
Exidy
SOFTWARE

INTERNALS MANUAL

by

Vic Tolomei

This is a detailed technical document written by a
professional programmer about the internal software
architecture of the Exidy Sorcerer. Included is a full
expla:na tion of the Monitor, BAS Ie areas, hardwarE~ ports,
and assembly language interfacing from BASIC. All this is
in easy to understand language. It is intended to be a
supplement to the excellent documentation distributed by
Exidy as a further aid to the Sorcerer programmer.

@ Copyright Vic Tolomei 1978, 1979
Sorcerer is a registered trademark of Exidy Inc.
Z80 is a registered trademark of Zilog Inc.

TABLE OF CONTENTS

Preface • • • •
Introduction to the Z80 . . .
Hex, Binary, and Decimal ••
Bits, Bytes, Addresses and "K"
RAM Versus ROM ••.••••

. . . .
·
.

·

. . .
. .

· . .
· . .

1

2

2

4

Static Versus Dynamic
5
6
6

7
8

zgQ Architecture • • •
. Exidy Devices and Ports • •

Exidy Serial Port .• • • • .
Exidy Parallel Port • • • • .

·
· 9

Exidy Monitor Memory lVlap
Monitor Workarea ...•
CaSsE~tte Tape File 'Format

.

. . ..

.
Tips on Loading and Saving Files on Tape

· • • • . 10

• . . • . 11
· 15

· 17
Cass e~tte Tape Error Checking ..•...•. • 18
Programmable Graphics Character Set •. .•.. 18

BASIC Floating Point F'ormat • . . • • • • .•. 22

BASIC Control Area ••••••.•••. .•. 24

Format of BASIC Program Statements •.•••••• 26
FormaLt of BASIC Floating Point Variables and Arrays 26
F'Iorm2lt of BASIC String Variables and Arrays • • . . 27
BASIC to Z80 Assembly Language Interface •••.• 28
Cursc)r Posi tion,ing ••••••••••••• • 31
Exidy Keyboard Architecture .••.•••••... 33
l'erfc)rming Keyboard Input . • • • • • • • . 3~

Monitor Subroutines • • • • . • . . • • . • • • . • 35
Summary ••
Disclaimer

.

.
· 38
· 38

PREFACE

This document is designed to aid the Exidy programmer
In ~,sily utilizing the myriad of wonderful facilities of
the machine. There are many Monitor subroutines, uses of
cassette tapes, BASIC programming techniques, and uses of
the Input/Output ports which require a detailed explanation
to be used to the fullest extent.

1

To obtain all the benefits from this manual, please read
the two books that come with the Exidy "A Guided Tour of
Personal Computing" and "A Short Tour of Basic". This inter
nals manual is a supplement to these.

The manual is divided into several sections. Each is
interlded to be an independent t'mini-manual" describing
fully the topic under discussion.

2

iNTRODUCTION TO THE Z80

Before you ean understand how the Exidy really works,
a few fundamentals have to be covered about the architecture
of the Z80 MPU (microProcessing Unit). First of all,
let's discuss the concept of "hex".

llEX, BINARY, AN~DECI~~

"Hex" is short for hexadecimal. This is a number system.
based on 16, not 10 as we are used to (decimal). In decimal,
we ha,ve 10 possible digits, 0, 1, 2, .•• , 8, and 9. In
hex, we have 16. Of course the first 10 are 0 through 9 as
with decimal. But there are 6 more, A, B, Ct D, E, and F.
"A" means 10, "Btt means 11, "C" 12, "D" 1), rtE" 14, and
'~F" 15. So a number like lCB) makes sense in hex. In decimal
numbe!rs each digit represents a "power" of 10, namely
tUones", "tens", "hundreds", and "thousands". For example,
the decimal num'ber 1895 means 1 thousands plus 8 hundreds plus
9 tens plus .5 ones, or

1895 = 1x1000 + 8x100 + 9x10 + .5
= 1000 + 800 + 90 + 5

In hex however, each digit (0 through F) represents a power of
16, ,I, ones" , "sixteens" t "two hundred fifty sixes" t and
"four thousand ninety sixes". For example, the hex number
1895 can be written as in the example above -

1895 = 1x4096 + 8x256 + 9x16 + .5
= 4096 + 2048 + 144 + 5
= 6293 (decimal)

Another hex number 3CF1 can be seen as

3CF1 = 3x4096 + l£x256 + 15x16 + 1
= 12288 + 3072 + ~O + 1
= 15601 (decimal)

'The reason why understanding the hex number system is so
important is because the majority of computers today, big,
mini, and micro, are based entirely on hex. This includes
the ~~80 MPU, which is the basis of the Ex:idy Sorcerer. Its
machine language instructions are in hex; its arithmetic is
done in hex; characters typed on the keyboard, displayed on
the screen, placed on cassette tape and printed on a printer
are :3.11 in hex.

If you understand hex, then "binary" (the number system
based on 2) should present no problems. 'rhere are only 2
digits possible to make any binary number, 0 and 1. These
binary digits are called "bi ts" . A bi t can be 0 or 1.
Each of these digits represents a power of 2 (1, 2, 4, 8, 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
and 32768). So a number in binary like 0011110011110001 is

0011110011110001 = OX32768 + Ox16)84 + 1x8192 + 1x4096 +
lx2048 + lx1024 + Ox512 + Ox256 +
lx128 + 1x64 + lx32 + 1x16 +
Ox8 + Ox4 + Ox2 + 1

= 8192 + 4096 + 2048 + 1024 +
128 + 64 + 32 + 16 + 1

= 15601 (decimal)

But t.hat means, according to the previous example, that since
15601 decimal is also 3CFl hex, then

0011110011110001 (binary) = 3CFl (hex).

This is no mere coincidence. Let's see why. If we look at
a. "4-bit binary number" (ie, a number in binary made up of
only 4 digits of D's and l's), then the smallest it could
be is 0000 (0 decimal), and the largest it could be is
1111 (15 decimal or F hex). Thus every digit in hex, O-F,
can be expressed exactly as a 4-bit binary number:

~inary Decimal Hex

0000 a a
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

In other words, a hex digit is really just another way of
writing 4 bits, or, eVE~ry 4 bits of a binary number can be
groupf~d as 1 hex digit" Let' s see how tha t works wi th the
numbers we just did. 001110011110001 can be broken into
groups of 4 bits (right to left) as follows:

0011 1100 1111 0001

4

If each 4-bit group is viewed individually, they calculate to

0011 - 3 decimal (3 hex)
1100 -- 12 decimal (C hex)
1111 - 15 decimal (F hex)
0001 -- 1 decimal (1 hex)

So it can be written

0011

3

1100

·c
1111

F

0001
1

binary
hex

So hex and binary are actually the same thing, with different
groupings. Another example, to write OF8D hex in binary

o
0000

F

1111
8

1000
D

1101

which, when pieced back together, becomes

0000111110001101 = OF8D.

12 ITS, BYTES, ADl2E..ESSES, AND "K':

hex
binary

Enough about decimal, hex, and binary" We now know how
numbers are written on the Z80. Let us take a look at how memory
is organized.

The smallest unit of information that can be placed in
the memory of just about any computer made, including the Z80,
is a bit, the same bit we saw earlier. This only holds a
o or a 1 however, and is too small for normal numerical use.
So a larger unit was created, called a "byte". A byte is
just 8 bits or 2 hex digits grouped together.

So a byte can contain a number from 00000000 binary
(00 hex, a decimal) to 11111111 binary (F:F hex, 255 decimal).
Each unique byte in the Exidy's memory space is assigned a
4-hex digit (2 byte) number called an "address". This
addrE~ss identifies the particular byte and. its contents.
Addresses start at 0000 hex and end at FFFF hex (65535).
Thus the Exidy (Z80) can have up to 6553~ bytes of memory.
Another way programmers like to put this is to use the term
uK". A uK" is just another way of saying the number 1024
decimal (400 hex). So 65536 boils d·own to 64K
(64xl024 = 65536).

BAM VERSUS ROM

Since we are on the subject of memory, there are two types.
In Ol1le type the contents can never be changed. Informa tion
can only be "read" from it. This is called Read Only Memory
or ROM (computerists love abbreviations or acronyms). -ROM
is usually used to contain programs or data which is to
be present in the same state all the time. For example, the
Exidy Monitor program is in ROM (starting at memory byte
address EOOC) and Exidy BASIC is in ROM (the ROM-PAC starting
at address COOO). ROM can have its contents "burned in"
perma.nently at the factory, or can be burned in once by the
programmer (called PROM or Programmable ROM), . or can be
erased by strong ultraviolet light and burned in over and
over again (called EPROM or Eraseable PROM).

