
PRoe
reference manual

88A00780A02

ZEBRABVGA

RECORD OF REVISIONS

Title: PROC Reference Manual

Document No. 88A00780A02

I
I Da te I Revis ion Record I
1--------------+---I

Mar 84 Original Issue

Feb 85 Revision A02 - Change Package (85A00518A01)

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH SHALL NOT BE
REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS,
OR USED FOR MANUFACTURING OR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN
PERMISSION OF GENERAL AUTOMATION, INC.

ii

PROC

reference manual
88AOO780A02

CopyrightC by General Automation. Inc.
1045 South East Street P.O. Box 4883

Anaheim, California 92803
11141778-4800 18001854-6234

TWX 910-591.1695 TELEX 685-513

RECORD OF REVISIONS

Title: PROC Reference Manual

Document No. 88A00780A02

I
I Date I Revision Record \

--------------+---\
\

Mar 84 Original Issue \
.1

Feb 85 Revision A02 - Change Package (85A00518A01) I
I
I
I
1
1
I
I
I
I
1

----------~--I

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH SHALL NOT BE
REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS,
OR USED FOR MANUFACTURING OR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN
PERMISSION OF GENERAL AUTOMATION, INC.

ii

88A00780A

FOREWORD

This document is one of a family of ZEBRA reference manuals devoted to PICK
processors that are on call within the PICK operating system. Before reading
this document and using the processor described, it is recommended that you
first become familiar with the PICK terminal control language and file
structure. These subjects are thoroughly covered in 88A00782A, listed below
with other documents covering PICK processors.

Document No.

88A00757A
88A00758A
88A00759A
88A00760A
88A00774A
88A00776A
88A00777A
88A00778A
88A00779A
88A00781A
88A00782A
88A00783A

Title

PICK Operator Guide
ACCU-PLOT Operator Guide
COMPU-SBEET Operator Guide
Quick Guide for the PICK Operating System
PICK Utilities Guide
PICK ACCESS Reference Manual
PICK SPOOLER Reference Manual
PICK BASIC Reference Manual
PICK EDITOR Reference Manual
PICK RUNOFF Reference Manual
Introduction to PICK TCL and FILE STRUCTURE
PICK JET Word Processor Guide

TMACCU-PLOT is a trademark of ACCUSOFT Enterprises

TMCOMPU-SHEET is a trademark of Raymond-Wayne Corporation

TMpICK is a trademark of PICK Systems

TMZEBRA is a trademark of General Automation, Inc.

iii/iv

. Section

1 PRoe
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.S
1.9
1.10
1.11

8SA00780A

TABLE OF CONTENTS

Title

.
THE PROC PROCESSOR • • • • •
PROC OVERVIEW. • • • • • • • •
INPUT/OUTPUT BUFFER OPERATION.
AN OVERVIEW OF PROC COMMANDS • • •
BUFFER SELECTION (SP, SS, AND ST) •••
POINTER POSITION (S, F, B, AND BO) •••• • •••
MOVING PARAMETERS (A). • • • • • • • • • • •••
DATA INPUT (IS, IP, AND IT). • • • • '. • •
DATA OUTPUT (0 AND D) ••••••••••
TERMINAL OUTPUT AND CURSOR CONTROL (T) •
SPECIFYING TEXT STRING~ AND CLEARING BUFFERS

1-1
1-1
1-2
1-4
1-7
1-9
1-11
1-13
1-15
1-17
1-19

(IH, Ht Ill, AND IlO). • • • • • • • • • • 1-21
1.12 TRANSFERRING CONTROL (GO AND SIMPLE IF). • • • • •• 1-23
1.13 RELATIONAL TESTING (IF). • • • • • • • • • • 1-25
1.14 THE PATTERN MATCHING IF COMMAND. • • • • • • • 1-27
1.15 FURTHER FORMS OF THE IF COMMAND (IF E AND IF S). 1-29
1.16 ADDITIONAL COMMANDS (PLUS (+), MINUS (-), 0, AND C). 1-31
1.17 PROC EXECUTION AND TERMINATION (P, PH, PP, PW t PX, AND X). 1-33
1.lS LINKING TO OTHER PIloes • • • • • • • • • • • • • • • • 1-31
1.19 SUBROUTINE CALL COMMANDS • • • • • • • • • • • • • • • 1-37

1.19.1 PRoe EXAMPLES. • • • • • • • • • • • • • • • • 1-39
1.19.1.1 PROe Use of SSELECT and COpy Verbs • 1-40
1.19.1.2 PaOC Use of Variable Testing

(GO AND D Commands). • • • • • • • • 1-41

v/v1

88A00780A

proc

1.1 THE PROC PROCESSOR

PROC allows you to prestore a complex sequence of Terminal Control Language
(TCL) operations (and associated processor operations) which can then be .
invoked by a single-word command. Any sequence of operations which can be
executed at the TCL level can also be prestored via the PROC processor. This
prestored sequence of operations (called PROC) is executed interpretively by
the PROC processor and therefore requires no compilation phase.

The PROC processor has the following features:

1. Four variable length Input/Output (I/O) buffers

2. Parameter passing between buffers

3. Interactive terminal prompting

4. Extensive I/O and buffer control commands

5. Conditional and unconditional branching

6. Relational character testing

7. Pattern matching

8. Free-field and fixed-field character manipulation

9. Optional command labels

10. User-defined subroutine linkage

11. Inter-PROC linkage

1-1

1

88A00780A

1.2 PROC OVERVIEW

A PROC provides the means to catalogue a sequence of operations which can then
be invoked from the terminal by a one-word command. Any operation that can be
executed by the TCL can be performed in a PROC. This use of PROC is similar to
the use of Job Control Language (JCL) in some computer systems. The PROC
language in PICK, however, is more powerful since it has conditional
capabilities and can be used to interactively prompt the terminal user.
Additionally, a PROC can test and verify input data as it is entered from the
terminal keyboard.

A PROC is executed interpretively by the PROC processor and therefore requires
no compilation phase. A PROC stored as an item in the user's Master Dictionary
(MD) is executed in the TCL environment by typing the item-id of the PROC, any
optional arguments, and a carriage return.

While a PROC can exist in the MD, the actual body of the PROC may be within the
same item, or it may be stored as an item in any dictionary or data file. The
first attribute (first line) of a PROC is always the code PQ. This specifies
to the system that what follows is to be executed by the PROC processor. All
subsequent attribute values contain PROC statements that serve to generate TCL
commands or insert parameters into a buffer for the interactive processors,
such as the EDITOR. PROC statements consist of an optional numeric label,
usually a one- or two-character command, and optional command arguments. PROCs
can be created using the EDITOR.

Execution of a PROC is shown in the following example where the sample PROC
named LISTU is invoked.

)LISTU [CR]

CRR PCBF NAME •••.•••• TIME ••• DATE.... LOCATION ••••.•••••

00 0200 SP
02 0240 CM
03 0260 LC
04 0280 JP

*06 02CO SAL
10 0340 JET

08:00AM 01/01/78 Channel 0
09:10AM 01/01/78 Channel 2
07:30AM 01/01/78 Channel 3
10:14AM 01/01/78 Channel 4
08:35AM 01/01/78 Channel 6
09:00AM 01/01/78 Channel 10

1-2

88A00780A

The ability to pass arguments to a TCL level process via a PROC is illustrated
as follows:

)LISTDICTS POLICY [CR]

POLICy ••••••••••••• D/CODE •• AI AMC •• V ICONV ••••• V/TYP V I MAX

AUDIT-PERIOD A 01 L 4
POLICY-PERIOD-FROM A 02 0 L 10
POLICY-PERIOD-TO A 03 0 L 11
EXPIRES A 04 0 L 12

Here LISTDICTS is the name of the prestored PROC, while POLICY is the argument
being passed.

