
Programmer's Utilities Guide

Supplement
.. , \

~:lfC O t:) i'T it \ e 'I 3 ·· c.~e:x:~c ... cc··~c-:: 1 Li '?)

1073-2048-002

COPYRIGHT

Copyright© 1987 Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed. stored in a retrieval system, or translated
into any language or computer language, in any form or by any means. electronic.
mechanical, magnetic, optical, chemical, manual. or otherwise. without the prior written
permission of Digital Research Inc .. 60 Garden Court. P.O. Box ORI. Monterey, California
93942.

MAKE Copyright The MAKE source code provided in the developer kit is 1n the public
domain, but certain portions of the code are copyrighted by Mick Hickey and Larry
Campbell. The copyright notice in the source code says: "Permission is given to freely
copy and use these. portions for any purpose, with the exception that those persons or
corporations who claim a copyright on the program or a part of 1t may not use these
portions for any commercial purpose whatsoever In particular. they may not collect
royalties on any version of the program which includes these portions."

Comments in the program source code explain which portions are copyrighted. To
avoid copyright infringements. please observe the following rules:

• Do not copyright any portions of MAKE in the future.
• Do not charge money for MAKE. or use MAKE as an excuse for increasing the

cost of a package in which MAKE is included.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE
Further. Digital Research Inc. reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research
Inc. to notify any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to
the software named herein. Occasionally changes or variations exist 1n the software
that are not reflected in the manual. Generally, if such changes or variations are known
to exist and to affect the product significantly, a release note or README.DOC file
accompanies the manual and distribution disk(s) In that event. be sure to read the
release note or README.DOC file before using the product.

TRADEMARKS

Digital Research and its logo are registered trademarks of Digital Research Inc.
Concurrent and FlexOS are trademarks of Digital Research Inc Lattice 1s a registered
trademark of Lattice, Inc.

Second Ed1t1on February 1987

Introduction

This supplement describes the general-purpose tools provided by
Digital Research.. to help driver and application developers write,
compile, and maintain programs. The following tools are provided:

Tool

BANNER
CAT
CMP
CUT
DIFF
DUMP

DUP
ECHO
FGREP
GREP
LC2UC
MAKE
PASTE
PR
SPLIT
STRINGS
SUM
UC2LC
WC

Description Page

Prints banner pages 3
Concatenates files 5
Compares two files 6
Cuts out specified fields from each line in a file 8
Finds differences between two files 10
Displays file contents in hexadecimal, octal, 12
decimal, or signed decimal form.
Prints multiple lines of the same string 14
Outputs special characters 15
Searches a file or files for string entered 16
Searches a file or files for the pattern entered 17
Translates lowercase characters to uppercase 20
Builds programs 21
Merges lines from a file or files 26
Prints a file or files 29
Breaks down a file into equal size files 33
Prints all sequences of printable characters in a file 34
Calculates file checksum and block count 35
Translates uppercase characters to lowercase 36
Counts file lines, words, and characters 37

Introduction Programming Tools

In the descriptions that follow. options are shown in square brackets.
Generally, you separate options and arguments in the command line
with a space. The character I represents "or" and means you can enter
either of the arguments shown. Utilities with the -? option have online
information available.

Generic Error Messages

The following error messages are generic to most utilities:

Unrecognized option -x

This means you have entered an illegal option for that program; x
indicates the illegal option.

Cannot open xxxx

This means the program cannot open one of the files specified; xxxx
indicates the file that cannot be opened. /

The error messages unique to each tool are presented in the tool
description.

2

\

Programming Tools BANNER

BANNER

Form

Explanation

Examples

BANNER [-w] string

Use BANNER to print a title page or pages. Specify the
banner contents on the command line as a string. The
maximum string length on 80-column paper is 32
characters; the maximum on 132-column is 52
characters. BANNER accepts uppercase and lowercase
characters, spaces, and printable special characters.

BANNER prints the string characters in cells 16 lines
high by 8 columns wide. Each character is separated by
2 columns. The cells are centered vertically on the
page. On 80-column paper, BANNER prints 8 characters
per page. On 132-column paper, BANNER prints 13
characters per page.