However, for programmers to write and run programs, we
need memory which we can change or modify the contents. This
is called Random Access Memory or RAM. When the size of an
Exidy's memory is-given Teg, 8K, 16K, 32K), this number
a.pplies only to RAM, or user-modifiable memory. All Exidy's
have the same ROM area.potential. So a 16K Exidy has
16xl024 or 16384 bytes of RAM.

6

§~C VERSUS DYN~~~lQ

The above two terms are usually only applied to RAM.
Static RAM has the ability to hold its contents indefinitely
as long as electrical power is applied. Dynami,c Ram on the
other hand quickly (in milliseconds usually) loses or leaks
its contents, and the data must be re-written or refreshed to
the RAM often enough to keep the data from disappearing
altogether, Typically static RAM requires more power, is
more expensive, but is faster, The Exidy and many other Z80
based systems use dynamic RAM because of power and cost
considerations, and also because the Z80 MPU is well-suited
to interface to Qynamic RAM (eg, it can be made to do the
RAM refreshing) ..

~80 A:RCHITECTUR~

The Z80 microprocessor is an 8-bit based machine. In
other words, its data flow and arithmetic is usually on a
1-byte bas is. It can address up to 64K b~rtes of memory. On
the Exidy, a maximum of 32K bytes of this can be placed
onboard (in the keyboard unit), while another 16K can be
located as ROM for the Monitor and various ROM cartridges.

In addition to having 64K of possible memory, the Z80
has 22 registers, These are special high speed memories
which reside on the MPU chip, and are used for arithmetic
and program logic functions. These are alIi byte in size
unless otherwisH noted,

A - the accumulator. This is the central register
F - the flags register. Each bit represents a CPU

status. Eg, the "Z" bit is on if the A register
contains O. The tiS" bit is on if A is negative

B - general use register
C - general use register
D - general use register
E - general use register
H - general use register
L - general use register
SP - 2-byte register containing the current stack address
PC - 2-byte program counter containing the address

of the next instruction to be executed.

IX - 2-byte index register. Usually will contain
an address to be used with a constant offset
or displacement.

IY - 2-byte index register with the same type of
use as IX.

I - register used to allow proeessing of

7

external interrupts to the Z80 from the S100 bus
R - re:fresh register which can be used to provide

dynamic RAM refreshing operations.

Registers A, F, B, C, D, E, H, and L have an alternate register
called A', F', B', C t, D', E t, H t, and L '. Only one set can
be used at a time, while the other set allows space to save
important program information. The EXX and EX Z80 instructions
are u.sed to flip back and forth between them. Also some
registers can be connected together to create 2-byte, 16-bit
register pairs. These are AF, BC, DE, and HL.

For more detailed information on the Z80 MPU I refer the
reader to the Z.ilog publication "Z80 CPU. Z80A CPU Technical
Manua.l". product number 03-0029-01.

EXIDY DEVICES fol~PORTS

The Sorcerer has the following I/O devices or ports.
l,isted also is the Monitor command(s) to activate each:

a. the keyboard SET I=K
b. the video screen SET o=v
c. cassette tape #1 SET I=8, SET 0=3
d. cassette tape #2 SET I=S, SET o=s
eot s.19rial RS-232 interface SET I=S, SET O=S
f. parallel interface SET I=P, SET'O=P
g. Centronics printer interfacE~ SET O=L

Note that these are onboard po,rts. This list does not include
any devices added to the Exidy via the 5100 expansion facility.

The keyboard is implemented as part of the Z80 I/O port
number FE hex (245), input bits 0-4, output bits 0-3. The
video screen needs no port but uses the 1920-byte RAM area
at address EOBO as a 64 by)0 screen. There is a port FE
bit (input 5) indirectly related to video processing which
signals when vertical retrace is in progress on the TV screen.
The two cassette interfaces are part of the serial interface and
provide an audio translation of the digital data suitable
for recording on tape quite reliably.

~XIDY SERIAL POB!

'1~he serial port allows data transfer to occur between
the Exidy and external devices (such as printers, modems,
cassette tape, and the like). Data travels one bit at a
time in a predefined conventional sequenc~~ called
asynchronous transmission protocol.

The protocol defines how the data is to look, and the
speeds at which it is to travel. For example, each 8-bit
byte of data is actually sent as a 10- or I1-bit stream,
sometimes even longer. The 8-bi ts mus t bl3 preceeded by a
bit called a start bit, and must be followed by 1 or
usually 2 or more stop bits. These bits also must be sent
and received at a particular speed, predetermined by the
sender and receIver. The speed is given in bits per second,
or commonly called "baud" (derived from Baudot, the name
of one of the for·-runners of terminal communications). Thus
300 baud means :300 bits per second. Since it takes about
10-11 bits to transmit a byte or character, this means
a.bout 30charac·ters per second. The Exidy serial interface
"speaks" this common language, and operates at one of two
speeds, either 1200 baud (120 cps) or 300 baud (30 cps).

The serial port is actually two devices, an RS-232C
interface and the dual cassette interface. RS-232C is
the name given to a widely accepted standard of 'signal
voltage and logic levels and the pinouts of the 2S-pin
plug or' connect()r used for cableing betweE~n the sender and
receiver. The asynchronous protocols sigrlals are usually
sent via this RS-232C standard. Another part of zao port FE
(output bit 7) determines whether the serial port is RS-232C
(bit on) or dual cassette (bit off). Cassette is the default.
Output bit 6 controls the baud rate (1=1200, default, 0=)00).
Port status is placed on port FD while data transfer occurs on FC.
For example, to connect a)00 or 1200 baud RS-232C serial printer
to the Exidy, follow instructions given with the printer and
from :Exidy. However, the follow ing guidelines may be used:

1. Connect pin 7 of the serial DB2S connecter
to printer ground pin 7.

2. Connect pin 3 to printer pirt 2.
3. Connect pin 2 to printer pin 3.

Reset the ExidYf enter the Monitor (BYE in BASIC), enter the
command SET O=S, and all output which would've gone to the
screen will go to the printer, until Reset or SET O=x is
entered (x is usually V to return to video). There is also
software available from Exidyproviding a serial driver, and
the ability to use the serial interface to turn the Sorcerer
into a dumb terminal connected to another computer. Typically
a mt:>dem and possibly an acoustic coupler may be required hE~re.
Reverse pins 2 and. 3 in the above guidelin.es for this use.

9

The cassette interfaces may also be used with motor
control. Pins 12 and 24, 13 and 25 can be used to turn
cassette number 1 and 2 off and on for SAVEs, LOADs, FILEs
and BATCHs comma.nds. Pins 15, 5 and 20, 16, 18, and 21
are the mike in:put, auxiliary input, and earphone output
connections. Note that cassette number 1 has these mike
and ear connectlons duplicated as RCA plugs on the back
of thE~ Sorcerer.

~XIDY PARALLEL 1:QE!

The parallel port differs from the serial port mainly
in that data is transferred an entire byte at a time. This
is ideal for fast printers and sometimes even some floppy
disk units. ThE~ Sorcerer also provides an interface to the
popul.ar Centronics printer. The same parallel port is us ed,
but unique software "handshaking" is done by the Monitor
1/0 driver. An example of the handshaking which occurs betw·een
the Sorcerer and printer might be the following "electronic
conversation" over port FE, the parallel interface status
port,

Printer: "Wait, rOm still busy, send no data~"
"OK, now.you can send."

Exidy: "Here it is, let me know when I can send more M
•

The 8-bit data (and at times status) rides on port FF.

To successfully hook up a Centronics or Centronics-like
printer to the parallel port, again follow the printer's and
Exidy's instructions. Here are some additional· guidelines:

1. Connect parallel pins (DB25 connectors again)
5-7 and 16-19 (data bits 0-6) to the printer's
data lines 0-6, (see printers pinouts).

2. Connect pin 4 (data output bit 7) to the printer's
input strobe line, a negative~(true is low, fa.lse
is high) pulse indicating data is ready to be
transmitted.

3. Connect pin 1 to the printer ground.
4. Connect pin 25 (input data 'bit 7) to the printer

busy line, indicating the printer is not ready
to accept any data (probably still printing
previous data).

