
H 0 E V ELL

CUCWASH

o

~IH~ ... o ~ ... , ~ ..

.
-''-I,l)10

HONEYWELL

HONEYWELL 800
Transistorized Data Processing System

,

L L

ALGEBRAIC

COMPILER MANUAL

PRICE $3.50

Honeywell
A~Da1a,~~

Section

Section

I

II

Section III

Section IV

ii

TABLE OF CONTENTS

Page Number

Foreword

Introduction to the Honeywell Algebraic Compiler •...........•..

General Properties of a Honeywell Algebraic Compiler

viii

1

Saure e PrograIrl ~.. 7

Constants, Variables, Arrays, and Arithmetic Statements .•••••• 11
Constants .. 11
Fixed- Point Constants ••••••••••••••••••••••••••••••••••••• 11
Floating- Point Constants • • . • • • • • • . • • . . . • . • • 11
Variables and Names of Variables 12
Fixed-Point Variables•.. . . .• . . . •. . •. • 12
Floating - Point Variable s .•...••.•........•.......•..•..•.. 13
Alphanumeric Variables•• ~ • • . . • • . • • • • . • 13
Boolean Variables .•..•..•...........•...••.....•••..•••.. 14
Subscripted Variables ••.••.•..•..••..•....•.....•••.•..••. 14
Expressions•.........•................•..•..••...•..• 16
Hierarchy of Operations•...•••..•.....•..••.•.. 18
Arithmetic Statements •.............•......•......•..•.•... 19
Integer Arithmetic
Boolean Statements
ARGUS Statements

22
22
25

Control Statements .•... • • • . . • • . • • • • . • • . . • • • . • 29
Unconditional GO TO Statement •..•....•.••..•••.•..•..•.•.• 29
Computed GO TO Statement•................•.. 29
IF Statement •..•......•...•••.....•..•••...•..•.....••.•• 30
Assigned GO TO Statement .••.........•.•.•••••••...•...•.. 31
ASSIGN Statement ..••.................••••.••.•.....•...•• 31
IF PARITY Statement
IF END OF FILE Statement••.•.•..
CONTINUE Statement .•..•........•........••.•.••.•......
DO Statement•.•....•....•••.••.......•.•.....•.••..
PAUSE Statement •..............•....••••••.•......•..••••
STOP Statement ..•••••.•.••••••••••••••.•..•.•••..•••.•••.
SENSE LIGHT Statement •.••.•••..••..•••..•....•...•.•••.
IF(SENSE LIGHT) Statement•....•.•••••.•...•.•...••.•
IF(SENSE SWITCH) Statement•.•••.••.•.....••......••
IF ACCUMULATOR OVERFLOW Statement ..•••••..•..•••.••
IF QUOTIENT OVERFLOW Statement .••.•...•.•..••••••..•.
IF DIVIDE CHECK Statement •......•.••......•.....•..••...
TIT LE Statement
END Statement
FINIS Statement

32
32
33
33
38
39
40
40
40
40
40
41
41
41
41

Section V

Section VI

TABLE OF CONTENTS (cont)

Page Number

Input and Output Statements•....••••••••••.••.•....••• 43
Definition of a List • . • . . . • . • . • • • • . • . . • • . . • • • . . . • . • . • • . .• 43
FORMA T Statement •••.•..••..•..•...•••..•...•••.....•. 46
Scale Factor . • • • • • . . • . • • • • . • • • . • • • • . • •• 50
Field Specification "E" (Floating Point) .•.••••••••..•.•.••. 50

Input Data Preparation ••••••.......•.....•.•.••.•••.•. 51
Output Data p'resentation ••••.••••.••••.•.•.•.•..•...•. 51

Field Specification "F" (External Fixed Point) ••......••.•.. 52
Input Data Preparation .••...•••••..••.•••••...•.••.... 52
Output Data Presentation •...•••••...••..••.•..•••••••• 53

Field Specification III" (Integer) .•••••..•••••••.•......•.•. 54
Input Data Preparation .••..•.••....••.•••....•••...••• 54
Output Data Presentation ..••••••••••••••.••••••••••••• 54

Field Specification "H" (Hollerith) •.•.••••• • • • • • . • • • • . • • • •• 55
Field Specification "0" (Octal) ••••••••.••••••.•••••••••••• 57

Input Data Preparation ••••••••••••••••••••••••••••.••• 57
Output Data Presentation ••.•.••••.••••••••••••••••.••• 58

Field Specification "A" (Alphabetic) ••••••.••••........•••• 58
Input Data Preparation ..••••••.•..•••.••....•.••••••••
Output Data Presentation .••••••••••.•••••.••••.•...•••

Field Specification "B" (Blank) ..•...••.•••.••.•••..•.•••••
Input Data Preparation ••••..•••••..••••••••••....•.•••
Output Data Presentation ••.••••...•••.••••.•.•••••••••

READ Statement ••••••••••.•••••••••••••••••••••••••••••
READ ONE Statement ••••••••••••••••••••••••••••••••••••
READ TWO Statement ••••••••••••••••••••••••••••••••••••
PRINT Statement ••••••••••••••••••••••••••••••••.•••••••
PRIN"T ONE Statement •••.•.•••••••••••••••••••••••••••••
PRIN"T TWO Statenlent •...•.•..•.••••.•..•••..•...•••.••.
PUN CH Stat ern ent
PUNCH ONE Statement
PUNCH TWO Statelllent•.............
READ INPUT TAPE Statement ••••••••••••••••••••••••••••
WRITE OUTPUT T APE Statement •••••••••••••••••••••••••
READ TAPE Statement
WRITE TAPE Statement ••••••••••••••••••••••••••••••••••
END FILE Statement
REWIND Statelnent
BACKSPACE Statement ••••••••••••••••••••••••••••••••••
BUFFER Statement
ERASE Statement

Functions .. .
General Considerations •••.•.•••••••.••••••••••••.•••••••
Open Functions ..•..

58
59
60
60
60
60
61
61
61
61
61
61
61
61
62
62
63
63
64
64
64
65
65

69
69
69

iii

Section VI
(cont)

Section VII

Section VIII

Section IX

iv

TABLE OF CONTENTS (cont)

Page Number

Library Functions .. 71
Defined Functions .. 74
FUNCTION Subprograms, •••••••••••••••••••••••.•••••••••• 77
FUNCTION StateIllent
SUBROUTINE Subprograms •••..•••..•••••......•••....••••
SUBROUTINE Statement •••••••••••••••••••••••••••••••••••
CALL Statement
RETURN StateIl1.ent
Summary of the Differences Between the Five Types

of Fllllctions
N arn.ing•............. ~ •................•.....
Definition•....•.................................
How Requested ••.•.••••..•.•.•.••••••••••••••.....•••.•.•
Open vs. Closed ••••.•.•••••..•.•••••••••••.••.••.•••••. ~
How Control is Returned to Calling Program •••..•..•..•••..
Number of Argum.ents •••.••.••.••.••..••••••••••..•...•••
Number of Outputs ••••••.•.•.•••••••..••••••••••••••••••.
Separate Compilation••••.•••.•••.•••••••.••••••.• " •••.
Dummy Variables in Definition .•••••••••••••.•••••.••••..•.

77
81
82
84
85

8.6
87
87
87
87
87
88
88
88
88

Specification Statements ••••.•••.••••••...••••••••••.•••••••• ' 89
General Considerations .•.•.••••••••••••••••••.••••..•••••
DIMENSION Statement .••.•••••••••••..•••••..••••••••••.•
EQUIVALENCE Statement
COMMON Statement •••.•.•.•.•...•..•.•.•.••......•......

89
89
90
93

Sample Algebraic Compiler Program .•••••.•••.••.• _ • • . . • . • •. 97
General Description •••••••.•.••••••••••••••••••••.••••••• 97
SaIllple Input Data ..•........•••.......................... 100

Summary of Honeywell Algebraic Compiler System ••••••••••••• 101
General Properties of a Sourc e Program ••••••••••••••••••• 101

CONSTANTS, VARIABLES, ARRAYS,
AND ARITHMETIC STATEMENTS

Fixed-Point Constants ••.•••••.••••.••••••••••••.••••••••• 102
Floating-Point Constants ••••••••••••••••••••••.••••••••••• 102
Variables and the Names of Variables •••••••••••.••••••••••• 102
Fixed- Point Variables .•••••.••••••••••••••••••..••••••••• 103
Floating-Point Variables 103
Alphanumeric Variables ••••••••••••••••••••••••••••.•••••• 103
Boolean Variables ... 104
Subscripted Variables •••••••••••••••••••••••••.••••••••••• 104
Expres sions ... 105
Hierarchy of Operations •••••••••••••••••.••••••••••••••••• 106
Arithmetic Statements •••••••••••••••••••••••••••••••••••• 106
Boolean Statements
ARGUS Statements

107
107

Section IX
(cont)

TABLE OF CONTENTS (cont)

Page Number

CONTROL STATEMENTS
Unconditional GO TO Statement .•.•.•••• o ••• 0 '0' • • • •• • • •• 109
Computed GO TO Statement •••.••••••••••••••..••••••••• 109
Assigned GO TO Statement 0 •••••••••••• 0 0 000 .0 ••••••••• 0 109
ASSIGN Statement 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 • 0 • 0 0 • 0 • 0 0 •• 0 • 0 • 0 0 0 •• 109
CONTINUE Statement •••• 0 •••• 0 •• 0 0 0 • 0 0 0 0 0 • 0 0 ••• 0 ••• 0 •• 0 109
IF .Statement • 0 0 •• 0 ••• 0 0 ••••••••• 0 ••••• 0 • 0 • 0 •••••• 0 • 0 • •• 109
IF PARITY Statement •••••• 0 • 0 • 0 0 • 0 0 • 0 • 0 0 • 0 0 •••• 0 • • • • • •• 110
IF END OF FILE Statement •••••••••••.• 0 •• 0 •• 0 0 0 •••••• 0 110
DO Statement •..••••....••..•••••. 0 • • • • • • • • • • • • • • • • • • •• 110
PAUSE Statement •• 0 0 ••••• 0 ••• 00 •• 0.0 ••••••••••• 0 ••••• 0 112
STOP Statenlent ~ .. 112
SENSE LIGHT Statement •• 0 0 • 0 •• 0 • 0 •• 0 0 0 ••••••••• 0 • • • • •• 112
IF(SENSE LIGHT) Statement 0 ••• 0 •• 0 ••• 0 0 0 •• 0 0 • 0 0 • 0 • 0 0 •• 0 113
IF(SENSE SWITCH) Statement •• 0 0 ••• 0 0 0 0 0 0 0 0 ••• 0 • 0 0 • • • •• 113
IF ACCUMULATOR OVERFLOW Statement • 0 0 • 0 • 0 0 00' 0 .0. 113
IF QUOTIENT OVERFLOW Statement 00 •• 0 0 0 0 0 • 0 0 0 • • • • • •• 113
IF DIVIDE CHECK Statement ••••..•••.•• 0 • 0 • • • • • • • • • • • •• 114
TIT LE Statement 0 ••••• 0 0 • 0 •• 0 0 ••• 0 • 0 0 0 0 0 ••• 0 •• 0 0 0 •• 0 0 0 114
END Statement 0 0 ••• 0 • 0 • 0 ••• 0 0 0 • 0 • 0 • 0 •• 0 •• 0 000 00. 0 0 0 •• 0 114
FINIS Statement 0 0 0 0 •••••• 0 0 •• 0 •• 0 0 •• 0 •• 0 0 0 0 ••• 0 0 • 0 • 0 0 0 114

INPUT AND OUTPUT STATEMENTS
Definition of a List 0 0 0 0 • 0 • 0 0 • 0 ••••••••••••••••••••••••• 0 114
FORMAT Statement ••..• 0 •••••••••••••••••••••••• 0 • • • •• 115
Scale Factor -: .. 117
Field Specification liE" (Floating Point) •••••••••••••••.•• 117
Field Specification "F" (External Fixed Point) •••• • • • • • • • •• 118
Field Specification "I" (Integer) •••••••• 0 • • • • • • • • • • • • • • • •• 119
Field Specification "H" (Hollerith) •..••••••••. 0 0 • 0 •• 0 • • •• 119
Field Specification "0" (Octal) •••••••••••• 0 ••••• 0 • • • • • • •• 120
Field Specification "A" (Alphabetic) ••••••••• 0 • • • • • • • • • • •• 121
Field Specification liB II (Blank) •••••••••••••••••••••••••• 121
READ Statem.ent 122
READ ONE Statement 0 0 ••• 0 0 ••• 0 0 •• 00' 0 0 0 0 0 ••••••••• 0 0 0 122
READ TWO Statement •• 0 0 • 0 0 • 0 • 0 0 0 •• 0 • 0 0 0 0 0 0 0 •• 0 • 0 0 0 •• 0 122
PRINT Statement .•• 0 • 0 • 0 • 0 • 0 0 •••• 0 • 0 • 0 • 0 0 0 • 0 0 ••••• 0 •• 0

PRINT ONE Statem.ent
PRINT TWO Statement ••••• 0 0 ••••••••• 0 ••• 0 0 0 • 0 • 0 •• 0 •••

PUN CH Stat em.ent•................

122
122
122
123

PUN'CH ONE Statement 0 •••• 0 0 0 •••• 0 ••• o. 0 •• 00 •••• 0 •••• 0 • 123
PUNCH TWO Statement 0 0 0 ••• 0 0 •• 0 •• 0 ••••••• 0 0 • 0 0 ••• 0 •• 123
READ INPUT TAPE Statement 0 •• 00 •••• 0 •••• 0" 0 0 •••• 0 •• 123
WRITE OUTPUT TAPE Statement .0 •••••••• 0 ••• 0 • 0 ••• 00. 0 123
READ TAPE Statement o. 0 •• 0 ••••• 0 ••• 0 •• 0 ••••• 0 •• 0 • • • •• 124
WRITE TAPE Staternent ••..••••••••••••••••••.••••••••• 124

v

Section IX
(cont)

Appendix A

Appendix B

Appendix C

Appendix D

vi

TABLE OF CONTENTS (cont)

Page Number

END FILE Statement 124
REWIND Statement •••••.••••••••..•••.•••••••••••.•••••• 124
BACKSPACE Statement •••••••••••••••••••••••••••••••••• 125
BUFFER Statement ••••••.••••••••••••••••••••••••••••••• 125
ERASE Statement. • • • • • • • • • • . • • • • • • • • . • • . • • • • • • • • • • • • • • •• 125

FUNCTIONS
General Considerations ••••.•••••••••••••••••••••••••••••
Open Functions
Library Functions •••••••••••••••••••••••••••••••••••••••
Defined Functions •••••••••••••••••••••••••••••••••••••.•
FUNCTION Subprograms •••••••••••••••.•••••••.••••••••
FUNCTION Statement ••.•.•••••••••••••••••••••••••••••••
SUBROUTINE Subprograms •••••••••••••••••••.•••••••••••
SUBROUTINE Statement ••••••••••••••••••.•••••.••••••••
CALL Statement
RETURN Statement ••••••.•••••••••••••••••••••••••••••••

SPECIFICATION STATEMENTS

125
126
126
127
128
128
130
130
131
132

DIMENSION Statement ••••••••••••.•••••••••••.•••••••••• 132
EQUIVALENCE Statement •••••••.••••••••••••••••••.••••• 133
COMMON Statement ••••••••••••••••.••••••.••.•••••••••• 134

Honeywell 800 Coding and Punched or Printed Equivalents •••.•• 136

Sense Lights and Sense Switches •••..•••••••••.•.•.••••.••.•• 137

Limits on Source Program Imposed by Table Size s • . • • • • • • • • • •• 138

Source Program. Statements and Sequencing 142

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

LIST OF ILLUSTRATIONS

Page Number

Sample Algebraic Compiler Program •••.••••••••••.••••••.•• 2

Algebraic Compiler Card Format .•••••••••••••••••••••••.•• 7

Alphabetic Sort Example ••••.•••.••.••.••••••••.••..•..•..• 28

Transfer of Control with Respect to Sets of Non-Completely
Nested DO's ••••••.•..•.•.••••• -.•.•••••••••••••••••••• 35

Transfer of Control with Respect to Completely Nested DO's .•• 35

Open Functions of Honeywell Algebraic Compiler ••.•.••••••.•• 70

Library Functions of Honeywell Algebraic Compiler •••••••.••• 72

vii .

FOREWORD

This manual describes the Honeywell Algebraic Compiler designed and implemented by

Computer Usage Company of New York.

The manual may be thought of as consisting of three major parts. Section I gives a

brief, over-all view of the Algebraic Compiler language, in terms of a representative, if

short, example. This section may be of value to the reader who has no background in the

subject of computer programming. Sections II through Vln make up the bulk of the manual,

giving the details of the language with many examples. These sections should be useful to

the beginner, as well as to the reader who is familiar with systems similar to the Algebraic

Compiler. The thoroughly experienced reader may choose to turn immediately to Section IX,

which presents a summary of the language without any examples. After the reader becomes

proficient in the use of the Algebraic Compiler, this section will also be useful as a quick

reference when it is necessary to review some topic.

PREFACE TO SECOND EDITION

This document supercede s the original edition of the Algebraic Compiler Manual

(DSI-44) and should be used by all persons who are programming in the language of the compiler.

The changes in the second edition, though numerous, are relatively minor and do not reflect

changes in the compiler. In particular, the sample program in Section VIII has been entirely

replaced by a better example and the list of language restrictions in Appendix C has been clar

ified.

viii

SECTION I

INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

The language of science and engineering is mathematics; the language of a computer

consists of relatively elementary computer "instructions". These two languages are

normally very different, requiring a translation process in order to express a mathematical

procedure in the rigidly-defined format demanded by the computer. The Honeywell Algebraic

Compiler greatly simplifies this translation process, by allowing the problem procedure to

be expressed in a language not greatly different from ordinary mathematical notation, and

by providing a separate computer program to translate from this language to the language

of the computer.

The language of the Honeywell Algebraic Compiler is discussed and illustrated in

Sections II through VIII, and summarized in Section IX; here, in Section I, we shall only

attempt to give an over-all view of the system. It is hoped that this short introduction

will make the material in the next few sections more meaningful to the reader approaching

this language for the first time.

Suppose that in an engineering calculation it is necessary to compute the value of

the following function, for a number of combinations of values of X and A:

AX
Y = e (A s in X _ cos X) + 2. 8. 10 - 4 ~ 106 + (AX) 5. 1

A2 + 1

It is desired to set up an Algebraic Compiler program to accept 10 values of A, punched

on a card. For each A, the program should compute the value of Y for all values of X

between O. 1 and 2.0 inclusive, in steps of O. 1. The results are to be written onto a

magnetic tape for printing at another time. Each page of the output is to consist of, first a

heading line &iving the value of A for the page and colu.mn headings for X and Y. The body

lines will give the 20 pairs of values of X and Y.

An Algebraic Compiler program to carry out these operations is shown in Figure 1.

The lines written on the coding form would be punched onto cards and processed by the

Compiler, to produce a set of computer instructions which would carry out the procedure

defined by the program. Thus, the compilation of the program is seen to be a separate

phase from the execution of the compiled program of computer instructions. Once com

piled, the program can be used with many sets of data, without recompilation. Each line

10

II

12

13

14

15

16

17

18

19

20

I

SECTION I. INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

of the program shown is a separate statement, with the exception of statement number 23,

which requires two lines. This statement would be punched on two cards, the second one

being called a continuation card. Up to nine continuation cards are permitted.

ALGEBRAIC COMPILER STATEMENT
TITLE I WRITTEN BY CHECKED BY DATE PAGE OF

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT c NUMBER 1

~
I 6 II 23 38 52 66 72 80

I I I I I

T IT Lit £xA AlPtE

/) r Alt Ns.lON /I{ I 1»

1(£ lit 15 4 A
15 FI>J?N /I T (I I>F8. 5")

PI> 21 I :: I ~ 10

WK.I7 E () U T PIIT TIll e .3 2Z A (z)

zz Ft)~ A T (I H I I 2 H A "'I • F8.5 3f} I H1l. /36 INyll)

X ;:: O. I

23 r ;:: EX.PF{A(I) * xl) I (Atl) •• Z __ ~ I .0) ~ (A(I) ,f SINF(X} - Cl: SF (x»
x 1- 2·8£-01-* SG 1r.1F{lE6 T (II(T * "X) **5. I)

W RI1 E () UTPUT fAllt 3 2.4 x, y
24 FO~M AT{I4-8 r4./ ElO.1)

II F () - 2 .0) Z 5, 2. I 2 I
2.j X ::)(t 0 I

<i 0 10 23

2. I CON I NLJ c-
ENI> F IL E 3

RE.wr ND 3

STO P

I f:ND
II

FINIIc.
I I I

STAT. NO. ~ I---
A DATA NAME COMMAND CODE ~ A ADDRESS B ADDRESS C ADDRESS ~

.-

Figure 1. Sample Algebraic Compiler Program

The first card of every program deck must contain a TIT LE statement. This identifies

the program in later phases of the operation of the Compiler system. The DIMENSION state

ment is related to the way in which the 10 different values of A are to be handled; the 10

values are made the 10 elements of an array named "A", and each value of A is then referred

to by a subscript from 1 to 10. The DIMENSION statement written here does three things:

2

1. It identifies the name A as being the name of an array of variables rather
than the name of a single variable;

2. The 10 in parentheses indicates that there will never be more than 10 ele
ments in this array;

3. By the fact of having only one subscript in parentheses (in this case "10"),
it indicates that this is to be a one- dimensional array.

SECTION I. INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

It is also possible to have two- and three-dimensional arrays. The DIMENSION statement

is called a specification statement; it gives information to the Compiler, but does not itself call

for any operations to be performed. For the latter reason, it is also called a non ... executable

stat ement.

The READ statement calls for the reading of the card containing the 10 value s of A. The

15 after the READ is the statement number of a FORMAT statement, which describes how the

information has been punched on the card, and the type of conversion to be applied to the

numbers before storing them in the computer I s storage. Since the name "A" appears in a

DIMENSION statement, the Compiler treats it as the name of an array without any further

indication. That is, the statement "READ 15, A" calls for the entire array to be read in

under control of the FORMAT statement with statement number 15. This FORMAT state-

ment carries the following information;

1. The 10 means that there are 10 numbers, all with the same type of format
and conversion required;

2. The F means that the numbers are punched without an exponent, and are
to be converted to floating binary form before being stored. Floating
point means simply that the numbers are stored in such a way that the
machine can easily keep track of all decimal-point problems, even in a
long computation involving a wide range of number sizes;

3. The 8 means that each number on the card is punched in eight columns;

4. The 5 means that there are five places after the decimal point in the
numbers on the card. It is, in fact, assumed that the numbers are
punched in the form ±x. xxxxx, where the XIS stand for digits. In such
a case, as we shall see in Section V, the 5 here is not really essential,
but it does no harm.

The DO statement which comes next is one of the most powerful features of the

Algebraic Compiler language; this example is a very incomplete indication of what can be

done with it. The effect of this statement is: "carry out repeatedly the statements from

here down through the statement with the statement number 21, the first time with I equal

to 1, then with I equal to 2, etc., until the statements have been carried out with I equal

to lO". In this way, we carry out the basic set of operations for each value of the parameter

A. The first value of A is the one referred to by writing A(1); the same number is obtained

by writing A(I), if the variable I is equal to 1. By always writing A(I) in the arithmetic

statement which comes later, we get that value of A corresponding to the current value of I.

The WRITE OUTPUT TAPE statement, which follows, writes the heading information

for a page. The information is placed on magnetic tape for later printing. The 3 specifies

-
3

SECTION I. INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

tape unit number -3; the 22 refers to the FORMAT statement to be followed, and A(I) calls

for the writing of whichever one of the A values is determined by the current value of 1.

The FORMAT statement begins with a field specification "H" for Hollerith. This

calls for the transmission of information directly to the output device from the FORMAT

statement itself, rather than by naming a variable. The particular usage here, i. e., "lHl ",

is a special usage of the Hollerith field specification, however. Whenever a FORMAT state

ment that is used with any output statement begins with a IH Hollerith specification, the first

character following the H will be interpreted as carriage-control information and not data.

The character 1 appearing here calls for spacing the paper to the head of the next form (or

page) after printing the line. The 2HA= again calls for the transmission of characters from

the FORMAT statement; this time the character s "A=" go directly into the output for late r

printing. Then the field specification F8. 5 causes the number referenced by A(I) to be printed

in just the same form as it was read from cards. The 3B cause s three blanks to be inserted

into the output, then the character X is written out as a column heading. Thirteen blanks pre

cede the character Y as a second column heading. The two slashes cause a blank line to be

inserted into the output, between the heading line and the fir st line of the body of the page.

The next statement is about the simplest pos sible"example of an arithmetic statement;

it causes the value of X to be O. 1. The arithmetic statement which comes next is much more

complex. It begins by requesting the exponential function of the product of the current value

of A(I) and X. The argument of the exponential function (i. e., AX) is enclosed in parentheses.

The exponential function is obtained by writing EXPF, the pre-as signed name for this function,

which is available in the Compiler. The multiplication of A(I) and X is indicated by the asterisk.
2

The slash specifies division, in this case by A + l. Note that raising to a power, or exponen-

tiation, is indicated by ~'(>:'. Note also that in order to show that the "1" is a floating-point

number, it was necessary to write it with a decimal point. The 2 in the exponent is a fixed

point number, indicated here by the absence of a decimal point. Being fixed point means, in

the Algebraic Compiler, that a number is limited to integer values and zero. Subscripts must

always be fixed-point numbers, and there are also many other uses for them. The names of

fixed-point variables are identified by beginning with the letter I, J, K, L, M, or N; a

variable name may be from one to six characters in length. A floating-point number is

identified by the fact that it begins with any letter but I, J, K, L, M, or N.

With this much introduction, the rest of statement number 23 should be readable. It may

be noted that a floating-point constant may be written with an exponent, which is written fol

lowing the letter E. When this is done, the decimal point to indicate floating point becomes

4

SECTION I. INTRODUCTION TO THE HONEYWELL ALGEBRAIC COMPILER

optional. Note finally that a floating-point quantity may be raised to a non-integral power.

The following WRITE OUTPUT TAPE statement puts onto tape the value of X just used

and the value of Y just computed. Its FORMAT statement calls for 14 blanks to be inserted

into the line, then for the first number in the "list" in the WRITE OUTPUT TAPE statement

to be written out using an F4. 1 field specification. X will thus print out in a four-column

field with one place after the decimal point. Y is written out under control of E20. 7. The E

means that the number should be written with an exponent, using a total of 20 columns including

blanks if necessary, and with seven places after the decimal point. For instance, the number

-0.00001234567 would print out under control of E20. 7 as -0. 1234567E-04, which means

-0.1234567.10-04•

The IF statement in effect asks whether X - 2.0 is less than, equal to, or greater than,

zero. Depending on the answer, the next statement executed is 25 or 21. If X - 2.0 is less

than zero, i. e., if X is less than 2.0, statement number 25 is executed next. This state

ment adds 0.1 to X, and the GO TO statement causes a transfer of control back to statement

23. If X is equal to or greater than 2.0, control transfers to the CONTINUE statement num

bered 21. This is a dummy statement, used in this case because it is not possible to transfer

directly back to the DO statement. By going to the CONTINUE which was named in the DO

statement as the last one to be carried out repeatedly, the program "knows" to go back to

the beginning of the repeated section.

After the repeated statements have been carried out 10 times, as specified in the DO

statement, control will pass to the END FILE statement which will write a signal on tape

that will be recognized by the printe r as the end of valid information. The REWIND state

ment causes the output tape to be rewound. Then the' STOP statement causes a short message

to be typed out on the console typewriter, a message which in this case indicates that the job

has been completed. The END and FINIS statements are required to properly terminate the

co:mpilation, and have no effect when the compiled program is run.

This short progra:m has indicated some of the major concepts of the Algebraic Compiler

language, without any attempt to be complete. The program uses a total of 15 different types

of statements; the complete language consists of 42 types of statements. Nearly all of the

types of statements used above may be used in a variety of other ways not described above.

With this much background, we may now proceed to a detailed investigation of the com

plete Algebraic Compiler language.

5

SECTION \I

GENERAL PROPERTIES OF A HONEYWELL ALGEBRAIC COMPILER SOURCE PROGRAM

An Algebraic Compiler source program consists of a sequence of source statements, of

which there are 42 different types. These statements are described in detail in the sections

which follow, and are summarized in Section IX. A source program is written on coding

sheets like the one shown in Figure 1. The source program is punched on cards, in a manner

described below, and then an object program is compiled from the source program. The

Compiler is itself a large computer program; the object program which it produces from a

source program consists of computer instructions. The instructions of an object program

"instruct" the computer to carry out operations which will produce the results specified by the

statements of the source program. The instructions of the object program are compiled into

a format which is determined by the characteristics of the Honeywell 800; the object program

is thus s aid to be expres sed in a machine-oriented language. The source program, on the

other hand, is written in a form which much more closely resembles ordinary mathematical

notation, and is said to be expressed in a problem-oriented language.

Each statement of an Algebraic Compiler source program is punched on a separate card

such as the one shown in Figure 2; however, if a statement is too long to fit on one card, it

can be continued on as many as nine continuation cards. The sequence of the source state

ments is conveyed to the Compiler only by the sequence of the statement cards.

STATEMENT
NUMBER

2
A T
B. I
C N

ALGEBRAIC COMPILER STATEMENT

00
I 1 3 4 5 6 1 8 9 10 11 11 13 14 15 16 11 18 19 20 21 Z1 Z3 14 25 26 21 28 29 30 31 31 33 34 35 36 31 38 39 40 41 41 43 44 45 46 41 48 49 50 51 ~2 53 54 55 56 51 58 59 60 &1 &2 &3 &4 &5 &6 61 68 &9 10 11 12 73 14 15 16 11 18 19 II

11

g 22 en

:J 33 3333333333333333333333333333
I.LI

~ 44
z
~ 55 5555555555555555555555555555

6 &6 6

7 7 7 17 7 7 7 77 77 1 7 77 7 7 7 7 7 7 7 7 7 7 77 77 77 7 77 7 7 7 7 7 7 7 7 7 7 77 77 7 77 7 77 7 7 7 17 7

88

99
1234561 8 9101112131415161118192021Z1Z324252621282930313133343536313839404142434445464148495051525354555651585960&1&2636465666168691071721374151611181980

Figure 2. Algebraic Compiler Card Format

7

SECTION II. GENERAL PROPERTIES OF A HONEYWELL ALGEBRAIC COMPILER SOURCE PROGRAM

Cards which contain a "C" in column 1 are not proces sed by the Compiler program, and

may, therefore, be used to carry comments which will appear when the source program deck

is listed. Statement cards punched with a "B" in column 1 are called Boolean statement cards

and are processed somewhat differently from other types of statement cards (see Section III

for a discus sion of Boolean stat,ements). Statement cards with an "A" punched in column 1 are

called ARGUS statement cards; such statements may be used to carry out certain Honeywell 800

instructions. Thus, it is possible to intersperse machine instructions among ordinary Algebraic

Compiler statements (this subject is discussed in Section III). For all other statements, col

umn 1 may be left blank or used as part of the statement number field.

Any number less than 32, 768 may be punched in columns 1 through 5 of the first card of a

statement. Such a number is called a statement number, which makes it possible to establish

cross references within a source program, and facilitates the correlation of source and object

programs. A statement number less than five digits in length may be punched anywhere in

columns 1 through 5; leading blanks are equivalent to leading zeros. Thus, the statement num

ber 15 may be written in any of the following ways, among others:

00015

15

15

15

1'5

1 5

Statement numbers on cards containing an "Allor "B" in column 1 must be four or fewer digits

in length. Anything at all may be punched in a card with a "C" in column 1 (comment card).

Columns 2 through 5 on such a card are not interpreted as a statement number.

Statement numbers need not be written in any particular sequence, and it is not necessary

to use all numbers within a range of numbers. Thus, the following would be an acceptable se

quence of statement numbers:

67, 68, 49, 58, 1200, 3, 809

In short, statement numbers may be assigned in any manner whatsoever, as long as no state

ment number is used twice within one program. It is not necessary for all statements to have

statement numbers.

Column 6 of the initial card of a statement must be left blank or punched with a zero ex

cept for certain types of statements, such as TITLE and FINIS, which will be mentioned ex

plicitly later. Continuation cards (which must not have statement numbers) must have column 6

8

SECTION II. GENERAL PROPERTIES OF A HONEYWELL ALGEBRAIC COMPILER SOURCE PROGRAM

punched with some character other than zero. One possible method is to number the continua

tion cards from 1 to 9, but this is not required. Comment cards (punched with a "C" in column

1) cannot be thought of as having continuation cards. Each comment card must have a "C" in

column 1, and column 6 is not interpreted as a continuation column. Continuation cards for

Boolean statements must have both the liB" in column 1 and the non-zero punch in column 6.

There can be no continuation card for an ARGUS statement ("A" in column 1).

The statements themselves are punched in columns 7 through 72, on both the first and

continuation cards. Thus, a statement may consist of not more than 660 characters which can

be punched in columns 7 through 72 of 10 cards. A table of the admissable Honeywell 800 char

acters appears in Appendix A. With the exceptions of the "blank" and "Hollerith" field spec

ifications in a FORMAT statement (see Section V), blank columns in statement cards are sim

ply ignored by the Compiler, and may be used freely to improve the readability of the source

pro gr am lis ting.

Columns 73 through 80 of the statement cards are not processed by the Compiler, and

may, if desired, be punched with identifying information.

The 42 types of statements which are available in the Algebraic Compiler system may be

classified as follows:

1. The arithmetic formula statement which specifies a numerical computation.
(The symbols available for referring to constants, variables, and functions,
and the rules for combining of these into arithmetic formula statements are
discussed in Section III.)

2. The 12 control statements which govern the flow of control in the program.
(These, plus the TITLE, END, and FINIS statements, are discussed in Sec
tion IV.)

3. The 17 input and output statements which provide for input and output of data
and results. (These, plus the ERASE and BUFFER statements, are dis
cussed in Section V.)

4. The four subprogram statements which enable the programmer to define and
use subprograms. (These statements and their use are discussed in Section
VI.)

5. The three specification statements which provide certain necessary informa
tion about the program to the Compiler. (These statements are discussed in
Section VII.)

9

SECTlON III

CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The words "constant" and "variable II are used in a specialized way in the Algebraic

Compiler. A constant is a number which appear s in lit~ral form in a statement. A variable

is any quantity which is given a name, even through it may be used as what would be called a

constant in mathematical language. Thus in the statements:

x = 21. 7

y = X + 78.2

X and Yare variable s, and 21. 7 and 78. 2 are constants. It may be that X is never defined

to be anything but 21. 7; it is still called a variable.

Constants

Two kinds of constants are permitted: fixed-point and floating-point.

Fixed-Point Constants 1

A fixed-point c,.onstant is written as from one to five decimal digits without a decimal

point and without an "E" which indicates an exponent. It is thus restricted to positive and

negative integer values and zero. A negative constant 1 is indicated by writing a minus sign

before the constant; a positive constant may be written with or without a plus sign. The value
15

of a fixed-point constant must be less in absolute value than 2 = 32768. Thus, the following

numbers are acceptable fixed-point constants:

I, +69, -15000, 32767

Floating- Point Constants

A floating-point constant is written as no more than 16 characters with a decimal point

or an liE II to indicate an exponent, or both. A decimal point may be written at the beginning

or at the end, or between any two digits. Negative numbers 1 are written with a minus sign;

positive numbers may be written with or without a plus sign. A floating-point number may,

if desired, be written with a decimal exponent which denotes the power of 10 by which the

number is to be multiplied. If this is done, the exponent is written by following the number

with an IIE" and then writing the exponent. Negative exponents are written with a minus sign;

positive exponents may be written with or without a plus sign. The value of the floating-point
-77 +76 -64 +63

constant must either lie between the app:roximate limits of 10 and 10 (16 and 16)

1 Although the effect of a negative constant is easily achieved by prefixing the constant with a
minus sign, negative constants as such are not generated by the Compiler.

11

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

in absolute value, or be zero. Thus, the following are all acceptable floating-point constants:

1., + 1., 1. 0000000

5000., 5E3, 5. E + 03

234.56, +2. 3456E2, 23456.0E - 02

The three constants on each line represent the saITle nUITlber. The following are not acceptable

floating-point constants: 6 (no deciITlal point or "E"); 12.98 + 2 (no "E"); 1. 0 E99 (exponent

too large). Constants ITlust never be written with eITlbedded COITlITlas.

