
HONEYWELL

NEW USERS'
I INTRODUCTION TO
. MULTICS - PART II

SOFTWARE

SUBJECT

Introduction to Multics

SPECIAL INSTRUCTIONS

This manual is part ofa new two-volume set entitled New Users'Introduction to
Multics (Order No's. CH24 and CH25). The introductory set, along with one of
the Multics text editor user guides, is the prerequisite to all further Multics
manuals. The text editor user guides are:

qedx Text Editor Users' Guide
Emacs Text Editor Users' Guide

SOFrWARE SUPPORTED

Multics Software Release 8.0

ORDER NUMBER

CH25-00

Order No. CG40
Order No. CH27

November 1979

Honeywell

PREFACE

The purpose of this manual is to provide new users with an
introduction to Multics use and a workbook that develops detailed
applications from principles introduced in Part I of the New Users'
Introduction to Multics (Order No. CH24). The topics covered here
have been chosen ei ther because they are useful and, wi th the
introduction in Part I, comprehensible to the new user or because
they illustrate fundamental elements of the Multics system.

The information presented here is a subset of that contained in
the primary Multics reference document, the Multics Programmers'
Manual (MPM). The MPM should be used as a reference to fJfultics once
the user has become familiar with this introductory guide. The MPM
consists of the following individual manuals:

Reference Guide (Order No. AGg1)

Commands and Active Functions (Order No. AG92)

Subroutines (Order No. AG93)

Subsystem Writers' Guide (Order No. AK82)

PeriEheral In:2ut/OutEut (Order No. AX49)

Communications InEut/Output (Order No. CC92)

Throughout this manual, references are made to both the MPM
Commands and Acti ve Functions manual and the New Users' IntroductTOn
to MultiCS-Part I. For convenience, these-r8ferences will be as
follows: -----

MPM Commands
Part I

The Multics operating system is referred to in this manual as
ei ther "fv'ful tics" or "the system." The term "computer" refers to the
hardware on which the operating system resides.

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1979 File No.: ILI3 CH25-00

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

CONTENTS

Introduction
Manual Conventions .
Peripherals. . .

Terminals ...
Card Readers ..
Storage Devices .
Line Printers .

Central Processing Unit (CPU) ..
Input/Output Multiplexer (10M) ..
Front-End Network Processor (FNP).
Computer Languages

Multics Command Language
System and User-Written Commands .
Commands Applied
Multiple Commands
Reserved Characters and Quoted Strings
Iteration

Active Functions.
Active Functions as Substrings

Nesting Active Functions
Iteration of Active Functions .
Rescanning

Act i ve Funct ion Errors

Important Command Language Features .
Star Names ..
Equal Names
Concatenation.
How Commands Can Be Interrupted ..

Abbreviation and Argument Substitution ..

The do Command .

exec com.
Creating an exec com Segment .

Argument Substitution.
Control Statements.
start_up.ec

iii

Page

1- 1
1- 1
1-2
1-2
1-2
1- 3
1- 3
1- 3
1-4
1- 4
1-6

2-1
2-2
2-2
2-5
2-6
2-8

3- i
3-2
3-3
3-4
3-5
3-7

4-1
4-1
4-5
4-8
4-8

5-1
5-1
5-5

6-1
6-1
6-2
6-3
6-1

CH25-00

Section 7

Appendix A

Appendix B

Appendix C

CONTENTS (cont)

Additional Concepts.
'Online
Absentee . . .
Storage System .
Search Rules . .
Link i ng.
Bound Segments
Archive Segments .
Editor Macro

Glossary.

Functional Breakdown of Selected Multics
Comma nds

Selected Commands Listed by Function .
Access to the System.
Storage System, Creating and

Editing Segments
Storage System, Segment

Manipulation
Storage System, Directory

Manipulation
Storage System, Access Control.
Storage System, Address Space

Control.
Command Level Environment • . .
Communication Among Users ...
Communication with the System.
Control of Absentee Computations. .
Wordprocessing.

Functional Breakdown of Selected Active
Functions

Reference to Active Function by Groups
Arithmetic.
Character String ...
Condition Handling.
D ate and Time
Logical
Miscellaneous
Pathname Manipulation .
Question Asking
Storage System Names.
User/Process Information.

iv

Page

1-1
7-1
1-2
7-2
7-5
7-5
7-6
7-6
7-6

A-1

B-1
B-1
B-1

B-1

B-2

B-2
B-2

B-3
B-3
B-4
B-4
B-4
8-5

C-1
C-1
C-1
C-2
C 2
C-2
C-2
C-3
C-3
C-3
C-3
C-4

CH25-00

Figure 1-1.
Figure 7-1.

CONTENTS (cont)

ILLUSTRATIONS

Components of Multics Hardware. .
Hierarchical Storage System ...

v

Page

1-5
7-4

CH25-00

SECTION

INTRODUCTION

MANUAL CONVENTIONS

Part II of the New Users' Introduction to Multics continues
the discussion of Multics command language-Which was begun in
Part I (CH24). Its purpose is to explain some of the detailed
uses possible with the basic components of the language--commands
and arguments--and to equip the user with a wide ranGe of
features and conventions that make command language extremely
flexible and easy to use. This is accomplished through sections
that illustrate detailed command applications, explain the use of
active functions, and present important command language features
such as the star convention and exec com. Also included is a
section on important computer concepts and their specialized
application in Multics. Finally, there is a list of additional
glossary items that supplement those in Part I and that will be
valuable as you become more fully acquainted with computers and,
in particular, Multics.

The conventions and special symbols used in this manual are
the same as those in Part I.

Technical or other unfamiliar terms are underlined when used
the first time and are included in the glossary (Appendix A).

When a command is referred to for the first time, its short
name is shown in parentheses immediately following the long name.
For example, print (pr).

Examples of lines printed on a terminal use exclamation
points to indicate lines that the user types. These characters
will not be typed by the system as a prompt to you, and they are
not to be typed by you.

1 -1 CH25-00

The ready message used in examples is the regular message
printed by the system:

r 13:02 1.423 77

The first set of numbers tells the time of day on the 24-hour
clock. The 13:02 indicates it is two minutes after one o'clock
in the afternoon. The second set of numbers shows the amount of
CPU time you've used since the last ready message, and the third
number (77 here) indicates the number of pages of information
brought into main memory from secondary storage since the last
ready message. (See below for a discussion of CPU, memory and
storage.)

But before we embark on this further discussion of Multics
software, it may be interesting to you to understand the
fundamental operation of computer hardware. Hardware is a term
used to refer to the physical units that make up a computer
system, the apparatus as opposed to the programs. Multics itself
is not a computer; it is a software system, a system of
sophisticated programs. As we shall see in the following
discussion, there are a number of machines that comprise the
hardware system that the Multics software runs on.

PERIPHERALS

Peripherals are machines that can be operated under computer
control but do not perform the control and computational
functions of the central computer. Terminals are peripheral
devices with which you are probably already familiar. Others
include keypunch machines and card readers, line printers, and
storage devices such as magnetic tapes and disks.

Terminals

There are basically two types of terminals: printing or
hardcopy terminals and video terminals, commonly called CRTs
(cathode ray tube). Both have keyboards that resemble those on
typewriters, and both accept output as well as input. The video
screen shows your input and output on a television-like screen
whereas hardcopy terminals print input and output on paper as you
work and thereby provide immediately a printed record of your
terminal session.

Card Readers

Card readers transfer programs
cards to the central computer. A
is the keypunch, a typewriter-like
characters onto computer cards.

1-2

and data punched on computer
necessary accompanying device

machine with which you type

CH25-00

storage Devices

On most systems, storage consists of two parts--main memory
and secondary storage. When information in secondary storage is
to be processed, it is brought into main memory where it can be
manipulated more rapidly. On the Multics system, however, all
information can be processed at the same high speed, so there is
no essential difference between main memory and secondary
storage. This is the special Multics feature called virtual
memory, which is discussed in Section 7e

The principal device used for storage in the Multics system
is the disk; all information stored in the virtual memory system
is on disks. Information can be stored on tapes and cards in the
Multics system, but when it is, it is not part of the virtual
memory system. A special connection must be made in order to
process that information.

Line Printers

Line printers are so called because they print out results
from a computer one line at a time. Unlike terminals, line
printers are strictly output devices; they do not accept input.
Line printers do, however, print output at very high speeds, much
faster than terminals.

CENTRAL PROCESSING UNIT (CPU)

The central processing unit is the nerve center of the
computer system; it coordinates and controls the activities of
all the other units and performs all the arithmetic and logical
processes to be applied to data. We can consider it as being
divided into three functional parts:

1. an appending unit (APU)

2. a control unit

3. computation units

The appending unit locates information in memory and checks
the access that the particular user has to the information.
Multics software uses the APU to provide the unique level of
security that protects information kept on the system.

The control unit acts as a synchronizer.
instructions sent to it by the APU and issues
commands to the computation units.

1-3

It interprets
the appropriate

CH25-00

There are two units in the CPU that perform computations:
the operations unit and the decimal unit. Between them these two
units perform basic computations such as addition, subtraction,
division and comparison.

INPUT/OUTPUT MULTIPLEXER (10M)

The input/output multiplexer processes information coming
from terminals, card readers, and some parts of storage and
returning to terminals or going to line printers. On some
systems, a similar mechanism is called the input/output processor
and sometimes it even resides within the CPU.

FRONT-END NETWORK PROCESSOR (FNP)

The front-end network processor is the piece of hardware
incorporated into some systems to process information coming into
and going out of the system by way of communication channels
(e.g., telephone lines). Thus all input from terminals, and
output directed to terminals, goes through the FNP because the
terminals are all connected to the computer by one type of
communication channel or another. Card readers, on the other
hand, do not necessarily send their input through the FNP; they
do so only if they are connected to the computer by way of
communication channels, as is the case when they are at a
different site than the computer. The FNP must be at the same
site as the central computer.

With the description of major hardware items now complete,
we can construct an illustration of how the hardware used by the
Multics system is interconnected:

1-4 CH25-00

Line
Printer

Terminal

Keypunch

Card

Card
Reader

FNP

rOM

t

Keypunch

Card

Card
Reader

Line Terminal
Printer

Storage

Figure 1-1. Components of Multics Hardware

1-5

CPU

CPU

CPU

CH25-00

COMPUTER LANGUAGES

The CPU and front-end processor operate according to a coded
language that is very intricate and hard for humans to use
efficiently. When we put information into the computer, we use
coded languages that are easy for us to understand. These
languages are usually called higher level languages. Some that
you've probably heard of already are FORTRAN, PLII, and COBOL.
But these languages must be translated into the machine's
language before the computer can perform its work. A compiler is
the thing that translates a higher level language into machine
language.

The compiler is not a hardware item in the computer system;
it is a program. It resides in storage and can be called when
needed. As a matter of fact, there are usually several compilers
with each computer because each higher level language has its own
program to translate it into the machine's code. On the Multics
system there are compilers for FORTRAN, PLII, COBOL, BASIC, and
APL.

There is also another translating program similar to a
compiler called an assembler. It too translates a programming
language into machine code. But instead of translating a higher
level language like COBOL, it translates a programming language
called assembly, a language whose code is a symbolic form of
machine language that resembles English much less than higher
level languages do.

But the commands, active functions, texts, etc. that you
enter at a terminal are not written in either higher level
languages or assembly language. Instead, you are typing in a
language (much of it specific to Multics) that calls or activates
programs that are already written and reside in the system. On
Multics, these programs are written in PL/I, and, indeed, these
programs are the system, the Multics software system. What you
type at a terminal calls programs and supplies data for their
running, and it is to this procedure that we will now turn our
attention for the remainder of this manual.