The ability to interactively prompt input data from the user (and subsequently
verify this data) is illustrated as follows:

)ENTER-DATA [CR]

PART-NUMBER
DESCRIPTION
QUANTITY

• 3215-19 [CR]
• TRANSISTOR [CR]
• FIFTY [CR]

ERROR:NUMERIC DATA ONLY I I

QUANTITY • 50 [CR]

The PROC then prompts the user for the required data. The PROC could then, for
example, store this data in a buffer which could then be passed to the BASIC
processor to update the file.

Once a PReC is invoked, it remains in control until it terminates. When the
PROC temporarily relinquishes control to a processor such as the EDITOR, BASIC,
etc., or to a user-supplied subroutine, it functionally remains in control
since an exit from the called processor returns control to the fROC. TCL only
regains control when the fROC is terminated explicitly, or when all of the
lines in the PROC have been exhausted.

1-3

88A00780A

1.3 INPUT IOUTPUT BUFFER OPERATION

Operations specified within a PROC involve the movement of data from either of
two input buffers (data storage areas) to either of two output buffers.

PROC utilizes four input/output buffers: 1) the primary input buffer, 2) the
secondary input buffer, 3) the primary output buffer, and 4) the secondary
output buffer (called the stack). The general interrelationship of these
buffers is as follows:

Primary Input Buffer Primary Output Buffer

I I I I

~--~~---~--~-------- ---------------------1\ /\

Secondary Input Buffer Secondary Output Buffer

I I I I

----~--------------1\ ~---------------~---

*Path taken depends on "currently active" buffers.

Essentially, the function of a PROC is to move data from either input buffer to
either output buffer, thus forming the desired TCL and processor commands. At
any given time, one of the~input buffers is specified as the "currently active"
input buffer, while one 'of the output buffers is specified as the "currently
active" output buffer. Buffers are selected as "currently active" via certain
PROC commands (these commands are discussed in detail in this section). Thus,
'~en moving data between the buffers, the source of transfer is the currently
active input buffer, while the destination of the transfer is the currently
active output buffer.

The primary input buffer contains the PROC name and any optional arguments,
exactly as they were entered when the PROC was invoked. The contents of this
buffer remains the same throughout execution of the PRoe unless explicitly
modi:ied by an IP, IT, IH, RI, Plus or Minus command.

The primary output buffer builds the single command which ultimately is
submitted at the TCL level for processing. Any command which can be executed
via the terminal at the TCL level can also be constructed and executed via a
PROC.

1-4

88A00780A

The secondary input buffer contains data subsequently input by the user in
response to an IS command. The data in this buffer is volatile: It ,is
overwritten by subsequent IS commands, and with ERRMSG numbers by Error Message
generating processes.

The secondary input buffer is loaded with data from several system processors,
most notably the spooler. Information such as last hold file entry number is
placed into this buffer. More information on this can be found in the PICK
SPOOLER manual. Note that the secondary input buffer is a very temporary
entity; if its contents is to be used, it should be used immediately after the
execution of the processor which loaded the buffer.

The secondary output buffer (the stack) contains data that is to be used by the
processor called by the PROC-generated TCL statement. Zero or more lines may
be stored in the stack. Each request for terminal input by the called process,
or, for example, each INPUT statement in BASIC, will be satisfied with a line
of data from the stack. In the event that the called processor requests more
data than exists in the stack, data will be requested from the terminal from
that pOint'onwards.

Note that each line of data in the secondary output buffer must be terminated
by a carriage return which is explicitly placed in the stack via an R command
(see Section 1.11). This is not the case with the primary output buffer; a
carriage return is automatically placed at the end of the TCL command in the
primary output buffer upon execution of that buffer via the P, PW, PH, PI, or
PP command.

When all desired data has been moved to the output buffers, control is passed
to TCL via a P, PH, PX, PW, or PP command. The command which resides in the
primary output buffer is executed at the TCL level and the data in the
secondary output buffer (if any) is used to feed processors such as BASIC or
the EDITOR. When the process is completed, control returns to the PROC, at
which time new data may be moved to the output buffers.

1-5

88A00780A

I-toving data between the buffers is done by using "parameters." A parameter is
defined as a string of characters (residing in one of the buffers) terminated
by a space. If the character string includes spaces, the string is surrounded
by single quotes. (The single quotes are considered part of the parameter and
will be placed in the output buffer along with the parameter.) To keep track
of the parameters, each buffer has a pointer which points to the "current"
position in that buffer. These pointers are depicted in the buffer diagrams as
small arrows placed beneath the buffer. As a general illustration of this
concept, consider the following sample situation:

Primary Input Buffer Primary Output Buffer

I ABe XYZ I ---~ I XYZ I

-----~----~---------I'

Secondary Input Buffer Secondary Output Buffer

I I I I
'A'-------.-.------ ---------------------'"

llere the PROe has been invoked by the characters ABe XYZ, which are then
automatically placed in the primary input buffer. PRoe commands have then been
processed which position the input pointer of the primary input buffer to the
second parameter (XYZ), and then subsequently move that parameter to the
primary output buffer as illustrated by the path between the buffers (i.e., the
currently active buffers are the primary input buffer and the primary output
buffer) •

1-6

88A00780A

1.4 AN OVERVIEW OF PROC COMMANDS

A PROC may consist of any number of PROC commands, one command per line.

The first line (attribute) of a PROC must contain the code PQ. This identifies
the item as a PROC. The remaining lines in the PROC may contain any valid PROC
commands. There is no limit to the number of lines in a PROC. However, each
line may contain only one command and each command must begin in column
position one of the line.

PROC commands are summarized in Table 1-1. A complete description of each
command is presented in the following sections.

Any PROC command may optionally be preceded by a numeric label. Such a label
serves to uniquely identify its associated FROC command for purposes of
branching or looping within the PROC. Labels may consist of any number of
numeric characters (e.g., 5, 999, 72, etc.). When a label is used, the FROC
command must begin exactly one blank beyond the label. For example:

1 GO 5
23 A
99 IF A • ABC GO 3
2 ST ON

Only the first occurrence of the label is used as the destination of any
control transfers (i.e., no check is made for erroneous duplicate labels).

As an introductory example to PROC commands, consider the following FROC stored
as item 'DISPLAY' in the user's HD:

001 PQ
002 HLIST ONLY
003 A2
004 P

Assume that the user types in the following:

>DISPLAY INVENTORY [CR]

This input invokes the above PROC and places the words DISPLAY INVENTORY in the
primary input buffer. The second line of the above PROC is an H command which
causes the text LIST ONLY to be placed in the primary output buffer. The third
line is an A command which picks up the second word (parameter) in the primary
input buffer and places it in the primary output buffer. Thus, the primary
output buffer contains the words LIST ONLY INVENTORY. The last line of the
PReC is a P command which submits the content of the primary output buffer to
TCL for processing (LIST ONLY INVENTORY is an ACCESS sentence which causes the
item-ids of the INVENTORY file to be listed; refer to the ACCESS Manual).

1-7

88A00780A

Table 1-1. Summary of PROC Commands

Command Description

A

B
BO

C

D

F

G or GO

H

IF

IH

IP
IS
IT

0

p

PP
PW
PH
PX

RI
RO

S

SP
SS

STON
STOFF

T

U

X

+ -,
()

[1

Moves data from input to output buffers.

Backs up input pointer.
Backs up output pointer.

Specifies comment.

Outputs from either input buffer to terminal.

Moves input pointer forward.

Unconditionally transfers control.

Moves text string to either output buffer.

Conditionally executes specified command.

Moves text string to either input buffer.

Inputs from terminal to either input buffer.
Inputs from terminal to secondary input buffer.
Inputs from tape label to primary input buffer.

Outputs text string to terminal.

Causes execution of a PROC.
Displays contents of output buffers and executes PROC.
As above, waits for user response before proceeding.
As above, but suppresses all terminal output for the verb.
Like P, but returns to TCL after processing, not to PROC.

Clears (resets) input buffer.
Clears (resets) output buffer.

Positions input pointer.

