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SOLUTION OF MATHIE US' EQUATION ON THE ANALOG COMPUTER 

Many physical systems can be described analytically 
in terms of the functions of mathematical physics 
such as Bessel, Mathieu, and Hypergeometric func­
tions. However, an analytical solution of this type 
is of little value to the investigator unless it can be 
transformed into usable, numerical results . This 
transformation often is time consuming and ex­
pensive, especially for multiple or trial-and-error 
computations. For this reason, many of these 
equations , whose practical solutions are prohibi­
tive, are solved on a general purpose analog com­
puter. The analog computer, which may be pro­
grammed with ease, produces continuous, graphical 
results and allows the analyst to vary parameters 
in a few seconds for multiple computations, thereby 
reducing the time and expense required to obtain 
usable numerical results. 

Since the equations of mathematical physics de­
scribe the behavior of a great many physical sys­
tems, and since the analog computer is a valuable 
tool in obtaining their solution, it would be ad­
vantageous to present the analog computer solu­
tion to as many of these equations as possible. 
Obviously, this is impractical; however, a typical 
example can be illustrated. The illustration se­
lected is Mathieus' equation whose solution is 
unique in that it can be stable or unstable, periodic 
or non-periodic . Mathieus' equation is a practical 
illustration, also, since it describes the behavior of 

1) wave guides 
2) moving coil loud-speakers 
3) vibrating strings and membranes 
4) frequency modulation circuits 
5) sinusoidally excited mechanical systems as 

well as other physical systems. (2) (4) (6) (7) 

This Study, then, performed on a desk-top- size 
PACE@ TR- 10 general purpose analog computer, 
describes the solution of Mathieus' equation. The 
objectives of the study will be threefold: first, 
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to illustrate how Mathieus' equation should be pro­
grammed and implemented on the analog computer; 
second, to show representative results of stable 
and unstable solutions to this equation; and third, 
to illustrate the accuracy of the computer by de­
termining points on the stability boundary of the 
solution and comparing them to the literature 
values. 

Mathematical Model 

Mathieus' equation, which is described at length 
in several references (1, 3, 4, 5,8), may be repre­
sented mathematically in several forms. The form 
selected for this investigation is 

i -f + (a - 2q Cos 2t) y(t) = 0 
dt 

(1) 

where y and t are dimensionless dependent and 
independent variables, respectively. The constants 
"a" and "q" also are dimensionless. The initial 
conditions of equation (1) are 

y (0) = 1 (2) 

(~iJ t = 0 
o (3) 

For simplicity, it has been assumed that 

a = 2q (4) 

o ~ a < 5 (5) 

This restriction, which frequently occurs inpracti­
cal applications, represents the interdependence of 
system parameters upon one another and their 
practical maximum values. If one defines 

z (t) = 1 - Co s 2t (6) 

o Electronic Associates, Inc. 1964 
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then equation (1) becomes 

2 
d Y - + a z(t) y(t) ==0 
dt2 

(7) 

A brief discussion of the solution of Mathieus' 
equation is presented in Appendix C. 

Computer Programming t 

As shown in Figure 1 (a mathematical block dia­
gram of the system) the function z (t) must be gen­
erated and interjected into the simulation to obtain 
the solution. There are two possible methods of 
generating z (t). The first method is to use a diode 
function generator which approximates the function 
over a fixed range with straight-line segments. 
This method is unsatisfactory because of the fixed 
range restriction-±90° is typical-in addition to the 
errors introduced by the straight-line approxima­
tion of the function. It should be noted that special 
logic circuitry can be programmed in conjunction 
with the diode function generator to provide a con­
tinuous function; however, this only serves to point 
out the impracticality of this method. 
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Figure 1. Mathematical Block Diagram 

A more accurate and efficient method of generating 
z (t) is obtained by the solution of a differential 
equation. The differential equation, which is ob­
tained by differentiating equation (6) twice, is 

(8) 

which has the initial conditions 

z (0) == 0 (9) 

t It is assumed that the reader ;s familiar with the fundamentals of 
analog computation. 
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and 

~ ==0 
dt z == 0 

(10) 

This method is applicable only when the function 
to be generated is analytic, and a convenient form 
of its differential equation can be obtained. 

