

User Interface Elements

Accessing The Application Option Sheets

The user can access these sheets either from the About command on the
Document menu, or by making the checkmark gesture on the title line of the
document or tool.

Title & Info Sheet

The Title & Info sheet presents standard information about the document,
including its title and author, a comments field, and its size and date of creation.

Figure 64 shows the default Title & Info sheet.

Page 92

Expense Report �~� Title & Info

Title:

Author:

Comments:

Created:

�,�~�)�<�p�e�n�s�e� Report

�~�r�.�n�p� 1 d F .. �_�B�_�l�~�i� �m�.�.�.�.�.�.�;�p�:�.�.�.�.�.�.�.�-�~�_�

�I�.�~�.�~�.�§� .. �F�~�P�.�9�F�~�.�£�9�.�Y�~�F�~�.�:�.�:�:�
6/12/89

Last Modi fi ed: 7/13/89

Actiye Size:

Filed Size:

1224 K

24k

Figure 64: Title & Info Sheet

PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

Standard Option Sheets

Access Sheet

The Access sheet contains options related to accessing the document, including
controls to disable editing and deletion of the document, and controls to show
and hide various standard components such as the menu line, cork margin, and
borders.

Figure 65 shows the default Access sheet.

rti Expense Report., Access ~
1"::":::':'''::'::'::':':::':'::'::::::':':<::':::':'::::''::·::::·::,::::::::·,::'.::::.::::.:!"'.::':'::.:.::<:''''.::::::.:::.:.:.:::::.::::.:::.:.:':

~ Editable- .. Ves ~ - ,

Deletable: .. Ves

Access Speed: .. Stemderd

Borders & .t ~ Show
Control s: j Hi de

Controls: ·v'j Title Line
v'l Menu Line
..til Scroll Mergin

Figure 65: Access Sheet

As discussed in the chapter on Putting the Building Blocks Together, if you
include a palette line, message line, or other control area or as part of the layout
of your application, be sure to add it to the list of controls that the user can turn
and off from the Access sheet.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 93

User Interface Elements

Application Sheet

The Application sheet contains information about the application controlling the
document.

Figure 66 shows the default Application sheet.

~~':"""'" ~.'.'i/'.'.' ~ ... ',v.>." ... ~ s....... ~ .. s '..', · ·.· · w y.....•. ~ · ·.·h .. ·.· ... · ,', 0" ,', ••••••• .,. :::

~ Expense Report ., Appl1 cat ion ii

~'''''';;:;;:':;'''''''''''''~;'~;';:':'~''''''''''''''''''''''''''''''''''''''""""""",,,,,,,,,, I
Version: 1.0

GO Corp.
~

Company:

Copyright: Copyright 199 1, GO Corp.

Icon:

Small Icon: Uj

Figure 66: Application Sheet

The default layout shown above is provided to indicate the type of information
that should go on the sheet. By all means provide your own customized sheet,
with your company logo, fancy graphics, etc.

Page 94 PenPoint User Interface Design GuUU, Reo. 05,2/15/91

Standard Option Sheets

Adding Your Own Application Option Sheets

The application option sheets are the place to put controls that apply to the
application as a whole, as opposed to the objects within the application.

Remember that the sheets are easily accessible - the user can always bring them
up by making a checkmark on the title line, even if the menu line is turned off.
This is particularly useful if you structure your application as a pop-u·p tool
without a menu line, in the mold of a calculator, clock, keyboard, or control
panel.

For example, suppose you had a pop-up keyboard tool, and wanted to provide
several layouts of keys, and also allow the user to choose either a "realistic" look
with raised keycaps on a grey background, or a more compact, lighter "paper­
like" look. The place to put the controls would be on an application option sheet,
as shown in Figure 67.

Keyboard .. Vi ew
.. -... __ _ _ ~ L_ --. __ .. .

Layout: .j ! QUERTV
1 Alphabetic
~ Numeric

Style: "'1 Raised Buttons
! Paper-ll ke

Figure 67: View Sheet for a Keyboard Tool

PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91 Page 95

User Interface Elements

Issues ,

Currently when Find and Spell are invoked from the Edit menu their scope is
the entire document. Would it be better if their scope were the current selection?

We're considering adding support for a dynamic Options menu that can would
contain the names of option sheets for the component that contains the current
selection. Is this important?

Currently, if a tool has no menu line (like the keyboard, for example) the only
way for the user to access the option sheets is by making a checkmark - there's
no visual invitation. We're considering providing a standard button at the right
of the title line to bring up the option sheet in this situation. Is this a good idea?

Page 96 PenPoint User Interface Design Guide, ReD. 0.5, 2/15/91

Chapter 11: Icons

This chapter describes how PenPoint uses application icons, and presents.
guidelines for using icons, including:

• Guidelines for the graphic design of icons.

• The use of icons to show application state.

User Interface Elements

Application Icons

Each PenPoint application has an icon associated with it. The icon is a small
picture that suggests the type of document or the purpose of the tool.

The icon represents the application instance in its closed state. PenPoint displays
application icons in several places:

• Icons for full-page documents appear in the notebook Table of Contents.

• Icons for embedded documents or tools are displayed when the document or
tool is closed.

• Icons for tools appear in the Tools palette.

• Icons for documents, tools or notebooks appear on the Bookshelf.

The default size for icons throughout PenPoint is 16 X 16 pixels.

Everywhere except the Table of Contents, the user can also select a large size -
32 X 32 pixels - for the icon.

Whether you structure your application as a document, tool, or notebook, you
need to provide a bitmap to be used as the application's icon.

The rest of this chapter gives guidelines for the design of icons for both
documents and tools. Following these guideline will ensure that your icons fit in
with those designed by GO and by other application vendors, thereby helping to
bring visual consistency to the multi-vendor PenPoint environment.

Page 98 PenPoint User Inter{tlce Design Guide, &rJ. OS, 2/15/91

Icons for Documents

Figure 68 shows some typicaldocurnent icons as they appear in the notebook
Table of Contents.

[J Notes
OJ Memo
~ Drawing

.......... 2

.......... 3
....... 4

1'211 !.:.:.I Calendar " 5

Figure 68: Document Icons in Table of Contents

Icons

The first icon in the above figure is the default document icon: a blank page. If
you don't provide an icon, the default icon will be used.

When possible, show your icon within this standard outline, like the icons for
Memo and Drawing.

The icon for Calendar departs from this strict convention, to show a picture that
more clearly suggests a multi-page calendar. But it still coherent with the paper
metaphor.

Icons for Tools

Figure 69 shows some typical tool icons as they appear in the Tools Palette.

~···········T~·o·i·s··· .. ·· .. ··· .. ·····
~:::,,:""::,,:::::::

I .ill! Calculator t
:.~.:I Clock

iii Disks

~
.ml Keyboa rd

o NeW's Ser ice

i 8 Pri nter ~ .•
; --_ ...

Figure 69: Tools Icons in Tool Box

Note that these icons do not suggest documents. Each suggests a familiar object
closely related to the application's function.

The News Service application in the above example is structured as a notebook,
therefore it has a notebook-like icon.

PenPoint User Inter{rlce Design Guide, RerJ. 0.5,2/15/91 Page 99

User Interface Elements

Icon Design Guidelines

This section gives guidelines for the graphic design of PenPoint icons.

Simple Shapes

The most important rule is to keep the picture simple. Don't try to capture too
much detail in the 16 X 16 space.

Figure 70 illustrates how simple shapes communicate more directly.

m ~_.~
~II .1 .!. .!. ~

Detailed version

Simpler version

Figure 70: Keep Icons Simple

Attempting too much detail makes the icons on the top row busy. Eliminating
unnecessary detail, and bringing out a single theme, makes the versions on the
bottom row easier to .recognize.

Lightweight Look

The second general guideline is to keep the icons light - primarily white, with
black and grey accents.

To help give a lightweight look, and add some visual interest to what are
basically small square shapes, PenPoint icons de-emphasize the left and top of
the bounding shape.

There are two ways to do this - by using dark grey instead of black for the top
and left borders, or by eliminating the top and left borders entirely. Figure 71
shows examples of both techniques.

Page 100

Cl~li1D

1.1 ~ fill. i.J
• --- JIJ ...:J

Ughten top and left borders

Eliminate top and left borders

Figure 71: Two Ways to Keep Icons Light

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91

Feedback When the Icon is Open

Another consideration in designing the icon is making sure that the user can
distinguish between the closed and open states of the icon.

When you create an icon, you define two parts:

• The picture itself, in which each pixel can be either white, light grey, dark
grey or black.

• A shape, known as the mask, through which the icon will be painted.

Icons

When the icon is in its normal (closed) state, each pixel within the mask is
painted in the color that was specified when the icon was created. When the icon
is in its open state, each pixel within the mask is painted in dark grey. This
allows the user to tell at a glance when an icon is open.

Figure 72 shows several icons in both closed and open states.

1.1 .tIl ~ ~
1J ~'II lilt

iil 0 ~
iilill

Normal (closed) state

Open state

Figure 72: Open Feedback for Icons

The above examples show how to design the mask so that the open feedback
works well. Notice that the shapes that work best are the ones which are
partially open, and partially enclosed, so that the shape of the icon in its normal
(closed) state is different enough from the shape in the open state to be clearly
distinguished.

PenPoint User Interface Design Guide, Reu. 0.5,2/15/91 Page 101

User Interface Elements

Using Icons to Show Application State

You can give the user useful feedback by changing the icon's picture to reflect the
state of your application.

Figure 73 shows how the InBox and OutBox make use of this technique.

