
(

(

Bryan Lewis Page 1

Secrets ~ ~ Exidy ~ Processor

The best reason for owning an Exidy Sorceror is its

word processing capability. An excellent machine- .

language program sold by Exidy (in the form of a read

only-memory cartridge called a Rom Pac) provides

valuable text editing features such as block deletion or

insertion, block moves, and selective search-and

replace. The user is given complete control of tabs,

line length, and pag~ length.

Ordinary user commands such as ·print- or ·save

can be entered on a separate line at the top of the

screen. (That mode of operation is called the "command

mode," to distinguish it from normal full-scre~n text

entry in the "edit mode.") Less ordinary commands can

be imbedded within the text, for dynamic operations such

as changing print parameters on the fly or ejecting the

page. These imbedded commands show up as peculiar

graphic shapes on the screen, and are referred to as

graphic commands.

Yet another feature, and one that isn't widely .

known, is user extendability. The value of that will be

(

(

L

Bryan Lewis Page 2

seen throughout this article. (If you'd like more

background information than I've given here, see the

article ftDo the Job for a Lot Less ft in the March 1980

issue of Eicrocomputing.)

The Bad News

I recently disassembled a large portion of the Word

Processor Pac, trying to understand how it handled

proportional spacing, boldfacing, subscripting, and all

the other fancy operations mentioned in the User's

Manual from Exidy. Like any other computer owner, I

wanted my system to have every possible option; I

. thought its inabilty to do those things was a result of

mere ignorance. After all, my printer (an NEe .

Spinwriter) was capable of microscopic carriage control

with the best of them.

The most surprising discovery I made is that the

Rom Pac will nQt do boldfacing, proportional spacing,

subscripting, or superscripting. Don't believe

everything the User's Manual tells you! You must add

extra software of your ~wn to implement those features;

the best that can be said of the Rom Pac is that it is

Bryan Lewis Page 3

« (

(,

extensible. I will be outlining in this article the

basis for adding your own features in software.

Another way to get the extra features is to add

smart hardware. A Diablo printer, for example, can be

educated by adding specially programmed read-only

memory. Other smart printers are appea~ing on the

market now, such as the Xymec and the Centronics 737.

One advantage to the hardware solution is speed -- your

computer doesn't have to send a multitude .of control

characters to the printer. The disadvantage is cost,

especially if you already own a semi-smart printer, as I

did.

More bad news. Some of the graphic commands won't

work within a line of text, but must be 'on a line all by

themselves; the formfeed (GRAPHIC-I) and reformat

(GRAPHIC-S) are examples.

The mark (GRAPHIC-9) is supposed to serve as a

place marker, to automatically halt the execution of

large-scale commands such as forward, backward, delete,

andp_rint. It does its job' for the first three, but it

does not halt printing. Fortunately, several of the

commands ~ stop printing: GRAPHIC-8 designates the

end of text, and GRAPHIC-2, 3, and 4 are treated as

(

L

Bryan Lewis Page 4

errors. When the Pac encounters one of the latter

commands during printing, it pau~es to ask your judgment

on the error: to continue printing (hit RETURN) or to

abort (hit the ESCape key).

This makes possible a kluge method for

subscripting: insert a "wrong" graphic command, then
. .

the subscript, then another command. When the printer

pauses at each command, position the paper manually, and

then hit RETURN to resume. If you have a Centronics

style printer which buffers a line at a time, your

procedure will be more involved; at the pause, the

preceding characters on the line are still sitting in

the line buffer waiting for a carriage return.

My solution to this subscripting problem will, in a

moment, serve as an illustration of how to add your own

features. But first I need to cover a little more

background.

Canned Output Routines

The Word Processo~ Rom Pac contains two ready-made

printer drivers, one using the Sorceror's serial port

anc the other the parallel port. The serial printer

Bryan Lewis Page 5

driver starts at hexadeCimal address DE90. The ~arallel

driver, at address DE70, is designed for a Centronics

like printer (such as my Spinwriter).