Variables and the NaITles of Variables

There are four kinds of variables in the Algebraic COITlpiler: fixed-point; flCDating-point;

alphanuITleric; and Boolean. Fixed-point variables are naITled in a distinctive way, with the

other three sharing one ITlethod of naITling. They are naITled in this ITlanner because in ITlost

probleITls fixed- and floating-point variables are by far the ITlost heavily used, and because

there is no question of aITlbiguity aITlong the three that are naITled the saITle way.

In order to avoid aITlbiguity between the naITling of variables and functions (see Section VI),

however, it is necessary to follow two rules:

Rule 1. A variable must not be given a naITle which is the same as the naITle of a

function without its final F. Thus, since there is a function named SQRTF, SQRT

must not be used as a variable name.

Rule 2. A subscripted variable (see below) ITlust not be given a naITle ending in F

unless it is less than four characters long. Thus the name DIFF(I, J) would be in

error.

Fixed-Point Variables

The name of a fixed-point variable is one to six numeric or alphabetic characters (but

no special characters), of which the first is I, J, K, L, M, or N. A fixed-point variable may
44 13

take on any value less than 2 (approximately equal to 10) or be zero. For use in sub-

scripts and as indexing parameters (see below), they must be less in absolute value than

15
2 = 32768. Acceptable names of fixed-point variables:

I, JKL, MATRIX, L1200, LIM2N3.

Unacceptable naITles: J123456 (too many characters); ABC (does not begin with I, J, K, L, M,

or N); 5K (first character not alphabetic); $K23, J23.4 (contain special characters).

12

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Floating-Point Variables

The name of a floating-point variable is one to six numeric or alphabetic characters (but

no special characters), of which the first is alphabetic but not I, J, K, L, M, or N. A floating

point variable may take on any value which is permitted as the value of a floating-point constant,

i. e., its absolute value must lie between the approximate limits of 10-
77

and 10+
76

, or be

zero. Examples of acceptable names of floating-point variables:

BVAR, X49T, FRONT, T, R00006, CMATRX.

Unacceptable names: A123456 (too many characters); 7GROSS (first character not alphabetic);

MATRIX (first character one of the excluded letters);)!<RED, A + B, D23.4 (contain special

characters) .

Alphanumeric Variables

Alphanumeric variables are named in the same way as floating-point variables. An

alphanumeric variable itself consists of eight characters, with no restrictions on the characters

used; specifically, Ilblank" is a character. For example, the following are all acceptable

alphanumeric variables, although they are not acceptable names of alphanumeric variables:

12345678

ABC34.90

TODAY IS

$XXXX.XX

It must be emphasized that alphanumeric variables can only be handled in certain special

ways; one obviously cannot do floating-point arithmetic on them, for instance. It must also be

made clear that they are entered into the computer and stored in a manner different from the

handling of any other type of variable. Alphanumeric variables can be entered into the program

by use of an "All field specification in a FORMAT statement, or may be defined as an ARGUS

constant, using the IIALFII pseudo-operation (see ARGUS Manual). Furthermore, an alphanu

meric variable is stored as the coded six-bit representation of each character in the eight alpha

numeric character positions of a Honeywell 800 word. The number 12345.67, for instance, is

stored as the alphanumeric code equivalents of the seven digits and the decimal point (period); it

is not converted to the floating-point equivalent of the quantity represented by the eight characters.

Alphanumeric variables are usually manipulated with ARGUS instructions (s ee Section III).

Other statements in which alphanumeric variables may be used, with proper planning, are:

1. As arguments in CALL statements;

2. In IF statements;

3. In the list of an input or output statement;

13

SECTION III. CONSTANTS1 VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

4. In Boolean statements;

5. In statements of-the form a = b, where b is the name of an alphanumeric
variable (this will cause the variable to be moved from one location to
another).

The word "constant" has been defined precisely to mean a number which is written in

literal form and not given a name. With this definition, there is no such thing as an alpha

nUIneric constant in the Algebraic Compiler. That is, there is no way to write a combinati-on

of arbitrary characters and have it regarded as a literal alphanumeric value. It would clearly

be impossible to do so, without providing some special mark to set off the literal constant;

otherwise, there would be no way of distinguishing between, for example, DATA as the name

of a floating-point variable and DATA as an alphanumeric constant. This is no real restriction.

It means that every alphanumeric value must be given a name, instead of being us ed as a literal

in a statement, as with fixed- and floating-point constants.

Boolean Variables

Boolean variables are named in the same manner as floating- point variables. A Boolean

variable consists of the 48 bits of a Honeywell 800 word, a definition which is seen to include

anything that might appear in a word in storage. Boolean variables are ordinarily manipulated

with Boolean statements (see below), but this is pa'rtly a matter of interpretation. Since any

variable can in a certain sense be regarded as a Boolean variable, presumably any Algebraic

COInpiler statement can be regarded as having the ability to operate on Boolean variables. As

will be seen in the discussion of Boolean statements, however, what is ordinarily meant in

speaking of a Boolean variable is that it is involved in a Boolean statement, so that for practical

purposes we may say that Boolean variables are only operated on by Boolean statements.

Numbers to be used as Boolean variables may be entered as input by use of the "0" field

specification in a FORMAT statement, or as octal numbers with the ARGUS "OCT" pseudo

operation. When the former is used, particular attention must be paid to the handling of the

sign bits of the Honeywell 800 word, as discussed under the "0" field specification in a

FORMAT statement (see Section V).

With the same qualifications as stated for an alphanumeric variable, there is no such

thing as a Boolean constant in the Algebraic Compiler.

Subscripted Variables

It is often necessary or convenient to deal with one-, two-, or three-dimensional arrays.

A one-dimensional array corresponds to a vector and a two-dimensional array to a matrix, but

14

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

there are also many circumstances in which arrays are convenient other than in working with

vectors and matrices. Individual elements in arrays are referred to by using subscripted vari

ables, which have the name of fixed- or floating-point variables (whichever applies) followed

by parentheses enclosing the one, two, or three subscripts. These are separated by commas

if there is more than one. A subscript is a fixed-point quantity, the value of which determines

the element in the array to which reference is made. For example, in working with an array

named COST, the second element in the third row could be referred to by COST(3, 2). This

is an example in which both subscripts are fixed-point constants. A subscript can be expressed

in any of the following forms:

1. A fixed-point constant;

2. A fixed-point variable;

3. A fixed-point variable plus or minus a fixed-point constant;

4. A fixed-point constant times a fixed-point variable;

5. A fixed-point constant times a fixed-point variable, plus or minus a
fixed-point constant.

If ADATA is the name of a three-dimensional array, the following are examples of

acceptable subscripts:

ADATA(5, I, J + 2)

ADATA(2 * K, J - 4, 3):~ I + 8)

The following are examples of unacceptable subscripts:

ADATA(2.0, I):< J, K >:c 2)

ADATA(5 + M, I + K, B)

ADATA(+2, -N, +J + 9)

(2. ° is a floating-point constant. The product
of two fixed-point variables such as I):< J is not
permitted. Should be 2 * K, not K * 2.)

(Should be M + 5, not 5 + M. The sum of two
fixed-point variables is not permitted. B is
a floating-point variable and may not be used
as a subscript.)

(Leading signs are not permitted.)

A variable in a subscript must not itself be subscripted. A variable which appears in

subscripted form must appear in a DIMENSION statement to specify to the Compiler the

number of dimensions in the array and the maximum value of each subscript. A subscript

variable must always be written with the same number of subscripts as in its DIMENSION

statement. (See Section VII for a complete description of the DIMENSION statement.) The

value of a subscript must be greater than zero, since there is no zeroth element. The first

element of an array is the one corresponding to the subscripts (1) or (1, 1) or (1, 1, 1).

Furthermore, the value of a subscript :must not be greater than the corresponding maxi:mum

size given in the DIMENSION statement.

15

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

For instance, in ADATA(I + 3, 2 ~(K, K - 8), I may be less than or equal to 1 as long as

I + 3 exceeds zero; 2 ~:c K must not exceed the maximum size for the second subscript; K may

exceed the maximum size given for the third subscript as long as K - 8 does not.

An array is stored with the element corresponding' to the subscript (1), (1, 1), or (1, 1, 1)

in the lowest-numbered location and the other elements in consecutive ascending locations. Two

and three-dimensional arrays are stored in consecutive locations in such a way that their first

subscript (from the left) varies most rapidly and their last subscript varies least rapidly. For

instance, a 2 x 2 x 3 array with the name A would be stored, with the first element in the lowest-

numbered location, as follows:

A(l, 1, I} , A(2, 1, 1), A(l, 2, 1) , A(2, 2, I} ,

A(l, 1, 2), A(2, 1, 2), A(I, 2, 2}, A(2, 2, 2},

A(I, 1, 3), A(2, 1, 3), A(l, 2, 3), A(2, 2, 3) •

Expressions

The word expression is used in a special sense in the Algebraic Compiler to indicate any

of a variety of allowable combinations of constants, variables, and functions. Every expression

is either of the fixed-point or the floating-point mode, depending on whether the value of the

expression is a fixed-point or floating-point nUITlber. (See Section VI for a discussion of func-

tions.) Repeated application of the following set of rules will lead to any permissible expression,

with the exception of Boolean expressions which are discussed separately. Several of these

rules relate to the mode of an expression.

16

Rule 1. Any fixed-point or floating-point constant, variable, or subscripted variable,

is itself considered to be an expression.

Therefore, when it is stated below that the right-hand side of an arithmetic

statement may be any expression, single constants and variables are included.

Thus, the following are all expressions:

A, 789, 34. 987E - 4, DATA(7, 3, 1), VECT(K}.

Rule 2. There are a limited number of cases in which it is permissible to have

expressions of mixed mode, i. e., containing both fixed- and floating-point

quantities:

1. A floating-point quantity can appear in a fixed-point expression
only as an argument of a function;

2. A fixed-point quantity can appear in a floating-point expression
only as an argument of a function, or as an exponent, or as a subscript.

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Thus, the following are all expressions:

XINTF(A), FLOATF(NODE), A ~:~~:~ 2, CROSS ~~* N, VOLTS(8), WATTS(I, J, K).

The character combination ~:o:~ is used to denote exponentiation. XINTF(A) is the

name of a defined function with a floating-point argument whose value is to be fixed

point (see Section VI), while FLOATF(NODE) is the name of a defined function with

a fixed-point argument whose value is to be a floating-point quantity.

Rule 3. A function is an expression, if expressions of the correct modes are

specified as its arguments. The mode of the function considered as an expres

sion is the same as the mode of the value determined by the function. Examples:

ABSF(X), XABSF(I), SINF(THETA). (See Figure 6)

Rule 4. If E is any expression, and if its first character is not + or -, then

+E and -E are expressions of the same mode as E. Examples:

+TEMP, -I, -78, +64.77, -CURR ~~* 2.

Rule 5. If E is any expression, then (E) is an expression of the same mode

as E. Thus, the following are all expressions:

(RHO), ((RHO», (((RHO»), (+9.0).

This rule is used to group expressions as in normal mathematical practice,

and is demonstrated in the second example under Rule 6.

Rule 6. If E and F are any expressions of the same mode, and if the first

character of F is not + or -, then the following are all expressions of the

same mode as E and F:

E+F

E-F

E ~~ F

ElF

The characters +, -,)~, and I are used to denote addition, subtraction,

multiplication, and division, respectively. As in ordinary algebra, we

must distinguish between + used to denote addition and + used to denote

a positive number (similarly with the - sign). The usual algebraic rules

hold; e. g., E + (-F) and E - (+F) are equivalent, but because of Rule 4, the

parentheses are essential. Parentheses are used in arithmetic expres

sions very much as in ordinary algebra. For instance, A - B + C and

17

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

A - (B + C) are both legitimate expressions, but they do not mean the same thing

because of Rule 5. Parentheses never replace the >:c required to indicate multi

plication. Examples:

1+2, X - Y, AVAL / 2.0, B >~ C, RHO + SIGMA - TAU,

2. ° >:c (U + V), SQRTF(AREA) / 2.0, 2 >:< K - 6, (M * N) / 2

Rule 7. 1£ E and F are expressions, if F is a floating-point expression only

if E is, if neither E nor F is of the form A ** B, and if the first character

of F is not + or -, then E >~>:C F is an expression of the same mode as E.

The character combination >:o:c is used to denote exponentiation. Examples:

A >:c>:< 3.5, X >:0:< Y, 6 >:0:< (I - 2), (X - Y) >:0:< XABSF(KK -LL).

The following examples all violate some one or more of the rules ~

A+M

- +A + B

SQRTF(I + J)

This is a mixed expression (Rule 2).

A fixed-point number cannot be raised to
a floating-point power (Rule 7).

Violates Rule 4. Must be written as -(+A) + B.

Violates Rule 7. Must be written as A >:<>:C (B ~C~(C)
or (A >:c>:c B) >:C* C, whichever is intended.

Violate,S Rule 6, which states implicitly that two
operation symbols must not be written consecutively.
Rewrite as X * (- Y) or -X >.'(Y.

Violates Rule 3. This (see Figure 6) function
requires a floating-point argument.

Hierarchy of Operations

Expressions often arise which would be ambiguous in the absence of some rules to

define the order in which operations are performed. For instance, does A / B >:c C mean
A A B . C or:B":-c ? (As seen in the following rules, the former would be the meaning.)

Three rule s govern such situations.

18

Rule 1. Parentheses override everything else. 1£ the expression A >:c (B + C) +

D / (E >~ F) is written, then the meaning is A· (B + C) + E ~ F ' regardless of the

two rules below.

Rule 2. In the absence of parentheses, the hierarchy of operations is:

1. Exponentiation;

2. Multiplication and division;

3. Addition and subtraction.

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

In other words, in the absence of parentheses, all exponentiations are performed

first, then all multiplications and divisions, then all additions and subtractions.

Thus, the following two expressions are equivalent:

1 • A * B + C / D - E *)!c F

2. (A * B) + (C / D) - (E *~!~ F)

Rule 3. Expressions in which parentheses are omitted from a sequence of con

secutive additions and subtractions, or a sequence of consecutive multiplications

and divisions, are treated as though there were parentheses grouped from the

left. With multiplication and division this rule avoids what is considered to be

an ambiguity in mathematics. In the example cited above, A / B * C denotes

(A / B) . C.

Another example, A * B / C / D >:c E ~!c F would mean (((((A >:c B) / C) / D) * E) >:~ F),

which could also be rewritten as (A >:c B >:c E)!< F) / (C * D). It is a good procedure to

put in extra parentheses when in doubt.

Arithmetic Statements

An arithmetic statement is of the general form a = b, where a is a subscripted or non

subscripted variable, and b is an expression. A constant must never be written on the left

hand side of an arithmetic statement. An arithmetic statement closely resembles a con

ventional algebraic formula. The important difference is that the = sign is not used here

in the sense of "is equivalent to ", but rather is used to mean lithe value defin.ed by the

expression b replaces the previous value of a". Examples of arithmetic statements:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE __ OF __

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~.
I 6 " 23 38 52 66 72 80

, I I I I I I I I I I I , I I I I I I I

A = I • ()

JI ND EX ~ Z

" = /2 .. *y + (r -2 .. J* *" Z
lloo7 I :: (- 15tSQIlT F(8*:*-Z -4 _*A*C) 1)/ (2 • ;ltA)
hI) A-r R(I Z.4):::JlPA ITR{Z,Z, Z)
I=Z+ I

The last statement, which in itself is a mathematical inaccuracy, is a perfectly legitimate

illustration of the specialized usage of the = sign in the arithmetic statement. This example

indicates that the value of the fixed-point variable is replaced by the value I + 1.

19

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The result of a calculation defined by an arithm.etic statem.ent will be in floating-point form.

if the variable on the left-hand side of the = sign is nam.ed as a floating-point variable and is

in fixed-point form. if the variable on the left is nam.ed as a fixed-point variable. If the variable

on the left is nam.ed as a floating-point variable and the expression on the right is fixed point,

the result is first com.puted using fixed-point arithm.etic, and then convexted to floating-point

form.. If the variable on the left is named as a fixed-point variable and the expression on the

right is floating point, the result is first computed using floating-point arithm.etic, then trunca

ted and converted to a fixed-point integer. Truncate, as used here, m.eans to discard any

fractional part of the result without rounding. Thus, the statem.ents:

1= 1.6):c 3.

would give 4 for the value of I, not 5. The statem.ent:

J = 8. / 3.

would give 2 for the value of J, not 3.

The following exam.ples illustrate how arithmetic statements can be written and used.

Given two points in a plane represented by the Cartesian coordinates (Xl, Yl) and

(X2, Y2), the distance D between the two points is given by:

D=~(X2 - XI)2+ (Y2 _ YI)2

which can be written as:

D = ((X2 - XI)2 + (Y2 _ Yl)2) 1
then the following arithm.etic statem.ent would result in the computation of D:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE __ OF __

A. STATE- g
B. MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
I 6 " 23 38 52 66 72 80

/) = 1((x.2-x.,)**z If I (YZ-'YI)~*2')"i*,o.s ' , " , 1 , I ' , , I ' , l' , , , , ,

--
All of the parentheses here are essential.

The area of a triangle, whose sides are of length A, B, and C, is given by:

AREA = ~S(S - A) (8 - B) (S - C)

where:

S = i(A + B + C).

20

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The area would be computed by the following two statements:

ALGEBRAIC COMPILER STATEMENT
TITLE. I WRITTEN BY CHECKED BY DATE - PAGE OF

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
I 6 II 23 38 52 66 72 80

eJ
rTr rTT T TTTTT I I I TTTTTTT

5 = 0.5 * (A + B 1-

nRE R ;:; (~(5-AJ l! (S-6)*(.s-c))** 0.5

The scalar product of two vectors with components (Xl' xz' x 3) and (YI' YZ' Y3) is

defined to be xl Y I + xZY Z + x
3

Y 3. Given the two one-dimensional arrays with names XVECT

and YVECT, one way to compute the scalar product, which we shall call SCPROD, would

be through the use of the following statement:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY CHECKED BY DATE PAGE OF

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT C NUMBER T

~
I 6 " 23 38 52 66 7Z 80

SCPRlop XVECT(II)~YVECT(I)){'~E(T (z >*YVE C 1(zl) X VECT(.3J *~VEC 1(3
1

)

TTTITII
= t -I

Another way to accomplish the same end will illustrate the use of subscripts, although

in this case it would be more trouble than the method shown above. The value of SCPROD

is first set to zero, and then the scalar product is accumulated in SCPROD, one product at

a time, SCPROD does not contain the complete scalar product until the program has been

completed.

ALGEBRAIC COMPILER STATEMENT
TITLE. I .. II I ••• I WRITTEN BY CHECKED BY DATE PAGE

~' STATE- g
, -MENT N ALGEBRAIC COMPILER STATEMENT C NUMBER T

~
I 6 " 23 38 52 66 72

OF

80

sePt. 0.0
I I I r-T TIT I I I I I . 1 • I T fll r I r

Of) =
~;I

SCPI< Of) :- S(PRO[) t)(VECT(I J*rVEC T(I>
1;2

SCPR '{J/) '" SCPROD t X VEeT II J*Y VEe r(r)
I::3

5cPR.. Of) :: SCPI!OJ) t Y. VEe T (Z)*VVEC T (L)

21

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

It should be noted that three of the statements above are exactly the same, with the value of

the subscript being the only thing that changes. This method, although it will work, is unneces

sarily cumbersome. Section IV specifies the use ofa DO loop to carry out this computation in a

parallel but simpler manner.

Integer Arithmetic

Arithmetic statements involving computation on fixed-point quantities are carried out

using integer arithmetic. The important consideration here is that if a division produces a

result which is not an integer, the fractional part is not rounded but truncated (dropped). Thus,

the floating-point division 8. / 3. would give 2.666 •... , but the fixed-point division 8 / 3

would give 2, the largest integer not greater than 8 / 3.

Integer arithmetic may produce a result which is greater than 32768, but it must be

1 h 1 44 h· h . . 1 10 1 3 If· 1 1 ess t an or equa to 2 ,w lC IS approxImate y . an Integer equa to or arger

than 32768 is used as a subscript or as an indexing parameter in a DO statement, only the

rightmost 15 bits will be used, i. e., it will be reduced modulo 215. On output, all 44 bits

(and sign) can be written out.

Boolean Statements

Sometimes it is desirable to use Boolean algebra, eIther to perform logical operations

or, in certain circumstances, to obtain t'he effect of masking by using appropriate Boolean

operations. Wherever the operations are defined, it is possible to- specify Boolean algebra

by placing a "B" in column 1. This proc edure may be followed in ordinary arithmetic state

ments, IF statements, in function definitions, and with the arguments of a CALL statement.

The elements on which Boolean operations are performed must have the names of floating

point variables, i. e., the names do not begin with I, J, K, L, M, or N. Boolean operations

on literal constants are excluded. The variables may have been defined by any convenient

method, including definition by an "0" format or as an ARGUS constant.

Four Boolean operations are provided in the Compiler. Logical addition, indicated by +,

is the inclusive OR function. Each of the 48 bit positions of the two words is treated separately;

in each position, the logical sum is 1 if either or both bits are 1, and zero only if both are

zero. As an example:

OR

22

00111111000
10101010101
10111111101

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Logical multiplication, indicated by *, is the AND function. In each bit position, the

result is 1 if and only if both bits in the corresponding position in the two words are 1. As

an example:

AND 00111111000
10101010101
00101010000

The exclusive OR function of two variables is specified in the Compiler by the use of the

Boolean function EXCLORF. The two arguments of the function must be stated. The result

in each bit position is 1 if either bit in the corresponding position in the two words is 1, and

zero if both are zero or if both are 1. As an example:

Exclusive OR 00111111000
10101010101
10010101101

Complementation, indicated by -, applies to one variable or expression. In each bit

position, a 1 is replaced by zero and zero by 1. Complementation must not be confused in

any way with subtraction. Subtraction and division are not defined in Boolean algebra, and

cannot be. An expres sion such as A + (- B) ("form the logical sum of A and the complement

of B II) is correct but A - B is not because it attempts to apply complementation as though it

were a relationship or operation involving two expressions, which it is not.

It should be made clear that the Boolean operations may be applied to expressions

involving many variables, but enough parentheses must be used to avoid ambiguity, especially

with complementation. Thus the expressions A + (-B) + C and A + (- (B + C)) are both legiti

mate, although they do not mean the same thing. One further exam.ple of an acceptable Boolean

expression is:

-«A + B) ~~ (C + D))

If a statement is specified as Boolean, the specification will be applied to all the algebra

in a statement. There is no way at all of mixing Boolean and "ordinary" algebra in one state

ment. This perhaps might most easily be overlooked in the us e of Boolean algebra on the

arguments of a CALL statement. Usage of Boolean algebra is permissible in a CALL state

ment, but only if one wishes all the algebra in the CALL to be Boolean. Note in this connec

tion, however, that one might have a situation where it is convenient to specify Boolean algebra

on the CALL arguments although none or only part of the algebra in the subroutine involved is

Boolean. In short, each statement stands by itself. All the algebra within one statement must

be one type or the other.

23

SECTION IIJ . CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

To give so:me indication of how these operations :might be used, consider the following

exa:mple. Suppose that a routine is being progra:m:med to operate efficiently on sparse square

:matrices having ele:ments a." i. e. ,consisting :mostly of zeros, of up te order 48. It has
1J

been decided to set up 48 control words in a one-di:mensional array called CNTRL which will

specify which of the ele:ments are non- zero, according to the following sche:me. If the all

ele:ment of the :matrix is non-zero, bit I (the left:most bit of CNTRL(l)) is to be a 1; if the alZ

ele:ment is non- zero, bit Z of CNTRL(1) is to be 1; and si:milarly for the other bits on the first

control word and the ele:ments of the first row. The ele:ments of the second row are described

by the bits of CNTRL(Z), etc.

non- zero and zero if it is zero.

Stated concisely, bit J of CNTRL(I) is a 1 if the a .. ele:ment is
1J

Now if the convention is adopted that the ele:ments are stored

in colu:mn order, it is only necessary to store the non-zero ele:ments and the control words,

instead of storing the entire :matrix. The latter sche:me, under the sparseness hypothesis,

would involve :much wasted tape and core space.

Suppose now that all this has been done, and that it is necessary to know if any ele:ments

in the first colu:mn are non-zero. This requires inspecting bit I of as :many control words as

the order of the :matrix, which we will call N; if anyone or :more of these bits is 1, then we

wish to take a different path through the co:mputation than if they are all zero. Suppose now

that there is in storage a word called BIT I, which consists of a I in bit 1 and zeros in all

other bit positions. The following Co:mpiler progra:m will ju:mp to state:ment 100 in the all

zero cas e and to ZOO if there are any non- zero ele:ments.

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY ______ _ CHECKED BY ______ _ DATE ____ _ PAGE __ OF __

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
I 6 " 23 38 52 66 7Z 80

6 TE 51 £. 'X (LO R F (/) 1 T1 Birt)
I I I I I I I I

;

DO ~o I = I N

8 20 TEST = TEST + eN TA!L (1)

~ IF (T EST ". BIT, ' 2.00 100 lOG

The first state:ment si:mply clears to 48 zeros the te:mporary storage location TEST. The

result :might be called a "Boolean zero", in distinction to an ordinary plus zero which has ones

in the sign bits. The DO loop is to be executed once for each control word, i. eo, N ti:mes.

24

SECTION Ill. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Statement 20, which is indicated as a Boolean statement, forms the logical sum of the bits in

each position of all of the control words. The (Boolean) IF statement forms the logical product

of the result of the DO loop and the mask, which is a word that has been set up to be all zeros

except in bit 1. The IF statement then asks, in effect, whether or not the result of this is zero.

By :making the IF a Boolean statement, we specify a test for a word of 48 zero bits.

ARGUS Statements

It is expected that most problems on which the Algebraic Compiler is used can be satis

factorily solved using only the various statements of the Compiler ianguage, but there will

undoubtedly be some tasks which can be handled more easily or simply using a mixture of

Compiler statements and ARGUS instructions. This flexibility is permitted in the Algebraic

Compiler system, which allows one to intersperse instructions written in the ARGUS language

among ordinary Compiler statements. The ARGUS instructions may be written on the Compiler

coding form as desired in the compiled program, by placing an ItAIt in column 1 of the state

ment line of the Compiler coding form (see Figure 3).

The rest of the ARGUS instruction format is:

Columns 2 - 5: Statement Number or Blank

Columns 11 - 22: Operation Code

Columns 24 - 37: A Address

Columns 38 - 51: B Address

Columns 52 - 65: C Address

The discussion which follows assumes a rudimentary knowledge of the ARGUS system.

The allowable types of addresses used in ARGUS statements are limited to names of

floating-point variables, ARGUS constants, literal floating-point constants without a sign,

statement numbers or binary counts acc ording to the following table:

Tx::ee of 0;eeration A Address B Address C Address

Arithmetic (floating binary) General General Variable

Logical Symbol Symbol Variable

Comparison General General Statement Number

TS General or Variable or Statement Number
Inactive Inactive

TX General Variable

Shift Symbol Binary Count Variable

Print General Inactive Statement Number
or Inactive

25

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The result location may be general in all case s and the compiler will allow it, but it is advis

able that the above rules be followed. In the above table the following definitions apply:

Variable - name of a floating-point variable.

General - includes name of floating-point variable and ARGUS constant and
literal floating- point constant s.

Symbol - includes name of floating-point variable and ARGUS constant.

The portions of the ARGUS vocabulary which may be used include the three ARGUS

constant pseudo-instructions ALF, OCT, and FLBIN, with the restriction that thes e must

appear with only one entry per statement line. In addition to these data entry instructions,

the Algebraic Compiler permits the us e of:

26

BA Binary Add

BS Binary Subtract

BM Binary Multiply

BD Binary Divide

WA Word Add

WD Word Difference

HA Half Add

SM Superimpos e

SS Substitute

EX Extract

TX Transfer

TS Transfer and Sequence Change

NN Inequality Comparison, Numeric

NA Inequality Comparison, Alphabetic

LN Les s Than or Equal Comparison, Numeric

LA Less Than or Equal Comparison, Alphabetic

SPS Shift Preserving Sign and Substitute

SPE Shift Pre serving Sign

SW S Shift Word and Sub stitute

SWE Shift Word and Extract

PRA Print Alpha

PRD Print Decimal

PRO Print Octal

FBA Floating Bina ry Add

FBS Floating Binary Subtract

FBM Floating Binary Multiply

FBD Floating Binary Divide

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

FLN Normalized Less Than Comparison

FFN Fixed to Floating Normalize

FNN Floating Inequality Comparison

All other ARGUS instructions are specifically excluded from the set of permissible instructions

in the Algebraic compiler.

Further, ARGUS instructions may not use the cosequence mode, simulator instructions,

or masking. No Compiler functions may be addressed.

The following example m.ay help to clarify the use of the interspersed ARGUS instructions

in the Algebraic Compiler. Assum.e that a part of the input to a problem is a list of eight-letter

names which are to be printed out in alphabetic sequence; associated with each of them is a

four-digit fixed-point number. Assume further that the names and the numbers have already

been read in, and are stored as arrays in ABC(I) and NUMB(I), respectively. The task is to

sort the two arrays into sequence on the alphabetical contents of the first array, and then print

out on the typewriter the first name in alphabetic sequence and the corresponding number. This

number is to be printed in octal. The size of the array is given by the fixed-point variable "NO".

The first problem is that the Compiler was not intended to handle such things as sorting

alphabetics. One solution is to employ ARGUS statements and use the LA instruction for making

the required comparisons. The second problem is how to do the sorting. The method used here

is not necessarily the best in all cases, but it will be adequate; selection sorting. With this

method, a comparison is made between first and second, first and third, etc., and finally the

first and Nth words, exchanging each pair that is out of sequence; this "selects" the smallest

word in the list and moves it to the top. The process is repeated on the second and third,

second and fourth, etc., and finally the second and Nth, to get the next larger word, etc., etc.,

until finally a comparison and exchange, if necessary, is made between the (N - l)st and

Nth words.

Each time an exchange is necessary, not only the names, but also the numbers must be

exchanged. The exchanging of the names may be done either in Compiler terms or in ARGUS,

since they look like floating-point variables, but the exchanging of the numbers will have to

be done in Compiler terms since they are fixed point. An alternative method would be to con

vert to floating point beforehand, but this clearly would not be worth the effort. In carrying

out the exchanging, two temporary locations are needed. These will be called TEMP and

NTEMP; there must be two because of working with both floating and fixed variables. The

program could be as shown in Figure 3.

27

SECTION III. CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

The first three statements are required to define the symbols used and to allocate

memory locations to them. NMl and IPI had to be set up because the only expressions that

may be used in a DO statement are fixed-point variables or constants. The first ARGUS

statement makes an alphabetic less-or-equal comparison between two names in the array,

and jumps around the interchange if they are already in sequence. The two DO loops carry

out the sequence of tests and interchanges described above. The two print instructions

print the smallest name and the corresponding number.

The use of ARGUS arithmetic statements is not illustrated here since their use should

be relatively straightforward to anyone with a basic understanding of ARGUS. A situation

where the interspersing of ARGUS statements may be quite useful is in operating on "packed"

words, i. e., words containing more than one quantity, as is frequently done in tape operations

in data processing. The direct use of the shift instructions, which of course has no direct

counterpart in the Algebraic Compiler language itself, would then be required.

10

II

12

13

14

15

16

17

18

19

20

ALGEBRAIC COMPILER STATEMENT
TITLE l..1 -L-...1-....L......L.....JL.......J--1......I WRITTEN BY _____ _ CHECKED BY _____ _

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT C NUMBER T

~
I 6 II 23 38 52

TITLe so~ T
I I I I I ,

f)1/tfE NSjO N A8 e (IO 0). NUM8(loO)

TEMP :. 0.0

NTENP "' ()

N/tfl :: NO - I
1)0 20 I =- I • tiM'
IPI =- I f I
1>0 20 J ... I PI • NO

A LA AlJc(I) ABc (J J zo
A TK. ~8C(I) TEMP

A TX A8C(J) ABe(l)
A TX TEMP A8C(J)

WTEM p :: NUMJJ(I)

NUM~ (1) :. NUM8 (J)

INUM8 (J) : ft1fAlP

20 (ONT [NUE

A PR..A A Bt!(I) - -
IA PIlO NlJM8(1) - -

STOP

END
I I I I I I

STAT. NO. ~ r--- ~

DATE ____ _ PAGE_OF_

66 7'1 80 , I I

I

A DATA NAME COMMAND CODE !a A ADDRESS B ADDRESS C ADDRESS ~

Figure 3. Alphabetic Sort Example

28

SECTION IV

CONTROL STATEMENTS

In any m.eaningful problem. to be carried out using the Algebraic Com.piler, it m.ay be

necessary to alter the flow of control of the statem.ents from. the one-after-the-other sequence

which is followed in the absence of any control statem.ents. Often there are alternative parts

of the program. which m.ust be executed, depending on the data. Frequently there are sections

of the program. which m.ust be repeated, either to operate succes sively on new sets of data or

to carry out som.e iterative process. The Algebraic Com.piler provides a num.ber of state

m.ents for handling such situations.

In setting up any program., it is necessary to observe the following rules, which are to

som.e extent self-evident, but which can lead to serious difficulties if not observed.

Rule 1. Every program. m.ust term.inate on a STOP or PAUSE statem.ent. This does not

m.ean that a STOP or PAUSE m.ust be the last statem.ent physically (indeed this is im.

poss:i.ble since END m.ust be the last statem.ent of every program.), but that every pro

gram. m.ust be able to reach a STOP or PAUSE when the com.putation is com.pleted.

Rule 2. Som.e path of control m.ust be able to reach every executable statem.ent in a

program.. This does not mean that every statem.ent m.ust be executed each tim.e a given

program. is run, but that there must not be any executable statem.ents which could never

be executed under any circum.stances.

Rule 3. All transfers of control m.ust be to executable statem.ents, never to FORMAT,

DIMENSION, EQUIVALENCE, COMMON, END, or ARGUS data entry constants.

Unconditional GO TO Statem.ent GO TOn

This statement is used when it is desired sim.ply to break out of the sequential execution

of statem.ents without m.aking the transfer of control conditional. Control is unconditionally

transferred to the statement with the statement num.ber n.

Com.puted GO TO Statement

This statement is used when it is desired to transfer control to one of a num.ber of state-

ments, depending on the current value of some fixed-point variable. In this statement, i must

29

SECTION IV. CONTROL STATEMENTS

be a non-subscripted fixed-point variable, and n
1

, n
2

, ... , nm must be statement numbers.

If the value of the variable i at the time this statement is executed is j, then control is trans

ferred to the statement with the statement number n.. The value of the fixed-point variable i
J

must be in the range of 1 to m. If the value of the fixed-point variable i is incorrectly given

as zero, the object program will stop after giving an error indication; if it is greater than m,

unpredicted incorrect results will occur and there will be no error stop.

For example, suppose that one of four computations should be carried out on some input

data, depending on whether an input number N is 1, 2, 3, or 4. If N is 1, we wish to transfer

control to a prog.ram beginning with statement 123, if it is 2 to statement 600, if it is 3 to 507,

and if it is 4 to 1280. Suppose now that the data, including N, has been read in and the pro

gram is ready to transfer to the correct program. The following statement will have the de

sired effect:

GO TO (123, 600, 507, 1280), N

This method, although simple, has its risks in the case described, for N could be mispunched

to be greater than 4. It is possible to do the same thing, but with verification of the accuracy

of N, using the IF statement described below.

IF Statement

This statement is used when a transfer of control is to be conditional, depending on

whether an expression is less than zero, equal to zero, or greater than zero. In the IF state

ment, e is an expression and n
1

, n
2

, n3 are statement numbers. Control is transferred to the

statement with the statement number n
1

, n
2

, or n
3

, depending on whether the value of the ex

pression e is less than zero, equal to zero, or greater than zero, respectively. To illustrate

one way to use the IF statement, the previous example may be reworked to include a test to be

sure that N is indeed in the range of 1 to 4. Suppose that a program has been written to handle

the situation of an invalid value of N and that the first statement of the error-handling pro

gram has statement number 20000. The following three statements will test the value of N for

validity and transfer to the correct program if it is valid:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY __ --, ___ _ CHECKED BY ______ _ DATE ____ _ PAGE_ OF __

A. STATE- g
B. MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
80 I 6 II 23 38 52 66 72

IF(N) 1 () 000, Z O(';l 00, '/(JO
' I I I I I I I I I 1'1

100 IF(N "5) I 0 I Zoo 00, 2..0000

101 60 T o (IZ3 1 OOOL 507 I l80) N

:30,

SECTION IV. CONTROL STATEMENTS

If N is less than or equal t9 zero, or greater than or equal to 5, control is transferred to the

error program. at ZOOOO. Another way to do the same thing would involve only the use of IF

statements:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY ______ _ CHECKED BY ______ _ DATE_-__ _ PAGE __ OF __

Ao STATE- g
80 MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
I 6 " 23 38 52 66 72

I

IF{N -I) 2 ()OOO, I 23 IO()
I I I I I I I I I I I I

I ()G 1F{N -2) 20000/ 60 0, 101
101 [F{N -3) Zoooo, 510 7, 102

I 102 IF{N -4) 20000, 12 80, Z 0000
-

Control could never get to the second, third, or fourth IF statement if N were less than 1, so

that there is really no need for the "less than zero" path on the IF statements after the first.