Empty InBox and OutBox

Full InBox and Outbox

Figure 73: Using Icons to Show State

The icons in the top row indicate that the the InBox and Out Box are both empty;
the icons in the bottom row indicate that InBox and OutBox each contain at least
one document.

Issues

Page 102 PenPoint User Interface Design Guide, ReD. 05,2/15/91

Chapter 12: Help

This chapter describes the two standard facilities that PenPoint provides for
presenting on-line application help:

• Quick Help - brief, context-specific help for anything that the user can tap
on.

• The Help Notebook - for more detailed, procedural help on your application.

User Interface Elements

Quick Help.

Tapping the Help icon on the Bookshelf displays the Quick Help Sheet, and puts
the input system into quick help mode.

As long as the sheet is displayed, the user, tapping anywhere on the screen
causes PenPoint to display the help message associated with the object or region
Under the tap.

The user terminates the mode by dismissing the Quick Help Sheet.

Figure 74 shows the quick help sheet for the column of checkboxes in the Table of
Contents that allows the user to turn tabs on and off.

Help: Tab Checkboxes

These check boxes 1 et you show or hi de the
tab for any document or section.

You can control whether the checkbox col umn
is shown or hi dden from the Show menu.

You can also turn any tab on or off by making
the T' gesture over the title of the document
or section.

Figure 74: Quick Help Sheet

This example shows quick help for the column of checkboxes in the Table of
Contents that allows the user to turn tabs on and off. The text briefly explains the
function of the checkboxes, tells how to turn the column off from the Show
menu, and mentions the gesture accelerator that forms the other part of the dual
command path for this function.

Follow these guidelines when writing quick help messages:

• Keep the message brief. Ideally all the text should fit in the default sheet
without requiring scrolling.

• Mention any relevant gesture accelerators .

• Cross-reference to a topic in the help notebook if appropriate.

Page 104 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Help

Help Notebook

While the Quick Help Sheet is for very brief messages describing objects that the
user can see on the screen, the Help Notebook is the place to describe how to use
your application.

The user can access the Help Notebook either by tapping a button on the Quick
Help Sheet, or by double-tapping the Help icon on the Bookshelf.

The Help Notebook behaves like an ordinary notebook, with the exception that it
cannot be resized. This means that you can count on the Help Notebook being a
fixed size, and can divide your help text into page-sized chunks.

As part of the installation process, the application's help text is placed in a
separate section of the Help Notebook.

Issues

Is it important to support Hyperlink buttons in the help notebook?

The way Quick Help currently works, it isn't very convenient to browse through
menus. The user has to leave the mode each time, then bring up the menu, then
re-enter the mode. One way to facilitate browsing is to allow menus to pop up
when in Quick Help mode - tapping on the menu label would both give a
message about the menu and bring up the menu. How important is this?

PenPoint User Interfaa Design Guide, RerJ. 0.5, 2/15/91 Page 105

Section IV: Processing Pen Input

This section covers issues in processing pen input, including:

• Processing gestures. Issues in gesture processing, including how to target
gestures, avoiding gesture collisions, complete list of core and non-core
gestures,etc.

• Processing handwriting. Handwriting processing issues, including the use of
translators and constraints.

• Processing strokes without translating. Guidelines on using strokes without
translating them.

• User interface far input modes. Guidelines for allowing the user t~ control the
input mode of your application.

Chapter 13: . Processing Gestures

This chapter covers the use of gestures, including:

• Gesture targeting. Guidelines for determining the operand of the operation
represented by the gesture.

• 'Gesture categories. Core and non-core gestures.

• Processing gestures. How to handle gesture events in an object-oriented
environment.

Processing Pen Input

Gesture Targeting

The object that the user intends to operate on is called the target of the gesture.

It is not always obvious what the target of a given gesture should be. This
section gives guidelines for computing gesture targets.

The Target Point

It is useful to think of each gesture as having a precise target point that determines
its target. Here are the general rules for detennining the target point for a given
gesture:

• Center of Bounding Box. For some gestures the PenPoint convention is to treat
the center of the gesture's bounding box as the target point. These gestures
include: cross-out, circle, and all the capital letters.

• Pen-down. For a large group of gestures the convention is to treat the point
where the pen first touches the screen (the pen-down point) as the target
point. Such pen-down gestures include: all the taps and flicks, checkmark,
pigtail, down-right, up-right, down-left, down-left-flick, down-right-flick,
right-up, right-up-flick, and right-down.

• Visual Focal Point. When a shape has a strong visual focal pOint, treat that
point as the target point. These gestures include: caret, caret-tap, double­
caret, and the arrows.

Page 110 PenPoint User Interface Design Guide, RerJ. 05, 2/15/91

Processing Gestures

Targetting Unselected Objects

One of the pen's inherent advantages is that it allows the user to indicate both the
operation and the operand in a single, natural gesture.

In order to fully take advantage of this capability, you should allow the user to
gesture over objects without first selecting them.

The above rule implies that you need to decide what the most intuitive or useful
object is - from the user's perspective - to use as the default target for the
operation. . .

Let's look at a few examples from PenPoint's text component. Some gestures act
on characters: tap to select, pigtail to delete. But many editing gestures - X to
delete, circle to edit, checkmark to set options, etc. - act on whole words,
because the word is the most natural unit of text to edit.

Note that the default target for a given gesture may well differ according to the
context. For example, an 'X' deletes a word when made in text, a document or
section when made in the notebook Table of Contents, and the entire contents of
the field when made in a fill-in field.

Targetting the Selection

In order to allow for the targetting of de-selected objects, gestures should act on
the selection only if the gesture is made over the selection.

If the selection is very small, it may be difficult for the user to target it accurately.
To take an extreme example, a selected lower-case letter 'i' in a 10 point, variable­
width font may be only three pixels wide.

To facilitate targetting of such small selections, allow a small"slop zone" around
the target point. If this region intersects the selection at all, then take the
selection as the target.

In PenPoint, this zone is 3 pixels wide by 5 pixels high. This makes it easy
enough, for example, to delete a single character with a pigtail.

PenPoint User Interface Design Guide, Reu. 0.5,2/15/91 Page 111

Processing Pen Input

Targetting Window Objects

The input system distributes each gesture to the window that the pen first
touches when making the gesture.

This presents an implementation problem when the gesture's target point is not
the pen-down point, and the object to be targetted is implemented as a separate
window.

For example, let's take the common case of making an X to delete the contents of
a field in a form. Since the idealized target point of the X is the center of the
bounding box, the user will often start the X slightly above the text tobe deleted,
and end it slightly below. However, if the field is implemented as a separate
window, it will never see the gesture, because the input system will distribute it
to the window implementing the background of the form.

In such cases, you can obtain good results by implementing a simple algorithm in
which the parent window distributes the gesture to the first of its children to be
intersected by the gesture.

Note: this "first enter" algorithm is supported by the PenPoint toolkit.

Page 112 PenPoint User Interface Design Guide, Rer1. 05, 2/15/91

Processing Gestures

Core Gestures

.~

,

x·
A

o

[J

L

Tap. This is the most basic gesture. Typically tapping selects an object or pushes a button. Use
it for the most basic or important function of an object or region.

Press-Hold. (Touch the pen to the screen and pause for a moment.) When done over an object
that can be moved by the user, press-hold should always initiate a move of that object. The
secondary meaning is, when made not over an object, to sweep out a region for selection. So, for
example, when done in text over a selection, press-hold begins a move for the selection; when
done in text not over a selection, it begins a wipe-thru selection. Press-hold in the margin of a
list should also wipe-thru select, and press-hold on the background of a graphics editor should
sweep out a bounding box for selection.

Tap-Hold. (Tap the screen once, then touch the pen to the screen again and pause for a
moment.) When done over an object that can be copied by the user tap-hold should always
begin a copy of that object.

Flick. Four directions are distinguished: up, down, left and right. Flicking is used throughout
PenPoint to bring more information into view. The user model is that the flick gesture shoves
the object in the direction of the flick. Examples include scrolling text, turning notebook
pages, exposing overlapping tabs, and cycling through choices in pop-up checklists. For
scrolling, flick should shove the object or poSition under the pen to the opposite boundary of
the viewing region - e.g. flicking up in text shoves the line under the pen to the top.

X. This is the basic deletion gesture.

Caret. Use this for the primary meaning of insert or create in your context. For example, in text
the caret brings up a writing pad to insert new text, and in the table of contents the caret brings
up a menu allowing you to create a new document or section.

Circle. Use for editing the primary attribute of an object. In PenPoint this usually means the
objects textual label. The object may be a field in a form, an entry in the table of contents, a
title on a document, a tab label, an icon label, a span of text, a spreadsheet cell, etc.

Checkmark. Use to display the option sheet for an object. The object may be a document, an
accessory, a span of text, an icon, a figure in a graphics editor, a cell in a spreadsheet, etc. This
gesture is a workhorse that can almost always carry the burden of changing whatever needs to
be changed for an object or region. .

Brackets. Use to adjust an existing selection in contexts that support the selection of a span of
objects (such as text, lists and tables>. The left bracket adjusts the starting point of the
selection, the right bracket adjusts the endpoint.

Pigtail. Use to delete a single character (or the selection> in text.