A characteristic of the latter driver is that it

filters out and discards line feeds, because Centronics

printers usually supply their own line feeds after

receiving a carriage return. Since, however, we ~ to

produce line feeds for the purpose of subscripting,-we

must use the following short modification in Z-80

assembly language. It jumps into the Centronics driver

immediately after the line-feed filter.

F5 PUSH AF

C3 75 DE JP CENTRX+5

Now, the normal way to access one of those output

routines is the selection of a value in a table, the so

called y-table. Choosing Print Device 1 specifies the

serial driver and Print Device 2 the Centronics one.

The Rom Pac will then send its stream of individual·

characters to the chosen output port.

Neither choice is really right for our purposes,

though. It's difficult to make large-scale format

(

(L

Bryan Lewis page 6

changes when we're catching one character at a time. We

would rather get our hands on a whole line at a time, in

some sort of print buffer. And we can do that, by

selecting Print Device O.

Print Device 0 does nothing. (If it seems only

natural to you that Device 0 does nothing, then you

haven't read the Exidy Manual. The secret of this non

device is very well hidden.) The Pac carefully avoids

doing anything to the line of text, to make sure it:

doesn't interfere with whatever fancy driver routine

you're using for a daisy-wheel printer. Device 0

doesn't even send out the individual characters as the

other devices do.

Here's how it works. Location 07DC is reserved for

a jump to a printer driver. The default is C9, i.e., a

do-nothing return, but you can change it to C3 70 DE for

a Centronics, or to C3 90 DE for serial output, or to

your own jump. But the only characters sent to that

location are spaces, vertical tabs, and carriage

returns, for indenting, tabbing, ejecting the page, etc.

I suspect they're handled separately like this in case

you have a Diablo-style printer with separate platen

control lines.

What about the rest of the characters? A print

Bryan Lewis Page 7

((.

(

(

buffer at 06Bl is filled with a line at a time. Nothing

is done with the line: no justifying, no acting upon

graphic commands. The Pac then hops to address 07E9,

where you can put a jump to your own buffer-handler.

The default content of 07E9 is a simple return; the

characters are sent nowhere.

The Solution

Enough bacKground. We now know how to access the

print buffer and where to send the characters after

we're through with them. We want to write a routine

that does the following (outlined here in "structured

English") :

REPEAT until the end of the buffer:

Get a character from the print buffer.

If it's a subscript command:

OUTPUT the sequence of characters

for a half-line-feed.

If it's a superscript command:

OUTPUT the sequence of characters

f6r a negative half-line-feed.

c

L

Bryan Lewis

If it's a normal character:

OUTPUT it.

Listing 1 shows this routine coded into Z-80

assembly language. Some fine points to note are:

Page 8

1. The imbedded commands that stand for subscript

and superscript are the hexadecimal values 12

and 13. (See also Table 1.)

2. The seven-byte sequence that produces a half-
~

(line-feed on a Spinwriter is:

ESC-]-R

LF

ESC-] -w

to select half spacing,

to do it, and

to resume normal spacing.

For a negative line feed, change the LF to

ESC-9.

3. The output routine we use for those special

escape sequences is the one we saw earlier:

Centronics with line feeds. For normal text

output, however, we still use the canned

driver, so that we don't get doubly-spaced

lines.

'.;

(

Bryan Lewis Page 9

4. A carriage return is what marks the end of the

print buffer.

S. We don't send a return at the end of the line1

that's handled separately for Device O.

We store the code in the unused memory starting at

0000, and we put a jump to it at 07E9. We also need to

put at 07EC (that's where the spaces and returns are

sent) a jump to the Centronics driver. To clarify:

At 07E9, C3 00 00

At 07EC: C3 70 DE

For your system you might need to alter the escape

sequences for your printer, or the output routine if

yours is a serial device.