1-6 CH25-00

SECTION 2

MULTICS COMMAND LANGUAGE

A command is, as the name implies, a directi ve that you the user
give the Nul tics system to make the system perform some action. You
issue a command by typing its name at the terminal, along wi th
arguments and control arguments, and concluding with a newline, a
combination of a carriage return and linefeed. This sends the
particular command message, or command invocation, to the command
processor where it is evaluated and acted upon. If in evaluation the
command processor finds that the line is improperly typed (which, in
most cases, means misspelled), or if the command program finds that
the line is incorrectly structured wi th arguments and control
arguments, an error message is returned, indicating where the mistake
is:

primt report
Segment primt not found.
r 9:37 .144 55

print 3 12 report
print: Entry not found. >user_dir_dir>Pubs>Smith>3
r 9:37 .144 55

The command processor return the error message in the first
example because it cannot locate a command wi th the misspelled name.
In the second example, the command processor can find the command
named "pr int," but the command program cannot find a segment whose
pathname is "3." Thus the command cannot execute and so returns the
error message. The print command will print part of a segment when
line numbers are specified (e.g., 3 12); but in this case, the line
designation comes incorrectly before the pathname of the segment to
be printed. The correct syntax is:

print report 3 12

2-1 CH25-00

When the processor and the command program find that all is well
wi th the command invocation (which, by the way, is referred to simply
as a command line throughout most of Multics documentation) , then the
command is executed. Finding that the invocation is correct means
that the command processor was able to locate a program referred to
by the command name gi ven and that the command is capable of running
on the arguments and control arguments given.

SYSTEM AND USER-WRITTEN COMMANDS

Most command programs in Multics are available throughout the
entire system and can be executed by any user. There are, though,
a few commands that can be used only by the system administrator,
commands that control system usage, such as those needed to put new
users on the system.

Then too, you the user can write special commands, normally
called user-written commands, that can be executed in the same manner
as system commands, though only by the user who creates them and anyone
given access to them.

COMMANDS APPLIED

There is qui te a large number of commands on the Mul tics system
and these commands can be applied to a variety of situations. Most
commands are adapted to particular si tuations by using arguments and
control arguments, as is di scussed in Part I of the New Users'
Introduction. Some commands can operate by themselves:-that is,
without any arguments specified by the user. Commands of this type
may not accept arguments, such as the command that prints the current
working directory (print wdir), or they may operate with certain
preestablisheo A,rguments, default arguments, unless the user
specifies otherwise. A good example of the latter is the help command
discussed in Part I. Invoked wi thout any control arguments, the help
command prints information explaining how to use the help command.
Then of course wi th the name of an info segment gi ven as an argument,
the help command will print the explanation contained in that info
segment.

Another such command is list (Is) , and it serves as a good example
of how a command can be adapted to particular situations. When
invoked without any pathname or control arguments, the list command
prints the names of all segments in your working directory. For
example:

2-2 CH25-00

I !
Is

Segments = 8, Lengths = 41 ..

r w 10 seg -rew 9 seg 2
r w 3 Smith.profile
r w 7 work. list
re 2 work
r w 1 print.ec
r w 1 output file
r 8 data base

If, however, you only need to know how many segments exist in
your working directory and how long they are, you can specify that
the command return just the total shown in the heading by using the
control argument -total (-tt):

Is -tt

Segments = 8, Lengths = 41.

You can make this command return even more specific
information by aQQlng ~ne pathname of a particular segment. You
could, for instance, check the length of a particular segment by
typing:

Is Smith.profile

Segments = 1, Lengths = 1.

r w Smith.profile

You could also limi t the amount of information printed about the
segment. Suppose that the segment is known by several different names
and you want to know only the names of the segment. By adding the
-name control argument, you can get a list of the heading and the names
without the access listing:

2-3 CH25-00

Is Smith.profile -name

Segments = 1, Lengths = 1.

Smith.profile
John
prof

Using this control argument can save processing time "'Then you are
listing names of a lot of segments, as you can do quite easily with
the star convention discussed in Section 4.

In yet another case, you could check the last time the segment
was al tered by adding the date time contents modified control
argument (-dtcm):

Is Smith.profile -name -dtcm

Segments = 1, Lengths = 1.

07/05/79 1 456. 3 Smith.profile
John
prof

The time of day is represented here in terms of the 24-hour clock;
1456.3 is 2:56 p.m. Knowing when a segment was last changed ca.n be
helpful in a variety of ways, such as keeping track of updates to the
segment.

In most cases, especially when checking a specific segment, you
don't need the header information, so that can be eliminated by typing
is another control argument:

Is Smith.profile -name -dtcm -no_header

07/05/79 1 456. 3 Smith.profile
John
prof

Control arguments give you a great of deal control over how
comments execute. Normally control arguments follow pathname
argu~ents on the command line, though most commands don't require that
you arrange the control arguments in any particular order. For

2-4 CH25-00

instance, the three control arguments in the above command lire cC111d
be arranged in any order after the pathname. And as is demonstrated
below, control arguments can themselves take arguments that furth~r
specify how a particular command is to execute.

MULTIPLE COMMANDS

Sometimes it is easier to send several commands to the command
processor at one time rather than send them separately. To do this
you simply place a semicolon at the end of each command, after its
arguments:

print_messages; print_wdir; who; help sked

Note: There is no need to type a semicolon after the last
command and its arguments

If you were to send the commands separately, as we've been doing
in examples up to this point, you would have to wait for the command
to process and for another ready message to be printed before typing
the next command line:

r 10:31 0.662 07

print_messages

r 10:32 0.062 0

r 10:34 0.557 17

who

r 10:36 0.379 16

help sked

r 10:37 0.380 77

Note: The three dots between commands and reaoy messages are
meant to represent the output from the commands.

2-5 CH25-00

But none of the four commands in this example require that you wait
for the others to process; for instance, you needn't see the results
of the print messages command before typing the print wdir command.
So you can -send them all to the command processor at the same
time.

This technique is also useful when you are invoking commands that
don't return information to your terminal. For example, when you
change working directories, there is no reason why you couldn't send
the next command to the command processor right away:

change_wdir)udd)Pubs)Jones; print seg 2

It would be slower to type the commands on separate lines because
you'd have to wai t for another ready message before typing the second
command. By putting both commands on the same line you will be ready,
when the next ready message appears, to proceed with what you've
learned by reading the contents of seg 2.

RESERVED CHARACTERS AND QUOTED STRINGS

The Multics command language reserves some characters to which
special significance is attached. The reserved characters are:
space, quotation mark (fI), semicolon (;), the newline character, the
vertical bar (l), parentheses, and brackets ([]). Earlier in this
section we discussed special meanings of the semicolon and
newline character. Here we will cover some special uses for the blank
space and the quotation mark, and you will see the special
significance of parentheses when we discuss iteration below. The
special uses of brackets and the vertical bar are discussed in Section
3·

The space character is reserve d for separ at i ng ar gume nts,
including command names, on the command line. For that reason
character strings cannot contain blank spaces and instead simulate
blanks with the underscore character, as is discussed in Section 3
of Part I.

Quotation marks are reserved for passing other reserved
characters to the command processor without the meaning that is
normally attached to them.

2-6 CH25-00

To illustrate this usage, let's look at an instance in which a
space is used to separate two elements in a command line that are not
separate ar guments. For th i s example we will use the sor t lis t
command, a rather uncomplicated command (fully descr ibed in the
Multics WORDPRO Reference Guide, Order No. AZ98) which you may
actually come to use quite often. The command's syntax is:

sort_list pathname -sort STR

The pathname is that of a segment which is designed specifically to
hold lists, and the -sort control argument indicates how the segment
is to be sorted. It does that by using, in the argument position
marked by STR, one or more of the names that differentiate elements
within the list, such as "lastname" and "firstname."

Now, assume that you have a segment in your directory that
contains a list of customers' names and you want to sort that list
by last name and first name. For instance, if you had both John Doe
and Jane Doe in your list, you would want Jane placed before John in
the alphabetically sorted list. In this case you must include both
"lastname" and "firstname" in the argument to the -sort control
argument. So, you might type:

sort list customers -sort lastname firstname

where "customers" is the pathname of the segment containing your list
of customers.

But this invocation would return the error message:

sort list: Specified control argument is not implemented by
this command. firstname

because you are using a space between illastname" and "firstname."
Since the character string following the control argument is an
argument in its own right, the space between "-sort" and "lastname"
operates legitimately to separate the two. And when the command
processor encounters the space between "lastname" and "firstname,"
it interprets "firstname" to be another argument. But the -sort
control argument, takes only one argument, so the presence of what
appears to be a second causes an error message to be returned.

In order to suppress the normal meaning of the space character
here, and thereby make the two separate character strings appear as
one argument, you must enclose the argument to the control argument
in quotation marks:

sort list customers -sort "lastname firstname"

2-7 CH25-00

ITERATION

Iteration is one of several methods Multics provides for
economizing typing of the command line. By enclosing elements of a
command line in parentheses, you can have each of the elements
processed separately. This enables a user to change one or more of
the elements used in processing a command. For instance, if you
wanted to print three segments with the print command you might
type:

print seg_1; print seg_2; print seg_3

But with iteration you could simply type the command once and then
enclose the three segment pathnames in parentheses:

Parentheses used in this fashion on Multics indicate that the
indi vidual i terns separated by blank spaces wi thin the parentheses are
to be processed separately by the command. Wi th the command line used
here, the segments would be printed one after another, starting at
the left.

Iteration can also be used with command names. If you wish to
invoke two commands on the same segment, you would type:

(print delete) seg 1

In effect, this command line is:

print seg_1; delete seg_

one can be invoked wi th a ccmmand. T
.!.1J

such a case, each element from one iterated set is processed with a
corresponding element from another set. For example:

rename)Smith dir)(Jones Brown Doe) (Day White Green)

expands into:

rename)Smith dir)Jones Day
rename)Smith-dir)Brown White
rename)Smith-dir)Doe Green

2-8 CH25-00

Iterated sets may also be nested, that is, placed one with the
other. This practice is particularly useful when subsets of an
element are repeated. Parentheses are evaluated from left to
right. For example:

create dir >Smith dir>(new>(first second) old>third)

creates three directories:

)Smith dir>new>first
>Smith-dir>new>second
>Smith-dir>old>third

The directory names "first" and "second" are nested within the
iteration composed of the two elements "new" and ilold>third." The
directory name IInew" is added to ">Smi th dir>" first along wi th one
of the elements from the nested iteration--"first. 11 Since there is
a nested iteration at tached to "new," it is called a second time wi th
the other element from the nested iteration--"second." Then the
second element in the outer iteration--"old>third"--is added to the
directory name ">Smith dir>."

It is important to note here that there must be a blank space
between separate elements in an iteration (e.g., "first" and
"second") because they are separate arguments on the command
line.

We have now developed some fairly detailed command
techniques that demonstrate how precise Multics commands can be when
appli ed wi th ar gume n ts and con trol ar gume nts. I n subs eq uen t sect ions
we will look at still more ways of specifying the manner in which
Multics commands are to be run.

2-9 CH25-00

SECTION 3

ACTIVE FUNCTIONS

An active function is a program that provides current
information such as the date, name of the day, and name of your last
message sender. Some of the information supplied by active functions
can be supplied by commands, and in fact many active functions can
act as commands, just as some commands can serve as active
functions. But the principal service of an active function is to
place current information in a command line that is then execu ted wi th
that information as a part of the command's program. When active
functions are typed in a command line, their programs are executed
first and the results of those programs returned to the command line
to be processed with the command. It is in this way that you can make
many standard Multics commands conditional; that is, the results of
the invocation of the complete command line depend upon the
information received from the active function.

To see the results of an active function you can type some on
a terminal as commands. Not all active functions can be typed as
commands (those that can are listed in the MPM Commands), but the two
that follow are used to demonstrate what result s from the invocation
of an active function. The first example shows an active function
which returns information by itself, that is, without using a
pathname:

date time
08/09/79 1130.2 est Wed

The second example uses an active function which requires a pathname
argument for its operation:

contents seg 1
On a clear day you can see forever.

