
01 [)~[j~TflL AESEflAl:H
Post Office Box 579, Pacific Grove, California 93950, (408) 373-3403

CP 1M INTERFACE GUIDE

COPYRIGHT © 1976, 1978

DIGIT AL RESEARCH

Copyright © 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or trans
lated into any language or computer language, in any fonn or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific
Grove, Cal!fornia 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

TABLE OF CONTENTS

1. INTRODUCTION · · · · · · · 1

1.1 CP/M Organization · · · · 1

1.2 Operation of Transient Programs · · · · · 1

1.3 Operating System Facilities · · · · · · · · · 3

2. BASIC I/O FACILITIES · · 4

2.1 Direct and Buffered I/O · · · · · · · · · 5

2.2 A Simple Example · · · · · · 5

3. DISK I/O FACILITIES · · · · · · · · · · · 9

3.1 File System Organization · · · · · · 9

3.2 File Control Block Format · · · · • · 10

3.3 Disk Access Primitives · · · 12

3.4 Random Access . · · · · · · · · · · · · · 18

4. SYSTEM GENERATION · · · · · · · · · · · · · · · · 18

4.1 Initializing CP/M from an Existing Diskette · · · 19

5. CP/M ENTRY POINT SUMMARY · 20

6. ADDRESS ASSIGNMENTS • • • • • • • • • • • • • • • • • 22

7. SAMPLE PROGRAMS • • • • 23

ii

CP/M INTERFACE GUIDE

1. INTRODUCTION

rl'his manual describes the CP/M system organization including
the structure of memory, as well as system entry points. The
intention here is to provide the necessary information required
to write programs which operate under CP/M, and which use the
peripheral and disk I/O facilities of the system.

1.1 CP/M Organization

CP/M is logically divided into four parts:

BIOS - the basic I/O system for serial peripheral control

BOOS - the basic disk operating system primitives

CCP - the console command processer

TPA - the transient program area

The BIOS and BOOS are combined into a single program with a com
mon entry point and referred to as the FooS. The CCP is a dis
tinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the diskette.
The TPA. is an area of memory (i. e, the portion which is not used
by the FDOS and CCP) where various non-resident operating system
commands are executed. User programs also execute in the TPA.
The organization of memory in a standard CP/M system is shown in
Figure 1.

The lower portion of memory is reserved for system information
(which is detailed in later sections), including user defined inter
rupt locations. The portion between tbase and cbase is reserved
for the transient operating system commands, while the portion
above cbase contains the resident CCP and FooS. The last three
locations of memory contain a jump instruction to the FDOS entry
point which provides access to system functions.

1.2 Operation of Transient Programs

Transient programs (system functions and user-defined programs)
are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each
prompt character. Each command ·line takes one of the forms:

{

<command> }
<command> <filename>

<Command> <filename>.<filetype>

Figure 1. CP/M Memory Organization

fbase: FDOS

cbase: CCP

,

TPA

tbase:

System Parameters
boot: .1 II I I II 1 1 Laddress field 0 f j UInl? is fbase

entry: the principal entry point to FDOS is ~t location 0005
which contains a JMP to fbase. The address fi~ld at
location 0006 can be used to determine the si~e of
available memory, assuming the CCP is being overlayed.

Note: The exact addresses for boot, tbase, cbase, fbase,
and entry vary with the CP/M version (see
Section 6. for version correspondence) .

2

3

Where <command> is either a built-in command (e.g., DIR or TYPE),
or the name of a transient command or program. If the <command>
is a built-in function of CP/M, it is executed immediately; other
wise the CCP searches the currently addressed disk for a file
by the name

<command>.COM

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at tbase in memory (see the CP/M LOAD command). The CCP loads
the COM file from the diskette into memory starting at tbase,
and extending up to address cbase.

If the <command> is followed by either a <filename> or
<filename>. <filetype> , then the CCP prepares a file control
block (FCB) in the system information area of memory. This FCB
is in the form required to access the file through the FDOS, and
is given in detail in Section 3.2.

The program then executes, perhaps using the I/O facilities
of the FDOS. If the program uses no FOOS facilities, then the
entire remaining memory area is available for data used by the
program. If the FDOS is to remain in memory, then the transient
program can use only up to location fbase as data.* In any case,
if the CCP area is used by the transient, the entire CP/M system
must be reloaded upon the transient's completion. This system
reload is accomplished by a direct branch to location "boot" in
memory.

The transient uses the CP/M I/O facilities to communicate
with the operator's console and peripheral devices, including
the floppy disk subsystem. The I/O system is accessed by passing
a "function number" and an "information address" to CP/M through
the address marked "entry" in Figure 1. In the case of a disk
read, for example, the transient program sends the number corres
ponding to a disk read, along with the address of an FCB, and
CP/M performs the operation, returning with either a disk read
Icomplete indication or an error number indicating that the disk
operation was unsuccessful. The function numbers and error in
dicators are given in detail in Section 3.3.

1.3 Operating System Facilities

CP/M facilities which are available to transients are divided
into two categories: BIOS operations, and BDOS primitives. The
BIOS operations are listed first:**

l

* Address "entry" contains a jump to the lowest address in the
FOOS, and thus "entry+l" contains the first FDOS address which
cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres
ponds exactly to Intel's peripheral definition, including I/O
port assignment and status byte format (see the Intel manual
which discusses the It1tellec MDS hardware environment).

Read Console Character
Write Console Character
Read Reader Character
Write Punch Character
Write List Device Character
Set I/O Status
Interrogate Device Status
Print Console Buffer
Read Console Buffer
Interrogate Console Status

The exact details of BIOS access are given in Section 2. The BDOS
primitives include the following operations:

Disk System Reset
Drive Select
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Read Record
Write Record
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

The details of BDOS access are given in Section 3.

2. BASIC I/O FACILITIES

Access to common peripherals is accomplished by passing a
function number and information address to the BIOS. In general,
the function number is passed in Register C, while the informa
tion address is passed in Register pair D,E. Note that this
conforms to the PL/M Conventions for parameter passing, and thus
the following PL/M procedure is sufficient to link to the BIOS
when a value is returned:

DECLARE ENTRY LITERALLY '0005H'r /* MONITOR ENTRY */

, MON2: PROCEDURE (FUNC, INFO) BYTE i
DECLARE F~C BYTE, INFO ADDRESS:
GO TO ENTRY:

END MON2;

or

MONl: PROCEDURE (FUNC,INFO);

DECLARE FUNC BYTE, INFO ADDRESS;

GO TO ENTRY:

END MONl

if no returned value is expected.

2.1 Direct and Buffered I/O.

5

The BIOS entry points are given in Table I. In the case of
simple character I/O to the console, the BIOS reads the console
device, and removes the parity bit. The character is echoed back
to the console, and tab characters (control-I) are expanded to
tab positions starting at column one and separated by eight char
acter positions. The I/O status byte takes the form shown in
Table I, and can be programmatically interrogated or changec.
The buffered read operation takes advantage of the CP/M line edit
ing facilities. That is, the program sends the address of a read
buffer whose first byte is the length of the buffer. The second
byte is initially empty, but is filled-in by CP/M to the number
of characters read from the consol~ after the operation (not
including the terminating carriage-return). The remaining posi
tions are used to hold the characters read from the console. The
BIOS line editing functions which are performed during this oper
ation are given below:

break

rubout

- line delete and transmit

- delete last character typed, and echo

control-C - system rebout

control-U - delete entire line

control-E - return carriage, but do not transmit
buffer (physical carriage return)

<cr> - transmit buffer

The read routine also detects control character sequences other
than those shown above, and echos them wi th a preceding "t II
symbol. The print entry point allows an entire string of symbols
to be printed before returning from the BIOS. The string is
terminated by a "$" symbol.

