
HONEYWELL EDP

SUBJECT:

SPECIAL
INSTRUCTIONS:

DATE: September 30, 1965

8454
5965

Printed in U. S. A.

HARDW ARE BULLETIN

SERIES 200
SCIENTIFI C UNIT

FOR MODELS 1200 AND 2200
(FEATURE 1100)

Data Format and Programming Procedures for
the Scientific Instructions Provided by Feature
1100.

This hardware bulletin augments the Honeywell
Series 200 Programmers' Reference Manual,
Models 200/1200/2200 for users of Model 1200
or 2200 computers equipped with the Scientific
Unit (Feature 1100). The reader is assumed to
be familiar with the contents of the reference
manual, which has the file control number
113. 0005. 0000. 00. 00. For added convenience,
the information presented herein is summarized
in Appendix F of the manual.

FILE NO.: 112. 0005. 1539. 00. 00

Questions and comments regarding this manual should be addressed to:

Honeywell Electronic Data Processing
Information Services
60 Walnut Street
Wellesley Hills, Massachusetts 02181

~ ----""'

Section I

Section II

Section III

Section IV

Section V

Section VI

T ABLE OF CONTENTS

Introduction
Floating-point Data Format
Floating-point Numerical Representation
Floating-point Registers
Scientific Unit Indicators

Page

1-1
1 -1
1-2
1-4
1-4

Automatic Formatting in Arithmetic Operations 1-5
Prenormalization. 1-5
Equalization .. 1 - 5
Postnormalization 1-5

Instruction Formats . 1 -6
Programming Considerations. 1 -7
Symbology. 1-7
Timing Notes. 1-8

Data Moving Instructions __
Store Floating Accumulator
Load Floating Accumulator
Store Low-Order Result
Load Low Order Result

Floating -point Arithmetic Instructions•.•...
Floating Add ...•......
Floating Subtract •.........•....•.....•....•...........••.•..•.
Floating Multiply
Floating Divide .. .

Data Conversion Instructions
Decimal to Binary Conversion

2-1
2-1
2-1
2-2
2-3

3-1
3-1

3-2
3-3
~-4

4-1
4-1

Binary to Decimal Conversion. 4-2

Control Instructions .. . 5-1
Floating Test and Branch on Accumulator Condition. 5-1
Floating Test and Branch on Indicator. 5-2
Binary Mantissa Shift .. 5-3

Binary Integer Arithmetic Instruction
Binary Integer Multiply ' ..

Copyright 1965
Honeywell Inc.

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

6 -1
6 -1

Figure 1-1
Figure 1-2

Table 1-1
Table 1-2

LIST OF ILLUSTRATIONS

Main Memory Floating-point Data Format•..............
• Floating-point Accumulator Data Format

LIST OF TABLES

Floating-point Numerical Representation of Mantissas
Floating-point Numerical Representation of Exponents

iii

Page
1 -1
1-2

1-3
1 -3

SECTION I

INTRODUC TION

The scientific unit (Feature 1100) may be attached to the Type 1201 or 2201 processor.

following types of scientific instructions are provided:

1. Floating -point load and store.

2. Floating -point arithmetic.

3. Decimal-to-binary and binary-to-decimal conversion.

4. Floating-point test and branch.

5. Binary integer arithmetic.

6. Mantissa shift.

FLOATING-POINT DATA FORMAT

A floating-point number is represented by a fixed-length, 48-bit word. The high-order

The

36 bits contain a fraction, the mantissa. The low-order 12 bits contain an exponent of base 2.

The value of a floating-point number is the product of the mantissa and 2 raised to the indicated

exponent. As explained below, a Series 200 floating-point word is capable of expressing numbers
-2048 +2047 . :l:616

in the range :l: 2 to :l: 2 , or apprOXImately :l: lOIn main memory, a floating-point

word occupies a field of eight consecutive character positions, as shown in Figure 1-1.

CHARACTER A·7 A-6 A-5 A-4 A-3 A-2 A-I A

DDDDDDDD
BIT B A 84 2 I BIB I BIB I BIB I B I

~~----------------------~v~----------------------~/ ~~------~v~------~/
MANTISSA EXPONENT

Figure 1-1. Main Memory Floating-point Data Format

Four floating-point accumulators are reserved in control memory to contain operands and

results of floating-point operations. The accumulators are explicitly addressed in the floating

point instructions by the octal digits 0, 1, 2, and 3. Each accumulator is composed of three

specific, 18-bit, control memory registers, as explained below. Only the low-order 12 bits of

the rightmost register are used to express the exponent. Figure 1-2 illustrates the fl<;>ating

point accumulator data format.

1-1

j
t
t

I I (~o I~I
BIT 18 18 18 12

, ,- I'
V V

MANTISSA EXPONENT

Figure 1-2. Floating-point Accumulator Data Format

FLOATING -POINT NUMERICAL REPRESENT A TION

The Series 200 floating-point word is expressed in twos-complement binary notation.

That is, the mantissa is a binary fraction, the exponent is a binary integer, and negative man

tissas and exponents are expressed as the twos complements of the positive values.

The twos complement of a binary number is formed by:

1. Subtracting each bit position from 1 (equivalent to changingalll's to O's
and vice versa); then

2. Adding 1 to the low-order (units) bit position.

For example, to find the two s complement of 011, change l's to 0' sand 0' s to I' s , giving 100.

Then add a binary 1 to give 101. Now to determine the original number, simply recomplement

the twos-complement number formed above.

101 ~010

1
011

Using twos-complement notation to represent negative numbers facilitates floating-point

arithmetic operations. In a subtraction operation, the twos complement of the subtrahend is

added to the minuend. Since multiplication and division are actually successive addition or sub

traction operations, all twos-complement arithmetic is accomplished by one or more additions.