The default BANNER paper size is 80 columns wide. Use
the -w option to output to paper 132 columns wide.

In the following examples, 16 represents a space.

banner SORTERl616Versl6 l .41/8162:15

This command prints three 80-column banner pages
with the string divided as follows:

Page 1:
Page 2:
Page 3:

SORTER
Vers 1.4
1/82:15

3

BANNER

4

Programming Tools

banner -w SORTERtzlSourceBETAtzlReleaset!!Version 1.4

This command prints three 132-column banner pages
with the string divided as follows:

Page 1:
Page 2:
Page 3:

SORTER Source
BETA Release
Version 1.4

Programming Tools CAT

CAT

Form

l:xplanation

Examples

CAT [-s] [-] [filespec] [filespec] ...

Use CAT to concatenate files Separate each file
specification with a space. The files are output in the
order specified to the standard output device. No
characters are inserted between the files in the output.

Use the - argument to specify the standard input
device as the input file. CAT also assumes the standard
input device if you do not enter any file specifications.

Use the -s argument to suppress error display if a file
specified is not present.

Note: Remember to specify a new name for the
destination file when you concatenate files into a single
file. When you use one of the input files as the
destination, for example

cat file1 file2 > file1

you destroy the original contents of file 1.

cat src 1 src2

Assuming the standard output device is the console,
this command displays the files src1 and src2 on the
screen.

cat src 1 src2 src3 src 4 > de st

This command reads the files src 1, src2, src3, and src4
and concatenates them in that order in the file dest.

5

CMP Programming Tools

CMP

Form CMP HJ I [-s] file spec 1 filespec2

i;!C2'anation Use CMP to compare binary files. Enter a - in place of
the first file specification to compare input from the
standard input device with a file

6

Default CMP output shows the location of each
difference by line number and byte offset from the
beginning of the file. Nothing is displayed if the files
match. If the two files match up to a point, CMP
indicates that one file is a subset of the other rather
than listing each subsequent line as a difference.

Enter the -I argument to print the conflicting bytes
after the line location and offset. Enter -s to suppress
the display and generate one of the following exit
codes:

0 Files are identical
1 Files have differences
2 Command syntax error

See the BATCH IF command description in the F_l~xQS
User's Guide for the description of your options with
respect to the exit code.

Programming Tools CMP

f;?<amples

Errors

cmp - filex

This command takes input from the standard input
device and compares it with the contents of the file
filex. Where there are differences. CMP displays the
location's line number and byte offset from the
beginning of the file. If there are no differences. nothing
is displayed.

cmp -s file 1 file2

This command compares the contents of file 1 and file2.
If there are differences, the exit code 1 is returned If
there are no differences, exit code 0 is returned.
Otherwise, there is no program output.

eof reached in xxxx

The file xxxx is a subset of the other file specified.

7

CUT Programming Tools

CUT

CUT -c[list] [filespec]

CUT -flist [-dchar] [-s] [filespec]

E~plana_!!on Use CUT to strip characters on each file line according
to column or character specifications. You designate
the characters to save by their number or field. If you
do not specify a file, CUT uses the standard input
device.

8

The options are defined as follows. You must enter
either the -clist or -flist option.

-clist Save characters by column. Enter the columns
by number or, using a dash between numbers,
by range. Separate each column selection with
a comma. The following examples demonstrate
column specifications:

• -c1-35,72 saves the characters in
columns 1 through 35 and 72.

• -c-25,35- saves the characters in
columns 1 through 25 and 35 to the end
of line.

• -c8,9, 11, 12 saves the characters in
columns 8, 9, 11, and 12.

Enter -c alone, without a list, to save the
characters in columns 1 through 72.

Programming Tools CUT

Errors
--~

-flist Save characters by field number. Specify the
fields by their number in the line. For example,
the command -fl,3-5 saves the first and third
through fifth field in each line. By default CUT
uses the tab character as the field delimiter.
To specify a different delimiter, use the -d
option Lines with no delimiters are saved
intact unless you enter the -s option.

-d Specify field delimiter. Enter the character to
use as the field delimiter immediately
following the option. Space characters and
characters with special meaning to the shell
must be enclosed in quotes.