However, there is no way to avoid writing statement numbers for all three paths even though

one of them might never be followed. The choice of statement number of the error program

has no significance.

Assigned GO TO Statement

This statement, together with the ASSIGN statement, provides another way to effect a

transfer of control, usually, at some point later in the program than when the "decision" is

made. In this statement, n must be a non-subscripted fixed-point variable which appears in a

previously executed ASSIGN statement, and n
1

, nZ' ... , n m must be statement numbers.

Control is transferred to the statement having for its statement number whichever one of the

values n
1

, nZ' ... , nm was most recently as signed to n by an ASSIGN statement.

ASSIGN Statement ASSIGN n. to n
1

In this statement, n must be a non-subscripted fixed-point variable which appears in an

assigned GO TO statement, and n. must be one of the statement numbers appearing in paren-
1

theses in the same assigned GO TO. When the assigned GO TO is next executed, control is

transferred to the statement with the statement number n" unless another applicable ASSIGN
1

statement intervenes.

It is important not to confuse the assigned GO TO with the computed GO TO, and, in

particular, to understand that what the ASSIGN statement does for the assigned GO TO cannot

be done any other way. For instance, the following two statements are not equivalent:

80

31

SECTION IV. CONTROL STATEMENTS

1. ASSIGN 208 TO N

2. N = 208 in connection with the statement:

GO TO N, (106, 208, 200).

However, the following two programs ~ equivalent:

1. ASSIGN 208 TO N

GO TO N, (106, 208, 200)

2. N = 2

GO TO (106, 208, 200), N.

IF PARITY Statement IF PARITY n
1

, n
2

This statement may be used to alter the course of a computation upon detection of an un

correctable parity error on a magnetic tape. In the statement, n
1

and n
2

must be statement

numbers. If there was a parity error detected during the execution of the preceding input or

output statement and the orthotronic routines were not able to correct it, the statement with

the statement number n
1

is executed next; if there was no error or if it was corrected, the

statement with the statement number n
2

is executed next. The IF PARITY statement may

optionally follow any of the statements READ TAPE, WRITE TAPE, READ INPUT TAPE, or

WRITE OUTPUT TAPE; if so, it must be the next executable statement. If the statements IF

PARITY and IF END OF FILE are both used, the IF PARITY must be first. If an uncorrect

able error is detected and there is no IF PARITY statement following the input or output state

ment, the object program will print an error indication and stop.

For a further discussion of this statement and its use, see Section V on input and output

statements.

IF END OF FILE Statement IF END OF FILE n
l

, n
2

This statement may be used to alter the course of a computation under any of the follow

ing . condi tions:

32

1. In connection with a READ TAPE statement, upon detection of the indication
written on a magnetic tape by the END FILE statement;

2. In connection with a READ, READONE, or READTWO statement, upon de
tection of a card with the word FINIS punched in columns 2 through 6;

3. In connection with a READ INPUT TAPE statement, upon detection of a re
cord produced by a card with the word FINIS punched in columns 2 through 6.

SECTION IV. CONTROL STATEMENTS

In the statement, n
1

and n
2

must be statement numbers. If the relevant condition was detect

ed in connection with the preceding input or output statement, the statement with the statement

num.ber n
1

is executed next; if the condition was not detected, the statement with the statement

num.ber n
2

is executed next. The I:F END OF FILE statement must be the next executable

statement after the input or output statement to which it refers, except that an IF PARITY

staternent may intervene. If any of the conditions listed above are detected and there is no IF

END OF FILE statement following the input or output statement, the object program will pro-

duce an error indication and stop.

A further discussion of this statement and its use may be found in Section V on input and

output statements.

CONTINUE Statement CONTINUE

This statement does not generate any instructions in the object programs. It is used

primarily as the last statement in the range of a DO statement (see below), when it is needed

to satisfy the requirement that the range of a DO must not end with any statement which can

cause a transfer of control. This statement is particularly useful since no transfer of control

within the range of a DO can return to the beginning of a new cycle. Instead, control should be

transferred to a CONTINUE at the end of the DO range.

DO Statement

or DO n i = n
1

, n
2

This is a very powerful statement which makes it possible to carry out repetitive pro

cedures, often (but not always) working with the elements of arrays. After describing how the

staternent operates and sorne rules which rnust be observed in using it, we shall give a nurnber

of exarnples of the use of this irnportant feature of the Algebraic Cornpiler language.

In the DO statement, n rnust be a statement number, i rnust be a non-subscripted fixed

point variable, and n
1

, n
2

, and n3 rnust each be either an unsigned fixed-point constant or a

non-subscripted fixed-point variable. If n3 is not stated, as in the second forrn of the state

rnent, it is as surned to be 1.

The staternents following the DO, up to and including the statement with the statement

nurnber n, are executed repeatedly. They are executed first with i = n
1

; before each succeed

ing execution, i is increased by n
3

. Repeated execution continues until the statements have

been executed with i equal to the largest value which does not exceed n
2

.

33

SECTJON IV. CONTROL STATEMENTS

The range of the DO is defined to be the set of repeatedly executed statem.ents. In other

words, it is the set of statements beginning with the first executable statem.ent imm.ediately

following the DO statem.ent and continuing up to and including the statement with the statem.ent

num.ber n.

The fixed-point variable i is called the index of the DO. Throughout the execution of the

range, i is available for use in computation (see Rule 3 below), either as a fixed-point var

iable or as a subscript. The value of i is also available for use in com.putation if control

passes to statements outside of the range. Control m.ay pass outside of the range of the DO

either by the execution of control statem.ents which cause a transfer of control outside or by

the norm.al com.pletion of the num.ber of executions of the range as specified by the indexing

parameters n
1

, n
2

, and n3' In the latter case, the DO is said to be satisfied.

34

A few rules must be observed in writing DO statem.ents,

Rule 1. If the range of one DO (the "outer" DO) contains statem.ents in the range of

another DO (the "inner" DO), then all statem.ents in the range of the inner DO m.ust also

be in the range of the outer DO. This does not prohibit having the ranges of two or m.ore

DO's end with the sam.e statem.ent.

Rule 2. The last statem.ent in the range of a DO m.ust not be a statem.ent which can

cause a transfer of control. The CONTINUE statem.ent is provided for situations which

would otherwise violate this rule.

Rule 3. No statem.ent m.ay be executed within the range of a DO, which redefines or

otherwise alters the value of the index or the indexing param.eters of the DO.

Rule 4. Control :must not transfer into the range of a DO from. a statem.ent outside its

range. One exception to this rule is that it is perm.is sible to transfer control out of the

range of a DO, perform. a series of calculations, and then transfer back to the sam.e sec

tion of the range of the DO from. which exit was m.ade. When this is done, the state

m.ents to which control is transferred are called the extended range of the DO. It is

still necessary to observe Rule 3, as though the series of calculations perform.ed were

part of the range of the DO -- which they are. If the extended range of the DO itself

contains DO's, then there is a further restriction, A nest of DO's is defined to be a set

of DO's with overlapping ranges; a co:mpletely nested set is one in which every pair of

SECTION IV. CONTROL STATEMENTS

DO's is such that one contains the other. With these definitions, the second part of Rule 4

states: if the extended range of a DO contains other DO's, then a transfer to the extended

range is only permitted from the innermost DO of a completely nested set.

Figure 4. Transfer of Control with Respect to Sets of Non-Completely Nested DO's

•

Figure 5. Transfer of Control with Respect to Completely Nested DO's

Figure 4 shows some acceptable and unacceptable transfers of control. Transfers f

through 5 are always acceptable. Transfers 6 and 8 are always wrong. Assuming that

35

SECTION IV. CONTROL STATEMENTS

transfer 2 goes to a series of calculations frolll which transfer 7 returns, transfer 7 is cor

rect only if the series of calculations contains no DO's, since the set of DO's is not cOlllplete

ly nested. The DO's in Figure 5 are cOlllpletely nested, and all the transfers are acceptable

whether or not there are DO's in the extended range.

For a first example of the use of a DO loop, consider the scalar product that was used

earlier to illustrate the use of subscripts. Recall that there were two one-dilllensional arrays

XVECT and YVECT, and it was required to compute the sum of the products of corresponding

elelllents. The DO loop below accolllplishes this in a Illanner silllilar to the second Illethod

used before:

ALGEBRAIC COMPILER STATEMENT
TITLE ,. WRITTEN BY CHECKED BY DATE PAGE OF

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~.
I 6 II 23 38 52 66 77 80

S(PR.
I I TTT TTTTT I I I I , I I I I I I I I I

OlJ :: 0.0

PO 5 () I :. 1,3
50 5CPR Of) :: 5(PROf) '+)(V E:.(T l I} -'* Y 'J ECT(I)

As a matter of fact, the execution of this DO loop is allllost exactly the saIlle as the execution

of the earlier exaIllple. Before, we set SCPROD = 0.0 and I = 1, and carried out SCPROD =
SCPROD + XVECT(I) * YVECT(I). Then we set I = 2, and carried out the same stateIllent,

although we had to write it a second time, and then did it again with I = 3. This is exactly

what the DO loop above does. With the stateIllent DO 50 I = 1, 3 we have said, "carry out the

stateIllents down through the one with stateIllent nUIllber 50 (in this case it is the next state

Illent), first with I = 1, then add 1 to I (since n3 was not stated, it is assuIlled to be 1) and do

it again, etc., until the range has been executed with I = 3".

For another siIllple eXa!llple of the use of the DO stateIllent in manipulating arrays, sup

pose that there are two one-dilllensional arrays named X and Y which are each of maxiIllulll

length 100, but that the nUIllber of elements in each, for any particular set of data, is variable.

The nUIllber of elelllents in each array is given for a particular problelll by the value of the

fixed-point variable M. It is required to add the two arrays, elelllent by elelllent, and place

the elelllents of the SUIll in an array naIlled Z. AssuIlling that the variable M is defined else

where, the following stateIllents will carry out the required computation:

36

SECTION IV. CONTROL STATEMENTS

ALGEBRAIC COMPILER STATEMENT
TITLE 1 ~ ---'-..... WRITTEN BY ______ _ CHECKED BY ______ _ DATE_-__ _ PAGE __ OF __

1~f-sTATE. g
COMPILER STATEMENT ' MENT N ALGEBRAIC

C NUMBER 1
~

66 n I 6 II 23 38 52

01lttE Y (10'0) ~ (I 0(1)
, " I I • , I I I I

NSION X(IOO) •

()O 7 89 I :/ M

789 :(I) = X(I) + y(Z)

The DIMENSION statement specifies, for each array, that it contains at most 100 elements

and, by the fact of having only one subscript, that it is a one-dimensional array. Note that it

is not necessary to know how many elements there are in the arrays (as long as all three have

the same number of elements), but rather the variable M is used to control the number of re

petitions of the DO. M must be greater than zero, and not greater than the maximum size of

the arrays. If these rules are violated, the computer's action is not predicted.

Suppose now that Rand S are two-dimensional arrays of the same maximum size l . Let

the number of rows for this problem be specified by the fixed-point constant LROWS and the

number of· columns for this problem be specified by LCOLS. It is required to add the two

arrays, which may be thought of as matrices, element by element, and place the elements of

the sum in an array named T, which naturally has the same dimensions as Rand S. The

techniques here are very similar to the previous problem, except that there are two DO state-

ments.

ALGEBRAIC COMPILER STATEMENT

80

WRITTEN BY ______ _ CHECKED BY ______ _ DATE ____ _ PAGE __ OF __

A. STATE. g
B, MENT N ALGEBRAIC COMPILER STAtEMENT c NUMBER 1

~
I 6 " 23 38 52 66 72 80

blME N.5ION R.(10 I I oS,' I 0 "0 I ' " 0')' I I I I

I , , I I 1'1 I I I ,
0) 10) 1i

DO 1- 00 1 = J LR OW5

DO 4 00 J = I, LC o Ls

1 400 Til, J) = R(IjJ) t S (ZIJ)

Note that the subscript controlled by the inner loop (the second DO) is varying more rapidly

than the subscript controlled by the o'uter DO. Here, the first DO establishes that the first

subscript should start at 1 and run up to the value of LROWS. With I set at 1 to start, the

second DO causes the second subscript to run through the values from 1 up to the value of

LCOLS. When the second DO has been satisfied, the first subscript is increased to 2, and

1 Where the row number is given by the first subscript, and the column number is given by the
second subscript.

37

SECTION IV. CONTROL STATEMENTS

the second DO carried out in its entirety again. In short, the second DO is carried out once for

each value of the index of the first DO. Stated in matrix terms, we handle all the elements of

the first -row, then all.the elements of the second row, etc., up to all of the elements of the last

row.

In this example, it actually does not matter what order is followed in adding the elements

(in most problems it does). If we were to reverse the order of the two DO's, the net result in

this case would be the same, but the order of handling the elements would be different; we

would handle all the elements of the first column, than all the eleInents of the second coluInn, etc.

The next exam.ple shows how an IF stateInent can be used within the range of a DO. Sup

pose there is a one-diInensional array naIned DATA; we are required to find the largest

(algebraically) of the odd-nuInbered eleInents of the array and put it in BIG. We shall put the

first eleInent of the array in BIG to begin, then successively compare it with all the other odd

nUInbered elements and replace the contents of BIG with any element we find which is larger

than the current contents. To consider only the odd-numbered elements we make n3 = 2.

Suppose the array has 100 elements:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY ______ _ CHECKED BY ______ .,- DATE ____ _ PAGE __ OF __

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
I 6 II 23 38 52 66 72

P[ME. NSIoN DATA (I, 00)
I I , , , I I I I I I I I

BIq = ()ATA(/)

/)() I Z K = .3, I 00,2

IF{/> ATA (K) -8IG) IZ J /2 J /3

13 81G ::. PATA (k)

It (ON7 INUE - -_.-

On each execution of the range, if the current odd-numbered element froIn the array is less

than or equal to the current contents of BIG, we transfer down to the CONTINUE statement,

but if it is larger than the current contents of BIG we replace the contents of BIG with it. The

CONTINUE is required here because we do not want to execute statement 13 every time, and a

transfer of control cannot return to the beginning of the range to begin a new cycle.

PAUSE Statement PAUSE or PAUSE n

This statement is used when it is desired to interrupt the execution of statements in

order to allow the cOInputer operator to take SOIne action. If the second forIn of the statement

is used, n must be an unsigned fixed-point octal constant. When the stateInent is encountered

in the object program, the following are typed out on the console typewriter:

38

80

I

SECTION IV. CONTROL STATEMENTS

1. The title of the main prograIn, which appeared in the TIT LE statement, which
must be on the first card of every program deck;

2. The word PAUSE;

3. The octal constant n (containing as many as five digits), or nothing if the first
form of the statement is used;

4. The status of the simulated sense lights and sense switches.

The machine then waits for the operator to take som.e action. He m.ight rem.ove the program.

froIn the m.achine, he m.ight change the status of the sim.ulated sense switches and continue

execution of the program., or he m.ight sim.ply m.ake note of a prior typewriter m.essage and

continue execution of the program. without m.aking any changes. In any case, continuing execu

tion of the program. begins with the next executable statem.ent after the PAUSE. These actions,

if done properly, will have no effect on any program.s being parallel processed with this one.

The optional octal constant makes it possible for the program.mer to set up a m.essage key by

means of which the operator can tell what action to take based on what number is typed out.

Alternatively, the programmer may type out English instructions to the operator through the

use of appropriate ARGUS instructions (see Section III). The constant n is specified as octal

in order to provide compatibility with systems similar to the Honeywell Algebraic Compiler.

S TO P Statement STOP or STOP n

This statem.ent is used when it is desired to stop execution of the program., without any

provision for continuation, in short, when the problem is finished or when errors in input

have occurred from which there is no way to recover without starting all over again. If the

second form of the statement is used, n must be an unsigned fixed-point octal constant. When

the statement is encountered in the object program, the following are typed out on the console

typewriter:

1. The title of the main program, which appeared in the TIT LE statement, which
must be on the first card of every program deck;

2. The word STOP;

3. The octal constant n (containing as many as five digits), or nothing if the first
form of the statement is used;

4. The status of the simulated sense lights.

Once this iniormation has been typed, control is automatically returned to the Executive Routine.

Nothing carried out in connection with the STOP statement has any effect on any other programs

being parallel processed with this one.

The octal number n can be used to give information to the computer operator, if he has

been provided with a list of the possible stops and the meaning of each, including a description

of action he should take for each. Alternatively, an ARGUS instruction (see Section III) may

be used to type out information to the operator.

39

SECTION IV. CONTROL STATEMENTS

SENSE LIGHT State:ment 1 SENSE LIGHT i

This state:ment provide s a :means of indicating conditions in a proble:m both to the opera

tor and to other portions of the progra:m. The value of i :must lie in the range of zero through

4. If i is zero, all sense lights (1 through 4) will be turned off, i. e., SENSE LIGHT 0 in effect

clears all sense lights. If i has any other value, i. e., 1 through 4, that particular sense light

will be turned on. For exa:mple, SENSE LIGHT 3 turns on sense light 3. For a discussion of

sense lights and sense switches, see Appendix B.

IF (SENSE LIGHT) Statement 1 IF {SENSE LIGHT i} n , n
1 Z

This state:ment is used to alter conditionally the sequence of the execution of state:ments

dependent upon the status of one of the sense lights. In the state:ment, n
1

and n
Z

are state

:ment nu:mbers and i is the nu:mber of a sense light, 1 through 4. If sense light i is in the on

condition, control is transferred to state:ment number n l' otherwise control is transferred to

state:ment nu:mber n
Z

' If the sense light is on at the ti:me of execution of this statement, it will

be turned off. In other words, sense light i is always left in the off condition as the result of

the execution of this statement.

IF (SENSE SWITCH) StatementZ IF (SENSE SWITCH i) n l , n
Z

This state:ment is si:milar to the IF SENSE LIGHT state:ment except that the sense switches

(see Appendix B) are interrogated rather than the sense lights. n 1 and n Z are state:ment nu:mbers

and i identifies the sense switch used. The value of i :may range fro:m 1 through 6. Control is

transferred to state:ment n1 if sense switch i is down and to statement n
Z

if sense switch i is up.

IF ACCUMULATOR OVERFLOW State:ment IF ACCUMULATOR OVERFLOW n
i

, n
Z

This state:ment is used to control the program sequence depending on the setting of a

switch which is set by an addition or subtraction, overflow unprogrammed transfer. Control is

transferred to statement number n
1

if an accumulator overflow has occurred or to statement

number n
Z
if overflow has not occurred since the previous IF ACCUMULATOR OVERFLOW

statement. The use of this state:ment resets the internal indicator tested.

IF QUOTIENT OVERFLOW State:ment IF QUOTIENT OVERFLOW n , n
1 Z

This state:ment is used to test the status of a switch set by an exponential overflow or

underflow unprogrammed transfer. Control is transferred to statement n if an exponent has
1

1 SENSE BIT and IF (SENSE BIT) State:ments :may be used interchangeably with the SENSE LIGHT
and IF (SENSE LIGHT) State:ments respectively.

ZThe IF (SENSE FLAG) State:ment :may be used interchangeably with the IF (SENSE SWITCH)
State:ment.

40

SECTION IV. CONTROL STATEMENTS

been created by any of the floating-point operations that is greater than +63 or less than -64 or

to statement n Z if thes e exponent limits have not been exceeded since the previous IF QUOTIENT

OVERFLOW statement. The use of this statement resets the internal indicator tested.

IF DIVIDE CHECK Statement IF DIVIDE CHECK n
1
, n

Z
This statement is used to test a switch set by a division overcapacity unprogrammed

transfer. Control is transferred to statement n
1

if a division instruction has been attempted

that cannot be performed or to statement n
Z

if no illegal divisio.ns have been attempted since

the previous IF DIVIDE CHECK statement. The use of this statement resets the internal in

dicator tested.

TIT LE Statement TITLE Name

This statement is used to provide each program with a name by which it may be referred

to in connection with the collector tape, discussed in Section VI. This statement must be on

the first card of every program. The word TITLE must be punched in columns Z through 6 of

the statement card, and the desired title in columns 7 through 14. The name used should not

duplicate any already on the collector tape. If no TITLE statement is provided, a dummy

name will be supplied by the Compiler; it will ordinarily be desirable to correct the omission,

and the dummy name makes it at least possible to make reference to the compiled program in

order to change the name. A TITLE statement is not required for FUNCTION and

SUBROUTINE subprograms (see Section VI), and in fact is irrelevant; the name of the sub

program becomes its name on the collector and any TITLE card is ignored. A TITLE card

must not be preceded by a blank card.

END Statement END

This is a non-executable statement which must appear at the end of every program or

subprogram deck. It is required in order to separate programs in batch compilation, but it is

nevertheless required in every program, even if the "batch" consists of only one program.

The word END must be punched in columns 7 through 9 of the statement card; anything else on

the card is ignored. An END card must not be followed by a blank card.

FINIS Statement FINIS

This is a non-executable statement which must appear at the end of the deck of programs

being batch compiled. It is required even if the batch consists of only one program. The

word FINIS must be punched in columns Z through 6 of the card, and the remainder of the card

must be blank. It may help to note that a FINIS statement is always preceded by an END state

ment, although an END statement is not always followed by a FINIS statement; if several pro

grarn.s are being batchcornpiled, a FINIS appears only at the end of the entire batch.

41

SECTION V

INPUT AND OUTPUT STATEMENTS

There are a number of considerations which must be included in planning and writing

input and output statements. Some or all of the following factors are involved in thes e

statements:

1. The choice of input or output device. This is handled by choosing the
appropriate statement from: READ; READONE; READTWO; PRINT;
PRlliTONE;PRlliTTWO;PUNCH;PUNCHONE; PUNCHTWO;READ
TAPE; READ INPUT TAPE; WRITE TAPE; and WRITE OUTPUT TAPE.

Four other statements are classified as input-output statements on the
basis that they involve input-output devices or have a form similar to
input- output statements but they do not actually transmit any informa
tion. These are: ERASE; END FILE; REWIND; and BACKSPACE.

2. The determination of what information is to be transmitted. This is
handled by the use of a list. This list specifies the names of the
variables to be read in ;;-written out. (The word "list!! is used here
in a specialized sense which is discussed at length below.)

3. The arrangement of the information on the input medium (cards,
magnetic tape), or the arrangement on the output medium (cards,
printer, tape). This is handled by providing suitable information
in a FORMAT statement. A number of the_input-output statements
are not required to reference a FORMAT statement, either because
they do not transmit information or because the format of the informa
tion is fixed.

4. The type of conversion to be applied between the external and internal
information. This is handled by writing an appropriate field specification
in a FORMAT statement.

In this section we shall fi;rst discuss what is meant by a list, then the FORMAT statement

and how it operates in conjunction with a list, then the field specifications (which covers both

format control and conversion type), and finally each of the input and output statements will

be discus s ed in turn.

Definition of a List

Any input or output statement which actually transmits variables requires a list, in

order to specify the variables to be transferred between storage and the input or output

device, and to specify the sequence in which they are to be transferred. The simplest

type of list consists simply of the names of the variables to be transferred. For instance,

if to read a card we write:

READ ZOO, A, B, C(l), C(2), K78

43

SECTI'ON V. INPUT AND OUTPUT STATEMENTS

where 200 would be the statement number of a FORMAT statement, then the list consists of

the names of the variables A, B, C(1), C(2), K78. The first five fields on the card, as

defined in the FORMAT statement, would be read into the storage locations assigned to the

variables named, with the first field being taken as A, the second as B, etc. As we shall

see, the FORMAT statement, in addition to specifying the length of each field, would in effect

state how to expect to find the numbers punched in the fields.

It is permissible to use fixed-point variables which appear in a list as subscripts

elsewhere in the same list. One way in which this flexibility might be useful would be in

reading elements of an array which appear in a deck of cards in random order. Suppose,

for instance, that the elements of a two-dimensional array (matrix) are punched one to a

card, with the row and column number of each element punched on the same card with it,

in the order I, J, DATA(I, J). The list is I, J, DATA(I, J). Assuming that 300 refers to

a FORMAT statement which specifies that the first two numbers on the card are to be taken

as fixed point and the third as floating point, the READ statement is:

READ 300, I, J, DATA(I, J).

When this is done with input, however, the variables used as subscripts must appear in the

list as input variables before they appear as subscripts. We shall see immediately below

that there is another way in which fixed-point variables can be used in a list which is some

what similar to this technique.

When parts of arrays or entire arrays are to be transferred, it is often not necessary

to name each element explicitly. To transfer an entire array, it is only necessary to name

the array in a list without any subscripts. The name of the array must, of course, appear

in a DIMENSION statement, but in the list it need not carry any subscripting information.

When only certain elements of an array are to be transferred, it is often possible to

specify them in the list by giving indexing information in a way which parallels a DO loop,

although it is not literally a DO loop. This is done by enclosing the indexed variables in

parentheses and giving the indexing information just before the closing parenthesis. For

instance, the statement:

READ 400, (DATA(I, I), I = 1, 10)

would call for 10 numbers to be read from cards and stored as the first 10 elements in the

first row of the matrix DATA. The same 10 elements could be read in as main diagonal

elements by the statement:

READ 400, (DATA(I, I), I = 1, 10).

Just as it is possible to have nests of DO's, it is possible to have nests of up to a maximum

of three indexed variables in a list. Suppose, for an example, that we wanted to read 50

44

SECTION V. INPUT AND OUTPUT STATEMENTS

numbers from cards, taking the first 10 as the first 10 elements of the first row of DATA, the

second 10 as the first 10 elements of the third row of DATA, the next 10 as the first 10 elements

of the fifth row of DATA, etc. It could be done with the statement:

READ 400, «DATA(I, J), J = 1, 10), I = 1, 9, 2).

In a certain sense, this statement may be thought of as equivalent to the DO loop:

DO 10 I = 1, 9, 2

DO 10 J = 1, 10

10 DA T A(I, J)

In this example, statement 10 is to be understood in the sense: "The next number read is to

be taken as DAT A(I, J)." Thus it is seen that the idea of "inner" and "outer" DO's corres

ponds to the inner and outer indexing information in the list.

It has been noted earlier that fixed-point variables which appear in the list may be used

elsewhere in the list as indices; on input, the appearance must be earlier in the list than

their use as indices.

To illustrate some of these ideas, suppose that the following list is specified with an

input statement, and that the value of the integer N which is read in is 2:

A, N, B(N), (C(I), D(I, 2), I = 1, N),

«E(I, J), I = 1, 2), F(J), J = 1, 5, 2).

The variables read in would be in the following sequence:

A, N, B(2), C(l), D(l, 2), C(2), D(2, 2),

E(l, 1), E(2, 1), F(l), E(l, 3), E(2, 3), F(3),

E(l, 5), E(2, 5), F(5).

The effect of the list would be that of the following implicit DO loop, again assuming

that the value of N read in is 2:

l. A

2. N (= 2 by assumption)

3. B(2)

4. DO 6 I = 1, N

5. C(I)

6. D(I, 2)

7. DO 10 J = 1, 5, 2

8. DO 9 1= 1, 2

9. E(I, J)

10. F(J)

45

SECTION V. INPUT AND OUTPUT STATEMENTS

FORMA T Statement FORMAT (Field Specifications)

All of the input and output statements which require a list, with the exception of READ

T APE and WRITE TAPE, require, in addition, the statement number of a FORMAT statement

which describes the information format to be used. The FORMAT statement also describes,

in some cases, the kind of conversion to be performed between the internal and external

representation of the information to be transferred. A FORMAT statement is not executable,

i. e., does not by itself cause any action in the object program, and may be placed anywhere

in the source program.

In the discussions which follow, the term unit record is used for generality. Depending

on which input or output statement is us ed, a unit record may consist of:

1. A line to be printed on an on-line printer, with a maximum of 120 characters;

2. A punched card to be read from an on-line card reader or punched on a direct1y
connected punch, with up to 80 characters;

3. Analphabetic tape record to be read or written, with a maximum of 120
characters;

4. A binary type record to be read or written, with any number of words; a unit
record may be any number of physical records on tape; this is handled automatically.

The field specification in a FORMAT statement describes the unit record{s) involved

by giving, for each field in the record, beginning with the first character of the record:

1. The type of information and/ or the type of conversion to be used; this is
done with the s even field specification characters discus sed in detail
below;

2. The number of characters in the field;

3. For some of the field specifications certain other information is required or
may optionally be given; these cases are discussed below, in connection with
the field specifications.

To give some short examples before proceeding to the details:

1. If the statement FORMAT(FIO. 4) were used in connection with input,
the "Fla. 4" would mean that a la-column field consists of a decimal
number punched without an exponent, with four places after an under
stood decimal point, and is to be converted to a floating-point variable;

2. If the statement FORMAT(I 5) were used in connection with output, the
"IS" would mean that a fixed-point (i. e., integer) variable is to be writ
ten out into a five-character field in the external medium, with the
integer placed in the right side of the field, and with a minus sign
immediately to the left of the number if it is negative.

If a number of consecutive fields are to be treated under the same field specification,

it is permissible to write the number of such fields before the field specification characters.

46

SECTION V. INPUT AND OUTPUT STATEMENTS

Thus, "5FIO. 4" would mean that there are five fields of the type described in the first example

above. It is also possible to call for the repetition of groups of fields, by enclosing the group

of field specifications within parentheses and writing the desired number of repetitions in

front of the opening parenthesis. For example, suppose that a unit record consists of fields

described by 13 and Fla. 4 alternately, with eight such pairs. The easy way to define such a

situation would be 8(13, FIO.4). Note that this is not equivalent to 813, 8FIO.4; the latter

would mean eight consecutive 13 fields, then eight consecutive Fla. 4 fields, instead of the

intended alternation of the two types. Only one level of such grouping is permitted, i. e.,

parentheses within parentheses are not permitted for this purpose.

When the list of an input or output statement is used to transfer more than one unit

record, with the different records having different formats, a slash (/) is used to separate

the format specification of each record. If for example the statement:

FORMAT (l013/ 8FIO. 6)

were used with a READ statement, the effect would be to read one card under control of the

1013, and a second under control of 8FIO. 6. It is. possible to specify that the first one or

more records have a special format, and that all following records have the same format;

this is done by enclosing the last record specificationdn a second set of parentheses. A

slash always indicates the end of one record and beginning of a new one; the closing paren

thesis of the FORMAT statement always indicates the end of a record. The skipping of

entire records, which in practice usually means the skipping of lines on a printer, is called

for by writing successive slashes. The skipping of n records is called for by writing n + I

slashes.

With the exceptions of a FORMAT statement which consists entirely of Hollerith fields

and of the case of the "blank" field specification (see below), a FORMAT statement is always

used in conjunction with the list of an input or output statement. The list specifies the vari

ables to be transferred and in what sequence, and the associated FORMAT statement specifies

the format of each variable as well as the length of each record, if there is more than one.

As the object program transmits the variables named in the list, it scans the FORMAT state

ment, from left to right, to find the proper field specification for each variable, taking into

account any repetition of field specifications or groups of field specifications. Whenever

Hollerith field specifications are encountered in scanning the FORMAT statement, they are

dealt with in the proper place, without any transmission of variables from the list. The

transmission of variables is terminated only when all items in the list have been transmitted,

but any remaining Hollerith fields will be dealt with even after the transmission of the last

variable specified in the list. If the last field specification in the FORMAT statement has

47

SECTION V. INPUT AND OUTPUT STATEMENTS

been used and items named in the list remain to be transmitted, the closing parenthe sis indi

cate s the end of unit record, and scanning of the FORMAT statement begins again with the first

field specification after the last open parenthesis in the statement.

To illustrate a simple case of scanning the FORMAT statement to find the field specifi

cation corresponding to each variable, consider the following:

ALGEBRAIC COMPILER STATEMENT
TITLE I WRITTEN BY CHECKED BY DATE PAGE OF

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT c NUMBER 1

~
I 6 II 23 38 52 66 72 80

PRIA 7
I I I I I I I I 1'1 I I I

25, A B C

25 FOil"" "T{FfZ.4 FI 3.4- FI4.4)

The variable A would be associated with F12.4, B with Fl3.4, and C with Fl4.4. On the

other hand, the following situation is also called scanning:

ALGEBRAIC COMPILER STATEMENT
TITLE I WRI TTEN BY CHECKED BY DATE PAGE OF

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT
c NUMBER 1

N
I 6 II 23 38 52 66 72 80

I I I I I I I

PRIN T I Z 5, A,B,C
125 FOKM AT(SfI6.6) -- -. --

In other words, if in the scanning of the FORMA T statement a repeated field is found, it is used

as many times as the repetition number. In the above case~ the printed output would appear on

one line. If the repetition number were not included, three separate lines would occur, and the

FORMAT statement would appear as:

ALGEBRAIC COMPILER STATEMENT
TITLE I WRITTEN BY CHECKED BY DATE PAGE OF

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT c NUMBER 1

~
I 6 " 23 38 52 66 7~ 80

I 1 I I I I I I I I I I I I I I

P~IN T Z 25 A 8, (

225 FORhl ATt F /(,.. 6)

In this case there remain items to be transmitted when the last field specification has been used,

and scanning will begin again with the first (and in this case only) field specification after the last

open parenthesis in the statement. Each number will appear on a separate line since the closing

parenthesis indicates the end of unit record. The F16. 6 is used for all variables transmitted,

no matter how many there are.

48

SECTION V. INPUT AND OUTPUT STATEMENTS

Here is an example of a case where the repetition number is required:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY ______ _ CHECKED BY ______ _ DATE ____ _ PAGE __ OF __

A. STATE- g
B. MENT N ALGEBRAIC COMPILER STATEMENT c NUMBER 1

~
I 6 II 23 38 52 66 72 BO

PIl Itt T 325, L, l f)" TA' (I) , r':' " 4) T T-T, , I I I I' , , ,

A M

325 FbKM AT lLS, F '0.2 , fF'5 .. 5. 1.7)
1:-1....- - -

Here, 15 is associated with L, FIO.2 with A, F15.5 with the four values of DATA(I), and

I7 with M. Since the four field specifications are different, there would be no way to make

use of repeated scanning.

The following is a case where repeated scanning can be used. Suppose that we are

reading a deck of cards which consists mostly of elements of a one-dimensional array punched

one to a card, but where the first card contains a fixed-point number N which specifies how

many elements there are. Suppose the first card has N punched in the first three columns,

and that on the element cards the element number is punched in the first three columns and

the element in the next 12 columns. The following two statements would call for the entire

deck to be read and each element stored in the proper place:

ALGEBRAIC COMPILER STATEMENT
TITLE ... ' -'--'--'--'--.L...-L.....Ji..--I WRITTEN BY ______ _ CHECKED BY ______ _ DATE ____ _ PAGE __ OF __

A. STATE- g
B. MENT N ALGEBRAIC COMPILER STATEMENT c NUMBER 1

~
I 6 II 23 38 52 66 71. 80

Re li~ 4l5, N, (iJ A/lf{A'y (J) I I':. "
AI)' , , I , , , , I fTT T T T

4-l5 FORM A1(13/(I3, FI l.b» -
This illustrates a number of points. The READ statement first gets N, which is associated

with the first I3; the slash in the FORMAT statement indicates that after N there is nothing

more on that card. In the READ statement the parentheses indicate variables with indexing

information supplied. On each card after the first, the READ statement expects to find a

fixed-point number and a floating-point number, and expects to find N such cards because

of the indexing information. The indexing information here is a little different from what

we have had before; here, J is read from the card and then used immediately to determine

where in the array to store the floating-point number. The indexing parameter I is used

only to control the total number of times the process should be repeated, and is not employed

as a subscript. In the FORMAT statement, when the last field specification (FI2. 6) has

been used, scanning begins again with the second 13, not the first, because of the rule about

49

SECTION V. INPUT AND OUTPUT STATEMENTS

parentheses in the FORMAT statement. This is how we want it, because otherwise we would

always be expecting to find two fixed-point and then one floating-point number, which is the

case only at the beginning of the deck. To review: the slash in the FORMAT statement is

necessary to indicate that the first record ends after the one number; a slash is not necessary

after the F12. 6, because the closing parenthesis of the FORMAT statement always indicates

the end of a record.