5. Pins 2 and 3 (output accepted and available) and
others may also be required depending on the
printer model.

10

Once this is done, Reset the Exidy, enter the Monitor,
type in the command SET O=L, and from that point on all output
will be routed to the screen and the printer, until Reset
occur~~ or until another SET O=x command is entered.

EllQr. MONITOR MEMOB,X MAP

To get an overall picture of how the Exidy utilizes the
6J."K of (possible) memory, a "memory map" i.s given.

M,emory is cut up into pieces and each piece is used
for a different purpose. In the map below the address of thE~
first byte of eac~h piece is listed along with the use of
that l3.rea. The address is given in both hex and a form of
decim:al that is usable directly in BASIC with the PEEK and
POKE Icommands. Note that some of these decimal numbers
are negative. If the address exceeds 32767 (hex 7FFF), then
BASIC requires that the "twos-complement" form of the
number be used, or the negative form. For numbers greater
than 7FFF, 65536 is subtracted from the number.

Be aware also that this is an overall wide angle view
of memory. Detailed maps of certain areas (such as the
Monitor Workarea and the BASIC Control Area) will follow.

AD..!2lill§.§.

0000 0

0100 256

1:£6'00 7936
3FOO 16128
7FOO 32512

1F90 B080
3:£0'90 16272
7F'90 32656

1F91 8081
3F91 16273
7F'91 32657
IFFF 8191
3FFF 16383
7FFF 32767
COOO ·-16384
EOOO -B192
FOOD -4096

FOSO -3968
F800 -2048

Feoo' -1024

11

'!lli.§..Q.R IPT! ON

256-byte Z80 Restart space (RAM)
User RAM start, begin BASIC Control Area (RAM)
8K Monitor Stack end (8K mat~hines) (RAM)
16K
32K
8K Monitor Stack 'start (BK machines) (RAM)
16K
32K
8K Monitor Workarea start (:BK machines) (RAM)
16K
32K
BK :End User RAM (8K machine:s) (RAM)
16K
32K
Begin BK ROM PAC (eg, begin BASIC) (ROM)
Begin 4K Monitor Program (ROM)
12B-byte video driver space (RAM)
1920-byte video screen (64x30) (RAM)

lK standard Exidy ASCII alphanumerics (OO-7F) (PROM)

512-byte Exidy keyboard standard graphics
character set,: accessed by depressing
GRAPHICS key, character codes hex 80-BF (128-191) (RAM)

FEOO -512 512-byte User Programmable graphics
character set, accessed by depressing SHIFT and
GRAPHICS keys, codes hex CO-:PF (192-255) (RAM)

FFFF -1 End Exidy address space (64K)

M,9NITOR WORKAREA

This is a detailed description of the :3.rea of memory shown
above at locations lF91, JF91, or 1F91, depending on the size
of the~ machine.

The Monitor Workarea, hereafter called MWA, is the area in
RAM used by the Exidy Monitor program to s:ave important
information needed for its successful operation. This area
is always located right next to the Monitor Stack, and is always
placed at the very top of available RAM sp~lce. :For an 8K

12

machi.ne. the top of RAM is at lFFF (8191), for 16K 3FFF (16383),
and for 32K 7FFF (32767). This number, Himem, is
place!d by the Monitor in the two bytes at address FOOO-FOOl
(-4096 to -4095) in the video driver RAM space. Remember as
with most micros, the two bytes are reversed in storage.
:F' or eixample, for a 16K Exidy, FOOD-FOOl contains FF 3F, not
3FFF. The address of the MWA can be obtained from this
Himem address so that you don't have to worry about what size
machi.ne your progr'amming is running on. ~ro do this, you must
get the Himem value at FOOO-FOOl and subtract 6E (110) or
add FF92 (-110). For example, in Z80 Assembly Language:

Or in BASIC:

LD
LD
ADD

HL, (FOOO)
BC,FF92
HL,BC

;GET HIMEM
;GET -110
;HL POINTS TO THE MWA

100 AD=256*PEEK(-4095)+PEEK(-4096)
110 IF AD~32767 THEN AD=AD-65536
120 AD=AD-I10

There! is also a Monitor subroutine designed to do this
calculation for you. It is at address E1A2 (-7774). When
CALLe!d, it puts the MWA address in Z80 register IY. Eg:

CAI/L EIA2 ;IY POINTS TO THE MWA

A detailed map of the contents of the MWA will now .be given.
This will be in the same fashion as the overall memory map
listEld above. except that the addresses will be shown in a
diffe!rent form. :Ei'irst the offset in hex from the beginning
of the MWA will be given. This can be uSlad in Z80 Assembly
IJanguage as a displacement away from an iJndex register such
as IY',which points to the NfWA. For example, if the displacement
is listed as +41 to a particular field, then that field can be
addre:ssed in Z80 by .(IY+41) or by 41 (IY) • The second part
of the address is given as an absolute 'address of the field
iu RAM. Since the whole MWA moves dependent on the size of
the machine, the first two hex digits of these addresses can
change. The last two digits are always the same. So only
these last two digits are listed. The first two will either
be 1F' (8K), JF (16K), or 7F (32K). Note: if the user
coldstarts the Sorcerer (Resets) with a size other than the
~tbOVE~ sizes (such as 21239 bytes, not even a whole roul tiple of
a K) then the above addressing scheme is not applicable and
only the displacement from the index register scheme may be used.

1:3

ADDRESS DESCRIPTION

+00 91 60-bytE~ Moni tor conunand input buffer. Any command
entered from the current RECEIVE devicE~ (SET I=x) such
as the keyboard, serial or parallel ports is placed in
this area. It is left-justified, and terminated by an
ASCII carriage return character (hex code OD, 13
decimal, hereafter called a CR). The Monitor subroutine
at E13A (-7878) builds this buffer from the input.

+3C CD Port FE interface status

+3D CE Serial interface and dual cassette interface
baud rate save area. 1200 baud is indicated by hex 40,
300 b~iud by the value 00. Serial port or cassette
baud rates are set to the default of 1200 baud (hex 40)
by the Monitor COLD Reset routine (at ECOO, -8192) and
by the Monitor USER Reset entry point (at EOO). -8189).
Such a coldstart is done, for example, when the RESET
keys are depressed~ This byte is also set by the
SET T=O and SET T=l commands (at Monitor routines a-c
E5A2, •. 6750)

+3E GF SErID delay time. This value is us ed -Co delay beforE~
a SEND (to video, serial, or para.llel) is done. ThE~
actual delay is about 1500 times this value machine
cycles. This delay can therefo"re! range from 0 to
approximately 400000 cy'cles. The value is set by
the SET S=n command.

+3F DO Current SEND routine address. The default address set
by COLD starts is the video rout:i.ne at E9FO (-5648) II

It can be changed by the SET O=x command.

+41 D2 Current RECEIVE routine address. The default is set by
COLD starts to be the keyboard rClutine at EB1C, -53L~8.
It can be changed by the SET I=x command.

+43])4

+44 D.5

Batch mode sta tus. OO=normal input, nonzero=batch node.
This byte is used by the Monitor command input routine (E142)
to determine whether commands are: to be gotten from the
RECEIVE device or from the batch tape serial port. The
OVER command turns this off and the BATCH command turns
this on.

Moni tor out prt prompt character. The default is thE~
character ">" or ASCII code 3E (62) set by COLD starts.
It can be changed by the PROMPT :x: command. It is output
to the SEND device every time a Monitor input command
is being requested (at EDED, -7955).

14

@lill!§.§. DES CR IPT ION

+L~5 1)6

+46 1)7

+47])8

+4C JDD
+4D DE

+4E DF
+50 :E1

+54 E5

... ·57 E8

+67 F8

+68 F9

· .. 6A FB

tape status, baud rate, motor con'trol save area.
This is zeroed when the tape(s) is turned off, and
otherwise remembers the status of the tape baud
rates (00=)00, 40=1200) and motor controls
(10=motor #1 on, 20=motor #2 on).

tape input and output CRC (Cyclic Redundancy Check).,
The CRG is used to check whether the data has been
transmitted successfully to/from the tape. This
teChnique is described in detail in a subsequent se(!tion.