3-1 CH25-00

ACTIVE FUNCTIONS AS SUBSTRINGS

When an active function is used as an argument in a command
line, the normal usage, it must be surrounded by brackets. The
simplest form is:

[af arg1 argN]

where af is the name of an active function and argi represents the
character string arguments to the active function. (Throughout
Multics documentation, syntax lines that explain the structure of
command lines containing a variable number of arguments use argument
1 (arg 1) through argument N (argN), the N representing the number of
the last argument used. Collectively, these arguments are referred
to as arg.!..)

In the following example, an active function is included in a
command line:

send_message [last_message sender] Thanks for the link.

When you type a newline and send this message to the command
processor, the last message sender program is executed and the
resulting value returned to the command line, in this case a
User ide The resulting value is not printed on the terminal, nor is
the command line reprinted, but if it were it would look like
this:

send_message JDoe.Pubs Thanks for the link.

That of course is just what would appear if you took the time to
type the last message sender's User ide

More than one active function can be used in a single command
Ii ne. Suppose, for instance, that, wi shing to keep tr ack 0 f the time
you spend on individual jobs, you record the time at which you begin
each job by sending yourself a message like the following:

send message [user name] .[user project] Mailing list started at
[date time]

This command line uses the active function "user," which requires an
argument (see the description of this active function in the MPM
Commands). Here your Person id and Project id would be returned to
the command line along with-the date and time that you typed the
message and it could all be saved in your mailbox as a message:

From Smith.Pubs 11/12/79 1200.7 est Man:
Mailing list started at 11/12/79 1200.7 est Mon

3-2 CH25-00

Nesting Active Functions

Active functions can also be nested in a command line, that is,
one function included within another. For instance, if you wish to
underline the contents of a segment and have it printed on your
terminal, you would use the string active function as a command and
type:

string [underline [contents seg_1]]

Of course, all executions wi thin the brackets will be processed before
the string command is processed. Each time the command processor
encounters a right bracket (J) it returns to the matching left bracket
([) and evaluates the enclosed active function. This means that the
innermost active function is evaluated first. To execute the above
line, the command processor first evaluates [contents seg 1] and
returns, for example: -

On a clear day you can see forever.

Then the command processor evaluates the next element:

[underline On a clear day you can see forever.]

and returns:

On a clear day you can see forever.

The string command then operates on this string by printing it out
on the terminal.

The term "active string" is often used interchangeably in
Multics documentation with the term "active function." Actually, it
refers to the entire string of characters enclosed within a single
set of brackets, and this could include several separate active
functions. Nesting, as we've just seen, is one way of including more
than one active function within a set of brackets. Another way is
to separate active functions with semicolons, as in the
following:

s t r in g [p Ius 3 4; time s 5 6]

Here the active function string is used as a command on the active
functions plus and times. The two active functions in this active
string are processed separately and returned as arguments to the
command. After the results of these two active functions have been
returned, the command line is:

string 7 30

3-3 CH25-00

Since string used as a command simply prints the arguments that follow
it, the printed result of this command line is:

7 30

Iteration of Active Functions

Active functions can also be used with iteration. (See
Section 2 in this manual for a full description of iteration.) For
example, if a segment named "all" contains the name of three segments,
seg_1, seg_2, seg_3, then the command line:

string [contents all]

will print the names returned by the active function contents:

If, on the other hand, the active function was also included in
parentheses:

string ([contents all])

then the command would print the names of each of the three
segments vertically:

because the active function returns the three names within the
parentheses so the command processed is:

In effect, the string command is being invoked three times in this
command line, as if the line were:

Iteration can also be used within an active string, as in the
following:

string [(plus times) 2 3]

Here the two active functions are processed separately, each one using
the arguments 2 and 3. Both active functions are processed before
the command executes, so the command line becomes, in effect:

string [plus 2 3] [times 2 3]

3-4 CH25-00

This then becomes:

string 5 6

and the command execution causes the following line to be
printed:

5 6

Rescanning

After an active string has been evaluated, the return value is
rescanned for additional active strings before being inserted into
the command line; the command processor continues scanning until all
pairs of brackets have been evaluated. For example, if seg 4 contains
just one line consisting of the string ([contents allJ)described
above, then the command line:

string [contents seg 4J

invokes ([contents all]) as an active function which returns seg 1
seg 2 seg 3, the contents of the segment named "all," enclosed In
par~nthes~s so that the command is executed as:

or:

This rescanning can be stopped by placing a double vertical bar
(::) before the active function. If, for instance, you want to print
the contents of a segment which contains right and left brackets and
not have those brackets interpreted as another active function, you
would use the double vertical bar as it is used in the following
command line:

string :: [contents seg_5J

With this notation the entire returned value would go to the comrTland
processor without being checked again for brackets. Assume that the
contents of seg_5 are:

Now [time of crisisJ is the time for all good men to come to the
aid of their country.

3-5 CH25-00

Without the double vertical bar, this returned value would be
rescanned. The word "time" would be read as a valid active
fun c t ion, but sin c e " 0 f c r i sis" i s not a val ida r g u me n t for t his
function, an error message would be printed on the terminal. But with
the double vertical bar in front of the original active function
brackets, as in the above command, the string command will simply
print out the above segment, including the brackets and enclosed
phrase.

There also may be times when you wish to rescan a returned value
for some reserved characters (see Section 2 in this manual for a list
of reserved characters) but not for brackets. In those cases, a
single vertical bar (l) will cause a returned value to be rescanned
only for quotation marks. For example, consider the command
line:

string [contents seg_6J

where the contents of seg_6 are:

The symbol J will be used to mark the end of each category.

After the first scanning of this command line, the returned value
would be included in the line as:

string The symbol J will be used to mark the end of each
category.

Since the rescanning procedure continues until all brackets have been
dealt wi th, this line wou ld be rescanned and an error message returned
because there is no left bracket to match the right one.

But if the command line included a single vertical bar before
the active function:

string l[contents seg_6J

then the returned sentence would not be rescanned for reserved
characters such as brackets. The command would be sent to the command
processor and the sentence, with the right bracket included, would
then be printed.

3-6 CH25-00

ACTIVE FUNCTION ERRORS

If the command processor detects an invalid input argument or
some other error in an active function that prevents it from returning
the expected value, it signals the active function error
condition. The standard system action for active function error is
to print a message describing the error that was found and-create a
new command level. For example, in the following command line,
arguments that designate segments have not been included with the
contents act i ve funct ion, so an error message has been returned say ing
why the active function cannot be processed:

string [underline [contents]]
contents: Wrong number of arguments supplied

Error: Bad call to active function contents
r 14:03 O.ogo 76 level 2

You will note here that the command level is now level 2.
Whenever another command level is created, the bad command line is
held and you are shifted to a new command level. For this reason you
should type:

release

in order to release the bad command or commands and return to the
original level. Then you can correct the error and retype the command
line.

Not all errors made with active functions signal the
active function error condition. For instance, if you do not match
brackets properly, you will get an error message, but you will not
be placed to another command level:

string [underline contents seg 1]]
command processor : Brackets do not balance.
r 14:04-0.034 50

Since the comma'nd processor has returned you to the original command
level, you need not type release. You need only type the corrected
command.

3-7 CH25-00

SECTION 4

IMPORTANT COMMAND LANGUAGE FEATURES

Several features of Multics enable you to apply commands to a
wide range of segments simultaneously. Thus far we have concentrated
on the flexibility with which you can invoke single commands with a
limi ted number of pathnames. In this section we will see how Multics
command language enables you to multiply both the commands and the
pathnames executed by issuing one command line. It is with these
features that you gain truly efficient control over the large quantity
of information that Multics allows you to store.

STAR NANES

A detailed command like the one constructed in Section 2 can also
be applied wi th precision another way--across a wide range of
specified pathnames. One way to do this is by using the star and
equals conventions. Many commands that accept pathnames as input
allow any component of tr1e final entryname in the path to be a
star. This star (*) then represents all names that appear in that
posi tion of the pathname, and thus the command will operate on a range
of pathnames rather than on just one.

The list command will serve well to illustrate this feature.
Suppose you store in your working directory a number of segments
whose entrynames have "plans" as their last component. With these
you keep track of all your plans and changes you make in them. To
list them all without using the star convention would require you to
type each pathname in full:

4-1 CH25-00

Is seg 1.plans seg 2.plans new.plans rev.plans old.plans

Segments = 5, Lengths = 8

r w 1 seg 1.plans
-r w 3 seg 2.plans

r w 1 new-:-plans
r w 1 rev.plans
r w 2 old.plans

With the star convention, you can get all of these segments listed
with a much shorter command line:

Is *.plans

Use of this single asterisk can be expanded to fit a variety of
situations like the following (the -no header control argument is
used to eliminate the list header from-these examples):

Is seg_1.*.* -no_header

r w 1 seg 1.new.plans
r w 2 seg=1.o1d.plans

The above sample execution lists all segments with entrynames
composed of three components, the first being "seg_1."

Is *.plans -no_header

r w add.plans
r w seg_1.plans

The example above lists all segments whose entryname has two
components, the second (and last) being "plans."

Is *.*.* -no header

r w 1 seg 1.new.names
r w 2 seg-1.o1d.plans
r w 1 add~new.plans

4-2 CH25-00

The above example lists all segments with three-component
entrynames.

Sometimes occasions arise when you wish to specify part of a
component as variable rather than the whole component. Mult ics
provides for this with the question mark (?) feature of the star
convention. The question mark represents just one letter of an
entryname. Suppose, for instance, that you wish to list all pathname s
consisting of one three-letter component.

Is ??? -no header

r w 1 add
r w 1 new

Suppose then that you want to list all segments in your working
directory with two-component entrynames, the second containing the
word "plans" followed by exactly one character. In this case you
would use a question mark and a star name:

Is *.plans? -no header

r w 2 seg 1.plans2
r w 1 seg-1.plans1
r w add~plans1

These two features can even be used together in the same
component of an entryname. In the following example the command will
list all segments with one-component entrynames beginning with "ad"
and containing at least three characters:

Is ad?* -no header

r w add
rew 2 additional

4-3 CH25-00

In this case the question mark and star are used together because the
user wants listed only segments whose entrynames have at least three
characters. The question mark cannot be interpreted as null, that
is, having no corresponding character, so only entrynames with at
least one character after "ad" are listed. But the star can be
interpreted as null when it is used to represent part of a component,
so entrynames wi th no more than one character after "ad" are listed
(e.g., "add"). So too, the above command used without the
question mark would list two-character entrynames as well as
those with three or more characters:

Is ad* -no header

r w 1 add
rew 2 additional
rew 1 ad

Yet another feature of the star convention is the double star
(**) which matches any number of components (including none) in the
corresponding position in the entryname. for instance, the following
command line will list all entries in the working directory which have
"plans" for the last entryname component.

Is **.plans -no_header

r w 1 seg 1.plans
r w 1 add~plans
r w 2 seg 1.old.plans
r w plans

Notice that this form of the pathname argument will also return an
entry whose only component is "plans"; that's because the double
star can be interpreted as null. In order to get only "plans" entries
with two or more components, you would type:

Is *.**.plans -no_header

r w 1 seg 1.plans
r w 1 add~plans
r w 2 seg 1.old.plans
r w 1 add~new.plans
r w 1 seg 1.old.test.plans -

4-4 CH25-00

The single star is added here because it is not interpreted as
null when it is used to represent an entire component. Thus, the star
name in this command line returns only entrynames with at least two
components. The single star can be interpreted as null only when it
represents part of an entryname component (e.g., "ad*"), not when it
represents an entire component~

The double star, on the other hand, can be interpreted as null
whenever it is used, though of course there would be no reason to use
it for representing anything but one or more complete entryname
components.