Table 1-1 below specifies the numerical representation of mantissas. In twos-complement

notation, only the low-order 35 bits are used to represent positive mantissas; the high-order bit

is always zero. Negative mantissa values are expressed as the twos complement of the corre

sponding positive values, always forcing the high-order bit to 1 •. Consequently, the· high-order

bit in twos-complement notation is a sign bit - 0 for positive and 1 for negative. As mentioned

above, the absolute value of a negative number is found by recomplementation. Note that the

mantissa is a fraction. There is an implied binary point to the right of the sign bit.

Numerical representation of exponents is shown in Table 1-2. A positive exponent is a

12-bit binary integer whose high-order bit is O. A negative exponent is a 12-bit binary twos

complement integer whose high-order bit, by definition, is 1.

1-2

I

Table 1-1. Floating-point Num.erical Representation of Mantissas

o o 1-------------------1

0 0 0------------------ -0

0 0 0- ------- - - - - -- - - - -,-0

1 1 1------------------ -1

1 1 0-------------------0

1
-35

2

1

1

Q

1

o

Mantissa Value

+1/2_2- 35

+2
-35

+0

-2
-35

-1/2

o -1

Table 1-2. Floating-point Num.erical Representation of Exponents

Sign
t

Bit Position 12 11 10------------------2 1 Exponent Value

Bit Value: 211 2
10

29 21 2
0

0 1 1-------------------1 1 :2047

· · ·
0 0 0-------------------0 1 +1

0 0 0-------------------0 0 +0

I 1 1-------------------1 1 -1

1 1 1-------------------1 0 -2
·

1 0 0- - - -- -- -- -.------ - --0 0 -2048

1-3

-

I
I ..

I
f

Floating-point arithmetic instructions deliver results with normalized mantissas. For

positive numbers, a normalized mantissa has a 1 immediately following the implied binary point

(i. e., the high-order two bits are 01). For negative numbers. a normalized mantissa has a 0

immediately following the implied binary point (i. e., the high-order two bits are 10). In Table

1-1, normalized mantissas are shaded. A normal zero is defined as a floating-point word whose

mantissa and exponent are both +0.

FLOATING-POINT REGISTERS

The four addressable floating-point accumulators occupy the following locations in control

memory:

Accumulator Control Memory Location (Operator's Control Panel Only)
Address High-Order Mantissa Low-Order Mantissa Exponent

0 43 42 41

1 47 46 45

2 53 52 51

3 57 56 55

NOTE: In program instructions, the floating-point accumulators may be addressed
only via the octal digits 0, 1, 2, and 3 in the floating-point instructions.
The instructions LCR and SCR must not be used to address these accumu
lators. At the control panel, the operator may address these locations
with the addresses in the above table.

A "pseudo accumulator" is provided, which always contains a normal zero. The pseudo

accumulator is addressed by the octal digit 7. Any floating-point number may be normalized

by adding it to the normal zero in accumulator 7. Note that the pseudo accumulator should not

be specified as the result location in any floating-point instruction, because the result data will

be lost.

The scientific unit also includes a low-order result register (LOR). The LOR may con-

tain a low-order sum, difference, 0 r product, or the remainder of a division operation. In

effect, the LOR provides an additional 36 bits of mantissa precision. The LOR is not addressed

explicitly in the floating-point arithmetic instructions, as are the accumulators. However, in

structions are provided to load and store the contents of the LOR.

SCIENTIFIC UNIT INDICATORS

Three indicators are present in the scientific unit. The exponent overflow indicator is

activated when a base-2 exponent exceeds +2047. The actual result delivered to the result

1-4

•

accumulator when the exponent overflow condition is present contains a correct mantissa and an

exponent which is 4096 less than the correct exponent.

NOTE: When an exponent becomes less than -2048, a normal zero is
delivered and no indication is given.

The divide check indicator is activated when a divisor is equal to zero. When the divide

check condition is present, the division operation is not executed. The multiply overflow indica

tor is activated when the product Qf a Binary Integer Multiply instruction exceeds 24 bits in

length. When the multiply overflow condition is present, the low-order 24 bits are delivered as

the result, and the high-order bits are lost. The above indicators may be tested by the Floating

Test and Branch on Indicator instruction described in Section V.

A UTOMATIC FORMATTING IN ARITHMETIC OPERATIONS

Floating -point arithmetic instructions accept either no rrnalized or unnormalized operands.

The scientific unit automatically shifts operands in order to perform arithmetic operations, and

automatically normalize s re sult s of arithmetic operations.

ting are described below.

Prenormalization

The three types of automatic format-

In a floating divide cperation, an unnormalized divisor is prenormalized. The mantissa is

left-shifted until normalized, and the exponent is decreased by one for each bit position shifted.

Equalization

In floating add and subtract operations, equalization occurs after prenormalization. The

mantissa of the operand with the smaller exponent is right-shifted, and the exponent is increased

by one for each bit position shifted, until the exponents of the two operands are equal. Bits are

shifted from the low -order mantis sa position of the accumulator (bit 13) into the high-order man-

tissa position of the LOR (bit 47), as shown below.

/'

I.r I ± [[±[I [±[mantissa exp mantis sa exp

48 ACCUMULATOR 12 1 48 LOR 12 1

Po stnormalization

The results of floating add, subtract, multiply, and divide operations are normalized. If

the tentative result is unnormalized, the mantissa is left-shifted until normalized, and the ex-

ponent is decreased by one for each bit position shifted. For results in which mantissa over

flow occurred, the mantissa is right-shifted one bit position and the exponent is increased by one.

Note that postnormalization may restore bits which were shifted into the LOR by equalization.

1-5

~
!

!
j
I

'I

.t ..