Down-Right. Inserts a space in text. In translated text always inserts a single character, in
overwrite boxes the number of spaces depends on the length of the horizontal leg of the L

Pen Point User Interface Design Guide, Rev. 0.5, 2/15/91 Page 113

Processing Pen Input

Non-Core Gestures

" ", m,

+

o

•
/\

Page 114

Double, Triple and Quadruple Flick. These gestures - like the single flick - are for "shoving
the paper or object to bring more information into view. The effect should correspond to the
number of strokes: the more strokes, the farther the shove. Pen Point uses double-flick to scroll
to the beginning or end of text, the table of contents, and list boxes, to cycle to the beginning or
end of pop-up lists, and to shove overlapping tabs to the top or bottom. Use the triple and
quadruple flicks only if you need to provide qUick scrolling over a hierarchical object. For
example, in a spreadsheet, single-flick should shove the cell under the pen to the view
boundary, double flick could scroll to the end of the filled-in cells, and triple-flick could scroll
still farther.

Double, Triple and Quadruple Tap, In text, these are used to select successively larger units: a
word, a sentence or a paragraph. Double-tap is also used to float documents from icons, tabs or
Hyperlink buttons. Triple-tap is also used in several places to mean, roughly, "restore the
default state." For example, triple-tapping on a tab makes the tab's label match the title of
the document, triple-tapping on the title-line of an option sheet restores the sheet to its defau
size, and triple-tap on a Hyperlink button links the button to the current selection and updates
its label.

Plus. Use to mean "toggle selection" in contexts where discrete, discontiguous selections make
sense, such as graphicS editors or lists. Also used to toggle selection on conb'ols which use tap
for invocation, such as icons and Hyperlink buttons. Can also be used in mathematical contexts
as an addition sign. .

Square. Select the area inside the square.

Circle-Line. Replace. For text, should bring up an empty editing pad for the object under the
gesture.

Caret-Tap. Use this for the secondary meaning of insert in your context. In text, for example,
caret pops up an insertion pad, and caret-tap creates an embedded insertion pad.

Circle-Tap. Create Hyperlink button. This gesture should not be processed by the
application.

Up Arrow and Down A"ow. Use to make the object larger & smaller, or to zoom up & down.

Double-Caret. Create embedded document. This gesture should not be processed by the
application. It is intended to be passed through so that it will always pop up the Create Menu
from which the user can choose a document to create. .

Check-Tap. Options for container. This gesture should not be processed by the application.
Used primarily to allow the user to display the option sheet for an embedded document whose
borders are off.

Up-Right. In text, pops up a single-character pad for inserting a single character.

Pen Point User Interface Design Guide, Rev. 0.5, 2/15/91

Processing Gestures

Down-Left. In text, inserts a paragraph break.

-1 Down-Left-Flick. In text, inserts a line break. -
L Down-Right-Flick. In text, inserts a tab.

-
Right-Up. In text, capitalizes the first letter the word, or of each word in the selection.

Right-Up-Flick. In text, capitalizes the word or selection.

Right-Down. In text, makes the word or selection lower case.

Avoiding Gesture Collisions

The term "gesture collision" refers to what happens when two gestures are not
distinct enough to be reliably distinguished by the gesture recognition engine.

Gesture collisions are very bad from the user's standpoint, because they cause the
system to behave unpredictably. For example, suppose the bracket gesture,
meaning extend a text selection, collided with the flick gesture for scrolling. The
user would attempt to extend the selection only to find that the display had
undergone a radical transformation. Only after the user figured out that the
bracket had been mis-recognized as a flick would the situation again make sense.

While collisions can never be completely eliminated, all of the core and non-core
PenPoint gestures have been designed, tested and adjusted to minimize
collisions.

However, when the 26 capital letters are added to the overall gesture set, many
collisions are introduced. This is because the capital letters are recognized by a

. separate character recognition engine. Character recognition engines are .
typically tuned for broad coverage of handwriting, and include many prototypes
for each letter.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 115

Processing Pen Input

When using capital letter gestures, it is your responsibility to make sure that the
gestures you use don 't collide with core or non-core gestures.

When you find that you want to use a letter accelerator that collides with a core
gesture, the core gesture should always take precedence, because it is more
widely useful throughout the system.

Let's look at an example. Suppose you want to use the letter C as an accelerator
to create a new item in a list. But if the list supports multiple selection, it should
support the left and right bracket gestures to adjust spans of selected items.
Unfortunately the left bracket collides with the letter C. Adding the C will cause
unpredictable behavior, since mis-recognition will occur both ways: C's will be
misrecognized as brackets, and brackets as C's.

Because the bracket is a core gesture, you should find another accelerator for the
Create command, or forgoe the accelerator entirely.

It may be appropriate in some cases to map two gestures onto one operation.
Let's look again at the previous example. If the list did not support multiple
selection, then the brackets would not be needed for the "adjust selection"
function. But the potential for mis-recognition would remain high: some
percentage of reasonable C's would be mis-recognized as left-brackets. The best
solution would be to accept both left-bracket and C as accelerators for Create.
That way the user would be successful even if he or she made a C that was mis-
recognized as a left-bracket. ~.

Note that the set of capital letters is not itself free of collisions - U and V are
probably the worst. The same guideline applies: never use such a pair for two
different operations. If you do use either of the pair, accept the other letter as
well, and map both to the same operation.

A final note of caution. Some collisions are easy to predict from looking at the
form of the gesture. But often collisions can not be predicted. The only way to
be sure is to test your gesture set on real users.

Page 116 PenPoint User Interfrlce Design Guide, Rev. 0.5, 2/15/91

Processing Gestures

Passing on Unused Gestures

The general rule for processing gestures is to pass on to your ancestors all
gestures that you aren't interested in.

This allows the ancestor to provide standard default behavior when appropriate.
For example, caret, caret-tap and double-caret all bring up the Create menu by
default in class EmbeddedWin. The PenPoint text component displays a pop-up
writing pad on caret, and an embedded writing pad on caret-tap. By passing
double-caret on, it gets the desired default behavior of displaying the Create
menu.

Issues

Other non-core gestures that GO should provide?

What should be the interpretation of circle and circle-line in non-text contexts?

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 117

Chapter 14: Processing Handwriting

This chapter describes the processing of handwritten characters by the PenPoint
handwriting translation system.

Topics covered include:

• Handwriting translators. The software objects that perform translation.

• Constraining translation. Guidelines for constraining translation for the
particular context.

• Text and numerals. Handwriting translators can be constrained to recognize
text only, numerals only, or both text and numerals.

• Dictionary. Optionally, handwriting translators can use the built-in PenPoint
dictionary (which the user may have augmented with a personal dictionary)
to constrain translation.

• Templates. Translators can be further constrained through the use of
customized templates.

Processing Pen Input

Handwriting Translators

The translation of handwritten input into ASCII codes is performed by software
objects called handwriting translators.

Because the handwriting translator and the user interface that mediates between
the user and the translator are separate, allowing you to tailor each to suit the
needs of your application.

But while these two components are separable, they are also related, and need to
be designed together. It is often helpful to the user to have conventions that
associate looks with translators. This gives the user a visual cue as to what kind
of behavior the field will exhibit.

The standard PenPoint fill-in fields and overwrite fields provide an example of a
convention associating a particular kind of translator with a specific visual cue.

When building a translator, the client can choose to 1) provide a grid that the
translator will use to segment the input strokes into discrete characters, or 2) tell
the translator to use heuristics to perform the segmentation.

The two types of standard PenPoint text fields are designed around this
distinction. Overwrite fields present visual segmentation cues to the user, and
tell the translator to use that grid. Fill-in fields, on the other hand, present no
visual segmentation cues to the user, and tell the translator to determine the
segmentation via heuristics.

,
Page 120 PenPoint User Interftzce Design Guide, Rer1. 0.5, 2/15/91

Processing Handwriting

Constraining Translati.on

This section discusses the role of constraints in designing handwriting translators.

The Problem of Ambiguity

Even assuming that the translator can correctly segment the input strokes into
characters, the problem remains of determining what the user intended in the
face of multiple possible valid shapes. Examples of handwritten forms that are
indistinguishable in the absence of constraints include the circle (letter '0' or
numeral zero?) and the vertical line (letter'!' or numeral one?)

The default behavior of the system is to put like with like. So, for example, a
circle preceded by 1/347" would be translated as a zero, while a circle preceded by
I/leg" would be translated as the letter '0'.

Improving Translation via Context-Specific Constraints

The basic technique available to you to deal with this ambiguity is to impose
constraints on the interpretation of the input based on its context.

Think of a continuum of input contexts. At one end would be input areas that
accept any character that the translation engine is capable of recognizing. An
example of such an unconstrained context would be a word processor - there's

. not much that the designer can say beforehand about what the user is likely to
enter.

At the other end of the continuum would be fields that accept only a small,
completely specified set of characters. An example of a highly-constrained field
would be a social security number, which always takes the form ###-##-###.
An even more highly constrained field might·only accept a small set of values -
for example, a list of states. (In such cases it often makeS sense to use an explicit
choice list instead of a handwriting translator.)

When building a translator, you can tailor it to the appropriate place on the
spectrum. The irreducible design tradeoff is that the more you constrain the
context, the more accurate the handwriting recognition will be, and, at the same
time, the greater limitation you place on what the user can enter.

The PenPoint translation system permits a great deal of flexibility in constraining
translators. The sections that follow describe the different types of constraints
and different ways that you can apply those constraints.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 121

Processing Pen Input

Constraining to Letters and Numbers

You can specify that a given translator accept alphabetic letters and symbols,
numbers, or both.

Constraining Via Dictionary and Templates

PenPoint allows you to further constrain translators by means of several types of
templates:

• Dictionary. The dictionary is actually drawn from two sources: the built-in
PenPoint dictionary, and the personal dictionary that the user has specified
as current in the Installer.