The maximum value of z(t) and dz/dt, which was 
determined while obtaining equation (8), is two. 
The maximum values of y(t) and dy/dt can be esti­
mated by replacing z(t) in equation (7) by its 
maximum value to obtain a simplified version of 
Mathieus' equation, namely 

o (11) 

The solution to this equation-the equation of an 
oscillator-using the initial conditions defined by 
equations (2) and (3) is 

y(t) == y(o) Cos w t 
n 

(12) 

where y (0), the initial value ofy (t), is unity and the 
frequency of oscillation, W , is 

n 

w 
n 

2a 

From equation (12) it is obvious that 

(13) 

(14) 

At face value, the maximum value of y (t) is unity; 
however, since some of the solutions of interest 
in this study are unstable, y (o)-the estimated 
maximum value of y (t)-was chosen as five to 
provide a margin of safety. The maximum value of 
dy/dt then becomes twenty five, since the maximum 
value of w is 

W 

n 

n 
max 

~2a max ~ < 5 (15) 

and the maximum value of the derivative from 
equation (14) is y (0) W • 

n 

Magnitude scaling is summarized in Table I for a 
± 10 volt computer. 



TABLE I - MAGNITUDE SCALING SUMMARY 

Variable E"timated Scale Computer 
(Dimensionless) Maximum ( ~~~::r ) Variable 

Value (volts) 
(Dimensionless) Dim. unit 

y 5 2 [2yJ 

Y 25 2/5 [~ yJ 
z 2 5 [5z ] 

Z 2 5 [5z ] 

The following scaled voltage equations t were ob­
tained fo r z and y 

d 

dt 

d 
dt 

[5z] (16) 

= -10 (9) [2y] [5z] 
25 10 (17) 

The computer diagram for the simulation is shown 
in Figure 2 and the potentiometer and amplifier 
sheets, which include the static check, are shown 
in Figures 3 and 4. A tabulation of the computing 
equipment required to perform this simulation is 
contained in Appendix B. 
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Figure 2. Computer Diagram 

t [ ] = reference or computer vortage 

( ) = potentiometer setting 

10, 7, etc. = input gain 
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The time scale factor, {3, was selected as one half 
so that as much of the solution as possible could 
be examined in a reasonable length of time (100 
seconds). This selection of {3 was governed also by 
the potentiometer settings which could not exceed 
one. 

PROBLEM Mathieus' Eq. 

POT PARAMETER SETTING 
STATIC 

SETTING CHECK NOTES POT 
NO DESCRIPTION STATIC OUTPUT RUN NO. 

CHECK VOLTAGE NUMBER I 

2/5~ 0.800 

list! 0,400 

Constant 0.200 

l/lO(j 0.200 

a/5 0.500 Parametric Varia.ble 

1/56 0.200 (lADO ~ 

, 
Constant O. :100 

1/213 0,300 1. OUO ~ 

y(0)/5 o. eoo 0.200 ~ 

10. Const.'1nt 0.010 

Figure 3. TR-10 Potentiometer Assignment Sheet 

PROBLEM Mathicus' Eg. 

AMP I OUTPUT 
STAne CHECK 

NQ FO VARIABLE CALCl.l..ATEO WEASURED NOTES 

OUTPUT 

I N -5z 4.00' -2.00 

, NT 5, 4.00 10.00 

, Su, -5' -10.00 

4 U, -2y -8.00 

, 
"G 'Y 8.00 

6 
S -azy 

-4.00 U ---,---
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I 2. 
8.00 -3.00 NT - "5 y 

• I 
NT 2y 9.00 8.00 

9 IN T t/20 0.10 10.00 

* 10K Feedback in Check Amplifier 

Figure 4. TR-10 Amplifier Assignment Sheet 

After exammmg the stability plot of the solution, 
which is derived in Appendix C and illustrated 
and tabulated in Appendix B, it was decided that 
computer runs over the range 0.5:$ a~4.0 in 0.5 
increments would produce representative results. 
In addition, trial and error runs to determine the 
three transition pOints from stable to unstable 
solutions in this range must be made. 