Other Solutions

It is relatively easy to expand the method to

handle boldfacing, shadow printing, automatic centering,

formfeeds, and vertical tabs. Bidirectional printing is

another natural extension, since a one-line buffer is

(

(

Bryan Lewis Page 10

already set up; just send to the printer the proper byte.

sequence to initiate right-to-left carriage motion, then

output the buffer in reverse. If you feel really

ambitious, you can try adding true proportional spacing.

Text Storage Formats

The text as you enter it is stored in a buffer

which begins at 0800 hex. At the head of the buffer is

a string of fourteen OE bytes, followed by a 02 (ASCII

for start-of-text, STX). Your text is stored from 080F

up. At the end comes an end-of-text character (ETX, 03)

and a trailer of fifteen OE bytes.

Text is stored in memory essentially as ASCII

characters. The non-alphanumeric ASCII codes (less than

~2 or greater than 127 decimal) signify special

operations, as shown in Table 1. You'll see in the

table the familiar tokens for the sub- and super-script

commands.

Notice the efficiency of the text and command

storage. Indentation of an entire subparagraph requires

an overhead of only three bytes. Line feeds are not

stored. Space filling for right justification does not

(

Bryan Lewis Page 11

take up any extra room, no~does underlining. Very
I

compact.

The one-line print buffer also uses many of the

codes in Table 1. It occupies the space from 06B1

through 072F hex. Location 06BO is a justification

flag; it contains a I if the line needs space-filling

for right justification. The print line in the buffer

always ends with a c·arriage return.

The memory area between 0730 and 07FF is used as a

scratch pad for all the- operating parameters. Table 2

lists the secrets of the work area, as far as I've been

able to unravel them. The major functional areas are:

a storage area for buffer pOinters,

a tab table,

a table of print parameters, and·

a series of jump instructions for user-

definable print vectors.

Figure I is a memory map, showing those

functional areas and others in the Sorceror.

(

~

f

Bryan Lewis Page 12

Exploring Further

Several other nice features Can be added to the

Word Processor, beyond the print-formatting extensions

discussed above. You can, for example, write your own

global commands. When the Pac receives one of the four

undefined letters (G,J,N,O) or a non-letter, it jumps to

07EF. Since that's in user memory (RAM), it's

modifiable. You can insert a jump to your own execution-

routine. You could install a help function (display a

list of legal commands), or a word-counting function (if

you get paid by the word). The structured-English

foundation for your command processor might look like:

Examine the command, using the command buffer

and its pOinter. (See Figure 1 and Table

2.)

If it's a '? I :

Go do the HELP function.

If it's an 'N ' :

Go COUNT the words.

If it's anything else:

Return to the I~~ALID message in the Pac.

Bryan Lewis Page 13

((

Another idea. Now that you know where the text is

stored in memory, it is relatively easy (and I've done

it) to write a modem transmission routine: take bytes

beginning at 0800 hex and send them out the Sorceror's

serial port one at a time, until the end-of-text byte is

encountered. (For a similar technique, see the article

nOse Your Exidy as a Smart Terminal" in the July issue

of Microcomputing.) Put someone with another Sorceror

and Word Processor Pac at the other end of the phone

line, and presto -- electronic mail! Or a distributed

word-processing bus'iness , with all your employees

working·in their own homes.

If you have id~as of your own, here are some more

canned routines in the Rom Pac that might corne in handy

(all addresses in hexadecimal) :

CCOA

DE4E

Sets up reverse-video (black-on

white) characters.

Keyboard input. (This is the part of

the Pac contributed by Exidy. The

rest was written for Exidy by Testan

Scientific.)

(

Bryan Lewis Page 14

CF52 Beginning of command execution

table.

If you want to dig deeper into the Pac on your own, the

table at CF52 contains the execution addresses for all

the commands. For instance, the first two bytes (at

CF52) are Bl D4, so the routine to handle the nAn

command starts at D4Bl. The two bytes at CF54 form ,the

address for the ftB" command, and So forth.