Selects primary input buffer.
Selects secondary input buffer.

Selects secondary output buffer (stack).
Selects primary output buffer.

Provides formatted terminal output (cursor control).

Exits to user-defined subroutine.

Exits back to TCL level to calling PROC, or returns from
subroutine.

Adds, subtracts decimal number to parameter in input buffer.

Links to another PROC.

Subroutine call, local or to another PROC.

1-8

88A00780A

1.5 BUFFER SELECTION esp, SS, AND ST)

The SP and SS commands select the primary or secondary input buffer,
respectively, and set the input pointer at the beginning of the buffer. The
STON will turn the stack on while the STOFF will turn the stack off.

The input buffers receive data from the terminal and store it so that it ~y be
transferred to the output buffers. Only one of the two input buffers is
"currently active." The SP and SS commands are used to select one or the other
input buffer.

At the initiation of a paoc, the primary input buffer is automatically
selected, and the buffer-pointer is set to the start of the input buffer, which
contains the name by which the paoc was called from TCL. After the execute
primary-output-buffer command (P, PH, PX, PP, or PW), the primary input buffer
is selected and the pointer set to the beginning of the buffer on return of
control to the paoc from TCL. The contents of the primary input buffer is not
disturbed, however.

The general form of the SP command is:

SP

It selects the primary input buffer and sets the input pointer at the beginning
of the buffer.

The general form of the SS command is:

SS

It selects the secondary input buffer and sets the input pointer at the
beginning of the buffer.

Note that the IS command will also select the secondary input buffer.

The primary output buffer is used to store one TCL statement that is eventually
executed by a P, PH, PX, PP, or PW command. The secondary output buffer
(stack) is used to store zero or more lines of data to satisfy terminal input
requests by the processor invoked by the above mentioned TeL statement. Note
that the "stack" is a first-in, first-out queue.

Only one of the two output buffers is "currently active." The STON or STOFF
commands are used to select one or the other output buffer. Upon initial entry
to a paoc, the stack is off.

The STON command selects the secondary output buffer (the stack) as the
currently active output buffer (i.e., turns the stack on). Its general form
is:

STON or ST ON

The STOFF command selects the primary output buffer as the currently active
output buffer (1.e., turns the stack off). Its general form is:

STOFF. or ST OFF

1-9

88A00780A

When the stack is on, all data picked up by the A command is moved to the
secondary output buffer. When the stack is off, this data is moved to the
primary output buffer. The stack may be turned on or off at any point within
the PROC.

Figure 1-1 shows the results of these instructions. The pointers indicate
currently active buffers in each case.

Initial conditions:

I Primary Input Buffer I I Primary Output Buffer I

~ ~

I I
After instruction SS:

I Secondary Input Buffer I I Primary Input Buffer I

~ A

I I
After instruction STON:

I Secondary Input Buffer I I Secondary Output Buffer I

~ ~

I I
After instruction SP:

I Primary Input Buffer I I Secondary Output Buffer I

~ A

I I
After instruction STOFF:

I Primary Input Buffer I I Primary Output Buffer I

A A

I I

Fig~re 1-1. Sample Usage of SS, SP, STON, and STOFF Commands

1-10

88A00780A

1.6 POINTER POSITION (S, F, B, AND BO)

The S command positions the input pointer in the currently active input
buffer. The F and B commands move the input pointer forward or backward one
parameter, respectively. The BO command moves the output pointer backward one
parameter. The general form of these commands:

General Form Descri2tion

Sp Moves input pointer to the pth parameter.

SO or Sl Moves input pointer to beginning of buffer.

F Moves input pointer forward one parameter.

B Moves current input pointer back one parameter.

BO Backs up current output pointer one parameter.

5p moves the input pointer to the pth parameter of the currently active
in~ut buffer, where the parameters are separated by blanks. If there is no
pt parameter, then a backslash (\) will be inserted as a place holder
for each null parameter until the pth parameters is reached. SO or 51
will set the pointer to the beginning of the buffer.

The F command causes the input pointer for the currently active input buffer to
move forward one parameter. If the input buffer pointer is currently at the
end of the buffer, this command has no effect.

The B command causes the input pointer for the currently active input buffer to
move backward one parameter. If the input buffer pointer is currently at the
beginning of the buffer, this command has no effect.

The BO command causes the output pointer for the current output buffer to move
backward one parameter. If the output buffer pointer is currently at the
beginning of the buffer, this command has no effect.

1-11

88A00780A-A

Examples of pointer commands:

*
**

Before Command

Secondary Input Buffer

I ABC DE FGHIJ I 53 *

Secondary Input Buffer

I ABC 123 DEF 456 I F *
/\

Secondary Input Buffer

I ABC 123 DEF 456 I B *
/\

Primary Output Buffer

I XXX YYY ZZZ I BO **
1\

Active Buffer Prior to Command Execution

Primary or secondary input buffer.
Primary output buffer.
Pointer

1-12

Secondary Input Buffer

I ABC DE FGHIJ I

/\

Secondary Input Buffer

I ABC 123 DEF 456 I

!\

Secondary Input Buffer

I ABC 123 DEF 456 I

/\

Primary Output Buffer

I XXX YYY ZZZ I

!\

88A00780A

1.7 MOVING PARAMETERS (A)

The A command is used to move a parameter from the input buffer to the output
buffer. Either the primary or secondary input buffer may be used. as the
source, and either the primary or secondary output buffer may be used as the
destination; the buffers used depend on commands executed prior to the A
command. The general form of the A command:

A{c}{p}{,m}

where:

c is the surround character (must be non-numeric)
p is the number of the parameter to be moved
,m is the number of characters to be moved (up to the first blank

character)

The function parameters c, p, and m are mutually independent and may be used in
any combination to achieve the desired result.

p is a decimal ordinal number which indicates the parameter to be moved from
the input buffer. If specified, the input-buffer pointer will be reset to the
first character of the pth parameter in the input buffer, and the
pth parameter which is surrounded by blanks will be moved. If p is not
specified, the input-buffer pointer remains pOinting to the character after the
end of the last character moved or to the first character of a parameter, if
the pOinter was previously set by an S or Sp command or an F or B command.

Leading blanks are deleted from the parameter. The end of the parameter is
designated by the first blank which is encountered, unless the entire parameter
is enclosed in single quotes, in which case, the entire string including the
surrounding quotes is moved.

If the primary output buffer 1s active (i.e., the stack is OFF), the parameter
is copied with surrounding blanks if c is missing. If the character c is a
backslash (), the parameter is copied without any surrounding blanks. When
the form with c is used (where c is any non-numeric character except a left
parenthesis), the character c surrounds the parameter. This feature is useful
for picking up item-ids and values (which require double quotes) for processing
by the ACCESS language processor. Note that c is inactive when the stack is ON
(i.e., parameters are always copied to the stack as they are).

Multiple parameters may be moved to the primary output buffer via a single A
command if these parameters are separated by semicolons in the input buffer.
The parameters will be moved to the primary output buffer with the semicolons
deleted and surrounded by blanks or by the character c, if c is specified. This
function has no effect in the secondary output buffer.

After the execution of an A command, the input-buffer pointer points to the
very next character after the string that was moved. Normally, this means the
next blank or surround character following the last parameter in the· buffer,
if any. If there is no parameter, the A command causes no operation at all.

1-13

88A00780A

If the optional m is used, where m is a decimal number, only "m" characters of
the parameter are moved to the output buffer. Examples of the A command are
shown below. Each assumes that the output pointer is at the beginning of the
buffer prior to the illustrated operation.