• Character lists. A list of ASCII characters.

• Word lists. A word list is effectively a smail, special-purpose dictionary.

• Pattern descriptions. You can describe a pattern by means of a simple
language. For example, suppose you define P as the set {A, B, C}. Then the
pattern ###PPP would accept any digit in the first three positions, and only
the letters A-C in the second three positions.

Furthermore, you can specify the degree to which each template constrains the
translator. There are three levels:

• Ignore. The template is ignored during translation.

• Enable. The template is used as one of the rules in the process of translation.

• Veto. The translator will return only words that match the template. If the
input does not match the template closely enough, the unrecognized
character symbol will be returned for each input character.

Page 122 PenPoint Userlnterface Design Guide, ReD. 0.5, 2/15/91

Processing Handwriting

Guidelines for Using Constraints

The basic guideline in designing translators is to constrain the input as much as
you judge reasonable, given the expected use of the field.

When constraints reflect expected rather than required usage, it is a good idea to
give the user some means of turning off the constraints temporarily, to enter
characters that don't fit the expected pattern. For example, in a word processor
that usually makes use of the dictionary to aid translation, give the user some
way to tum off the dictionary when entering a string that he or she knows is not
in the dictionary, such as a license plate number.

Three Models of Translators and Fields

As mentioned in a previous section, the translation object is separate from the
object used to implement the user interface.

There are three basic architectures to consider when associating translators with
fields:

• Each field has its own translator.

• Two or more fields share the same translator.

• One field uses two or more translators, based on a dynamic user setting.

Issues

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 123

Chapter 15: Processing Strokes Without Translating

This ~apter describes how untranslated strokes can be used.

Topics covered include:

• Markup Layers. Allowing the user to markup a document.

• Ink as a Data Type. The use of untranslated scribbles as a data type.

• Signature pads. Standard component.

• Deferred translation in forms.

• Deferred translation in notetaking applications.

Note: This chapter to come.

Issues

I

Chapter 16: Presenting Input Modes

This chapter describes how to allow the user to switch between input modes.

Topics covered include:

• Types of input modes

• Mode control via pop-up list at right of menu line

• Mode control via palette at right of menu line

• Mode control via palette line

• Mode control via palette in scroll margin

Processing Pen Input

Translation Modes

Drawing and painting applications in traditional graphical user interfaces
typically use different input modes for selecting, erasing, and various flavors of
drawing and painting.

In addition to these familiar modes, you may want to organize your application
around different translation modes.

The most common translation modes are:

• Gestures. This is an edit mode, in which the user can edit or scroll via
gestures in the work area.

• Sketch. In this mode the user's strokes are recorded without translation, as
free-form sketches.

• Shapes. In this mode common shapes are recognized: circles, squares and
ellipses.

• Text. In this mode strokes are processed by the handwriting translation
system.

This list is not exhaustive. For example, you might have modes that recognize
specialized shapes, such as musical notes in a composing program.

Also, note that translation modes are not necessarily mutually exclusive.

Always Show the Current Mode

If you do provide different input modes, it is essential to provide visual feedback
so the user can tell at a glance what the current mode is.

The remainder of this chapter describes different ways to present mode controls.

Page 128 PenPoint User Interfaa Design Guide, Reo. 0.5, 2/15/91

Presenting Input Modes

Mode Control on Menu Line

Given the importance the mode control, it is a good idea to place the mode
control where it is always visible to the user. One obvious place for it is on the
menu line.

Pap-up List at Right of Menu Line

If the input modes are exclusive, you can meet the requirement to show the
current mode by using a pop-up list, as shown in Figure 75.

DraWl ng Paper

Document Edit Options Mode. Sketch
_~~w"'... Gestures

Mod • Sketch

.--------- --------------- --------

Figure 75: Pop-up List for Exclusive Modes

:-:-::::-.:-:-:.:-::::-::-:::
Shapes
Letters

Put the list at the right of the menu line, to separate it visually from the other
menus.

Using a pop-up list has the advantage that it allows for the compact presentation
of many of choices.

Putting the mode control in a standard menu, as shown in Figure 76, is not
recommended.

Drawi ng Paper t---------
Document Edit Options

---------1================='1
.t! Gestures

! Sketch
! Shapes
! Letters

-------- -----------------
Figure 76: Menu with Checklist for Modes (Not Recommended)

This usage should be avoided, because it forces the user to display the menu to
discover what what the current mode is.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 129

Processing Pen Input

Palette at Right of Menu Line

You can also use a palette for the mode control, as shown in Figure 77 below.

Drawi ng Paper
"'6~~'~ tr1 ~.~ t· ·E·d·i·t "Q"pi 1~·~~· .. ·· .. · ····· .. · .. · ·· .. ···· .. ····I~;r·~ ·t(5 .. A ..
:.::: :.: :,:,:,:::::: :,: :::.:.:::;::::::~:::: :.:.:~:::: :,:: :.:::::::::::::::::: :,: :.~: :.:.:.:::: :,:,:,:.::'::::::: :.:.::::::::::: :':':.:.::::::::::::: :.:::::::::::::::: ::::::::: :.:: :,::::::: :::::::::::::::

.----- ------------- --------

Figure 77: Palette for Exclusive Modes

When the number of choices is small, the palette is just as compact as the pop-up
list, and is easier to use because the user can switch to any mode with a single
tap.

If the modes are additive rather than mutually exclusive, it is essential to show
them all at once, so the user can see which are on at any given moment.

The palette is the right control for this situation, as shown in Figure 78.

::::::::G2l.~~::::~:::~.::

Figure 78: Palette for Non-Exclusive Modes

Page 130 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Presenting Input Modes

Mode Control in Palette Line

You can also put the palette in a separate palette line. Do this if you have more
modes than will fit at the right of the menu line

In Figure 79 below the mode control has been combined with other controls on a
palette line.

DraWl ng Paper
.. .,.... .. - .. .

Document Edit Options

'''~J''''~'''=='''f6-A'~-''-8--=''''';;-;;--·''Ii1-i''·''''D·
~:;'~:::::::::===~::=::::: .. ::::::~::::::~..==::::~:::~~::..""=--"'=~....::;=::~::..--=::.. ~::::~==::~~==~:::::;:;::::::::::=::::::::::;".:::::::::::

--------- -------------- -------

Figure 79: Palette Line

The line in the above example contains three groups of controls: input modes at
the left, line thicknesses in the center, and fill colors on the right.

If you use a palette line, make sure to add a control to the standard Access Sheet
to allow the user to toggle the palette line on and off.

PenPoint User Interface Design Guide, Rer1. 0.5, 2/15/91 Page 131

Processing Pen Input

Mode Control on Pop-up Sheet

In addition, it is often appropriate to put the mode control on a pop-up palette or
option sheet. Figure 80 shows a pop-up palette for a drawing application.

fJlY 6~~·~·i·~·g .. ·p·;1·~'t·t·~ .. ·
~::

I /'/ ~ .-...., [Q A 1 ~
>

II 1- - - - - • f"·D .. · .. ·m· .. ·~·· · .. · · .. ·· .. · .. · ~

Figure 80: Mode Control on Pop-up Palette

In the above example, the first line of the palette controls the input mode, the
second line controls the line thickness, and the third line controls the the fill
color.

Issues

Page 132 PenPoint User Interface Design Guide, Rev. OS, 2/15/91

Chapter 17: Handling Keyboard Input

This chapter describes the use of the keyboard.

Note: This chapter to come.]

Section V: Manipulating Application
Objects

This section describes selecting and editing of objects within applications.

Topics.covered include:

• Selection. User interface conventions for allowing the user to manage the
current selection.

• Move/Copy. Drag and Drop model.

• Handwriting Processing. Standard PenPoint editing pads and text gestures.

• Text Editing. Standard PenPoint editing pads and text gestures.

Chapter 18: Selection

This chapter gives guidelines for managing the system-wide current selection.

Topics covered include:

• User Model. Definition of selection from the user's viewpoint.

• Selection Feedback. Standard selection feedback for different types of objects.

• Selecting and Deselecting. Selecting a single object. Adjusting an existing
selection. Selecting groups of objects. Selection of discontiguous multiple
objects. Auto-selection of gesture targets.

• Text Selection. Pending-delete selection. Selection behavior when the
primary input device is the pen vs. the keyboard.

• Option Sheet Selection. Handling option sheets that themselves contain
objects that take the selection.

Manipulating Application Objects

User Model

Graphical user interfaces in the Xerox Star tradition generally present the user
with what has been called the "noun-verb" model for invoking operations. In
this model the user first identifies the object of interest (the noun) and then
indicates which operation to apply to that object (the verb).

The act of identifying the operand is called selecting an object, or making a selection,
and the object, once selected, is called the current selection.

Selection Feedback

The current selection must be distinguished visually from the other objects on the
screen so that the user can identify it at a glance.

While it is important for selection feedback to be as consistent as possible, no one
convention suffices for all types of objects. Figure 81 shows selection feedback
for four different object types. .

Four score andil.years ago.

A Clockwork Orange
.....

'"
..

Chi ne B1 ue

~ .!&:' [511 iii

Text. Selected span is rendered on grey
background.

Lists. Selected i tern rendered on grey
background. The background usually extends
the full width of the list.

Icons. Selected icon is underlined .

Resizable figures. Selected figure is indicated by
the presence of resize handles at the comers and
at the midpoint of the edges of the figure's
bounding rectangle.

Figure 81: Seledion Feedback for Different Object Types

One rule to follow is to avoid using inversion as selection feedback, because
gestures that the user makes will not be visible over the black mass of the
selection.