Results 

Typical results of the study are shown in Figures 
5, 6, and 7. The results of all runs are summarized 
in Table n. From this summary, the stable to 
unstable transition point or stability boundary 
values of "a" for the system are 0.65, 1.75, and 
3.69 over the range of "a" investigated. These 
pOints are compared to literature data in Figure 8, 
which superimposes a = 2q and the computed 
values of "a" on the stability plot shown in 
Appendix B. 



TABLE II. SUMMARY OF COMPUTER RUNS 

Run Number 

-5 

6 

4 

2 
y(t) 

o 

-2 

-4 

-6 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Parameter 
Value 

a 

0,50 
0,60 
0,62 
0,64 
0,66 
1.00 
1,50 
1. 74 
1,76 
1,78 
1.80 
1,82 
2,00 
2,50 
3,00 
3,50 
3,66 
3,68 
3,70 
4,00 

Remarks 

Stable 
Stable 
stable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
stable 
stable 
Stable 
Stable 
stable 
Stable 
Stable 
Stable 
Stable 
stable 
Unstable 
Unstable 
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Figure 5, y(t) versus t for a=3.68i solution is stable on the 
verge of being periodic 
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Figure 6. y(t) versus t for a=O.50i solution is stable, non­
periodic 
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Figure 7. y(t) versus t for a=3.70i solution is unstable 
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Figure 8. Comparison of Theoretical and Computer Results 

Conclusions 

The objectives of the study have been aChieved. 
First, the mechanization of Mathieus' equation on 
the analog computer has been illustrated as well 
as several noteworthy points regarding function 
generation, A simple but accurate method of gen­
erating an analytic function is from the solution 
of a differential· equation, which generates the func­
tion, This technique presumes that a convenient 
form of the differential equation can be obtained. 
In the case of periodic or sinusoidal functions this 
is the most practical method of obtaining a con­
tinuous function, 

Typical solutions, which are cosine elliptic * , of 
Mathieus' equation are shown in Table I, Runs 1 
through 20 (specifically, Figures 5, 6, and 7). 

* Sine elliptic and cosine elliptic solutions of Mathieus' equation 
are defined in Appendix A. 



These non-periodic solutions behave as expected, 
as "a" increases so does the frequency of the 
solution, By consulting the literature (5), it was 
found that the sine elliptic solutions of Mathieus' 
equation behave in a similar manner, The time 
required to obtain these results is trivial (less 
than one hour) when compared to other computa­
tional methods, 

The percent error of the three computed stability 
boundary points compared to the literature values(5) 
is less than 4%, This error is very small when 

5 

one considers the error usually associated with 
the parameters used in scientific and engineering 
studies, 

The most significant result of this study is the 
fact that the stability boundary points could be de­
termined using the analog computer, This com­
puter application permits a system analyst or design 
engineer to select parameters and operating condi­
tions for efficient, stable operation of a system 
with relative ease, 



APPENDIX A 

TABULATION OF EQUIPMENT 

The following major computing components were 
required to perform this study. 

9 Operational Amplifiers 

5 Integrator Networks 

10 Potentiometers 

1 Multiplier 

1 X- Y Plotter 

APPENDIX B 

STABILITY PLOT DATA (5) 

q b1 a1 b2 a 2 b3 

0 1. 00 1. 00 4.00 4.00 9.00 
1 -0.11 1. 86 3.92 4.37 9.05 
2 -1. 39 2.38 3.67 5.17 9.14 
3 -2.79 2.52 3.28 6.05 9.22 
4 -4.26 2.32 2.75 6.83 9.26 
5 -5.79 1. 86 2.10 7.45 9.24 
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Figure 9. Stability Diagram 
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APPENDIX C 

ANALYTICAL CONSIDERATIONS OF MATHIE US' EQUATION 

One of the more common representations of 
Mathieus' equation is 

2 
d y(t) + (a _ 2q Cos 2t) y(t) = 0 

2 
dt 

(1) 

where "a" and "q" are constants. The stable 
solutions to this equation, which are oscillatory, 
may be periodic or non-periodic. Fortunately, we 
need only consider those solutions which are 
periodic, since the relationships between "a" and 
"q" on an "a versus q" plot for the periodic so­
lutions forms the stability boundaries of the solu­
tion(5). The odd and even (sin or cos) solutions to 
equation (1) are called Mathieu functions, which 
are defined in power series as* 