Another example of FORMAT statement scanning appears after the discussion of the

Hollerith field specification.

Scale Factor

Before investigating the various field specification types in detail, we must mention

a matter which applies to two of them. That is the optional use of a scale factor with the "E"

and "F" field specifications. This is done by writing "sP" before the field specification,

where s is the scale factor. Examples of their use appear below; here we state only a few

general considerations in order to avoid repeating them with the two discussions to which

they apply.

1. Once a scale factor has been given, it applies to all "E" and "F" field
specifications in the same FORMAT statement, until another scale
factor appears in the scanning of the statement;

2. If no scale factor is given, it is taken to be zero. Once a non-zero scale
factor has been given, a scale factor of zero must be given in order to
return to the "normal" mode;

3. Scale factors apply only to the "E" and "F" field specifications, and
with the "E" type only to output. Use of the scale factor with any other
field specification or with input on the "E" type has no effect;

4. When a scale factor is written with a field specification which includes
a repetition number, the repetition number is written between the scale
factor and the E or the F. If there is no repetition number, i. e., if
it is understood to be 1, then it may be written or not. Thus, with the
"F" field specification, for instance, the following are all permis sible:

3P4F12.4, 3PFl2.4, 3PlF12.4,

the last two are equivalent.

Field Specification "E" (Floating Point) Ew.d

The "E" field specification is used to indicate conversion between an internal floating

point number and an external floating-point number, i. e., one written with an explicit

exponent. The total number of characters in the field in the external medium, including

sign, decimal point, exponent, and any blanks, is specified by w. The number of decimal

places after the decimal point (not counting the exponent) is specified by d; d is treated

modulo 10, i. e., only the last digit is used if more than one digit is written. The field

50

SECTION V. INPUT AND OUTPUT STATEMENTS

specification applies both to input and output, of course, but since the usage is somewhat

different between input and output, we shall describe them separately.

Input Data Preparation

A sign, if it appears, must be the first non- blank character of the field.

The use of a + is optional; i. e., if no sign is punched, the number is taken to

be positive. The use of a decimal point is optional; if it is not supplied, then

the position of the as sumed decimal point, counted from the right, is given by

d, but if a decimal point is supplied, then its position overrides d. Blanks

embedded in the number are taken to be zeros. The llnumberll part of the

field must not exceed 12 digits, not counting sign or decimal point. The

exponent part of the field is of the general form E±ee, where ee is the nu

meric exponent, but several simplifications for convenience in punching

cards are permitted.

A positive exponent may appear with the + omitted or replaced with a

blank, i. e., in the forms E ee or Eee. If the first digit of the exponent is

zero, it may be omitted. If the exponent appears with a sign, the E may

be omitted. Thus, the following are all permissible (and equivalent) forms

for the exponent plus 2:

E + 02, E 02, E02, E + 2, E2, +02, +2.

A scale factor has no effect on input with the IIEII field specification.

For a first illustration, observe that the following numbers all

convert to the same floating-point number if read in under the control of

E14.0 (remember that a decimal point in the field overrides d in the field

specification):

+1234. 5678E04, 1.2345678+7, l2345678.EO, 123456780.-1

With the same reminder, the following numbers all convert to the same

floating-point number under control of E14. 7:

-12345678+0, -1.2345678+0, -1234. 5678E-03, -0.12345678+01

Output Data Presentation

The number will appear at the right of the field if w is larger than the

number of characters in the field. If w is not large enough to contain the

converted internal number, leading characters will be lost and no indication

of the fact given. There will be no embedded blanks in the field, with the

51

SECTION V. INPUT AND OUTPUT STATEMENTS

exception that + signs are not entered but are replaced with blanks. In the absence

of a scale factor, the field will appear in the form ±O. nn •.• E±ee (except that any

+ signs do not appear), where the number of places after the decimal point is speci

fied by d.

A positive scale factor may be used, by writing the field specification in

the form sPnEw. d, where s is the scale factor, and n is the repetition number.

The effect of the use of the scale factor in this case is to move the decimal

point s places to the right and to decrease the exponent by s. (The effect of a

scale factor when used with the "F" field specification is different). Recall

also that once a scale factor is given it continues to apply to all succeeding

"E" and "F" field specifications in the same FORMAT statement until another

scale factor appears.

To illustrate, suppose that we have in storage three numbers which if

printed under control of 3E17. 8 would appear as:

0.12345678E 03 -0.44444444E 00 0.87654321E-04

The same numbers printed under control of 3E13. 4 would appear as:

0.1234E 03 -0.4444E 00 0.8765E-04

The same numbers printed under control of IP3E9. 2 would appear as:

1.23E 02-4.44E-Ol 8.76E-05

Note that by allowing only the minimum number of places in the field, we

have crowded the numbers together. The numbers are not rounded. The

same numbers printed under control of 7P3E20. I would appear as:

1234567.8E-04 -4444444.4E-07 8765432. IE-II

Field Specification "F" (External Fixed Point) Fw. d

The ifF" field specification is used to indicate conversion between an internal floating

point number and an external fixed-point number, i, e., one written without an exponent.

The total number of characters in the field, including sign, decimal point, and any blanks,

is specified by w. The number of decimal places after the decimal point is specified by d;

d is treated modulo 10, i. e., only the right-hand digit is used if more than one digit is

written.

Input Data Preparation

A Sign, if it appears, must be the first non-blank character of the field.

The use of a + sign is optional; a number written without a sign is taken to be

52

SECTION V. INPUT AND OUTPUT STATEMENTS

positive. The us e of a decimal point is optional; if it is not supplied, then the

position of the as sumed decimal point, in terms of the number of digits to its

right, is given by d, but if it is supplied its position overrides d. Blanks

embedded in the number are taken to be zeros. The number must not exceed

12 digits, not counting sign, blanks, or decimal point. Shown below are some

sample numbers, and in parentheses the number to which they would convert

if read in under control of FlO. 4:

+12345678 (+1234.5678)

1234.5678 (+1234.5678)

-1.2345678 (-1. 2345678)

.012345678 (+.012345678)

-1. 2 (-1. 2)

+123456 (+12.3456)

A scale factor may be used with the "F" field specification for input.

The effect of a scale factor in this case is to multiply the external number

by 1 0 to the negative of the scale factor:

Internal nUnlber = External number . 10- s

A scale factor in this case may be positive or negative. To illustrate, the

specification 2PFlO. 4 would convert some of the numbers displayed above,

as shown in parentheses:

+12345678

+123456

(+12. 345678)

(+0. 123456)

With the specification -2PFI0. 4:

+12345678

+123456

Output Data Presentation

(+123456.78)

(+1234.56)

The number will appear at the right of the field, if w is larger than the number

of characters in the field. If w is not large enough to contain the converted internal

number, characters at the left will be lost and no indication given. Positive numbers

appear without a + sign. A positive or negative scale factor may be used by writing

the field specification in the form ±sPnFw. d, where a + sign is optional, s is the

scale factor, and n is the number of repetitions of the field specification. The effect

of the use of the scale factor in this case is to move the decimal point of the external

number s places to the right if s is positive, or the left if s is negative. As a formula,

s is a number such that:

External number = Internal number. lOS

53

SECTION V. INPUT AND OUTPUT STATEMENTS

For examples, consider the numbers 3.14159265, 2.7182818, and -39.478418

all assumed to be in storage as floating-point variables. With the field specification

3F15.5, they would appear on output as:

3.14159 2.71828 -39.47841

With the field specification 3F8. 2, they would appear as:

3.14 2.71 -39.47

If we used 3F8.6, we would be in trouble, because there would not be enough room

for the third number. What would appear would be:

3.1415922.7182819.478418

This illustrates that in using the "F" field specification it is essential to know

the maximum size of the numbers which will be written out, and allow enough

space for them. With the field specification 4P3Fl 0.0, the numbers would

appear as:

31415. 27182. -394784.

With the field specification -2P3F6. 1, the numbers would appear as:

.0 .0 -.3

This illustrates that by making the number of decimal places too small, all

significant figures can be lost.

Field Specification "I" (Integer) Iw

The "I" field specification is used to indicate conversion between an internal fixed-point

integer and an external decimal integer. The total number of characters in the field, including

sign and any blanks, is w.

54

Input Data Preparation

A sign, if it appears, must be the first non-blank character in the field. The

use of a + sign is optional; if no sign appears, the integer is taken to be positive.

The use of a decimal point is, of course, not permitted. Embedded blanks are
44

taken to be zeros. The number, not counting sign, must not exceed 2 ,which

is approximately 10
13

For many purposes, the practical limit is 2
15

, i. e.,

for purposes of subscripting or indexing in a DO loop.

Output Data Presentation

The integer will appear at the right of the field if w is larger than the

number of characters in the field. If w is not large enough to contain the con

verted internal number, the sign and high-order digits will be lost and no

indication given. Positive integers appear without the + sign.

j
I

I'

I

il

SECTION V. INPUT AND OUTPUT STATEMENTS

Field Specification "H" (Hollerith) wH

The w characters immediately following the letter H, where w may be any integer not

exceeding the size of the unit record, are placed in the record in the position indicated by

the position of the Hollerith field specification in the FORMAT statement. The Hollerith

field specification does not call for the output of any variables, but the output of the fol

lowing text itself. Any Honeywell 800 character may be used, including the character

blank; this is the only instance in which a blank in a statement is not simply ignored. Indi

cation of the presence of Hollerith text is not required in the list of the output statement

which refers to the FORMAT statement containing the Hollerith field specification. When

ever a Hollerith field specification is encountered in the scanning of the FORMAT statement,

the following text is written out and scanning continues without any variable having been trans

mitted. The Hollerith text is not available to the programmer for use in any other way than

for input and output.

The characters printed by the high- speed and standard- speed printers available for the

Honeywell 800 are different in a few cases. Reference should be made to the character

configuration table in Appendix A to determine what the differences are and what characters

are printed by the two printers.

It is possible to write a record consisting entirely of Hollerith text by putting nothing

but Hollerith text in a FORMAT statement and by giving no list with the output statement.

For all output statements that result in printing, e. g., PRINT and WRITE OUTPUT

T APE, single spacing of the printed lines will result unless specific control is given other

wise. This is accomplished through the use of the Hollerith field specification in a FORMAT

statement. If a field specification lH is used as the first field specification in a FORMAT

statement associated with an output statement, no data per se is transm.itted, but rather the

one Hollerith character is interpreted as a control character. The permissible characters

and their interpretation are:

Blank - single space after the current line is printed

+ - suppress spacing after the current line is printed

a - double space after the current line is printed

1 - space to head of form after the current line is printed

2-9 - this number of lines are to be spaced after the current line is printed

If any other character is used in this connection, it will be placed in the output area. If this

Hollerith field specification is used in connection with punching, this control character will

not be punched.

55

SECTION V. INPUT AND OUTPUT STATEMENTS

In every case, the spacing information applies only to the spacing between the current

line and the next one and does not carryover to any subs equent lines.

To illustrate this specialized usage, consider the following:

ALGEBRAIC COMPILER STATEMENT
TITLE· 1 , WRITTEN BY CHECKED BY DATE PAGE OF

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
66 72 I 6 " 23 38 52 80

I I I I' , , 1'1 I I , , , , , , , , ,
pKr~T ~6, A 13,C

S6 fORM AT (1 Hi. ~ F1 6.6)

- - .

The effect of this statement pair is to print the line containing the three fields A, Band C

and then space to the head of the next form or page.

When a FORMAT statement containing Hollerith text is referenced by an input statement,

the listed text is replaced by whatever text appears in the corresponding field of the input

record. If the same FORMAT statement is later used with an output statement, the text

which has been "read into" the FORMAT statement will then be transferred to the output

record. The text thus originated is still not available to the programmer for use in any

other way than for input and output. (The "A" field specification described below is available

for use in entering alphabetic data which ~ then be manipulated by the program.)

To illustrate the scanning of FORMAT statements containing Hollerith fields, consider

the following:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE_OF __

A, STATE- g
B, MENT N ALGEBRAIC COMPILER . STATEMENT
C NUMBER T

~,
I 6 " 23 38 52 66 72 80

PR.IN T r I , , , I I I 1'1 I I I I I' , , I I

bO()

60() F()KM AT (33H WIN6 FL1I7TE£. CA LC,U L ATION TYPE 3/ / /)
P~IN T hOI [CASE (}(lJJ, Y (J) -1 (J) • J=J,3)

I hOI FoRM IAr(4/oi(ASE r3 II (41/)(= FIZ • .3 'I'H y= F 12.3 I 4/-1 l:: F /Z .3 J)

- . ,

The first FORMAT statement and PRINT statement pair will print a page heading, and

space three lines, two of which occur because of the three slashes, and the third, be

cause of the closing parenthesis. The second pair calls for an identifying number to be

printed on the first body line, with the data going on following body lines with identifying

information to be printed before each number. The first lines printed on a page by this

56

II

Ii

SECTION V. INPUT AND OUTPUT STATEMENTS

short program might look like:

WING FLUTTER CALCULATION TYPE 3

CASE 24

x= 5630.818 y= -78.903 z= 889.654

x= 6793.073 y= -79.005 Z= 1009.462

x= 557l. 794 y= -77.238 z= 850.670

Notice that "CASE 24" prints on a separate line because of the slash in the second FORMAT

statement. The blanks in the text following the 4H field specifications are deliberate, and

results in the two spaces which separate the text from the previous number. Note that the

parentheses in the second FORMAT statement cause the field specifications enclosed in the

parentheses to be scanned repeatedly, until all the variables in the list have been transmitted.

Field Specification "0" (Octal) Ow

The "0" field specification is us ed to indicate conversion between an internal 48-bit

Honeywell 800 word and an external fixed-point octal integer. The total number of charac

ters in the field, including sign and any blanks, is w, which must not exceed 16.

Input Data Preparation

If the field consists of 16 digits, it must not have a sign; it is then converted

to the 48-bit representation of the numher and stored as such, i. e., with the four

bit positions of the sign of the word not handled any differently from the other 44

bit positions of the word. If the field has fewer than 16 characters and appears

without a sign, the conversion is handled as. though enough zeros were appended

at the right of the field to make a total of 16 digits. If the field has fewer than 16

characters and appears with a - sign, then the converted number is placed at

the right-hand end of the word and all four sign bits are set to zero; if the field

consists of a - sign and 15 digits, the leading digit must not exceed 3. If the

field has fewer than 16 characters and appears with a + sign, then the converted

number is placed at the right-han<;l end of the word and all four sign bits are set

to 1; if the field consists of a + sign and 15 digits, the leading digit must not

exceed 3. If an 8 or 9 or any other illegal character appears, it will be con

verted to its alphanumeric representation, the low-order three bits stored for

that character, and no error indication given.

57

SECTION V. INPUT AND OUTPUT STATEMENTS

Output Data Presentation

If w is 16 or less, the right w octal digits of the converted 48-bit nUInber

will be written without sign. If w is greater than 16, the sign bits will be treated

as sign bits, the nUInber being written with a plus sign if anyone or Inore of the

sign bits is I, and with a Ininus sign if the sign hits are all zero; the nUInber will

be written into the right side of the field.

For an exaInple, suppose that there is in storage a nUInber which in binary

would appear as:

110 100 000 001 010 all 100 101 110 III 101 010 III 000 110 101

The four leftInost bits (binary digits) are called the sign bits of the word; in our

case they are sOInetiInes treated as sign bits and sOInetiInes not. The following

list shows several "a" forInats and how they would cause the nUInber above to

be written out:

016 6401234567527065

017 +001234567527065

010 4567527065

03 065

Suppose that there is another nUInber which in binary is:

000 all III 110 101 100 all 010 001 000 all 101 100 010 010 010

The saIne field specifications would produce:

016 0376543210354222

017 -376543210354222

010 3210354222

03 222

Field Specification "A" (Alphabetic) Aw

The "A" field specification is used to indicate conversion between an internal 48-bit

Honeywell 800 word, considered as the alphanuIneric representation of eight Honeywell 800

characters, and an external field consisting of any cOInbination of eight or fewer Honeywell

800 characters

58

Input Data Preparation

If w is less than 8, the field will be stored in left-justified forIn, i. e.,

the first character of the field will appear in the leftInost character position

of the cOInputer word, and the extra characters at the right end of the cOInputer

word will be filled with blanks.

I;

I~
I

i I~
1'1 II

II
I

I

SECTION V. INPUT AND OUTPUT STATEMENTS

Output Data Presentation

If w is less than 8, the w characters at the left end of the computer word

will be written.

To illustrate one possible usage of this field specification, suppose that

12 five-character identification words have been punched on a card, and are

to be read in as the 12 elements of a one-dimensional array named TYPE. It

is desired later, on output, to print one of these identifying words with each

element of another array named DAT A; if the first element of DAT A is printed,

then the first element of TYPE is to be printed following it, etc. The five

character identifying word is to be printed in parentheses. The 12 five-character

groups could be read in with:

ALGEBRAIC COMPILER STATEMENT
TITLE.' " . . , WRITTEN BY CHECKED BY DATE PAGE

A. STATE. g
B. MENT N ALGEBRAIC COMPILER STATEMENT C NUMBER T

~
I 6 " 23 38 52 66

WE04D 700,
I I I 'I I 1 I

TYPE
700 RJRM 4T{J2A5)

The READ statement could have been READ 700, (TYPE(I), I = I, 12), but

this is not necessary; recall that an entire array may be moved simply by

giving its name without subscripting information. Now, to print out an

element of DATA and the corresponding element of TYPE in parentheses,

we could write:

ALGEBRAIC COMPILER STATEMENT

7.
r I

OF

80

11

TITLE ,-I ~...L-...L--'--.1.-L-JL-..J WRITTEN BY ______ _ CHECKED BY ______ _ DATE ____ _ PAGE __ OF __

A, STATE. g
B, MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
I 6 II 23 38 52 66

PR IN T 701 (JAT R(TYPElIJ
I ., ,., I I

I) ,

701 FORM. AT (E20 .. 8) 3H (lAS J IH) - -
This must be read very carefully. In the FORMAT statement, the two blanks

after the 3H are deliberate, being intended to separate the left parenthesis

from the number. The left parenthesis then is text, not a controlling paren

thesis in the FORMAT statement. The same comment applies to the first

right parenthesis after the IH which could easily be misread. A typical line

72 80

I I I I I I I I I

59

SECTION V. INPUT AND OUTPUT STATEMENTS

printed by these statements might be:

-0.80402l97E-04 {GAS08}

Field Specification "B II {Blank} 1 wB

Input Data Preparation

On input, the "B" field specification calls for the next w character positions

in the input record to be skipped over. No indication is required in the list of the

input statement referencing the FORMAT statement.

Output Data Presentation

On output, the "B" field specification calls for w blanks to be inserted into

the output record. No indication is required in the list of the output statement

referencing the FORMAT statement.

This field specification does nothing that cannot be done in other ways, but

it is often a considerable convenience. One common use is in avoiding long

Hollerith field specifications to introduce long strings of blanks.

READ Stat ement READ n, List

In this statement, n is the statement number of a FORMAT statement, and the list is as

described previously. The READ statement calls for the reading of cards from the on-line

card reader designated as number 1. As many cards are read as are required to supply the

amount of information specified in the list and the FORMAT statement. The arrangement of

information on the cards is defined in the FORMAT statement; each field is converted, also

as defined in the FORMAT statement, and placed in the computer storage location assigned

to the corresponding variable named in the list.

If, when the READ statement is executed, the card in the card reader has the word

FINIS punched in columns 2 through 6, the program will expect to find an IF END OF FILE

statement immediately following the READ. This provides a simple way to signal the end

of a deck which consists of a variable number of cards, because the IF END OF FILE state

ment allows one to alter the flow of control upon detection of the end-of-file condition. If

this condition arises and there is no IF END OF FILE statement immediately following the

1 The field specification "X" may be used interchangeably with field specification liB ".

60

I

I

SECTION V. INPUT AND OUTPUT STATEMENTS

READ, the object program will give an error indication and stop. It is permissible to have

more cards following the one with FINIS in columns 2 through 6, so that the FINIS card may

be used to separate groups of data cards into files.

READ ONE Statement READ ONE n, List

This statement is exactly equivalent to the READ statement.

READ TWO Statement READ TWO n, List

This statement is equivalent to the READ and READ ONE statements, except that

cards are read from the on-line card reader designated as number 2.

PRINT Statement PRINT n, List

In this statement, n is the statement number of a FORMAT statement, and the list

is as described previously. The PRINT statement causes lines to be printed on the on-line

printer designated as number 1. As many lines are printed as are necessary to use the amount

of information specified in the list and contained in the FORMAT statement. The arrangement

of information in the lines is defined in the FORMAT statement; each variable in the list is

converted, also as defined in the FORMAT statement, and written on the printer. Up to 120

characters may be printed on one line.

PRINT ONE Statement PRINT ONE n, List

This statement is exactly equivalent to the PRINT statement.

PRINT TWO Statement PRINT TW 0 n, List

This statement is equivalent to the PRINT and PRINT ONE statements, except that

lines are printed on the on-line printer designated as number 2.

PUNCH Statement PUN CH n, List

This statement operates the same way as the PRINT statement, except, of course,

that cards are punched on an on-line card punch instead of lines being printed. Up to 80

columns may be punched in one card.

PUNCH ONE Statement PUNCH ONE n, List

This statement is exactly equivalent to the PUNCH statement.

PUNCH TWO Statement PUNCH TWO n, List

This statement is equivalent to the PUNCH and PUNCH ONE statements, except that

cards are punched on the on-line card punch designated as number Z.

61

SECTION V. INPUT AND OUTPUT STATEMENTS

READ INPUT TAPE Statement READ INPUT TAPE i, n, List

This st;;t.tement is used to read a magnetic tape which contains records of up to 80

Honeywell 800 characters in alphanumeric form. Such a tape may be produced in either

of the following ways:

1. By the computer, operating in the parallel processing mode. A special
program reads cards from an on-line card reader and writes the informa
tion onto a tape; no other parallel-processed program is affected nor
slowed significantly. The tape so produced may later be read by an
Algebraic Compiler program without ever removing the tape from the
computer, or more often dismounted for use at a later time.

2. By an off-line card-to-tape converter.

These methods are often preferable to reading cards directly with a READ statement, because

tape can be read much more rapidly than cards; if there is voluminous data, the difference in

time can be appreciable.

In this statement, i is an unSigned fixed-point constant in the range of zero through 63,

and must be the number of a magnetic tape unit which is available on the computer system

to be used by the object program. Symbolic tape addresses are not permitted. The statement

number of a FORMAT statement is given by n, and the list is as discussed previously.

With regard to end-of-file conditions, this statement operates much as the READ

statement does, although the conditions detected are somewhat different. Either of the

following is an end-of-file condition for the READ INPUT TAPE statement:

1. Detection of the physical end of·the tape during the reading of a record.
In this case, the reading of the record involved was completed, but
there should not be any more valid information on the tape;

2. Detection of a record produced by a card which had the word FINIS
punched in columns 2 through 6.

WRITE OUTPUT TAPE Statement WRITE OUTPUT TAPE i, n, List

This statement is used to write a magnetic tape record containing up to 120 alphanumeric

Honeywell 800 characters. Such a tape can then be printed by a parallel-processed program

or an off-line tape-to-printer converter.

In this statement, i is an unsigned fixed-point constant in the range of zero through 63,

and must be the number of a magnetic tape unit which is available on the computer system

to be used by the object program. Symbolic tape addresses are not permitted. The statement

number of a FORMAT statement is given by n, and the list is as discussed previously.

62

I

I

I

Ii
I·

i~
j

I
I

III

II

SECTION V. INPUT AND OUTPUT STATEMENTS

As many records are written as are required to exhaust the list. The FORMAT state

ment determines the type of conversion applied to each variable in the list. An END FILE

statement should be given after writing the last record.

It may be noted that a tape to be printed, either by a parallel-processed program or by

an off-line converter, must have information in each record to control the page spacing. See

the discussion of the Hollerith field specification for a disc.ussion of this topic.

With the WRITE OUTPUT TAPE statement, an end-of-file indication is given only by

reaching the physical end of tape during the writing of the record. There is enough tape

beyond the end- of-tape marker to allow continued writing of as many as 2, 048 words.

READ T APE Statement READ TAPE i, List

This statement is used to read tapes produced by a WRITE TAPE statement, and is

similar to that statement in all respects.

It is im.portant to realize that the numbers read from tape are in no way associated

with the names of the variables that were originally placed on the tape. Once the tape has

been written with a WRITE TAPE statement, the only information on the tape consists of

the variables themselves, not their names. Thus, if the list associated with the WRITE

TAPE statement is A, B, C, and the list associated with the READ TAPE statement is

C, A, B, the information formerly in A will be read back into C, etc.

The end-of-file condition for the READ TAPE statement consists of detecting the end

of-file indication written on a tape by an END FILE statement. Note that it is neces sary to

read the record produced by the END FILE statement in order to get the end-of-file indication;

it is not given on reading the last record before the indication written by the END FILE state

ment.

WRIT E T APE Statement WRITE TAPE i, List

This statement is used to write a magnetic tape which is to contain Honeywell 800

words exactly as they appear in storage, without any type of conversion; note that no

FORMAT statement is referenced by the WRITE TAPE statement. It is used in prob.,.

lems where there is tao much intermediate data to be stored within the computer; inter

mediate results can be written onto tape, then brought back in later with a READ TAPE

63

SECTION V. INPUT AND OUTPUT STATEMENTS

statement. A tape prepared by a WRITE TAPE statement cannot ordinarily be meaning-

fully printed on an off-line printer. In the statement, i is an unsigned fixed-point constant

in the range of zero through 63, and must be the number of a magnetic tape unit which is

available on the computer system to be used by the object program. Symbolic tape addresses

are not permitted.

With any of the four preceding tape statements, there exists the possibility that there

could be an error on the tape. It is expected that the incidence of tape errors with the

Honeywell 800 System will be very small, and that most of the errors which do occur can

be eliminated by re- reading the tape record or by use of Orthotronic correction. If, how

ever, an uncorrectable error does occur, it is desirable to be able to alter the flow of

control in the program. In such a rare case, it may be possible to go on to the next set

of data after printing an indication of the bad tape record; perhaps it is necessary to stop

the program if an uncorrectable error occurs. The alteration of the normal statement

processing sequence in the event of such an error can be effected by use of the IF PARITY

statement. This st4ttement, which was discussed in Section IV on control statements, must

be the next executable statement after the tape statement, if it is used. If the statements

IF PARITY and IF END OF FILE are both used, as they often will be, the IF PARITY must

be first.

END FILE Statement END FILE i

This statement is used to write, onto magnetic tape number i, a signal which can be

recognized by the IF END OF FILE statement for binary tapes and by the off-line printer for

alphanumeric tapes. It is ordinarily used to indicate that there is no more valid information

on the tape, but it may also be used to separate groups of records into files, for any purpose

that may be convenient.

REWIND Statement REWIND i

This statement is used to rewind, to the beginning of the tape, the magnetic tape reel

mounted on tape unit number i.

BACKSPACE Statement BACKSPACE i

This statement is used to backspace, by one logical record, the tape mounted on tape

unit number i. In the case of a tape written by the WRITE OUTPUT TAPE statement, a

logical record is the same as a physical record. In the case of a tape written by a WRITE

T APE statement, a logical record may be one or more physical records, depending on the

64

II

I

SECTION V. INPUT AND OUTPUT STATEMENTS

size of the logical record. If the tape is already at the beginning of the tape when this state-

I~ ment is executed, the tape will not move and no indication will be given.
;:1

BUFFER Statement

The BUFFER statement makes it possible to shorten considerably the execution time

of a program involving the reading and writing of large arrays with the READ TAPE and

WRITE TAPE statements. When such a statement is buffered, the reading or writing is

carried on simultaneously with computation, so that there is very little time added to the

program by the tape operations.

The statement may only be used in connection with the READ TAPE and WRITE TAPE

statements, and the list in each case must consist of the name of exactly one array shown

in non- subscripted form. The name of the array must naturally appear elsewhere in a

DIMENSION statement. The symbols used in the specimen statement above are to be inter

preted as follows:

n
1

= IN for reading, OUT for writing

n
Z

= number of the tape unit involved

n3 = number of words in the longest record to be read or written with this tape

As many buffers as required may be set up with one BUFFER statement, or separate state

ments may be used.

For input, a buffer area of the size specified (n
3

) will be set up for each buffered tape,

plus a transfer buffer of approximately 105 words. For output, there will again be a 105-

word transfer buffer, plus one buffer area (no matter how many tapes are buffered) of a

size equal to the largest buffer requested. Input buffering, if used, will result in the com

pilation of an object routine for handling the buffering of approximately 150 instructions,

as will output buffering if used. Several additional special register groups in the Honeywell

800 are required for buffering.

The READ INPUT TAPE and WRITE OUTPUT TAPE statements may not be buffered.

ERASE Statement ERASE (List)

This statement may be used to clear to zero the locations corresponding to the vari

ables specified in the list. It is not, strictly speaking, an input or output statement, since

it does not involve any input or output device. It is discussed here because it resembles an

input or output statement to the extent that it does require a list. This is an executable

statement, i. e., the locations mentioned are cleared to zero every time the statement

is encountered in the object program.

65

SECTION V. INPUT AND OUTPUT STATEMENTS

As an example, an acceptable ERASE statement would be:

ERASE (TEMP, ALINE, NZERO, (BLINE(I), 1= 1, 9, 2))

As an illustration of several of the input and output statements, we shall show a

complete program to read two matrices from tape, multiply them, and prepare an output

tape containing the product matrix.

Suppose that matrix A is to be multiplied by matrix B to give the product matrix C.

Suppose that matrix A has L rows and M columns, B has M rows and N columns; matrix C

will then have L rows and N columns. If c. k is a typical element of the C matrix, it is
1,

defined by the summation formula:

M
c = I a . b

i, k . 1 i, j j, k
J=

This formula must then be evaluated for every combination of i and k, where i is between

1 and L, and k is between 1 and N.

Suppose now that the input tape has been prepared from cards which were punched as

follows. On the first card, L is punched in columns 1 and 2, without a sign; similarly, M

is punched in columns 11 and 12, and N in 21 and 22. The columns between the numbers

are blank. The elements of matrix A then follow on the second and succeeding cards, as

many as are required, in correct order, i. e., with the first subscript varying most

rapidly. Each element is punched in 10 columns, with no space between elements, in the

general form :l:nn. nnnEee. That is, the numbers are punched with a decimal point (which

actually may be anywhere in the number), and with an exponent. The first element of

matrix B appears immediately after the last element of matrix A. This is not necessarily

the best way to set up the input cards, especially if the matrices are very large, because

of the possibility of error in punching the numbers or of getting the cards out of sequence,

and because of the inflexibility of the scheme. For these reasons, one might prefer to

punch one element on each card, with an identification of which element each one is, as was

done in a previous example.

After the two matrices have been multiplied, the matrix C is to be written out on an

output tape for subsequent printing, with the following page format. At the top of the page

there is to be a heading line which identifies the output as being the product matrix C, and

the values of L, M and N. The elements are then to be printed, in normal array order, one

to a line. Each number is to be converted by the "E" field specification, in the same form

as the input elements except that they are printed one to a line for ease of readability.

66

I.,: I'
I

I,
I

I'! !I
"

SECTION V. INPUT AND OUTPUT STATEMENTS

Furthermore, each element is to be preceded by an identification of which element it is,

so that a typical element would appear as:

C(12, 19)= -78.914E 02

A scale factor of 2 will be required to move the decimal point of the number two places

to the right of its normal position with the "E" field specification.

No IF END OF FILE statement is used, since it is assumed that the tape is long

enough to hold all the elements and there would be no end-of-file indication otherwise.

The IF PARITY statement transfers control to a STOP statement if an uncorrectable

error is found.

The DO loop below which performs the matrix multiplication contains three DO's.

The innermost DO performs the summation shown in the formula. The middle DO moves

through the columns of the B matrix, and the outer DO moves through the rows of the A

matrix. Notice that since we accumulate the C element in the location assigned to the

element, it is necessary to set the location to zero initially. The DIMENSION statement

establishes storage space for the three matrices, and sets the maximum size of the

matrices wlJ.ich can be handled, which is assumed to be 30 x 30 here.

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE_OF_

10

II

12

13

14

15

16

17

18

19

20

21 I

A. STATE- g
B. MENT hi ALGEBRAIC COMPILER STATEMENT C NUMBER T

~
I b /I 23 38

TITL ItMTX MPY
I I I I

PIAft N510N A(3DJ 3 1 0) /J (J 0 J 30) i(JO,JO)

'.R.£At INPUT TAPE" 10 L M " ((A(I J) I ::./

X ((B(J , f() J; / At) J(=I,N)
IF I' A~I TY 8,9

8 51 Oil

I () FOR~ AT (I2, 86/ l 2.1 88 1 I 2/ (8EI 0 .0))

9 bO I I I :: 1 L

PO II /(= I N

c (L I t) ::; 0.0

/)0 I' J ~ '1M

/I C (I I K) = e(l ,I<) + A(l,J) * 8(J, J<)
WRLT E OUTPlJT Tllf.t 7, It I l M Ii

12 F () RN< AT (1.SHP/{Of)U ('T MATRIJ(C, WJ TN L :- 12 4R
W R.I 1 f OUTPllT TRFE 7 I 3 (((I ~, C(I ,,)) I = I

13 p. ()~" AT (211C(ZZ IH I3 2,.,) = 2PEI5~3}
I<EWl Nt> 6
E(V,P FIt # 7 I J

R EWI AlP 7
STOP

eND
I

~~ ~
A DATA NAME COMMAND CODE ~ A ADDRESS B ADDRESS

52 66 72 80

I I I I I I I I I I I I I

L) J = I M)

M: It -fH It/::. Iz//I)
L),/(::I,N)

L

I II I

C ADDRESS ~
67

I

I

l

i
,I
!

SECTION VI

FUNCTIONS

General Considerations

The techniques described in this section are designed to provide a num.ber of conven

iences to the prograrn.rn.er.

1. Open functions and library functions to provide an easy way to obtain certain
com.rn.only-used operations without actually writing a set of statem.ents to com.pute
them..

2. All of the m.ethods of this section, except open functions, provide a m.eans to put a
program. in m.em.ory, in one place, then call it into operation from. m.any other
places in the program.. This saves both program.m.ing effort and storage space.

3. The FUNCTION and SUBROUTINE statem.ents provide a way to break a program.
into subprogram.s which m.ay be com.piled independently if desired. This m.akes it
possible to com.pile and check out a com.plete program. in sections, as it is written,
and to recom.pile only the affected parts when corrections m.ust be m.ade.

Before exam.ining each of the techniques in detail, a little m.ust be said about the m.echan

ics of com.pilation of a program. written for the Honeywell Algebraic Com.piler. It is not neces

sary to go into all the intricacies of operation of the Com.piler, but in order to understand the

various functions it is necessary to know som.ething about the idea of the Collector Tape. The

collector is a tape on which are "collected" all the com.piled program.s which are available

for operation on the com.puter at an installation. The output of a com.pilation is a set of rec

ords added to the collector tape, plus an optional listing which shows the storage requirem.ents

of the program. and certain other inform.ation. The output of a com.pilation, however, is not in

final form. on the collector tape, but rather is on the tape in sections, ready to be "collected"

together to form. a running program.. The final collection is initiated by the com.puter operator,

using control cards which specify what sections to collect to form. a program. and other im.

portant inform.ation which is described later.

The point of this apparent digression will becom.e clear in the discussion of the form. in

which the various types of functions appear on the collector tape; it will also becom.e clearer

then why it is advantageous that the collector tape be set up as it is.

Open Functions

There are a num.ber of operations, all of which could be program.m.ed by writing suitable

com.binations of ordinary statem.ents, which are required so corn.rn.only that they have been

69

SECTION VI. FUNCTIONS

provided as built-in functions in the Algebraic Compiler system. These open functions, as

they are called, are compiled into the object program wherever their names appear. To

emphasize: if an open function is used many times, it appears in the object program many

times, and there is no question of setting up a mechanism for going to the function and then

returning to the section of the program which called it into operation. This is the essence of

an open function, that it is inserted wherever needed and as many times as needed. None of

the other types of functions have this characteristic.

The Honeywell Algebraic Compiler, as supplied, contains 13 such open functions, with

provision for adding several more, as described in the Operations Manual. The standard

functions are shown in Figure 6.

Name

ABSF
XABSF

INTF
XINTF

MODF
XMODF

FLOATF

XFIXF

SIGNF
XSIGNF

DIMF
XDIMF

EXCLORF

NOTES: 1.