-s Strip lines with no delimiter (-f option only).
Normally, lines without a delimiter are saved.
Use this command to strip them from the
output.

Bad list for c/f option

The -c or -f list specification contains one or more
invalid characters.

Line too long

A line in the input file is too long for CUT.

No fields

The -f option specification does not include a field list.

No delimiters

The -d option specification does not specify a
character.

9

DIFF Programming Tools

DIFF

Form DIFF [-bbl-bl file spec 1 filespec2

DIFF [-?]

~lanation Use DIFF to compare two ASCII files. DIFF output
indicates how to make the files match.

10

Each difference is called out as either an addition,
deletion, or replacement in the form:

{filespec 1 line numbers} type (filespec2 line numbers)

where type is the character a (for addition), d (for
deletion), or c (for change/replace). The following
examples illustrate the three types of output.

n3 a n5,n6

n1,n2 d n3
n1,n2 c n3,n4

Add filespec2 lines 5 and 6 after
filespec1 line 3.
Delete filespec 1 lines 1 and 2.
Replace filespec 1 lines 1 and 2 with
filespec2 lines 3 and 4.

After each callout. the lines from each file are listed.
Lines preceded with < are from filespec1; lines
preceded with > are from filespec2.

The -bb and -b tell DIFF how to handle tabs and
spaces. Enter -bb to have blanks and tabs ignored.
Enter -b to have strings of blanks and tabs treated as
equivalents and trailing blanks ignored.

Programming Tools DIFF

Errors

The DIFF exit code indicates whether or not differences
were found as follows:

0 No differences found
1 Differences found
2 Command error

Out of buffer space

Too many differences were found.

11

DUMP Programming Tools

DUMP

Form DUMP [radix] [display] [+[b]offset,offset] [filespec]

DUMP [-?]

~)(planation Use DUMP to display file contents. You control the
radix and the display format with the following options:

12

Radix Display
-o octal -b bytes(default)
-d decimal -w 16-bit words
-s signed decimal -I 32-bit words
-x hexadecimal (default) -c characters

-m mixed -band -c

Radix and display options are mutually exclusive.

Enter - instead of a file specification to read from the
standard input device.

Use the + option to specify a starting and ending offset.
Add the -b option to specify the offset in blocks (one
block equals 1024 bytes). DIFF interprets the offset
entries as byte values when -b is not entered. Specify
the offset with a leading zero to indicate an octal value
or terminate the offset with a period to indicate a
decimal value. Otherwise, DIFF interprets the offset as a
hexadecimal value.

/

Programming Tools DUMP

Examples dump -w 23,0xcO xxxx

This command displays the contents of file xxxx from
locations 23H to OCOH as hexadecimal, word values.

dump -o -b -

This command reads the standard input device and
displays the input as octal values in byte form.

13

DUP Programming Tools

DUP

Form DUP count [-num] string

Ex_filanation Use DUP to print a string multiple times. The arguments
are defined as follows:

Example

Errors

14

The number of lines of string to print count
-num The number of times within a line to print the

string
string The characters to print

DUP interprets count and num as decimal values. The
default num is 1. Strings can contain C language
conversion specifications in which the arguments set
the number of strings per line and the string· contents.

In the following example, lzS represents a space.

dup 4 -4 "lzSlzSlzSlzS%03dt6%3x" > chart

This command writes a decimal-to-hex conversion
chart 4 lines long with 4 entries per line in the file
CHART. Each entry begins with 4 blank spaces. The
chart appears as follows:

000 0 001 1 002 2 003 3
004 4 005 5 006 6 007 7
008 8 009 9 010 A 011 B
012 c 013 D 014 E 015 F

Must specify count

The duplication count was omitted.

(

\

/'
\

. I

\

Programming Tools ECHO

ECHO

Form ECHO [-n] [-q] arguments

E><cpJ_ci_nation Use ECHO to write the following characters to the
standard output device:

\a bell
\b backspace
\c print line without new line
\f form feed
\n new line (carriage return and line feed)
\r carriage return
\s space
\t tab
\v vertical tab
\\ backslash
\--- octal ASCII character code (1 to 3 digits)
\x-- hexadecimal ASCII character code

ECHO also accepts C-like escape conventions. Separate
each character in the argument with a space. The
arguments are terminated when a new line is received.
ECHO automatically includes the new line in the output.