Beginning of the 16-byte tape output file header arE~a.
The first 5 bytes here contain the 5-character ASCII
file name as entered on the SAVE or CSAVE command. It
is left justified and padded to the right wi th ASCII
blanks (code 20, 32 decimal).
File header id, usually hex 55.
File type. Usually C2 (194) for a BASIC save file.
If the high order bit (80, 128 decimal) is on, the
file cannot be automatically executed with the LOADG:
command. This is set by the SET F=xx command
2-byte length of the file in bytes.
2-byte program loading address. For BASIC files, this
is always 01D5 (469) because BASIC programs always
start at that address. See the BASIC Control Area
description following. For other programs such as
those in machine language, this address is the "sss,s"
of the command'\SAVE name S8SS eeee~
2-byte program "go-address" for auto execution files.
The Monitor will automatically begin execution of the
program at this address with the LOADG command. This
address is set by the SET X=nnnn command.
3 bytes of reserved space, ending the output tape header

16-byte tape input header area. The format is
identical to that of the area at +47. This area is
filled in from reading the t~pe for commands such as
CLOAD, LOAD, FILES, and so on,

character under the cursor. Since the cursor is an
underscore character (ASCII code SF, 95 decimal), i.t
actually replaces the character :at the cursor location.
This hidden character is saved to be put back when the
cursor is moved. The save is done by E9CC (-5684), and
it is replaced by E9E8 (-5656),

2-byte line number where the cursor is times 64. 'I'his
ranges from Ox64 (D) to 29x64 (1856), and is the offset
from the beginning of the screen to the cursor line~ start,

2-byte cursor column number (0-63), When added to +68
the actual cursor offset into the screen is found.

15

bDDRESS DES CR I:e!.I ON

... ·6c FD

+6D FE

Last character entered from the keyboard. This is
is used for the processing of the REPT (repeat) key
logic. This character is entered to the keyboard input
routine about every)0000 machine cycles as long
as the REPT key is depressed. It is always the last
key entered, and is saved and us(~d by the keyboard
processing routine at EB1C (-5348).

two bytes of reserved space. This brings us to the
end of the MWA, and in fact the .:!nd of us er RAM.

When a SAVE, LOAD, or FILES command i:9 done from the
Monitor, or when a CSAVE or CLOAD is done from BASIC, files
,lre processed from the cassette tape devi1ce on the serial
interface. This applies to both cassette #1 and #2.
CaSSE!tte tape motor-on routine can be found at E024 (-8156),
motor-off at E027 (-8153), cassette save at E02A (-8151),
and cassette load at E02D (-8148).

Cassette files on the Exidy have the following appearance,
whether at 300 or 1200 baud:

1. I:nter-file tone
a. a high frequency tone always output

by the cassette interface when data
is not present.

2. lOl-byte leader
a. 100 bytes of 00 (nulls)
'b. 1 byte of 01 (control-A or SOH,

S tart-Of -Header)

3. 16-byte file header (see description in MWA above)

4. eRe for header

a. 1 byte CRe for error checking. Details later.

5. Up to 256 bytes of data

6. CRe for above data block (1 byte aga.in)

7.

8.

Repeat 5 and 6 until data exhausted. The
last data block may be short (less than
256 bytes). CRe still follows.

Inter-file tone (same as before the file).

16

This format is used by both BASIC and machine language :files.
It·is depicted pietorially as follows:

.~

.... -..,,~.,..,

Inter-file tone

...

lOl-byte leader

-- " . -
16-byte header

header

----eRe for header

lOl-byte leader

256-byte block #1

-eRe for block #1

data

eRC for last block
1i

I' Inter-file tone

17

To LOAD or CLOAD a file, or to perform a FILES command,
the Monitor scans the tape (whichever is on) for the leader.
Then the header is read into the MWA and the "FOUND
message is sent to the current SEND device. The data portion
is th~~n either skipped (wrong file, or FIl~S command) or
loaded. All CRees are always validity checked for any of
these commands. Thus to check all the bit.s on an entire
tape :for errors., it is sufficient to perform a FILES command "

N~)te that the default tape transfer ra.te is 1200 baud.
A much more reliable method of saving data is to use 300
baud. However it will take 4 times longer- to SAVE and LOAD, and
use a lot more tape, This is accomplished with the SET T=l
command.

S"till, even at 1200 baud, the Sorcerer tape system is thE~
best I've come across, It is the most reliable, and with
its file headers, it is the easiest to use. The user does
not even need a recorder with a tape digital counter to find
files with these headers, The cleverness of the tape system
makes the Exidy ba~ic offering (just cassette, no expansion
to S100 capability, diskette, etc,) a verY' attractive
low-priced system •

.:tIPS ON LOADING AND SAVING FI .. L~S ON TAPE

The following hints can be used to min.imize problems
with cassette recording of files:

!J:> Load:

1. Use a relatively inexpensive cassette recorder
($30-$60) with ALC (Automatic Level Control).
This means you have no control over the volume or
tone of the recordings. All are made exactly
the same way. Strangely enough, experience
shows that expensive recorders work worse.

2. Connect the MIC wire to the microphone input. Do
not use the auxiliary input on most recorders,
TEe signal will be too weak.

3. Connect the EAR wire to the earphone or monitor jack.

T~:> Play:

1. You must find the correct volume and tone for
your recorder. As a first guess, set volume and
tone to 7-8 out of 10, or 374 high.

18

2. Listen to the tape play through the speaker. The
intra-file tone should be louder than normal
listening volume, maybe even as loud as possible
without distortion and noise. The data should
sound high-pitched and clear, like static.

3. Try loading a file. Tinker with volume and tone
until at least a file header is read without a eRC
error ("FOUND ... " message appears). N ow you are
close.enough to the correct settings.

4. Once found, the correct settings should be able to
be used for all tapes recorded on that recorder.

,9,Mg:TTE TAPE ERROR CHECKING

The eRC (Cyclic Redundancy Check) method is used to detect
bit transmission errors in cassette data recordings. The CRC
is stored at MW.A+46. CRC checking is done with this algorithm:
When the file is first written to tape (i.~, when the lOl-byte
leader is written), the CRC is Old. For every data byte, in
program or header, the current CRC is subtracted from the data
(data.-CRC). and the ones complement of this is used as the next
eRC for the next byte (ie, FF-{data-CRC), or all the bits are
flipped,·- a's become l' stand l' sO' s) • When the file or block
is completely written, the current eRC is written as the final
byte. Note: this is why BASIC programs grow by one byte every
time they are loaded and re-saved. When the file is loaded again,
the eRe is calculated again as above, and is compared to the
last byte of the block (the CRC written). A match means no
errors (almost always), while a mismatch means a:n error. This
is identical in BASIC files as in machine language files, since
the same Monitor routines are used to write/read tapes.

PROGHAMMABLE GRhl:HICS CHARACTER SET

Each byte in memory can contain exactly one character
which can be input from the keyboard, displayed on the video,
printed, etc. Thus there are 256 possibll8 combinations of
these characters (OO-FF, 0-255). These codes can be mapped as
follows on the Exidy. Again, codes are given in both hex and
decimal.

CODE

00-7F 0-127
OO-:LF 0-31
20 32
21-;2F 33-47
30-39 48-57
3A-J..,0 58-64
41-5A 65-90
5B-60 91-96
61-?A 97-122
7B-?F 123-127

80-BF 128-191

CO-B'F 192-255

CO 192
C1 193
C2 194
C3 195
C4 196
C5 197
C6 198
C7 199
C8 200
C9 201
CA 202
CB 203
CC 204
CD 20.9
CE 206
CF 207
DO 208
Dl 209
D2 210
D3 211
D4 212
D5 213
D6 214
D7 215
D8 216
D9 217
DA 218
DB 219
DC 220
DD 221
DE 222
DF 223
EO 224
El 225
E2 226

19

DESCRIPTION

1.28 standard ASCII characters:
32 ASCII control characters (eg, CR, LF II etc).
ASCII blank
ASCII punctuation
ASCII numbers 0-9
ASCII punctuation
ASCII upper case A-Z
ASCII punctuation
ASCII lower case a-z
ASCII punctuation and ttdelete" character (7F)

64 standard Exidy keyboard graphics. These
are obtained by depressing the GRAPHICS kE~y

64 programmable graphics characters. These are
obtained by depressing SHIFT and GRAPHICS keys:

GRAPHIC SHIFT 1
2
3
4
5
6
7
8
9
o

- (hyphen)
" (tab)
Q
w
E
R
T
Y
U
I
o
P

Co
)