2.2 A Simple Example

As an example, consider the following PL/M procedures and
procedure calls which print a heading, and successively read
the console buffer. Each console buffer is then echoed back in
reverse order:

PRINTCHAR: PROCEDURE (B);
/* SEND THE ASCII CHARACTER B TO THE CONSOLE.*/
DECLARE B BYTE;
CALL MONl(2,B);
END PRINTCHAR;

CRLF: PROCEDURE;
/* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */
CALL PRINTCHAR (ODH); CALL PRINTCHAR (OAH);
END CRLF;

PRINT: PROCEDURE (A);
/* PRINT THE BUFFER STARTING AT ADDRESS A */
DECLARE A ADDRESS;
CALL MON1 (9,A) ;
END PRINT;

DECLARE ROBUFF (130) BYTE;

READ: P ROC EDURE i

/* READ CONSOLE CHARACTERS INTO 'ROBUFF' * /
RDBUFF=128; /* FIRST BYTE SET TO BUFFER LENGTH */
CALL MONI (10, . RDBUFF) ;
END READ;

DECLARE I BYTE;
CALL CRLFi CALL PRINT (.'TYPE INPUT LINES $');

DO WHILE Ii /* INFINITE LOOP-UNTIL CONTROL-C */
CALL CRLF; CALL PRINTCHAR ('*'); /* PROMPT WITH '*' */
CALL READ; I = RDBUFF(l);

ENDi

DO WHI LE (I: = I -1) <"> 255;
CALL PRINTCHAR (RDBUFF(I+2»;
END;

The execution of this program might proceed as follows:

TYPE INPUT LINES
*HELLOJ OLLEH
*WALL WALLA WASH;
HSAW ALLAW ALLAW
*MOM WOW;
WOW MOM
*tc (system reboot)

6

FUNCTION/
NUMBER

<ead Console

1

~r i te Console

2

:{ead Reade r

3

,vrite Punch

4

Nrite List

5

Get I/O Status

7

Set I/O Status

8

Print Buffer

9

. ',' /

.1

fa :7~ \\{

TABLE I

BASIC I/O OPERATIONS

ENTRY
PARAMETERS

None

ASCII Character

None

ASCII Character

ASCII Character

None

I/O Status Byte

Address of
string termi
nated by '$'

L ...

RETURNED
VALUE

ASCII Character

None

ASCII Character

None

None

I/O Status Byte

None

None

TYPICAL
CALL

7

I = MON2(l,O)

CALL MONl(2, 'AI)

I = MON2(3,O)

CALL MONl (4, • B')

CALL MONl (5, 'C')

IOSTAT=MON2(7,O)

CALL MONl(8,IOSTAT)

CALL MONl(9, . • PRINT
THIS $')

FUNC'l'ION/
NUMBER

Read Buffer

10

Interrogate
Console Ready

11

TABLE I (continued)

ENTRY
PARAMETERS

Address of
Read Buffer*

None

RETURNED
VALUE

Read buffer is
filled to maxi
mum length wi th
console charac
ters

Byte value wi th
least signifi
cant bit = 1
(true) if con
sole character
is ready

TYPICAL
CALL

8

CALL MONI (10,
• RDBUFF) ;

I = MON2(ll,O)

Note 1 : Read buffer is a sequence of memory locations of the form:

I mlk\cllc2l c 31 III lckl III
t'Lcurrent buffer length

Maximum buffer length

Note 2 : The I/O status byte is defined as three fields A,B,C, and D

2b 2b 2b 2b
I A I B I c I D I
MSB LSB

requiring two bits each, listed from most significant to least
significant bit, which define the current device assignment as
follows:

D = (.~ ~~~ ~
Console 2 BATCH

3 -

C = r~ ~~~T:READE~
Reader U J B = {~ ~i~T PUNcj . A = (~ ~i~

Punch 32 - List 2
- 3

3. DISK I/O FACILITIES

The BOOS section of CP/M provides access to files stored on
diskettes. The discussion which follows gives the overall file
organization, along with file access mechanisms.

3.1 File Organization

9

CP/M implements a named file structure on each diskette, pro
viding a logical organization which allows any particular file to
contain any number of records, from completely empty, to the full
capacity of a diskette. Each diskette is logically distinct,
with a compl.ete operating system, disk.directory, and file data
area. The disk file names are in two parts: the <filename>
which can be from one to eight alphanumeric characters, and the
<filetype> which consists of zero through three alphanumeric
characters. The <filetype> names the generic category of a par
ticular file, while the· <filename> distinguishes a particular
file within the category_ The <file type> s listed below give
some generic categories which have been established, although
they are generally arbitrary:

ASM assembler source file

PRN assembler listing file

HEX assembler or PL/M machine code
in "hex" format

BAS BASIC Source file

,INT BASIC Intermediate file

COM Memory image file (i.e., "Command"
file for~transients, produced by LOAD)

BAK Backup file produced by editor
(see ED manual)

$$$ Temporary files created and normally
erased by editor and utilities

Thus, the name

X.ASM

is interpreted as an assembly language source file by the CCP
with <filename> x.

The files in CP/M are organized as a logically contiguous se
quence of 128 byte records (although the records may not be phys
ically contiguous on the diskette), which are normally rea~ or
written in sequential order. Random access is allowed under CP/M
however, as described in Section 3.4. No particular format with
in records is assumed by CP/M, although some transients expect:
particular formats:

and

(1) Source files are considered a sequence of
ASCII characters, where each IIline" of the
source file is followed by carriage-return
line-feed characters. Thus, one 128 byte
CP/M record could contain several logical
lines of source text. Machine code "hex"
tapes are also assumed to be in this for
mat, although the loader does not require
the carriage-return-line-feed characters.
End of text is given by the character con
trol-z, or real end-of-file returned by
CP/M.

(2) COM files are assumed to be absolute machine
code in memory image form, starting at tbase
in memory. In this case, control-z is nQl
considered an end of file, but instead is
determined by the actual space allocated
to the file being accessed.

3.2 File Control Block Format

10

Each file being accessed through CP/M has a corresponding
file control block (FCB) which provides name and allocation
information for all file operations. The FCB is a 33-byte area
in the transient program's memory space which is set up for each
file. The FCB format is given in Figure 2. When accessing CP/M
files, it is the programmer's responsibility to fill the lower
16 bytes of the FCB, along with the CR field. Normally, the FN
and FT fields are set to the ASCII <filename> and <filetype>,
while all other fields are set to zero. Each FCB describes up
to 16K bytes of a particular file (0 to 128 records of 128 bytes
each), and, using automatic mechanisms of CP/M, up ~o 15 addi
tional extensions of. the file can be addressed. Thus, each FCB
can potentially describe files up to 256K bytes (which is slightly
larger than the diskette capacity).

FCB's are stored in a directory area of the diskette, and are
brought into central memory before file operations (see the OPEN
and MAKE commands) then updated in memory as file operations pro
ceed, and finally recorded on the diskette at the termination of
the file operation (see the CLOSE command). This organization
makes CP/M file organization highly reliable, since diskette file
integrity can only be disrupted in the unlikely case of hardware
failure during update of a single directory entry.

It should be noted that the CCP constructs an FCB for all
transients by scanning the remainder of the line following the
transient name for a <filename> or <filename>.<filetype> com
bination. Any field not specified is assumed to be all blanks.
A properly formed FCB is set up at location tfcb (see Section 6),
with an assumed I/O buffer at tbuff. The transient can use tfcb
as an address in subsequent input or output operations on this
file.

lOa

In addition to the default fcb which is set-up at address tfcb" the
CCP also constructs a second default fcb at address tfcb+'16 (i.e., the
disk map field of the fcb at tbase). Thus, if the user types

PROGNAME X.ZOT Y.ZAP

the file PROGNAME.COM is loaded to the TPA, and the default fcb at ·tfcb
is initialized to the filename X with filetype ZOT. Since the user typed
a second file name, the 16 byte area beginning at tfcb~ + 1610 is also
initialized with the filename Y and filetype ZAP. It is the responsibility
of the program to move this second filename and filetype to another area
(usually a separate file control block) before opening the file which
begins at tbase, since the open operation will fill the disk map portion,
thus overwriting the second name and type.

If no file names were specified in the original command, then the
fields beginning at tfcb and tfcb + 16 both contain blanks (20H). If
one file' name was specified, then the field at tfcb + 16 contains blanks.
If the filetype is omitted, then the field is assumed to contain blanks.
In all cases, theCCP translates lower case alphabetics to upper case
to be consistent with the CP/M file naming conventions.

As an added programming convenience, the default buffer at tbuff
is initialized to hold the entire command line past the program name.
Address tbuff contains the number of characters, and tbuff+1, tbuff+2,
••• , contain the remaining characters qp to, but not including, the
carriage return. Given that the above command has been typed at
the console, the area beginning at tbuff is set up as follows:

tbuff:

+0
12

+1 +2 +3
~ X

+4
Z

+5, +6
'0 'T

+7 +8
)5' Y

+9 +10 +11 +12 +13 +14 +15
ZAP ? ? ?

where 12 is the number of valid characters (in binary), and)S represents
an ASCII blank. Characters are given in ASCII upper case, with un
initialized memory following the last valid character.