INSTRUCTION FORMATS

Only four operation codes are associated with the 14 scientific instructions. The Binary

Mantissa Shift instruction has the mnerrlOnic BMS (octal code 04). The Binary Integer Multiply

instruction has the mnemonic BIM (octal code 05). All the remaining floating-point instructions

use one or both of the following op code s:

Floating Memory to Accumulator

Floating Accumulator to Accumulator

Mnemonic

FMA

FAA

The full formats of the floating-point instructions are given below:

OP CODE A ADDRESS B ADDRESS VARIANT I

FMA: - - -
FAA: - -

Octal Code

07

06

VARIANT 2 --The first six-bit instruction variant usually addresses the floating-point accumulators used in

an operation. In subsequent instruction descriptions, this variant is abbreviated

I X I y I
~ where octal digits X and Yare the accumulator addresses given on page 1-4. The accumulator

•

X addressed in the high-order three variant bits is usually the source of a floating-point operand.

The accumulator Y addressed in the low-order three variant bits is usually the destination of a

floating-point result. The second instruction variant is a six-bit octal character which defines

the particular floating-point instruction (e. g., Floating Multiply).

The memory-to-accumulator format is used in those instructions which require a main

memory address in addition to floating-point accumulator references. In instruction descrip

tions, the A address of an instruction is abbreviated by the letter A. The A address may define

the main memory location of an 8-character, floating-point operand, or it may specify a branch

address. The accumulator-to-accumulator format is used in those instructions which require

only floating-point accumulator references.

In addition to the full instruction formats described above, each form of a floating-point

instruction using the FMA or FAA format is assigned a unique assembly language mnemonic,

which also generates the 06 or 07 octal op code. When an instruction is coded using its unique

mnemonic, the second variant is automatically generated and is not written in the operands field

by the programmer. In summary, the floating-point instructions may be coded in two equivalent

forms:

1-6

1. The full forrn which contains an FMA or FAA tnnemonic op code, an A address
if appropriate, and two variants.

2. The unique form, which contains a unique tnnemonic op code, an A address
if appropriate, and ~ variant.

Both forms are described for each instruction in the following sections.

PROGRAMMING CONSIDERATIONS

For instructions in the FMA format, the A address is processed by the central processor

in the usual manner, using the A-address register (AAR). The description of each instruction

gives the address register settings after the operation. During instruction extraction, the two

variants of FMA and FAA instructions are transmitted directly to the scientific unit. The variant

register in the central processor is unaffected by these instructions. In the extraction or res

toration of operands in memory, the scientific unit neither recognizes nor alters punctuation bits.

SYMBOLOGY

A:

B:

X:

Y:

X-:

-Y:

A address of the instruction.

B address of the instruction.

Floating-point accumulator addressed in the high-order three bits
of an instruction variant (usually the source of an operand).

Floating-point accumulator addressed in the low-order three bits
of an instruction variant (usually the destination of a result).

In the first variant of an instruction, only the high-order three
bits specifying accumulator X are significant.

In the first variant of an instruction, only the low-order three
bits specifying accumulator Yare significant.

(X) or (Y): Floating-point word contained in accumulator X or Y.

LOR:

(LOR):

AAR:

BAR:

SR:

A:
p

B:
p

JI:

NXT:

N:
n

N
I
:

Low-order result register.

Floating-point word contained in LOR.

A-address register.

B-address register.

Sequence register.

Previous setting of A-address register.

Previous setting of B-address register.

Address of next instruction if branch occurs.

Next sequential instruction.

Number of automatic formatting shifts in an operation.

Number of binary ones in a multiplier.

1-7

~* 1
i

N:
s

[]
N.:

1

TIMING NOTES

Number of shifts.

"smallest integer greater than"

Number of characters in an instruction.

All timings shown are for Model 2200 and are based on the use of direct addressing. Three

memory cycles should be added for each indexed address and one memory cycle should be added

for each character extracted as a result of indirect addressing.

1-8

•

SECTION II

DATA MOVING INSTRUCTIONS

STORE FLOATING ACCUMULATOR

FORMAT

FMA/A, X-, 00 or TAM/A, X-

FUNCTION

(X) is stored in memory locations A through A-7.
(X) is unaltered.

TIMING
I

N. + 10 cycles.
1

REGISTERS AFTER OPERATION

AAR

A-8

EXAMPLE

BAR

B
p

Store the contents of floating accumulator 1 in the main memory field whose
rightmost character is tagged RESULT.

EASYCODER
CODING FORM

B PRO LEM PROGRAMMER

CARD I~I~ LOCATION
OPERATION OPERANDS NUMBER CODE

I 2 :3 4 5 6 7 • 1415 2021

I : FMA RESU\.l l' J/JtJ OR.
I I TAM RESUL:r 1~
i I
I I

LOAD FLOATING ACCUMULATOR I

FORMAT

FMA:

FAA:

FMA/A, -Y, 02 or TMA/A,-Y

FAA/XY,02 or TAA/XY

1 This and subsequent timings pertain to Model 2200.

2-1

DATE

6263

PAGE OF

80

FUNCTION

FMA: The floating-point word in memory locations A through A-7
is loaded into accumulator Y.

FAA:

TIMING

FMA:

FAA:

(X) is loaded into accumulator Y.

N. + 11 cycles
1

8 cycles

REGISTERS AFTER OPERATION

FMA:

FAA:

NOTES

AAR

A-8

A
P

BAR

B
P

B
P

1. No normalization occurs.

EXAMPLES

1. Load the floating-point word stored in memory locations DELTA-7
through DELTA into floating accumulator O.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER

CARD H LOCATION
OPERATION OPERANDS

NUMBER CODE

I z 3 4 5 6 7 • 1415 2021

I fMA DEL 1 "- .ca~. ~2 O~
I

I rr~A DEl.. TA..IJ(6

2. Load the contents of accumulator 3 into accumulator O.

EASYCODER
CODING FORM

PROBLEM PROGR AMMER

CARD ~'i LOCATION
OPERATION OPERANDS NUMBER CODE

I 2 3 4 5 6 7 • 1415 2021

I fAA 13~.~z OR
I TAA t3ci

I STORE LOW -ORDER RESULT I
FORMAT

FMA:

FAA:

FUNCTION

FMA:

FAA:

FMA/A, 00, 07 or TLM/A

FAA/-Y,07 or TLA/-Y

(LOR) is stored in memory locations A through A-7.