EQUAL NAHES

Some commands that accept pairs of pathnames as their
arguments (e.g., the rename command described in the MPM
Commands) allow any component of the second entryname to be an equal
sign. This equal sign (=) then represents the corresponding
component of the first entryname given after the command name. For
instance, if a segment named random. data is to be renamed
ordered.data, the user would type:

rename random. data ordered.=

The convenience of this is more significant when several
entrynames are being typed. For example, in the following add name
command:

add name world.data =.statistics =.census

is equivalent to:

add name world. data world. statistics world. census

The equal name convention (commonly referred to in Mult ics
documentation as the equals convention) becomes extremely useful for
rna t chi n g s e r i e s 0 fen try n a me corn po n e n t s w hen i tis com bin e d \v i t h the
star convention. In the following command, all two-component
entrynames wi th data base as their second component are renamed wi th
data as their second component:

rename *.data base =.data

The combination of star with equal name can be extended, as in this
case, for example, where you wish to rename all segments whose
entrynames have "plans" as their last component. The command:

rename *.plans old =.=

will append "old" to each first component of the following
entrynames:

4-5 CH25-00

program. plans
add.plans
seg_1 . plans

On the other hand, the above command would not change the following
segment names:

1.program.plans
new.add.plans
my. seg_1 . plans

because the star name path ,,*. plans" returns only segments wi th
two-component entrynames whose second component is "plans."

Another equal name feature that is comparable to a star name
feature is the double equal sign. Like the double star, the double
equal represents more than one entryname component, as in the
following command:

rename one.two.three 1.==

which is equivalent to:

rename one.two.three 1.two.three

I n this example the dou ble equal sign stands for all components
following the first component, in this case two components, "two" and
"three. "

In the example that follows, the entryname using an equal name
contains more components than the matching entryname. Thus the
double equal sign does not correspond to any components of the
matching entryname and it is ignored. The commands:

rename alpha. beta ==.x.y
rename alpha. beta x.y.==
rename alpha. beta x.==.y

4-6 CH25-00

are equivalent to:

rename alpha. beta x.y

Like the double star, the double equal sign can be interpreted as null.
In this example, only the specified components of the matching
entrynames, "x" and "y", are used because two are enough to match the
initial entryname, "alpha. beta."

There is a difference between the way single and double equal
signs are interpreted when they have no corresponding component.
When a single equal sign appears in a position where no corresponding
entryname component exists, Multics responds with an error message,
such as in the following:

rename alpha beta.=.gamma

rename: Illegal use of equals convention.
beta.=.gamma for alpha

Unlike the double equal sign, the single equal sign cannot be
interpreted as nUll. This usage is, therefore, illegal because there
is no second component in the entryname "alpha" with which to match
the equal name component. But with a double equal sign the command
would function because this sign can represent any number of
components, including none, as is the case in the three examples above
where "alpha. beta" is renamed "x.y."

Finally there is the triple equal sign feature of the equals
convention. The triple equal sign component represents all
components of the corresponding entryname and thus no other component
of the equal name may contain an equal sign. The triple equal sign
is used to add components to a name, as in the following:

rename test.plans ===.old

which is equivalent to:

rename test.plans test.plans.old

There is one last aspect of the equals convention to discuss,
though you may not use it very often. It is the percent sign (%),
and it is similar to the question mark in the star convention. The
percent sign (%) represents a single character in a specific position
in the corresponding entryname component. For instance, the
command:

rename ???*.data %%%.=

4-7 CH25-00

renames all two-component entrynames that have a last component of
data and a first component containing three or more characters so that
the first component is truncated to the first three characters and
the second component is data (e.g., alpha. data would be renamed
alp. da ta) .

CONCATENATION

Yet another feature of Multics command language is
concatenation, the practice of joining separate character strings
together to form one string. When a character string bounded by
reserved characters (often called a delimi ted element) is placed next
to a string or another delimited element in a command line, the two
are concatenated. You can thus form character strings by
concatenating elements such as parenthetical expressions, active
functions, and quoted strings. If, for instance, while working in
another directory you wish to rename a segment in your home
directory, you could concatenate the home dir active function with
the pathname arguments of the rename command to economically invoke
the command:

rename [home_dir]>seg_1 seg 1.01d

The home dir active function would return the character string name
of your home directory (e.g., >udd>Pubs>Smith). The command line
shown here would thus change:

>udd>Pubs>Smith>seg_1

to:

>udd>Pubs>Smith>seg_1.0Id

HOW COMMANDS CAN BE INTERRUPTED

Often it is desirable to interrupt a command before its execution
is complete. You may discover while the command is executing that
a mistake has been made, or it may simply not be necessary to execute
the command entirely. For example, you may issue the print command
but not need to see the entire segment printed~ So as soon as the
needed information is printed, you could issue a quit signal. The
quit signal's key varies from terminal to terminal; it may be either
BREAK, BRK, INTERRUPT, INTRPT, or ATTN. The quit signal causes
Multics to stop whatever it is doing and instead print QUIT and a ready
me ssage.

The ready message printed after a quit signal is slightly
different from other ready messages because it contains additional
information after the standard numbers:

r 9:38 1.123 62 level 2

4-8 CH25-00

The character string "level 2" indicates that a new command level has
been established and the interrupted work is being held on the
previous level. Since the system is at command level, that is, ready
to accept more commands, you can ei ther continue the interrupted \.Jork
or go on to something else.

If the work interrupted by the quit signal is to be
continued, you can issue ei ther the start (sr) or the
program interrupt (pi) command. The start command resumes execution
of the Interrupted command from the point of interruption, and the
program interrupt command resumes execution of the original command
from a known, predetermined reentry point. Usually the
program interrupt command is invoked when you are working in a
subsystem like qedx or read mail and you want to interrupt printing
and remain in the subsystem.- This method of resuming an interrupted
command is useful for skipping over information not needed at the
time. After the QUIT message is printed, typing the
program_interrupt command will return you to request level.

If, on the other hand, you do not wish to continue the interrupted
work, the interrupted command should be released before any other
commands are issued. It is expensive to hold interrupted commands
at a command level. The release command (rl) releases the work
interrupted and held by the qui t signal and returns the system to the
previous command level (and drops the level information from the ready
me ssage) .

4-9 CH25-00

SECTION 5

ABBREVIATION AND ARGUMENT SUBSTITUTION

There are on Multics several commands that enhance your abili ty
to type command lines efficiently. Two of these commands--abbrev and
do--will be discussed in this section, and a third--exec com--will
be discussed in Section 6.

THE abbrev COMMAND

The abbrev command enables you to create your own abbreviations
for the elements you use in command lines. For instance, if you found
yourself repeatedly changing to another working directory with a
command like the following:

cwd >udd>Training>Jones

you could create an abbreviation for the pathname in order to avoid
typing the lengthier form. The command line might then be as short
as:

cwd J

The letter "J" would be expanded to the character string it
represents, in this case ">udd>Training>Jones," and the command would
then process with this pathname.

You create abbreviations by invoking the abbrev command and then
using a command-like invocation called an abbrev request line. To
illustrate this first step, let's look at how you would create the
abbreviation for ")udd)Training>Jones." First, you irlvoke the
abbrev command:

abbrev
r 10 :30 1.321 64

5-1 CH25-00

When invoked, the abbrev command returns no output: you simply get
a ready message. But once invoked the abbrev command remains in
effect until you cancel it. That is done by issuing an abbrev request
line:

.q

You may seldom find it necessary to issue this quit request. In
fact, the abbrev procedure is so useful for minimizing typing at
the terminal that users often include the abbrev command in their
start up. ec (see Section 6 in this manual) so that it is automatically
invoked every time they log in. It is while the abbrev command is
in effect that you can create, delete, and change abbreviations and
use them in command lines.

To create an abbreviation you must type a request line,
which begins with a period (.) in the first non-blank space. To
create an abbreviation that will be expanded no matter where it
appears in a command line, you use the control request .a:

r 10 :30 1.321 64

.a J >udd>Training>Jones
r 10: 3 1 0.0 1 1 65

This request line places the abbreviation "J" in a special
segment that is labelled with your Person id and a suffix of profile
(e. g. , Smi tho profile). All of your abbreviations are stored in this
segment, unless you specifically place some in other segments. You
may, if you wish, have several separate segments for abbreviations.
You would then specify with the abbrev request ".u" which group of
abbreviations you'd like to use at that time.

For t he s ak e 0 f s imp 1 i cit Y , we'll ass u me her e t hat all
abbreviations are being placed in one segment named Smith. profile.
So far, we've placed one abbreviation in this segment:

J = >udd)Training>Jones

Now it can be used as an abbreviation anytime the abbrev command is
in effect.

5-2 CH25-00

When it is invoked, the abbrev command sets up a special
processor, called the abbrev processor, which works on each command
line input to the system. This processor scans each line to detect
and expand abbreviations and then passes the command line on to the
normal command processor. In this process abbreviations are
expanded only once, so you cannot nest abbreviations.

To continue our illustration of the abbrev command feature on
Multics, let's look at another type of abbreviation, one which is
expanded only when it appears at the beginning of a line. Such a
specific entry would be useful for the abbreviation of an entire
command line or a part of the line that includes the command name.
You might do this with the command line used above to change your
working directory. In order to indicate that this abbreviation
is to be expanded only when it appears at the beginning of a command
line, type:

.ab C cwd >udd>Training>Jones

Thus, to change to this particular directory, you would type
only:

C

You'll no doubt find need for a number of abbreviations, and to
keep track of what they are, you'll occasionally want to read your
profile segment. To do this while the abbrev command is in effect,
you simply type:

. 1

You will then have a list like the following printed at your
terminal:

J >udd>Training>Jones
S Smith
N new.plans
A add.plans
o old.plans
arc art customers

b C cwd-)udd)Training)jones

5-3 CH25-00

The first six abbreviations shown here will be expanded if they
appear anywhere in the command line. The lower case "b" to the left
of the last abbreviation indicates that it will be expanded only when
it appears at the beginning of a command line.

Any abbreviation you create must be no more than eight characters
long, and when you type it into a command line it must be bounded by
break characters. And of course this latter condi tion makes it
impossible for the abbreviation itself to contain any break
characters. The characters that the abbrev processor treats as
breaks are:

formfeed
vertical tab
horizontal tab
dollar sign ($)
apostrophe (')
grave accent (')
period (.)
less than «)
greater than (»
braces ({})
parentheses «»
brackets ([])
newline
space
quotation mark (")
semicolon (;)
vertical bar (:)

You will notice that the last seven characters in this list are
those that were called reserved characters in Section 2. It is
important to remember that while these characters are being used for
the special purposes described earlier, they will also serve as break
characters and thus possibly set off any abbreviations you are using.
To be on the safe side, you shou ld only use break and reserved
characters when you have a specific need for them. That should
prevent the expansion of characters by the abbrev processor when you
do not mean them to be interpreted as abbreviations.

In cases where you want to use characters that are defined
as abbreviations for some other purpose, you can prevent the abbrev
processor from expanding them by enclosing them in quotation marks.
For instance, if you want to change working directories using a
pathname that contains the entryname arc, you couldn't type:

cwd >udd>Training>arc

5-4 CH25-00

Because the string arc is defined as an abbreviation in your
profile segment, this pathname would be expanded to:

>udd>Training>art_customers

The command would probably not be able to find a directory
by that expanded name and thus would return on error message: ~

change wdirz Some directory in path specified
does not exist. >udd>Training>art_customers

But this expansion could be suppressed by quotation marks:

cwd >udd>Training>"arc"

It could also be suppressed by the request .<space>:

. cwd >udd>Training>arc

By beginning the command line with a period and a space, you
suppress expansion of the entire line, that is, no abbreviations
contained in the line will be expanded.