A
S
D
F
G
H
J
K
L

20

E3 227 GRAPHIC SHIFT ;
E4 228 @

E5 229
E6 230 (und~erscore)
E7 231 z
E8 232 X
E9 233 c
EA 234 V
EE 235 B
EC 236 N
ED 237 Nl
EE 238 , (comma)
EF 239

i'
(period)

FO 240 (slash)
Fl 241 - (on numeric pad)
F2 242 7 (on numeric pad)
F3 243 8 (on numeric pad)
F4 244 9 (on numeric pad)
F5 245 + (on numeric pad)
F6 246 4 (on numeric pad)
F7 247 6 (on numeric pad)
F8 248 x (on numeric pad)
F9 249 1 (on numeric pad)
FA 250 2 (on numeric pad)
FB 251 3 (on numeric pad)
FC 252 + (on numeric pad)
FD 2.53 0 (on numeric pad)
FE 254 • (on numeric pad)
FF 255 = (on numeric pad)

Each of the above 64 characters can be defined to be any
design or shape desired. Each consists of 8 bytes in memory,
or 64 bits. These sets of 8 bytes (64 of them) start at
address FEOO (-512). On the screen each character consists
of 8 lines of 8 dots, or 64 dots, Thus each of the 8 bytes
defining the character in memory corresponds to one of the a
lines of the character in the display, and each of the 8 bits
:In that byte is a dot in that line. If the bit is on (1),
then the dot is white. If the bit is off (0), then the dot is
black. For example, a circle with a dot in the middle could
be defined as a character, It would require defining each of the
64 (Bx8) dots as 64 (Bx8) bits in memory, So

• ••••• tI •
00000000 binary 00 hex 0 decimal

• . xxx. 'I , 00111000 38 56
.x., .x ... 01000100 44 68
x ••... x. 10000010 B2 130
x .• x, .x. 10010010 92 146
x ••. , ,x, 10000010 B2 130
.x ••• x, .• 01000100 44 68
· • xxx 00111000 38 56

2.1

The first 128 characters (aO-7F, ASCII) are not under user
~ontrol. Tl;e information required to display these characters
1S lc)cated ~n PROM at FSOO-FBFF (lK). Thle next 64 characters
(80-BF, Exidy Graphics) can be programmed if desired, but they
are a.lready programmed. to be standard keylboard graphics. The
64x8 (512) bytes for these are located at FCOO-FDFF This
RAM can be changed at any time by the programmer to· redefine
these! characters. However, the Monitor refreshes this area
from its ROM every time a RESET occurs, or whenever the video
screen is cleared (eg, when CLEAR is pressed, or when a
Form Feed ASCII control is displayed). This will clobber any
such modifications.

'1~he last 64 characters (CO-FF) are completely under programmer
control. They are always displayed as nOlrlSenSe until they are
"defined" by turning on and off the bits of the 8 bytes
associated with the character. These by ties are in RAM from
FEOO to FFFF (-512 to -1). For example, the character CO
(192) is atFEOO-FE07 (-512 to -505), C1 (193) at FE08-FEOF
(-50Lr~ to -497). C2 at FEl O-FEl 7, and so on. till FF (255)
is a1; FFF8-FFFF (-8 to -1). The formula to calculate where
the a bytes in RAM begin for any of these 128 characters which
can be programmed (BO-.FF) is (assume "c" is the character code
of the character to be programmed),

FCOO + (8 * (c - 80»)

(8 * (c - 128» - 1024

wherel "c" ranges from 80-FF (128-255).

hex, or

BASIC decimal

For example, to print a "blot" (all dots on, a white
square) on the screen followed by the above circle with the
Clot in the middle, the following BASIC prlogram can be written.
The blot'will be made from the first programmable graphic 192,
and the circle/dot will be 193:

10 FOR 1=0 TO 7: REM 8 BYTES AT FEOO (-512) FOR BLOT
20 POKE-512+I,255: NEXT; REM TURN ON ALL BITS/DOTS
30 FOR 1=0 TO 7: REM 8 BYTES AT FE08 (-504) FOR CHR #193
40 READ J: REM GET A BYTE VALUE]~ROM THE TABLE AS ABOVE
50 POKE -504+I,J: NEXT: REM TURN ON CORRECT DOTS
60 PRINT CHR$(192);CHR$(193): REM PRINT THE 2 NEW CHRS
70 DATA 0,,6,68,130,146,130,68,56: REM DATA CHR #193
80 END

~BASIC FLOATING P0J:liT Ii'ORMAT

Numbers in BASIC are not integers. Fractiorls are allowed.
Thus the decimal point can move. For example, the decimal
point "floats·' when 13.25 is divided by 10 1.325. It is
from this idea that the term ttfloating point" was derived.

\

~rhese numbers a.re stored by BASIC in 4 bytes of memory.
Each number has 3 parts

1. the sign (+ or -)
2. the" mantis sa II (the actual number, but wi th- thE~

point shifted to the left of the leftmost
1 bit of the number). So the number 127 deciDlELl
(7F, 01111111) is a mantissa if it is thought
of as .1111111

3. the "exponent". which is how much the point had to
be shifted in the number to produce the mantissa
with the point at the left

~rhis all sounds very complex, but it actually is. not. Let~s
take an example, say 13.5 decimal. In hex this would be
equal to D.8 (13 + 8*1/16). Remembering t~at hex is just
groups of 4 bits, the binary equivalent of 13.5 would be
1101~1000 To create a mantissa from this, we must shift
the point (in this case, the "binary point", not the decimal
point) to the left 4 places, producing .11011000
The exponent can now be calculated. It is always positive if
the mantissa shift 'Was to the ~, negative if' to the right~.
and ~~ero if no shift was necessary. Thus the exponent in
this-exa:mplewQuld be +4 (4 to the left). However, we are not
quitE! done. Ra.ther than worrying about how to express a
negative number exponent. 128 decimal (hex 80) is always addled
to the exponent to produce the final result. Thus the final
exponent is 84 (132). Now we come to the sign. Since the
digi t to the far left of the mantissa is :always a 1 (because~
we shifted until that was the case), then the sign can be
s torE~d in this bi t without los ing any information. If the
numbE~r is positive or zero, then the sign bit will be O. If'
negative. then the sign bi t will be a 1. So the mantissa fOlr
13.8 .11011000 changes to .01011000. To assemble this numbe!r,
first we put the exponent 84 then the mantissa filled out
to the right to fill out the 4 bytes:

10000100 .01011000 00000000 00000000

Now If we ignore the point, since it is always in the same
placE~. and convert to hex~. we have,

.r---padding
~2.§5006'

't 1 '\ expone;rl;ma---- S igri;rnantissa

implied point

')3 I. ..

If the original number were -13.5 instead, then nothing would
change except the sign. That is the mantissa would cha.nge
from .01011000 to .11011000, so the new number would be

84D80000

In the reverse directi.on, to convert floating· point back to
decimal, let's use 88FF4000 as an example:

1.

2.

3.

4.
5.

examine the exponent (88) and subtract hex
80 (128). In this example 88-80=08. But this
may produce a negative number.
Examine the mantissa with the implied point
(.FF4000) •
If the left bit (high order, the one next to
the point) is on (it is), th1en the number is
negative, otherwise it is positive.
In either case, turn that bit on.
Shift the point according to the exponent from
step 1 (08 here). If plus, shift right, if
minus, left, if zero, no shift. Since we have
+8, shift the point right 8 bits

~~0100000000000000

6. The number is now FF.4000, al1d with the sign,
-FF.4000, or -255.25 decimal.

The only special case is the number O. Here the exponent is 00.
Other examples are:

1815 .- hex 717 = 8B62EOOO
1 1 = 81000000

-1 -1 = 81800000 ~
-.5 -.8 = 80800000 \btl~

0 0 = 00,61 OOOO~"\I' f¢~

The last idea that must be mentioned is that the number is
actually stored in memory in peverse, so the number eemmnnpp
is stored ppnnmmee. For example, decimal 1815 in the above ,example:

OOEo628B

24

This is a discussion of the workarea in RAM used by BASIC,
called the BASIC Control Area, or BeA. The BCA begins at
adress 100 (256), and has an overall appearance like

100

lD5

a

b

c

d

e

---BASIC 1
Control ;

Information i
--~--'--'-------.--i

BASIC !
Program I
Source I
---'-1
BASIC a

Program t
Variables i

i
......... ,,,....~ --.-.~---;

i
BASIC I

Program i

Arrays i

".~~~~
"'c '., ," " .,::.~ "<:',,1
,,"'·,.FREE SPACE " '~"'t , , , '\.', ~-"",,,, . " --, ~, '-...., "', ", " ".j ,;-~"-.. ""'-, .)"1

STACK i
I

.-.....-...,..~~.~fl~.r..r.i1aOIO'!~.JlI'~

I
i

---":.~!~~
BASIC

Monitor I
Stack I I

,~.-.... ------...,
MWA

l~"Ut'!'I _____ "'.4c''''''''~-'--'~'''''--

2.5

In detail, RAM locations 100-14E (256-334) are copied from
the BASIC ROM (address C258) when a BASIC Cold Start occurs
(ie, after Reset or a PP X command is entE~red). The
BCA described bE~low includes only those areas which are of
direct use to the progr-ammer. It is intentionally sketchy,
especially due to the great number of fields.