Mode of
Argument Function Type of Function Definition

Floating Floating Absolute Value IArgl
Fixed Fixed

Floating Floating Truncation Sign of Arg times
Floating Fixed Largest Integer

~IArgl
Floating Floating Remaindering Arg

1
(mod Arg

Z
)

Fixed Fixed (see note 1 below)

Fixed Floating Float Float Fixed Number

Floating Fixed Fix Same as XINTF

Floating Floating Transfer of Sign Sign of Arg z times /Ar g
1 1

Fixed Fixed

Floating Floating Dimini shing IArg1 • Argzl
Fixed Fixed

Boolean Boolean Exclusive OR (Arg + Arg) ~:~ (-(Arg ,:~ Arg))
1 Z 1 Z

The function MODF(Arg
1

, Arg
Z

) is defined as Arg
1

- ~rg1 / Arg
z
] Arg

z
'

where [x] = integral part of x.

Figure 6. Open Functions of Honeywell Algebraic Compiler

The name of an open function consists of four to seven alphabetic or numeric characters

(but no special characters), of which the first must be alphabetic and the last F. The first

character must be X if and only if the value of the function is to be fixed point. The name of

the function is followed by parentheses enclosing the argument(s), which are separated by

70

SECTION VI. FUNCTIONS

corrnnas if there is more than one. Each open function has a prescribed mode (fixed or float

ing point) for its argument(s) and for its value; different functions must be used for each com

bination of modes of argument(s) and function value. The output of an open function always

consists of one value. Any expression (of the correct mode) including another function, may

be used as an argument of an open function.

The absolute value function is a good example of an operation which could easily enough

be programmed explicitly (using an IF statement). However, since it is required so frequently

it is much more convenient for the programmer to use it as an open function. One common

use for the absolute value function is in testing for completion of an iterative process which is

to be done repeatedly until two successive results are the same to within some pre-established

tolerance. Suppose that a loop has been set up to compute a value, that the current value is

named CURRNT, that the previous value is named PREY, and that the tolerance has been read

in from cards into TOLER. If the absolute value of the difference between CURRNT and PREY

is les s than TOLER, we want to go to state:m.ent 112, but if it is greater than or equal to

TOLER, we want to go back to statement 77. One statement will do this:

IF(ABSF(CURRNT - PREY) - TOLER) 112, 77, 77

An alternative method would be to use the DIMF function, which gives the absolute value

of the difference between its two arguments:

IF(DIMF(CURRNT, PREY) - TOLER) 112, 77, 77

There is little to choose between the two, in this case.

Library Functions

One of the characteristics of an open function is that it requires only a few instructions

in the object program. The library functions are provided for the computation of functions

which are also commonly used, but which require more instructions. These are used by the

prograrn.rn.er in exactly the same way as open functions, but are treated differently by the

Compiler. The most important difference is that a library function is inserted into the object

program only once, no matter how many times the prograrn.rn.er uses it, even if it is used in

different subprograms (see below). Thus, if the square root function (see Figure 7) is used

10 times in five different subprograms, it will still appear in the object program only once,

for the use of all subprograms.

The mechanism by which this is done involves the collector tape. The library functions

are on the collector tape, ready to be inserted when the object program is finally collected

and run. When a compiled program is collected, the collection program in effect scans a

71

SECTION VI. FUNCTIONS

table which has been set up for each subprogram involved, and places in the final program all

library functions which appear in any subprogram. No extra effort is required to be sure that

library functions do not appear more than once in the object program.

The Honeywell Algebraic Compiler, as supplied, contains 15 library functions, which

are listed in Figure 7. No provision is made for adding others, but the FUNCTION subpro

gram method is available for adding functions to the collector tape; such functions can then be

used in much the same way as library functions.

Wherever the name of a library function appears in a program, control is transferred to

the function program; at the end of the function program, there is a return linkage to get back

to the place from which control was transferred. All of this is automatic, so far as the pro

grammer is concerned; it is only necessary to write the name of the function for everything

described above to happen.

Name

LOGF
):< SIN F
*COSF

EXPF
SQRTF

*ATANF
>:<TANHF

)!<>:<MAXOF
MAX1F

MIN1F

Type of Function

Logarithm to the base e
Sine
Cosine
Exponential (e arg)
Square Root
Arctangent
Hyperbolic Tangent
Choosing Largest Valu~ (fixed argument)
Choosing Largest Value (floating argument)
Choosing Smallest Value (fixed argument)
Choosing Smallest Value (floating argument)

The MAX and MIN functions may be preceded by an X to indicate
that the resultant value is to be fixed point.

>!<All trigonometric functions deal with angles in radians.

>:<*MAX (Arg
l

, Argz,
):c*)!<.MIN (Arg

l
, Argz'

Figure 7. Library Functions of Honeywell Algebraic Compiler

Floating
Point

Functions

The name of a library function consists of four to seven alphabetic or numeric char

acters (but no special characters), of which the first must be alphabetic and the last F. The

first character is X if and only if the value of the function is fixed point. The name of the

function is followed by parentheses enclosing the argument(s), which are separated by commas

if there is more than one. Each library function has a prescribed mode (Hoating point) for its

72

SECTION VI. FUNCTIONS

argument(s) and for its value; floating- point functions require floating- point arguments except

for MAX and MIN functions which are defined by combinations. Any expression (of the correct

mode), including another function, may be used as an argument of a library function. The out

put of a library function is always one value.

As an elementary example, a computation done before may now be carried out using the

square root function. The problem was to compute:

D =~(X2 - Xi)2 + (Y2 _ Yi)2

This can be done with the statement:

D = SQR TF((X2 - Xi) ~:o:(2 + (Y2 - Yi) ~:o:(2)

Incidentally, the use of the square root function is somewhat to be preferred over raising to

the 0.5 power, since the square root function operates a little more rapidly.

As another example, suppose that it is required to compute, for a given value of X

already in storage, the value of the following function:

Z = - X c tn X + 10 g I s in X I
The logarithm here is the natural logarithm, which is what is supplied with the system. The

system does not include the cotangent function, so we shall compute it from:

c tn X = co s X / sin X

The following statement will compute the value of Z:

Z = -X ~(COSF(X) / SINF(X) + LOGF(ABSF(SINF(X)))

It may be noted in passing that this statement contains the minimum pos sible number of

parentheses.

Another example of the same general nature but illustrating how expressions may be

used as arguments, is the evaluation of the following formula:

1 (eCX '~BA) ZINT = -::C:-~;=A::;::===;;;B~ arctan '\ ~B

This may be computed by use of the following statement:

ALGEBRAIC COMPILER STATEMENT
TITLE I WRITTEN BY CHECKED BY DATE .----- PAGE OF-_

A, STATE- g
COMPILER STATEMENT D, MENT N ALGEBRAIC

C NUMBER 1
~

38 52 66 72 80 I 6 II 23

ZINT! ~ (J .o/(C * ISIQKTF(A*'P»)) .. IAl AN' F' Ctx'p'r'p',f x)1 * S Q RTF (A J 8))1 I I , "' , , , I

--
This statement contains one extra set of parentheses: those enclosing the multiplier of the

arctangent were added for clarity. Incidentally, the formula might have been written as:

73

SECTION VI. FUNCTIONS

ZINT

and the statement written as:

ZINT = ATANF(EXPF(C ~~ X) ~:~ SQRTF(A / B)) / (C ~~ SQRTF(A):~ B))

The result is, of course, the same. (All the parentheses here are necessary.)

Defined Functions

The open and library functions discussed so far are both available in the system as sup

plied, and are brought into the object program simply by writing their names. It frequently

happens that the prograrn.mer finds some computation occurring many times in a program, so

that it would be convenient to be able to define the computation as a function for the purpose of

the one program alone, and then use it as often as required in that program. This is how a

defined function is used.

A defined function, also called an arithrn.etic statement function, is defined with a single

statement and then brought into operation elsewhere in the source program, wherever its

name appears. A defined function applies only to the program or subprogram in which it

appears.

A defined function is defined to the Compiler by a statement of the form a = b, where a

is the function name and b is an expres sion. The name of a defined function consists of from

four to seven alphabetic or numeric characters (but no special characters), of which the first

must be alphabetic and the last F. The first character must be X if and only if the value of the

function is to be fixed point. The name of the function is followed by parentheses enclosing the

argument(s), which are separated by commas if there is more than one. In the definition

statement, the arguments must be distinct non- subscripted variables; there may be any num

ber of them from one to 40. The right-hand side of the definition statement may be any ex

pression which does not involve subscripted variables; it may involve variables not specified

as arguments, and may make free use of other functions. The arguments which appear in the

definition statement are only dummies which specify to the Compiler how to substitute into the

defined function the arguments which are written when the defined function is later used.

Therefore, the variable names used in the function definition are unimportant, except as they

indicate fixed or floating point, and may be the same as the names of variables appearing

elsewhere in the prograrn..

74

l I,
II

:1

SECTION VI. FUNCTIONS

So far we have spoken only of the definition of a defined function. In order to use a de

fined function, one merely writes the name of the function whenever its value is wanted, writ

ing for arguments any expressions which agree in number, order, and mode, with the argu

ments as stated in the definition of the function. These (actual) arguments may be subscript

ed, whereas in the definition the dummy arguments cannot. The output of a defined function

always consists of one value.

The program which is compiled to carry out the operations specified in the function de

finition statement appears once in the object program, at the end of the program in which it

appears (but recall that the definition applies only to the program or subprogram in which it

appears). Each time the defined function is used (by writing its name with suitable argu

ments), the object program then refers to the one place where the defined function appears.

A defined function is thus compiled as a closed subroutine.

For a typical example, suppose that in a certain problem it is frequently necessary to

evaluate the fornlUla:

(-B + SQR TF(B ,:o:~ 2 - 4. ,;~ A >:~ C)) / (2. >:~ A)

Each time this formula is evaluated, it is necessary to use different expressions for A, B,

and C. The function could be defined by the statement:

ROOTF(A, B, C) = (-B + SQR TF(B >:o:~ 2 - 4. >:~ A >:~ C)) / (2. >:c A)

Now suppose that it is necessary to evaluate this formula with A equal to DATA (6), B equal
3

to i2.8, and C equal to the absolute value of X minus Y. The result is to be added to Z and

the sum stored as VALUE. The following statement accomplishes this:

VALUE = ROOTF(DATA(6), i2.8, ABSF(X - Y)) + Z >:~,;(3

It would have been possible, although pointless, to do the same thing with these four state-

:ments:
ALGEBRAIC COMPILER STATEMENT

TITLE l...1I-.J..........L.-L-J-J.--L......J WRITTEN BY ______ _ CHECKED BY ______ _ DATE ____ _ PAGE __ OF __

A, STATE- g
B .. MENT N ALGEBRAIC COMPILER STATEMENT c NUMBER 1

~
I 6 II 23 38 52 66 72

A ;;. PATA(6)
I I I I I I I I I I I I I I I

18 ::: 12 _ 8

C ::: nBS F(x-V)

I VALUE ;; ROOTF(A J 8. , C) + 2~*3

This alternative is shown to try to bring out the point that the variables used in defining the

function and the variables used for arguments in using the function are unrelated and inde

pendent. This point is seen even :more clearly if we write the progra:m in the following way,

80

I I

75

SECTION VI. FUNCTIONS

which gives exactly the same result as the previous two:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE_OF_

A. STATE- g
B. MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
66 72 80 I 6 " 23 38 52

I I I I I I' , , "1 I I I I I I I

A :: I Z. 8

8 :: A85F(X-Y)

C :: f)A TR ({,J

I 'i-I~LU E =- ROOTF{C 1 AlB) + ~~*3

Suppose that at some other point in the program we need to evaluate the form.ula with A
2 3

equal to the square root of X plus Y , B equal to 12.8, and C equal to X + Y + Z all divided

by 6; the result is to be raised to the 1. 789 power and stored as the new value of HEAT:

HEAT = (ROOTF(SQRTF(X >:c* 2 + Y ~c>:c 3), 12.8, (X + Y + Z) / 6.)) >:o:c 1. 789

Two defined functions are involved in the following example, both involving only the one

variable X; the other variables are defined elsewhere in the program. The indefinite integral

of the function:

1

(AX2 + BX + C)3/2

is given by:

4AX + 2B

This expression is to be evaluated; this could be done with one defined function. Here, how

ever, we shall use two defined functions in order to make the first one available for use by it

self elsewhere in the program. The definitions:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE_OF_

A. STATE- g
B. MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
I 6 II 23 38 52 66 7' 80

FX.1(f ()() SQIlT Ft. A*>C**Z -t PI_X + c) I I I I I I I , I I I I I I I I I I I' ,
::::

PNTf (X) :: (4-. t- A* X -t 2.*:6)/((4.~ A*C - e>**Z) ... F"xf (X»
-

If now we want to obtain the value of the integral evaluated between the lower limit 1. 0 and the

upper limit X, this value to be named FCTN, we can write:

FCTN = PNTF(X) - PNTF(l. 0)

The X here must of course be defined elsewhere in the program; it has nothing to do with the

X used in the definitions.

76

! .
I

\i

1.,1 II
I

SECTION VI. FUNCTIONS

FUN C TION Subpro gr ams

The FUNCTION statement described below may be viewed in two rather different ways.

One is to regard it as a convenient way to set up a function to carry out some often-used seg

ment of a program (similar to a defined function) using as many statements as may be re

quired' however, instead of the one statement to which a defined function definition is limited.

The other is to regard a FUNCTION subprogram as an alternative way to do approximately the

same thing that a SUBROUTINE subprogram (see below) does, i. e., allow one to partition a

complete program into pieces which may be compiled independently.

A FUNCTION subprogram is one which is defined by the use of a FUNCTION statement

followed by any number of statements, and then activated elsewhere in the program by writing

the name of the function with suitable arguments. A FUNCTION subprogram is an independent

part of a total program. Its variable names may be the same as names which appear in the

main program or in other subprograms. It may have its own DIMENSION and EQUIVALENCE

statements. Any defined functions appearing in a FUNCTION subprogram apply only to that

subprogram. The arguments in a FUNCTION statement may be the names of arrays as well

as the names of single variables. The output of a FUNCTION subprogram always consists of

a single value. A FUNCTION subprogram may be batch compiled with a main program and/or

other subprograms, or it may be compiled independently.

The name of the FUNCTION subprogram must not be one that is already on the collector

tape. FUNCTIONs on the collector include the names of the library functions, and in some

cases these same names preceded by a Q. The user is urged to check against the list of func

tions already on the collector tape at his installation.

FUNCTION Statement FUNCTION Name (at' a Z'···' an)

The name of a FUNCTION subprogram consists of from one to six alphabetic or numeric

characters (but no special characters), the first of which must be alphabetic; the first char

acter must be I, J, K, L, M, or N if and only if the value of the function is to be fixed point,

and the last character must not be F if the name is more than three characters long. (Notice

the contrast in naming between this and the functions above.) The name must not appear in a

DIMENSION statement in the FUNCTION subprogram, nor in a DIMENSION statement in any

program which uses the subprogram. (Otherwise the FUNCTION will be mistaken for a sub

scripted variable.) The name must appear at least once in the FUNCTION subprogram as a

variable on the left-hand side of an arithmetic statement, or alternatively in an input state

ment list. The name of the FUNCTION subprogram is followed by parentheses enclosing the

argument(s), which are separated by co:mmas if there is more than one. In the FUNCTION

77

SECTION VI. FUNCTIONS

statement, the arguments must be distinct non-subscripted variables appearing on the right

hand sides of executable statements of the subprogram. There may be any number of argu

ments from one to 48 (see Appendix C).

As with a defined function, the variables appearing as arguments in the FUNCTION

statement are only dummies, and the retnarks about dummy variables made above also apply

here. In addition, none of the dummy variables of a FUNCTION subprogram may appear in

EQUIVALENCE or COMMON statements in the subprogram.

The FUNCTION statetnent must be the first statement of the subprogram; all statements

which follow, up to the END statement which must appear at the physical end of the subpro

gram, are taken to be part of the FUNCTION subprogram. The FUNCTION subprogratn tnay

use any type of statement except SUBROUTINE or another FUNCTION. Although FUNCTION

and SUBROUTINE statements may not appear in a SUBROUTINE subprogram, i. e., it is not

possible to define other subprograms within a subprogram, there is no restriction against

using other subprograms within a subprogram, except that a subprogram may not use another

subprogram of a higher level and may not use itself. If a COMMON statement is used in the

subprogram, it naturally refers to the one corrunon storage area which is the same for all

programs collected together. This provides a means of establishing the correspondence be

tween variables in the subprogram and variables in the main program or in other sub

programs. This correspondence does not exist otherwise; remember that every subprogram

is an independent entity. The dummy variables used as arguments in the FUNCTION state

ment must appear in non-subscripted fortn in the FUNCTION statement, but there is no such

restriction on any variables in the subprogram. A FUNCTION subprogram must contain at

least one RETURN statement, in order to set up the linkage back to the calling program.

All of the above applies only to the definition of a FUNCTION subprogram. To use such

a subprogratn, it is only necessary to write the name of the function with arguments which

agree in number, order, and mode, with those in the FUNCTION statetnent. Furthermore,

when a dummy argutnent is the natne of an array, the corresponding actual argument must also

be an array_ The durruny array natne must appear in a DIMENSION statetnent in the sub

program, and the actual array natne must appear in a DIMENSION statement in the progratn

requesting the FUNCTION subprogram. The dimensions for each must be the same. Dumtny

variables which represent single variables may be replaced with any expressions of the cor

rect mode, including subscripted variables, constants, other functions, etc.

The object program which is compiled to carry out the operations specified in a

FUNCTION subprogratn will appear in the object program once, no matter how many times the

subprogratn is used.

78

i

SECTION VI. FUNCTIONS

For a first example, assume a number of two-dimensional arrays with maximum dimen

sion of 10 in each direction. Find the largest element (in absolute value) in a specified row of

the array. The row number is identified by the dummy variable I, the actual number of rows

and columns is N (which might be less than the maximum of 10, of course), and the dummy

name of the array is A. The following FUNCTION subprogram would find the absolute value

of the largest of the N elements in the Ith row of A:

ALGEBRAIC COMPILER STATEMENT
TITLE ,-II.-.L......IL.....J...-J.......I.-..L-..J WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE_OF_

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

~
I 6 II 23 38 52 66 12

FIINe T:t 0 N BI(jI N(/I 1 N)
I I I , , ,

PlAtt HSION A(I(/} /0)

8141 N = 0.0

/)0 9 OJ=I,N

1 F{ A 6SF(A(I J)) - 8Z,IIV) 90 90 89
&S 81~1 ~ :: A8SF(It(J Ie!))
90 (ON1 INUE

~eTlj ~t{

leND
~

Now, whenever, the element with the largest absolute value in a given row of a matrix of

maximum dimension 10 x 10 is needed, it can be obtained simply by writing BIGIN with suit

able arguments.

As an example, suppose that we want to divide every element of the first row of the

matrix DATA by the absolute value of the largest element in the first row (largest in absolute

value), this can be done.

ALGEBRAIC COMPILER STATEMENT

80

TITLE 1 -l.-.J-.......iI-...1..--L--l.-.J.......J WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE_OF_

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT C NUMBER T

~
I 6 " 23 38 52 66 12 80

()l
"
'C NS:IO'tJ PArA (I 0, 10')

I I I I' "" I'·'
BIG =1.O/(816IN CD AlAI l,N))
DO 7 00 J = J J N

I 700 OATA (J, J) :; o A Til (/,J)"*, 81Ci
- --

79

SECTION VI. FUNCTIONS

We would sometimes like to know the column number of the largest element, in order

to do some interchanging of columns; this would require the FUNCTION subprogram to return

to us a fixed-point variable as well as a floating-point variable. If we needed only the column

number and not the element itself, the FUNCTION subprogram could easily be modified to give

this result, but if we need both the largest element and the column number, we cannot use the

FUNCTION method since there is no way to get more than one value as an output. This, how

ever, can be done with the SUBROUTINE subprogram, although in a slightly different way, as

we shall see below.

The exam.ple dem.onstrated the use of the FUNCTION subprogram to do something that

cannot be done with a defined function, because it required more than one statem.ent and be

cause it involved an array. The next example is based on a situation involving no arrays, but

requiring more than one statement. The function shown below has three different formulas for

its indefinite integral, depending on the relative sizes of the parameters A and B. If we had to

calculate this integral very often, we would want very much to make a function out of it, but it

would require the use of something other than a defined function since it cannot be done in one

statement.

1
= ~A 2

- B2 tan X
arctan

A

1 2 2 = tan X ,A = B
A2

1 ~B 2
- A2 tan X + A

log ,I Z 2
~B - A tan X - A

=

This will also give some further practice in writing moderately complex statements involving

open and library functions, as well as in the use of the FUNCTION statement and subprogram.

80

II
I ~

J

i

Ii
I

10

II

SECTION VI. FUNCTIONS

ALGEBRAIC COMPILER STATEMENT
TITLE 'I.-.L.....JL......J..--I--L........L......J

WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE_OF_

A, STATE- g
B, MENT N ALGEBRAIC COMPILER STATEMENT C NUMBER T

~
I 6 II 23 38 52 66 72

rUNe. T ION ~.INI AI T (A x.)
I I I I I I I I I

8,

eao 7 :; SQR.T': (A 8~ F (A '*'*2 - ,,-*. .. 2))

TAAlX ::; 5IN~(J() J C05F(X)

I F(J! **2 - A**Z) 4 ot) I 500 600

100 S INl 'N7 = (I./(A~ I~oa T~) .. ATANF l ~tJO T *TANX./ A)
~ETU RN

roo ~INI /liT ' T4"tLA~ f.Jt2
~eTLJ RN

f,oo SINI IfJT ::; (I ./ (z • 1.-. A*~oo T))+l:L {)6 F(1f8SF l (Ra OTJt.TA/\ ~-t4)/ (Roor*TAA .t-A))
I<ETlJ RN •

IFNI>

-

The shortcuts taken here are worth noticing. Since the s quare root of A2 _ B
2

or

B
2

- A
2

occurred several times, the square root of A2 - B 2 was computed before going into

the test to determine the relative size of A2 and B
2

, so that the instructions for the com-

putation would only have to appear once; this saves Compiler time, programming time, and

object program memory space. The same type of precomputation was used to get the tangent

of X. There are three RETURN statements above; it would have been acceptable, although a

trifle longer, to place one RETURN at the end and transfer to it from the other places with

GO TOls.

I

Now if it should be desired to find the value of this integral for A equal to.". and B

equal to B(5), evaluated between the lower limit of X1 and the upper limit of X2, and store the

integral as VALUE, it could be done with:

VALUE = SININT(3. 14159, B(5), X2) - SININT(3. 14159, B(5), Xi)

SUBROUTINE Subprograms

As with FUNCTION subprograms, SUBROUTINE subprograms may be regarded in two

different ways: either as a way to do certain things that cannot be done with defined functions

or with FUNCTION subprograms; or as a way to break a complete program into parts which

can be compiled and checked out separately if desired. As before, both interpretations lead

to exactly the same statements in the source program, but once again it may clarify matters

~9

81

SECTION VI. FUNCTIONS

to have the two different aspects in mind in reading the descriptions below. Whenever it is

necessary for a subprogram to have more than one variable as output, the SUBROUTINE

method must be used, because all of the other techniques permit only one output value. As a

matter of actual usage, the SUBROUTINE subprogram is used more often for the purpose of

partitioning a program. One reason for doing so is to allow for easy recompilation of parts

that must later be modified or corrected. This saves the computer time of recompiling the

parts that do not require changes.

A most important aspect of the SUBROUTINE method is that it is possible for a very

large project to be divided into convenient parts which can be programmed, compiled, and

checked out independently by different programmers. After all the parts have been finished,

they can be compiled into a complete program and used.

Finally, there is another important us age of the SUBROUTINE technique. That is in the

case where a program is too large to fit in storage at one time. It is possible, by use of con

trol cards, to specify that two or more subprograms are to occupy the same locations in

storage; this is called overlaying. When this is done, the effect of the CALL statement (see

below) is to transfer control to the subprogram if it is already in storage, or to bring it in

from tape and then transfer control to it if it is not already in storage.

In order to do all of this, it is necessary for the SUBROUTINE subprogram to have,

when applicable, its own DIMENSION, EQUIVALENCE, and COMMON statements. And to

emphasize the point once again, a SUBROUTINE subprogram must be regarded as an in

dependent entity, regardless of whether it is being used for the purpose of partitioning or not.

SUBROUTINE Statement SUBROUTINE Name (ai' a.." ... , a)
t... n

The name of a SUBROUTINE subprogram consists of one to six alphabetic or numeric

characters (but no special characters), the first of which must be alphabetic and the last

must not be F if the name is more than three characters long. (Note that there is no require

ment about the first character being I, J, K, L, M, or N to specify fixed point, since the

mode of the arguments determines whether the results are fixed or floating-point variables.)

The name must not appear in a DIMENSION statement in the SUBROUTINE subprogram, nor

in a DIMENSION statement in any program which us es the subprogram. The name of the sub

routine must not duplicate any name already on the collector tape. The name of the sub

program is followed by parentheses enclosing the argument(s), if any, which are separated by

commas if there is more than one; if there are no arguments, parentheses are not required.

82

SECTION VI. FUNCTIONS

In the SUBROUTINE statem.ent, the arguments m.ust be distinct non-subscripted variables

appearing in executable statem.ents in the subprogram.; input argum.ents m.ust appear in the

right-hand sides of statem.ents or in lists of input statem.ents, and output argum.ents in the

left-hand sides of statem.ents or in the lists of output statem.ents. There m.ay be any num.ber

of argum.ents up to 48, or none; in the latter case, COMMON statem.ents would be used to

establish correspondence between variables in this subprogram. and in other subprogram.s or

in the m.ain pro gr am..

As with defined functions and FUNCTION subprogram.s, the argum.ents appearing in the

SUBROUTINE statem.ent are only dum.m.ies which, in this case, specify to the Com.piler how to

substitute into the subprogram. the argum.ents which are written in the CALL statement when

the subprogram is used elsewhere in the program. As usual, then, the variable and array

names used as argum.ents in the SUBROUTINE statements are unim.portant, except as they

specify fixed or floating point, and m.ay be the sam.e as nam.es appearing in the m.ain program.

or in other subprogram.s. However, none of the dum.m.y variables of a SUBROUTINE sub

program m.ay appear in EQUIVALENCE or COMMON statern.ents in the subprogram..

The SUBROUTINE statem.ent m.ust be the first statem.ent of the subprogram.. All state

m.ents from. there to the END statem.ent, which m.ust be physically the last statem.ent of the

subprogram., are taken to com.prise the subprogram.. The SUBROUTINE subprogram. m.ay use

any type of statem.ent except a FUNCTION statem.ent or another SUBROUTINE statem.ent. (A

SUBROUTINE subprogram. m.ay, however, call other subprogram.s and use FUNCTIONS.) If

a COMMON statem.ent is used in the subprogram., it of course refers to the one corn.m.on

storage area which is the sam.e for all prog·ram.s which are collected together. As noted

above, this provides a way to establish correspondence between the nam.es of variables in

different subprogram.s and the m.ain program.. It m.ust always be kept clearly in m.ind that

such a correspondence does not exist otherwise; the nam.e DATA in a subprogram. is totally

unrelated to the nam.e DATA in the m.ain program., unless a correspondence has been establish

ed by COMMON statem.ents in both places. (See the corn.plete discussion of the COMMON

statem.ent in Section VII.)

The dum.m.y variables which are used in the SUBROUTINE statem.ent m.ust appear in

non-subscripted form., but there is no such restriction on any of the variables in the sub

program. itself, durn.rn.y or otherwise, nor on the argum.ents in the CALL statem.ent. Free use

m.ay be made of expressions, including any type of function. A SUBROUTINE subprogram.

m.ust contain at least one RETURN statement.

83

SECTION VI. FUNCTIONS

The object program which is compiled to carry out the operations specified in the

SUBROUTINE subprogram will appear only once in the object program which calls the

SUBROUTINE, regardless of how many times the subprogram is called. Each time the sub

program is used (by calling it with a CALL statement), the object program transfers control

to the subprogram; the RETURN statement then transfers control back to wherever the sub

program was called from. A SUBROUTINE subprogram is thus compiled as a closed sub

routine. A SUBROUTINE subprogram must not be written between two statements of another

program. A SUBROUTINE subprogram may be batch compiled with a main program and/ or

other subprograms, or it may be compiled independently.

CALL Statement

All of the above has to do with the SUBROUTINE statement and the statements which fol-

low it, i. e., with the definition of the subprogram. In order to call the subprogram into

operation, it is necessary to use the CALL statement, which transfers control to the sub

program and transmits the input arguments to it, and then transmits the output variables back

to the calling program when the subprogram has been executed. It should be noted that a

CALL statement may appear in a subprogram, i. e., one subprogram may call another, to any

depth; this applies equally to FUNCTION and SUBROUTINE subprograms. A program may not

call another program of a higher level, and a program may not call itself.

The arguments in the CALL statement must agree with those in the SUBROUTINE state

ment in number, order, and mode. FurtherITlore, if an argument in the SUBROUTINE state

ment is an array name, the corresponding argument in the CALL statement ITlust be an array

name. The dummy array name in the SUBROUTINE statement must appear in a DIMENSION

statement in the subprogram, the array name in the CALL statement must appear in a

DIMENSION stateITlent in the calling program, and the dimensions must be the same. Dummy

variables which represent single variables may be replaced with any expressions, including

subscripted or non-subscripted variables, constants, other functions, etc. Literal alpha

betic or numeric characters may not be used but, of course, alphanumeric variables may be

used to carry alphabetic information to the subprogram.

When it is desired to use overlaying, 1.. e., to have two or more subprograms occupy the

same locations in memory, the subprograms lTIust be designated for overlaying at collection

time. This is done with an OVERLAY control card, the details of which are described in the

Operations Manual; when a subprogram is naITled on an OVER LA Y card, its object program is

set up a little differently and provision is made for reading it from the program tape when it

is called. Then, the operation of the CALL statement is: transfer to the named subprogram

84

['Ii.

I

SECTION VI. FUNCTIONS

if it is already in storage; if not, bring it in from tape and then transfer to it. The program

mer designates at collection time the subprograms which are to be overlayed; all the rest is

automatic with the CALL statement.

When different people are working on parts of a very large program, it often happens

that one person needs to compile his section without compiling all the other parts. This leads

to a problem; in the section being compiled, there may be statements referring to other sec

tions not being compiled at the time. Ordinarily, this leads to a diagnostic error indication

and the compilation is not completed. Here, however, it is necessary to go ahead; pre

sumably the programmer has made plans to get around the mis sing sections. In such a case,

the missing subprograms must be named on NEGLECT control cards at collection time; the

Compiler will then insert dummy RETURN statements, and the compilation and checkout can

proceed.

RETURN Statement RETURN

This statement terminates the execution of any FUNCTION or SUBROUTINE subprogram,

and returns control to the calling program. A RETURN statement must, therefore, be the

last-executed statement of every subprogram. It need not, however, be physically the last

statement of a subprogram (or rather, next to the last; the END statement must be the last),

A RETURN statement may appear at any point in a subprogram, and there may be any num

ber of RETURN statements.

As a simple example of how a SUBROUTINE statement can be used as a more powerful

version of a defined function, consider the example discussed in connection with the FUNCTION

subprogram, in which the largest element of the Ith row of a matrix (largest in absolute value)

and its column number is needed. This makes two output numbers, which means that a

SUBROUTINE subprogram must be us ed, which could be as follows:

ALGEBRAIC COMPILER STATEMENT
TITLE.', WRITTEN BY ______ _ CHECKED BY DATE PAGE OF

ALGEBRAIC COMPILER STATEMENT

II 23 38 52 66 72 80 , I I I 'I I I I I I I I If

N 8I6

Bl4 -:: O .. ·()

leOL = ,

Dt> 1017 cI .,.. " II
IF (A83F(II(I J J)) - lH<1} 900, 900 1000

1000 IJIC7 :: A8SF (A(r,.))

85

10

"
12

SECTION VI. FUNCTIONS

~_ I I ll(IOI L
1= I J , I I

~9pe CPI~7 IIAll/€. I I

816 :. /I (I, reOL)

R,E 7?1 RA/

ENP, I L

,

I 11-' I

-"---

I I I I I I I I I I I I I I

I 1 I I I I I I I I I I I

Now suppose that we have a matrix PROBD, that we want to find the largest element in the

first row and store it as AMAX, then interchange the first column with whichever column con

tains the largest element in the first row. This can now be done with a few statements, as

.f9l1ows:

ALGEBRAIC COMPILER STATEMENT
WRITTEN BY _____ _ CHECKED BY _____ _ DATE ____ _ PAGE_OF __

~ c B iTATE- 0
• MENT N ALGEBRAIC COMPILER STATEMENT

C NUMBER T

~
1 6 " 23 38 52 66 72

CA L L 13 I (;C OL '(;R~ lap J
1 I IV AMAX J)

I I I I I I I I

If> 1 ME N510N P!«18b(10 10) .
1>0 1200 I=-IJN

TEM' -= PR.OOD (I J I)

1p,l{.aB D(I,I) ::.. PR{) 8b(I,J)

1200 PIlO(3 t>(I,J) :: 7th'!,

--

The CALL statement calls into operation the subprogram, and stores the values of

AMAX and J which it computes. This is done only when the CALL statement is executed, not

when the variables AMAX and J are used. There can be no ambiguity between the use of the

J as a CALL argument and its us.e in the SUBROUTINE subprogram; recall that there is no

correspondence between variables unless we establish it. We need do nothing more about the

AMAX in order to get it stored; that is part of the combined operation of the CALL statement

and the subprogram. The DO loop takes one row at a time, first moving the element in the

first column to temporary storage, then moving the element in the Jth column to the first

column, then moving the element in temporary storage to the Jth column. Note that this

works properly even if the largest element should happen to be in the first column already; an

IF statement at the start could be used to save the waste motions in this event.

Another example of the use of the SUBROUTINE subprogram appears in the next section,

where we present a complete example, showing how to segment a program.

Summary of the Differences Between the Five Types of Functions

The Honeywell Algebraic Compiler has provision for five types of functions: open,

library, defined, and tho se established by FUNCTION and SUBROUTINE statements. The

86

80

I

I"

I

I
I

I

I

J

I

I,
I

I

SECTION VI. FUNCTIONS

following sunuuary shows the major differences between the five types.

Naming

The names of open, library, and defined functions are: four to seven alphabetic or

numeric characters (but no special characters), the first of which must be alphabetic and the

last F; the first character must be X if and only if the value of the function is to be fixed point.

The name of a FUNCTION subprogram is: one to six alphabetic or numeric characters (but no

special characters), the first of which must be alphabetic; the first character must be I, J, K,

L, M, or N if and only if the value of the function is to be fixed point, and the last character

must not be F if the name is more than three characters in length. The name of a

SUBROUTINE subprogram is: one to six alphabetic or numeric characters (but no special

characters), the first of which must be alphabetic and the last of which must not be F if the

name is more than three characters in length.

Definition

Open and library functions are provided with the system., although the system as supplied

may be expanded with other open functions, as described in the Operations Manual. Defined

functions are defined by writing a single definition statement. A FUNCTION subprogram is

defined by any number of statements following a FUNCTION statement. A SUBROUTINE sub

program is defined by any number of statements following a SUBROUTINE statement.

How Requested

Open, library, defined, and FUNCTION functions are brought into operation by writing

the name of the function in an expression where its value is desired. SUBROUTINE sub

programs are requested with a CALL statement.

Open vs. Closed

Open functions are compiled as open subroutines, i. e., they are compiled into the pro

gram once for every time they are requested by nam.e. All of the others are compiled as

closed subroutines, i. e., they are compiled into the program only once, regardless of how

many times they are requested; control is transferred to them and then back to the requesting

program.

How Control is Returned to Calling Program

Not applicable to open functions. Control is automatically returned to the calling pro

gram from a library or defined function. Control is returned to the calling program from a

FUNCTION or SUBROUTINE subprogram by a RETURN statement in the subprogram.

87

SECTION VI. FUNCTIONS

Number of Arguments

The number of arguments for open and library functions are specified for each function.

Defined functions may have any number of arguments from one to 40. A FUNCTION statement

may have any number of arguments from one to 48. A SUBROUTINE statement may have any

number of arguments from none to 48.

Number of Outputs

A SUBROUTINE subprogram may have any number of outputs; all of the others give only

one output value.

Separate Compilation

FUNCTION and SUBROUTINE subprograms may either be batch compiled with a main

program and/or other subprograms, or they may be compiled independently. Open and de

fined functions are always compiled as parts of some larger program. Library functions are

stored on the collector tape in pre-assembled form.