(LOR) is stored in accumulator Y.

2-2

DATE

62 6.

DATE

62 6.

PAGE OF

eo

PAGE OF

eo

•

TIMING

FMA:

FAA:

N. + 9 cycles
1

6 cycles

REGISTERS AFTER OPERATION

FMA:

FAA:

NOTE

AAR

A-8

A
p

BAR

B
p

B
P

1. No norm.alization occurs.

EXAMPLES

1. Store the contents of the LOR in the m.ain m.em.ory field whose rightm.ost
character is tagged RESULT.

PROBLEM PROGRAMMER DATE

CARD
~ LOCATION

I OPERATION OPERANDS NUMBER CODE

I 2 3 4 5 6 7 8 1415 2021 62 .3

I : IFMA f\'ESUl..T".tll/J..,tJ7 ,OR.
I I ItLM ~ESUL:T

2. Store the contents of the LOR in accum.ulator 2.

PROBLEM PROG RAMMER DATE

CARD y
LOCATION I OPERATION OPERANDS NUMBER ~ CODE

123456 7 8 1415 2021 62 .3

I 1 IfAA. If2,'7 OR
I I !r,LA ~z

LOAD LOW-ORDER RESULT

FORMAT

FMA:

FAA:

FUNCTION

FMA:

FAA:

TIMING

FMA:

FAA:

FMA/A, 00, 01 or TML/A

FAA/X-,Ol or TAL/X-

The floating-point word in m.em.ory locations A through A-7
is loaded into the LOR.

(X) is loaded into the LOR.

N. + 9 cycles
1

6 cycles

2-3

PoIIGE OF

80

PoIIG E OF

80

I

REGISTERS AFTER OPERATION

NOTE

FMA:

FAA

AAR

A-8

A
P

BAR

B
P

B
P

1. No normalization occurs.

EXAMPLES

PROBLEM

CARD
NUMBER

I 2 3 4 5

I I

I I

PROBLEM

CARD
NUMBER

I 2 3 4 5

I :
I I

1. Load the floating-point word stored in memory locations STORE-7
through STORE into the LOR.

PROGRAMMER DATE

t~ Ie ~ LOCATION 1 OPERATION
CODE OPERANDS

6 7 • 1415 2021 62 63

IfMA ~TO ~£; •. t!J(J,.~, ,OR
ItMl STORE.

2. Load the contents of accumulator 2 into the LOR.

PROGRAMMER DATE

IH LOCATION
OPERATION

OPERANDS CODE

6 7 • 1415 2021 62 63

fA." 29i.¢1 ,QR
TAL 2~

2-4

PAGE OF

00

PAGE OF

00

SECTION III

FLOATING-POINT ARITHMETIC INSTRUCTIONS

FLOA TING ADD

FORMAT

FMA:

FAA:

FUNCTION

FMA:

FAA:

TIMING

FMA:

FAA:

FMA/ A, XY, 10 or AMA/ A, XY

FAA/XY,lO or AAA/XY

The floating-point word in memory locations A through A-7
is added to (X), and the sum is stored in accumulator Y.
The low-order sum is stored in LOR.

(X) is added to (Y), and the sum is stored in accumulator Y.
The low-order sum is stored in LOR.

Ni + 13 + [Nn /4J cycles

11 + [Nn /4] cycles

REGISTERS AFTER OPERATION

FMA:

FAA:

NOTES

AAR

A-8

A
P

BAR

B
P

LOR

The low-order result of the addition. The
sign bit of LOR = O. The exponent of LOR =
the exponent of the high-order result minus 35.

same as above

1. Equalization, and postnormalization occur if required.

2. X and Y may specify the same accumulator.

3. An exponent overflow indication may be given.

4. A result with a zero mantissa is returned as a normal zero.

3-1

}
1

I

I
l

l ,

I

EXAMPLE

Add the three floating-point numbers stored in sequential fields beginning in location
DATA. Store the sum in the eight-character field whose rightmost character is
tagged SUM.

CARD H LOCATION
OPERATION OPERANDS NUMBER CODE

I 2 3 4 5 • 7 • 1415 2021 62 6'

I FMA DATA ... 7., .(11 .• ,'.2- /Df1ti Ilr:s.t no. l(ltD tXX;ClhlvI~~ I
I

I FIf..A OAT~.+~5 .• 1.1 ,.US. t¥d(l . .reCtJ"d I)".
I I FMA DA.1' A+.23..1 t Ifl t¥<ft/ HI/NI "D.
I I FfltA SUM,10.. _~_ .s:1r?1'c. $"'"

FLOATING SUBTRACT

FORMAT

FMA:

FAA:

FMA/A, XY, 11 or SMA/A, XY

F AA/XY, 11 or SAA/XY

FUNCTION

FMA: The floating-point word in memory locations A through A-7 is subtracted
from (X); i. e., its twos complement is added to (X). The result is
stored in accumulator Y. The low-order result is stored in the LOR.

FAA: (Y) is subtracted from (X). The result is stored in accumulator Y,
and the low-order result is stored in the LOR.

TIMING

FMA:

FAA:

Ni + 13 + [Nn /4]

11 + [Nn /4]

REGISTERS AFTER OPERATION

AAR BAR

FMA: A-8 B
p

FAA: Ap Bp

NOTES

cycles

cycles

LOR

Low-order difference. Sign bit = o.
high-order exponent minus 35.

same as above.