Bryan Lewis Captions

Table 1. The meaningsqf non-alphanumeric cod~s. These

are stored in the text and print buffers along

with the normal ASCII characters to signify

formats and special operations. All the codes

are given in hexadecimal fOrm.

Table 2 •. An index to the ~orking and control area of

memory, with known functions and their

locations.

Figure 1. Memory map showing.the partitioning of RAM by

the Word Processor Pac. A Sorceror with 32

kilobytes of memory is assumed for illustra-

tion; the top three addresses will be differ-

ent for other systems. The top half of the

available 64K is not shown: it includes the

Rom Pac itself, video RAM, the Power-On

Monitor, and character generators.

(N 0 CAP T ION FOR LIS TIN G I .)

(

Bryan Lewis Table 1

Byte

01 - OB

Significance

Number of spaces to print between two words. Used

in the print buffer if extra spaces are needed for

justification.

OC Hard hyphen occurring at end of a line.

OD Carriage return. A line feed is not stored along

with it, as is the case with some other editors

(such as CP/M's).

OE Soft carriage return for lines longer than the.

specified page width. End of the line on the

video screen.

10 - 19 Imbedded graphic commands. GRAPHIC-I is 10, GR-2

is 11, and So on. GR-O is 19.

1D Soft hyphen.

IF Indentation marker. An indented block of text

begins with a three-byte code:

IF <number of spaces to indent> IF.

7F Deleted character. All 7F's are erased when the

80 - FE

user presses the CLEAR key.

Underlined characters. If the high bit is one

(that is, 80H), the remaining 7 bits are an ASCII

character to be underlined.

(

Bryan Lewis

Locations

0730-073A

073B

073C-073F

0740-0741

0742-0743

0744-0745

0746-0747

0748-0749

074A-074B

074C

074D

074E

074F

0750

0751

0752-0755

Table 2, page 1

Function

Miscellaneous controls and flags.

Page title working byte. Loaded with page

title value (from 07D4) at start of each

page.,

?

Cursor location in video RAM, from F080 to

F7FF.

Address of top of text buffer and bottom of,

holding buffer.

Address of top of holding buffer.

Text pOinter, to start of present'line.

Pointer to start of next line.

Pointer to end of text.

Post-command parameter, for example 55 in

the command np55" to print 55 lines.

?

Cursor location. (074E) + (0751) =

position of cursor within present line.

A,print parameter. (?)

?
.

Cursor location. See 074E.

Indentation values. (?)

(

(

L

Bryan Lewis

0756-0757

0758-0759

075A-0762

0763-0764

0765-0766

0767

Table 2, page 2

?

Print buffer pointer, from 06BO to 072F.

?

Command buffer pOinter, to next command in

a series.

Pointer to origin of command buffer, 0600.

Pre-command parameter: number of times to

execute a command line.

0768-0760 ?

076E-077A Tab table. The default tabs are 10, 20,

••• , 120 (in decimal), so this table in

memory initially contains OA, 14, ••• , 78.

It ends with the byte FF as a delimiter.

077B-07CF ? .

07DO-07DE

07DF

07EO

07El

07E2

Y-table. The table of print values such as

page length, margins, and line spacing.

Print flag. If this is zero, characters

aren't sent to the printer (for verifying).

A print parameter. (?)

Line length. Default 63 decimal = 3F hex.

Cassette baud rate. Default = 40 hex for

1200 Baud. a means 300 Baud. No effect on

serial printer baud rate.

(

(j

Bryan Lewis

07E3-07E4

07E5

07E6-07E8

07E9-07EB

07EC-07EE

07EF-07Fl

07.F2-07F4

07F5-07 F7

07F8-07F9

07FA-07FF

Table 2, page 3

Flags indicating whether a cassette write

or read file is still open.

Mode flag, to indicate Command or Edit

l-lode. (7)

Output vector for Print Device 1. Default

is C3 90 DE for serial printer.