The ECHO options are defined as follows:

-q Suppress output
-n Suppress the automatic new line

15

FGREP Programming Tools

FGREP

Form FGREP [-n] string [filespec] [filespec] ...

l;_~pJCl_!l~tJon Use FGREP to search a file or files for a string. Leave
out the file specification or enter - to have FGREP
search the standard input device. Use quotes to include
spaces in the string.

16

FGREP prints each line in which the string appears.
When more than one file is specified, FGREP precedes
the line with the file name.

Use the -n option to print the string's line number,
relative to the beginning of the file, at the beginning of
each line.

The FGREP exit code indicates whether or not matches
were found as follows:

O Matches found
1 No matches found
2 Command error

Programming Tools GREP

GREP

Form GREP [options] [expression] [filespec] [filespec] ...

l;_~pl!l_rl_a~ion Use GREP to search a file or files for an expression.
Where GREP finds a match, it prints the whole line and,
when more than one file is specified, it precedes the
line with the file name.

You define the expression with the following
characters:

"

$

Beginning of line

End of line

Any single character

[xyz] Character specification: GREP searches on
characters listed (here, x, y, or z is a match).

[a-z] Character range specification: GREP searches
on all characters in the range (here, lowercase
characters between a and z are a match).

[" xyz]

*

\s

\t

\b

\n

\r

"Other-than"
searches on
listed.

character specification: GREP
all characters besides those

Closure: End of a part of the expression (use
.* as a wildcard)

Space

Tab

Backspace

New line (carriage return and line feed)

Carriage return

17

GREP

18

Programming Tools

The following options are available:

-c Print only the count of matching lines

-e'exp' Search on the following expression (use when
the expression starts with a -}. Do not include
quotes.

-f'file' Search on the pattern in file. Do not include
quotes.

-i Do not distinguish between uppercase and
lowercase characters

-I Print only the file names of files with
matching lines

-n Precede each line with the line number.

-s Suppress "cannot open file" error message

-v Print only lines that do not have a matching
expression

Separate options with a space.

The GREP exit code indicates whether or not the
command conditions were met as follows:

0 Matches found
1 No matches found
2 Command error

Programming Tools GREP

Errors

grep -i -n " .. '.'[a-z0-9]*\t yyy

This command searches the file yyy for an expression
with the following characteristics:

• starts at the beginning line
• begins with any two characters
• has a letter or number after the two initial

characters
• has a tab after the letter or number

Because the -i option is specified, the letter can be
either uppercase or lowercase. The number of each line
with the match precedes the line in the output

Cannot open expression file

Could not open the file in -f specification.

19

LC2UC

LC2UC

Form

20

Programming Tools

LC2UC [file]

Use LC2UC to translate all characters in lowercase to
uppercase. Leave out the file specification to use the
standard input device for input.

Programming Tools MAKE

MAKE

Form MAKE [-f makefile] HJ [-n] [-s] [names]

l;_)(ptanation Use MAKE to build programs according to dependencies
based on file time-date stamps. MAKE takes its
instructions from two files: MAKE.IN! and MAKEFILE.
MAKE.IN! is optional and, if present is always read first.
MAKE searches the current path (see the PATH
description) for the MAKE.IN! file. MAKEFILE, however,
must be in the current directory on the current or
designated disk.

MAKE command line options are defined as follows:

-f tells MAKE that the following argument is the
name of a makefile to be used instead of the
default (MAKEFILE).

-i tells MAKE to continue even if an error is
encountered while executing a command.

-n tells MAKE not to execute the commands, but
write the ones that should be executed to the
standard output. This is useful for creating
batch files, for example.

-s tells MAKE not to echo commands. Only text
echoed from an invoked program appears on
the screen.

names File name or names of the dependencies to
test in MAKEFILE. If no names are entered,
MAKE tests all of the dependencies.

MAKE.IN! and MAKEFILE (or its equivalent) are built from
three types of entries: commands, comments, symbol
definitions, and dependencies.