, ,

Again, it is tl1eresponsibi.lity of the program to extract the infor
mation from this buffer befQre any file operations are performed since
the FOOS,U~f!s the tbuff area to perff)l:m directory functions.

In a standard CP/M system, tbe following v~lues are assumed:

boot: OOOOH' 'bootstrap load ~wann start)
entry: OOOSH entry point to FDOS I

tfcb: OOSCH first default file control block
tfcb+16 006CH second file name
tbuff 0080H default buffer address
tbase: 0100H base of transient ar'ea

11

Figure 2. File Control Block Format

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 •• . •• 27 28 29 30 31 32

I I I I I I I I I I I I I I I I II I I I I I I I I II I I
\. ___ ~ ___ --"I ~ l"'--______ ~,;III-----..t.J

ET FN

FIELD

ET

FN

FT

EX

RC

DM

. NR

FT EX RC DM NR

FCB POSITIONS

o

1-8

9-11

12

13-14

15

16-31

32

PURPOSE

Entry type (currently not used,
but assumed zero)

File name, padded with ASCII
blanks

File type, padded with ASCII
blanks

File extent, normally set to
zero

Not used, but assumed zero

Record count is current extent
Size (0 to 128 records)

Disk allocation map, filled-in
and used by CP/M

Next record number to read or
write

12

3.3 Disk Access Primitives

Given that a program has properly initialized the FCB's for
each of its files, the~e are several operations which can be peJ::'
formed, as shown in Table' II. In each case,' the opera tion is
applied to the currently selected disk (see the disk select oper
ation in Table II), using the file information in a specific FCB.
The following PL/M program segment, for example, copies the con
tents of the file x.yto the (new) file NEW.FIL:

DECLARE RET BYTE:;

OPEN: PROCEDURE (A)
DECLARE A ADD~SS;
RET=MON2(lS,A);
END OPEN;

CLOSE: PROCEDURE (A);
DECLARE A ADDRESS;
RET=MON2(16,A);
END;

MAKE: PROCEDURE (A);
DECLARE A ADDRESS 1
RET=MON2(22 ,A) ;
END MAKE;

DELETE: PROCEDURE (A);
DECLARE A ADDRESS;
/* IGNORE RETURNED VALUE * /
CALL MON 1 (19 , A) ;
END DELETE;

READBF: PROCEDURE (A) ;
DECLARE A ADDRESS;
RET=MON2 (20, A) ;
END READBF:

WRITEBF: PROCEDURE (A);
DECLARE A ADDRESS:
RET=MON2(21,A):
END WRITEBF;

INIT: PROCEDURE: '
CALL MON1(13,O);
END INIT:

/* SET UP FILE CONTROL BLOCKS */
DECLARE FCBl (33) BYTE

INITIAL (0, IX ' 1,ly 1,0,0,0;0),
FCB2 (33) BYTE
INITIAL (0, 'NEW ., I FILl ,0,0,0,0) ;

CALL INITi
/* ERASE 'NEW.FILI IF IT EXISTS */
CALL DELETE (.FCB2):
/* CREATE' 'NEW.FIL' AND CHECK SUCCESS */
CALL MAKE (. FCB2) ;
IF RET = 255 THEN CALL PRINT (.'NO DIRECTORY SPACE $'):

EOF

ELSE
DOi /* FILE SUCCESSFULLY CREATED, NOW OPEN 'X.Y' */
CALL OPEN (.FCB1);
IF RET = 255 THEN CALL PRINT (.'FILE NOT PRESENT $');

ELSE
DO: /* FILE X.Y FOUND AND OPENED, SET
NEXT RECORD TO ZERO FOR BOTH FILES */
FCB1(32), FCB2(32) = 0:
/* READ FILE X.Y UNTIL EOF OR ERROR */
CALL READBF (.FCBI): /*READ TO BOH*/

DO WHILE RET = 0:
CALL WRITEBF (.FCB2) /*WRITE FROM BOH*/
IF RET = 0 THEN /*GET ANOTHER RECORD*/

CALL READBF (.FCBI); ELSE
CALL PRINT {.'DISK WRITE ERROR $'};

END:
IF RET < >1 THEN CALL PRINT (.' TRANSFER ERROR $');
ELSE

DO: CALL CLOSE (. FCB2) :
IF RET = 255 THEN CALL PRINT (.'CLOSE ERROR$'):
END:

END;
END:

13

This program consists of a number of utility procedures for
opening, closing, creating, and deleting files, as well as two
procedures for reading and writing data. These utility procedures
are followed by two FCB's for the input and output files. In
both cases, the first 16 bytes are initialized to the <filename>
and <fi1etype> of the input and output files. The main program
first initializes the disk system, then deletes any existing
copy of "NEW.FIL" before starting. The next step is to create
a new directory entry (and empty file) for "NEW.FIL". If file
creation is successful, the input file "X.Y" is opened. If this
second operation is also successful, then the disk to disk copy
can proceed. The NR fields are set to zero so that the first
record of each file is accessed on subsequent disk I/O operations.
The first call to READBF fills the~(implied) DMA buffer at BOH
with the first record from X.Y. The loop which follows copies
the record at BOH to "NEW.FIL" and then reports any errors, or
reads another 128 bytes from X.Y. This transfer operation con
tinues until either all data has been transferred, or an error
condition arises. If an error occurs, it is reported; other
wise the new file is closed and the program halts.

FUNCTION/NUMBER

Lift Head

12

Initialize BOOS
and select disk

"Alf
Set DMA addre.ss
to 80H

13

Log-in and
select disk

X

14

Open file

15

Close file·

16

TABLE II

DISK ACCESS PRIMITIVES

ENTRY PARAMETERS

None

None

An integer value cor
responding to the
disk to log-in:
A=O, B=l, C=2, etc.

Address of the FCB
for the file to be
accessed

Address of an FCB
which has been pre
viously created or
opened

RETURNED VALUE

None
Head is lifted from
current drive

None
Side effect is that
disk A is "logged
inll while all others
are considered "off
line ll

None
Disk X is considered
"on-line" and selec
ted for supsequent
file operations

Byte address of the
FCB in the directory,
if found, or 255 if
file not present.
The OM bytes are set
by the BOOS.

Byte address of the
directory entry cor
responding to the
FCB, or 255 if not
present

14

TYPICAL CALL

CALL MON2(12,O)

CALL r-tONl (13,0)

CALL MONl(14,1)

(log-in disk "B")

I = MON2(15,.FCB)

I = ~.fON2(16,.FCB)

FUNCTION/NUMBER

Search for file

17

Search for next
occurrence

18

Delete File

19

TABLE II (continued)

ENTRY PARAMETERS

Address of FCB con
taining <filename>
and <filetype> to
match. ASCII"?"
in FCB matches any
character.

Same as al:ove, but
called after func
tion 17 (no other
intermediate BOOS
calls allowed)

Address of FCB con
taining <filename>
and <filetype> of
file to delete from
diskette

RETURNED VALUE

Byte address of first
FCB in directory that
matches input FCB, if
any; otherwise 255
indicates no match.

Byte address of next

None

TYPICAL CALL

I = MON2(17,.FCB)

I = MON2(18,.FCB)

I = MON2 (19, • FC'in

----------------------------,.......---------------------------.-...... --~-
Read Next Record

20

Address of FCB of a
successfully OPENed
file, with NR set
to the next record
to read (see notel)

o = successful read
1 = read past end of

file

I = MON2(20,.FCB)

Notel :

2 = reading unwritten
data in random
access

The I/O operations transfer data to/from address 80H for the next 128 bytes unless
the DMA address has been altered (see function 26). Further, the NR field of the
FCB is automatically incremented after the operation. If the NR field exceeds 128,
the next extent is opened automatically, and the NR field is reset to zero.

15

FUNCTION/NUMBER

Write Next Record

21

Make File

22

Rename FCB

23

TABLE II (continued)

ENTRY PARAMETERS

Same as above, except
NR is set to the next
record to write

Address of FCB with
<filename> and <file
type> set. Direc
tory entry is cre
ated, the file is
initialized to empty.

Address of FCB with
old FN and FT in
first 16 bytes, and
new FN and FT in
second 16 bytes

RETURNED VALUE

o = successful write
1 = error in extend

ing file
2 = end of disk data
255 = no more dir

ectory space
(see note2)

Byte address of dir
ectory entry alloca
ted to the FCB, or
255 if no directory
space is available

Address 6f the dir
ectory entry which
matches the first
16 bytes. The
<filename>and <file
type> is altered
255 if no match.