2 
cem(t, q) = Cos m t + q c1 (t) + q c2(t) + ... (2) 

and 

se (t, q) = Sin m t + q Sl(t) + q2 s (t) + ... (3) 
m 2 

where m denotes the order of the function. The 
"characteristic numbers" of cem and sem are de­
noted by am and bm respectively (am and bm are 
actually a in equation 1) and are related to "q" 
by a power series 

2 2 3 
am' b m = m + Q 1 q + a 2 q + a 3 q +... (4) 

whose coefficients depend on the order and type of 
solution. 

An "even" solution to equation (1) 

y(t) = ce (t, q) 
m 

is obtained when 

y (0) = 1 

and 

while an "odd" solution 

y (t) = se (t,q) 
m 

* se and ce stand for sine elliptic and cosine el/ipt{c. 

(5) 

(6) 

(7) 

(8) 
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is obtained when 

y (0) = 0 (9) 

and 

[dy). _ m 

'dy ) t = 0 (10) 

A general solution to equation (1) is a linear com­
bination of ce and se 

m m 

(11) 

where A and B are constants of integration. 

The coefficients of equation (4) are determined 
by substituting either equation (2) or (3) and equa­
tion (4) into equation (1) and solving for the unknown 
c or s terms. The a coefficients of equation (4) 
are then selected to yield a periodic solution. For 
example, if m were unity 

2 
y(t). = Cos t + q c 1 (t) + q c 2(t) 

3 
+ q c 3 (t) + 

2 2 
d 2y d c 1 2 d c 2 
--= - Cos t + q--+ q ---
dt2 dt2 dt2 

2 
3 d c3 

+ q --2-+ 
dt 

ay(t) 
2 .. 

Cos t + q[ c1 (t) + a 1 Cos t]+ q [c2(t) 

(12) 

(13) 

+ a 1 c1 (t) + a 2 Cos t ] + . " (14) 

and 

- (2q Cos 2t) = - q (Cos t + Cos 3t) 

2 
- 2q c1 (t) Cos 2 t -

Collecting like powers of q yields 

qO Cos t - Cos t = 0 

(15) 

(16) 



2 
d c1 

q --2-+ c (t) - Cos 3t + (a - 1) Cos t = 0 (17) 
dt 1 1 

and 

+ a 2 Cos t = 0 (18) 

Since the particular in t e g r a I corresponding to 
(a1 - 1) Cos t is the non-periodic function 
1/2 (1 - ( 1) t Sin t, 1 is chosen as unity. Therefore, 

1 '8 Cos 3 t (19) 

satisfies equation (17). This method may now be 
repeated to determine as many terms of the series 
as desired. The results of the example are 

1 1 2 
ce1 (t, q) := Cos t - '8 q Cos 3 t + 64 q (- Cos 3t 

1 
+ '3 Cos 5t) + ... (20) 

and 

1 2 1 3 1 4 
a1 := 1 + q - '8 q - 64 q - 1536 q +. (21) 

If the above procedure is repeated for several 
integral values of "m" a stability plot, which is 
shown in Figure 9, can be obtained. The data for 
this plot is tabulated in Appendix B. Only the first 
quadrant of the stability plot is considered in this 
study. However, it should be noted that the second 
quadrant is a minor image of the first quadrant. 

LIST OF SYMBOLS 

a Parameter Dimensionless 

a Characteristic number of ce Dimensionless 
m m 

b Characteristic number of se Dimensionless 
m m 

m Order of Mathieu function Dimensionless 

q Parameter Dimensionless 

y Dependent variable Dimensionless 

z Frequency variable Dimensionless 

A Constant of integration Dimensionless 

B Constant of integration Dimensionless 

{3 Time scale factor Seconds 
Dimensionless Unit 

ce Mathieu function (cosine elllptic) Dimensionless 
m 

se Mathieu function (sine elliptic) Dimensionless 
m 
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