Buffer Command

Primary Input Buffer

I AB CD EF GHI JK I A *
.'\

Primary Input Buffer

I AB CD EF GHI JK I AS,2 **
-~---~------------

Primary Input Buffer

I AAA BBB CCC I A\2 * --------------------:\

Primary Input Buffer

I ABC DEF GHIJK I A',2 *
--------------------1\

Secondary Input Buffer

I ABC;DEF;GH JKL I An *** --------------------
"

Secondary Input Buffer

I A.AAA BB CCC D I A2 ***

Active buffers prior to command execution:

Buffer

Primary Output Buffer

I CD I

--------------------,'\

Secondary Output Buffer

IJK I
---------------------1\

Primary Output Buffer

IBBB I

Primary Output Buffer

I 'DE' I

----~-~-----------,\

Primary Output Buffer

I "ABC""DEF''''GH'' I
---------------------1\

Primary Output Buffer

I BB I

* Primary or secondary input; primary output.
** Primary or secondary input; secondary output.

*** Secondary input; primary output.
Pointer

1-14

88A00780A

1.8 DATA INPUT (IS, IP, AND~IT)

The IS command selects the secondary input buffer and accepts input from the
terminal. The IP command accepts input from the terminal to the currently
active input buffer. The IT command inputs the next tape label from tape. The
general form of these commands:

Command

IS{r}

IP{r}

IT

Description

Input operation from terminal to secondary
input buffer; "r" is the prompt character.

Input operation from terminal to currently
active input buffer; "r" is the prompt character.

Input operation from tape to primary input buffer.
Reads next tape label from attached tape unit.

The IS command selects the secondary input buffer as the currently active input
buffer and inputs data from the terminal into the buffer. If the r
specification is used, then that character is a prompt character at the
terminal (r may be any character, including a blank). The prompt character
will remain in effect until a new IS or IP command with a new r specification
is executed. If r is omitted, then a colon (:) is used as a prompt. Data
input by the user in response to the prompt is placed into the secondary input
buffer. Subsequently, the data may be moved to an output buffer by using the A
command. Any time the IS command is executed, input from the terminal
overwrites all previous data in the secondary input buffer.

The IP command inputs data from the terminal into the currently active input
buffer. Data input at the terminal in response to an IP command replaces the
current parameter (i.e., as pointed to by the input pointer) of the currently
active input buffer. If several parameters are input at the terminal, then
they will all replace the current parameters in the buffer. If the input
pointer is at the end of the data in the input buffer, then the new input data
will be appended to the end. The r specification is identical to the r
specification for the IS command.

The IT command inputs the tape label from the tape currently attached and
copies that label into a cleared currently active input buffer. The IT command
will first clear the currently active input buffer and then input the tape
label into that buffer. If no tape label exists, then the command has the same
effect as the RI command (i.e., it will reset the input buffer).

1-15

88A00780A

Exa~ples of the use of these commands:

Command

IS

IS-

IP?

IT

Description

Selects secondary input buffer and inputs data from
terminal. Prompt character is a colon (:).

Selects secondary input buffer and inputs data from
terminal. Prompt character is an equal sign (-).

Replaces current parameter in currently active input
buffer with data from terminal. Prompt character is
a question mark (?).

Inputs tape label to primary input buffer. If no
label, then input buffer is cleared.

1-16

88A00780A

1.9 DATA OUTPUT (0 AND D)

The 0 command (capital letter 0) is used to output a specified text string to
the terminal. The D command is used to output parameters from either input
buffer to the terminal. The general form of these commands:

Command

O{text}{+}

D{p}{, n}{ +}

Description

'text' is output to terminal; '+' suppresses
carriage return.
p'th or current (if p omitted) parameter
of active input buffer is output to terminal;
'+' suppresses carriage return.

The 0 command causes the text which immediately follows the 0 to be output to
the terminal. If the last character of the text is a plus sign (+), then a
carriage return will not be executed at the end of the text output. This
feature is useful when using the 0 command in conjunction with an input
command. For example, consider the following commands:

OPART-NUMBER+
IS-

These commands produce the following output on the terminal:

PART-NUMBER-

The specified prompt character (-) is displayed adjacent to the output text
since the 0 command ended with a plus sign (+). The user then enters the input
data right after the prompt character. For example:

PART NUMBER-115020

Further examples of the 0 command:

Command Output to Terminal

omIS IS AN EXAMPLE THIS IS AN EXAMPLE [CR]

OTHIS IS AN EXAMPLE+ THIS IS AN EXAMPLE

The D command is used to output parameters from either input buffer to the
terminal. If the form Dp is used, then the pth parameter of the
currently active input buffer is displayed on the terminal. If the form D is
used, then the current parameter (i.e., as pointed to by the input pointer) of
the currently active input buffer is displayed on the terminal. If the form DO
(D followed by the number zero) is used, the complete currently active input
buffer is displayed. If the forms Dp,n or D,n are used, then the n characters
starting at the pth or current parameter (up to the first blank character
encountered) are displayed.

1-17

88A00780A

A plus sign (+) may be appended to the end of the D command, to specify the
suppression of a carriage return. The D command does not affect the input
pointer.

Examples of the D command:

Buffer Command

Primary Input Buffer

I AA BBB CC DDD I D *

Secondary Input Buffer

I AA BBB CC DOD I D4+ **
/\

Primary Input Buffer

I ABC XYZ 123 I D,2 ***
-----~-~~--------/\

.\ctive buffer prior to command execution:

* Primary input buffer.
** Secondary input buffer.

*** Primary or secondary input buffer.
'\ Pointer

1-18

Output to Terminal

BBB [CR]

DDD

XY [CR]

88A00780A

1.10 TERMINAL OUTPUT AND CURSOR CONTROL (T)

The T command is used to specify terminal cursor positioning, to output
literals, or to output non-keyable character codes. The cursor functions are
terminal independent. The special terminal function codes are also available.
The T command has the following general form:

T {function},{function}, •••

where:

{function} is any of the following:

"Text" Causes the literal text to be output at the current
position.

B Causes a BELL code to be output.

C Causes a Clear Screen code to be output.

Inn Causes the integer character nn to be output.

Inn Causes the hex character nn to be output.

(X,Y) Causes the terminal cursor to position to X,Y.
This is controlled by the term type code.
The special function codes (-1 through -10) are

also supported.

The T command allows the user to create formatted screens in PROCs. The
prompting and positioning of formatted"screens generally appears cleaner and
more acceptable to terminal operators. Note that this command does use the
SYSTEM-CURSOR mode and so can be controlled terminal by terminal with the term
type code. It is strongly recommended that the user employ the terminal
independent control codes -1 through -10 in place of 'hard coding' these
functions for a single terminal type. These codes are:

(-1)

(-2)

(-3)

(-4J

(-5)

(-6)

(-7)

(-8)

(-9)

(-10)

Generates the clear-screen character; clears the screen and
positions the cursor at 'home' (upper left corner of the screen).

Positions the cursor at 'home' (upper left corner).

Clears from cursor position to the end of the screen.

Clears from cursor position to the end of the line.

Starts blinking on subsequently printed data.

Stops blinking.

Initiates 'protect' field. All printed data will be 'protected'
(i.e., cannot be written over).

Stops protect field.

Backspaces the cursor one character.

Moves the cursor up one line.

1-19

88A00780A

The T command may be continued onto multiple lines by ending the preceding
line with a comma. Also, comments may be added after the critical command
letters. Thus, the code to clear the screen (C) could also be spelled out as
"CLEAR"; the code for a bell (B) could be "BELL", etc. The T command never
automatically adds a carriage return or line feed. Examples of T command:

Command

T C,B,(10,5),"TITLE"

T (0,8),(-4)

T (-5),"twinkle",(-6)

T CLEAR,"TITLE",
(5,5) Comment,"TEXT"

Output to Terminal

This sequence first clears the screen. It outputs
a bell code to the terminal. The cursor is
positioned to column 10, row 5. The text "TITLE"
is output.

This positions the cursor at column 0, row 8. It
then clears the entire line assuming that the
terminal used supports that function.

This starts a blinking field, prints the word
"twinkle" and ends the blinking field. This
assumes the terminal supports blinking.

This illustrates the continuation of a command
over a line boundary and the insertion of a
comment in the line.