ADDRESS DESCRIPTIO~

100/256

103/259

145/3.25

147/327
18E/398
1B1/433

1B3/435
1B5/4:37

1B7/439

1:89/4/+1

lBB/4J+3

lBD/4J+5

l:BF /41~7

1D5/469

3-byte JUMP instruction to C06B (Warm Start). Done
when PP eommand is entered without operands.
3-byte JUMP to C7E5 default ,(displays "PC ERROR"
message). This is the USR function hoo~. See BASIC
Assembly irlterface section later for details.
2-byte address of top of string space (letter "e"
above) or the beginning of the BASIC stack. This
is set by the BASIC CLEAR n commaLnd.
BASIC line input buffer and Direct Mode execution l:lne.
current line column number
2-byte address of instruction in the BASIC program
about to be executed when Control-C break .is entered.
This could be in the middle of a line of multiple
statements separated by colons.
2-byte BASIC line number of current line
2-byte address of the next full line to execute
from the link pointer of the current line (see below).
2-byte address of the end of the program and the
beginning of the BASIC Program Variable Area
(letter "a" above).
2-byte address of the end of the Variable Area
and the start of the BASIC Progra.m Array Area
(letter "b" above). Whenever changes are made to the
BASIC program (adding, deleting, updating lines) thE3
above two addresses are used to define a new Variable
and Array area below the new BASIC program. Thus a
program cannot be continued with old variable/array
values once a change has been mad.e.
2-byte address of the end of the Array Area and the
pointer to free space (room for e~xpansion ~ letter II c") .
2-byte address of the last used data operand of a
DATA statement so that the next READ will find the
appropriate item. This is reset by a RESTORE command.
4-byte input parameter (usually floating point format)
to the USR function, and output parameter from the USR
function. If USR(3.5) is called, 3.5 is passed to the
subroutine in floating point. See a later section for
BASIC/Assembly interfacing details.
Beginning of all BASIC programs

fORMAT OF BASIC PROGRAM STATEMENTS

The first line of every BASIC program begins at
location lD5. All BASIC lines have the following variable
length format:

OFFSE'r DESCRIPTION

26

+0 2-byte link pointer address of the next sequential
full line in "the program. This is independent of
multiple statements on one line (separated by colons).
The last line of the program poiilts to location 0000
to indicate the end.

+2 2-byte BASIC line number of the line iTl integer
binary (a number between 0000 and FFF9, 0-65529).

+4 The BASIC statement(s), variable in length. Let us
say they are "n" bytes long. Each BASIC "reserved
word" such as GOTO, IF, END, DIM, PRINT, etc is
encoded here to a l-byte character not belonging to
the ASCII character set (ie, hex codes greater than
7F). This speeds up processing and saves program
memory space. When the program is LISTed, these
special bytes are decoded back into their corresponding
reserved words.

+4+n Byte of 00 indication the end of this line and
beginning of the next.

FORMAT OF'BASIC FLOATING POINT VARIABLES AND ARRAYS -- -
A BASIC floating point variable resides in the BASIC

Progra.m Varaible Area. Each one takes a constant 6 bytes:

,Q£:FSET,

+0

+2

DES CRIPTI_Q.!:!

2-byte ASCII variable name •• The high order bit is
always O. The letters are also reversed as usual.
4-byte :floating point value currently held by this
variable. See the format description earlier.

BASIC arrays all reside together after the variables in the
BASIC Program Array Area. A floating point array is variable
in length. It takes a minimum of 7 bytes and looks like this:
(Note: an array in Exidy BASIC can have arlY number of
dimensions; call that number "n". Each carl have any number
of elements).

OFFSET

+0

+2

27

DESCRIPTION

2-byte array name. The high ord~3r bit is always O.
The letters are reversed.
2-byte total array length minus J~ (ie t the length of
the array starting after these 2 bytes). This is
used to find the next array in the area quickly.
1-byte number of dimensions (we called it n).
2-byte size (number of elements) in the 1st dimension.
2-byte size of the 2nd dimension (if any).

+5+2(n-l) 2-byte size of the nth dimension
+5+2n Beginn.ing of a list of contiguous 4-byte floating

point array elements. These are in Row order.

FORMAT OF BASIC-.§TRING VARIA~.liS AND ARRAYS

A BASIC string variable is similar to a floating point
variable. It is also 6 bytes long. It looks like:

OFFSET ----
+0
+2

+3
+4

DESCRIPTION

2-byte variable name. The high order bit is always 1.

1-byte current length of the variable length string value.
00

2-byte address of the string itself. It resides either
in the string space or in the program statement
itself (eg, 1005 A$=ttHI").

A string array is identical to a numeric array except for two
very important features:

1.

2.

the high order bit of the array name is always 1
the 4-byte value is not floating point forma t [)ut
the length/OO/stringaddress fields described above.
All dimensioning remains the same.

,BASIC TO Z80 A~~MBLY LANGUAGE INTERFACE.

'ro call Z80 Assembly Language subroutines from Exidy BASIC,
certain general conventions and procedures must be followed::

1. The maehine language program must reside either in the
first 256 bytes of memory (OO-FF, 0-255 - usually

..)
I. ...

a bad idea) or in the BASIC free space area describE~d
earlier. Either BASIC control, program, variables,
arrays or strings, or Monitor/video control resides
in the rest of memory. This is the only way a BASIC
and machi.ne language hybrid can c:oexist without
complicated . machinations such as pu tting the machinE~
language routine right after the BASIC program and
fooling BASIC into thinking that it is part of the
program. The BASIC free space is the best and easiE~st
choice. However there are: some potential problems:

a.

b· .

c.

d.

Free space is dynamic. As the program changes, as
variables/arrays are added or change size, the start
of the free space moves. A machine language program
placed to close to the end of the Array Area can get
walked ono The end of the free space changes too,
since the BASIC stack (or string space) will grow
and shrink, especially with the CLEAR command. Since
thi.s change is usually not as radical as that of
the start of the free space, I recommend putting
the program close to the end of the free space.
But there are now other cO'i1Siderations.
The free space ends near HIMEM of the machine (where
the BASIC stack is). This changes with each different
Exidy size. So a generalized subroutine designE~d
to run on any machine (probably with several BASIC
programs) would either have to be relocatable
(able to be moved without affecting anything), or
there will have to be different versions of the
program to run on different size machines. This
of course would allow the BASIC program to use the
maximum amount of free space. A subroutine designed
for a particular BASIC program could be placed B.t the
top of the free space as long as the BASIC program
does not grow too much.
If the program is placed at the end of the free space
an excessive CLEAR n BASIC statement CQuld kill it.
Thus no matter where the program is placed,
certain restrictions have to be made to coexist with BASIC.

Assume a good location is found, and the Z80 program is
written and relocated to tha t address in, RAM. ASSUlTle~
this address to be 312A hex (12586). To call this
subroutine from BASIC, it must already be in memory, and
the USR function must be used. When BASIC executes it,

it converts the argument to floating point and
places this number in the 4-byte USR parameter area
at lBF-1C2 (447-450). It then calls the subroutine

2.9

at location 103 (259). For example, when the statement

20)0 X=USR(25.7)

is executed, 25.7 is placed at lBF and a CALL is made
to 10).