21

MAKE

22

Programming Tools

A command line starts with a tab or space and
consists of the command name followed by its
arguments. When commands are encountered, MAKE
uses the current PATH and ORDER definitions to find
the command in the same manner as the shell.

Commands are used in conjunction with the
dependency lines to create conditional build
instructions in the MAKE.IN! and MAKEFILE files. You can
enter more than one command after a preceding
dependency line.

Command lines can have any combination of the
following characters to the left of the command:

@ MAKE does not echo the command line.

MAKE ignores the exit code of the command,
i.e. the ERRORLEVEL Without this, MAKE
terminates when a nonzero exit code is
returned.

+ MAKE uses the shell to execute the command.
You must use this if the command is a shell
built-in command, a batch file, or if you use
1/0 redirection with < or > or I .

A symbol definition has the form

SYMBOL = value

MAKE replaces all occurances of SYMBOL that follow
the definition with the value defined. For example, if the
following line is entered:

FOO = foo.c, foo.h, foo.inp

Make replaces the symbol reference $FOO or $(FOO) in
all command and dependency lines with foo.c, foo.h,
foo.inp.

Programming Tools MAKE

To indicate a single "$" character, precede it with
another "$". For example, the MAKEFILE command line

echo $$test

is executed as

echo $test

Any line starting with a # character is a comment line
and is ignored by MAKE. MAKE also ignores blank lines.

A dependency line has the form

target : dependent

Both the target and dependent values can be composed
of one or more files; separate multiple entries with a
space or tab. The dependent value is optional; if none
is specified, the command that follows is always
executed. Special allowance is made for the colons
used in drive specifications. For example, the following
line works as intended.

c: f oo. obj : a: f oo. c

The command or commands immediately following the
dependency are executed only if the time-date stamp
of the dependent is more recent than the target.

If any of the target files does not exist, MAKE creates
the dependent files. MAKE processes dependencies so
that the lowest order files are processed first--MAKE is
recursive in this sense. To ensure proper processing
order, put the higher order dependencies first in the
file. The following dependencies illustrate proper high
to-low order sequencing.

foo.286 : foo.obj
(link command)

foo.obj : foo. c
(compile command)

23

MAKE

24

Programming Tools

After the dependent file or files have been processed,
MAKE makes the target-dependency date comparison.
As above, if any of the dependent are more recent than
the target, the next command line is executed.

There is a special sort of dependency line that allows
for wildcards in the file names; it has the form:

*.obj : *.e
he $*

This command tells MAKE: whenever a file of the form
'''.obj needs to be made (for example, too.obj), then,
provided foo.c exists, MAKE creates too.obj using the
command:

he f oo

A'$ above, MAKE makes the files on the dependent side
first if they too need to be made.

The special symbol $'"' is defined to be the name of the
target file without its extension. It is valid only while
MAKE is processing a wildcard dependency.

The backslash character "\" also has special meaning;
MAKE ignores the backslash and the end-of-line
characters (carriage return and line feed) following it so
that long lines can be constructed conveniently in the
MAKEFILE. The example illustrates use of the backslash.

Example
The following MAKE.IN! and MAKEFILE files create a
version of MicroEMACS from a set of C files using the
Lattice .. C compiler. For brevity sake, the XOBJ group
does not include all MicroEMACS object modules.

Programming Tools MAKE

MAKE. INI

MAKEFILE

• This is the default MAKEFILE for Lattice
• "D" model programs (0 means smal 1 code, large data)

LC1FLAGS = -i\lc\ -md -s -dLATTICE
LC2FLAGS :: -v

#Note: -v causes the code generator to omit stack
overflow checking.