1-20

88A00780A

1.11 SPECIFYING TEXT STRINGS AND CLEARING BUFFERS (IH, H, RI, AND. RO)

The IH and H commands are used to place a specified text string in the
currently active input or output buffer, respectively. The RI and RO commands
are used to reset the input and output buffers (respectively) to the empty
(null) condition. The general form of these commands:

Command

IH{text}

H{text}{<}

RI{p}

RO

Description

'text' replaces current parameter of active input buffer

'text' is placed in active output buffer; carriage return
specification included.

primary input buffer (from pth parameter and on, if
p is used) and secondary input buffer are reset.

both output buffers are reset.

The IH command causes the text (including any blanks) immediately following the
IH to replace the current parameter (as specified by the input pointer) in the
currently active input buffer. The input buffer pointer will remain pointing
to the beginning of the inserted string.

The H command causes the text (including any blanks) which immediately follows
the H to be placed in the currently active output buffer at the position
pointed to by the output pointer.

When the last parameter of a desired output line has been moved to the
secondary output buffer (the stack), a carriage return specification «) must
be placed in the stack. For example, the command HXYZ< would be used to place
in the stack the text XYZ followed by a carriage return, while the command H<
would place a carriage return (only) in the stack. If there 1s no carriage
return in the stack, the system will place one after the last character in the
stack.

If the form RI is used, then both input buffers are reset to the empty (null)
condition. If the form RIp is used, then the primary input buffer from the
p'th parameter to the end of the buffer (as well as the entire secondary input
buffer) are reset to the empty (null) condition. The RI command also selects
the primary input buffer as if an SP command has been executed.

The RO command (capital letters Rand 0) resets both output buffers to the
empty (null) condition. The RO command also selects the primary output buffer
as though a STOFF command had been executed.

1-21

88A00780A

Examples of the use of these commands:

Before Command After

Primary Input Buffer Primary Input Buffer

I AAA BBB CCC I IHXX YY I AAA XX YY CCC I

~--------~---~------ --------------------1\ 1\

Secondary Output Buffer Secondary Output Buffer

I XYZ ABC I H DE< I XYZ ABC DE [CR] I

------------------1\

Primary Input Buffer Primary Input Buffer

I ABC DEF GHI JKL I RI3 I ABC DEF I
---------------- --------------------1\

Pointer

1-22

88A00780A

1.12 TRANSFERRING CONTROL (GO AND SIMPLE IF)

Transfer of control (i.e., branching) may be specified within a PROC via use of
the GO and IF commands. The GO command provides an unconditional branch
capability, while the IF command provides a conditional capability. The
general form of these commands:

General Form

GO n or G n

IF {#}a-cmnd proc-cmnd

Description

Control is transferred to the statement with
'n' as the numeric label.

The IF command provides for the conditional
execution of a specified PROC command.

The GO command causes control to transfer to the PROC command which begins with
the label n. The user should note that several PROC commands may begin with
the same label. If this is the case, the GO command transfers control to the
first PROC command which begins with the specified label (scanning from the
top) •

The PROC branch command, G or GO, allows for variable branching. Specifically,
the user may use commands of the form GO A or GO An, where "A" and "An"
reference specific parameters in the primary input buffer. These commands will
cause a branch to the label referred to by the contents of these buffer
parameters. Note that if the label referenced does not exist, the PROC will
simply continue with the next statement following the branch instruction. For
example:

001 PQ
002 RI
003 0 ENTER MENU NUMBER +
004 Sl
005 IP:
006 GO Al
007 X-INVALID RESPONSE!

Define PReC
Clear input buffers

Point to parameter position
Get response from CRT
Branch based on response
Missing label number

The IF command takes on three forms in the general form, where a-cmnd is any
legal form of the A command (refer to Section 1.7), except for the form using
the character surround feature (i.e., Ac), and where proc-cmnd is any legal
PROe command. If the optional , is not used, the IF command simply tests for
the existence of a parameter in the input buffer as specified by the A
command. If a parameter exists, the specified PROe command is executed;
otherwise, control passes to the next sequential PRoe command. For example:

IF A2 GO 15

1-23

88A00780A

This command tests for the existence of a second parameter in the currently
active input buffer. If a parameter exists, control passes to the PROC command
beginning with label 15; otherwise control passes to the next sequential PROC
command. If the H option is used, the test is reversed. For example:

IF HA2 GO 15

This command causes control to transfer to the command with label 15 if a
second parameter does not exist. Note that when using an A command as a test
condition of an IF command, parameters are not moved to an output buffer as
they would be if the A command were used alone. Rather, the A command is used
simply to specify which parameter in the input buffer is to be tested.
However, the input pointer will be repositioned as specified by the A command.

A number of examples illustrating the simple form of the IF command are shown
below. For a discussion of the other two forms of the IF command, refer to
Sections 1.13, Relational Testing, and 1.14, Pattern Testing.

Command

IF A GO 27

IF A3 OHELLO

IF A4 OHELLO

IF A1,1 G 2

NOTE

The following examples assume that the
primary input buffer is the currently
active input buffer and contains the
following parameters:

I ABC AAA XYZ I
---------------------A

Explanation

Control is transferred to the command with
label 27.

Message HELLO is output to terminal; control
then continues with next sequential command.

Message is not output; control continues with
next sequential command.

Control is transferred to the command with
label 2.

1-24

88A00780A

1.13 RELATIONAL TESTING (IF)

The relational form of the IF command allows parameters in the input buffers to
be tested relationally. The relational form of the IF command is an extended
version of the simple IF form (see Section 1.12, Transferring Control) The
relational form is:

IF a-cmnd op string proc-cmnd

where:

a-cmnd and proc-cmnd

op

string

For example:

IF A,3 • YES GO 5

are as defined for the simple IF form.

is one of the relational operators listed
in Table 1-2.

is a literal string of characters which the
parameter is to be compared against.

Here the PROC would transfer control to the command with the label 5 if the
first 3 characters of the current parameter in the currently active input
buffer are YES.

To resolve a relational condition, character pairs (one from the selected
parameter and one from the literal string) are compared one at a time from
leftmost characters to rightmost. If no unequal character pairs are found, the
strings are considered to be equal. If an unequal pair of characters are
found, the characters are ranked according to their numeric ASCII code
equivalents. The character string contributing the higher numeric ASCII code
equivalent is considered to be greater than the other string. For example, AAB
is considered to be greater than AAAA, and 02 is considered greater than 005.

If the selected parameter and the literal string are not the same length, but
the shorter of the two is otherwise identical to the beginning of the longer
one, then the longer string is considered greater than the shorter string. For
example, the string WXYZ is considered to be greater than the string WXY.

1-25

88A00780A

Further examples illustrating the relational IF command are:

NOTE

The following examples assume that the primary
input buffer is the currently active input
buffer and contains the following parameters:

Command

If A • ABC GO 3

IF A3 > XYX HTEST

IF A2 > XYX HTEST

IF A1,2 • AB GO 7

I ABC AAA XYZ I
---~ -----~-.. ------

"
Explanation

Control is transferred to the command with label 3.

The text string TEST is placed in the currently
active output buffer; control then continues with
next sequential command.

Text string TEST is not placed in output buffer;
control continues with next sequential command.

Control is transferred to the command with label 7.

Table 1-2. Relational Operators

Operator Symbol Operation

• Test for equal •

Test for not equal.

< Test if parameter less than literal string.

> Test if parameter greater than literal string.

Test if parameter less than or equal to
literal string.

Test if parameter greater than or equal to
literal string.

1-26

88A00780A

1.14 THE PATTERN MATCHING IF COMMAND

The pattern matching form of the IF command allows parameters in the input
buffers to be tested for a specific pattern match. The pattern matching form
of the IF command is an extended version of the simple IF form (see Section
1.12, Transferring Control). The pattern matching form is:

If a-cmnd op (pattern) proc-cmnd

where:

a-cmnd and proc-cmnd

op

pattern

are as defined for the simple IF form.

is one of the relational operators described
for "the relational IF form.

is used to test a parameter for a specified
combination of numeric characters, alpha
characters, alphanumeric characters, or
literals.