Dummy Variables in Definition

Variable names in the definition of a defined function, and in FUNCTION and

SUBROUTINE statements, are dummies. The variable names used in requesting or calling

any function must, of course, be the names of actual variables. In the case of these three

functions, the variables must agree in number, order, and mode, with the dummy variables

used in the definitions. Since no definition statement is required in the case of open and

library functions, the discussion of dummy variables in such statements is not applicable.

88

·1'

I
1

'I'
1

I

,I

I.

'I

SECTION VII

SPECIFICATION STATEMENTS

Gener al Consider ations

There are three statements in the Honeywell Algebraic Compiler which are used only to

provide the Compiler with necessary information about the program being compiled, all hav

ing to do with the assignment of storage locations to variables, although in three rather dif

ferent ways.

DIMENSION Statement DIMENSION v, v, v, •••.

The DIMENSION statement is used to specify to the Compiler the dimensions of arrays;

every variable in a program which appears in subscripted form must appear in a DIMENSION

statement. In the general form of the statement given above, v is the name of a variable with

one, two, or three unsigned fixed-point constants in parentheses. For each variable, the sub

scripts in parentheses give the maximum size of the array, and storage space is set aside

accordingly. The number of subscripts written also indicates to the Compiler whether the

array is one, two, or three dimensional. Any number of subscripted variables may appear in

one DIMENSION statement, separated by commas; there may be any number of DIMENSION

statements in a program or subprogram. A DIMENSION statement applies only to the pro

gram or subprogram in which it appears, even if the names of two arrays in different sub

programs are the same.

As a simple example, consider the following DIMENSION statement:

DIMENSION DATA(20, 15), IJK(60}, DATAR(2, 10, 30)

This specifies that DATA is a two -dimensional array of floating-point number s, with the max

imum size of the first subscript being 20 and of the second being 15; IJK is a one-dimensional

array of 60 fixed-point numbers; DATAR is a three-dimensional array of floating-point num

bers, the maximum subscripts sizes being 2, 10, and 30. In the case of the array DATA,

storage space is set aside for a two -dimensional array consisting of a total of 300 locations.

In the program which uses DATA, one must never specify a first subscript for DATA larger

than 20 nor a second subscript larger than 15. It should be emphasized that a specific mem

ory location is reserved for each element of each array. It must not be argued that the 300

locations can be used to make up any array totalling 300 elements, such as 6 x 50 or 3 x 100.

Each dimension applies strictly to the subscript in its position, and the memory assignments

apply specifically to each individual element of an array of just the maximum size indicated.

89

SECTION VII. SPECIFICATION STATEMENTS

It is still permissible, of course, to use arrays of less than the maximum size in any dimen

sion, but this amounts only to not using some of the assigned locations, not to reassigning any

of them.

A DIMENSION statement must not include the name of the program in which it appears,

nor the name of any FUNCTION or SUBROUTINE subprogram which the program uses.

EQUIV ALENCE Statement EQUIVALENCE (a, b, c, ... 0), (d, e, f,), .

This statement makes it possible to do two things which on occasion are very useful:

1. Assign two or more variables to the same storage location, where the logic of the
program permits it, thus making possible significant reductions in storage space
required;

2. Establish two or more names as synonyms for the same variable.

An EQUIVALENCE statement applies only to the program or subprogram in which it

appears. It may be placed anywhere in a program or subprogram.

The variables within a set of parentheses, which may be subscripted with a single un

signed fixed-point constant, are assigned to the same location. There may be any number of

variables within one set of parentheses, and any number of parentheses. Variables and

arrays which are not mentioned in EQUIVALENCE statements are as signed to unique locations.

Locations can be shared only among variables, not constants.

The meaning of a subscript in an EQUIVALENCE statement is different from its mean

ing in other statements. The meaning of C(p) in an EQUIVALENCE statement is: the (p - 1)th

location after the one containing C, or, if C is an array, the (p - 1)th location after the one

containing C(1), C(i, 1), or C(1, 1, 1). Since there is no zeroth element in an array, p must

be greater than zero.

The simplest exam.ple is an EQUIVALENCE statement not involving arrays or subscripts.

EQUIVALENCE (DATA, X, Z), where none of the variables is an array, would mean to as

sign the variables DATA, X, and Z to the same storage location. In order to do this, it is, of

course, necessary to know that the program never stores a new value of any of these variables

unless the old value in the location is no longer needed. This is the programmer I s respon

sibility; if a new value of DATA is stored in the one location at a time when it contains a value

of X which will be needed later, the program will give incorrect results. Neither the Com

piler nor the object program has any way of checking for this sort of error.

90

SECTION VII. SPECIFICATION STATEMENTS

If, however, the reason for using the EQUIVALENCE statement is to establish two or

more names as synonyms, then there is no question of avoiding overlapping usage; the var

iables named are all the same one, and the intention is to be sure they are all assigned to the

same location. For instance, inexperienced programmers often do not realize how much care

must be exercised in writing the letters I and 0, in order to be able to distinguish them from

the digits 1 and O. Suppose that in a certain program heavy use has been made of the symbol

PILOT, but that the programmer was very careles s in his writing and is afraid the names

may not all have been punched correctly. His problems can be solved, in this case, by

writing:

EQUIVALENCE (PILOT, PiLOT, PILOT, PiLOT)

Suppose now that three arrays are to be assigned to the same set of storage locations

and, for simplicity, that they all have the same number of elements. If we write

EQUIVALENCE (A, B, C), the result will be as desired. Note that it is not necessary to show

subscripts in order to do this, although the same result would be obtained by writing

EQUIVALENCE (A(1), B(1), C(1)). Two things about this example should be noted. First, it

does not matter how many dimensions these arrays have. A corollary to this is that there is

no requirement of any sort that the arrays have the same maximum dimensions or any other

type of correspondence between elements. It would be perfectly acceptable for A to be a one

dimensional array with 300 elements, B to be a 20 x 15 two -dimensional array, and C to be a

10 x 3 x 10 three-dimensional array. Or, if all were two-dimensional arrays, one could be

3 x 50, a second 50 x 3, and a third 5 x 30. Neither is there any requirement that the arrays

all have the same total number of elements. The EQUIVALENCE statement only places the

starting points in correspondence.

The second thing to note is that only one subscript is given in an EQUIVALENCE state

ment, even when referring to two - and three -dimensional arrays. This is the point of the

statement that C(p) refers to the (p - 1)th location after the location for C. Suppose for an ex-

ample that there are three one-dimensional arrays E, F, and G of maximum size 20 each,

and that they are to be assigned the same space as a 3 x 4 x 5 three-dimensional array.

Specifically, it is desired to assign the first one-dimensional array, E, to the space occupied

by the first 20 locations of the three-dimensional array, called Z; the second 20 locations of

Z are to be the same as the locations for F, and the last 20 locations of Z are to be the same

as the locations for G. The following statement establishes these equivalences:

EQUIVALENCE (E, Z), (F, Z(21)), (G, Z(41))

91

SECTION VII. SPECIFICATION STATEMENTS

If it is desired to establish equivalences involving specific elements of arrays, it is nec

essary to know exactly how arrays are stored. This information has been given before, but

may be reviewed here. The first element of an array, the one corresponding to C(1), C(1, 1),

or C(1, 1, 1), is stored first, with other elements being stored in order after it (in success

ively higher numbered locations, incidentally). The elements are stored in such a way that

the first subscript varies most rapidly and the last least rapidly. Thus, a 3 x 3 matrix A

would be stored in the order A(1, 1), A(2, 1), A(3, 1), A(1, 2), A(2, 2), A(3, 2), A(1, 3),

A{2, 3), A(3, 3).

If it is now desired to make the main diagonal elements of A correspond to the single

variables R, S, and T, it can be done with:

EQUIVALENCE (A, R), (A(5), S), (A(9), T)

For this to work, A must appear in a DIMENSION statement as DIMENSION A(3, 3); otherwise,

the diagonal elements are not the first, fifth, and ninth elements of the matrix. If A appears

as DIMENSION A(4, 4) and the diagonal elements are to corre spond to W, X, Y, and Z, the

statement should be:

EQUIVALENCE (A, W), (A(6), X), (A(11), Y), (A(16), Z)

No attempt should be made to do anything which amounts to changing the wayan array is

stored. For instance, it is not possible to make the elements of a vector V correspond to the

main diagonal elements of a 3 x 3 matrix by writing:

EQUIVALENCE (A, V), (A(5), V(2», (A(9), V(3»

Such a statement, which gives impossible instructions to the Compiler, will produce a di

agnostic statement and stop the compilation. In order for it to be accomplished, the elements

of the vector would have to be stored in non-consecutive locations, which cannot be done.

In order to use the EQUIVALENCE statement, it is obviously necessary to arrange the

program and the EQUIVALENCE entries so that no data is destroyed until it is no longer need

ed and, to do the planning properly, it is necessary to know which statements can cause new

values of variables to be stored. Statements which store new values:

92

1. Arithmetic statements store a new value of the variable on the left-hand side of
the statement;

2.

3.

4.

Execution of ASSIGN i TO n stores a new value of n;

Execution of a DO always changes the value of the index of the DO;

Any input statement stores new values of the variables in the list; the ERASE
statement should be considered as an input statement for this purpose;

5. Certain ARGUS statements;

6. A CALL statement with output arguments.

SECTION VII. SPECIFICATION STATEMENTS

COMMON Statement COMMON A, B, C, ..••

Ordinarily, i. e., in the absence of a COMMON statement, variables are assigned mem

oryl()cations separately for each subprogram. If the main program has a variable named X

and a subprogram has a variable named X, the two XIS are essentially different and two sep

arate memory locations are set up for the two of them. This is generally what is desired, but

there are times when it is very convenient to be able to specify to the Compiler that a variable

in one subprogram is the same as a variable in another subprogram (whether or not the two

variables have the same name). This can be done by proper use of COMMON statements.

Variables which are named in COMMON statements are stored in a special section of

storage which is set aside for storing COMMON variables, and this is the COMMON area

11:1 which is the same for all subprograms which are to be collected to be run together. The

II variables named in COMMON statements are then assigned to the COMMON area in the order

,1'1 in which they appear. There are two different ways in which the COMMON statement may be
I,

viewed. For instance, if the statement:

COMMON X, Y, Z

appears in both the main program and in a subprogram, then X, Y, and Z in both programs

would be assigned to the same locations in COMMON, and the variables would be the same for

both programs. If, on the other hand, the main program has the statement:

COMMON X, Y, Z

and a subprogram has the statement:

COMMON A, B, C

then X and A are assigned to the first location in COMMON and become equiyalent, Band Y

are assigned to the second location in COMMON, and similarly for Z and C. The implication

is that the two sets are not the same, but that both sets are never needed at the same time and

therefore sharing of storage locations is feasible.

The EQUIVALENCE statement is capable of the same two interpretations, although

ordinarily it is the second which is used. One way to view these two statements is that

EQUIVALENCE establishes either identity or storage sharing of variables within a main

program or subprogram, whereas COMMON establishes identity or storage sharing of var

iables among a main program and subprograms. The difference in the mechanism of the

two, viz., the setting ,aside of a separate COMMON area, is dictated by considerations

involving the internal ope'ration of the compiler.

93

SECTION VII. SPECIFICATION STATEMENTS

Internal operating considerations also dictate the following: the COMMON area is in

actuality composed of one area for arrays and another area for single variables. This fact is

of importance to the programmer when setting up COMMON statements involving both arrays

and single variables. The operation of the Compiler is best illustrated with an example.

Suppose a program contains the statement:

COMMON ARRAY1, X, Y, ARRAY2, Z

The array ARRAY1 will be assigned to the array part of the COMMON area, using as many

locations as required by the dimensions in the DIMENSION statement which mentions ARRAY1.

X and Y will be as signed to the first and second locations of the single variable area (if they

are indeed single variable s), ARRA Y2 to the array area following the locations as signed to

ARRAY1, and Z to the third location of the single variable area. Now suppose that in a sub

program there appears the statement:

COMMON ARRAY3, A, B, ARRAY4, C

These arrays and single variables will be assigned to the two COMMON areas in exactly the

same way as in the previous statement. If ARRA Y3 has the same total number of locations

(from its DIMENSION statement) as ARRAY1, then the first element of ARRAY4 and the first

element of ARRAY2 will be assigned to the same location in the array part of the COMMON

area. Since the arrays and single variables are handled separately in COMMON, the relative

order of arrays vs. single variables does not matter. The following statement would be equiv

alent to the second statement above:

COMMON A, ARRAY3, B, ARRAY4, C

The separate handling of arrays and single variables also leads to the need for a pre

caution. Suppose that in the main program there is the statement:

COMMON A, B, C, D, E, F

and that we need to make A in the main program correspond to X in a subprogram, and to

make F correspond to Y. Since variables are as signed to locations in COMMON on a basis of

the order in which they appear in the COMMON statement, it is necessary somehow to "fill out"

the COMMON statement in the subprogram, so that Y is the sixth variable. The only way to do

this is to make up the names of variables which do not really exist in the subprogram:

COMMON X, D1, D2, D3, D4, Y

One might be tempted to make up a one-dimensional array, give it dimension 4 in the sub

program's DIMENSION statement, and write:

COMMON X, DA, Y

where DA is the name of the fake array. This will not work, because of the separate handling

of arrays and single variables. The effect of such a statement would be to make X and A

correspond, and Y and B correspond.

94

Ii
I
II

II
I,

SECTION VII. SPECIFICATION STATEMENTS

It is allowable for a variable to appear both in a COMMON statement and in an

EQUIV ALENCE statement. When a variable not appearing in a COMMON statement is made

equivalent (by an EQUIVALENCE state:ment) to a variable which does appear in a COMMON

statem.ent, then both of the variables will be assigned to the COMMON area; no other action

would m.ake any sense. Doing this, however, m.ay change the order in which variables are

assigned to the COMMON area, according to the following rule. When COMMON variables

also appear in EQUIVALENCE state:ments, the ordinary sequence of COMMON variables is

changed and priority is given to those variables in EQUIVALENCE state:ments, in the order in

which they appear in EQUIVALENCE statements. For example, the co:mbination:

COMMON A, B, C, D

EQUIVALENCE (C, X), (Y, B)

will cause variables to be assigned to the COMMON area as follows:

1st: C and X

2nd: Band Y

3rd: A

4th: D

One of the :most frequent uses for the COMMON statem.ent is in supplying "im.plicit"

argum.ents to FUNCTION or SUBROUTINE subprogra:ms. Instead of setting up a SUBROUTINE

subprogram., for instance, to require argu:ments stating all the input and output variables, the

variables can be m.entioned in COMMON statem.ents in both the calling progra:m and the sub

progra:m. Then no argu:ments at all need be written in either the SUBROUTINE or the CALL

statem.ent. With the FUNCTION statem.ent, it is necessary to have at least one argum.ent.

For example, the COMMON statement may be used with the SUBROUTINE subprogra:m

to segment a program systematically and co:mpletely, in the following manner. After writing

the complete program, group the statements into reasonable segments according to their usage

in the progra:m. That is, find sets of statements which generally operate together. :Write a

SUBROUTINE statement at the beginning of each segment (except the first, which beco:mes the

IImain" progra:m), an END state:ment at the end of each segment, and enough RETURN state

ments to allow for proper exit from each subprogram. Write a COMMON statement containing

the names of all variables, both single and arrays, which appear anywhere in any part of the

progra:m; insert this statement in the :main program and every subprogram (possibly punching

the cards once and reproducing them, to save writing). Similarly, make up a DIMENSION

statem.ent containing the name of every array in the entire program, and insert it into the :main

95

SECTION VII. SPECIFICATION STATEMENTS

progra:m and every subprogra:m. The progra:ms :may now be batch co:mpiled. Later, if it is

necessary to reco:mpile one subprogra:m or the. :main progra:m, it :may be done independently

(unless, of course, so:mething in the COMMON or DIMENSION state:ments is to be changed).

This approach will result in putting so:me things in COMMON which do not actually need

to be there, but this is i:m:material. The :method outlined here is so:mewhat of a "brute force"

approach.

Use of COMMON state:ments in connection with the partitioning of a progra:m is illustrat

ed in the co:mplete exa:mple shown next in Sec tion VIII.

96

Ii

I

I

J

I

I'
I

II

~.
~

I

1

1:1
j

SECTION VI"

SAMPLE ALGEBRAIC COMPILER PROGRAM

General De scription

Suppose that for given values of x and n, it is desired to compute the quantities pI, p2,

p3, p4 and p5 define d below.

where

pI = .1 (l_x)ntl (1- (l-y)n(ltny)),

p2 = (ntl)(1-x)n(l- (l-y)n)xtpl,

p3 = (1(I_x)ntl(l_y)ntl)_pl,

p4 = (1- (1- x) n t 1_ (n t 1)(1- x) nx +(1 _ x) n t 1 (1- (1- Y) n t 1))_ pI,

p5 = (ntl)(l_x)n(l_y)nx,

y=x2 •

The program written for this problem is partitioned into several subprograms to facili

tate checkout. As one may readily see, the main program TABLE simply loops through the

series of calls to the subprograms. The subroutines TABIN, TABCMP, TABOUT, and TABEX

are the input, computation, output, and exit routines, respectively. Communication of data

between subprograms is achieved via the variables in COMMON. The program goes to the exit

routine when an end of file card (FINIS punched in columns 2- 6) has been detected by the input

routine. By utilizing sense switches, the program will permit both reading and printing to be

either on-line or off-line.

The plan of execution is very simple--read a card, compute the results, write them out,

and repeat the cycle until the "FINIS" card. A data card is punched with ten values of x and

three values of n , to be stored into the arrays P and N respectively. In TABCMP, for each

value of x and n, the quantitie s Pi (i= l, 5) are evaluated and stored as elements in corre sponding

arrays. When this process is completed for each set of input, the output routine simply writes

out the required information in an intelligible fashion.

ALGEBRAIC COMPILER STATEMENT
TITLE 1.-1 -'---'---'--'----1-.J.--"--' WRITTEN BY ______ _ CHECKED By ______ _ DATE ____ _ PAGE __ OF __

A STATE- g
B MENT N ALGEBRAIC COMPILER STATEMENT
C NUMBER T

N
I 6 II 23 38 52 66 72 8~

T I Ti- E TABL E 1 I I I I I I I I II III II 1 I I III 1 1 1 1 II 1 1 II II I j I ~-.L

1 1 C101NlIM
()N P1/ N

1
,PJ

1
,P2

, PI ~ '/1.31, //1-1 I I I I I I I I I I I I I I II I I II I I I I I

JI DI~""E N,:' JON / (1 ¢) , N(3),P1(.3,1~), P 2 (.3" 1ft), P.1(3,1 ¢) , PI/- (3 I 1",) ,l,5 (..1
11

j ~)

C
I 1.1 I , I , I I I I

97

SECTION VIII. SAMPLE ALGEBRAIC COMPILER PROGRAM

10

II

12

13

14

15

16

17

18

19

20

,
C

,
c.

c.

C

c

C

, , ,

,

,

,1

1

,

.1 I

,

c , , ,

10

II

12

13

4

15

16

17

18

19

20

10

I

2

3

4

5

6

c

C

c
C.

C

98

, ,1~

12

" ,
1 ,3,~

4,r)
, 5/1,

,

,
.1

, ,

I'

, , ,

, , ,

~.1J

.1 ai,¢

, , ,

, , ,

, , ,

, , ,

'11jY
C,~,L.L.

C/t,L,L

4G',l

tND

SUB I(

c.oMM

P(£ ttc,£.
, ,

I,Nl/l

~F(s

R,E,~&

IF l.
~EAb

Ill-
'Alii
FO R,1d

SA,L,L

EN/)

, , ,
s uBi,

r 0,"1'"

Dl/"l

Pial ,1

D,~ /.

~=l,(
D1

, l>,2.
D3

1>,4-

P,1,(,A:

/),5

pZ(K.

PS(k.

P3(/(

~4,'A:
I~OA'T

R. E T/J

E,N,D,

M A,I,N. ,~~,O,4,.e,.4,M -'-I ,CiA L,L,S, ,o,~ t,1I R,EE, ,S,U,8.p.,/SO,c./?/I,M
TAl IN - INPLJT, , ,
TA8cMP- CG',M/U T A T.l ON J

, , , , , , , T A,Bp,u Tel e,iJ, T".PO,T ., , , "

, , , ',I<.,o,~ l< ,I. fit. 5l,0,P,S,'JI,",E/tJ, ?,A/' II}I, ,R. ,E /. D S EN/)- 0

~oe.s T 0 ,E, ~.z: T". Ie. pu Tl NE.

, ,
11/t8 IN
TABCMP , , , , , , , , , , , , ,
,~A,&O,U,T, , , J .1.1_Ll1 , , ,

0, 1 .1 , J ,
, , , ,

OUTfNETABIN ,
(JtJ, P , N,Pl,P2 , PS, P3, P4-, , ,
N,5,10,N /,(,lA> , N (3) ,I, P ~(,.3" ,1 tV" P zl,.3, , ,2 ,",)J' P,3, (13" ,1

, , ,
T, '~/~Ii./, T ~Nl, , , ·,1 , , , , , I, , , , , , , , , , , , , , , , ,

,
ENs£ SWITC.H 2)1.¢,t2

,I,NllJ,~ ,T/~l,E, 2."4,¢,,,P,,~ " , I , , , , , , , , , , , ,
ND OF FIt E~ ¢ J 3¢ ,

4-¢" PI N

N,b lOll lilliE f ¢ ,3/A , , , , , , , , , , , , , , ,
(,N, I J , , , , , I , , , , .I , , , , , , , , , , , , ,
AT (J.¢,FS.4,3 I3)

,TAB~~ , , , , ,
,

, , , , , , , , , ,
(3 U,T,1 N ET.A 8c..(IIl , .1.1 .1.1 , , , .1..1 , " .1. .1.1. .11 I

ON P,N,Pf,P2 , P S , P3 , P4-

N,S,10/'- PC J fA) I N(3), PJ(3"l¢)"P Z(.3, j ¢) , P3l3 , 1

, 1 ,
COMPUr.ATIONltL ROUTINE FO R TilE p~ () BASI L ITY

P 1 I P Z I P3 I P tI- ,l,S I .fr P{ I) FO~

, .1.~JI , , , I , , , , , , , , , I , , ,
¢¢, k, =,1 1 3 , , , ,

¢//) ,Z,=,1,J,1p,
I,),*,*1.2. , , , , , L L' , .1." , , , ,
:.(1.r/J-P(l»* *(N(K)+1)

:.,N,(,~)/,l, 'I' , , , , ,

'" (1. QS- 4l)*,~N(/() , ,
=b31t.(j. ¢-¢)

,l),'" . .2,*l,.1;* (,.1 • f/> -,1>,4, - O,2,~~,* 0,.3) ,* J"J,. £,5, , , , ,
~ (, j • .1(/> -l (, I,)) ,* * ~(JK,), ~.l..L II J , L .I, , , , ,
, I)::02,NjP(1),~ D s,~ (1 • (J - D 3,) *' 1 ~ • E5-f P1 (/(, I,),

"I) :.D2*P(IHIf D5*1>3*1;.£5

?,I) = (1. ¢.- D1,* D+)~U¢. ES-P1(K., 1)

11) =(1. ¢,-Pl- DZJff,P(1) ~D5t/).t,*,(t • ~ • D 4;)) *.1,JIl. E S

1 NU,E. , , ,.1..1..1.1", .1 _1

ill "',
, , , , I , , , , , , I' , , I' , , I' , , , , , , , , , I I I' , , ,

s: ,
, , , , L I ~ ~j

, , , , ,
I' II

"

F - FI L E. cA RO AN 1>,
I I,
1,1

. , 10 i, '

:'1

, , .1: J

,
, , , , , ,

II

I~ 12

13

14 I:'
, 15

16 , , , ,
17

, TABc,41 P 18

, , ,
~) I P4, (.3" .1.1.A,).l'/'S (3, 1~,)

19

20 II

,
, , , , , , , , , , , , , ,

, ,
, , , , , , , , , ,

'i' , ,
, ,

, , , , , , ,
.1 , I' , ,

L'
,

, E'J(IT.

10

IJ
I.

II II

12 ,
, , 13 ,

.11 I , , .1. _L .1 JI
14

15

¢) I P 4-. (3, 1,P') I p,5 (.3, 1 ¢,) 16

17 , .,
F VAleT IoNs 18

A ~IV£'" N. 19

, , , , , , , , I I , 20

, , , I

, , , , , , , , , , , , , , , , ,

4

I' , , , , , J , L.I.' I ,
, , , , , ,

, , ,
, , , , , , L L ,

,
10

, II

12
, L...L

-P1(,1(,,1), , , I
13

T A8c,M.P. 14

15

16
, , , I' , , , , , , , , , , , I' I' , , I I'

17

18

19

20

10

II

12

13

4

15

16

17

18

19

0

10

I

2

3

,
c
c

C

4,

5

6

SECTION VIII. SAMPLE ALGEBRAIC COMPILER PROGRAM

17 , ,
SUBi-aUT r N.~ T.1t 8pU T TR80iJT. 18

C 0!A,M otJ, P,N, P 1, 1'2 ,PS, P.3, P4 , 19

, ",-{ME. N,Slo,N ,P,(,l,'IJ,) I I/C.3),1/,1. (,.3",J.¢,),,/ Z ,(,.3" ,1,~)" P,3,(,~ ~,J ¢),,, P4: (~" ,1,¢)",PS (,.3",1.,¢) , I. , 20

, , , , , , , , , , , , , ,

, , Of1l,P tI, T, ,rt,o, 0, T,I,N,E.,
, , , , , , , " 'L L J I J J , , , J , L

IF(S ENsE oS WITCH 1)2,4-

, , ,2 ~i;ll £, ,O,U,T,PU,T, ,T,A,P E ,4-,~ ,1,t/J, , , , , , I ,
Cio T ~, 1 S" , , ,

II- P,~I,N T If/J ,

,1~ F,~~Af Al ,e 1 NJ/.,S B I,S H 7 A ~ / .. ll//// 4l/J fJ" , , , , , , , , ,
, , X 2,",H,A L,L, O,UTP,LI.,T5., ,A R. E I J" I;' ¢.¢." ,/J//J{P, x./.! 1,3,6,611 ,4-.H.P , , ,68, '/~ P3 ,6,8?,6 H ,P4, ,

Y68,6H Pl 68,6,1/ 1'2 6h,4.N PS /,/,) 10

II

1
1
5 D/>, ,5 ¢1,~:.1,3 , .L J , , 12

IF(.s ENsE SWITCII 1)32,34 " , 13

312 'Io\~I,T E 'DiU Tl,~T llfl E. ,4-" , 4-. ~, /iJ/<,) , I, (l (I,)",P 3l,~,l,)"l4-l K"l,)" P,1 (,~"I,)",1 2. (,k" I,), , 14

I X P5,(1< ,J) , 1= 1",1,(/J,) ,
"

I , ,
'J "

, 15 ,
1 .. 1.' 4,°1 lO 5~ I' , , , , , , , , , , ,., L' L' I

16

34- PrR,III T 4f,.;~, N (1<) , (p (I) , P,3 (/(',1 1) , 1>4 (1::.,1)" P1(,k,,1), P 2 (k. ? I) , p s(K.) I) ,1=-1",1¢ 17

Y) 7ABOUT 18

.,.~ F.tJ!<M liT { 1 H + 2. ¢.B, 3 HN, :: 13/,1¢, (2813" F 12. 5 , ~F12.3/')1 /) 19

5,¢- F,O,A(T [N,UE , , , , , , , , , , , , , , , 20

I , , 1"i~~U ({,N, , , , , , , , , I' , , , , , , , , , , , , , , , , , I. ,

~f'J,D , , I , , I' , , I , , , I I , I I , I , , , , ,
, , , , I , I , , , , , , I I

, I' Sl iJl8,1<. OiJT, ('JA~1t8EX , , , , , I , , , , I I I I I'
, EXIT.

I , , (Oi'lIM o{l/, "",N ,//" /,2 I P'SI,l(J" P4 I' , , , , , , I , , 1l10,UT.I,~E.

DIME. NSION P{1¢,), N (3) , P 2 (,.3",11~')"/ 2(3, '1f/J),P3(3,1 IJ), P4 (.3 , 1 ~)" 1'5 (~ , '1 ~) ,

, I,F(S ENsE S WI TC H 1)1r!J,2¢,

l¢ W,~~T E, O,ll T P~T ,T,A,P E 'f",3¢ I I'
., , I I I

, Er,ND FIt- E, 4, II I , , i , I , I I

5 TO,P 7,77 , , , , 10

, 21~ ~~INT 3¢ , , , , II

~TO,P 17,77 , , I I I
12

3t/J FO,~M 1fT (J Hfi 58"J. 3 N E,N D, lOll ,T. A8 l ,EIS), , , I I II.
13

I O/JMM Y ,R.E. TU","" I I , , , , , I
14

R.E, Til ({,N , , I
15

E.ND
I I I I I I , I I I I

16

99

SECTION VIII. SAMPLE ALGEBRAIC COMPILER PROGRAM

Sample Input Data

The following three cards represent two sets of sample input data in the form required

by the above program, followed by a FINIS card.

100

000110011100111000110011100011001110011100011000110000 01001000000000000000000000
I 2 3 4 5 6 7 8 9 10 11 12 13 I. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3~ 36 37 38 39 40 41 42 43 44 45 48 41 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 7118 79 80

11

222222222221222212212222222222222222222222

33

44

55155555555555555155515555515555555555~55515555555551555555555555555555555555555

6~66

11 71 7 7 71 7 77 177 7 77 17 17 7 7 77 7177 7 77 77 7 77 7 77 7 77 777 7 71 7 77 7 1 77 77 7 77 77 77 77 77 7 7777 7 77 7 71

8888888888888888888888888888888188

99999999999999999999999999999999999919999199991199999999999999999999999999999999
'23'56189Wlla~~~rol7~~20~2223M~~n28293O~~~34~~~~394O~~~444548~48~50~~53545656~585660~626364~~~66~~nnn~~~71nn80

I

I:
\

SECTION IX

SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

General Properties of a Source Program

An Algebraic Compiler source program consists of a sequence of source statements,

of which there are 42 different types. Each statement of a source program is punched

beginning on a separate card, with up to nine continuation cards allowed for statements

which are too long to fit on one card. The sequence of source program statements is

determined only by the sequence of cards in the source program deck. In particular, the

sequence is not affected by the use of statement numbers or numbers in the continuation

column (see below).

Cards containing a "C" in column 1 are not processed by the Compiler and may

contain any desired comments which will appear in a listing of the source program deck.

Cards containing a "B" in column 1 are treated by the Compiler as Boolean statement

cards, as described below. Cards containing an "A" in column 1 are treated as ARGUS

state:rp.ent cards, as described below.

Any number less then 32,768 may be punched anywhere in columns 1 through 5 of

the first card of a statement, which then becomes the statement number. Statement

numbers of Boolean and ARGUS cards must be four or fewer digits in length, and may be

punched anywhere in columns 2 through 5. Blanks anywhere in a statement number are

ignored; leading zeros in a statement number are also ignored. Statement numbers may

be written in any sequence, but may not be duplicated within one program. It is not neces

sary for all statements to have statement numbers.

Column 6 of the first card of a statement must be left blank or punched with zero.

Continuation cards, other than for comment cards, must have column 6 punched with some

character other than zero. A comment card may not be thought of as being continuable;

every comment card must have a "C" punched in column 1. ARGUS statements are not

continuable by the nature of the statements. Continuation cards for Boolean statements

must ha:ve both the lIB" in column 1 and the non- zero punch in column 6.

The statements themselves are punched in columns 7 through 72, both on the first

and continuation cards. A table of the admissible Honeywell 800 characters and their use

in Algebraic Compiler statements appears in Appendix A. Except for the "blank" and

101

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

"Hollerith" field specifications in a FORMAT statement, blank. columns in statement cards are

ignored.

CONSTANTS, VARIABLES, ARRAYS, AND ARITHMETIC STATEMENTS

Fixed- Point Constants

A fixed-point constant is written as one to five decimal digits. It is characterized as

fixed point by being written without a decimal point and without an "E" to indicate an exponent,

and is thus restricted to integer values and zero. A preceding plus or minus sign1 is optional;

if no sign is written, the number is assumed to be positive. A fixed-point constant must always

be less in absolute value than 2
15 = 32,768.

Floating- Point Constants

A floating-point constant is written as not more than 16 characters, including sign, dec

imal point, and the letter E. It is characterized by having a decimal point, or the letter E to

indicate an exponent, or both. The decimal point, if used, may appear at the beginning, at the

end, or between any two digits. A preceding sign l is optional; if the number is written without

a sign, it is assumed to be positive. A floating-point constant may optionally be written with a

decimal exponent to indicate the power of 10 by which the number is multiplied; this is done by

writing an "E" after the number, followed by the exponent. A negative exponent is indicated by

a - sign; a positive exponent may be written with or without a + sign. The value of the floating-
. .. -77 +76 -256

point constant must either lie between the approxlmate hmlts of 10 and 10 (2 and
+252

2) in absolute value, or be zero.

Variables and the Names of Variables

Four kinds of variables are permitted: fixed point, floating point, alphanu:meric, and

Boolean. Fixed-point variables can only be integers and are named in a different way than

the others. Floating-point variables can only be values expressible as normalized floating

point numbers. Alphanumeric variables may be composed of any Honeywell 800 characters,

including letters and special characters. Boolean variables, in the broadest sense, include

all of the other types; the term is used primarily to describe variables appearing in Boolean

statements.

Since in most problems fixed- and floating-point variables will be used much more heav

ily than alphanu:meric and Boolean variables, and since there is no question of ambiguity in

volved, only two types of names are provided for the four types of variables. As prescribed

below, the name of a fixed-point variable distinguishes it from the other three; the rules for

1 Although the effect of a negative constant is easily achieved by prefixing the constant with a
minus sign, negative constants as such are not generated by the Compiler.

102

I

I
I
I.
il ~I
iii
"

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

naming floating-point variables also cover alphanumeric and Boolean variables.

In order to avoid ambiguity in the naming of variables and functions, it is necessary

to observe the following two rules.

Rule 1. A variable must not be given a name which is the same as the name

of a function without the final F.

Rule 2. The name of a subscripted variable must not end in F unless it is

less than four characters long.

Fixed- Point Va ria ble s

The name of a fixed-point variable is one to six letters or digits, of which the first

is I, J, K, L, M, or N. Punctuation marks or other special characters may not be used,

and the two rules above must be observed. A fixed-point variable may take on any posi-
44

tive or negative integral value which is less in absolute value than 2 ,which is approxi-
13

mately 10 . If it is to be used as a subscript, or as an indexing parameter in a DO

statement, it must be less in absolute value than 2
15 = 32,768. If a fixed-point variable

15 215, larger than 2. is used in these latter cases, it will be reduced modulo i. e., only

the rightmost 15 bits will be used.

Floating-Point Variables

The name of a floating-point variable is one to six letters or digits, of which the

first is alphabetic but not I, J, K, L, M, or N. Punctuation marks or other special

characters may not be used, and the two rules stated under "Variables and the Names of

Variables II must be observed. A floating-point variable may take on any value which is

expressible as a normalized floating-point number, i. e., its absolute value must lie
. .. -77 +76 -256 +252

between the approxImate hmIts of 10 and 10 (2 and 2) or be zero.

Alphanumeric Variables

Alphanumeric variables are named in the same way as floating-point variables. An

alphanumeric variable (note: not the name) consists of eight characters, and there is no

restriction on the use of the characters. An alphanumeric variable can be entered into

the computer as input, using the "A" field specification in a FORMAT statement; an alpha

num.eric variable may also be defined as an ARGUS constant, using the ALF pseudo operation.

These are the only ways to define alphanumeric quantities; there is no way to write a com

bination of arbitrary characters and have it regarded as a constant, i. e., a literal value,

103

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

as with fixed- and floating-point constants. Alphanumeric variables are ordinarily used only

in ARGUS statements, as arguments in CALL statements, in IF statements, in a list, in

Boolean statements, and in statements of the form a = b.

Boolean Variables

Boolean variables are named in the same way as floating-point variables. A Boolean

variable consists of 48 binary digits, which are often written for convenience as 16 octal

digits. A Boolean variable may be entered into the computer as input, using the "0" field

specification in a FORMAT statement; a Boolean variable may also be defined as an ARGUS

constant using the OCT pseudo operation. However, Boolean variables are not restricted to

quantities so entered. In fact, any variable may be regarded as a Boolean variable if properly

handled. Boolean variables are used only in Boolean statements. There is no way to write

an octal number and have it regarded as a Boolean constant, i. e., as an octal number

instead of a fixed-point number.