An effective way of avoiding unanticipated expansions is to
use capital letters in abbreviations. Since Multics command
language uses lower case letters, it is very unlikely that any
string you use from command language will ever be confused with
an abbreviation if your abbreviations use upper case letters.
For instance, the entryname "arc" could not be confused with the
abbreviation for "art customers" if the latter used a capital
A--!! Arc. H

Your existing abbreviations are also checked when you are
adding abbreviations. If an abbreviation you are creating
already exists, you will be asked whether or not you actually do
wish to redefine it. You simply respond "yes" or "no".

THE do COMMAND

The do command enables you to substitute arguments in a
command line before executing the line. This is particularly
useful for command lines that repeat ~ certain argume~t ~ ~umber
of times, such as those containing multiple commands.

5-5 CH25-00

Let's return to the segments containing plans that we used
in previous illustrations. Suppose you are about to compose a
new set of plans and want to discard your old plans. You decide
to print a copy of the segment old.plans before deleting it, and
you want to rename your most recent plans, currently in the
segment named new.plans, to old.plans. To do this you could
type:

print old.plans; delete old.plans; rename new. plans old. plans

But with the do command you could avoid retyping the segment
names by referring to them with special symbols included in the
command line:

do "print &2; delete &2; rename &1 &2" new. plans old.plans

Numbers preceded by an ampersand (&) refer to arguments
listed after the quoted portion of the do command line. In the
example, "new.plans" is substituted for the &1 string at each
point where &1 appears because "new. plans" is in the first
position after the quoted portion of the command line. Likewise,
"old.plans" substitutes for &2 because it is in the second
position after the quoted string, separated from the first by a
blank space. So, the above command line would expand to the
following when the do command is executed:

print old.plans; delete old.plans; rename new.plans old. plans

This, of course, is the command we originally wanted to type.

It is important to note here that if an argument is not
supplied, nothing will be inserted in the places where the extra
number and ampersand appears. The last argument would not be
used to substitute for the extra places. For instance, if the
command line shown above had an &3, it would be ignored:

do "print &2; delete &3; rename &1 &2" new.plans old.plans

would be expanded to:

print old.plans; delete; rename new.plans old.plans

After the print command executed, the delete command would return
an error message because it has not been supplied with a
pathname:

Usage: delete paths -control_args
r 1 3: 08 O. 1 86 53

If, on the other hand, the command could
the empty argument, it would not return
would go ahead and execute.

5-6

execute regardless of
an error message; it

CH25-00

The do command is particularly useful in conjunction with
the abbrev command. Earlier it was noted that abbreviations
cannot be nested because the abbrev processor scans a command
line only once. But the do command makes, in effect, two command
lines out of one, so the abbrev processor does scan the command
twice in this case, though of course it will not expand any
abbreviations within the quoted command string during the first
scan. You might, for example, use iipii as an abbreviation for
"plans" in the command line shown above and thus type:

do "print &2; delete &2; rename &1 &2" new.P old.P

The "P" would first be expanded:

do "print &2; delete &2; rename &1 &2" new.plans old.plans

and then substituted, producing the expansion shown earlier:

print old.plans; delete old. plans; rename new.plans old.plans

Often-used do command lines can even be added to your
profile segment, a practice that will enable you to make very
long command strings very easy to type. Take as an example one
of the lines typed above and create an abbreviation for it, using
the additional abbreviation "P" just suggested:

.ab PLAN do "print &2; delete &2; rename &1 &2"

This will then reduce typing of the above string with new.plans
and old.plans as the do command arguments to:

PLAN new.P old.P

This expands first to:

do "print &2; delete &2; rename &1 &2" new. plans old.plans

and then the do command is executed, producing:

print old.plans; delete old.plans; rename new. plans old. plans

Because the do command uses quotation marks, it is necessary
that we now understand further the convention of quoted strings
in the Multic8 command language. We noted in Section 2 that
quotation marks are used for passing characters exactly as they
are typed" on the terminal, that is, suppressing the
interpretation normally applied to them. As we have just seen
above, they can be used in this manner to suppress the expansion
of an abbreviation. But when one set of quotation marks is
included within another set of quotation marks, as is quite
likely with the do command, the inner quotes must be doubled.

5-7 CH25-00

For instance, if you apply the do command to the sort list
command line used as an example in Section 2:

sort list customers -sort "lastname firstname"

it becomes:

do "sort list &1 -sort ""lastname firstname""" customers

The inner quotation marks must be doubled because characters
are interpreted individually from left to right. Thus the single
quotation mark followed by another type of character (e.g.,
"sort list &1 -sort "lastname ...) would be interpreted as the
end of the quoted string that began with the first quotation
mark. In that case, the. quoted portion of the do command line
would appear to be "sort list &1 -sort" and everything following
it would be interpreted by the command processor as arguments for
substitution. That, of course, is not the intention at all.

But as it is in the above command line the doubled
quotation flarks are interpreted as single marks (") because they
are enclosed within the outer quotation marks of the do command
line. So, after the do command substitutes the argument, the
command line is what we had in the original example:

sort list customers -sort "lastname firstname"

because the double quotation marks have been reduced to single
marks by the do command.

5-8 CH25-00

SECTION 6

exec com

The exec com command offers yet another means of abbreviating
the typing involved in command invocation. With exec com you can
place frequently used command sequences in segments that are then
processed by the invocation of the exec com command. Plu sit offers
the feature of control statements, which permit more variety and
control in the execution of command sequences. This procedure
enables you to invoke a large number of commands wi th only one command
and ar gume nts.

This feature is made even more flexible by the inclusion of
arguments to the command that can be substituted for special strings
in the exec com segment. By this means, and of course by including
active functions as well, you can have the entire sequence of commands
act on different input each time it is executed. And to deal with
variations in the execution process that different input might
necessitate, you have the advantage of control statements.

CREATING AN exec com SEGMENT

An exec com segment is created with a text editor and can make
use of any of the Multics command conventions. The entryname you
assign the segment must have the suffix ec (e.g. print.ec).

To illustrate the creation and functioning of an exec com
segment, we will create a short, simple segment comprised only of
commands, that is, without any control statements. To change your
working directory, print it, and list its segments and your access
to them, you would type in the following lines wi th a text edi tor such
as qedx (described in Part I):

6-1 CH25-00

qx
a
change wdir &1
print wdir
list -
\f
w change.ec
q

Argument Substitution

The ampersand character (&) and number used in the change wdir
command I ine refers to an opt ional argument that is subs ti tuted when
the exec com command is invoked, just as is done wi th the do command.
The ampersand character is also used in exec com to signify the start
of a control statement; that will be discussed below. The particular
values that are to be substituted are placed on the exec com command
line, as in the following:

exec com change.ec)udd)Training)Jones

When you are working wi th an exec com segment that calls for more
than one argument to be substituted~ you arrange the arguments in
sequence, separated by blank spaces, after the pathname argument on
the command line. Let's suppose you have a segment named action.ec
which requires three arguments. The command line used to execute this
segment would look like the following:

exec com action.ec flower tree shrub

The three arguments--flower, tree, and shrub--would be substituted
for ampersands and numbers in the following order:

&1 4 flower
&2 tree
&3·- shrub

If the third argument were not supplied on the command line:

exec com action.ec flower tree

6-2 CH25-00

The space occupied by &3 would be left blank; the second argument
"tree" would not be substituted in that space. If possible, the
commands, active functions, and control statements will process
without the missing arguments, but if they cannot, an error message
will be returned. Often, but not always, the error message will tell
you which part of the exec com segment is not functioning.

There are also some special substitutions that can be made in
exec_com segments. First of all, you can, if you wish, place the
number of optional arguments supplied with a particular execution
into the exec com lines. In the action.ec segment used above, any
position containing the figure &n would receive the number 3 before
the segment was executed.

In another substitution you can place the entryname portion of
the exec com's pathname, without the ec suffix, into the exec com
segment.- In the action. ec segment, any position containing the
figure "&ec name" would receive the entryname action before the
segment was-executed.

Lastly, you can place the directory name portion of the
exec com's pathname in the exec com segment by using &ec dire

Control Statements

Control statements enable you to specify conditions for
command execution and transfer execution to different parts of the
exec_com segment. Currently there are twelve control statements:

&label and &goto

&attach, &detach, and &input_line

&co~mand_line, &ready, and &print

&quit

&if, &then, &else

As the list indicates, ampersands signify the start of a control
statement. Normally, control statements must start at the beginning
of a line without any leading blanks. However, a &then can be on the
same line as an &if, and other control statements can follow either
&then or &else on the same line. For instance:

& if ...
&then &goto ...

6-3 CH25-00

or

&i f. .. &then &goto ...

Some control statements set condi tions for the ensuing input or
execution of commands while others alter the normal sequence of
command execution. An instance of the former is the &print statement.
The execution of this statement causes the input which follows it
to be printed at your terminal.

To illustrate this type of control let's look at the execution
of another exec com segment, called query.ec:

change wdir [response "Working directory desired?H]
&print- Your working directory is:
print wdir
&quit-

When you invoke the exec_com command on this segment:

exec_com query.ec

you will get the following output:

change_wdir [response "Working directory desired?"]

Working directory desired?
Your working directory is:
print wdir
)udd)Pubs)Smith)work

work

You will notice that, in addi tion to the things this segment is
designed to print, all of " the segment's command lines are reprinted
in the output. This can be prevented by another statement that
establishes the condi tions for the execution of subsequent commands,
the &command line off control statement. As a matter of fact, this
control is almost always used in exec com segments because the command
lines seldom need to be reprinted. If we were to place &command line
off at the beginning of query.ec, invocation would produce: -

6-4 CH25-00

Working directory desired?
Your working directory is:
)udd)Pubs)Smith)work

work

The &qui t control statement is another of those that set
conditions in that it marks the end of the exec com segment. It is
good practice to include the &quit statement because later you may
want to place several exec corns together in one exec com segment. In
those cases it will be necessary to mark clearly where one exec com
ends and another begins.

Then there are those control statements that alter the normal
sequence of execution, the most obvious of which is the &if statement.
This is used primarily with the &then and &else statements, and by
using other control statements with these, you can further enhance
the versatility you have to deal with varying situations. For
instance, by including a &goto statement with a &then statement, you
can skip over commands and go to a specific location when condi tions
specified by &if exist.

To unders tand thi s type of con trol stateme nt, let's look at
an illustration which uses it. The following exec com segment is
more tntricate than our earlier examples because it combines command
lines, a variety of control statements, and active functions, and it
requires argument substitution.

&command line off
&if [compare &1 &2J
&then print &1
&else &goto process
&quit
&label process
&if [compare &2 &3J
&then print (&1 &2)
&else print (&1 &2 &3)
&quit

6-5 CH25-00

After turning off printing of its command lines, this exec_com
tests two segments for likeness with the compare command used as an
active function. The two segments to be compared are supplied as
arguments in the exec_com command line. The compare active function
returns the word "true" if the contents of both segments are the same
and the word "false" if the contents are different. The control
statement &if operates on the word that is returned. When the word
"true" is returned, the &if statement shifts control to the &then
control statement. When the word "false" is returned, the &if
statement shifts control to the &else control statement. (The &if
control statement is similar to the if command in that a then statement
is required but an else statement is not.)

The clause following &then, which must be on the same line, can
include a command line, an optional argument, and the null
statement. It can also include other control statements, except
&label, &i f, &then, and &else. These condi tions are the same for the
clause following &else.

Because the only action desired when the compare active
function returns true is that one of the segments be printed, the
clause following &then is simply the print command and a pathname
argument. The &else condi tion, on the other hand, requires a further
switching of control because it involves more than one command or
control statement. Thus you use a &goto statement with a name, in
this case "process," which automatically switches the point of
execution to the &label statement wi th the matching name. Execution
then resumes at the line immediately following &label.