The pattern specification in an IF statement consists of any combination of the
following:

• An integer number followed by the letter N (which tests for that number
of numeric characters).

• An integer number followed by the letter A (which tests for that number
of alpha characters).

• An integer number followed by the letter X (which tests for that number
of alphanumeric characters).

• A literal string (which tests for that literal string of characters).

As an example, consider the folloWing command:

If A • (3NABC) G 3

This command causes a transfer of control to the command with label 3 when the
current parameter of the currently active input buffer consists of three
numerals followed by the characters ABC (e.g., 123ABC).

If the integer number used in the pattern is 0, the test is true only if all
the characters in the parameter conform to character type. The following
command, for example, outputs the message OK if the characters of the current
parameter are all alpha characters:

IF A • (OA) OOK

1-27

88A00780A

Further examples of the pattern matching form of the IF command:

NOTE

The following examples assume that the primary
input buffer is the currently active input
buffer and contains the following parameters:

I ABC 10/09/77 XYZ B123C 33 I

1\

Command

IF A - (3A) G 7

IF A2 • (2N/2N/lN) G 5

IF A4 • (ON) G 9

I F AS • (ON) GO 2

IF A4 - (1A3NC) OGOOO

IF A1 • (3X) IF A1 > ABB G 9

Explantion

Control is transferred to the command
with label 7.

Control is transferred to the command
with label 5.

Control continues with next sequential
command.

Control is transferred to the command
with label 2.

The message GOOD is output to the
terminal; control continues with next
sequential command.

Control is transferred to the command
with label 9.

Note that for any of the three IF command forms, the PROC statement which is
conditionally executed may, in turn, be another IF command (i.e., IF commands
may be nested). The following command, for example, transfers control to label
99 if the current parameter consists of two numerals in the range 10 through 19
(inclusive):

I FA· (2N) IF A] 10 I F A [19 GO 99

You may wish to visualize nested IF commands as though implied AND operators
were placed between them.

1-28

88A00780A

1.15 FURTHER FORKS OF THE IF COMMAND (IF E AND IF S)

The IF E form of the IF command may be used to test for errors generated by a
preceding PROC-generated statement. The IF S form of the IF command may be
used to test whether a LIST, as generated by a SELECT, SSELECT, QSELECT, or
GET-LIST statement, is in effect. The general form of IF E and IF S:

IF {I}E {op string} proc-cmnd

IF {#}S proc-cmnd

The IF E command allows PROCs to test for system-generated errors (as specified
in the ERRMSG file). The E command is valid only after a P type command (i.e.,
when a PROC-generated statement has completed execution and control is returned
to the PROC). The E command uses the secondary input buffer and, therefore, is
valid only until an IS command is executed.

The errors tested for may be unspecified (i.e., any error) or they may be
specified by the error number. The relational operators "-", ">", "<,,. "[",
"]" may also be used to test for errors in specified ranges. Thus, the error
command may be used in two ways. An example of the first would be:

015 IF E X ENCOUNTERED AN ERROR AT LINE 15

whereby control will transfer to TCL and the text "ENCOUNTERED AN ERROR AT LINE
15" will be printed if any error were encountered.

An example of a statement that tests for an error range is:

015 IF E > 91 IF E < 99 X TAPE ERROR!

in which case control will transfer to TCL and the text will be printed if an
error in the range 92-98 has been encountered.

There are certain TCL statements that select lists of item-ids or values, such
as SELECT, SSELECT, QSELECT, and GET-LIST. Refer to the ACCESS manual for
details regarding these statements. There is an important interaction between
these statements and a PROC. A selected list must be used by the TCL statement
immediately following it or else it will be lost. If the select-type statement
has been executed by a PROC, the TCL statement that uses it is normally placed
in the stack prior to execution of "the select statement. This second TCL
statement will automatically execute after the select is complete; the PROC
will not gain control in between. If there is a null line in the stack, the
PROC will then regain control. The PROC may then test if the select statement
executed correctly.

1-29

88A00780A

The IF S command will test for the presence of a selected list; the selected
list will be present only if a select-type TCL statement has already been
executed at the time that the IF S command is encountered.

If the select statement has generated an error, such as "NO ITEMS PRESENT" or
"ITEM NOT ON FILE," the select list will not exist and the IF S may be used to
check on this condition.

Examples of the IF S usage:

TESTI
001 PQ
002 HGET-LIST
003 OENTER LIST-NAME+
004 IP?
005 A
006 STON
007 H<
008 P
009 IF IS XILLEGAL LIST-NAME!
010 HLIST INVENTORY LPTR
all P
012 next statement

TEST2
001 PQ
002 HGET-LIST
003 ENTER LIST-NMtE+
004 IP?
005 A
006 STON
007 HLIST INVENTORY LPTR
008 P
009 next statement

The PROC's TEST1 and TEST2 will operate identically if the GET-LIST
statement executes without an error (i.e., if the list exists on file).
However, TEST2 will continue with PROC execution even if the list is not
on file, since there cannot be an IF S test after the stacked L·IST state
ment executes. TEST1, on the other hand, has a null line in the stack
when the GET-LIST executes; therefore, control is returned to the PROC,
which can test to see if it executed properly. If the list is not on
file, the PROC will terminate on line 9.

1-30

88A00780A

1.16 ADDITIONAL COMMANDS (PLUS (+), MINUS (-), Up AND C)

The Plus and Minus commands are used to add or subtract (respectively) a
specified decimal number to/from the current parameter of the currently active
input buffer. An exit to a user-defined subroutine may be accomplished via the
U command. The C command is used to place comments within the body of the
PROC. The general form of these commands:

General Form

-n

Umode-id

C{text }

Description

Decimal number is added to current parameter of
active input buffer.

Decimal number is subtracted from current parameter
of active input buffer.

'Umode-id' exits to user-defined subroutine.

Comment is ignored by PROC processor.

The Plus (+) command causes the decimal number n to be added to the current
parameter (as pointed to by the input pointer) of the currently active input
buffer. The current parameter must be numeric.

The Minus (-) command causes the decimal number n to be subtracted from the
current parameter (as pointed to by the input pointer) of the currently active
input buffer. The current parameter must be numeric.

The Plus or Minus commands will have no effect if the input pointer is
currently at the end of the buffer. Also, the user must take care that the
updated value of the parameter is the same length as the original parameter,
since no automatic check for this is made.

The U command is used to provide an exit to a user-defined subroutine. The
format for this command is identical to the P command using the mode-id option;
however, the U command is meant to be used for a Simple subroutine call. Upon
return from the subroutine, control is passed to the command immediately
following the U command.

WARlfING

Do not use the U command unless you fully
understand its action at the system
assembly level.

1-31

88A00780A

The C command is used to place comments within the body of the PROC. The
general form of this command is as follows:

C{text}

All the text following the C command will be ignored by the PROC processor.
For example:

013 C THIS IS A COMMENT

The C command may be used freely throughout the PROC for purposes of clarity
and documentation; however, note that making a PROC excessively long will slow
its execution.

Sample use of the Plus and Minus commands:

Before Command

Primary Input Buffer

I ABC 001 XYZ I +99 *
-~--~-------------1\

-Secondary Input Buffer

I XXXX YY 39 I -5 **
---~---~-----~~--1\

Primary Input Buffer

I ABC 001 XYZ I +99 *
--------------~-----1\

Active buffer prior to command execution:

* Primary input buffer.
** Secondary input buffer.