Subscripted Variables

A subscripted variable has the name of a fixed- or floating-point variable, followed

by parentheses enclosing one, two, or three subscripts separated by commas, the variable

then represents an element of a one-, two-, or three-dimensional array. A subscript in a

subscripted variable is a fixed-point quantity, the value of which determines the element

in the array to which reference is made. A subscript may be an expression in any of the

following five forms:

I • A fixed- point constant;

2. A fixed-point variable;

3. A fixed-point variable plus or minus a fixed-point constant;

4. A fixed-point constant times a fixed-point variable;

5. A fixed-point constant times a fixed-point variable, plus or minus
a fixed-point constant.

A variable in a subscript must not itself be subscripted. A variable which appears in sub

scripted form must appear in a DIMENSION statement somewhere in the program. The

value of a subscript must be greater than zero and not greater than the corresponding ma.xi

mum size given in the DIMENSION statement. A subscripted variable must always be

written with the same number of subscripts as appear in its DIMENSION statement.

An array is stored with the element corresponding to the subscript (1), (1, 1), or

(1, 1, 1) in the lowest-numbered location and the others in consecutive ascending locations.

104

I::
1,1,

I,!
I,:
,I'

I',!
I

'1,1

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

Two - and three -diITlensional arrays are stored in consecutive locations in such a way that their

first subscript (froITl the left) varies ITlost rapidly and their last subscript varies least rapidly.

Expressions

An expression is a sequence of constants, subscripted or non-subscripted variables,

and functions, separated by operation symbols, COITlmas, and parentheses, and obeying the

rules given below. Several of these rules have to do with the mode of an expression; every

expression is of the fixed-point or floating-point mode, depending on whether the value of the

expression is a fixed-point or a floating-point number. Boolean expressions are not con

sidered in these rules (see below for a discussion of Boolean expressions). The rules are

stated in such a way that all expressions may be derived from combinations of constants,

variables, and functions.

Rule 1. Any fixed-point or floating-point constant, variable, or subscripted

variable, is itself considered to be an expression.

Rule 2. In forming an expression, fixed-point and floating-point quantities

can be mixed only in the following two ways:

a. A floating-point quantity can appear in a fixed-point expression
only as an argument of a function;

b. A fixed-point quantity can appear in a floating-point expression
only as an argument of a function, or as an exponent, or as a
subscript.

Rule 3. A function is an expression, if expressions of the correct modes are

written as its arguITlents. The mode of the function considered as an expres-

sion is the saITle as the mode of the value determined by the function.

Rule 4. If E is an expression, and if its first character is not + or -, then

+E and -E are expressions of the same mode as E.

Rule 5. If E is an expression, then (E) is an expression of the same mode

as E.

Rule 6. If E and F are expressions of the same mode, and if the first

character of F is not + or -, then the following are all expressions of the

105

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

same mode as E and F:

E+F

E-F

ElF

The characters +, -, *, and I are us ed to denote addition, subtraction, multi

plication, and division, respectively.

Rule 7. If E and F are expressions, and F is a floating-point expression only

if E is, and if the first character of F is not + or -, and neither E nor F is of

the form A * ~:~ B, then E ~:o:~ F is an expression of the same mode as E. The

character combination):C~~ is us ed to denote exponentiation.

Hierarchy of Operations

Three rules govern the order in which operations are carried out:

Rule 1. Where parentheses are used, they override the following two rules.

Rule 2. If the hierarchy of operations is not explicitly specified by paren

theses, it is taken in the following order, from innermost to outermost:

Exponentiation

Multiplication and division

Addition and subtraction

Stated otherwise, in the absence of parentheses all exponentiations are carried

out first, then all multiplications and divisions, and finally all additions and

subtractions.

Rule 3. Expressions in which parentheses are omitted from a sequence of

consecutive multiplications and divisions, or a sequence of consecutive

additions and subtractions, are treated as though there were parentheses

grouped from the left. Thus, if zero represents either * or I, or -separately,

+ or -, then AOBOCOD will be taken to mean «(AOB)OC)OD).

Arithmetic Statements

An arithmetic statement is of the general form a = b, where a is a subscripted or

non-subscripted variable, and b is an expression as defined previously. The = sign is not

used here in the sense of "is equivalent to", but rather is used to mean "the value defined

by the expression b replaces the previous value of a".

106

I~

I
I

I
,1'1

rl
II

iii
lit
I'

:1

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The result of a calculation defined by an arithmetic formula is in floating-point form

if the variable on the left side of the = sign has the name of a floating-point variable, and

in fixed-point form if the variable on the left has the name of a fixed-point variable. If

the variable on the left is fixed point and the expression on the right is floating point, the

result is first computed with floating-point arithmetic, then truncated and converted to a

fixed-point integer. (Truncate, as used here, means to discard any fractional part of the

result without rounding). If the variable on the left is floating point and the expres sion on

the right is fixed point, the result is computed using fixed-point arithemtic, then converted

to floating-point form.

Boolean State:ments

Any statement card which has "B" punched in column 1 will result in the compilation

of instructions in the object program to do Boolean Algebra. This may apply to arithmetic

expres sions, to expres sions in IF statements, in function definitions, and in the arguments

of a CALL statement. In every cas e, Boolean algebra will be performed on all variables;

Boolean and "ordinary" algebra cannot be mixed. The elements of which Boolean algebra

is to be performed must have the names of floating-point variables; these may have been

defined as ARGUS constants or entered with an "0" field definition in a FORMAT statement.

The three allowable operations and the symbols used for them are:

l.

2.

Logical addition (inclusive OR)

Logical multiplication (AND)

3. Complementation

+

The exclusive OR function of two variables may be obtained by making them the

arguments of the function EXCLORF. The hierarchy of operations in a Boolean expression

is as in ordinary algebra, except that there is no subtraction, division, or exponentiation;

i. e., multiplication is done before addition. Complementation is a unary operation, and

enough parentheses must be used to completely define which one expression is to be

complemented.

ARGUS Statements

It is possible to intersperse Honeywell 800 instructions, written in the ARGUS language,

into an Algebraic Compiler program. The ARGUS instructions may be written on the Com

piler coding form as desired in the compiled program, by placing an "A" in column 1 of the

statement line of the Compiler coding form.

107

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The rest of the ARGUS instruction format is:

Columns 2-5: Statement Number or Blank

Columns 11-22: Operation Code

Columns 24- 37: A Address

Columns 38-51 : B Address

Columns 52-65: C Address

The discussion which follows assumes a rudimentary knowledge of the ARGUS system.

The allowable types of addresses used in ARGUS statements are limited to names of

floating-point variables, ARGUS constants, literal floating-point constants without a sign,

statement numbers or binary counts according to the following table:

Type of 0Eeration A Address B Address C Address

Arithmetic (floating binary) General General Variable

Logical Symbol Symbol Variable

Comparison General General Statement Number

TS General or Variable or Statement Number
Inactive Inactive

TX General Variable

Shift Symbol Bina ry Count Variable

Print General Inactive Statement Number
or Inactive

In the above table the following definitions apply:

Variable - name of a floating-point variable.

General - includes name of floating-point variable and ARGUS constant, and
literal floating-point constants.

Symbol - Includes name of floating-point variable and ARGUS constant.

The portions of the ARGUS vocabulary which may be used include the three ARGUS

constant pseudo instructions ALF, OCT, and FLBIN, with the restriction that these must

appear with only one entry per statement line. In addition to these data entry instructions,

the Algebraic Compiler permits the use of: BA, BS, BM, BD, WA, WD, HA, SM, SS, EX,

TX, TS, NN, NA, LN, LA, SPS, SPE, SWS, SWE, PRA, PRD, PRO, FBA, FBS, FBM, FBD,

FLN, FFN, and FNN.

All other ARGUS instructions are specifically excluded from the set of permissible

instructions in the Algebraic Compiler. Further, ARGUS instructions may not use the

cosequence mode, simulator instructions, or masking. No Compiler functions may be

addressed.

108

I

I

I'

j

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

CONTROL STATEMENTS

Unconditional GO TO Statement GO TO n

Control is transferred to the statement with the statement number n.

Computed GO TO Statement GO TO (n , n , .. " n), i
I Z m

In this statement, i must be a non- subscripted fixed-point variable and n , n , ... , n
I Z m

must be statement numbers. If the value of the variable i at the time this statement is executed

is j, control is transferred to the statement with the statement number n.. The value of i must
J

never be outside the range I to m.

Assigned GO TO Statement GO TO n, (n l , n
Z
"'" n m)

In this statement, n must be a non- subscripted fixed-point variable which appears in a

P reviously- executed ASSiGN statement and n , n , ... ,n must be statement numbers. Con-
I Z m

trol is transferred to the statement having for its statement number whichever one of the values

n
l

, n
Z
"'" nm was most recently assigned to n by an ASSIGN statement.

ASSIGN Statement ASSIGN n. TO n
1

In this statement, n must be a non- subscripted fixed-point variable which appears in an

assigned GO TO statement, and n. must be one of the statement numbers appearing in paren-
1

theses in the same assigned GO TO. When the assigned GO TO is next executed, control is

transferred to the statement with the statement number n" unless another applicable ASSIGN
1

intervenes.

CONTINUE Statement CONTINUE

This is a dummy statement which does not result in any instructions in the object

program. It is used primarily as the last statement in the range of a DO, when needed to

satisfy the requirement that the range of a DO must not end with any statement which can

cause a transfer of control.

IF Statement

In this statement, e is an expression and n
l

, nZ' n3 are statement numbers. Control

is transferred to the statement with the statement number n
l

, nZ' or n3' depending on whether

the value of e is less than zero, equal to zero, or greater than zero, respectively.

109

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

IF PARITY Statement

This statement may be used to alter the course of a computation upon detection of an

uncorrectable parity error on a magnetic tape. In the statement, n
l

· and n
2

must be state

ment numbers. If there was a parity error on the preceding statement and the parity rou

tines were not able to correct it, the statement number n
l

is executed next; if there was no

error or if it was corrected, the statement with the statement number n
2

is executed next.

The IF PARITY statement may optionally follow any of the statements READ TAPE, WRITE

T APE, READ INPUT TAPE, or WRITE OUTPUT TAPE; if so, it must be the next executable

statement. If the statements IF PARITY and IF END OF FILE are both used, the IF PARITY

should be first. If an uncorrectable error is detected and there is no IF PARITY statement

following the input or output statement, the obj ect program will print an error indication and

stop.

IF END OF FILE Statement IF END OF FILE n , n
1 2

This statement may be used to alter the course of a computation under any of the fol

lowing conditions:

1. In connection with a READ TAPE statement, upon detection of the indication
written on a magnetic tape by the END FILE statement;

2. In connection with a READ, READONE, or READTWO statement, upon
detection of a card with the word FINIS punched in columns 2 through 6;

3. In connection with a READ INPUT TAPE statement, upon detection of a
record produced by a card with the word FINIS punched in columns 2
through 6.

In the statement, n
i

and n
2

must be statement numbers. If the relevant condition was

detected in connection with the preceding input or output statement, the statement with

the statement number n
l

is executed next; if the condition was not detected, the statement

with the statement number n
2

is executed next. The IF END OF FILE statement must be

the next executable statement after the input or output statement to which it refers, except

that an IF PARITY statement may intervene. If any of the conditions listed above are de

tected and there is no IF END OF FILE statement following the input or output statement,

the object program will produce an error indication and stop.

DO Statement DO n i = nit nZ' n3

or DO n i = n l' n Z

In this statement, n must be a statement number, i must be a non-subscripted fixed-

. . bl d and n must each be either an unsigned fixed-point constant or pOlnt Varla e, an n
l

, n
2

, 3

110

Ii
I!
I

1.1

I

I.

,)
d

li

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

a non- subsc ripted fixed- point variable. 1£ n3 is not written, as in the second form of the

statement, it is assumed to be 1.

The statements following the DO, up to and including the statement with the statement

number n, are executed repeatedly. They are executed first with i = n
l

; on each following

execution i is increased by n
3

. Repeated execution is continued until the statements have

been executed with i equal to the largest value which does not exceed n
Z

.

The range of a DO is the set of repeatedly executed statements. Stated otherwise, it

is the set of statements beginning with the statement immediately following the DO and

continuing up to and including the statement with the statement number n.

The index of a DO is the fixed-point variable i. Throughout ~he execution of the range,

i is available for use in computation, either as a fixed-point variable or as the variable of

a subscript. The value of i is also available for use in computation if control passes to

statements outside of the range. This may happen either by the execution of control state

ments which cause a transfer of control outside of the range of the DO, or by the normal

completion of the number of executions of the range as specified by n
l

, nZ' and n
3

. In the

latter case, the DO is said to be satisfied. The following rules must be observed in writing

DO statements:

Rule 1. 1£ the range of one DO (the "outer" DO) contains statements in the range

of another DO (the "inner II DO), then all the statements in the range of the inner

DO must also be in the range of the outer DO. (This does not prohibit having

the ranges of two or more DO's end with the same statement.)

Rule Z. The last statement in the range of a DO must not be a statement that

can cause a transfer of control.

Rule 3. No statement may be executed within the range of a DO, which re

defines or otherwise alters the value of the index of the DO or of n
l

, nZ' or n
3

.

Rule 4. Control must not transfer into the range of a DO from a statement out

side its range, with one exception: it is permissible to transfer control out of

the range of a DO, perform a series of calculations, and then transfer control

back to the same section of the range of the DO from which exit was made.

When this is done, the statements to which control is transferred are called

the extended range of the DO. It is still necessary to observe Rule 3 in the

111

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

extended range. Furthermore, if there are any DO's in the extended range, the

transfer is only permitted from the innermost DO of a completely-nested set of

DO's, i. e., every pair of DO's in the "nest" is such that one contains the other.

PAUSE Statement PAUSE or PAUSE n

If the second form of the statement is used, n must be an unsigned octal constant which

may contain as many as five digits. When the statement is encountered in the object program,

the following are typed out on a console typewriter:

1. The title of the main program, which appeared in the TITLE statement;

2.

3.

4.

The word PAUSE;

The constant n, or nothing if the first form of the statement is used;

The status of the simulated sense lights and sense switche s.

The machine then waits for the operator to take some action. If a restart at the sequence

register is initiated, the program will continue execution, beginning with the next executable

statement after the PAUSE. It is possible to change the status of the simulated sense switches

before continuing. Any programs being parallel processed will not be affected by these actions.

STOP Statement STOP or STOP n

If the second form of the statement is used, n must be an unsigned octal constant which

may contain as many as five digits. When the statement is encountered in the object program,

the following are typed on a console typewriter:

1. The title of the main program, which appeared in the TIT LE statement;

2. The word STOP;

3. The constant n, or nothing if the first form of the statement is used;

4. The status of the simulated sense lights.

The execution of this program is then halted and control is returned to the Executive Routine.

Manually starting this program again at the sequence register will have unpredicted results,

since it is not anticipated that the programmer will want to continue execution of a program

after encountering a STOP. The execution of this statement will not affect any programs

being parallel processed with this one.

1
SENSE LIGHT Statement SENSE LIGHT i

This statement provides a means of indicating conditions in a problem both to the opera

tor and to other portions of the program. The value of i must lie in the range of zero through

4. If i is zero, all sense lights (1 through 4) will be turned off, 1. e., SENSE LIGHT 0 in effect

clears all sense lights. If i has any other value, 1. e., 1 through 4, that particular sense light

IThe SENSE BIT Statement may be used interchangeably with the SENSE LIGHT Statement.

112

I

I'

I

J

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

will be turned on. For example, SENSE LIGHT 3 turns on sense light 3. For a discussion

of sense lights and sense switches, see Appendix B.

IF (SENSE LIGHT) Statement l IF (SENSE LIGHT i) nl' n Z

This state:ment is used to alter conditionally the sequence of the execution of statements

dependent upon the status of one of the sense lights. In the state:ment, n
1

and n
Z

are state:ment

nu:mbers and i is the nu:mber of a sense light, 1 through 4. If sense light i is in the on condition,

control is transferred to state:ment nu:mber n
1

, otherwise control is transferred to state:ment

nu:mber n
Z

• If the sense light is on at the ti:me of execution of this state:ment, it will be turned

off. In other words, sense light i is always left in the off condition as the result of the execu

tion of this s tate:ment.

IF (SENSE SWITCH) StatementZ IF (SENSE SWITCH i) n
l

, n
Z

This statement is si:milar to the IF SENSE LIGHT statement except that the sense switche s

(see Appendix B) are interrogated rather than the sense lights. n
l

and n
Z

are state:ment num

bers and i identifies the sense switch used. The value of i may range fro:m I through 6. Control

is transferred to statement n
l

if sense switch i is down and to statement n Z if sense switch i is

up.

IF ACCUMULATOR OVERFLOW State:ment IF ACCUMULATOR OVERFLOW n
l

, n
Z

This state:ment is used to control the program sequence depending on the setting of a

switch which is set by an addition or subtraction overflow unprogra:m:med transfer. Control

is transferred to statement nu:mber n
l

if an accumulator overflow has occurred or to state-

ment nu:mber n
Z

if overflow has not occurred since the previous IF ACCUMULATOR OVERFLOW

state:ment. The use of this statement resets the internal indicator tested.

IF QUOTIENT OVERFLOW Statement IF QUOTIENT OVERFLOW n
l

, n
Z

This state:ment is used to test the status of a switch set by an exponential overflow or

underflow unprogra:m:med transfer. Control is transferred to statement n
l

if an exponent has

be.en created by any of the floating-point operations that is greater than +63 or less than -64,

or to statement nZ if these exponent li:mits have not been exceeded since the previous IF

QUOTIENT OVERFLOW state:ment. The use of this state:ment resets the internal indicator

tested.

I
The IF (SENSE BIT) Statement may be used interchangeably with the IF (SENSE LIGHT)
Statement.

ZThe IF (SENSE FLAG) Statement :may be used interchangeably with the IF (SENSE SWITCH)
State:ment.

113

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

IF DIVIDE CHECK Statement IF DIVIDE CHECK n
l

, n
Z

This statement is used to test a switch set by a division overcapacity unprogrammed

transfer. Control is transferred to statement n
1

if a division instruction has been attempted

that cannot be performed, or to statement n
Z

if no illegal divisions have been attempted since

the previous IF DIVIDE CHECK statement. The use of this statement resets the internal in

dicator tested.

TIT LE Stat ement TITLE Name

This statement must be on the first card of every program. The word TITLE must

be punched in columns Z through 6 of the statement card, and the desired title in columns

7 through 14. The name used should not duplicate any already on the collector tape. If

no TIT LE statement is provided, a dummy name will be supplied by the Compiler. A

TITLE statement is not required by FUNCTION and SUBROUTINE subprograms, and is

ignored if present; the name of the subprogram becomes its name on the collector tape. A

TIT LE card must not be preceded by a blank card. A TIT LE may not begin with an asterisk

as it might otherwise be confused with principle subroutines.

END Statement END

This is a non- executable statement which must be on the last card of every program

or subprogram deck. It is required in order to separate programs in batch program com

pilation, but it is nevertheles s required even though only one program is being compiled.

The word END must be punched in columns 7 through 9 of the statement; any other punches

on the card are ignored. An END card must not be followed by a blank card.

FINIS Statement FINIS

This is a non- executable statement which must be on the last card of the batch of

program decks being compiled together.. It is required even if the batch consists of only

one program. No other characters may be written in this statement, besides the word

FINIS, which must appear in columns Z through 6 of the statement card.

INPUT AND OUTPUT STATEMENTS

Definition of a List

All of the input and output statements which transmit information require a list in

order to specify the variables to be transferred between storage and an input or output

device, and to specify the sequence in which they are to be transferred. A list consists

of the names of the variables to be transferred, together with parenthesized indexing

information to specify how the subscripted variables (if any) are to be treated. The variables

114

I

I

I'

II

,I
II
I

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

are transferred in the order in which they are named, from left to right, with repetition of any

variables for which indexing information is supplied. Parenthesized variables with indexing

information may be thought of as being equivalent to implicit DO loops, where each opening

parenthesis {except subscripting parentheses} corresponds to a DO, with its indexing informa

tion written just before the matching closing parenthesis, and with its range ending with the

indexing information. As in a DO statement, the indexing information consists of three fixed

point constants or fixed-point variables; if the last of these is omitted, it is assumed to be 1.

"N ests" of indexing information may be be at most three levels deep. If the list of an input

statement is written in the form I, A{I}, or the form J, (A(I), I = 1, J), or in any other form

in which a subscript or an indexing parameter itself appears earlier in the list, the subscripting

or indexing will be carried out using the new value.

If it is des.ired to transfer an entire array, the name of which must of course appear in

a DIMENSION statement, it is permis sible to omit the indexing information. When this is done,

the elements of the array are understood to be ordered in the same way that the elements of

an array are ordered in storage, i. e., with the first subscript from the left varying most

rapidly and the last subscript varying least rapidly.

FORMAT Statement FORMAT (Field Specifications)

All of the input and output statements which require a list, with the exception of READ

T APE and WRITE TAPE, require, in addition, the statement number of a FORMAT statement

which describes the information format to be used. The FORMAT statement also describes,

in some cases, the kind of conversion to be performed between the internal and external rep

resentation of the information to be transferred. A FORMAT statement is not executable, and

may be placed anywhere in the source program.

In the discussions below, the term "unit record" is used. Depending on which input or

output statement is used, a unit record rn.ay consist of:

1. A line to be printed on an on-line printer, with a maximum of 120
characters;

2. A punched card to be read from an on-line card reader or punched
on a directly-connected punch, with a maximum of 80 characters;

3. An alphabetic tape record to be read or written, with a maximum
of 120 characters;

4. A binary tape record to be read or written, with any number of
words. The number of physical tape blocks in such a record is
determined by considerations in the object program and is of
no concern to the programmer.

115

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The field specification in a FORMAT statement describes the unit record(s) involved by

giving, for each field in the record, from left to right beginning with the first character of

the record:

1. The type of information and/ or the type of conversion to be used; this is
done with the seven field specification characters discussed below;

2. The number of characters in the field;

3. For some of the field specifications certain other information is required
and/ or may optionally be given; these cases are discussed in connection
with the description of the field specifications below.

If a number of consecutive fields, say n, have the same format and type of conversion,

n may be written before the field-specification character to so indicate. This repetition of

groups of field specifications may be called for by enclosing the group of field specifications

within parentheses and writing the desired number of repetitions in front of the opening par"en

thesis. Only one level of grouping is permitted, i. e., parentheses within parentheses are

not permitted for this purpose.

When the list of an input or output statement is used to transfer more than one unit

record, with the different records having different formats, a slash is used to separate the

format specification of each record. It is possible to specify that the first one or more

records have a special format, and that all following records have the same format; this is

done by enclosing the last record specification in a second set of parentheses. A slash

always indicates the end of one record and the beginning of a new one; the closing parenthesis

of the FORMAT statement always indicates the end of a record. The skipping of entire records,

which in practice usually means the printing of blank lines, is called for by writing consecutive

slashes. The skipping of n records is called for by writing n + 1 slashes.

With the exceptions of a FORMAT statement which consists entirely of Hollerith fields

and of the liB" (blank) field specification (see below), a FORMAT statement is always used in

conjunction with the list of an input or output statement. The list specifies the variables to

be transferred and in what order, and the associated FORMAT statement, the format of each

variable as well as the length of each record if there is more than one. As the object program

transmits the variables named in the list, it scans the FORMAT statement, from left to right,

to find the proper field specification for each variable; any repetition of field specification or

of groups of field specifications is, of course, taken into account. Whenever Hollerith field

specifications (see below) are encountered in scanning the FORMAT statement, they are dealt

with in the proper place, without any transmis sion of variables from the list. The transmis

sion of variables is terminated only when all items in the list have been transmitted, but any

116

i

I

!

I

['I

j

Ii
II

II

Ii:!
\'1

I' II

I

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

remaining Hollerith field specifications in the FORMAT statement will be dealt with even after

the transmission of the last variable. If the last field specification in the FORMAT statement

has been used and items named in the list remain to be transmitted, scanning of the FORMAT

statement begins again with the first field specification in the last set of parenthes es in the

statement.

Scale Factor

A scale factor is optional with the "E"and "F" field specifications. It is written as

n P s where n is the scale factor, s is the field specification and P is used only as a separation

character. Its usage is different for the two types; details are discussed below. Four con

ventions which apply to both types may be mentioned here:

1. Once a scale factor has been given, it applies to all "E" and "F"
field specifications in the same FORMAT statement, until another
scale factor appears in the scanning of the FORMAT statement;

2. If no scale factor is given, it is taken to be zero. Once a scale
factor has been given, a scale factor of zero must be given in
order to return to the normal mode;

3. Scale factors apply only to the "E" and "F" field specifications,
and with the "E" type only to output. Use of a scale factor with
any other type of field specification has no effect; use of a scale
factor for input of "E" fields produces unpredicted results and no
error indication is given;

4. When a scale factor is written with a field specification which
includes a repetition numbeT, the repetition number is written
between the scale factor and the E or F. If there is no repe
tition number given, i. e., if it is understood as 1, then it
may be written or not. Thus, in the case of the "F" field
specification, for instance (see below), the following are all
permissible: 3P4F12.4, 3PF12.4, 3PlF12.4; the last two
are equivalent.

Field Specification "E" (Floating Point) Ew.d

The "E" field specification is used to indicate conversion between an internal floating

point variable and an external floating-point decimal number, i. e., one written with an explicit

exponent. The total number of characters in the field, including sign, decimal point, exponent,

and any blanks, is specified by w. The number of decimal places after the decimal point is

specified by d; d is treated modulo 10.

On input, a sign, if it appears, must be the first non- blank character of the fie.ld. The

use of a + is always optional. The us e of a decimal point is optional; if it is not supplied, then

the position of the assumed decimal point is given by d, but if it is supplied its position over

rides d. Blanks embedded in the number are to be zeros. The "number" part of the field must

117

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

not exceed 14 digits, not counting sign, blanks, or decimal point. The exponent part of the

field is of the general form E±ee, where ee is the numeric exponent, but several simplifica

tions are permitted. A positive exponent may appear with the + omitted or replaced by a

blank, i. e., in the forms E ee or Eee. If the most significant digit of the exponent is zero,

it may be omitted. If the exponent appears with a sign, the E may be omitted. Thus, the

following are all permissible (and equivalent) forms for the exponent plus two: E + 02, E 02

E02, E + 2, E 2, E2, +02, +2. A sc.ale factor has no effect on input with the "E" field

specification.

On output, the number will appear at the right of the field, if w is larger than the number

of characters in the field. If w is not large enough to contain the converted internal number,

leading characters will be lost. There will be no embedded blanks in the field, with the excep

tion that + signs are not entered but are replac ed by blanks. In the abs enc e of a sc.ale factor

(see below), the field will appear in the form ±O. nn E±ee (except that any + signs do not

actually appear) where the number of places after the decimal point is specified by d.

A positive scale factor may be used by writing the field specification in the form sPnEw. d,

where s is the scale factor, and n is the number of repetitions for the field specification (see the

discussion of scale factor conventions under the general discussion of the FORMAT Statement).

The effect of the use of a scale factor in this case is to move the decimal point s places to the

right and to decrease the exponent by s.

Field Specification IIF II (External Fixed Point) Fw.d

The "F" field specification is used to indicate conversion between an internal floating-point

variable and an external fixed-point number, i. e., one written without an exponent. The total

number of characters in the field, including sign, decimal point, and any blanks, is specified by

w. The number of decimal places after the decimal point is specified by d; d is treated modulo 10.

On input, a sign, if it appears, must be the first non-blank character of the field. The

use of a + is always optional. The use of a decimal point is optional; if it is not supplied, then

the position of the assumed decimal point is given by d, but if it is supplied its position over

rides d. Blanks embedded in the number are to be zeros. The number must not exc eed 12

digits, not counting sign, blanks, or decimal point.

A positive or negative scale factor may be used for input with the "F" field specification;

the effect is to multiply the external number by 1 0 to the negative of the scale factor. If the

scale factor is s, the formula is:

Internal number = External number . 10 - s

118

ij

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

On output, the nUlTlber will appear at the right of the field, if w is larger than the nUlTlber

of characters in the field. If w is not large enough to contain the converted internal nUlTlber,

leading characters will be lost. There will be no elTlbedded blanks in the field. Positive

numbers appear without a + sign.

A positive or negative scale factor lTlay be used, by writing the field specification in the

form ±sPnFw. d, where the + sign is optional, s is the scale factor, and n is the nUlTlber of

repetitions of the field specification (see the discussion of scale factor conventions under the

general discussion of the FORMAT StatelTlent). The effect of the use of the scale factor in

this case is to lTlove the decilTlal point of the external nUlTlber s places to the right if s is posi

tive, or to the left if s is negative. Stated otherwise, s is a nUlTlber such that:

External nUlTlber = Internal nUlTlber . lOs

Field Specification "I" (Integer) Iw

The "I" field specification is used to indicate conversion between an internal fixed-point

variable and an external decilTlal integer. The total nUlTlber of characters in the field, including

sign and any blanks, is w.

On input, a sign is optional; if it appears, it lTlust be the first non-blank character in the

field. The use of a + sign is always optional. The use of a decilTlal point is, of course, not

perlTlitted. Blanks elTlbedded in the number are assulTled to be zeros. The nUlTlber lTlust not

exceed 14 digits, not counting sign or blanks; for use as a subscript or index the lilTlit is in

fact 32,767.

On output, the nUlTlber will appear at the right of the field, if w is larger than the nUlTlber

of characters in the field. If w is not large enough to contain the converted internal nUlTlber,

leading characters will be lost. Positive integers appear without the + sign.

Field Specification "H" (Hollerith) wH

The Hollerith field specification does not call for the output of a variable, but the output

of the following text itself. The w characters ilTllTlediately following the letter H, where w

lTlay be any integer not exceeding the size of the record, are placed in the record in the posi

tion indicated by the position of the Hollerith field specification in the FORMAT statelTlent.

Any Honeywell 800 character lTlay be us ed, including the character blank; this is the only

instance in which a blank in a statelTlent is not ignored. The characters printed by the high

and standard- speed printers available with the Honeywell 800 are different in a few cases;

reference should be lTlade to the character configuration table in Appendix A to deterlTline

119

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

what characters will be printed.

Indication of the presence of Hollerith text is not required in the list of the output state

ment which refers to the FORMAT statement. Whenever a Hollerith field specification is

encountered in the scanning of the FORMAT statement, the following text is written out and

scanning continues without any variables having been transmitted. It is possible to write a

line consisting entirely of Hollerith text, by using an output statement with no list, and which

refers to a FORMAT statement with only the "H" field specification. The Hollerith text is

not available to the programmer for use in any way other than for input or output.

When a FORMAT statement containing Hollerith text is referenced by an input statement,

the listed text is replaced by whatever text appears in the corresponding field of the input

record. When the same FORMAT statement is later used with an output statement, the text

which has been "read into" the FORMAT statement will then be transferred to the output

record. The text thus entered is still not available to the programmer for use in any other

way than for input or output. (The "A" field specification, described below, is available for

use in entering alph~betic data, which can then be manipulated by the program.)

For all output statements that result in printing, e. g., PRINT and WRITE OUTPUT

TAPE, single spacing of the printed lines will result unless specific control is given other

wise. This is accomplished through the use of the Hollerith field specification in a FORMAT

statement. If a field specification 1H is used as the first field specification in a FORMAT

statement associated with an output statement, no data per se is transmitted, but rather the

one Hollerith character is interpreted as a control character. The permissible characters

and their interpretation are:

Blank - single space after the current line is printed

+ suppress spacing after the current line is printed

a - double space after the current line is printed

1 - space to head of form after the current line is printed

2- 9 - this number of lines are to be spaced after the current line is printed

If any other character is used in this connection, it will be placed in the output area. If this

Hollerith field specification is used in connection with punching, this control character will

not be punched.

Field Specification "0" (Octal) Ow

The "0" field specification is used to indicate conversion between an internal 48-bit

Honeywell 800 word and an external fixed-point octal integer. The total number of characters

in the field, including sign and any blanks, is w, which must be 16 or less.

120

I

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

On input, if B, 9 or any other illegal character appears in the field, it will be converted

to alphanurneric forrn and the right three bits stored; no error indication will be given. Blanks

ernbedded in the field are as surned to be zeros.

For signed fields, the sign must be the first non- blank character of the field. If w is 16,

the leftrnost digit rnust not exceed 3. If w is less than 16, the converted number will be placed

in the right side of the storage location. If the sign is +, all four sign bits of the Honeywell BOO

word will be set to 1; if the sign is -, all four sign bits will be set to zero.

If the field appears without a sign, the characters of the field are stored in the left side

of the storage location, with no special handling of the sign bits of the Honeywell BOO word.

The leading digit may be any octal digit.

On output, the nurnber will appear at the right of the field, if w is larger than the

number of characters in the field. If the field defined by w is not large enough to contain

the converted internal number, leading characters will be lost. Positive integers appear

without a + sign.

Field Specification "A" (Alphabetic) Aw

The "A" field specification is used to indicate conversion between an internal 4B-bit

Honeywell BOO word, considered as eight alphanurneric characters, and an external field

consisting of any cornbination of Honeywell BOO characters. The nurnber of characters in

the field, w, may not exceed eight.

On input, if w is less than eight, the field will be stored in left-justified forrn,i. e.,

the first character of the field will appear in the leftrnost character of the cornputer word,

and the extra characters at the right end of the cornputer word will be filled with blanks.

On output, if w is less than eight, the w characters at the left end of the computer word

will be rnoved to the output record.

Field Specification "B" (Blank) 1 wB

On input, the "B" field specification calls for the next w character positions in the input

record to be skipped over. No indication in the list of the input staternent referencing the

FORMAT staternent is required.

On output, the "B" field specification calls for w blanks to be inserted into the output

1
The field specification "X" may be used interchangeably with specification liB ".

121

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

record. No indication in the list of the output statement referencing the FORMAT statement

is required.

READ Statement READ n, List

In this statement, n is the statement number of a FORMAT statement, and the list is

as described above. The READ statement calls for the reading of cards from the on-line

card reader designated as number 1. As many cards are read as are required to supply the

number of variables specified in the list. The arrangement of information on the cards is

defined in the FORMAT statement; each field is converted, also as defined in the FORMAT

statement, and placed in the computer storage location assigned to the corresponding variable

named in the list.

The detection of a card with the word FINIS punched in columns 2 through 6 constitutes

an end-of-file condition for this statement. If the statement is executed when there are no

cards in the card reader ready to be read, the program will wait for cards to be made ready.

READ ONE Statement READ ONE n, List

This statement is exactly equivalent to the READ statement.

READ TWO Statement READ TWO n, List

This statement is equivalent to the READ and READ ONE statements, except that cards

are read from the on-line card reader designated as number 2.

PRINT Stat ement PRINT n, List

In this statement, n is the statement number of a FORMAT statement, and the list is

as described above. The PRINT statement calls for lines to be printed on the on-line printer

designated as number 1. As many lines are printed as are required to exhaust the list. The

arrangement of inform.ation in the lines is defined in the FORMAT statem.ent; each variable in

the list is converted, also as defined in the FORMAT statem.ent, and printed, one line at

a tim.e.

PRINT ONE Statem.ent PRINT ONE n, List

This statem.ent is exactly equivalent to the PRINT statem.ent.

PRINT TWO Statem.ent PRINT TW 0 n, List

This statem.ent is equivalent to the PRINT and PRINT ONE statem.ents, except that

lines are printed on the on-line printer designated as num.ber 2.

122

II
II,

I'
I

I,

1:1'

II
IIII

II

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

PUNCH Statement PUN CH n, List

In this statement, n is the statement number of a FORMAT statement, and the list is

as described above. The PUNCH statement calls for Hollerith cards to be punched on the

on-line punch designated as number 1. As many cards are punched as are required to exhaust

the list. The arrangement of information on the cards is defined in the FORMAT statement;

each variable in the list is converted, also as defined in the FORMAT statement, and punched,

one card at a time.

PUNCH ONE Statement PUNCH ONE n, List

This statement is exactly equivalent to the PUNCH statement.

PUNCH TWO Statement PUNCH TWO n, List

This statement is equivalent to the PUNCH and PUNCH ONE statements, except that

cards are punched on the on-line punch designated as number 2.

READ INPUT TAPE Statement READ INPUT TAPE i, n, List

This statement is used to read a magnetic tape which contains up to 80 Honeywell 800

characters in alphanumeric form. In the statement, i is an unsigned fixed-point constant in

the range of zero through 63, and must be the number of a magnetic tape unit which is avail

able on the computer system to be used by the object program. Symbolic tape addresses are

not permitted. The statement number of a FORMAT statement is given by n, and the list is

as described previously. As many records are read as are required to exhaust the list; the

length of each record is determined by the FORMAT statement, which also determines the

type of conversion applied to each variable in the list.