TYPICAL CALL

I = MON2(2l,.FCB)

I = MON2(22,.FCB)

I = MON2 (2 3, • FCB)

Note2 : Th~re are normally 64 directory entries available on each diskette (can be
expanded to 255 entries), where one entry is required for the primary file,
and one for each additional extent.

16

FUNCTION/NUMBER

Interrogate log
in vector

24

Set DMA address

26

Interrogate
Allocation

27

Interrogate Drive
number

25

TABLE II (continued)

ENTRY PARAMETERS

None

Address of 128 byte
DMA buffer

None

None

RETURNED VALUE

Byte value with "1"
in bit positions of
"on line" disks,
with least signi
ficant bit corres
ponding to disk "A"

None
Subsequent disk I/O
takes place at spe
cified address in
memory

Address of the allo
cation vector for
the current disk
. (used by STATUS com
mand)

Disk number of currently
logged disk (i.e., the
drive which will be used
for the next disk operation

17

TYPICAL CALL

I = MON2 (2 4,0)

CALL MONl(26,2000H)

MON3: PROCEDURE(•••)
ADDRESS;

A = MON3 (2 7 ,0) ;

I = MON2(25,O);

18

3.4 Random Access

Recall that a single FCB describes up to a 16K segment of a
(possibly) larger file. Random access within the first 16K seg
ment is accomplished by setting the NR field to the record number
of the record to be accessed before the disk I/O takes place.
Note, however, that if the l28th record is written, then the
BDOS automatically increments the extent field (EX), and opens
the next extent, if possible. In this case, the program must
explicitly decrement the EX field and re-open the previous extent.
If random access outside the first 16K segment is necessary,
then the extent number e be explicitly computed, given an absol
ute record numbp.r r as

e = Ll~8J
or equivalently,

e ='SHR(r,7)

this extent number is then placed in the EX field before tht:! seg
ment is opened. The NR value n is then computed as

n = r mod 128

or

n = r AND 7FH.

When the programmer expects considerable cross-segment accesses,
it may save time to create an FCB for each of the 16K segments,
open all segments for access, and compute the relevant FCB from
the absolute record number r.

4. SYSTEM GENERATION

As mentioned previously, every diskette used under CP/M is assumed to
contain the entire system (excluding transient commands) on the first two
tracks. The operating system need not be present, however, if the diskette
is only used as secondary disk storage on drives B, C, ••• , since the CP/M
system is loaded only from drive A.

The CP/M file system is organized so that an IBM-compatible diskette
from the factory (or from a vendor which claims IBM compatibility) looks
like a diskette with an empty directory. Thus, the user must first copy
a version of the CP/M system from an existing diskette to the first two
tracks of the new diskette, followed by a sequence of copy operations,
using PIP, which transfer the transient command files from the original
diskette to the new diskette.

19

NOTE: before you begin the CP/M copy operation, read your Licensing
Agreement. It gives your exact legal obligations when making reproductions
of CP/M in whole or in part, and specifically requires that you place the
copyright notice

Copyright (c), 1976
Digital Research

on each diskette which results from the copy operation.

4.1. Initializing CP/M from an Existing Diskette

The first two tracks are placed on a new diskette by running the tran
sient command SYSGEN, as described in the docmnent "An Introduction to CP/M
Features and Facilities." The SYSGEN operation brings the CP/M system from
an initialized diskette into memory, and then takes the memory image and
places it on the new diskette.

Upon completion of the SYSGEN operation, place the original diskette
on drive A, and the initialized diskette on drive B. Reboot the system;
the response should be

A'>

indicating that drive A is active. Log into drive B by typing

B:

and CP/M should respond with

B)

indicating that drive B is active. If the diskette in drive B is factory
fresh, it will contain an empty directory. Non-standard diskettes may,
however, appear as full directories to CP/M, which can be emptied by typing

ERA *. *«
when the diskette to be initialized is active. Do not give the ERA command
if you wish to preserve files on the new diskette since all files will be
erased with this command.

After examining disk B, reboot the CP/M system and return to drive A for
further operations.

The transient commands are then copied from drive A to drive B using the
PIP program. The sequence of commands shown below, for example, copy'the
principal programs from a standard CP/M diskette to the new diskette:

A)PIP.J
*B:STAT.COM=STAT.OOM~

*B:PIP.COM=PIP.COM~

*B:LOAD.COM=LOAD.COMJ
*B: ED. COM=ED. COMJ

B:ASM.COM=ASM.OOM
*B:SYSGEN.OOM=SYSGEN.COM;
*B : DDT. COM=DOT • CO~
*;
A)

The user should then log in disk B, and type the command

DIR *. *~

20

to ensure that the files were transferred to drive B from drive A. The
various programs can then be tested on drive B to check that they were
transferred properly.

Note that the copy operation can be simplified somewhat by creating
a "submit" file which contains the copy comniands. The file could be
named GEN.SUB, for example, and might contain

SYSGEN.,
PIP B:STAT.COM=STAT.COMJ
PIP B:PIP.COM=PIP.COM;
PIP B:LOAD.COM=LOAD.CO~
PIP B:EO.COM=ED.OOMJ
PIP B:ASM.COM=ASM.CO~
PIP B: SYSGEN. COM-SYSGEN. COM;
PIP B: DDT • COM=DDT. COM"

The generation of a new diskette from the standard diskette is then done
by typing simply

SUBMIT GENJ

5 . CP/M ENTRY POINT SUMMARY

The functions shown below summarize the functions of the
FDOS. The function number is passed in Register C (first para
meter in PL/M), and the information is passed in Registers D,E
(second PL/M parameter). Single byte results are returned in
Register A. If a double byte result is returned, then the high
order byte comes back in Register B (normal PL/M return). The
transient program enters the FDOS through location "entry" (see
Section 7.) as shown in Section 2. for PL/M, or

CALL entry

in assembly language. All regis ters are al tered in the -FDOS.

Function

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14
15-

16

17

18

19

20

21

22

23

24

25

26

27

Number

System Reset

Read Cons01e

Write Console

Read Reader

Write Punch

Write List

(not used)

Interrogate I/O Status

Alter I/O Status

Print Console Buffer

Read Console Buffer

Check Console Status

Lift Disk Head

Reset Disk System

'Select Disk

Open File

Close File

Search First

Search Next

Delete File

Read Record

Write Record

Create File

Rename File

Interrogate Login

Interrogate Disk

Set DMA Address

Interrogate Allocation

Inforrna tion

ASCII character

ASCII character

ASCII character

I/O Status Byte

Buffer Address

Buffer Address

Disk number

FeB Address
.. ..
.. II

" II

" II

II II

.. II

.. II

II "

·DMA Address

21

Result

ASCII character

ASCII char~cter

I/O Status Byte

True if characte:
Ready

Completion Code
.. ..
.. ..
II ..
" "
II II

II II

" II

" II

Login Vector

Selected Disk
Number

Address of Allo-
cation Vector

22

6. ADDRESS ASSIGNMENTS

The standard distribution version of CP/M is organized for an Intel
MOS microcomputer developmental system with 16K of main memory, and two
diskette drives. Larger systems are available in 16K increments, providing
management of 32K, 48K, and 64K systems (the largest MDS system is 62K
since the RDM monitor provided with the MOS resides in the top 2K of the
memory space). For each additional 16K increment, add 4000H to the values
of cbase and fbase.

The address assignments

boot = OOOOH
tfcb = OOSCH
tbuff= OOaOH
tbase= OlOOH
cbase= 2900H
fbase= 3200H
entry= OOOSH

are

warm start operation
default file control block location
default buffer location
base of transient program area
base of console command processor
base of disk operating system
entry P9int to disk system fram
user programs

23

7. SAMPLE PROGRAMS

This section contains two sample programs which interface with the CP/M
operating system. The first program is written in assembly language, and
is the source program for the DUMP utility. The.second program is the CP/M
LOAD utility, written in PL/M.

The assembly language program begins with a number of "equates" for sys
tem entry points and program constants. The equate

BOOS EQU OOOSH

for ex~ple, gives the CP/M entry point for peripheral I/O functions. The
defualt file control block address is also defined (FCB), along with the
defaul t buffer address (BUFF). Note that the program is set up to run at
location lOOH, which is the base of the transient program area. The stack
is first set-up by saving the entry stack pointer into OLDSP, and resetting
SP to the local stack. The stack pointer upon entry belongs to the con~ole
command processor, and need not be saved unless control is to return to the
CCP upon exit. That is, if the program terminates with a reboot (branch to
location OOOOH) then the entry stack pointer need not be saved.