Page 138 PenPoint User Interface Design Guide, Rev. 005,2/15/91

Selection

Selecting and Deselecting

This section describes the PenPoint conventions for selecting and deselecting
objects.

The importance of selection is reflected in the fact that all mouse-based interfaces
use the main mouse button to select objects. Those interfaces that came out of the
Xerox tradition devote two mouse buttons to selecting - one to making new
selections and the other to adjusting existing selections.

One of the strengths of the pen is that it permits the user to easily make gestures
other than tapping. PenPoint takes advantage of this strength by providing a
variety of complementary ways to make and adjust selections. Selection-related
gestures include tap, double-tap, plus, press-hold-drag, and left and right
brackets. .

Selecting a Single Object

The basic gesture for selecting a single object is tap. Tapping in text should select
a character, tapping a figure in a drawing should select the figure, tapping an
item in a list should select the item.

Some types of objects function like controls, in that they use the tap gesture to
invoke their ~ain operation. So, for example, tapping on an icon opens the icon,
and tapping on a tab or a hyperlink button turns to the associated document.

In these "control-like" cases - where selection is not as important as the object's
primary function - you should interpret plus as the selection gesture.

PenPoint User Interface Design Guide, ReD. 0.5,2/15/91 Page 139

Manipulating Application Objects

Deselecting an Existing Selection

From the user's perspective, the current selection is only useful with reference to
an operation that the user intends to make in the very near future. At other
times, it may appear as an artifact that is irrelevant, or even distracting.

Therefore it is important that the user be able to easily deselect any object. You
should always allow the user to deselect in two ways:

• Tapping on the object. Tapping (or making the plus gesture) on an existing
selection should deselect it.

• Tapping on the background. Tapping anywhere on the background of the
region should also deselect any existing selection. Examples of include the
background of a drawing region, or the dotted lines connecting document
names with their page numbers in the notebook Table of Contents.

Page 140 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Selection

Extending a Selection. by Dragging

In many contexts the user can select multiple objects - a span of text, a block of
items in a list, a block of cells in a spreadsheet, several figures in a drawing, etc.

If your application supports multiple selection, you should allow the user to
select adjacent objects via the press-hold gesture. The user touches the screen,
waits for the press-hold timeout to elapse, and then drags out the region to select
with the pen:

Use one of these two conventions for providing feedback during the drag:

• Wipe-thru. If your application uses a light grey background to indicate
selection (e.g. text and lists) jump the grey (from letter to letter, or item to
item) as the user drags. This is often called making a wipe-thru selection.

• Bounding Box. If your application uses some form of outline or underline to
indicate selection (e.g. graphic figures) use a bounding box to provide
feedback as the user drags.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 141

Manipulating Application Objects

Extending a Selection With Brackets

The left and right bracket gestures should adjust an existing selection in any
formatted context such as text, lists, or tables.

Figure 82 shows how the brackets work in text.

~
:~;mY[~ score end seven~~s ego.

ego.

yeers ego.

To extend an existing selection to the right, the
user makes a right-bracket past the end of the
selection. (A left-bracket before the beginning
of the selection extends to the left.)

The bracket gesture acts on whole words in text,
so the selection is extended to include the word
under the bracket.

To shrink an existing selection from the right,
the user makes a right-bracket. (A left-bracket
shrinks the selection from the left.)

The resulting selection includes the word under
the bracket.

If the right-bracket is drawn over the last word
in the selection, the selection will be adjusted by
letter, not word.

This allows the user to adjust within a word.

Figure 82: Adjusting a Text Selection with Brackets

Page 142 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Selection

Figure 83 shows how the brackets work in a list.

To extend an existing selection to include items
following the selection, the user makes a right­
bracket.

The selection extends to include the item under
the bracket.

To extend an existing selection to include items
preceding the selection, the user makes a left
bracket.

The selection extends to include the item under
the bracket.

Figure 83: Adjusting a List Selection with Brackets

PenPoint User Interface Design Guide, Reu. 0.5, 2/15/91 Page 143

Manipulating Application Objects

Discontiguous Multiple Selections

The previous section described how to allow the user to select multiple objects
that are adjacent.

It is often helpful to the user to allow the selection of multiple objects that are not
adjacent. This is referred to as discontiguous selection. Discontiguous selection is
commonly supported for lists and applications dealing with graphic objects.

If you do support dis contiguous selection, use the plus gesture as a toggle: a
plus over an unselected object should select it, a plus over a selected object
should deselect it.

Auto-selection of Gesture Targets

Because the pen allows the user to indicate the operand as well as the operation
in one gesture, the PenPoint user need always select the object to be operated on.

For example, the user can draw an 'X' to delete an object, a circle to edit a label, a
checkmark to bring up an object's option sheet, all without first selecting the
object.

Often such a gesture results in a popup sheet, pad or note - an edit pad for a
document in the Table of Contents, an option sheet for an icon, a proof menu for
a word, a confirmation note for deleting a document, etc. In all such cases you
should programmatically select the object targetted by the gesture before
displaying the pop-up, in order to provide a visual relationship between the pop­
up and its target.

Page 144 PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

Selection

Text Selection Issues

This section discusses a couple of text-related issues.

Pending Delete

Text selection follows the "pending-delete" de-facto standard, in which text
entered via the keyboard replaces any existing text selection.

Primary Input Preference

Text should observe Primary Input preference, and follow the convention used
in PenPoint's text component. If the user has set the preference to Pen, then
tapping selects a single character.

If the preference is set to Keyboard, then tapping sets an I-beam indicating the
insertion point for keyboard input. This mode allows for compatibility with
traditional, mouse- and keyboard-based graphical user interfaces~

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 145

Chapter 19: Move/Copy

This chapter gives guidelines for implementing the Move and Copy operations.

Topics covered include:

- User Model.

- Detailed description of both the move and the copy process.

- Inter-application data transfer issues.

-Step-by-step examples.

Manipulating Application Objects

User Model: Drag and Drop

This section describes the PenPoint user model for moving and copying objects,
and contrasts it with the model presented by traditional, mouse-based interfaces.

Move and Copy in Mouse-based Interfaces

Mouse-based graphical user interfaces present the user with two very different
models for moving and copying objects, the direct manipulation drag and drop
model and the clipboard-based cut/copy/paste model.

The drag and drop model is simple and direct: the user drags the object to the
desired location with the mouse. It works well for objects such as icons on the
work surface or figures in a graphics editor.

But, as traditionally used, the drag and drop method has severe limitations:

• The application designer must map it to either move or copy, since there's no
way for the user to distinguish which operation is desired.

• It doesn't work for all types of objects - text, for example.

• It doesn't work when the source and destination are not in view at the same
time.

• It doesn't work when the source and destination are in separate applications.

• It doesn't work for deferred or repeated operations.

Because of these limitations, traditional graphical user interfaces supplement the
drag and drop method with the clipboard-based method that supports the cut,
copy and paste operations.

Page 148 PenPoint User Interface Design Guide, Rev. 05,2/15/91

Move/Copy

Move and Copy in PenPoint

PenPoint presents a single user model- drag and drop - for moving and
copying objects throughout the environment.

The PenPoint drag and drop method addresses the limitations described in the
previous section:

• It provides a way for the user to distinguish move from copy .

• It works for all types of objects - cons on the Bookshelf, entries in the Table
of Contents, text in a word processor, figures in a graphics editor, cells in a
spreadsheet, etc.

• It works when the source and destination are not in view at the same time.

• It works for transferring data across document boundaries, and between
different types of documents.

• It supports deferred. operations. The cut and paste model allows the user to
transfer data to a special clipboard, and copy it from the clipboard as needed.

In order to fully deliver the benefits of this unified. model to the user, it is very
important that all applications follow the same conventions for implementing
move and copy.

PenPoint User Interface Design Guide, ReD. 0.5, 2/15/91 Page 149

Manipulating Application Objects

Support for Implementing Move and Copy

This section breaks the move and copy operations down into the steps of
invoking the operation, dragging the object and targetting the destination.

It describes both the simple case in which the source and destination are both in
the same document and both visible on the screen, and variations (source is
offscreen, destination offscreen, deferred transfer, etc.)

This standard user interface is supported by a protocol in class embedded win.

Initiating the Move or Copy Operation

Before dragging the object, the user must signal to the system whether the
operation is a move or a copy. Following the dual command path principle,
PenPoint provides two ways to initiate the operation:

• Menu. The user first selects the object, then chooses Move or Copy from the
Edit menu.

• Gesture. The gesture for Move is press-hold: the user touches the object with
the pen and pauses for a moment. The Copy gesture is tap-press-hold: the
user taps the object with the pen, then touches again and pauses.

Move and Copy Marquee

After the user initiates the operation, the system signals that the object is ready to
be dragged by surrounding it with an animat~ dashed outline, called a marquee.

The move marquee is a single outline; the copy marquee is double. This makes it
clear to the user throughout the process whether the drag will result in a move or
a copy.

Page 150 PenPoint User Inter{tla Design Guide, Reo. 0.5, 2/15/91

Move/Copy

Drag Icons

In implementation terms, what actually happens when the move or copy
marquee begins is that a marqueed drag icon is displayed over the selected object.

This section describes how to display the drag icons in various situations.

Ideally, the drag icon should contain an exact rendering of the selected. object, so
that it appears to the user as if the marquee simply begins around the selected
object. Figure 85 gives several examples.

Four scor d years ago.

Figure 85: Drag Icons that Mimic the Selected Object

PenPoint supports this by automatically copying the portion of the screen in the
selected region to the icon.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 151

Manipulating Application Objects

It is not always possible to copy the bits from the screen into the icon.

