 4-8
structure, 4-13
subdividing, 4-19

SGN function, 3-18
Simple variable, defined, 2-2
SIN function, 3-19
SPA function, 8-2
Spacing functions, 8-2
Special Keys, 1-2
Specifying input data, 2-15
SQR function, 3-18
Statements

BASIC, 1-7
defined, 2-9

STOP, 2-22
Storing programs, 3-5
Storing semi-compiled programs, 3-5
String

DATA,6-12
defined, 3-3, 6-1
dimensioning, 6-5
format specifications, 8-4
IF ... THEN, 6-10
INPUT,6-7

Index-4

String (cont)
length, 6-11
PRINT#,6-13
READ#,6-14

String evaluation, ASCII code, 9-10
String variable, defined, 6-2
Strings, format, 8-10
Strings, substrings, 6-3
Subroutines, defined, 3-13
Substring, defined, 6-3
Subtraction symbol, 2-4
Syntax, BASIC language, 9-1
Syntax error messages, C-4
System library, 3-10

T

TAB function, 8-2
Tabulation, 2-20, 8-2
TAN function, 3-19
TAPE, 2-32
Terminal subtype, 1-5
Text Conventions, xiii
TIM function, 3-20
TIME,2-36
Transposing a matrix, 5-14
Trigonometric functions, 3-19
TSB, Introduction to, 1-1
TYP function, 4-10
TYP function with records, 4-19

u

Updating a record, 4-26
User library, 3-10
User terminal characteristics, E-1
User work area, 1-10
Using a half-duplex terminal, 2-27
Using carriage control, 8-14

w

we,1-2
Word, defined, 3-3
Work area, user's, 1-10

x

XC ,1-2
X-OFF, 2-32, B-1
X-ON, 2-32, B1
XPUNCH,2-31

z

Zero's matrix, 5-3

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200