Print vector for Device O. Does not

receive a character stream at all, as'

discussed in the text.

Output vector for Print Device 0, but

normally receives only spaces and carriage

returns.

User-definable vector for unused commands.

Default = C3 86 CF = a jump to nINVALID

ENTRyn message.

A jump vector called during cassette

operations.

A jump vector called during cassette

operations.

Initial value for the text, pointer, 0800.

Unused. (7)

(

(

Bryan Lewis Figure 1

~ 7FFF
Monitor work area and stack.

7FOO
7EFF

Holding buffer.

yyyy
Free space for text and holding buffers.

xxxx
Text buffer: previously entered text.

0800
07FF

Series of jump vectors.
07E6
07E5

Operating mode flags.
07DF
07DE

y-table of printing parameters.
07DO
07CF

Scratch-pad area.(?)
077B

~
077A

~ 076E
Tab table.

076D
Scratch-pad area for various buffer pointers.

0730
072F

One-line print buffer.
06BO
06AF

0640 I
Word Processing Pac's stack area.

063F

0600
I Command buffer.
I

05FF
,

Cassette read buffer.
0500

,
j

04FF

0400
I Cassette write buffer.
I

03FF

0300
Macro-programming buffer.

I
02FF

((, 0000
Unused, free for user's additions. I

I

(

(

(

EXIDY'Z-80 ASSEMBLER
ADDR OBJECT ST #

>OOOD
>OOOA
>OOlB
>0012
>0013

>DE70
>06B1

'0000
'0001
~0002

'0005
'0006
'0008
'OOOB
'OOOD
'0010
'0012
'0015
'0018
'0019

'001:::
'001I'
·OC1E

D5
E5
2lBl06
7E
FEOD
CAlCOO'
FE12
CA2000'
FE13
CA2900'
CD70DE
23
C30500'

AF
El
Dl

0001
0002
0003
0004
0005
0006
0007
0008
0009

W.P. PAC ENHANCEMENT BY BRYAN LEWIS 9/23/80

An output routine for Print Device O. Retrieves
characters from the prini buffer and sends them to the
printer, except subscript and superscript command .
tokens are converted to the proper escape sequences
for carriage cont~ol. Written for-a Spinwriter, but
easily modifiable.

0010 ;---
0011
0012 Define a few characters:
0013 ;
0014 CR
0015 LF
0016 ESC
0017 SUB
0018 SUPER

EQU
EQU
EQU
EQU
EQU

ODR
OAR
1BH
12H
13H

;Carriage return.
;Line feed.
;Escape.
;The token for the subscript command.
;The token for superscript.

0019
0020
0021

And a few addresses:

0022 CENTRX EQU
0023 PBUFFR EQU
0024
0025
0026
0027
0028

ORG

0029 PUSH
0030 PUSH
0031 LD
0032 REPEAT LD
0033 CP
0034 JP
0035 CP
0036 JP
0037 CP
0038 JP
0039 NORMAL CALL
0040 NEXT INC
0041
0042
0043
0044
0045 DONE
0046 ,.." . .., _ v-,...

JP

XOR
POP
PO?

ODE70H
006BlH

;Centronics driver in the WP Pac.
;Origin of the one-line print buffer.

OOOOH ;Put in free memory.

The main loop

DE
HL
RL.PBUFFR
A, (HL)
CR
Z,DONE
SUB
Z,DOWNSH
SUPER
Z,UPSH
CENTRX
HL
REPEAT

;Preserve the registers we're
; going to wipe out.
;Start at buffer start.
;Get the character pointed to.
;If it's a CR, that's the
; end of the buffer. Done.
;If it's a subscript token,
; go do a downshift.
;1£ it's a superscript token,
; go do an upshift.
.;Anything else, normal output.
;Increment pointer to next.
;And continue.

End of main loop

A
HL

;Ciear the flags to oake sure.
;Restore.