The program then jumps to MAIN, past a number of subroutines which are
listed below:

BREAK - when called, checks to see if there is a console
character ready. BREAK is used to stop the listing
at the console

PCHAR print the character which is in register A at the
console.

CRLF - send carriage return and line feed to the console

PNIB - print the hexadecimal value in register A in ASCII
at the console

PHEX - print the byte value (two ASCII characters) in
register A at the console

ERR print error flag #n at the console, where n is

1 if file cannot be opened
2 if disk read error occurred

GNB - get next byte of data from the input file. If the
lBP (input buffer pointer) exceeds the size of the
input buffer, then another disk record of 128 bytes
is read. Otherwise, the next character in the buffer
is returned. IBP is updated to point to the next
character.

24

The MAIN program then appears, which begins by calling SETUP. The SETUP
subroutine, discussed belo~, opens the input file and checks for errors.
If the file is opened properly, the GLOOP (get loop) label gets control.

On each successive pass through the GLOOP label, the next data byte
is fetched using GNB and save in register B. The line addresses are listed
every sixteen bytes, so there must be a check to see if the least signi
ficant 4 bits is zero on each output. If so, the line address is taken
from registers hand 1, and typed at the left of the line. In all cases,
the byte which was previously saved in register B is brought back to
register A, following label NONUM, and printed in the output line. The
cycle through GLOOP continues until an end of file condition is detected
in DISKR, as described below. Thus, the output lines appear as

0000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
0010 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

until the end of file.

The label FINIS gets control upon end of file. CRLF is called first
to return the carriage from the last line output. The CCP stack pointer
is then reclainled from OLDSP, followed by a RET to return to the console
command processor. Note that a JMP OOOOH could be used following the
FINIS label, which would cause the CP/M system to be brought in again from
the diskette (this operation is necessary only if the CCP has been over
layed by data areas).

The file control block format is then listed (FCBDN FCBLN) which
overlays the fcb at location OSCH which is setup by the CCP when the
DUMP program is initiated. That is, if the user types

DUMP X.Y

then the CCP sets up a properly formed fcb at location 05CH for the DUMP
(or any other) program when it goes into execution. Thus, the SETUP sub
routine simply addresses this default fcb, and calls the disk system to
open it. The DISKR (disk read) routine is called whenever GNB needs another
buffer full of data. The default buffer at location BOH is used, along
with a pointer (IBP) which counts bytes as they are processed. Normally,
an end of file condition is taken as either an ASCII lAH (control-z), or
an end of file detection by the DOS. The file dump program, however, stops
only on a DOS end of file.

0100
000S =
000F =
0014 =
0002 =
0001 =
0008 =

005C =
0080 =

0100 210000
0103 39
0104 220F01
10107 315101
010A C3C401

0100

010F
0111
01S1 =

01S1 ESOSCS
0154 0E0B
0156 C00S00
01S9 C1DIEI
01SC C9

0150
0160
0162
0163
0166
0169

E50SC5
0E02
SF
CD0500
C1D1El
C9

016A 3E00
016C CDSD01
016F 3E0A
0171 CDSD01
0174 C9

0175 E60F
0177 FE0A
0179 028101

FILE DUMP PROGRAM, READS AN INPU'r FILE AND PRINTS IN 1

COPYRIGHT (C), DIGITAL RESEARCH, 1975, 1976

100H
0095H
IS
20
2
1

iDOS EN'!'RY POIN'r
~FILE OPEN
i READ FUNC'!'ION
i'l'YPE FUNC'!'ION
iREAD CONSOLE

25
ORG

BOOS EQU
OPENF EQU
READF EQU
TYPEF EQU
CONS EQU
BRKF EOU 11 iBREAK KEY FUNCTION (TRUE IF CHAR REA
· ,
FCB EQU
BUFF EOU

SCH
80H

iFILE CONTROL BLOCK ADDRESS
iINPUT DISK BUFFER ADDRESS

SET UP S'I'ACK
LXI H, 0
DAD SP
SHLD OLDSP
LXI SP,STKTOP
JMP MAIN

i VARIABLES
IBP: OS 2 iINPUT BUFFER POINTER

i STACK AREA
OLOSP: OS 2
STACK: OS 64
STKTOP EOU $

· ,
SUBROUTINES

BREAK: iCHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
PUSH HI PUSH 01 PUSH Bi ENVIRONMENT SAVED

i
PCHAR:

· ,
CRLF:

· ,

MVI C,BRKF
CALL SDOS
POP 81 POP 01 POP Hi ENVIRONMENT RESTORED
RET

iPR.INT
PUSH HI
MVI
MOV
CALL
POP Bl
RET

MVI
CALL
MVI
CALL
RET

A CHARACTER
PUSH 01 PUSH Bi SAVED
C,TYPEF
E,A
aDos

POP 01 POP Hi RESTORED

A,00H
PCHAR
A,0AH
PCHAR

PNIB: iPRINT NIBBLE IN REG A
ANI 0FH iLOW 4 BITS
CPI .10
JNC P10

LESS THAN OR EQUAL TO 9
017C C630 ADI ' 0"
017E C38301 JMP PRN

· GREATER OR EQUAL TO 10 26 ,
0181 C637 P10: ADI 'A' - 10
0183 CD5D01 PRN: CALL PCHAR
0186 C9 RET

· ,
PHEX: :PRINT HEX CHAR IN REG A

0187 FS PUSH PSW
0188 0F RRC
0189 0F RRC
018A 0F RRC
018B 0F RRC
018C CD7501 CALL PNIB :PRINT NIBBLE
018F F1 POP PSW
0190 CD7501 CALL PNIB
0193 C9 RET

· ,
;PRINf ERR: ERROR MESSAGE

0194 CD6A01 CALL CRLF
0197 3E23 MVI A, , # '
0199 CD5D01 CALL PCHAR
019C 78 MOV A,B
0190 C630 ADI ., 0 '
019F CD5D01 CALL PCHAR
01A2 CD6A01 CALL CRLF
01AS C3F701 JMP FINIS

· ,
GNB: :GET NEXT BYTE

01A8 3A0D01 LDA IBP
01AB FE80 CPI 80H
01AD C2B401 JNZ G0

R.EAD ANOTHER BUFFER

01B0 CD1602 CALL DISKR
0183 Ai''' XRA A

· , G0: :READ THE BYTE AT BUFF+REG A
0184 5F MOV E,A
0185 1600 MVI D,0
0187 3C INR A'
0188 320D01 STA lBP

POINTER IS INCREMENTED
SAVE THE CURRENT FILE ADDRESS

01BB E5 PUSH H
01BC 218000 LXI H,BUFF
01BF 19 DAD D
01C0 7E MOV A,M

· BYTE IS IN THE ACCUMULATOR ,
· , RESTORE FILE ADDRESS AND INCREMENT

01C1 E1 pop H
01C2 23 INX H
0IC3 C9 RET

· ,
MAIN: ; READ AND PRINT SUCCESSIVE BUFFERS

0IC4 CDFF01 CALL SETUP :SET UP INPUT FILE

01C7 3E80
01C9 320001
01CC 21FFFF

·

MVI
STA
LXI

A,80H
ISP :SETBUFFER POINTER TO 80H
H,0FFFFH :SET TO -1 TO START

GLOOP: 27
01CF COA801 CALL GNB
0102 47 MOV B,A

PRINT HEX VALUES

01D3 70
01D4 £601"
01D6 C2EB01

01D9 CD6A01

010C C05101
010F 0F
01 E0 OAF701

01£3 7C
01E4 C08701
01E7 70
01E8 C08701

01EB 3E20
01EO C05001
01F0 78
01F1 CD8701

01F4 C3CF01

01F7 C06A01
01FA 2A0F01
01E'D F9
01FE C9

005C =
00SD =
0065 =
0068 =
006B =
007C =
0070 =

01FF 115C00
0202 0E0F
0204 CD0500

0207 F'EFF
0209 C21102

NONUM:

· ,

CHECK
MOV
ANI
JNZ
PRIN'I'
CALL

....... _--_ - .. -
FOR LINE FOLD

A,L
0FH :CHECK LOW 4 BI'1'S
NONUM

LINE NUMBER
CRLF

CHECK FOR BREAK KEY
CALL BREAK
RRC
JC FINIS :DON ''I' PRINT ANY MORE

MOV
CALL
MOV
CALL

MVI
CALL
MOV
CALL

JMP

A,H
PHEX
A,L
PHEX

A,' ,

PCHAR
A,B
PHEX

GLOOP

EPSA: : END PSA

FINIS:

· ,

· ,
FCBDN
FCBFN
FCBFT
FCBRL
FCBRC
FCBCR
FCBLN

· ,
SETUP:

CALL
LHLD
SPHL
RET

FILE
EOU
EQU
EQU
EOU
EQU
EOU
EOU

:SET
OPEN
LXI
MVI
CALL
CHECK
CPI
JNZ

END OF INPUT

CRLF
OLDSP

CONTROL BLOCK DEFINITIONS
FCB+0 :DISK NAME
FCB+1 iFILE NAME
FCB+9 :DISK FILE TYPE (3 CHARACTERS)
FCB+12 :FILE'S CURRENT REEL NUMBER
FCB+15 :FILE'S RECORD COUNT (0 TO 128)
FCB+32 :CURRENT (NEXT) RECORD NUMBER (0
FCB+33 :FCB LENGTH

UP FILE
THE FILE FOR INPUT

D,FCB
C ,OPENFo
BOOS

FOR ERRORS
255
OPNOK

TO]

BAD OPEN
020C 0601 MVI B,l :OPEN ERROR
020E C09401 CALL ERR .