1. Equalization, and postnormalization occur if required.

2. X and Y may specify the same accumulator.

3. An exponent overflow indication may be given.

4. A result with a zero mantissa is returned as a normal zero.

3-2

Exponent =

OC

•

EXAMPLE

1. Subtract the floating-point word in locations DATA-7 through DATA from
the contents of accumulator 3 and store the result in accumulator 1.

CARD H lOCATION
OPERATION OPERANDS NUMBER CODE

L 2 3 4 !i • 1 • 1415 2021 "63
I : IF& DATA.31 II OR
I I SMA DATA ... 3J

FLOATING MULTIPLY

FORMAT

FMA:

FAA:

FUNCTION

FMA:

FAA:

TIMING

FMA:

FAA:

FMA/A, XY, 13 or MAM/A, XY

FAA/XY,13 or MAA/XY

(X) is multiplied by the floating-point word in memory locations A
through A-7. The high-order product is stored in accumulator Y.
The low-order product is stored in LOR.

(X) is multiplied by (Y). The high-order product is stored in
accumulator Y. The low-order product is stored in LOR.

Ni + 21 +[Nl/2] + [Nn /4] cycles

19 +[N 1/2] + [Nn /4] cycles

REGISTERS AFTER OPERATION

AAR BAR LOR

FMA: A-8 B
P

Low-order product. Sign bit = O. Exponent =
high-order exponent minus 35.

FAA:

NOTES

A
P

B
P

Same as above.

1. X and Y may specify the same accumulator.

2. Postnormalization occurs if required.

3. An exponent overflow indication may be given.

4. If either operand is equal to zero, the results in both accumulator
and LOR are normal zeros.

3-3

00

EXAMPLE

1. Multiply the floating-point word in accumulator 2 by the floating-point word
in accumulator 0, and store the product in accumulator o.

CARD
LOCATION I OPERATION OPERANDS NUMBER ~ CODE

I 2 3 4 5 6 7 • 1415 2021 62 ••

I : FA-A. e~13, De
I I ~AA etIJ

FLOATING DIVIDE

FORMAT

FMA:

FAA:

FUNCTION

FMA:

FAA:

TIMING

FMA:

FAA:

FMA/A, XY, 12 or DMA/A, XY

FAA/XY,12 or DAA/XY

The floating-point word in locations A through A-7 is divided by
(X). The quotient is stored in accumulator Y. The remainder is
stored in LOR.

(Y) is divided by (X). The quotient is stored in accumulator
Y. The remainder is stored in LOR.

Ni + 40 + [Nn /4] cycles

38 + [Nn 14] cycles

REGISTERS AFTER OPERATION

FMA:

FAA:

NOTES

AAR

A-8

A
P

BAR

B
P

B
P

LOR

Contains the remainder. The absolute value of
the remainder mantissa is less than the absolute
value of the mantissa of the normalized divisor.
The sign of the remainder is equal to the sign of
the dividend. The exponent of the remainder is
equal to the exponent of the dividend minus 35,
and plus one if the absolute value of the dividend
mantissa is greater than the absolute value of
the mantissa of the normalized divisor.

same as above.

1. Prenormalization of the divisor and postnormalization of the quotient occur
if required.

3-4

80

2. X and Y may specify the same accumulator.

3. The quotient or remainder may cause an exponent overflow indication
to be given.

4. If the divisor is zero, a divide check indication is given. The division
is not executed, and accumulator Y is unaltered.

5. If the dividend is zero, the quotient and remainder are normal zeros.

EXAMPLES

CARD
NUMBER

1. Divide the floating-point word stored in the memory field whose rightmost
character is tagged DATA by the floating-point word in accumulator O.
Store the quotient in accumulator O.

n LOCATION
I OPERATION

CODE OPERANDS

I 2 3 4 5 • 7 8 1415 2021 62 .3

I fM~ DA.TA.100 ,1 Z. OR
I I bMA IMTA ,,(J(j

2. Divide the floating-point word in accumulator 2 by the floating-point word
in accumulator 3 and store the quotient in accumulator 2.

CARD ~I~ LOCATION
OPERATION OPERANDS NUMBER CODE

I 2 3 4 5 • 7 8 1415 2021 62 .3

I : fAJ\ ~2 .• IZ OR
I

I IOAA 32

3-5

80

80

SECTION IV

DATA CONVERSION INSTRUCTIONS

DECIMAL TO BINARY CONVERSION

FORMAT

FMA/A, - Y, 03 or DTB/ A, - Y

FUNCTION

The II-character main memory field whose low-order character position is A is
treated as a signed decimal integer. That is, each character represents a decimal
digit. The sign of the integer is given by the zone bits of the units position (charac
ter A), as follows: 10 = negative; anything else = positive. The decimal integer is
converted to a 36 -bit binary integer and stored in the mantissa portion of (Y); the
exponent of (Y) is set to +35.

TIMING

N. + 24 cycles
1

REGISTERS AFTER OPERATION

AAR

A-ll

NOTES

BAR

B
P

LOR

Low-order result of conversion (see note 2
below). Sign bit = O. Exponent = high-order
exponent minus 35.

1. The zone bits of the 10 high-order decimal character s are ignored. If the
middle two data bits of any character are 11, that character is interpreted
as a zero.

2. Because an 11 -digit decimal number has a range of ± 99,999,999,999 and a
36 -bit binary twos-complement number has a range of approximately ±
34,359,738,368, mantissa overflow of up to two bits is possible. If man
tissa overflow occurs, the low-order one or two bits are shifted into LOR.
Accumulator Y then contains the high-order result of conversion, with an
exponent of 36 or 37. Note that when a low-order result is shifted into LOR,
the high-order result is automatically normalized.

4-1

EXAMPLE

Convert 899,473 to a binary integer in the mantissa portion of accumulator O.