Notice here that the line following &else is &quit. This
statement causes the current invocation of exec com, that is, all the
subsequent command lines, to cease, which is exactly what you want
when the condi tion is true and the &then statement has been executed.
If &quit were not included, execution would go to the second &if
statement even when the original condition of the compare active
function proved true.

The second &if control statement in this sample exec com is
designed to compare the segment supplied as the second optional
ar gume n t wi th a third segrne n t. I f the compare act i ve funct ion returns
"true" here, the &then clause, using the print command with iteration,
has the first two segments printed at your terminal. When the
comparison of the second and third segments returns "false," control
shifts instead to the &else control statement, which has all three
segments printed.

6-6 CH25-00

The start up.ec is a special exec com segment that contains
commands to be executed each time you log-in, before anything is read
from your terminal. In fact, you do not even need to invoke the
exec com command for this segment; it is automatically invoked as part
of the login procedure. The only things necessary for this
automatic invocation are that the segment be named "start up. ec" and
that it reside in your home directory. -

This feature of the exec com is useful because users usually
have certain operations that they want performed almost every time
they log in. With a start up.ec they are saved the work of typing
the required commands each-time they enter the system. And if ever
they wish to log in wi thout executing these commands, they simply add
the control argument -no_start up (-ns) to login.

There are several commands that almost all users include in their
start_ups. These include:

abbrev
so that you can use your personal abbreviations during each
terminal session

print motd
so that the system prints the message of the day when you
haven't seen it before

print_mail
so the system automatically prints your mail

accept_messages
so you receive messages from other users online

Then, of course, you probably would want to include the
&command line off control statement at the beginning of your start up
so that the segment's commands aren't printed at your terminal each
time.

There are also quite a few other commands that it is useful to
in v 0 k e \.] hen you s tar t up, and we wi 11 dis c u s S so m e 0 f the m 0 s t
important ones. To take advantage of your terminal's capabilities
and make typing easier, you may want to include several set tty
commands in your start up on a conditional basis. This command
provides many options and is invoked through the usage:

set _tty -mode s OPTION 1 ,OP TION2 ,OP TION3 ... ,OP TION n

6-7 CH25-00

Note that with the control argument -modes there is the unusual use
of commas between its character strings, but there are no spaces.

Ordinarily, several set tty commands are used conditionally in
the start up.ec so that you have the proper one actually invoked for
the terminal you are using at a particular log in. Thus you would
have a set of &if &then control statements for each type of terminal
you might log in from. An example of the form is:

&if [equal [user term type] TN300]
&then set_tty -modes T1118,crecho,lfecho

The user term type active function would return your particular
terminal type and if it proved, by the active function equal, to be
the TermiNet 300, then the important modes would be set
appropriately.

In the -modes control argument above, the 11118 sets the line
1 eng t hat the TN 3 00 to 11 8 col u mn s 0 r spa c e s . Wit h ou t t his
specification your terminal would be set at 79 columns, the default
setting. You could also use a number other than 118, depending on
the limi tations of a particular terminal. The crecho (carriage
return echo) designation creates a situation in which a carriage
return is provided each time a linefeed is typed. The Ifecho
(linefeed echo) designation provides for one linefeed each time you
hit the carriage return key. Thus you can get a newline by typing
either a carriage return or a linefeed. You must note, however,
that the TermiNet 300 has an automatic linefeed switch which, when
turned on, provides a linefeed automatically each time a carriage
return is typed. So if you have that switch on and have the lfecho
mode set, you will get a double linefeed.

In order to gain an in-depth understanding of how start up.ecs
work and what they are used for, let's look at a somewhat complicated
but quite realistic example of one. For the sake of explaining this
example, the lines are numbered, though of course they couldn't be
in the actual exec com.

6-8 CH25-00

1 •
2.
3·

4.
5 •
6.
7.
8.
9.

10.
1 1 •
12.
13.
14.
1 5 •
16.
17.
18.
19.
20.
21 .

&command line off
&if [equal &2 interactiveJ &then &goto interactive
&else send mail [user nameJ[user projectJ Absentee

run started at [date_time]
&goto all
&label interactive
&if [equal &1 newproc] &then &goto new_proc
&else print motd -
check info 8egs
&if [have mailJ &then string "You have mail."
&label new proc
set tty -modes polite
accevt messages -print
&if Le~ual [user term typej TN300]
&then set tty -modes lI118,crecho, Alfecho
&if [equal [user term typej ASCIIj
&then set tty -modes crecho,lfecho
&if [equal [user term typeJ VIP7801]
&then set tty -modes crecho,lfecho
&label all
abbrev
&quit

This start up.ec handles three conditions: logging in as an
interactive use~ \"'hich is what you ordinarily do, running an absentee
job (discussed in Section 7) and creating a new process once you're
already logged in.

Line 2 checks to see if you are logging in as an interactive user,
and if you are, sends control to line 5. The &2 argument is
supplied automatically by the Multics system. When the start_up.ec
is invoked, the system places ei ther the word '!interactive" or the
word "absentee Tl in the second optional argument position so one of
those words is supplied in the &2 location; and here it is compared
by the equal active function to the character string "interactive."
If the active function returns false, because the invocation is for
an absentee process, then execution begins at line 3, which sends a
message to your mailbox telling you what date and time your absentee
job began running.

Line 4 then takes control and sends execution to the &label
statement at line 19. The word "all" is an appropriate &.label name
here because the lines following 19 are always executed when the
start up.ec is invoked, whether it be for interactive, absentee, or
new process use. Those lines invoke the abbrev command and mark the
end of the exec com segment.

6-9 CH25-00

If the check for interactive usage in line 2 had proved
true, then you would be going through a different execution
sequence before getting to lines 19 through 21. In such a case,
control would, of course, skip over lines 3 and 4, go to line 5
and start executing at line 6.

Line 6 checks to see if you are creating a new process at
this point in your interactive usage. A new process is created
by the new proc command or by an error that cancels your process.
The new proc command cancels the current process and sets up a
new one, using the control arguments given initially with the
login command and the optional argument to the new proc command
itself. It's as though you logged out and immedTately logged
back in. The start up.ec is again invoked automatically when a
new process is started. The optional argument the system
automatically gives in the first position with the invocation of
the start up.ec is the character string login or new proc,
depending on whether the invocation is coming from the initial
log in or from the new proc com~and. So in line 6, &1 is
substituted with one of- those strings. If that string is
new proc, then the equal active function returns true and
execution is shifted to line 10, &label new_proc.

What the ~goto control statement in line 6 nasses over are
executions that would have been accomplished at the initial
interactive log in and would not need repeating. Line 7 provides
for a special handling of the message of the day. If you have no
start up, the message is printed each time you log in; but when
you once place a start up.ec in your home directory, the system
assumes that you are taking action on your own to examine the
message and thus stops printing it automatically. When
incorporated in your start up, the print motd command keeps a
copy of the last ~essage- of the day In 8 segnent (called
Person id.motd) in your home directory. Each time the command is
invoked, usually during execution of your start up, it compares
the current message with the saved one and prints-the current one
if it is changed from the saved copy. This way you don't have to
see the message again and again when once is enough.

The check info segs command in line. 8 is handy to have in
the start up because it prints a list of new or modified segments
in the info segment library each time you log in. Much like the
print motd command, it controls the listing by saving the current
time Tn the user's profile so that when it is invoked again, it
lists only info segments created or modified since the last
invocation.

6-10 CH25-00

Line 9 checks your mail for you each time you log in
interactively. By making the procedure conditional, as is done
here, you can avoid the full printing of all your mail that you
would get if you simply used the print mail command & This way,
nothing is printed if you have no rnail,-and only "You have mail."
is printed if you do. When this latter is the case, you can then
type the read mail commana,
control over printing the
finished executing.

which allows you
messages, after

a great deal of
the start_up has

Provided you are not running an absentee process, your
start up executions will eventually get to line 10, whether from
the &goto in line 6 or by executing through line 9. In either
case, you will then pass on to lines 11 through 18 and then, of
course, go on from 19 through 21, as in all start up invocations.
What happens here is first, in line 11, an unconditional setting
of terminal modes to polite. Polite holds the printing of any
output sent to your terminal (eag~, messages from other users)
while you are typing input until the carriage returns to the left
margin (i.e., when you type a newline).

The accept messages command in line 12 allows your process
to accept messages sent by the send_message command and notices
of the form "You have mail." sent by the send mail command. The
-print control argument prints all messages sent to you by the
send message command since the last time you were logged in and
accepting messages. Messages and mail notices sent while you are
logged in will then be printed out at your terminal, in this case
when you next return the carriage to the left margin because you
have the polite mode on. This is necessary because
mail, performed by line 9 in this start up, does
messages sent by the send_message command~

check -F',...,.,...
...LV.L

not check for

If, while you are logged in, you defer messages with the
defer messages command, all mail and messages sent to you are
saved- in your mailbox and can be read with the read mail or
print_messages commands.

The only lines in this start up that we haven't discussed
thus far are 13 through 18. These b lines contain three tests of
terminal types, the procedure explained above using TN300 as an
example. The three included in this start up are three that a
user is very likely to encounter--TN300, ASCII, and VIP7801. But
this start up.ec would not prevent its user from logging in on
another terminal. That terminal's default modes would simply be
in force because no special modes are set by the start up. Of
course, the user could easily set modes for that terminal by
using the set_tty command while logged in.

6-11 CH25-00

The only convention used in these six lines that was not
explained earlier is the Alfecho mode. The circumflex character
(A) acts as a negation, turning the particular mode off. This
start up uses Alfecho because the TermiNet 300 has the automatic
linefeed switch.

Because it provides a way of storing oft-used command
sequences, an abbreviated way of invoking them, and an internal
means for controlling their execution, the exec com command is
one of the most powerful and useful features of the Multics
system. And there are yet other aspects of the feature which can
enhance your efficiency on the system. There are facilities for
adding search paths to the exec com search list, for answering
questions generated by exec com sequences, for combining a number
of exec corns into one segment, and for handling conditions raised
during execution of an exec com. In fact, there are ways that
you can call one exec com from another, or reenter the current
one at an earlier point. These additional features are explained
in full in the MPM Commands.

6-12 CH25-00

SECTION 7

ADDITIONAL CONCEPTS

The purpose of this section is to explain several concepts that
are important in computer technology and have somewhat specialized
applications in Multics. Some of these concepts you've probably
encountered already and others you no doubt soon will. The
presentation here will stay mainly on the conceptual level, that is,
wi th no exp lanation of the procedure for impleme nting the processes.
Any applications demonstrated will be used simply for the purpose of
illustrating how a concept is applied to a procedure.

ONLINE

Being online means being logged in, entering information and
using information already stored in the system. In Multics, online
is an interactive process in that the system responds immediately to
the user's input. This way you do not have to prepare an entire job
beforehand to be run all at once; instead, the system will
interact with you.

A necessary additional aspect of interactive usage is
time-sharing. Many users can interact with the system at the same
time, even to the point of sharing the same segments simultaneously.
For this reason, the system tells you each time you log in how many
people are online and how many the system can accommodate at that time.
And because the computer is shared this way, you may sometimes be
preempted while working on the system.

7-1 CH25-00

ABSENTEE

Absentee, on the other hand, is a process that can be run when
the user is not logged in and interacting with the system. Instead,
the user prepares an entire job beforehand and has it run at a
specified time. It is analogous to batch processing on other
systems. And an absentee job is not a time-sharing process in the
sense that online processes are. The absentee job is placed in a
waiting line (a queue) and run as background to the normal interactive
work on the system.

The principal difference between an absentee process and an
interactive one is that in an absentee process the I/O switches are
attached to special absentee segments instead of to aterminal. One
of these segments is the control segment containing commands and other
input data which you create wi th a text edi tor. The other is an output
segment which stores the results of the absentee job. The system adds
a third component to the User id to distinguish absentee from
interactive processes: absentee processes are labelled
Person id.Project id.m while interactive processes use an "a" as the
third -component. These third components are called "instance
tags."