One problem is that the selected object may be too large to drag - a selected text
span, for example, might well be larger than the screen itself. If the objects in
your application can be so large that they are impractical to drag, you should
limit the size of the drag icon, as shown in Figure 86.

Figure 86: Move Marquee for Large Text Selection

In the above example, the user has selected an entire paragraph, and then chosen
Move from the Edit menu. The application has determined that the selection
spans more than one line, and so has limited the move marquee to a rectangle at
the beginning of the paragraph.

The user can also invoke move or copy from the menu when the selection is
scrolled entirely offscreen.

To support this scenario, PenPoint provides standard drag icons for both move
and copy, as shown in Figure 87.

, · .
:~: .. .
: II i · . · . · . · . I •••••••••••• ~

Figure 87: Standard Drag Icons for Move and Copy

When the selection is entirely offscreen, display the appropriate drag icon in the
center of the application's client area.

Another situation in which the standard drag icons are handy is for dragging
figures in a drawing program across document boundaries. (See Example #6
later in this chapter.).

Page 152 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Move/Copy

Completing the Operation

After initiating the move or copy, the user completes the operation by dragging
the drag icon to the destination with the pen. There are several variations on the
process:

• If the user begins with a gesture, and the destination is already visible on the
screen, the user simply drags as soon as the marquee begins .

• If the user begins with a gesture, and the destination is not already visible on
the screen, the user lifts the pen after the marquee begins, which leaves the
drag icon "floating" on the screen. At this point the user brings the
destination into view by scrolling or turning to another document, then
drags the icon to the destination.

• If the user begins from the menu, then the drag icon appears over the
selected object, and the user then drags it to the destination.

Drag Rectangle

As the user drags, a dashed outline the size of the object - called the drag
rectangle - follows the pen.

The drag rectangle, like the marquee surrounding the object, is single or double
to indicate move or copy.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 153

Manipulating Application Objects

Targetting the Destination

When the destination allows free-form positioning of objects - as is usually the
case in drawing or painting programs - the drag rectangle allows the user to
position the object at the desired destination. When the user lifts the pen, the
object should appear precisely where the outline was.

In such situations, the drag outline should remain in the same position relative to
the pen as when the pen touched the object.

Often the destination application imposes constraints on the positioning of
objects - as, for example, in text, lists and tables.

The user model for targetting the destination in such formatted contexts is to
point the pen at the white space between two adjacent objects. In text, this means
pointing between two words or two paragraphs. In a list, it means pointing
between two items in the list. In a table, it means pointing at the border dividing
two rows or columns.

A usability problem may arise here if the user is unclear whether to target by
reference to the drag rectangle or the pen tip. For example, in text, should the
user point the pen or the left edge of the drag rectangle at the destination?

To avoid this problem, when the user begins dragging in text, snap the drag
outline so that the left edge is under the pen tip. That way the user will succeed
using either the pen tip or the drag rectangle as the reference point for targetting.

Note that because the snapping of the drag rectangle must be done when the
user begins dragging away from the move or copy icon, the decision as to
whether or not to snap the rectangle must be based on whether or not the source
application is formatted.

Page 154 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Move/Copy

Cancelling the Drag

The user can cancel the move or copy operation at any point short of completion.

When the drag icon is floating (and the pen is not touching the screen) the user
can cancel the operation it by tapping the drag icon.

Changing the selection by selecting another object anywhere in the system will
also cancel the operation and dismiss the drag icon.

The user can cancel even after beginning to drag, by dragging back over the drag
icon and lifting the pen. Or, the user can drag and drop on the title-line or menu
line. The icon will jump to the new position and remain floating, and the user
can then tap it to cancel.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 155

Manipulating Application Objects

Moving and Copying Between Applications

This section discusses implementation issues related to inter-application data
transfer.

Standard Data Types

To facilitate the transfer of data between applications, there is a set of standard
data formats that all PenPoint applications should read and write:

-'.

• ASCII

• Microsoft RTF (Rich Text Format)

• TIFF

• Object

Note: This list of data formats is preliminary, and will be defined further before
the release of PenPoint 1.0.

Object Data Transfer

Ideally, user should be able to move or copy information anywhere in the
PenPoint environment, without regard to the type of the source and destination
or the type of data being transferred.

To facilitate this, there's a special data transfer type called object.

Any region that supports embedding within it will always - even if it doesn't
take the specific data type - accept an object that holds the data. Therefore you
should support the rendering of your data as an object.

This effectively gives the whole system the functionality of a visual clipboard
that accepts any number of objects. For example, the user can select a paragraph
and drag it down to the document's cork margin, where it will remain as an icon
(see example #S in the next section.) Then the user can either move it or copy it
at any time, as desired.

Page 156 PenPoint User Interface Design Guide, Ref1. 0.5,2/15/91

Move/Copy

Regions that Don't Accept Embeddees

When the user drops a drag icon onto a destination that can't accept the type of
data represented by the icon, and won't accept embedded objects of any type, the
destination should refuse to accept the data. The drag icon will jump to the
location of the drop and remain floating.

This happens automatically, so most applications will not have to worry about it.
The title and menu lines are examples of areas that will not accept any type of
data, so users can always "park" a drag icon over them.

Examples

The next several pages give step-by-step examples illustrating moving and
copying in several common scenarios.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 157

Manipulating Application Objects

Example 1,' Moving a Word in Text

Four scOre[~nd years ago.

~ :
..............

Four score and_years ago.

The user first selects the word to be moved.

Then the user initiates the move with the press­
hold gesture.

When the user drags the pen, the marquee
outline jumps so that the pen tip is centered on
the left edge of the outline.

The user points the pen tip directly at the
desired location - in the gap between two
words.

When the user lifts the pen, the move is
completed and the text reformatted. The newly
moved word remains selected.

Figure 88: Moving a Word in Text

Page 158 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Example 2: Moving an Item in a List

A Clock&k Orange

:.:ii:~:lrn:i~rIl::~i:I::~llii~i!::i:!:;::;ii::ii:::::I;ilimt::l:::!::::::
Chi na Blue
Return of the Secaucus Seven
Tremors

na ue
Return of the Secaucus Seven
Tremors

Tremors

Move/Copy

The user first selects the item to be moved.

Then the user initiates the move with the press­
hold gesture.

The user drags Ol,lt the dashed outline, until the
pen-tip points between the rows where the item
is to be moved. .

When the user lifts the pen, the move is
completed and the list redisplayed.

The newly-moved item remains selected.

Figure 89. Moving an Item in a List

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 159

Manipulating Application Objects

Example 3: Moving a Figure

D
'~ · .

· . 1_- •••

O· #
• I I~
L. •• 1 D 6. 1 ••••••••• 1

The user first selects the figure to be moved.

The eight resize handles indicate that the figure
is selected.

Then the user initiates the move with the press­
hold gesture.

When the user drags the pen, the application can
either:

1) drag a rendition of the object itself, or

2) drag a dashed outline of the selection.

If an outline is dragged, it should not jump
relative to the pen. It should also be the exact
size of the selection. This allows the user to use
the outline as a guide for positioning the object
precisely.

When the user lifts the pen, the move is
completed.

The newly moved object remains selected.

Figure 90: Moving a Figure

Page 160 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Example 4: Moving a Figure to a Far Destination

, ,
• I · .
:~: : II : · .
• I · . · . I •••••••••••• .:

. . . r ••••• rI1 ,............. . :

!~!I ! I II i: I
• .' I I • 1 •••••••••••• .= · . · . 1 ••• _ •••••••• -'

Move/Copy

The user first selects the figure (or figures) to be
moved.

Then the user touches the selected figure with
the pen and pauses until the move marquee
appears.

(At this point, the user can drag to a local
destination without lifting the pen, as described
in the previous figure.)

The user lifts the pen at this point, causing the
move icon to appear ..

The move icon has a glyph symbolizing the
move operation, and is surrounded by the move
marquee. It is always the same size, regardless
of the size of the selected object.

While the move icon is displayed, the user
brings the destination into view by turning to
another document (or scrolling within the same
document.)

When the destination is in view, the user
continues the drag by touching the move icon
and dragging out a dashed outline.

When the user lifts the pen, the data transfer
takes place, and the object appears at the
destination.

The object is placed in the same location relative
to the pen as when the move was initiated.

Figure 91: Moving a Figure to a Far Destination

PenPoint User Interface Design Guide, Rez7. 0.5, 2/15/91 Page 161

Manipulating Application Objects

Example 5: Object Data Type: Copying a Paragraph to the Bookshelf

Article Extract
Document Edit Options I nsert Format

........ "' .. ::::.:::::::::::: :;::::::::;::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::: :: ... :::::::::::::::

After an unnervi ng sl ump in the computer market,
industry experts believe demand might rebound in

"1t-ij The user first selects the paragraph
then begins the copy with the tap-p
gesture. '991.

The mai n beneficiaries of any resurgence will pro-

A rti c 1 e Ext ract
Document Edit Options I nsert Format

After an unnervi ng sl ump in the computer market,
industry experts believe demand might rebound in
'991.

A rti c 1 e Ext ract
Document Edit Options I nsert Format

After an unnervi ng sl ump in the computer market,
industry experts believe demand might rebound in
1991.
A combi netion of neW' computer software, new markets
and lower prices will entice customers in the United
States, where business has been bad for more than a
year, and in Europe, where the slowdown set in more
recently.
The ma; n beneficiaries of any resurgence will pro- .~,.