EASYCODER
CODING FORM

PROBLEM ______________________ PROGRAMMER ______ DATE ____ PAGE_OF_

CARD ~I~ LOCATION
OPERATION OPERANDS NUMBER Ii> ~ CODE

I 2 3 4 5 • 7 • 1415 2021 62 .,

I Dec. ~cw +~jI)P~~8q9~73

I FMA OEC.(/J,(/J .~3

BINAR Y TO DECIMAL CONVERSION

FORMAT

FMA/A, X-, 06 or BTD/A, X-

FUNCTION

The mantissa portion of (X) is converted from a twos-complement binary integer
to a signed decimal integer. The decimal integer is stored in the II-character
main memory field whose low-order character is location A.

TIMING

N: + 23 cycles
1

REGISTERS AFTER OPERATION

AAR BAR

A-ll B

P

NOTES

1. If the binary integer is negative, the zone bits of the units character
(location A) are set to 10. If the binary integer is positive, the zone
bits of the units character are set to 01. The zone bits of the other
10 characters are set to 00.

2. The exponent in accumulator X is ignored and unaltered.

EXAMPLE

CARD

1. Convert the mantissa portion of the floating-point word in accumulator 3 to a
signed decimal integer. Store the decimal integer in the main memory field
whose rightmost character is tagged DEC.

OPERATION
NUMBER n LOCATION CODE OPERANDS

I 2 3 4 5 • 7 • 1415 2021 62 .,

I : ~,TO ~.C.~.3,~.
I I D~C I~CW ~I.IC~_ "'~¢!¢d!I¢,A

4-2

80

80

SECTION V

CONTROL INSTRUCTIONS

FLOATING TEST AND BRANCH ON ACCUMULATOR CONDITION I

FORMAT

FMA/A, XC, 04 or FBA/A, XC

FUNCTION

The mantissa portion of (X) is tested for the condition specified by C, the
low-order octal digit of variant 1:

C = 0 no branch

C = 1 (X) 0

C = 2 (X) < 0

C = 3 (X) ~ 0

C=4 (X) > 0

C = 5 (X) ~ 0

C=6 (X) = 0

C = 7 unconditional branch

If the condition specified by C is satisfied, program control branches to
location A.

TIMING

N. + 4 cycles NO BRANCH
1

N. + 6 cycles BRANCH
1

REGISTERS AFTER OPERATION

NOTE

AAR

A

A

BAR

B
P

NXT

SR

NXT

JI(A)

1. (X) must be normalized.

NO BRANCH

BRANCH

5-1

EXAMPLE

Subtract the floating-point word in accumulator 1 from the floating-point word in
accumulator O. If the difference is less than or equal to zero, branch to location
LESS.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE G AIlE

CARD t~ LOCATION
OPERATION

OPERANDS NUMBER Ih CODE

I 2 3 4 5 • 7 • 1415 2021 62 .3

I I i ISM ~I -I/()(,tinq SIl6f,.~cI
I I F8A ESS.~ \ 3 f.sf ,,,,,1 bNlncf!

FLOATING TEST AND BRANCH ON INDICATOR I
FORMAT

FMA/ A, OD, 05 or FBI! A, OD

FUNCTION

The indicator(s) specified by D, the low-order octal digit of variant 1, are
tested. If any of the indicators is set, control branches to location A.

TIMING

D = 0

D =

D=2

D = 3

D=4

D = 5

D=6

D = 7

N. + 2 cycles
1

N. + 4 cycles
1

no branch

multiply overflow

exponent overflow

exponent and multiply overflow

divide check

divide check and multiply overflow

divide check and exponent overflow

divide check and exponent overflow, and multiply overflow

NO BRANCH

BRANCH

REGISTERS AFTER OPERATION

NOTE

AAR

A

A

BAR

B
P

NXT

SR

NXT NO BRANCH

JI(A) BRANCH

1. All indicators tested are reset.

5-2

OF

eo

. -

EXAMPLE

1

10

1

12

Multiply the floating-point word in accumulator 1 by the floating-point word in
accumulator 2. If exponent overflow occurs, store the contents of the sequence
register and accumulator 2, replace the contents of accumulator 2 with the largest
positive floating-point number, and continue.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD t ~ LOCATION
OPERATION OPERANDS NUMBER ~ K

CODE

I 2 3 4 !S 6 7 • 1415 2021 62 ••

I i FA~ 12 13 .fJ"c1flJ1et (11t.# ip(y
I

I TESJ F.BI OVER.~'2 -f~~+ .,tOr fYCf'On~n+ overflow
I i , , ,
I I ((\ ,
: i t, { \
I I OVE,R SCR S.EQRE.G •. '77 ~fDre S"e.t1p~nce ~~~
i I FMA ~C~2.0 ~ ~~ oCClJMlJlmr
I I FMA MX .•. rI,2:02. 1tJqq' ~CCfJl!1p./~ ~lfI1 ",ox·~/(/ Ie,
I I Ie TEST-t,' r~~",.", (in ~Ul--' - C! 11o,.. 1+7-'e J
! SEaREG locw 1If4CQ)C1J~~
i i ~cc, IDCW 1tt9Cfat1"'~~Gf,CIIG!C!f~"""'" A

i i MAX DCW ~C31777777717.1377'

BINARY MANTISSA SHIFT I

FORMAT

BMS/XM, V

FUNCTION

In a single-precision shift, the mantissa portion of (X) is shifted by the number
of bit positions specified by variant 2 (0 S V S 63). In a double-precision shift,
the mantissa portions of (X) and (LOR) are treated as a single register and
shifted the number of bit positions specified by variant 2. The exponent portions
of (X) and (LOR) are never shifted. A shift operation may be of either the rotate
or the arithmetic type, in the left or right direction. In a rotate shift, bits
shifted off the end of a "register" (mantissa of X or mantissas of X and LOR)
are moved end-around to the opposite end of the register. That is, no bits are
lost in a rotate shift. In an arithmetic shift, bits shifted off the end of a register
are lost. Note that in an arithmetic shift, the sign positions of accumulator X and
LOR are protected; i. e., bits are shifted around these positions. In a right
arithmetic shift, the sign bit is duplicated in the vacated bit positions. In a left
arithmetic shift, vacated bit positions are filled with zeros.