,\ Pointer

1-32

Primary Input Buffer

I ABC 100 XYZ I

~-------~---~------1\

Secondary Input Buffer

I XXXX YY 34 I

----~---~~------1\

Primary Input Buffer

I ABC 001 XYZ I

88A00780A-

1.17 PRoe EXECUTION AND TERMINATION (P, PH, PP, PW, PX, AND X)

The P command causes the PROe to execute via TCL. The PH command is similar to
the P, but causes terminal output to be suppressed. The PX command acts like
the P, but turns off any further interaction with the PROC. The PP and PW
commands are identical to the P command, except that the content of both output
buffers are displayed at the terminal prior to execution. The X command is
used to exit from the PROC. The general form of these commands:

General Form

P

PX

PH

PP

PW

X{ text}

Description

Causes PROC to execute the primary output buffer area.

As above, PRoe control is terminated after the
statement has executed.

Causes the PROC to execute with terminal output
suppressed totally.

Causes PRoe to execute after displaying content of
both output buffers.

Causes PRoe to display both output buffers and wait
for command from the terminal.

Causes termination of PROC and display of optional
text message.

TheP command causes the PRoe to execute by submitting the content of the
primary output buffer to TCL for processing; the contents of the stack (if any)
is used to feed interactive processors such as BASIC or EDITOR. After
execution via TCL, the PROe regains control at the statement immediately
following the P command.

The PX command acts just like the P does, with the exception that control is
not returned to the PROe after the TCL statement has been executed.

The PP command causes execution of the contents of the buffer just like the P
command, except that the content of both output buffers is displayed on the
terminal.

The PW command acts in the same way as the PP command, except that after the
data is displayed, terminal input is then requested via a question mark (1)
prompt character. If the user enters an S, the current PROC-generated command
is skipped and PROC execution continues at the command following the PW. If an
X is entered, PROC execution is aborted and an exit is taken to TCL.

1-33

88A00780A

The PH command executes the contents of the buffer, but suppresses any output
from the executed process.

Any other character will cause PROC action to continue. The PW command is
normally used as a debugging tool and may be replaced by a P command once the
user has determined that the PROC is functioning properly.

The X command is used to exit from the PROC. Normally, PROC control is
terminated with execution of the final PROC statement, in which case an X
command is not needed. However, the X command may be used at intermediate
points in the PROC coding to cause termination of the PROC. Any text following
the X will be output as a message upon termination of the PROC. For example:

X***EXIT TO TCL***

If the PROC was called as a subroutine, the X command will cause a return to
the calling PROC.

Examples of the use of these commands:

CotDlDand

X

XHURRY BACK

XHURRY BACK+

Explanation

PROe is terminated. However, If the PROe was called as
a subroutine, then the X command will return control to
the calling PROe and continue at the next command.

PRoe is terminated and the message "HURRY BACK" is
displayed on the terminal.

As above; the message is printed without a carriage
return/line feed appended.

1-34

88A00780A

1.18 LINKING TO OTHER PROCS

A Link command in one PROC causes control to transfer to the first command of
another PROC, which may reside in any dictionary or data file. This allows the
storage of PROCs (except for the LOGON PROC) outside of the MD. Also, large
PROCs can be broken into smaller PROCs to minimize processing time.

The general form of the Link command is:

({OICT} file-name {item-id}) {n}

where:

OICT

file-name

item-id

n

If used, specifies the dictionary portion of the file.

Specifies the file.

If used, specifies the name of the PROC invoked. If omitted,
the current parameter (as specified by the input pointer) of
the currently active input buffer is retrieved and used as the
item-ide

If used, control is transferred to the line whose label is
#n#.

The first line of the linked-to PROC is skipped, since it is assumed that this
line contains the PQ code.

As an example of the Link command, consider the situation where a PROC named
EXECUTE is used to execute anyone of a series of PROCs in a file named
PROC-FILE. The specific PROC executed is specified by a single-character
alphabetic code input by the user. This sample PROC is shown below:

Item EXECUTE

001 PQ
002 OPLEASE INPUT COOE+
003 IS?
004 IF A ~ (lA) (PROC-FlLE)
005 XILLEGAL RESPONSE

If, for example, the user#s response to the IS command of line 3 is the
character 0, then line 4 of the PROC (which contains a Link command as part of
the IF command) transfers control to the PROC stored in item #0# of file
PROC-FILE.

1-35

88A00780A

Consider next the situation where the PROC named LISTU previously was present
in each user's MD. Assume that LISTU was then moved to the dictionary section
of a file named PROCLIB and the PROC shown below was then placed in each user's
~m. The LISTU PROC which was moved to the PROCLIB file will now be invoked by
the Link command in the PROC shown below and, thus, the LISTU PROC need not be
duplicated in each user's MD.

Item 'LISTU' in MD

001 PQ
002 (DICT PROCLIB LISTU)

Note that the PROC buffers remain unchanged when a linkage occurs. Also, the
first line of the linked-to item is always skipped, since it is assumed that
this line contains the PQ code.

1-36

88A00780A

1 .19 SUBROUTINE CALL COMMANDS

One PROC can call another as a subroutine, or a local subroutine call can be
invoked using the call command. The subroutine call commands have the
following general form:

General Form Description

[] n Local subroutine call to line "n";
returns on first X command following the
label "n".

[{DICT} file-name {item-id}] {n} External subroutine call; transfers
control to label n of the called
subroutine. Returns on first X command
encountered. If item-id is not specified,
the current parameter of the currently
active input buffer will be used.

The local subroutine call command will store the location of the next PROC
command in the PROC subroutine stack and transfer control to the command whose
label is n. Excecution of PROC commands continues from that point (including
P, PP, and PW commands), until an X command is executed, which will return
control to the PROC command following the call command.

In the external subroutine call, "DICT" , "file-name" , and "item-id" are
identical to the Link command described in Section 1.18. If item-id is not
specified, the name of the called subroutine is taken from the current param
eter (as specified by the input pointer) of the currently active input buffer.

The optional n indicates that subroutine execution is to begin at label n,
rather than at the second line of the subroutine PROC.

As with local subroutine calls, an X command wil~ return control to the calling
PROC.

In both forms of the subroutine call, none of the input or output buffers are
affected by the call itself.

1-37

88A00780A

Examples of subroutine calls:

Local Subroutine Call

001 PQ
002 [] 3
003 OFIRST
004 3 OSECOND
005 X+

SECOND
FIRST
SECOND

NOTE: '+' suppresses carriage
return after X returns.

Output on Terminal

External Subroutine Call

001 PQ
002 [Me LISTU]
003 ODONE WITH LISTU

Output to Terminal

CHD PCBF NAME •••••••• TIME ••• DATE •••• LOCATION ••••••••••

00 0200 SP
02 0240 CM
03 0260 LC
04 0280 JP

*06 02CO SAL
10 0340 JET
DONE WITH LISTU

08:00AM 01/01/78 Channel 0
09: 10Ali 01/01/78 Channel 2
07:30AM 01/01/78 Channel 3
10:14AM 01/01/78 Channel 4
08:35AM 01/01/78 Channel 6
09:00AM 01/01/78 Channel 10

1-38

88A00780A

1.19.1 PRoe EXAMPLES

A sample EDITOR operation which changes attibute 3 of item 11115 of file
ACCOUNT to the value ABC is as follows:

>EDIT ACCOUNT 11115 [CR]
TOP
.G3 [CR]
003 100 AVOCADO
.R [CR]
003 ABC
'11115' FILED

A PROe named CHANGE which will perform the same operation is as follows:

Item CHANGE IN MD

001 PQ
002 REDIT
003 A2
004 A3
005 STON
006 HG
007 A4
008 H<
009 HR<
-010 A5
011 H<
012 HFI<
013 P

c,

~l 'r- I;';

.:... ..

Note that the PROC has been written in such a manner that it updates any
specified attribute in any specified item in any specified file. The format
used to invoke this PROe is as follows:

CHANGE file item attribute-no new-value

If, for example, the user wishes to perform the same operation shown in the
first example, the PROC must be invoked as follows:

I
>CHANGE ACCOUNT 11115 3 ABC [CR]

The user should note that the normal messages output by the EDITOR (e.g., TOP,
11115, FILED, etc.) are output when the PROe is executed. These messages may
be suppressed, however, by preceding each EDITOR command by a period (.)j for
further information regarding these features, refer to the EDITOR manual.