"E1'cl'i"~'~i'~~""""":'::"""'"'''''''''''''''''''''''''''' ~:.:=:.::.:=~:.::

The copy marquee appears around

Note: The drag icon is limited to a 1

around the pen, because the selectic
than one line.

The user drags to the Cork Margin.

The user lifts the pen, dropping the
onto the Cork Margin.

Because the Cork Margin doesn't ac
directly, the data is transferred in tr
fonnat. It appears as an icon in the

Figure 92: Copying a Paragraph to the Bookshelf

Page 162 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Move/Copy

Issues

PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91 Page 163

Chapter 20: Editing Text

This chapter gives guidelines for editing text in several contexts: overwrite fields,
fill-in fields, and full text views.

Manipulating Application Objects

Pop-up Edit Pads

PenPoint provides a standard type of pop-up pad specialized for editing fields
and labels.

Figure 93 shows an edit pad.

Figure 93: Pop-up Edit Pad

Usage by PenPoint

These edit pads are used extensively in PenPoint to provide a unffonn way for
the user to edit fields and labels of all sorts, including:

• document titles on the document

• document and section names in the Table of Contents

• file names in the Disk Viewer

• icon labels

• tab labels

• words and phrases in the text component

Usage by Applications

Unless the context of your application requires a specialized type of input pad,
you should use the standard edit pads for editable fields and labels.

In order to make editing in your application as convenient and efficient as
possible, you may want to design special editing pads that are further specialized
to the types of objects in your application.

In designing these pads, remember the principle of the dual command path, and
allow the user to enter information either through the handwriting engine
(gestures or characters) or by tapping (buttons, menus and scrolling lists).

Page 166 PenPoint User Interface Design Guide, ReD. 05, 2/15/91

Editing Text

[nvoking Edit Pads

The circle is the core PenPoint gesture for the basic Edit operation. Drawing a
circle should always bring up the editing pad for the object under the circle.

Tapping should also display the edit pad, unless there is a more important
operation to map to tap. For example, tapping on a fill-in field in a dialog or
option sheet displays the edit pad for the field, since editing is the primary
operation on the field. But tapping on a tab or Hyperlink button turns to the
associated document, and tapping on a title in the Table of Contents selects the
document. In these cases editing is not the primary operation.

The object being edited should take the selection, so that the user can see at a
glance what the target of the pad is.

The text being edited should appear in the pad's overwrite boxes, with a couple
of blank boxes at the end to allow the user to add one or two characters without
resizing the pad.

I npu t Behavior

The standard edit pads are modal- while they are displayed input to other
parts of the screen is blocked, and they automatically take the focus of keyboard
input.

If you build a specialized edit pad, with more functionality, it may make sense
for the pad to be modeless, like the PenPoint option and dialog sheets, so that the
user can leave it up and use it to edit several objects.

Size Preference

Pads should observe preferences - if you create one and re-use it, you should
check preference each time the pad is displayed.

PenPoint User Interface Design Guide, ReCJ. 0.5,2/15/91 Page 167

Manipulating Application Objects

Using Edit Pads

Edit pads have two different modes of behavior with respect to translation:

• Input mode: Whenever there are no boxes with translated characters, the pad
is considered to be in input mode. The user writes into the boxes, and no
translation occurs until the user taps OK.

• Edit mode: When there is at least one box containing a translated character,
then the user's input is translated automatically when the user lifts the pen
out of proximity to the screen for more than a moment.

This behavior is designed to support the most common usage scenario in which
the user first enters the word or phrase into a blank pad, then taps OK to
translate, then overwrites the characters as needed to correct any translation
errors.

The pads also accept three editing gestures, described under Gestures in Character
Boxes, below.

The edit pad buttons work as follows:

• OK: If there are no boxes with translated characters, tapping OK translates
the contents of all the boxes. If one or more boxes contain translated
characters, then tapping OK returns the contents of the pad to the caller and
dismisses the pad.

• Clear: Clears the pad.

• Cancel: Dismisses the pad without making any change to the object being
edited.

Page 168 PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

Editing Text

Pop-up Writing Pads

The caret gesture should pop up a writing pad to allow the user to insert new
text.

Before displaying a pop-up writing pad, you should check the state of the Pad
Style option on the Handwriting Preference Sheet, and display the appropriate
form of pad.

Figure 94 shows a ruled pad.

Figure 94 Pop-up Writing Pad (Ruled)

Figure 95 shows a boxed pad.

',~",,,,,,, w. "'1
~

Figure 95: Pop-up Writing Pad (Boxed)

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 169

Manipulating Application Objects

Gestures in Character Boxes

Character boxes accept only three editing gestures, as described below.

Tap-Hold. Makes the box the focus of keyboard input.

Pigtail. Deletes the character in the box.

L
Down-Right. Inserts one or more spaces, depending on the length of the horizontal line.

Page 170 PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

Editing Text

Gestures in Fill-in Fields

For the Developer's Release of PenPoint, the standard text fields accept the
following gestures:

x

o

L

Tap. Observes the Preferred Input preference. In Pen mode (the default), pops up an edit pad
containing the field's contents. In Keyboard mode, sets the I-beam.

Double-tap. Toggles selection of entire contents of field.

Press-Hold. If field contents are not selected sets the I-beam. If field contents are selected,
initiates move of field contents.

Tap-Hold. If field contents are selected, initiates copy of field contents.

x. Deletes the contents of the field.

Scratchout. Deletes any word touched by the gesture.

Circle. Pops up an edit pad containing the field's contents.

Caret. Pops up an empty writing pad targeted at the tip of the caret. The pad is either ruled
or boxed, depending on the setting of the Pad Style preference.

Pigtail. Deletes the character under the pen-down point.

Down-Right. Inserts a single space at the pen-down point.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 171

Manipulating Application Objects

Gestures in Text Views

In addition to the core gestures, the text component accepts the following gestures:

"
•

/\

-.J -
L -

Page 172

Double Tap. Select word.

Triple Tap, Select sentence.

Double Flick (4 directions). Scroll to the beginning, end, left edge or right edge.

Circle-Line. Replace. Bring up an empty editing pad for the word or selection.

Caret-Tap. Create an embedded insertion pad .

Circ1e-Tap. Create Hyperlink button.

Up Arrow and Down Arrow. Increase/decrease point size for the word or selection by the
increments in the character option sheet.

Up-Right. Insert a single character.

Down-Left. Insert a paragraph break.

Down-Left-Flick. Insert a line break.

Down-Right-Flick. Insert a tab.

Right-Up. Capitalize the first letter the word (or of each word in the selection.)

Right-Up-Flick. Capitalize the word or selection.

Right-Down. Make the word or selection lower case.

Double-Caret. Create embedded document. Pops up the Create Menu.

PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

V­
B

F

I

p

N

S

U

Editing Text

Check-Tap. Brings up option sheet for the document.

B. Make the word or selection bold.

F. Bring up find sheet, set to start the search from the point of the gesture.

I. Italicize the word or selection.

P. Proof word.

N. Make the word or selection "normal" - i.e; turn off bold, italic, and underlined attributes.

S. Bring up spell sheet, beginning checking from the point of the gesture.

U. Underline the word or selection.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 173

Chapter 21: Forms

Forms are one of the most important classes of applications for PenPoint. This
chapter gives guidelines for designing and supporting forms.

Topics covered include:

• Emulating paper forms. Allowing the user to markup a document.

• Designing forms from scratch. The use of untranslated scribbles as a data type.
Shrink to fi t area.

• Validation in forms. Allowing the user to markup a document.

Note: This chapter to come.

Section VI: Application Architecture
This section describes the several basic ways a PenPoint application can be
structured:

• Document: A page in the user notebook.

• Tool: An accessory that pops up or takes over the entire screen.

• Section: A section in a notebook.

• Notebook: A separate notebook.

• Service: Inbox services, Outbox services, and background servers.

• Components: Inbox services, Outbox services, and background servers.

Note: This entire section is rough.

Chapter 22: Documents

This chapter describes the several basic ways a PenPoint application can be
structured:

• When to structure your application as a document.

• User model: document on a single notebook page.

• Basic document components and layout.

• Local page controls.

• Handling embedding within documents.

Application Architecture

When to Structure Your Application as a Document

If your application makes sense as something that could be found in a notebook,
present it as a document.

This is intended to be a broad category, and include not only such obvious
documents as a word-processor, drawing program, or form, but also applications
that would not ordinarily be though of as documents in the traditional sense,
such as database front ends, games, etc.

User Model: Document on Single Notebook Page

The basic user model for the Notebook User Interface is that each page of the
notebook contains a single document.

The document itself may extend across many printed pages. The user can scroll
the offscreen portions of the document into view by using the scroll margins or
the flick gestures.

Page 180 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Basic Document Layout

Figure 96 shows the basic components and layout for documents.

Ti tle
I

Title li ne June Expense Report
•.• ,.,"", , ••.••••• , u " , ,., , •••• , •••.•.•• , •••••••••••••• ,

Menu Li ne Document Edit
:::::.:::.:.:::::-~~::~~:.:.:.:.:.:::.:.:.:::.:::.:::.:.:;:::::.:,:.:'::.:':.:.:.:,:::':.:.:::::.:':.:':,:.:':':':':,:,:.:':':.:::.:::::'::::':::::.:::::'::::'~:':'~:'::.:::':':':.:::::::::'~:':::::::'::::;:::'::::;:.:.:':.:.:,:.:,:.:.:::.: :::.: :::':::.:;:.:.:.:.:.:.:.:.:::::,:.:,:,:.:,:.:.:.:.:.::

Work Area

v­
I

+-t=========-=======---""'·.::=""''',...,,,='''''=

Figure 96: Basic Document Layout

These components are described briefly on the following page.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Documents

Scroll Margi n

Cork Margi n

Page 181

Application Architecture

The standard document components are:

• Title Line. Contains the title of the document.