•.obj : •.c
lcl S* S(LClFLAGS)
lc2 S• S(LC2FLAGS)

•.obj : •.asm
masm s•.s•.nul,nul

Important directories

MLIB =
HOME =

\ml ib\d
\xemacs

#Objects generated from files in the HOME directory

XOBJ = basic.obj \
buffer.obj \
cinfo.obj \
display.obj \
echo.obj \
extend.obj \
file.obj \
kbd.obj \
I ine.obj \
main.obj \
fileio.obj \
spawn.obj \
ttyio.obj \
tty.obj \
ttykbd.obj

•Objects from the MLIB library

MOBJ = SMLIB\bcopy.obj SMLIB\dosio.obj
SMLIB\keyboard.obj \SMLIB\video.obj

OBJ = S(XOBJ) SCMOBJ)

Link it

xemacs.exe : S(OBJ) xemacs.inp

#All C objects depend on three header files. But it's
#a nuisance recompiling everything for tiny changes.
#This recompiles only when a few terminal-dependent
•things in ttdef.h change.

display.obj tty.obj ttyio.obj ttykbd.obj : ttydef.h

PASTE Programming Tools

PASTE

Forms PASTE [-dlist] filespec 1 filespec2 ...

PASTE [-s] [-dlist] filespec

l:!<_plal'!~~Q_".' Use PASTE to concatenate files on a line by line basis
or to concatenate succeeding lines of one file. Enter a -
instead of a file specification to use the standard input
device as input.

26

The default PASTE concatenation option merges the
files in columnar fashion into a single file. For example,
if the file alpha was composed of the following lines

aaa
bbb
CCC

and the file numbs was composed of the following lines

111
222
333

the command

paste apha numbs

would produce the following output file:

aaa 111
bbb 222
CCC 333

Unless you specify otherwise, PASTE separates the
lines from each file with a tab and puts a new line
character at the end of each line.

Programming Tools PASTE

Use the -dlist option to specify the character used to
separate lines. The following escape sequences are
available:

\n New line (carriage return and line feed)
\t tab
\\ backslash
\0 nothing (no separation)

PASTE uses the characters one at a time and returns to
the first character in the list after using the last. For
example, the command

paste -dl\\n,0 numbs alpha

merges the alpha and numbs files shown above as
follows

111\aaa
222
bbb
333ccc

PASTE cycles through the -dlist entries, returning to
the first separater after using the last. For example, if
the files alpha and numbs had another line, PASTE
would use the backslash to separate the two lines.

Use the -s option to merge all lines in a file into one
line. For example, the command

paste -s alpha

merges the lines in the alpha file shown above as
follows:

aaa bbb cc cc
PASTE inserts a tab between lines unless you specify
otherwise. Use the -dlist option as described above to
select different line separaters. PASTE always puts a
new line character after the last line merged.

27

PASTE

Errors

28

Programming Tools

dlist too long

There were too many characters specified in -dlist

Bad dlist

The -dlist entry contains an invalid entry.

Too many files specified max is n

There are too many files specified in the command line;
n indicates the maximum.

Too many files open max is n

There are too many files specified in the command line
than can be opened simultaneously; n indicates the
maximum.

Line too long

An output line is too long.

Programming Tools PR

PR

Form

E_xpJanation

PR [options] [filespec] [filespec] ...

Use PR to print files. Leave out file specifications or
enter - to use the standard input device as input. PR
withholds error messages until all files are printed
when you specify the terminal as the standard output
device.

PR default characteristics are as follows

• Output is printed 66 lines per page with a 5-line
header and 5 blank lines at the bottom of the page.

• Page header contains the page number, date and
time, and file name.

• Columns are equal width, separated by a space.
• Lines are truncated at 72 character columns

PR provides the following options. You
multiple options in a single command.
examples for the option input syntax.

+k Start printing from page k.

can enter
See the

-k Print file contents in k columns per page (see
examples for explanation)

-ak Print file lines k per output line (see examples
for explanation)

-m Merge files one per column (as in PASTE
above). PR ignores -k and -a arguments when
you use -m.

-d Insert a blank line between lines (doublespace)

29

PR

30

-eek

-nck

-wk

-ok

-lk

-h

-p

Programming Tools

Set tabs to column positions. Replace c with
the output tab character to be used (tab is the
default). Replace k with the number of
character positions per tab column (eight is
the default).

Print the file with k-digit line numbers (default
number of digits is five). PR prints the number
in the first tab column of each output column
(where -k is more than one) or each line
(where -k is one or -m is selected). Replace c
with the output tab character to be used (tab
is the default).

Truncate lines to k characters.

Offset each line by k characters. The offset is
considered a part of the total line length.

Print pages k lines long (default is 66).

Print the next argument in the page header.