~I. Now, by default 103 contains the following Z80 instruction

JP C7E5

or in machine language hex C3E5C7. This
unconditional JUMP to the instruction at address C7E5
in BASIC ROM. This default subroutine prints the
error message "FC ERROR" (function call invalid) and
stops the program. To call your subroutine, you must
change the JUMP instruction address to the address of the
beginning of your program. Again the instruction after
a BASIC Cold Start looks like

ADDRESS CONTENTS

103/259 C3
104/260 E5
105/261 C7

DESCRIPTION

JUMP zao operation code
Low part of address
High part of address

Leave the C3 JUMP, but change the address. If your
program was at 312A as we said, you must make the jump to
312A, or

JP 312A

or in machine language hex C32A31. It is a good
idea to change the two address bytes every time the
subroutine is to be called. Use the BASIC POKE statement
for this (which requires decimal operands). Put 2A
(42) at location 104 (260), and put 31 (49) at location
105 (261):

10000 POKE 260,42
10010 POKE 261,49
10020 xx = USR(Y)

30

When the USH function is executed in line 10020,
your routine at 312A will be called. It could use the
value in variable Y placed at lBF as input. It could
also put another value back as output. This value
will be returned to the BASIC stat.ement as the "result"
of the USR function. In the above example, the valulB
returned will be placed in variable XX. Note that the
short BASIC routine shown above can easily be made into
a GOSUB subroutine by adding the statement

10030 RETURN

Thus, to call your routine you neE!d only say

GOSUB 10000

4. To terminate your subroutine, one of four things can be done: .

a. Return directly to the Monitor and exit BASIC
altogether, eg for catastrophic errors. For Monitor
Warm Start jump to address EOO). For Cold Start
use EOOO. The user will be shown the Monitor
prompt (">").

b. For lesser errors detected give an 14'C ERROR message,
stop thE! program, and return to BASIC READY level.
This is simply done by jumping to C7ES.

c. If errors are detected and your routines have
displayed the error message(s), you can stop the
program and. exit directly to BASIC HEADY level.
For a BASIC Warm Start jump tc. DFFA. for a Cold
Start D:B'FD.

d. Of course you can return normally to BASIC so it
will continue the program where it left off after the
USR statement. This is simply done by the RET
instruction. Fill in the parm at 1BF first if nl3cessary.

Note that all the Monitor subroutines are available to the zao
subroutine, including turning the tape on .. reading a file, al,d
turni:ng it off; or getting input from thE~ keyboard. See
the section on Monitor Subroutines later.

Debugging of the Z80 routine is a little more difficult
than debugging BASIC programs. BASIC losE~s control of the
situation and of what you are doing while your routine is
running, and can't "keep an eye out" for potential errors as
it ca'n wi thin a BASIC program. Great care, desk checking,
and modular programming are a must.

31.

An assembly language routine can also use as input and output
actual BASIC variables and arrays. Using the pointers in
the BCA described earlier, the program can find the
variable/array lists and scan for the one(s) with the correct
name(s). Then using the floating point or string formats, the
values can be examined or changed.

CURSOH POSITIONING:

Cursor positioning is the process of m.oving the cursor
(that underscore character) on the screen to locations other
than where it usu~11y is when standard BASIC or Monitor video
output is done (eg, PRINT, DUMP, etc). Th.is is very useful
especially when data is to be placed ~n the screen but not in
a linE9 by line fashion.. For example, if a graphic diagram is
displayed and certain segments are to be labelled, the cursor
can be moved directly to each one and the output generated in
a random fashioYl on the screen. Also many times the usual
output statements will destructively erase what is already on
the s<~reen. For example, if something is to be printed in the
middlE~ of a line but there is information already in the
beginning of tha.t line, and output statement will erase it.
Cursor positioning to the middle will not.

T<) perform cursor positioning from Assembly Language or
BASIC is quite simple:

2,.

Decide what line the cursor is to be on. There are 30
numbered 0-29. Call this "I".
Decide wha.t column of that line the cursor is to be on.
There are 64 numbered 0-63 on each line. Call this til c" .
Calculate 64xl~ This is the offset from the beginning
of the screen to the first column (0) of line 1. This
is easy in BASIC (Q=64*L). In machine language, just
shift 1 left 6 times, or, assuming 1 were in register E:

LD
LD

X. SLA
RL
DJNZ

D,O
B,6
E
D
X

;DE = 01
;TIMES TO SHIFT
;SHIFT E
;SHIFT D
;6 TIN~S, DE=64xl

Or if 1 were in regis ter pair HL; just E~xecute the
ADD HL,HL instruction 6 times in a row to double 1
6 times t, or multiply by 64.

4-.

C' .. ' .

32

Find the MWA. This is described in detail earlier .
For the examples below, assume register IY points to
the MWA for Assembly. and AD for BASIC.

At offset 68 hex (IY+68 or AD+104) is 2 bytes where
64xl is to be stored:

LD (IY+68) .E
LD (IY+69) ,D

or in BASIC, POKE the low part (l~:>w byte) of the number
64xl (64xl MOD 256) into AD+l04. and POKE the high
part (byte) of 64xl (INT(64xl/256» at AD+105. Now,
64xl MOD 256 is just the remainder when 64xl is divided
by 256, and this can be calculated as follows in BASIC:

905 L2 = 64*L
910 MD = L2 -' INT(L2/256) '*256

To do the POKEs, assuming AD is already pointing to the MWA:

915 POKE AD+l04,MD
916 POKE AD+1 05 , IN~r (L2/2 56)

6. At offs et 6A in the MWA (IY+6A, AD+l 06) is 2 bytes where
"e" is to be stored. If it were in register As

or in BASIC

LD (IY+6A) ,A
LD (IY+6B) ,0

930 POKE AD+l06,C
940 POKE AD+107,O

BASIC also requires you to put c at location l8E (398)
in the BCA: •

950 POKE 398,C

7'. Call the Monitor cursor move routine. This will
replace the current cursor with the character which was
at that spot ("underneath" it), move the cursor to the
requested spot and save the chara(~ter there. From Z80:

CALL E9CC

From BASIC the USR technique must be used:

960 POKE 260,204: REM HEX CC
965 POKE 261,233: REM HEX E9
970 X=USR(X): REM CALL E9CC

33

8. Now a standard output statement like PRINT can be done
and the output w ill begin at this new cursor location.

Wi th this technique" horizontal and vertical tabbing can als()
be done.

Horizontal tabbing may also be done irl BASIC directly with
the use of the TAB(n) function.

Vertical tabbing may be done with Control-Z (down arrow)
characters. For example, to tab to line 1.5 (0-29), home the
cursor with a Control-Q - hex 11 - 17 decimal-and Control-Z
15 times (Control-Z is hex lA, decimal 16):

2220 PRINT CHR$ (1 7) ;: HEM HOME
2240 FOR I=l TO 15
2260 PRINT CHR$ (26) ;: REM DOWN ONE LINE
2280 NEXT

PRINT TAB (n) can thE~n "be used to tab horizontally on that line.

~XIDY KEYBOARD ARCHITECTURE

The keyboard ()n the Exidy .has a very c~lever physical
(hardware) and logical (software) architecture.

It actually resides on small parts of input and output pCjrts
FE (254). It is composed of a potential 80 keys, organized as
16 rows of 5 colunms each. For each one of the 16 rows of
possible keys (O-F', 0-:15, outplt port FE bits 0, 1. 2, and 3)
any o·ne of the ~5 columns of possible keys can be depressed
(0-4 , input FE 1)i ts 0, 1, 2 t 3, and 4).

For example, row 0 column 0 is ESC, row 9 column 3 is a P,
and row 15 column 4 is the = key on the numeric pad. Not all
80 possibilities are in use (about 3 are meaningless). Each of
the valid poss ibili ties can assume any onE~ of 5 states:

1. When SHIF~r is depressed upper case, punctuation;
no numerics or graphics; cursor arrow keys operative

2. When LOCK is depressed this is a CAPS LOCK, so
upper case letters, numerics, and punctuation are
valid, but no graphics or cursor movement keys.

3. When CONTROL is pressed this produces ASCII control
characters, some numerics, and cursor movement; no graphics

4. When GRAPHICS is pressed this is standard Exidy
keyboard graphics (codes 80~BF). If SHIFT is also
pressed simultaneously, the programmable graphics
codes CO-FF are used

5. If none of the above are pressed standard lower ease
and numt~rlcs and punctuation are used; no graphics or
curs or movement

The Monitor ROM area EC1E-EDFD contains the tables necessary to
allow the keyboard input routine to translate the row/column
of the key presBed into a i-byte character codes, depending
on which of the 5 states the keyboard is in. These tables
are actually broken down into 6 tables total: the first
is a what-to-do table to calculate the state etc, and the last
5 are the character codes for the 5 states.