The details of executing absentee processes are given with the
enter_abs_request command in the MPM Commands.

Punched cards, when they are run on Multics, are processed in
a batch similar to the manner in which absentee jobs are processed.
The standard way of handling card decks in Multics is to place the
deck in the card reader and read it into a system pool. You then log
in on a terminal and transfer the card file from the system pool to
your working directory using the copy cards command. The segment
that this command creates is stored in the system can be used in
interactive and absentee processes, just as a segment created on a
terminal would be used.

STORAGE SYSTEM

The segment is the basic unit of storage in the Multics
system. It can vary in size, that is, in the amount of information
it contains, and it may contain a collection of program instructions,
text or other data, or it may be empty (a null segment). There is
a limi t to the amount of information that can be stored in a segment,
but if any single collection of information is too long for one
segment, it can be stored in a group of segments called a multisegment
file.

7-2 CH25-00

Multics keeps track of segments by cataloging them in
directories. The base directory, the one from which all other
directories and all segments emanate, is called the root
directory. Figure 7-1 uses a representation of an inverted tree
to demonstrate the relation of user Tom Smi th and his project,
Pubs, to the root. (Directories are represented by rectangles and
segments by lozenges.) Notice the two directories immediately under
the root (sss and udd). The sss (system Ii brary standard directory)
is one of several library directories-that catalog all the system
commands and subroutines. The udd (user directory directory)
di rectory is a catalog of project director ies. I t contains one
directory entry for each project on the system. Likewise, each
project directory normally contains one directory for each user on
that project.

The Multics system's virtual memory makes all segments in the
storage system directly addressable. That means that in effect there
is hardly any difference between main memory and secondary storage
on Multics: information can be retrieved from storage virtually as
fast as from memory.

Since the physical movement of information between secondary
storage and main memory is totally automatic, its structure is of no
concern to the user when working on a process. A user does not have
to be concerned wi th where and on what devi ces the segments
reside.

7-3 CH25-00

root

udd sss

Pubs Training

TSmith

myd

Figure 7-1. Hierarchical Storage System

7-4 CH25-00

SEARCH RULES

Whenever the user issues a command or references a program or
other segment, the system must search throu gh director ies to find the
specified command or program. This search is regulated by a list of
search rules that specify a set of directories to be searched in a
particular order. But the search rules that the system automatically
follows may be changed or supplemented by the user. The
set search rules command enables the us-er to change the default
search rules, and the add search rules and delete search rules
commands enable the user to -add or -delete search directories. To
check your current search rules, you can invoke the
print_search rules command.

Adding another directory to be searched after the working
directory is a convenient way for an entire project to share a group
of special programs peculiar to the work of that project. After a
user on the project adds this special directory to the search rules,
any programs in that directory can be executed as easily as the system
commands. This addition to the search rules means that each user on
the project saves the time and cost of either copying each one of the
programs or linking to each one.

Also, by manipulating the search rules, the user can determine
whether a system command or a user-written command with the same name
is to be used.

LINKING

Multics allows a user to create a link to a segment anywhere in
the storage system, as long as access to the directory of the linked
segment is available. By creating a link, you can reference another
segment as though it were in the directory containing the link. In
short, you can use this particular segment without actually having
to make a copy of it.

Linking with the link command is not to be confused with dynamic
linking. The latter is the Multics term for the mechanism in the
system that provides a highly efficient means of referencing stored
segments. It is enough, for our purposes here, to say that, with
dynamic linking a segment must be searched for only once during a
process. When a segment is found by using the search rules, its place
in the storage system is remembered so that another search does not
have to be made the next time the segment is needed.

7-5 CH25-00

BO UN D SEG ME NTS

A bound segment is a single executable segment made up of two
or more separately compiled segments. Normally, you would bind
program segments that you intend to execute together repeatedly.
(See the bind command in MPM Commands.) Bound segments are easier
for the user to process, and the system can run them much more
efficiently than under the regular dynamic linking procedure. In
fact, by binding segments you can not only save execution time, you
can also save money through decreased computing time and storage
space.

ARCHIV E SEGMENTS

Each segment in Multics is assigned space in increments of pages.
Since this can result in quite a bit of blank space on the last page
of segments, Multics provides the archive command to pack the contents
of individual segments together into one archive segment. You can
maintain control over these individual segments by invoking the
archive command with different arguments, (see the archive command
in MPM Commands). The advantage of archive segments is that they
reduce the user's storage load and therefore cost.

EDITOR MACRO

In general computer terminology, macro refers to a group of
executable statements. To that extent a macro is like an exec com
segment on Multics. But in Multics the term macro is applied only
to a sequence of text editor requests. This sequence of requests,
called an edi tor macro, acts like a program or exec com. Placing it
in a separate buffer preserve sit for repeated application in the text
editing environment.

7-6 CH25-00

APPENDIX A

GLOSSARY

The following list of terms is meant to add to the ~lossary
provided in Part I of this New Users' Introduction (CH24). Most
of the terms appear for the first time here, though several are
repeated with expanded definitions.

absolute pathname
see pathname, absolute

character string
One group of
signifies one

characters unbroken
word to Multics. The

include alphabetic, numeric and some
(periods, hyphens, and underscores).

command level

by blanks; it
characters may

other characters

The state the computer is in when it is ready to accept
command lines. You are at command level when you log
in, when a command completes execution or encounters an
error, or when you stop command execution by issuing a
quit signal. Command levels above level 1 are
indicated by the ready message.

command processor
The program that interprets command lines and calls the
appropriate programs, after processing parentheses and
active functions.

component (entryname)
A part of an entryname. Entryname components are
separated by a period (e.g., data base is the second
component of the entryna~e random.data_base.plans)_

A-1 CH25-00

crash (FNP)
an unplanned termination of service from the front-end
network processor causing a disconnection of the
process. The process can be saved and reconnected when
the -save on disconnect control argument has been used
with the login command.

crash (system) a
An unplanned termination of system availability caused
by problems in hardware and/or software, often
signalled by the message: MULTICS NOT IN OPERATION.
Processes cannot be reconnected after a system crash.

data base manager
A software system that integrates various computerized
information units of an organization into a total
system. With such a system, all users of data within
an organization share common records of information and
the information available at every level is drawn from
the same source, providing mutually consistent levels
of accuracy to all users.

default
The value or action that the system assumes when none
has been specified by the user.

entryname
A name given to an item (segment or directory)
contained in a directory. It may contain one or more
components, separated by periods. All names given to
entries within one directory are unique but need not be
different from names used in other directories.

I/O switch
A path in the I/O system through which information is
sent. For example, the normal output switch
(user output) is usually attached to the terminal, but
it may be attached to a segment in storage by using the
file output command. This would save the output in a
segment rather than print it at the terminal.

multiplexer
A communications control device which permits sharing
of facilities by connecting the central processing unit
to a large number of communications channels that may
all transfer data to or from the processor at one time.

page (also known as record)
A uni t of storage in f1ul tics. A page contains up to
4096 characters.

pathname
A name of a segment or directory
location in the storage system. A
absolute or relative.

A-2

that specifies its
pathname is either

CH25-00

pathname, absolute
A segment name preceded by the series of directory
names that lead from the root to that segment: each
level in the pathname is preceded by a ">". For
example, the absolute pathname for a segment under a
user's home directory is designated this way:

All absolute pathnames begin with ">".

pathname, relative
The pathname that uniquely locates a segment relative
to the working directory, by listing the pathnames of
directories under which the segment resides. For
example, the relative pathname for a segment that
resides in a directory one level under the working
directory is designated this way:

All relati ve pa thnames begin ~IITHOUT ">".

process
The activities (programs, data entry, etc.) of an
individual user that begin when the user logs in,
including absentee log in, and continue until logout or
until another process is explicitly begun through use
of the new_proc command.

quota
The maximum number of pages that can
hierarchy of directories. Each user
predetermined amount of quota; however,
increased by a system administrator.

be used in a
is allotted a

quota can be

ring structure
The structure of access control on r·lultics which is
implemented by special hardware. Operation is
controlled in such a way that the computer's work is
done in a number of mutually exclusive subsets. These
subsets may be considered concentric rings of
privilege, representing different levels of access
rights. The innermost or hardcore ring is made up of
those segments essential to all users. This innermost
ring, designated as ring 0, represents the highest
level of privilege. The work of most users is done in
ring 4. Ring 7 is the ring of least privilege.

search rules
The rules that specify the order in which directories
are searched to find a command, subroutine, or data
item. This is to be distinguished from addressing a
segment by its pathname, which explicitly specifies the
directory containing the segment.

A-3 CH25-00

subsystem
A collection of programs that provide a special
environment for some particular purpose, such as
editing, calculation, or data management. It may
perform its own command processing, file handling, and
accounting.

suffix
The last component of an entryname, which often
specifies the purpose of a segment (e.g., action.ec
where ec specifies an exec com segment).

A-4 CH25-00

APPENDIX B

FUNCTIONAL BREAKDOWN OF SELECTED MULTICS COMMANDS

Even as a new user you will fast find need for many more
commands than have been discussed in Parts I and II of this New
Users' Introduction to Multics. For that reason, this appendix
provides you with a functional listing of Multics commands that
are likely to become useful to you.

The categories here are similar to those used in other
rJIultics documentation (MPI'vI Commands and J.'v1ultics Pocket Guide).
Ten of the seventeen categories normally used in the other
manuals are used here along with a category which lists Multics'
word processing commands. Some commands appear in more than one
category just as they do in the functional groupings in other
Multics manuals.

Each category includes a description of how the commands in
that group function. A complete description of the individual
commands, except those used in word processing, is contained in
the alphabetical listing of commands in MPr·1 Commands. The word
processing commands are described individually in the rJ[ultics
WORDPRO Reference Guide (Order No. AZ98).

SELECTED COMMANDS LISTED BY FUNCTION

Access to the System

Access commands connect the terminal to a process. The
helle ceillilland IS more correctly called a preaccess request
because it is used before a process has been set up; it repeats
the greeting message that is printed whenever a terminal is first
connected to the system.

dial
login

B-1

hello
logout

CH25-00

Storage System, Creating and Editing Segments

The commands in this category enable the user to create,
edit, and format segments.

create
emacs
program interrupt
runoff -

Storage System, Segment Manipulation

edm
indent
qedx
runoff abs

The commands in this category enable the user to compare and
sort segments and adjust their sizes. Principally, they enable
the user to manipulate a segment as a whole, copying it,
truncating it, and moving it around in various ways in the
storage system.

archive
copy
link
sort seg
unlink

Storage System, Directory Manipulation

compare
delete
move
truncate

The commands in this category enable the user to create,
manipulate, and delete directories.

copy dir
delete dir
list
rename
unlink

Storage System, Access Control

create dir
link
move dir
status

This category contains the commands that set, check, copy,
delete, and list access to segments and directories.

check iacl
copy Iacl dir
delete acI'
delete-iacl seg
list acl -
list-iacl dir
set acl
set=iacl_seg

B-2

copy iacl
copy-iacl seg
delete iacl dir
list accessIble
list-not accessible
list-iacI" seg
set iacl dir

CH25-00

Storage System, Address Space Control

Commands in this category enable the user to manipulate
search paths and search rules and the working directory. This
category also contains the new proc command, which creates a new
process with a new address space; this is equivalent to logging
out and logging back in.

add search paths
change default wdir
delete-search paths
get system search rules
list ref names -
print default wdir
print-search paths
print-wdir -
set search rules
where_search_paths

Command Level Environment

add search rules
change wdir
delete-search rules
initiate
new proc
print proc auth
print-search rules
set search paths
vlhere -

Basically, commands in this category are designed to set up
and control the environment in which other Multics commands are
given. They enable the user to set the procedures by which other
commands search for segments and directories, to manipulate the
working directory, and to group commands on a command line or in
a segment (even to abbreviate commands).