Detection of the record produced by a card with the word FINIS punched in columns

2 through 6 constitutes an end-of-file condition for this statement, along with detection of

the physical end of tape.

WRITE OUTPUT TAPE Statement WRITE OUTPUT TAPE i, n, List

This statement is used to write a magnetic tape containing records of up to 120

Honeywell 800 characters in alphanumeric form. In the statement, i is an unsigned fixed

point constant in the range of zero through 63, and must be the number of a magnetic tape unit

which is available on the computer system to be used by the object program. Symbolic

tape addresses are not permitted. The statement number of a FORMAT statement is given

by n, and the list is as described previously. As many records are written as are required

to exhaust the listj the length of each record is determined by the FORMAT statement, which

123

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

also determines the type of conversion applied to each variable in the list.

statement should be given after writing the last record.

READ TAPE Statement READ TAPE i, List

An END FILE

This statement is used to read magnetic tapes produced by a WRITE TAPE statement,

without any type of conversion; note that no FORMAT statement is referenced by a READ

T APE statement. In the statement, i is an unsigned fixed-point constant in the range of

zero through 63, and must be the number of a magnetic tape unit which is available on the

computer system to be used by the object program. Symbolic tape addresses are not per

mitted. The list is as described previously. As many records are read as are required

to exhaust the list. A READ TAPE statement can read any tape produced by a WRITE

TAPE statement.

End-of-file conditions are initiated by detection of the indication written by an END

FILE statement.

WRITE TAPE Statement WRITE TAPE i, List

This statement is used to write a magnetic tape which contains Honeywell 800 words

exactly as they appear in storage, without any type of conversion; note that no FORMAT

statement is referenced by the WRITE TAPE statement. In the statement, i is an unsigned

fixed-point constant in the range of zero through 63, and must be the number of a magnetic

tape unit which is available on the computer system to be used by the object program. Sym

bolic tape addresses are not permitted. The list is as described previously.

END FILE Statement END FILE i

This statement is used to write on a magnetic tape a signal which can be recognized

by the IF END OF FILE statement for binary tapes and by the off-line printer for alpha-

numeric tapes. In the statement, i is an unsigned fixed-point constant in the range of zero

through 63, and must be the number of a magnetic tape unit which is available on the com

puter system to be used by the object program.

REWIND Statement REWIND i

This statement is used to rewind a magnetic tape to the beginning of the tape. In the

statement, i is an unsigned fixed-point constant in the range of zero through 63, and must be

the number of a magnetic tape unit which is available on the computer system to be used by

the object program.

124

I I
I
,I

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

BACKSPACE Statement BACKSPACE i

This statement is used to backspace a magnetic tape by one record. It applies equally

to tapes produced by the WRITE TAPE and WRITE OUTPUT TAPE statements and to tapes

prepared by an off-line card reader. In the statement, i is an unsigned fixed-point constant

in the range of zero through 63, and must be the number of a magnetic tape unit available on

the computer system to be used by the object program.

BUFFER Statement

The BUFFER statement makes it possible to overlap reading and computation, writing

and computation, or reading, writing, and computation, in the case of the READ TAPE and

WRITE TAPE statements. The list of such a statement must consist of the name of exactly

one array, shown in non-subscripted form. Each buffer assigned must be large enough to

hold the largest array which it will have to handle. All buffer areas may be set up with one

BUFFER statement, if desired, or a separate statement may be used for each. Use of input

buffering requires an additional special register group, as does output buffering.

The number of additional memory words used by buffering is, approximately:

Reading: 150 + sum of lengths of input buffers + 105

Writing: 150 + length of longest buffer + 105

The symbols used in the specimen statement above are to be interpreted as follows:

n
l

= IN for reading, OUT for writing

n
Z

= number of the tape unit involved

n3 = number of words in the longest record to be read or written with this tape

ERASE Statement ERASE (List)

This executable statement clears to zero the locations corresponding to the variables

specified in the list.

FUNCTIONS

General Considerations

Some of the material below requires a basic understanding of the concept of the Collector.

The collector is a magnetic tape on which are "collected" all the compiled programs which

are available for operation on the computer at an installation. The output of a compilation is

a set of records added to the collector tape, along with certain optional listings. The output

125

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

of a compilation, however, is not in the final form on the collector tape, but rather is on the

tape in sections, ready to be "collected" together to form a running program. This final col

lection is done prior to run time; it may be done immediately at the completion of compilation

or at any later time. Certain control cards may optionally be used to alter the collection proc

ess; these are discussed in connection with FUNCTION and SUBROUTINE subprograms.

Open Funotions

An open function is one which is compiled into the object program each time it is used

at the point where it is brought into operation in the source program. It is the only one of

the five types of functions with this characteristic. The Honeywell Algebraic Compiler, as

supplied, contains 13 such functions.

The name of an open function consists of four to seven alphabetic or numeric characters

(but no special characters), of which the first must be alphabetic and the last F. The first

character must be X if, and only if, the value of the function is to be fixed point. The name

of the function is followed by parentheses enclosing the argument(s), which are separated by

commas if there is more than one. Each open function has a prescribed mode (fixed or

floating point) for its argument(s) and for its value; different functions must be used for

each combination of modes of argument(s) and function value. The output of an open function

always consists of one value. Any expression, including another function, may be used as

an argument of an open function.

The 13 open functions which are supplied with the Honeywell Algebraic Compiler are

shown in Figure 6.

Library Functions

A library function is compiled into the object program only once, regardless of how

many time s it is used. The Honeywell Algebraic Compiler, as supplied, contains 15 such

functions.

Any appearance of the name of a library function causes the compilation of the function

into the object program. Every appearance of the name brings the function program into

operation.

126

I:
I

i
I,

111

IJ
II

!

III,

I

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The name of a library function consists of four to seven alphabetic or numeric charac

ters (but no special characters), of which the first must be alphabetic and the last F. The

first character is X if, and only if, the value of the function is fixed-point. The name of the

function is followed by parentheses enclosing the argument(s), which are separated by commas

if there is more than one. Each library function has a prescribed mode (fixed or floating point)

for its argument(s) and for its value; different functions must be used for each combination of

modes of argument(s) and function value. The output of a library function always consists of

one value. Any expression, including another function, may be used as an argument of a li

brary function.

The 15 library functions which are supplied with the Honeywell Algebraic Compiler are

shown in Figure 7.

Defined Functions

A defined functio:p. (which is also called an arithmetic statement function) is one which

is defined with a single statement and then brought into operation els ewhere in the sourc e

program wherever its name appears. The definition and use of defined functions are at

the discretion of the source programmer and are independent of any open or library functions.

A defined function applies only to the program or subprogram in which it appears.

A defined function is defined to the Compiler by a statement of the form a = b, where

a is the function name and b is an expression. The name of a defined function is four to

seven alphabetic or numeric characters (but no special characters), of which the first must

be alphabetic and the last F. The first character must be X if, and only if, the value of the

function is to be fixed point. The name of the function is followed by parentheses enclosing

the argument(s), whi~h are separated by commas if there is more than one. In the definition

statement, the arguments must be distinct non- subscripted variables. The right-hand side

of the definition statement may be any expression which does not involve subscripted vari

abIes. The right-hand side may involve variables not specified as arguments, and may

make free use of other functions.

The variables appearing as arguments in the definition of a defined function are only

dummie s which, in effect, specify to the Compiler how to substitute into the defined function

127

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

the arguments which are written when the defined function is later used. Therefore, the variable

names used in the function definition are unimportant, except as they indicate fixed- or floating

point variables, and may be the same as the names of actual variables appearing elsewhere in

the program.

The program which is compiled to carry out the operations specified in the function

definition statement appears once in the object program. Each time the defined function is

used, the object program then refers to the one place where the defined function appears. A

defined function is thus compiled as a clos ed subroutine.

A defined function may be used anywhere in a program, by writing the name of the

function and writing for arguments any expressions which agree in number, order, and mode,

with the arguments as stated in the definition of the function. In particular, the arguments

may be subscripted variables, constants, or functions. The output of a defined function

always consists or one value.

FUNCTION Subprograms

A FUNCTION subprogram is one which is defined by the use of a FUNCTION statement

followed by any number of Algebraic Compiler statements, and then brought into operation

elsewhere in the program. by writing the name of the function. A FUNCTION subprogram is

an independent part of a total program. Its variable names may be the same as names which

appear in the main program or in other subprograms or it may have its own DIMENSION and

EQUIVALENCE statements; any defined functions appearing in a FUNCTION subprogram apply

only to that subprogram. The arguments in a FUNCTION statement may be the names of

arrays as well as the names of single variables. The output of a F·UNCTION subprogram

always consists of one value. A FUNCTION subprogram may be compiled with a main pro

gram and/ or other subprograms, or it may be compiled independently.

FUNCTION Statement FUNCTION Name (aI' a
Z

' ... , an)

The name of a FUNCTION subprogram consists of one to six alphabetic or numeric

characters, the first of which must be alphabetic; the first character must be I, J, K, L,

M, or N if, and only if, the value of the function is to be fixed point, and the last character

must not be F if the name is more than three characters in length. The name must not

appear in a DIMENSION statement in the FUNCTION subprogram, nor in a DIMENSION

statement in any program which uses the subprogram. The name of the function must

appear at least once in the ,FUNCTION subprogram. as a variable on the left-hand side of

an arithmetic statement, or, alternatively, in an input statement list. The name of the

128

J
I:~
['

II'
I'
"i
I'

I:
I'

I" ,i
II,
I'
,

i

II

II

I:

"~'I

li/'

f

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

function is followed by parentheses enclosing the argument(s), which are separated by commas

if there is more than one. In the FUNCTION statement, the arguments must be distinct non

subscripted variables appearing on the right-hand sides of executable statements of the sub

program. There may be any number of arguments as long as there is at least one.

The variables appearing as arguments in the FUNCTION statement are only dummies

which, in effect, specify to the Compiler how to substitute into the subprogram the argu

ments which are written when the subprogram is used elsewhere in the program. Therefore,

the variable and array names used as arguments are unimportant, except as specifying fixed

or floating-point variables, and may be the same as names appearing in the main program

or in other subprograms. However, none of the dummy variables of a FUNCTION subprogram

may appear in EQUIVALENCE or COMMON statements in the subprogram. The dummy

arguments must not be subscripted.

The FUNCTION statement must be the first statement of the subprogram. An END

state-ment must be the last (physically) statement of the subprogram. The appearance of the

FUNCTION statement indicates that all up to the END statements are the subprogram. The

FUNCTION subprogram may use any type of statement, except other FUNCTION statements

or SUBROUTINE statements. If a COMMON statement is us ed in the subprogram, it of

course refers to the one common storage area which is the same for all programs which

are collected together. This provides a means of establishing correspondence between

variables in the subprogram and variables in the main program or in other subprograms,

a correspondence which does not exist otherwise (even between variables having the same

name). The dummy variables which are used as arguments in the FUNCTION subprogram

are in non- subscripted form, but there is no such restriction on variables not used as

-dummy variables. Free use may be made of all types of expressions, including all of the

five types of functions. A FUNCTION subprogram must contain at least one RETURN state

ment which must be the last statement in the sequence of execution.

The obj ect program which is compiled to carry out the operations specified in a

FUNCTION subprogram will appear in the object program once, regardless of how many

times the subprogram is used. Each time the subprogram is used, the object program

refers to the one place where the subprogram appears in storage; it is thus compiled as

a closed subroutine.

A FUNCTION subprogram must not be written between two statements of another

program. A FUNCTION subprogram may be compiled independently or batch compiled

129

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

with a main program and/ or other subprograms.

A FUNCTION subprogram may be brought into operation by writing the name with

arguments which agree in number, order, and mode with those in the FUNCTION statement.

Furthermore, when a dummy argument is the name of an array, the corresponding real

argument must also be an array name. The dummy array name must appear in a DIMEN

sIoN statement in the subprogram, and the actual array name must appear in a DIMENSION

statement in the calling program, and both must have the same dimensions. Dummy variables

which represent single variables may be replaced with any expressions, including subscripted

variables, constants, other functions, etc.

SUBROUTINE Subprograms

A SUBROUTINE subprogram is one which is defined by the use of a SUBROUTINE

statement followed by any number of Algebraic Compiler statements, and then called into

operation elsewhere in the program by the use of the CALL statement. A SUBROUTINE

subprogram is an independent part of a total program. Its variable names may be the

same as names which appear in the main program or in other subprograms; it may have

its own DIMENSION and EQUIVALENCE statements; any defined functions appearing in a

SUBROUTINE subprogram apply only to that subprogram. The arguments in a SUBROUTINE

statement may be the names of arrays as well as the names of single variables. The argu

ments may represent input to the SUBROUTINE subprogram or output from it, and the out

put may consist of any number of values, including arrays. A SUBROUTINE subprogram

may be batch compiled with a main program and/ or other subprograms, or it may be com

piled independently.

SUBROUTINE Statement SUBROUTINE Name (aI' a
Z

' ... , an)

The name of a SUBROUTINE subprogram consists of one to six alphabetic or numeric

characters (but no special characters), the first of which must be alphabetic and the last

must not be F if the name is more than three characters in length. The name must not

appear in a DIMENSION statement in the SUBROUTINE subprogram, nor in a DIMENSION

statement in any program which us es the subprogram. The name of the subprogram is

followed by parentheses enclosing the argument(s), which are separated by commas if there

is more than one. In the SUBROUTINE statement, the arguments must be distinct non

subscripted variables appearing in executable statements in the subprogram; input argu

ments must appear in the right-hand sides of statements, and output arguments in the left

hand sides of statements. There may be any number of arguments, or none. If there are

no arguments, no parentheses are required.

130

II
1'1'
1,1

,II
I

I

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

The variables appearing as argum.ents in the SUBROUTINE statem.ent are only dummies

which, in effect, specify to the Compiler how to substitute into the subprogram the arguments

which are written in CALL statement(s) when the subprogram is used elsewhere in the pro

gram. Therefore, the variable and array names used as arguments are unimportant, except

as specifying fixed- or floating-point variables, and may be the same as names appearing

in the main program or in other subprograms. However, none of the dummy variables of a

SUBROUTINE subprogram may appear in EQUIVALENCE or COMMON statements in the

subprogram.

The SUBROUTINE statement must be the first statement of the subprogram. An END

statement must be the last statement physically of the subprogram. The appearance of the

SUBROUTINE statement indicates that all subsequent statements, up to the END statement,

are in the subprogram.

The SUBROUTINE subprogram may use any type of statement except FUNCTION or

another SUBROUTINE statement. If a COMMON statement is used in the subprogram, it

refers to the one comm.on storage which is the same for all programs which are collected

to be run together. This provides a m.eans of establishing correspondence between vari

ables in the subprogram and variables in the main program. or in other subprograms, a

correspondence which does not exist otherwise (even between variables having the same

name). The dummy variables which are used in the SUBROUTINE statement must appear

in the SUBROUTINE subprogram in non- subscripted form, but there is no such restriction

on variables not used as dummy variables. Free use m.ay be m.ade of expressions, including

all of the five types of functions. A SUBROUTINE subprogram m.ust contain at least one

RETURN statem.ent which must be the last executed statement.

The object program. which is compiled to carry out the operations specified in a

SUBROUTINE subprogram will appear once in the object program, regardless of how

m.any times the subprogram is used. Each tim.e the subprogram is used (by calling it

with a CALL statem.ent), the object program refers to the one place where the subprogram

appears in storage; it is thus compiled as a closed subroutine. A SUBROUTINE subprogram.

must not be written between two statements of another program. A SUBROUTINE subprogram

may be batch compiled with a main program and/ or other subprograms, or it m.ay be com

piled independently.

CALL Statement CALL Nam.e (aI' a
Z

' .•. , an)

This statement is used to call into operation the SUBROUTINE subprogram specified

131

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

by the name in the CALL statement. Control is transferred to the named subprogram, and

the parenthesized arguments replace the corresponding dummy arguments of the SUBROUTINE

statement. The arguments in the CALL statement must agree in number, order, and mode with

those in the SUBROUTINE statement. Furthermore, when an argument in the SUBROUTINE

statement is an array name; the corresponding argument in the CALL statement must also

be an array name. The array name in the SUBROUTINE statement must appear in a DIMEN

SION statement in the subprogram, and the array name in the CALL statement must appear

in a DIMENSION statement in the calling program, and the dimensions must be the same.

Dummy variables which represent single variables may be replaced with any expressions,

including subscripted or non-subscripted variables, constants, other functions, etc., but

not with literal alphabetic or numeric characters.

If a CALL statement refers to a SUBROUTINE which has been designated for overlaying

(see below) and thQ routine is not in memory when the CALL is executed, then the object

program automatically brings the subprogram into memory and then transfers control to it.

RETURN Statement RETURN

This statement terminates any FUNCTION or SUBROUTINE subprogram, and returns

control to the calling program. A RETURN statement must therefore be the last- executed

statement of a subprogram. It need not, however, be physically the last statement of a

subprogram; it may appear at any point in a subprogram, and there may be any number of

RETURN statements in a subprogram.

Overlaying may be used with SUBROUTINE subprograms only. All subprograms to

occupy the same area of memory must be named on OVERLAY control cards at collection

time. When this is done, the operation of the CALL statement is modified so that if the

subprogram is not in memory when called, it will be brought it.

The NEGLECT control card may be used at collection time when parts of a program

have not yet been completed and it is desired to test other parts. Any FUNCTION or SUB

ROUTINE subprograms which have not been completed, and which are mentioned in the

parts which are to be tested, should be named on NEGLECT control cards.

SPECIFICATION STAT EMENT S

DIMENSION Statement DIMENSION v, v, v, ••.

The DIMENSION statement is used to specify the maximum sizes of arrays; every

132

j

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

variable in a program which appears in subscripted form must appear in a DIMENSION

statement. In the general form of the statement shown above, v is the name of a variable

with one, two, or three subscripts (unsigned fixed-point constants) in parentheses. The

number of subscripts determines the number of dimensions of the array; the value of each

subscript in the DIMENSION statement determines the maximum value of the corresponding

subscript anywhere else in the program. The appearance of a variable in a DIMENSION

statement causes space to be reserved for the array, and indirectly causes the assignment

of a specific storage location for each element of the array.

Any number of subscripted variables separated by commas may appear in one

DIMENSION statement, and there may be any number of DIMENSION statements in a

program. A DIMENSION statement applies only to the main program or subprogram in

which it appears. A DIMENSION statement may appear anywhere in a program. A

DIMENSION statement must not include the name of the program in which it appears, nor

the name of any FUNCTION or SUBROUTINE subprogram which the program uses.

EQUIV ALENCE Statement EQUIVALENCE (a, b, c, .•.), (d, e, f, •.•), ..•

The EQUIVALENCE statement makes it possible to assign two or more variables to the

same storage locations, where the logic of the problem permits it, thus making possible signi

ficant reductions in storage space. In an alternative interpretation, the statement may be used

to establish two different symbols as standing for the same variable.

The variables within a set of parentheses, which may be subscripted with a single

unsigned fixed-point constant, are assigned to the same location. There may be any num

ber of variables within one set of parentheses, any number of parentheses, and any number

of EQUIVALENCE statements. Quantities which are not mentioned in EQUIVALENCE

statements are assigned to unique locations. Locations can only be shared among variables,

not constants.

The meaning of a subscript of a variable in an EQUIVALENCE statement is defined

as follows. For a subscript greater than zero, the meaning of C(p) is: The (p - l)th loca

tion after the one containing C, or if C is an array, the (p - l)th location after the one con

taining C(l), C(I, 1), or C(I, 1, 1). Subscripting of variables in an EQUIVALENCE statement

cannot be used to change the standard way in which arrays are stored. It must be emphasized

that a variable may have only one subscript in an EQUIVALENCE statement, regardless of

133

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

how many dimensions it has. For two- and three-dimensional arrays, it is necessary to take

into account the manner in which arrays are stored in order to compute the subscript required

in an EQUIVALENCE statement to establish equivalence between sorne single variable(s) and

a specific elernent of an array. If it is desired to establish an equivalence involving the first

elernent of an array, the array narne m.ay be written in either of the form.s A or A(l). In

order to establish equivalence between the first locations of a num.ber of arrays, which need

not have the sam.e dim.ensions or total num.ber of locations, it is satisfactory to write the

nam.es of the arrays in non- subscripted form..

An EQUIVALENCE statem.ent applies only to the program. or subprogram. in which

it appears.

COMMON Statem.ent COMMON A, B, C, •.•

The COMMON statem.ent m.akes it possible to establish correspondence between

variables in different subprogram.s. Variables which are not m.entioned in a COMMON

statem.ent are assigned to locations in the sarne general section of storage as the instruc

tions of the program. in which they appear; variables nam.ed in a COMMON statem.ent are

assigned to a special COMMON area which is separate from. all program.s. The variables

nam.ed in a COMMON statem.ent apply only to the program. or subprogram. in which they

appear, but the COMMON area is the sam.e for all program.s and subprogram.s which are

collected together.

In a COMMON statem.ent, single variables and arrays are treated separately, and

there is a part of the COMMON area for each. The single variables are assigned to succes.

sive locations in the single-variable part of the COMMON area, in the order in which they

appear in COMMON statem.ents, regardless of how they m.ay be interspersed am.ong the

nam.es of arrays. (However, this sequence rnay be altered if variables appear both in

COMMON and EQUIVALENCE staternents.) Similarly, arrays are assigned to the array

part of the COMMON area, in the order in which they appear in the statement, with enough

space being assigned to contain each array. This process is applied to all COMMON state

ments in a program. Therefore, the first single variable appearing in a COMMON statem.ent

in a prograrn is assigned to the first single-variable location in the COMMON area. In this

way, correspondence is established between variables in different subprogram.s, whether or

not they have the same nam.es. It would be pointless, although not darnaging, to have a

COMMON statem.ent in one subprogram. or in the m.ain program, without having another

COMMON statem.ent elsewhere in the program.

134

II
III
II

1:1

.I~
I
!I,

I
i

SECTION IX. SUMMARY OF HONEYWELL ALGEBRAIC COMPILER SYSTEM

When COMMON variable:? also appear in EQUIVALENCE statements, the ordinary

sequence of COMMON variables is changed and priority is given to those variables in

EQUIVALENCE statements, in the order in which they appear in EQUIVALENCE statements.

When it is necessary to put variables into corresponding positions in two COMMON

statements, it is permissible to make up variable or array names which do not actually

appear in the subprogram in question. Because of the separate treatment of single variables

and arrays, however, made-up arrays must not be used to force correspondence between

single variables.

135

W
0-

Key
Punch

0
1
2
3
4
5
6
7
8
9

4#
@

Space

&
A
B
C
D
E
F
G
H
I

0

Notes:

Hlgh
Card Honeywell Standard Speed Key Card Honeywell Standard
Code 800 Code Octal Printer Printer Console Punch Code 800 Code Octal Printer

0 000000 00 o (zero) 0 0 - X 100000 40 - (:minus)
1 000001 01 1 1 1 J X,1 100001 41 J
2 000010 02 2 2 2 K X,2 100010 42 K
3 000011 03 3 3 3 L X,3 100011 43 L
4 000100 04 4 4 4 M X,4 100100 44 M
5 000101 05 5 5 5 N X,5 100101 45 N
6 000110 06 6 6 6 0 x,6 100110 46 0
7 000111 07 7 7 7 P X.7 100111 47 P
8 001000 10 8 8 8 Q X,8 101000 50 Q
9 001001 11 9 9 9 R X,9 101001 51 R

8,2* 001010 12 9*
, ,

X.8.2~c 101010 52 R*
8.3 001011 13 = = = $ X,8,3 101011 53 $
8,4 001100 14 - (minus) : : * X,8.4 101100 54 *
Blank 001101 15 Blank Blank Blank X.8.5~< 101101 55 ~c*

8,6* 001110 16 =>« Blank* , X,8,6* 101110 56 $*
8,7* 001111 17 - (rninus~c & & X.O 101111 57 0*

R 010000 20 + + + 8. 5~c 110000 60 -(:minus)*
R,1 010001 21 A A A / 0,1 110001 61 /
R,2 010010 22 B B B S 0,2 110010 62 S
R,3 010011 23 C C C T 0,3 110011 63 T
R,4 010100 24 D D D U 0,4 110100 64 U
R,5 010101 25 E E E V 0.5 110101 65 V
R,6 010110 26 F F F w 0,6 110110 66 W

R.7 010111 27 G G G X 0.7 110111 67 X
R.8 011000 30 H H H Y 0.8 111000 70 Y

R,9 011001 31 I I I Z 0.9 111001 71 z
R,8.2* 011010 32 I~c ; ; 0.8,2* 111010 72 z*
R,8,3 011011 33 , 0.8.3 111011 73 ,
R,8,4 011100 34))) 0/0 0.8,4 111100 74 (
R,8,5>(c 011101 35)* 0/0 0/0 O,8.5~c 111101 75 (*
R,8.6* 011110 36 .* • • 0.8,6* 111110 76 ,*
R,O 011111 37 0>(, Blank* ~ 0,8.7* 111111 77 (*

Key Punch: Use MLT PCH key to overpunch omitted characters.

Card Code: ~c legal in illegal punch check Mode 2 only for card readers.
Printer: * indicates symbol which will be printed by otherwise non-standard printer bit configuration.

:r:
0
Z
m

High
Speed
Printer Console

-<
~
m
r-
r-

- -
J J

OO
0

K K 0
L L
M M
N N
0 0

()

0
0

P P Z
Q Q

I

R R
I

G)

»
$ $ z
* *
" "

Blank* • Blank* ? .' ~
Blank~c • / /

0 »
""C

""C

C '" m

Z Z
()

0

:r: X
S S m »
T T 0
U U
V V 0
w W ;::0

X X ""C
y Y ;::0

Z Z Z
@ <i -I . , m
((0
CR CR

Blank* 0
Blank* ~

m
0
C

< »
r-
m
Z
-I
<.n

APPENDIX B

5.ENSE LIGHTS AND SENSE SWITCHES

Some computing equipment is constructed with lights and switches as part of the console

or control panel. The Honeywell 800, however, uses a typewriter and keyboard so that all

communication between the operator and the hardware and vice versa results in printed copy

for semi-permanent or permanent records. In the interest of compatibility with other com

puting systems, however, sense lights and sense switches are simulated by the Algebraic

Compiler and hence the Compiler state:ments which refer to them are valid. When they occur

in hardware form, both sense lights and sense switches are bi-stable devices whose state may

be interrogated by the program. The major difference between them is that sense switches

are manually set by the operator under instructions from the progranuner, while sense lights

are set and cleared by the program itself.

A sense switch may be thought of as a toggle switch something akin to the switch we use

to turn on the light in our homes. As such it is either in an up or down condition and its con

dition may be altered only by the operator.

A sense light is a light which the program turns on and off as an indicator to itself. One

use made of these lights is a test for overflow. In case of overflow, we may wish to continue

our program, yet be cognizant of the fact that overflow has occurred. This may be accom

plished by having a sense light turned on, once overflow occurs. At the conclusion of the pro

gram, the status of the sense light may be tested to ascertain whether or not overflow did occur.

137

APPENDIX C

LIMITS ON SOURCE PROGRAM IMPOSED BY TABLE SIZES

The following are maximum quantities for an entire source program unless otherwise

specified:

Table

ARGUS Constants

Fixed-Point Variables

Floating-Point Variables

Fixed-Point Constants (other than 0-7)

Floating-Point Constants (other than 0.0 and 1. 0)

Variables in Common

Dimensioned Variables

Equivalenced Variables

Sets of Equivalences

Non-Executable Statements

DO Statements

Statements Controlling Flow

Statement Numbers in All Computed GO TO's

Statement Numbers in All Assign GO TO's

Assigned GO TO Statements

where: a = number of Dimensioned Variabl~s

b = number of Equivalenced, Non
Dimensioned Variables

then: 2a + b =

Sigma Tau Table (number of unique subscript
combinations used in the pro
gram)

Subprogram Dummy Variable Table Space

Algebraic Restriction (see below)

3L + 6m + 4n + 3p =

2 Bank

50

100

300

42

146

200

100

250

125

49

65

199

99

99

49

250

300

50

250

The following restrictions apply to the 2 - bank system only.

138

4 Bank

150

300

1000

192

296

750

300

750

275

199

149

499

199

199

99

750

900

100

750

:1

APPENDIX C. LIMITS ON SOURCE PROGRAM IMPOSED BY TABLE SIZES

if:

c = number of unique three-dimensional subscript combinations in a program

d = number of unique two-dimensional subscript combinations in a program

e = number of one- dimensional sub script combinations in a program

f = number of subscript combinations included in c, d and e above in which the first
subscript in the combination is a non- complex expre ssion of the form (i), where
i is a fixed- point variable (e. g., type c: (31, J + 2, 1) type c and f: (I, J + 2, 1))

then:

6c + 4d + 2e - f S 300

if:

g = the number of dimensioned dummy variables of a subroutine or function program

h = the number of non-dimensioned dummy variables

then:

2g + h ~ 49, and h + g ~ 48

if:

j = the number of variables in an equivalence with a position given (e. g., A(l))

k = the number of variables in the equivalence without a position given (e. g., A)

then:

2j + k (for any single set) ~ 20

Algebraic Expre s sions

The following are limits on any single expression found in an IF statement, as a CALL

argument, as a function definition or the right-hand side of an algebraic statement:

Let n be the number of elements and operators
in an expre s sion, then

If the expre s sion is a defined function, let f be
the number of dummy variables

If L is the number of left parentheses to a point
and R is the number of right parentheses, then
at any point

Let C be the number of commas other than
those appearing in a subscript, and n is defined
as above ,

then

then:

31 + 6rn + 4n + 3p S 250

and:

2 Bank

n ~ 80

f ~ 20

(L - R) ~ 14

C S 2 [84-nJ - 2

n ~ 14 deep (this cannot exceed 47 in any size machine)

4 Bank

596

100

47

s [600-n] - 2

139

APPENDIX C. LIMITS ON SOURCE PROGRAM IMPOSED BY TABLE SIZES

The number of dummy variables in a defined function definition is further limited by the com

plexity of the expression defining the funtion. Assuming no other rule is violated, if d = the

number of dummy variables then 1 + 2m + n + d + P S 101.

Input- Output Re strictions

Defined Functions

Subroutine or Function References

Backspace Tape Statements

I- 0 Statements

END FILE Statements

IF END OF FILE Statements

IF PARIT Y Statements

Buffered Writes

Buffered Reads

DO's In a Nest

Register Variables In a Nest

Control Variables, Relative
Constants and DO Parameters
(which are Register variables)
In a Nest

IFNTAB

SUFIXTAB

Supplementary Internal Table Restrictions

The limit of IFNTAB is 1000 entrie s.

In a main program:

let:

a = the number of DO's in the program

b = defined functions in a program

2 Bank

50

300

50

300

50

50

50

25

25

50

100 (Appearance s)

75 (Unique)

1000

200

4 Bank

125

600

100

500

100

100

100

25

25

150

250

200

2292

200

c = the number of arguments of CALL statements or of function references which
are dimensioned and subscripted. Note, if the argument is of a function ref
erence which is an argument of a CALL, it need only be counted once.

In a subprogram:

let:

140

d = the number of arguments of CALL statements or of function references which
are arguments of the subprogram but which are not dimensioned.

e = the number of return statements in a subroutine.

III
II

I

then:

let:

then:

APPENDIX C. LIMITS ON SOURCE PROGRAM IMPOSED BY TABLE SIZES

IFNTAB = a + b + c in a main program

IFNTAB = a + b + c + d + e in a subprogram

The limit of SUFIXTAB is 200 entries.

c and d are defined as for IFNTAB above but computed for a single source
statement.

the maximum number of the SUFIXTAB entries required by this statement
will be

1 + c in a main program

1 + c + d in a subprogram

141

APPENDIX D

SOURCE PROGRAM STATEMENTS AND SEQUENCING

The rules governing the sequence of execution of source program. statem.ents are as

follows:

1. The first executable statem.ent in the deck as com.piled is executed first;

2. If statem.ent S has just been executed, then the next statem.ent executed is dictated
by the norm.al sequencing properties of statem.ent S, as shown in the table below.
If, however, S is the last statem.ent in the range of one or m.ore DO's which are
not yet satisfied, then DO sequencing takes precedence.

The statem.ents FORMAT, DIMENSION, EQUIVALENCE, COMMON, TITLE, END,

FINIS, and BUFFER are non-executable statem.ents. In questions of sequencing, they m.ay be

ignored.

The last statem.ent in every source program. deck m.ust be an END statem.ent, and the

last statem.ent in every batch of program. decks m.ust be a FINIS statem.ent. The statem.ent

preceding the END statem.ent should be a STOP, RETURN, IF, or GO TO. If this require

m.ent is not m.et, the Com.piler will give a diagnostic error indication and the com.pilation will

not be com.pleted.

Every executable statem.ent in an Algebraic Com.piler source program., except the first,

m.ust have som.e path of control leading to it.

State:rnent

a=b

GO TOn

ASSIGN n. TO n
1

142

TABLE OF SOURCE PROGRAM STATEMENT SEQUENCING

... , n)
:rn

Norm.al Sequencing

Next executable state:rnent

Statem.ent n

State:rnent n.
1

Statem.entn
1

, n
2

,or n
3

, if (e) is <,

zero re spectively.

Statem.ent nu:rnber last as signed to n

Next executable state:rnent

or > ,

Statem.ent n
1

if there was an uncorrectable error

on the preceding tape operation, otherwise n
2

II
I

I

I

I

I

APPENDIX D. SOURCE PROGRAM STATEMENTS AND SEQUENCING

TABLE OF SOURCE PROGRAM STATEMENT SEQUENCING (cont)

Statement

IF END OF FILE n
i

, n
Z

CONTINUE

DO n i = n
i

, n
Z

or
DO n i = n i , n Z' n3

PAUSE or PAUSE n

STOP or STOP n

SENSE LIGHT i

IF(SENSE LIGHT i) n
i

, n
Z

IF(SENSE SWITCH i) n
1

, n
Z

IF ACCUMULATOR OVERFLOW n
i

, n
Z

IF QUOTIENT OVERFLOW n
i

, n
Z

IF DIVIDE CHECK n
i

, n
Z

TITLE

END

FINIS

FORMAT (Field Specification)

READ n, List

READ ONE n, List

READ TWO n, List

PRINT n, List

PRINT ONE n, Lis t

PRINT TWO n, List

PUNCH n, List

Normal Sequencing

Statement n
i

if there was an end-oi-file condi

tion encountered on the preceding input or out
put operation, otherwise n

Z

Next executable statement

DO-sequencing, then next executable statement

Next executable statement

Terminates program execution

Next executable statement

Statement n
i

if sense light i is on, otherwise n
Z

Statement n
i

if sense switch i is down, other

wise n
Z

Statement n
1

if an overflow condition is present,

otherwise n
Z

Statement n
1

if an overflow condition is present,

otherwise n
Z

Statement n l' if the divisor is les s than the

dividend, otherwise n
Z

Not executed

This statement terminates compilation of the
program

No sequencing; the statement terminates all
compilation of the batch

Not executed

Next executable statement

Next executable statement

Next executable statement

Next executable statement

Next executable statement

Next executable statement

N ext executable statement

143

APPENDIX D. SOURCE PROGRAM STATEMENTS AND SEQUENCING

TABLE OF SOURCE PROGRAM STATEMENT SEQUENCING (cont)

Statement

PUNCH ONE n, List

PUNCH TWO n, Lis t

READ INPUT TAPE i, n, List

WRITE OUTPUT TAPE i, n, List

WRITE TAPE i, List

READ TAPE i, List

END FILE i

REWIND i

BACKSPACE i

BUFFER (n
i

, n Z' n
3

),

ERASE (List)

FUNCTION Nam.e (ai' a Z' ••• , an)

SUBROUTINE Name (ai' a
Z

' ••• , an)

CALL Name (ai' a Z' ••. , an)

RETURN

DIMENSION v, v, v, •..

EQUIVALENCE (a, b, c, •••),
(d, e, f, •••),'

COMMON A, B, •••

144

Normal Sequencing

Next executable statement

Next executable statement

Next executable statement

Next executable statement

Next executable statement

Next executable statement

Next executable statement

Next executable statement

Next executable statement

Not executed

Next executable statement

Not executed

Not executed

First executable statement of the named
SUBROUTINE

The statement in the main program following
the statement which caused the transfer of con
trol to the subpro gr am

Not executed

Not executed

Not executed

Honeywell
g~Daa~~