P~RMING KEYBOARD INPUT

To get keyboard input from the user from BASIC or Z80'
Assembly Language without INPUT sta tements:, a very useful
Monitor subroutine can be used. In fact, this can be done
such that the program sees each character as it is typed
without having to wait (or ever get) a carriage return (RETUnN).
For example, a program can react and respond immediately to input
commal:1.ds as they are typed.

From BASIC, characters can be input with the following
example assembly routines. Place this simple and relocatablE~
Monitc)r keyboard routine driver interface at, say, location
FO (21~0). It can go anywhere, but FO is a good start.

FO: CD1.5EO SCAN:
F3: C2li'ADF
F6: CD09EO
F9: 28F5
FB: 32FFOO
FE: C9
FF: 00 CRR:

CALL QCKCHK
JPNZ BASIC
CALL RECEIVE
JRZ SCAN
LD (CHR) .A
RET
NOP

;Control-C pressed?
;Yes, back to BASIC (warm)
;No, get input character
;Nothing yet,' continue
;Got it, save at loc FF
;Return after USR call
;Where byte stored for BASIC

35

The routine first che cks to see if CTL-C, ESC, or RUN/STOP
have been enter'ed, meaning the user wants to quit. If so
(Not Zero) back to READY level. If not, the current RECEIVE
device (usually keyboard) is scanned for a character. If none
(~ero), scanning continues. If found, th~~ character is put
at location FF (2.55). Control is then return to BASIC after
the USR call. The following example BASIC program can use this
routine:

10 PRINT "ENTER CHARACTER"
20 POKE 260,240: POKE 261,0: REM LOC OOFO IS 240,0
30 Z=USR (Z): REM CALL SCAN
40 REM IF WE GET HERE LOC FF HAS A CHARACTER
50 A!~ = CHR$ (PEEK (255))
60 IF A$ = "S" THEN STOPs REM STOP IF S ENTERED
70 PRINT A$: REM ECHO THE CHARACTER
80 GOTO 20: REM LOOP TILL S ENTERED

These are both simple routines tha t can bE~ modified to be as
fancy as possible~

From Z80 machine language there is no need to necessarily
store the character in RAM. It is returnE~d in the accumulat,or
by th.e RECEIVE routine.

The above programs accept their input from the current
RECEIVE device. ~ro set this device the SET I=x co.mroand".is used.

M~OR SUBROUTINES

The Exidy ROM Monitor is just packed with very well-written
and useful subroutines which can be called from BASIC and
assembly language,. All are resident in the 4K ROM between
locations EOOC and EFFF. This is a brief description of all
the useful routines, and how to interface to them. Here the
addresses will be given in hex of course, but will also be
given as a 2-part decimal number in the order necessary to POKE
into the USR JUMP vector at locations 260-261.

~DDRESS

EOOC 0,224

EOO) 3,224
Eoo6 6,224

D]~SCRIPTION

Monitor Cold Start (on RESET)
Monitor Warm Start (on BYE eommand)
Mc,nitor User Cold Start - similar to EOOO except
HL is input containing what the user wants to
use as HIMEM

ADDRE;§&
E009 9,224

EOOC 12,224
EOOF 15,224

E012 18,224
E015 21,224

E018 24,224

r~OlB 27,224

E01E 30,224
E021 33,224
B:993 147,233
E024 36,224

E02? 39,224
E02A 42,224

E02D 45,224

E13A 58,225

E1A2 162,22.5

ElBA 186,225

QESCRIPTION
RECEIVE: returns NZ and a character from
the current RECEIVE device .in the accumulator
(A), or Z if no character y1et
SEND: sends character in A to the current SEND device
SERIAL IN: reads a character into A from the
serial lnput device or from cassette tape
SERIAL OUT: writes character from A to serial/tape
QCKCHK: returns NZ if Control-C or ESC (RUN/ST'OP)
is depressed, otherwise it returns Z
KEYBOARD: the RECEIVE routine if SET I=K (defa.ul t) .
See E009.
VIDEO: the SEf\TD routine if SET o=v (defaul t) •
See EOOC.
PARALLEl, IN: the RECEIVE routine if SET I=P.
PARALLElJ OUT: the SEND routine if SET O=P.
CENTRONICS OUT: the SEND routine for SET O=L.
CASSETTE MOTOR CONTROL ON: will turn motor on
and set the baud rate of th,e requested cassette.
MWA+3D must contain the baud rate (00=300, 40=:1200)
and reg B must contain the cassette number (lor 2).
CASSETTE OFF: turns off both tapes
TAPE SAVE: Save memory onto tape. lV{V/A+50,MWA+jl
must contain the memory address where SAVEing is
to start. It must also be pushed on the stack.
DE must contain the ending address. HL must point
to a byte containing ~ CR (h.ex OD). MWA+47
through MWA+4B must contain the ASCII file name:
MWA+4D must contain the file type; MWA+52,MWA+'53
the GO address if any.
TAPE 'LOAD: load a file into memory from tape.
MWA+47 through MWA+4B must ,contain the file name to
load. If a LOADG is to be done, a Z flag must:
be on the stack, otherwize .an NZ flag. Then i.f the
program name' is specified, put NZ in the flags,
otherwise Z (ie, load the next file on the tape).

MONITOR INPUT: will put the command in the command
input buffer at MWA+O. IY must point to the MWA.
MWA+43 must contain 0 (not JBa tch).
Will find MWA and put the address in IY withou.t
causing screen flicker (only does so during
vertical retrace on the TV to avoid DIVIA confli.cts)
SENDLINE: sends an entire line to the SEND device.
HL points to"the line, which must end in a 00.
LF's are always sent when CHIs are found

h.!2.Q!illS S

E1C9 201,225

E1D4 212,225

EIE8 232,225

E1ED 237,225
E205 5,226
E23D 61,226

37
DESCRIPT191!

EHRORs Sends "ERROR" followed by the diagnostic
message (which is pointed to by HL).
OVER command processor (CP). Handles all work
necessary for the OVER com~lnd
Sends 4-byte ASCII equivalent of the 2-byte
integer in DE. If DE=3F29, then "3F29" is sent.
Send 2-byte ASCII of byte in A

Send a CR followed by a LF, CRLF
Convert a 1-4 byte ASCII hex number (pointed to
by HL) into DE. If HL points to A93 followed
by a u'Moni tor Delimiter" (eg, bla:nk, CR, etc),
then DE will contain OA93. This is the reverse
process of the" routine at E1EB.

E:2D2 210,226 Send as many blanks as the number in B
E4D3 211,228 DUMP CP
E538 56,229 ENTER CP
E562 98,229 MOVE CP
E597 151,229 GO CF
E5A2 162,229 SET CP
E638 56,230 SAVE CP
E6B9 185,230 FILES CP
:E:78A 138,231. LOAD CP
E845 99,232 PROMPT CP
E8S8 88,232 BATCH CP
E8SC 92,232 CREATE CP
E884 132,232 LIST CP
E8A1 161,232 TEST CP
E98A 138,233 PP CP
E9B1 177,233

E:9CC 204,233

E9D6 214,233

EBI0 16,235
ECIE 30,2)6
EDFE 254,237

Clear the video screen and refresh/rewrite the
graphics character set at FGOO
Move the cursor to line/column specified in the
MWA. See cursor positioning described previously.
Find the cursor. HL is set to the screen address
(which starts at F080) and DE is set to the
column number.
Refresh character set at FCOO
Keyboard input tables (to EDFD). See keyboard section.
Character set for the 64 standard graphics 80-BF
to be copied to FeeO.

38

I hope the information found in this manual will help
you use the wonderful features of the Exidy Sorcerer to their
fullest extent. Exidy obviously went through a lot of desi.gn
wor~: on both the hardware and software of this machine, and.
it would be a shame not to take advantage of that effort. Enjoy!

This informa'tion ,obtained for this document was found
the hard way, usually by wading through my personal
disa.ssemblies (I eve written and sell a Z80 Disassembler among
other program products for the Exidy) of the Monitor and BASIC
tryi.ng to figure out what was going on. This was as much a
labo'r of love and for personal enlightenment as .. for publication.

Wi th this in mind t there is no guaral1.tee or warantee
ei ther express,ed or implied associated wi th this manual or
the information it contains. The material contained herein
proved very useful for my work on the Exidy, a:nd I sincerely
hope the same holds true for you. Good luck in your programmingl

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