• Menu Line. Each label in the menu line represents a category of commands.
The user can show or hide the menu line at any time from the document
option sheet.

• Scroll Margin. Each document takes up one page of the notebook, but the
document itself may be of any length. The scroll margin allows the user to
bring offscreen portions of the document into view. The user can show or
hide the scroll margin at any time from the document option sheet.

• Cork Margin. An margin below the body of the document into which the·
user can place icons (useful for pop-up notes or annotations) and link
buttons (useful for scrolling directly to specific places in the document or for
linking to other documents). The cork margin is not shown by default; the
user can turn it on at any time from the document option sheet.

.; Work Area. The bulk of the page is reserved for the information in the
document itself.

Page 182 PenPoint User Interftzce Design Guide, Rev. 0.5,2/15/91

Documents

Local Page Controls

If your application is naturally structured as a series of pages, it may be
appropriate to provide a visible control for paging within the document. The
next two sections describe the two standard ways to do this.

Local Page Numbers

If your document has numbered pages, put the page control at the right of the
menu line, directly below the notebook page number, as shown in Figure 97.

Fax Paper <24"""

Document Edit Options <1)

------------- -------------.------

Figure 97: Local Page Number on Menu Line

The page control is a standard toolkit control; tapping on the left bracket turns to
the previous page, tapping on the right bracket turns to the next page. Pressing
either of the brackets flips through pages.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 183

Application Architecture

Pop-up List on Title Line

As an alternative to the local page number control, you can use a pop-up list on
the title line, as shown in Figure 98.

I en Brewster ~ 1040 < 24.'>

Document Edit Options
:::

.------ -------------

Ian Brewster. 1040
.................................... -.".~ " -.......... "................. 1 040A
Document Edi t Options

.''''''''~'''''''''"'''''''''': "'''''''~.,,::'''':''''':''''::'''':'''':''''''''''''::. 1 0 9 9
1060-44
650-Z

.--------- -------------- ---

/24>

Figure 98: Pop-up List on Title Line

The pop-up list is appropriate when there are a limited number of named pages.

Page 184 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Documents

Managing Embedded Objects

One of the important innovative features of PenPoint is its support for
live application embedding. This section describes the different ways your
application can make use of this feature.

Applications can be divided into two categories with respect to how they handle
embedded objects: transparent embeddors which rely entirely on the Application
Framework to handle embedded objects, and child-aware embeddors, which take
embedded objects into account when laying out their data.

Transparent Embeddors

Transparent embeddors don't open up holes for their embeddees.

An example would be a simple drawing application which did not contain any
commands to arrange the objects within it, or snap them to a grid.

The embeddees are clipped to the parent, and travel with the parent as it is
moved or copied. The embeddees don't count in the notebook page numbering
sequence, and don't show up in the notebook Table of Contents.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 185

Application Architecture

Child-aware Embeddors

Child-aware embeddors pick up the embedding protocol and modify the
presentation of their contents based on their children. In short, they make room
for their children.

Most applications will fall into this category. Examples include:

• A word processor that makes room for embeddees, either by treating the
embed dee as one huge character, or in some other way, such as flowing text
around it.

• A drawing program that allows the user to snap objects - including
embeddees - to a grid.

• A corkboard-like container that has commands to arrange objects within it
according to various layouts.

• An application such as a spreadsheet, that presents its data in tabular
format. Since opening a space for the embedee to be opened in-line doesn't
make sense in the context of a table, the embeddor can restrict its
embeddees to open in pop-up format, overlapping the work area.

Each of these behaviors requires that the embeddor do some work. For example,
the word processor needs to re-layout its contents when the embeddee is opened,
closed or resized.

You need to think about this at the beginning of the application design process,
so your data structures support embedded objects. For example, a spreadsheet
would need to be able to store an object as well as a formula in a given cell.

Issues

Page 186 PenPoint User Interface Design Guide, Rev. as, 2/15/91

Chapter 23: Tools

This chapter describes structuring applications as tools. Topics include:

• When to structure your application as a tool.

• Pop-up and fullscreen tools.

Application Architecture

If your application doesn't fit well into the form of the notebook, present it as a
tool that the user finds as an icon in the Tools Palette. When the user opens the
icon, the tool either pops up over the notebook, or takes over the entire screen.

Examples of pop-up tools include clocks, calculators, a snapshot program, etc.

If you need to control the layout of the tool exactly, you can specify that it always
be full-screen, and not resizeable. An example of a full-screen tool is the
PenPoint Handwriting Customization application.

It is often straightforward to decide whether an application should be a
document or an accessory. In some cases, however, it may be appropriate for an
application to take both forms.

Take, for example, the PenPoint Disk Manager. Its primary usage is as a pop-up
tool that the user opens from the Bookshelf, uses, and closes. But the user can
also copy an instance of the Disk Manager into a notebook. This supports the
usage scenario of having multiple disk manager instances on multiple notebook
pages, each of which stay open to a particular location on a particular disk.

Issues

Should tools save their state when they are opened/ closed/ opened?

Page 188 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Chapter 24: Component/Application Model

This chapter describes structuring applications components and wrappers.

Application Architecture

One approach you can take in PenPoint is to structure your application in two
parts: a visual component that does most of the work of presenting information
to the user, and an application "wrapper" that provides some other functionality
such as a menu line.

The component can then be used in several applications.

The Minitext application bundled with PenPoint is structured on the
component/ application model.

The component needs to be self contained. None of the basic behavior should be
implemented by the wrapper.

Issues

We don't have a well-known place for component resources -- so, in practice for
now, the application needs to know about the component.

Page 190 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Chapter 25: Notebooks and Notebook Sections

This chapter describes structuring applications as sections in the user notebook,
and as complete notebooks.

Application Architecture

Structuring Your Application as a Section

You can structure your application as a group of separate documents, organized
into a notebook section that manages them. In this architecture each notebook
section embodies an instance of the application.

Figure 99 below shows an ~xample.

Contents <: 1 >

[] len Brewster .3

81040...... 4

~ 1040A... 5

@Ill099 ,,",,".. .. 6

211080-44 7

tJ? ~1 rod Murphy .. "".... ." 8
@J 1040 .. " " 9

~ 1040A "....."

@l1099

EJ 1080-44

.-------------------;:~.;.:. . .::~~:::.......

.. 10

.11

12

13

Figure 99: Application as Section

In the example above, each section contains the tax forms for a different client.

This application architecture has advantages and disadvantages. It fits.in well
with the notebook metaphor, but it is harder to program and coordinate across
the s_eparate processes on each notebook page.

Page 192 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Notebooks and Notebook Sections

Subclassing the Table of Contents

While you can use the normal Table of Contents and treat the section as nothing
more than a group of normal documents that can travel together, you can also
subclass the Table of Contents to tailor its functionality or user interface.

Subclassing to Provide Inter-document Functionality

You may want to provide control and coordination functions across the
documents on the different pages - e.g. summing totals of forms, cross-form fill­
in or validation.

Subclassing to Provide a Customized User Interface

For example, suppose an insurance application had a section with separate
documents for different sections of the car that has been damaged. From the
Table of Contents, the section would look normal. But the section itself would
show a picture of a car, with hotspots on the car for turning to each page in the
section.

PenPoint User Interface Design Guide, Rer1. 0.5, 2/15/91 Page 193

Application Architecture

Structuring Your Application as a Notebook

You can also structure your application as a separate notebook.

This is appropriate if your application is a vehicle for delivering information that
makes sense in a notebook format. The PenPoint Help Notebook is an example
of an application that is structured as a notebook.

You can either specialize the notebook by subclassing or you can just use the
ordinary notebook as a delivery vehicle.

Issues

Page 194 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Chapter 26: Services

This chapter describes conventions for services that interact with the InBox and
OutBox.

Topics include:

• Transfer services (Inbox & Outbox).

• Subclassing lnbox and Outbox sections.

• Non-transfer services.

• Tracking the user data font preference.

Application Architecture

There are two types of services:

• Transfer services: Transfer services manage either the sending of information
through the Outbox, or the receiving of information through the Inbox, or
both .

• Non-transfer services: Non-transfer services include such background services
as database servers.

Issues

Page 196 PenPoint User Interface Design Guide, Rev. 05,2/15/91

Chapter 27: Installation of Applications and
Resources

This chapter covers issues related to the installation process, and also gives
guidelines for installable resources such as fonts.

This section describes the building blocks PenPoint provides to build your user
interface.

Topics include:

• Installation process. The installer. Configuring the application.

• Stationery notebook. For documents. Pre-loaded stationery.

• Tools Palette. For tools.

198 Introduction to the Notebook User Interface

When the user installs your application, the PenPoint Installer places an instance
of the application in either the Stationery Notebook, or the Tools Palette,
depending on whether you have specified that the application is a document or a
tool.

If you specify that your application is a document, the installation process results
in the creation of a section in the Stationery Notebook named for the application.
The section contains at least one document - also named for the application -
which is known as the application's default stationery. You can specify that other
stationery be automatically created for the user as part of the installation process.

If you specify that your application is a tool, the installation process results in an
icon of the application being placed in the Tools Palette.

You can also specify multiple tools for a given application.

Issues

Page 198 PenPoint Application Design Guide, Rev. 0.3, 1/22/91