abbrev
add search rules
change default wdir
delete-search paths
do - -
general ready
if -
memo
on
print search paths
print-translator search rules
program interrupt -
ready off
release
set search rules
stop_run

B-3

add_search_paths
answer
change wdir
delete-search rules
exec com
get system search rules
line_length -
new proc
print default wdir
print-search rules
print-wdir -
ready-
ready on
set search_paths
start
where_search_paths

CH25-00

Communication Among Users

The commands in this category give users facilities to send,
receive, and store mail and short messages interactively with
other users registered on Multics.

accept messages
delete-message
print auth names
print-messages
send mail
send-message acknowledge
send=message=silent

Communication with the System

defer messages
immedTate messages
pr int mail
read mail
send-message
send-message express
who - -

With the commands in this category users can ask Multics
what helpful information about the system operations is available
on info segments and request help from particular info segments.
Users can also find out how many people are using the system and
who they are; in addition, users can request that the system's
message of the day be printed at their terminal.

check info segs
how many users
print_motd

Control of Absentee Computations

help
move_abs_request
who

The commands in this category enter, move, and cancel
requests to have work submitted by the user run by the system in
the user's absence.

cancel abs request
enter abs request
how many users
move abs-request
runoff abs

B-4

cobol abs
fortran abs
list ab'S requests
...... 11 ~"hs -
.1-'.1.1 a.u

who-

CH25-00

Wordprocessing

Commands in this category are used to create, edit, and
format text and process lists of information.

add symbols
change symbols
copy lIst
create list
delete-diet words
emacs
find diet words
list-diet-words
locate words
option-symbols
print wordlist
qedx -
revise words
sort lIst
trim-wordlist

E-5

add diet vlords
compose
count diet words
create wordlist
delete-symbols
expand-symbols
find symbols
list-symbols
merge list
print-symbols path
process list -
retain symbols
show symbols
trim-list
use symbols

C225-0Q

APPENDIX C

FUNCTIONAL BREAKDOWN OF SELECTED ACTIVE FUNCTIONS

Like the commands, Multics active functions can be
categorized by their operational use. The categories here are
similar to those used in other Multics documentation (MPM
Commands and Multics Pocket Guide). Ten of the thirteen
categories used in the other manuals are used here. And some
active functions appear in more than one category just as they do
in the functional groupings in other Multics manuals.

Each category includes a description
functions in that group do. A complete
individual active functions is contained
listing of active functions in MPM Commands.

REFERENCE TO ACTIVE FUNCTION BY GROUPS

Arithmetic

of what the active
description of the

in the alphabetical

This group of active functions perform some arithmetic
operation and returns the character string representation of the
result. This group includes:

ceil
floor
min
mod
quotient
trunc

C-1

divide

minus
plus
times

CH25-00

Character String

This
operations
includes:

operational
on one or

after
index
low
reverse
upper_case

Condition Handling

group
more

returns the results
character strings.

copy characters
length
lowercase
underline

of various
This group

The on active function is the only one in this group. It
executes a command line and returns true if any of a particular
set of conditions is signalled during the execution. If none of
the specific conditions are signalled, it returns false.

Date and Time

This group consists of active functions that return
information about the date and time in various forms. This group
includes:

Logical

date
day
hour
minute
month name
year

date time
day name
long date
montn
time

This group returns a character string value of either true
or false. Active functions in this group are intended to be used
with the &if control statement of the exec com command or with
the if command. This group includes:

and
exists
less
ngreater
not

C-2

equal
greater
nequal
nless
or

CH25-00

Miscellaneous

These active functions return miscellaneous information
about the user's process or storage system entries. This group
includes:

contents default

Pathname Manipulation

Active functions in this group construct a pathname based on
the specified path argument and return all or part of this name.
This group includes:

directory
equal name
strip
suffix

Question Asking

entry
path
strip_entry

This group returns a value based on the answer given by a
user in response to a specified question. This group includes:

query response

Storage System Names

These active functions return either pathnames or entrynames
of existing entries. This group includes:

default wdir
entries
home dir
segments

C-3

directory
files
links

CH25-00

User/Process Information

Active functions in this operational group return user
information obtained from system data bases~ This group includes:

have mail
last-message time
severity
user

C-4

last message
last-message sender
system

CH25-00

INDEX

A

abbrev command 5-1, 6-7, 6-9,
B-3

abbrev processor 5-4, 5-7

absentee 6-9, 6-11, 7-2, A-3,
B-4

accept messages command 6-7,
6=9, 6-11, B-4

active functions
applied

compare 6-5
contents 3-1, 3-3, 3-4,

3-5, 3-6, 3-7
date 6-5, 6-6
date time 3-1, 3-2, 6-9
equal 6-5, 6-6, 6-9, 6-10
greater 6-5, 6-6
have mail 6-9, 6-10
home-dir 4-8
last-message sender 3-2
plus- 3-3, 3=4
response 6-4
string 6-5, 6-6
times 3-3, 3-4
underline 3-3, 3-7
user 3-2, 6-9

definition 3-1

add name command 4-5, B-2

add search rules command 7-5

i-1

ampersand 5-6, 6-2, 6-3

archive command 7-6, B-2

archive segment 7-6

B

bind command 7-6

bound segment 7-6

break characters 5-4

c

card reader 1-2, 1-4, 1-5,
7-2

central processing unit 1-2,
1 - 3, 1 -4, 1 -5, 1 -6, A-2

change wdir command 2-6, 5-1,
5=4, 6-2, 6-4, B-3

character string 2-6, 2-7,
4-8, 4-9, 6-7, 6-9, 6-10,
A-1, C-2

check info segs command 6-9,
E-4 -

CH25-00

command level 3-7, 4-9, A-1,
B-3

command processor 2-1, 2-2,
2-5, 2-6, 2-7, 3-2, 3-3,
3-5, 3-6, 3-7, 5-2, 5-5,
A-1

commands
applied

abbrev 5-1, 5-2, 5-3, 5-7,
6-9

accept messages 6-9, 6-11
add name 4-5
change wdir 2-6, 5-1, 5-4
check info segs 6-9, 6-10
delete 2-8, 5-6
do 5-6, 5-7
exec com 6-2, 6-4, 6-5,

-6-6, 6-9
help 2-2, 2-5
list 2-2, 2-3, 2-4, 4-2,

4-3, 4-4
new proc 6-10
print 2-1, 2-6, 2-8, 5-6
print messages 2-5
print-motd 6-9, 6-10
print-wdir 2-2, 2-5, 6-4
program interrupt 4-9
release- 4-9
rename 2-8, 4-5, 4-6, 4-7,

5-6
send mail 6-9
send-message 3-2
set tty 6-8, 6-11
sor~ list 2-7, 5-8
start 4-9
who 2-5

definition 2-1
system 2-2
user-written 2-2

compiler 1-6

concatenation 4-8

control statement 6-1, 6-2,
6-3, 6-4, 6-5, 6-6, 6-7,
6-10, C-2

copy_cards command 7-2

i-2

CPU
see central processing unit

crash (FNP) A-2

crash (system) A-2

D

data base managers A-2

default 2-2, 6-11, 7-5, A-2

defer messages command 6-11,
13-4

delete command 2-8, 5-6, 5-7,
B-2

delete_messages command B-4

delete search rules command
7=5

do command 5-1, 5-5, 5-6, 5-7,
6-2, B-3

dynamic linking 7-5, 7-6

E

editor macro 7-6

enter abs request command 7-2,
13-4 -

equal name
see equals convention

equals convention 4-1, 4~5,

4-7
percent sign 4-7

exec com command 5-1, 6-1,
B-3

CH25-00

F

file_output command A-2

FNP
see front-end network

processor

FNP crash
see crash (FNP)

front-end network processor
1 -4, 1 -5, 1 -6, A-2

H

hardware 1-2,1-4,1-5,1-6,
A-2, A-3

help command 2-2, 2-5, B-4

I

I/O switch 7-2, A-2

if command 6-6, B-3

input/output multiplexer 1-4,
1-5

interactive 6-9, 7-1, 7-2,
B-4

10M
see input/output multiplexer

iteration 2-8, 3-4

K

keypunch 1-2, 1-5

T
.l.J

line printer 1-3, 1-5

link command 7-5, B-2

linking 7-5

list command 2-2, 2-4, 4-2,
4-3, 4-4; 6-2; B-2

login A-2

login command B-1

m.acro
see editor macro

main memory
see memory

memory 1-2, 1-3

multiplexer A-2

N

newline 2-1, 2-6, 3-2, 6-8

new proc command 6-10, A-3,
- B-2

online '7 -1
I-I

a

p

page 1-2, 7-6, A-2

peripherals 1-2

i-3 CH25-00

peripherals (cont)
card reader 1-2, 1-4, 1-5,

7-2
keypunch 1-2, 1-5
line printer 1-3, 1-5
storage devices 1-3
terminal 1-2, 1-4, 1-5, 6-7,

6-8, 6-11, A-2, B-1

print command 2-1, 2-6, 2-8,
4-8, 5-6, 5-7, 6-6

print mail command 6-7, 6-10,
B-4

print messages command 2-5,
0-11, B-4

print motd command 6-7, 6-9,
b-10, B-4

print search rules command
7-5 -

print wdir command 2-2, 2-5,
6-2, 6-4, B-3

process 7-2, A-2, A-3, B-1,
B-2, C-3

program interrupt command 4-9,
B-2, B-3

Q

question mark
see star convention

QUIT
see quit signal

quit signal 4-8, 4-9, A-1

quota A-3

quoted strings 2-6, 4-8, 5-7

R

ready message 1-2, 2-5, 2-6,
4-8, 4-9, 5-1

read mail command 6-11 , B-4

release command 4-9, B-3

rename command 2-8, 4-5, 4-6,
4-7, 5-6, 5-7, B-2

reserved characters 2-6, 3-6,
4-8, 5-4

ring structure A-3

root directory 7-3, A-3

s

search rules 7-5, A-3

secondary storage
see storage system

semicolon 2-5, 2-6, 3-3

send mail command 6-9, 6-11,
-B-4

send message command 3-2,
-6-11, B-4

set search rules command 7-5,
B-3

set tty command 6-7, 6-8, 6-9,
- 6-11

software 1-2, 1-3, 1-6, A-2

sort list command 2-7, 5-8,
-B-5

star convention 2-4, 4-1, 4-2,
4-4, 4-5

question mark 4-3

i-4 CH25-00

star name
see star convention

start command 4-9, B-3

start up.ec 5-2, 6-7, 6-8,
6-9, 6-1 0, 6-11

storage system 1-5, 1-6, 7-2,
7-4, 7-5, A-2, B-2, C-3

memory 1-2~ 1-3~ 7-3
secondary storage 1-2, 1-3,

7-3
virtual memory 1-3, 7-3

string active function
as command 3-3, 3-4, 3-6,

3-7, 6-9

subsystem A-4

system crash
see crash (system)

T

terminal 1-2, 1-4, 1-5, 5-7,
6-7,6-8,6-11, A-2, B-1

time-sharing 7-1

v

virtual memory
see storage system

w

who command 2-5, B-4

i-5 CH25-00

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITI E I I
I

NEW USERS' INTRODUCTION TO MULTICS -
PART II

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --
TITLE ____________ -_________________ _

COMPANY ------------
ADDRESS ____________________________________ _

ORDER No.1 CH2S-00
~--------------~

DATE 0 I NOVEMBER 1979
I

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

IIIII1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Together. we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200 Smith St., MS486, Waltham, MA02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TWS 90H Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F. Japan: 2-2 Jinbou-Cho Kanda, Chiyoda-Ku Tokyo

Australia: 124 Walker St., North Sydney, N.S. W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East. H.K.

30Sn, 5C183. Printed in U.S.A. CH25-00

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	replyA
	replyB
	xBack