1-39

88A00780A

1.19.1.1 SSELECT and COpy Verbs

A sample operation at the TCL level using the SSELECT verb and then the COpy
verb is as follows:

)SSELECT INVENTORY WITH QOH) "900" BY-DSND QOH [CR]
19 ITEMS SELECTED
)COPY INVENTORY [CR]
TO: (HOLD-FILE) [CR]
19 ITEMS COPIED

An identical operation is performed by the PROC named TEST shown as tollows:

Item 'TEST' in MD

001 PQ
002 HSSELECT INVENTORY WITH QOH) "900" BY-DSND QOH
003 STON
004 HCOPY INVENTORY<
005 H(HOLD-FILE)<
006 P

Upon execution of the TEST PROC, the output buffers contain the data shown as
follows:

Primary Output Buffer

I SSELECT INVENTORY WITH QOH)"900" BY-DSND QOH [CR] I

Secondary Output Buffer

I COpy INVENTORY [CR] (HOLD-FILE) [CR] I

Note that SSELECT sentence is contained in the primary output buffer, while the
secondary output buffer contains both input elements of the copy operation,
each terminated by a carriage return.

For further information regarding the SSELECT verb, refer to the ACCESS
Manual. For further information regarding the COpy verb, refer to Introduction
to PICK TCL and FILE STRUCTURE Manual, or to the Utilities Manual.

1-40

88A00780A

1.19.1.2 PROC Use of Variable Testing (GO and D Commands)

A sample tape positioning PROC is:

T-SPACE
001 PQ
002 4 IF #A2 GO 3
003 IF A2 • (ON) G 7
004 IHOOO
005 7 53
006 IHOO
007 HT-ATT
008 P
009 IF E • 95 X
010 IF E • 93 X
011 2 HT-RDLBL
012 P
013 IF E • 94 GO 9
014 RP (I)
015 P
016 HT-FWD
017 P
018 HP (L)
019 P
020 53
021 +1
022 52
023 -1
024 IF A • 0 X
025 IF A • 00 X
026 IF A • 000 X
027 GO 2
028 3 ONO. OF FILES+
029 IP?
030 GO 4
031 9 OEND OF RECORDED DATA - (+
023 D3+
033 X FILES)

It differs from previous examples in that it uses the arithmetic command. It
has practical value in that the user does not have to enter T-FWD at the TeL
level for every file that is positioned over.

1-41

88A00780A

Note that PROC may be executed by entering "T-SPACE" or "T-SPACE n" at the TCL
level; if no parameter is entered, the PROC will request one.

The input buffer contains the following data:

Parameter#

where:

1
T-SPACE

2
n

3
xx

4

n is the number of files to be spaced over
xx is the count of such files, initialized to "00" at line 6

The PROC will attach the tape unit (T-ATT)j check for errors 95 and 93,
terminating execution if either error occurs. Then it will execute a T-RDLBL
to read the tape label and print it on the terminal; if error 94 (EOF) occurs
on this statement, the end-of-tape data has been reached; the message on line
31 will be printed along with the file-count from parameter 3.

If T-RDLBL executes successfully, the tape file is spaced over by executing a
T-F\ID (the print is turned off and on around this command by the command P (I)
and P (L), to inhibit spurious messages).

This is repeated until parameter 2 goes to 0; note the multiple tests required
to test for 0, 00, or 000 on lines 24-26, since the - command doesn't change
the parameter size.

1-42

88A00780A

1.20 PROC TAPE AND CARTRIDGE DISK CONTROL

The tape and cartridge disk drive units are an exceptional part of the computer
system, since, unlike essentially all the other devices and structures in the
system, they cannot be shared. Therefore, . their availability and condition are
of great importance to any sequence of processes running under PROC control
which use the tape or cartridge disk drive, since PROCs can not mount tape or
cartridge disk, and they can not continue when the tape or cartridge disk is
inoperative.

Note that the tape and cartridge disk control error message numbers are 84
through 107, and are to be found in the ERRHSG file.

Also, note that certain tape and cartridge disk difficulties are not amenable
to PROC control because they interrupt the process and speak only to the
operator of the terminal. In these cases, human intervention and judgment is
necessary.

Because of the nature of the tape and cartridge disk, it is advisable to
specifically attach the tape or cartridge disk each time it is used, by means
of the T-ATT verb. The T-AT! verb will return one of two possible patterns.
If the device i. available or is already attached, it will return:

90 nnnn

in the PROC secondary input buffer. The number 90 is the ERRMSG number which
specifies that the device is attached. The string 'nann' is the tape or
cartridge disk block size as it is displayed on the screen. When using tape,
it is in general advisable to use an explicit block size with the T-ATT verb,
because there may be cases when the prior state of the process is
unanticipated. (With cartridge disk, the block size is always 1024 bytes.)

If the tape or cartridge disk is not available, the T-AT! verb will return:

95 nn

in the PRoe secondary input buffer, where 95 is the ERRMSG number indicating
that the device is not available, and the string 'nn' is the number of the line
which has the device attached.

Another problem with the tape and cartridge disk concerns the modification of
the spooler which removes the tape and cartridge disk drive from spooler
control. If you wish to send the print file to tape or cartridge disk on
completion under PROC control, but it is inconvenient to have the drive
attached to the print-file generating process because several different lines
are executing the same function and all wish to send their current print file
to the tape or cartridge disk, then it is convenient to send the print-file to
the tape or cartridge disk from the SP-EDIT process at the completion of
generation, using at least the T and W options of the SP-EDIT verb.

1-43

88A00780A

The T option will force the output to tape or cartridge disk under a SPOOL Y
condition. and the W option will cause the process to wait until the drive
becomes available.

If a fully automatic process is desired, the MS options may be added to the
SP-EDIT verb. For example:

verb which generates a print file
PQ Execute the verb.
SS Get the print file entry number.
B
5 IF I A XNO DATA.
IF A • 1099 G 15
F
G 5
15 F
IF A , (ON) XBAD DATA.
BS P-!D IT Go SP-EDIT the print file.
A Kove the print file nuaber to the primary output buffer.
H KSTW Spool to tape or cartridge disk; wait until drive is

available.
PP Yields SP-EDIT n MSTW.

Process next or exit

1-44

Addition 1.16

Branching 1.12
Buffer Operation 1.3
Buffer Selection (SP,SS,ST) 1.5

Cartridge disk control 1.20
Clearing buffers 1.1
Commands, PROC 1.4
Command Summary Chart 1.4
Comments 1.16
Control Transfers (GO,IF) 1.12

Data Input (IS,TP,IT) 1.8
Data Output (O,D) 1.9

Error Testing (IF E) 1.15
Examples of PROCs 1.19.1

88A00780A

Executing a PROC (P,PH,PP,PW,PX) 1.17

I/O Buffer Selection (SP,SS,ST) 1.5
I/O Buffer Operation 1.3

Linking to other PROCs 1.18
List Presence Testing (IF S) 1.15

Hessage Display 1.17
Hoving Parameters (A) 1.7

1-1/1-2

index

Pattern Hatching (IF) 1.14
Placing text in buffers 1.11
Pointer positioning (S,F,B,BO) 1.6
PROC
Cartridge disk control 1.20
Commands Overview 1.4
Commands Summary Chart 1.4
Execution (P,PH,PP,PW,PX) 1.17
Link Command 1.18
Processor, features 1.1
Processor, overview 1.2
Tape control 1.20
Termination (X) 1.17

Relational Testing (IF) 1.13

Specifying Text Strings 1.11
Subroutine Calls 1.16, 1.17, 1.19
Subroutine Calls, Commands 1.19
Subtraction 1.16

Tape Control 1.20
Terminal Cursor Control 1.10
Terminal Output 1.10
Terminating a PROC (X) 1.17
Transferring Control (GO,IF) 1.12

Variable Testing 1.19.1.2

I