M, the low-order octal digit of variant 1, specifies the mode of shifting, as
illustrated below.

5-3

80

M ={I : LEFT, ROTATE, SINGLE-PRECISION SHIFT

ACCUMULATOR X

MANTISSA EXPONENT

M = f.' LEFT, ARITHMETIC, SINGLE-PRECISION SHIFT

ACCUMULATOR X

BITS 1m \ff1 ZEROS

D""ROE~ ~ uu", .', " I
SIGN 11) ... _-_

PROTECTED !!! - - ~

MANTISSA EXPONENT

M=2: LEFT, ROTATE, DOUBLE-PRECISION SHIFT

ACCUMULATOR X

MANTISSA EXPONENT MANTISSA

BITS
DISCARDED

M=3:LEFT, ARITHMETIC, OOUBLE-PRECISION SHIFT

ACCUMULATOR X

EXPONENT

rffi]m~l ~'I
~~;~ !!!!!!!~

SIGN MANTISSA EXPONENT

ZEROS

~m~J. ~.c.
SIGN MANTISSA EXPONENT

PROTECTED PROTECTED

5-4

I

M=4: RIGHT, ROTATE, SINGLE-PRECISION SHIFT

ACCUMULATOR X

ramrn -,
..

MANTISSA EXPONENT

M =5: RIGHT, ARI THMETIC, SINGLE -PRECISION SHIFT

ACCUMULATOR X

MANTISSA EXPONENT

M=6: RIGHT, ROTATE, OOUBLE-PRECISION SHIFT

ACCUMULATOR X .bQR.

I~]. W]fil. « }
~

MANTISSA EXPONENT MANTISSA EXPONENT

M= 7: RIGHT, ARITHMETIC, OOUBLE-PRECISION SHIFT

SIGN ACCUMULATOR X
BIT
DUPLICATED

-WID1
,~~~ ~~~~~~~~------------~

MANTISSA EXPONENT

5-5

(tflHr : BITS DI~~~D

~ lli [" ",L[;:j::'!
SIGN '~~~~!~!l! -
PROTECTED

MANTISSA EXPONENT

TIMING

9 + N /4 cycles
s

REGISTERS AFTER OPERATION

NOTES

AAR

A
P

BAR

B
P

1. At the end of a shift operation, the exponents of (X) and (LOR)
are zero.

2. In a single -precision shift, the mantis sa portion of the previous
contents of LOR is unaltered.

EXAMPLE

Perform a left, arithmetic, single -precision shift on accumulator 1.
Shift by 12 bit positions.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE

CARD Iii LOCATION
OPERATION

OPERANDS NUMBER CODE

I 2 3 4 5 6 7 • 1415 2021 62 63

I I~S " 'l.

5-6

PAGE OF

80

SECTION VI

BINARY INTEGER ARITHMETIC INSTRUCTION

BINARY INTEGER MULTIPLY

FORMAT

BIM/A, B

FUNCTION

The four-character fields in main memory whose low-order characters
are A and B are treated as 24-bit, twos-complement binary integers. The
integers are multiplied together, and the product is stored in the field
specified by the B address.

TIMING

Ni + 20 + N1 /2 cycles

REGISTERS AFTER OPERATION

AAR BAR LOR

A-4 B-4 unspecified

NOTES

1. If the product exceeds 24 bits, a multiply overflow indication is
given and the low-order 24 bits are delivered to the field specified
by the B address. Any high-order bits are lost.

2. The product is not shifted in any way.

EXAMPLE

Multiply the binary equivalent of 735
10

by the binary equivalent of
899

10
•

EASYCODER
CODING FORM

PROBLEM PROGRAMMER

CARD ~ LOCATION
OPERATION OPERANDS NUMBER ~ ~ CODE

t 2 3 4 5 6 7 • 14 IS 2021

I 1NT,I. tKW t+8135"
I

I U,ITl QCUJ ~,,"'88'lCf
I I elM l~TI., I~TZ. l',.o'lIc.r Istle"II(f!"~ ~ :r;NTZ,

6 -1

DATE

6263

Al\GE OF

eo

COMPUTER-GENERATED INDEX

ACCUMULATCR

ADD

" CONDITION.
FLOATING TEST AND BRANCH ON ACCUMULATOR

CONDITION. 5-1
" DATA FORMAT.

FLOATING-POINT ACCUMULATOR DATA FORMAT. 1-2
LOAD FLOATING ACCUMULATOR. 2-1
STORE FLOATING ACCUMULATOR. 2-1

FLOATING ADD. 3-1
AR I.THME TIC

" INSTRUCTION.
BINARY INTEGER ARITHMETIC INSTRUCTION. 6-1
FLOATING-POINT ARITHMETIC INSTRUCTIONS. 3-1

" OPERATIONS,
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS,

1-,
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS. 1-5
BINARY

" CONVERSION.
DECIMAL [0 BINARY CONVERSION. 4-1

" INTEGER ARITHMETIC INSTRUCTION. 6-1
" INTEGER MULTIPLY. 6-1
" MANTISSA SHIfT. 5-3
• TO DECIMAL CONVERSION. 4-2

BRANCH
FLOATING TEST AND BRANCH ON ACCUMULATOR CONDITION.

5-1
FLOATING TEST AND BRANCH ON INDICATOR. 5-2

CONDIT ION
FLOATING TESI AND BRANCH ON ACCUMULATOR CONDITION.