LS ,
OPNOK: ;OPEN IS OK.

0211 AF XRA A
0212 327C00 STA FCBeR
0215 C9 RET . ,

OISKR: ;REAO DISK FILE RECORD
0216 E5D5C5 PUSH Hl PUSH 01 PUSH B
0219 115C00 LXI O,FCB
021C 0E14 MVI C,REAOF
021E CD0500 CALL BOOS
0221 C1D1E1 POP Bl POP 01 POP H
0224 FE00 CPI

'"
:CHECK l"OR ERRS

0226 C8 RZ
MAY BE EOF

0227 FE01 CPI 1
0229 CAF701 JZ FINIS

022C 0602 MVI B,2 ;OISK READ ERROR
022E CD9401 CALL ERR

0231 END

The PL/M program which follows implements the CP/M LOAD utility. The
function is as follows. The user types

LOAD filename,l

29

If filename.HEX exists on the diskette, then the LOAD utility reads the "hex"
formatted machine code file and produces the file

filename. COM

where the COM file contains an absolute memory image of the machine code,
ready for load and execution in the TPA. If the file does not appear on
the diskette, the LOAD program 'types

SOURCE IS READER

and reads an Addmaster paper tape reader which contains the hex file.

The LOAD program is set up to load and run in the TPA, and, upon com
pletion, return to the CCP without rebooting the system. Thus, the pro
gram is constructed as a single procedure called LOAD COM which takes the
form

OFAH:
LOADCOM: PROCEDURE;

/* LIBRARY PROCEDURES * /
MONI: •••
/* END LIBRARY PROCEDURES * /
MOVE: •••
GETCHAR: •••
PRINTNIB: •••
PRINTHEX: •••
PRINTADDR:
RELOC: •••

SETMEM:
READHEX:
READBYTE:
READCS:
MAKEDOUBLE:
DIAGNOSE:

END RELOC;

DECLARE STACK(16) ADDRESS, SP ADDRESS;
SP = STACKPTR; STACKPTR = • STACK (LENGTH (STACK» ;

CALL RELOC;

STACKPTB. - SP;
RETURN 0;

END LOADCOM;

EOF

'30

The label OFAH at the beginning sets the or~g~n of the compilation to OFAH,
which causes the first 6 bytes of the compilation to be ignored when loaded
(i.e., the TPA starts at location 100H and thus OFAH, ••• ,:lFFH are deleted
from the COM file). In a PL/M compilation, these 6 bytes are used to set uP
the stack pointer and branch around the subroutines in the program. In/this
case, there is only one subroutine, called LOADCOM, which results in the
following machine memory image for LOAD

OFAH: LXI SP,plmstack ;SET SP TO DEFAULT STACK
OFDH: JMP ,pastsubr iJUMPAROUND LOADCOM
100H: beginning of LOADCOM procedure

end of LOADCOM proceQure
RET

pastsubr:
EI
HLT

Since the machine code between OFAR and OFFH is deleted in the load,
execution actually begins at the top of LOADCOM. Note, however, that
the initialization of the SP to the default stack has also been deleted;
thus, there is a declaration and initialization of an explicit stack and
stack pointer before the call to RELOC at the end of LOADCOM. This is
necessary only if we wish to return to the CCP without a reboot operation:
otherwise the origin of the program is set to lOOH, the declaration of
LOADCOM as a procedure is not necessary, and termination is accomplished
by simply executing a

GO TO OOOOH;

at the end of the program. Note also that the overhead for a systemre
boot is not great (approximately 2 seconds), but can be bothersome for
system utilities which are used quite often, and do not need the extra
space.

The procedures listed i,n LOADCOM as It library procedures" are a standard
set of PL/M subroutines which are useful for CP/M interface. The RELOC
procedure contains several nested subroutines for local functions, and
actually performs the load operation when called from LOADCOM. Control
initially starts on line 327 where the stackpointer is saved and re-initialized
to the local stack. Tae default file control block name is copied to
another file control blo~ (SFCB) since two files may be open at the same
time. The program then calls SEARCH to see if the HEX file exists; if not,
then the high speed reader is used. If the file does exist, it is opened for
input (if possible). The filetype COM is moved to the default file control
block area, and any existing,copies of filename.COM files are removed from
the diskette before creating a new file. The MAKE operation creates a new
file, and, if successful, RELOC is called to read the HEX file and produce
the COM file. At the end of processing by RELOC, the COM file is closed
(line 350). Note that the HEX file does not need to be closed since it
was opened for input only. The ~,&ta written to a file is not permanently
recorded until the file is succeB~fully closed.

Disk input characters are read through the procedure GETCHAR on line
137. Although the DMA facilities of CP/M could be used here, the GETCHAR
procedure instead uses the default buffer at location SOH and moves each
buffer into a vector called SBUFF (source buffer) as it is read. On exit,
the GETCHAR procedure returns ~he next input character and updates the
source buffer pointer (SBP).

The SETMEM procedure on line 191 performs the opposite function from
GETCHAR. The SETMEM procedure maintains a buffer of loaded machine code
in pure binary form which acts as a "window" on the loaded code. If there
is an attempt by RELOC to write below this window, then the data is ignored.
If the data is within the window, then it is placed into MBUFF (memory
buffer). If the data is to be placed above this window, then the window
is moved up to the point where it would include the data address by writing
the memory image successively (by 128 byte buffers), and moving the base
address of the window. Using this technique, the . plt'ogranuner can recover
from checksum errors on the high-speed reader by stopping the reader,
rewinding the tape for seme distanc~, then restarting LOAD (in this case,
LOADing is resumed by interrupting with a NOP instruction). Again, the
SETMEMprocedure uses the default buffer at location SOH to perform the
disk output by moving l2B byte segments to BaH through OFFH before each
write.

..,
00001 1
00002 1
00003 1
00004 1
00005 1
00006 1
00007 1
00008 1
00009 1
00010 2
00011 2
00012 2
00013 2

ESS */
00014 2
00015 2
00016 2

/
00017 2
00018 2
00019 2
00020 2
00021 2
00022 2

*/
00023 2
00024 2

ROM THE
00025 2

S THE MACH
00026 2

*/
00027 2

****** */
00028 2
00029 2
00030 3
00031 3
00032 3
00033 3
00034 2
00035 2
00036 3
00037 3
00038 3
00039 3
00040 2
00041 2
00042 3
00043 3
00044 3
00045 2
00046 2
00047 2
00048 ..,

4-

00049 2
00050 2

32

0FAH: DECLARE BDOS LITERALLY '0005H':
/* TRANSIENT COMMAND LOADER PROGRAM

*/

COPYRIGHT (C) DIGITAL RESEARCH
JUNE, 1975

LOADCOM: PROCEDURE BYTE:
DECLARE FCBA ADDRESS INITIAL(5CH):
DECLARE FCB BASED FCBA (33) BYTE:

DECLARE BUFFA ADDRESS INITIAL(80H), /* I/O BUFFER ADDR

BUFFER BASED BUFFA (128) BYTE:

DECLARE SFCB(33) BYTE, /* SOURCE FILE CONTROL BLOCK *

BSIZE LITERALLY '1024',
EOFILE LITERALLY 'lAH",
SBUFF(BSIZE) BYTE /* SOURCE FILE BUFFER */

INITIAL(EOFILE) ,
RFLAG BYTE, /* READER FLAG */
SBP ADDRESS: /* SOURCE FILE BUFFER POINTER

/* LOADCOM LOADS TRANSIENT COMMAND FILES TO THE DISK F

CURRENTLY DEFINED READER PERIPHERAL. THE LOADER PLACE

CODE INTO A FILE WHICH APPEARS IN THE LOADCOM COMMAND

/* **************** LIBRARY PROCEDURES FOR DISKIO *******

MON1: PROCEDURE (F,A) :
DECLARE F BYTE,
A ADDRESS:
GO TO BDOS:
END MON1;

MON2: PROCEDURE (F,A) BYTE:
DECLARE F BYTE,
A ADDRESS:
GO TO BDOS:
END MON2;

READRDR: PROCEDURE BYTE:
/* READ CURRENT READER DEVICE */
RETURN MON2(3,0):
END READRDR:

DECLARE
TRUE LITERALLY '1',
FALSE LITERALLY '0',
FOREVER LITERALLY 'WHILE TRUE',
CR ~ITERALLY '13',

-----OLOF-- LITERAL·LY~·-;-i0~ , .-... _- _ .. ,

00051 2
00052 2 WHAT LITERALLY '63';
00053 2
00054 2 PRIN1:'CHAR: PROCEDURE (CHAR) ; '33
00055 3 DECLARE CHAR BYTE;
00056 3 CALL MON1(2,CHAR):
00057 3 END PRINTCHAR:
00058 2
00059 2 CRLF: PROCEDURE:
00060 3 CALL PRINTCHAR(CR):
00061 3 CALL PRINTCHAR(LF):
00062 3 END CRLF:
00063 2
00064 2 PRINT: PROCEDURE (A) :
00065 3 DECLARE A ADDRESS:
00066 3 /* PRINT THE STRING STARTING AT ADDRESS A UNTIL THE
00067 3 NEXT DOLLAR SIGN IS ENCOUNTERED */
00068 3 CALL CRLF:
00069 3 CALL MON1(9,A):
00070 3 END PRINT:
00071 2
00072 °2 DECLARE DCNT BYTE;
00073 2
00074 2 INITIALIZE: PROCEDURE:
00075 3 CALL MON1(13,0):
00076 3 END INITIALIZE;
00077 2
00078 2 SELECT: PROCEDURE (D) :
00079 3 DECLARE D BY'l'E:
00080 3 CALL MON1(14,D):
00081 3 END SELECT:
00082 2
00083 2 OPEN: PROCEDURE (FCB) :
00084 3 DECLARE FCB ADDRESS;
00085 3 DCNT = MON2(15,FCB):
00086 3 END OPEN:
00087 2
00088 2 CLOSE: PROCEDURE (FCB) :
00089 3 DECLARE FCB ADDRESS;
00090 3 DCNT = MON2(16,FCB):
00091 3 END CLOSE:
00092 2
00093 2 SEARCH: PROCEDURE (FCB) ;
00094 3 DECLARE FCB ADDRESS:
00095 3 DCN'l1 = MON 2 (1 7 , FC B):
00096 3 END SEARCH:
00097 2
00098 2 SEARCHN: PROCEDURE:
00099 3 DCNT = MON2(18,0);
00100 3 END SEARCHN:
00101 2
00102 2 DELETE: PROCEDURE (FCB) :
00103 3 DECLARE FCB ADDRESS:
00104 3 CALL MON1(19,FCB):
00105 3 END DELETE;
00106 2
00107 2 DISKREAD: PROCEDURE (FCB) BYTE:
00108 3 DECLARE FCB ADDRESS:
00109 3 RETURN MON2(20,FCB):
00110 3 END DISKREAD;

00111 2
00112 2
00113 3
00114 3
00115 3
00116 2
00117 2
00118 3
00119 3
00120 3
00121 2
00122 2
00123 3
00124 3
00125 3
00126 2
00127 2

***** */
00128 2
00129 2
00130 3
00131 3
00132 3
00133 3
00134 4
00135 3
00136 2
00137 2
00138 3
00139 3
00140 3
00141 3
00142 3
00143 3
00144 3
00145 3
00146 4
00147 4

ROR$') ;
00148 5
00149 5
00150 5
00151 4
00152 3
00153 3
00154 2
00155 2
00156 2
00157 2
00158 2
00159 3
00160 3
00161 3
00162 3
00163 2
00164 2
00165 3
00166 3
00167 3
00168 2

DISKWRITE: PROCEDURE (FCB) BYTE:
DECLARE FCa ADDRESS:
RETURN MON2 (21 , FCB) :
END DISKWRITE:

MAKE: PROCEDURE (FCB) :
DECLARE FCB ADDRESS;
DCNT = MON2(22,FCB);
END MAKE;

RENAME: PROCEDURE (FCB) :
DECLARE FCB ADDRESS;
CALL MONl(23,FCB):
END RENAME:

1* ******************* END OF LIBRARY PROCEDURES ********~

MOVE: PROCEDURE (S,D,N) :
DECLARE (8,0) ADDRESS, N BYTE,
A BASED S BYTE, B BASED 0 BYTE:

DO WHILE (N:=N-1) <> 255:
B = A; S=S+l; 0=0+1;
END:

END MOVE;

GETCHAR: PROCEDURE BYTE;

DECLARE

/* GET NEXT CHARACTER */
DECLARE I BYTE:
IF RFLAG THEN RETURN READRDR:
IF (SBP := SBP+1) <= LAST (SBUFF) THEN

RETURN SBUFF(SBP);
/* OTHERWISE READ ANOTHER BUFFER FULL */

DO SBP = 0 TO LAST(SBUFF) BY 128:
I~ (I:=DISKREAD(.SFCB» = 0 THEN

CALL MOVE(80H,.SBUFF(SBP) ,80H); ELSE
00:" IF 1<>1 THEN CALL PRINT (. 'DISK READ ER

SBUFF(SBP) = EOFILE:
SSP = LAST (SBUFF) :
END:

END:
SBP = 0: RETURN SBUFF;
END GETCHAR;

STACKPOINTER LITERALLY 'STACKPTR';

PRINTNIB: PROCEDURE(N);
DECLARE N BYTE;

IF N > 9 THEN CALL PRINTCHAR(N+'A'-10); ELSE
CALL PRINTCHAR(N+'0');

END PRINTNIB;

PRINTHEX1 PROCEDURE (B) ;
DECLARE B BYXE;

CALL PRINTNIB(SHR(B,4»: CALL PRINTNIS(B AND 0FH);
END PRINTHEX;

00169 2
00170 3
00171 3
00172 3
00173 2
00174 2
00175 2
00176 2
00177 2
00178 3
00179 3
00180 3
00181 3
00182 3
00183 3
001$4 3
00185 3

OC */
00186 3
00187 3
00188 3
00189 3
00190 3
00191 3
00192 4
*/
00193 4
00194 4
00195 4

GRAPH */
00196 4
00197 5
00198 6
00199 5
00200 5
00201 5
00202 5
00203 6
00204 6
00205 6
00206 6
00207 5
00208 4
00209 4
00210 3
00211 3
00212 4
00213 4
00214 4
00215 4
00216 4
00217 4
00218 3
00219 3
00220 4
00221 4
00222 4
00223 3
00224 3
00225 4

PRINTADDR: PROCEDURE (A) ;
DECLARE A ADDRESS;
CALL PRINTHEX(HIGH(A»; CALL PRINTHEX(LOW(A»;
END PRINTADDR;

/* INTEL HEX FORMAT LOADER */

RELOC: PROCEDURE:
DECLARE (RL, CS,
DECLARE

RT) BYTE:

j*LOAD ADD.RESS * /
/* TEMP ADDRESS */
/* START ADDRESS */
/* FINAL ADDRESS */
/* NUMBER OF 8YTES LOADED */

3S

LA ADDRESS ...
TA ADDRESS,
SA ADDRESS,
FA ADDRESS,
NB ADDRESS,
SP ADDRESS, /* STACK POINTER UPON ENTRY TO REL

1"1 B U F F (2 5 6) B Y'l' E ,
P BYTE,
L ADDRESS;

SETMEM: PROCEDURE (B) :
/* SET 1'1BUFF TO B AT LOCATION LA MOD LENGTH (~lBUFF)

DECLARE (B,I) BYTE;
IF LA < L THEN /* MAY BE A RETRY */RETURN;