Pause at the end of each page when output
device is a terminal. You enter a carriage
return to proceed with the next page.

-f Output a form feed at the end of each page
(default is a sequence of line feeds). In
addition, -f forces PR to pause before
outputting the first page when the standard
output device is a terminal.

-r Omit error message from output when PR
cannot open a file.

-t Omit page header and 5 blank lines at the
bottom of the page and stop output at the
end of the file. (Otherwise, PR provides blank
lines to the end of the final page.)

Programming Tools PR

Ex()mples

-sc Do not truncate lines and separate columns
with the character c. The -s default character
is a tab. Valid entries for c are any characters
and escape sequences \\ (backslash) and \0 (no
column separation).

In the following examples, the file xxx consists of the
following lines:

11
22
33
44
55
66
77
88
99

PR -3 xxx

This command prints the file xxx three columns per
. page. The line sequence reads down each column. That
is, the lines are printed as follows:

11
22
33

PR -a3 xxx

44
55
66

77
88
99

This command also prints xxx three columns per page,
however, the line sequence is printed across the page.
That is, the lines are printed as follows:

11
44
77

22
55
88

33
66
99

31

PR

Errors ------

32

Programming Tools

You can specify options in one of two ways. Enter a
single - followed by the option letters. For example, the
following command prints xxx double-spaced, 3
columns per page, a backslash between columns, and
SOURCES added to the page header.

PR -3dhs SOURCES xxx

Alternatively, enter options individually, separated by a
space. The following example prints xxx without page
breaks and headers. with tab columns set at every
fourth character position. and lines truncated at 48
characters.

PR -t -e4 -w48 xxx

Too many open files max is n

Too many files are specified in the command line than
can be open simultaneously; n is the maximum.

Too many stdin files max is n

Too many standard input files are specified in the
command line; n is the maximum.

Too many columns max is n

The -k specification is too high; n is the maximum.

Programming Tools SPLIT

SPLIT

Form

E)(planation

Errors

SPLIT -n [filespec] [newname]

Use SPLIT to break down a file into equal length files.
Specify the length of the new files in the -n argument
where n indicates the number of lines Leave out the
file specification or enter - to specify the standard
input device.

The file name for the new files has two components:
the newname entered and a suffix with the characters
aa through zz. The newname specification cannot be
longer than 6 characters. The name of the first file
output is newname appended with aa, the second is
newname appended with ab, and so forth to zy and
finally zz. !f no newname is entered, SPLIT uses x.

Exceed the maximum of 676 files

The -n specification results in more than 676 new files.

33

STRINGS Programming Tools

STRINGS

Form STRINGS [-o] [-sn] filespec [filespec] ...

Exi:>!a_nation Use STRINGS to print all printable characters in a file.

34

The strings are output one string per line. Enter -o to
output the string's file offset along with the string.
Enter -s and a number to offset the output from
column 1 by n character positions. STRINGS interprets
the number as a hexadecimal value.

Programming Tools SUM

SUM

Form SUM [-r] filespec

Explanation Use SUM to generate a file checksum and block count.
The block count indicates the number of 1024-byte
blocks in the file. SUM generates the checksum using
one of two internal algorithms. To use the alternate
algorithm, enter the -r option.

Errors Read error on xxxx

SUM encountered a file system error while reading the
input file.

35

UC2LC

UC2LC

Form

Explanation

36

Programming Tools

UC2LC filespec

Use LC2UC to translate all characters in uppercase to
lowercase. Leave out the file specification to use the
standard input device for input.

Programming Tools we

WC

Form

Explanation

we [-clwx] filespec [filespec] ...

Use WC to get the count of characters, lines, and/or
words in a file or files. Leave out the file specification
to use the standard input device for input. When you
enter multiple files. WC outputs the total for each file
separately and the total lines of all files.

The WC default adds characters, lines. and words. (A
word 1s defined as any character string terminated by a
space, tab, or new line.) To select one or two file
characteristics, enter the abbreviation. For example, the
following command adds only the characters and lines
in file xxx.

WC -cl XXX

WC prints the total for each characteristic as a decimal
value. Use the -x option to print the sum as a
hexadecimal value.

End of Supplement

37