5-1
CONSIDERATIONS

PROGRAMMING CONSIDERATIONS, 1-7
CONTROL INSTRUCTIONS. 5-1
CONVERSION

DATA

BINARY TO DECIMAL CONVERSION. 4-2
DECIMAL TO BINARY CONVERSION. 4-1

" INSTRUCTIONS.
DATA CONVERSION INSTRUCTIONS. 4-1

" CONVERSION INSTRUCTIONS. 4-1
" FOR"AT.

FLOATING-POINT ACCUMULATOR DATA FORMAT. 1-2
fLOATING-POINT DATA FORMAT. 1-1
MAIN MEMORY FLOATING-POINT DATA FORMAT, 1-1

" MOVING INSTRUCTIONS, 2-1
DECIMAL

" CONVlRSION,
BINARY TO DECIMAL CONVERSION. 4-2

" TO BINARY CONVERSION, 4-1
DIVIDE

FLOATING DIVIDE. 3-4
EQUALIZATION. 1-5
EXPONENTS

FLOATING-POINT NUMERICAL REPRESENTATION OF
EXPONENTS. 1-3

FLOA TI NG
" ACCUMULATOR,

LOAD FLOATING ACCUMULATOR. 2-1
STORE FLOATING ACCUMULATOR. 2-1

" ADD. 3-1
" DIVIDE, 3-4
" MULTIPLY. 3-3
" SUBTRACT. 3-2
" TEST AND BRANCH ON ACCUMULATOR CONDITION, 5-1

FLOATING TEST AND BRANCH ON INDICATOR. 5-2
FLOA TI NG-POINT

" ACCUMULATOR DATA FORMAT. 1-2
" ARITHMETIC INSTRUCTIONS. 3-1
" DATA FORMAT. 1-1

MAIN MEMORY FLOATING-POINT DATA FORMAT. 1-1
" NUMERICAL REPRESENTATION. 1-2

FLOATING-POINT NUMERICAL REPRESENTATION OF
EXPONENTS. 1-3

FLOATING-POINT NUMERICAL REPRESENTATION OF
MANTISSAS. 1-3

" REGISTERS. 1-4
FORMAT

FLOATING-POINT ACCUMULATOR DATA FORMAT. 1-2
FLOATING-POINT DATA FORMAT. 1-1

INSTRUCTION FORMATS. 1-6 ~
MAIN MEMORY FLOATING-POINT DATA FORMAT. 1-1

FORMATTING
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS. 1-5

INDICATOR
FLOATING TEST AND BRANCH ON INDICATOR. 5-2
SCIENTIFIC UNIT INDICATORS. 1-4

INSTRUCTION
BINARY INTEGER ARITHMETIC INSTRUCTION. 6-1
CONTROL INSTRUCTIONS. 5-1
DATA CONVERSION INSTRUCTIONS. 4-1
DATA MOVING INSTRUCTIONS. 2-1
FLOATING-POINT ARITHMETIC INSTRUCTIONS. 3-1

" FORMATS. 1-6
INTEGER

" ARITHMETIC INSTRUCTION.
BINARY INTEGER ARITHMETIC INSTRUCTION. 6-1

• MULTIPLY.
BINARY INTEGER MULTIPLY. 6-1

INTRODUCTION. 1-1
LOAD

• FLOATING ACCUMULATOR. 2-1
" LOW ORDER RESULT. 2-3

LOW ORDER RESULT
LOAD LOW ORDER RESULT. 2-3

LOW-ORDER RESULT
STORE LOW-ORDER RESULT. 2-2

MAIN MEMORY FLOATING-POINT DATA FORMAT. 1-1
MANTISSA SHIFT

BINARY MANTISSA SHIFT. 5-3
MANTISSAS

FLOATING-POINT NUMERICAL REPRESENTATION OF
MANTISSAS. 1-3

MEMORY FLOATING-POINT DATA FORMAT
MAIN MEMORY FLOATING-POINT DATA FORMAT. 1-1

MOVING INSTRUCTIONS
DATA MOVING INSTRUCTIONS. 2-1

MULTIPLY
BINARY INTEGER MULTIPLY. 6-1 _~.
FLOATING MULTIPLY. 3-3 ,..,

NUMERICAL REPRESENTATION
FLOATING-POINT NUMERICAL REPRESENTATION. 1-2
FLOATING-POINT NUMERICAL REPRESENTATION OF

EXPONENTS. 1-3
FLOATING-POINT NUMERICAL REPRESENTATION OF

MANTI SSAS. 1-3
OPERATIONS

AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS. 1-5
ORDER RESULT

LOAD LOW ORDER RESULT. 2-3
POSTNORMALIZATION. 1-5
PRENORMALIZATION. 1-5
PROGRAMMING CONSIDERATIONS. 1-7
REGISTERS

FLOATING-POINT REGISTERS. 1-4
REPRESENTATION

RESULT

FLOATING-POINT NUMERICAL REPRESENTATION. 1-2
FLOATING-POINT NUMERICAL REPRESENTATION OF

EXPONENTS. 1-3
FLOATING-POINT NUMERICAL REPRESENTATION OF

MANTISSAS. 1-3

LOAD LOW ORDER RESULT. 2-3
STORE LOW-ORDER RESULT. 2-2

SCIENTIFIC UNIT INDICATORS. 1-4
SHIFT

BINARY MANTISSA SHIFT. 5-3
STORE

" FLOATING ACCUMULATOR. 2-1
" LOW-ORDER RESULT. 2-2

SUBTRACT
FLOATING SUBTRACT. 3-2

SYMBOLOGY. 1-1
TEST

FLOATING TEST AND BRANCH ON ACCUMULATOR CONDITION.
5-1

FLOATING TEST AND BRANCH ON INDICATOR. 5-2
TIMING NOTES. 1-8 ~~
UNIT INDICATORS ,..,

SCIENTIFIC UNIT INDICATORS, 1-4 .

•

HONEYWELL
ELECTRONIC
DATA
PROCESSING
WELLESLEY HILLS,

MASSACHUSETTS 02181

I

CRP