DO WHILE LA > L + LAST (MBUFF) : /* WRITE A PARA

DO I = 0 TO 127: /* COpy INTO BUFFER */
BUFFER(I) = MBUFF(LOW(L»; L = L + I:
END;

/* WRITE BUFFER ONTO DISK */
P = P + 1;
IF DISKWRITE(FCBA) <> 0 THEN

END:

DO; CALL PRINT(. 'DISK WRITE ERROR$');
HALT;
/* RETRY AFTER INTERRUPT NOP */
L = L - 128;
END;

MBUFF(LOW(LA» = B;
END SETMEM:

READHEX: PROCEDURE BYTE;
/* READ ONE HEX CHARAC'rER FROM THE INPUT * /
DECLARE H BYTE;
IF (H := GETCHAR) - '0' <= 9 THEN RETURN H - '0':
IF H - 'A' > 5 THEN GO TO CHARERR;
RETURN H - 'A' + 10;
END READHEX;

READBYTE: PROCEDURE BYTE; ,
/* READ TWO HEX DIGITS */
RETURN SHL(READHEX,4) OR READHEX;
END READBYTE;

READCS: PROCEDURE BYTE:
/* READ BYTE WHILE COMPUTING CHECKSUM */

""'226 4
00227 4
00228 4
00229 4
00230 3
00231 3
00232 4

S */
00233 4
00234 4
00235 4
00236 3
00237 3
00238 4
00239 4
00240 4
00241 4
00242 5

00243 5
00244 5
00245 4
00246 4
00247 4
00248 4
00249 4
00250 4
00251 4
00252 4
00253 5
00254 5
00255 5
00256 4
00257 4
00258 4
00259 3
00260 3
00261 3
00262" 3
00263 3
00264 3
00265 3
*/
00266 3
00267 3

NTERED * /
00268 3
00269 4

00270 4
00271 4
00272 3
00273 3
00274 3
00275 3
00276 . 3
00277 3
00278 3
00279 4

DECLARE B BYTE;
CS = CS +(B := READBYTE);
RETURN B;
END READCS;

MAKE$DOUBLE: PROCEDURE (H,L) ADDRESS:
/* CREATE A BOUBLE BYTE VALUE FROM TwO SINGLE BYTE

DECLARE (H,L) BYTE:
RETURN SHL(DOUBLE(H) ,8)· OR L:
END MAKE $ DOUBL'E :

DIAGNOSE: PROCEDURE;

DECLARE M BASED TA BYTE:

NEWLINE: PROCEDURE:
CALL CRLF: CALL PRINTADDF(~A) 1 CALL PRINTCHAR(':')

CALL PRINTCHAR(' '):
END NEWLINE:

/* PRINT DIAGNOSTIC INFORMATION A'll THE CONSOLE * /
CALL PRINT(.'LOAD ADDRESS $'): CALL PRINTADDR(TA);
CALL PRINT(. 'ERROR ADDRESS $'); CALL PRINTADDR(LA);

CALL PRINT(. 'BYTES READ:$'): CALL NEWLINE;
DO WHILE TA < LA;
IF (LOW (TA) AND 0FH) = 0 THEN CALL NEWLINE;
CALL PRINTHEX(MBUFF(TA-L»; TA=TA+1;
CALL PRINTCHAR (" '); .
END;

CALL CRLF:
HALT;
END DIAGNOSE:

/* INITIALIZE */
SA, FA, NB = 0;
SP = STACKPOINTER:
P = 0; /* PARAGRAPH COUNT */
TA,LA,L = 100H; /* BASE ADDRESS OF TRANSIENT ROUTINES

IF FALSE THEN
CHARERR: /* ARRIVE HERE IF NON-HEX DIGIT IS ENCOU

DO: /* RESTORE STACKPOINTER */ STACKPOINTER = SP;
CALL PRINT(.'NON-HEXADECIMAL DIGIT £NCOUNTERED $')

CALL DIAGNOSE;
END;

/* READ RECORDS UNTIL :00XXXX IS ENCOUNTERED */

DO FOREVER;
/* SCAN THE : */

DO WHILE GETCHAR <>
END;

. . . ,

00280 4
00281 4

TH */
00282 4
00283 4
00284 4-
00285 4
00286 4
00287 4
00288 4
00289 4
00290 4
00291 4
00292 4
00293 4
00294 4
00295 4
00296 4
00297 4
00298 5
00299 4
00300 4
00301 4
00302 4
00303 4
00304 5
00305 5
00306 4
00307 3
00308 3
00309 3
00310 3
00311 3
00312 3
00313 4
00314 3
00315 3
00316 3
00317 3
00318 3
00319 3
00320 3
00321 3
00322 2
00323 2
HEX TAPE
00324 2
1£'0325 2
00326 2
00327 2
00328 2
00329 2
00330 2
00331 2
01£'332 2
00333 2
00334 2
00335 2
00336 2

/* SET CH~CKSUM TO ZERO, AND SAVE THE RECORD LENG

CS = 0:
/* MAY BE 'lISE END OF 'rAPE */
IF (RL := READCS) = 0 THEN

GO; TO FIN~
NB = NB + RL:

'l'A, LA = MAKE$DOOBLE(READCS,READCS):
IF SA = 0 THEN SA = LA:

37

/* READ THE RECORD TYPE (NOT CURRENTLY OSED) */
RT = READCS J

/* PROCESS EACH BYTE */
DO WHILE (RL := RL - 1) <> 255:
CALL SETMEM(READCS): LA = LA+1:
END:

IF LA > FA THEN FA = LA - 1:

/* NOW READ CHECKSUM AND COMPARE */
IF CS + READBYTE <> 0 THEN

__ . _________ ... _ _ ___ J)Q.LCAL.IL--P_~i.~'r L ... ~IUiC .. LSIDi_ERRQR .. $~ ~_l; --. -- --- - -
CALL DIAGNOSE:
END:

END:

FIN:
/* EMPTY THE BUFFERS */
TA = LA;

DO WHILE L < TA;
CALL SETMEM(0); LA = LA+1:
END:

/* PRINT FINAL STATIST~CS */
CALL PRINT(.'FIRST ADDRESS $'): CALL PRINTADDR(SA):
CALL PRINT(.'LAST ADDRESS $"): CALL PRINTADDR(FA):
CALL PRINT(.'BYTES READ $"); CALL PRINTADDR(NB);
CALL PRINT(.'RECORDS WRITTEN $"): CALL PRINTHEX(P);
CALL CRLF:

END RELOC;

/* ARRIVE HERE-FROM THE SYSTEM MONITOR, READY TO READ THE-

/* SET UP STACKPOINTER IN THE LOCAL AREA */
DECLARE STACK (16) ADDRESS, SP ADDR_ESS;
SP = STACKPOINTER: STACKPOINTER = .STACK(LENGTH(STACK»:

SSP = LENGTH (SBUFF) :
/* SET UP THE SOURCE FILE */

CALL MOVE(FCBA,.SFCB,33):
CALL MOVE (. (, HEX' ,") ,. SFCB (9) ,4) :
CALL SEARCH(.SFCB);
IF (RFLAG := DCNT = 255) THEN

CALL PRINT(.'SOURCE IS READER$'): ELSE
DO: CALL PRINT(.'SOURCE IS DISK$'):

00337 3
00338 3

E $ ") ;
00339 3
00340 2
00341 2
00342 2
00343 2
00344 2
00345 2
00346 2
00347 2
00348 2

); ELSE
00349 2
00350 3
00351 3

,) ;

00352 3
00353 2
00354 2
00355 2
00356 2
00357 2
00358 2
00359 1
00360 1

CALL OPEN(.SFCB);
IF DCNT = 255 THEN CALL PRINT(. "-CANNOT OPEN SOORC

END;
CALL CRLF:

CALL MOVE(. "COM' ,FCBA+9,3) ;

/* REMOVE ANY EXISTING FILE BY THIS NAME */
CALL DELETE (FCBA) ;
/* THEN OPEN A NEW FILE */
CALL MAKE (FCBA) ; FCB(32) = 0; /* CREATE AND SET NEXT RECORD */
IF DCNT = 255 THEN CALL PRINT(. "NO MORE DIRECTORY SPACES'

DO; CALL RELOC;
CALL CLOSE (FCBA) ;
IF DCNT = 255 THEN CALL PRINT(.'CANNOT CLOSE FILE$

END;
CALL CRLFi

/* RESTORE STACKPOINTER FOR RETURN */
STACKPOINTER = SP;
RETURN 0;
END LOADCOM; . ,
EOF

