
MAXI BASIC - LEVEL ~.l 

Introduction 

This manual describes MAXI BASIC - Level I, an extended BASIC with such features 
as multiple-dimensional arrays, strings, formatted output, and machine language 
subroutine capability, with plain english diagnostics. 

The user of MAXI-BASIC is assumed to be familiar with some version of BASIC. 
The purpose of this manual is not to teach BASIC but rather to define commands, 
statements and operating procedures of MAXI-BASIC. 

System Size 

inc. 

MAXI-BASIC and operating system reside in the first,.ll pages of memory (~13K). 

Therefore,the minimum system memory size should be 18K. MAXI-BASIC automatically 
searches for top of memory and adjusts itself for any size of continous memory. 

Inputting a program 

Every program line begins with a line number. Any line of text typed to 
MAXI BASIC in command mode that begins with a digit is processed by the editor. 
There are four possible actions which may occur: 

1. A new line is added to the program. This occurs if the line number 
is legal (range is ~ thru 65535) and at least one character follows 

the line number in the line. 
2. An existing line is modified. This occurs if the line 

number matches the line number of an existing line in the program. 
That line is modified to have the text of the newly typed in line. 

3. An existing line is deleted. This occurs if the typed-in line 
contains only a line number which matches an existing line in the 
program. 

4. An error is generated. If the line number is out of range, or the line 
is too long, or the memory would become full, then an error message 
is generated andno other action is taken by MAXI BASIC. 

Blanks 

Blanks preceding a line number are ignored. The first non-digit in a line 
terminates the line number (even blanks). Multiple blanks are permitted 
anywhere in a line for indentation purposes, but not within reserved words 
or constants. 

po box 1086, arvada, colorado 80001 



Multiple program statements 

Multiple program statements may appear on a single line, if separated by a 
(:) colon. A line number must appear only at the beginning of the first 
statement on the line. 
NOTE: The colon (:) must be preceeded by a space for correct operation. 
Typing mistakes 

If a typing mistake occurs during the entering of any line of text to 
MAXI BASIC, there are two possible corrective actions available: 

When the user types an (@) at-sign character, MAXI BASIC 
completely ignores all input on the current line being typed 
in, and types a carriage return. The correct line may then 
be typed to MAXI BASIC. 

When the user types a left-arrow (under-line or RUBOUT on some 
keyboards), MAXI BASIC will backspace to the previously typed 
character. (It is not possible to backspace past the beginning of 
line) • 

Compatibility 

Certain characters, when they appear in programs, are automatically translated 
into other characters. This is done to minimize the effort of converting 
programs written for other BASIC systems. In particular, left bracket (~), 

and right bracket (]), are converted to left paren, and right paren respectively. 
This conversion is not done within quoted strings in a program. 

COMMANDS 

RUN <optional line number> 
Begin program execution either at the first line of the program or else 
at the optionally supplied line number. 

LIST <optional line number>,<optional second line number> 

SCR 

If no arguments are supplied, then print the entire existing 
program. If one line number is supplied, then print the specified 
line number. If two line numbers are supplied, then print the program 
in the region between the two line numbers. If one line number and a 
comma are typed with no second line number, then print the program from 
the specified line number to the end. 

Delete (scratch) the existing program and data, in preparation for 
entering a new program. 

REN <optional beginning value>,<optional increment value> 

CLEAR 

Renumber the entire existing program. If the first argument is not supplied, 
then l~ is used as the initial statement renumber value. If the second, 
argument is not supplied, the l~ is used as the increment value. 

Clear all variables, This command deletes all arrays, strings and 
functions, and initializes all scalar variables to zero. 

- 2 -

digital group software systems inc. 

pO box 1086, arvada, colorado 80001 



CONT 

~his command causes execution of a running BASIC program to continue 
after a STOP statement or after a control-C stop. 

LINE <number of characters> 

SAVE 

LOAD 

This command defines the line length of the user terminal. No input line 
will be accepted longer than the specified value, and no output line will 
be printed longer than the specified value. The maximum value is 132. The 
initial value is 72. 

This command is used to save a program onto a cassette. See saving and 
reloading programs 

This command is used to load a program from cassette to memory. See 
saving and reloading programs 

CONSTANTS 

Magnitude range: .lE-63 thru.99999999E+63 

NAMES 

Constants appearring in programs are rounded to 8 digits if necessary. 
Internal representation of numbers is binary-coded-decimal. 

All user defined names are one or two characters long: a letter of 
the alphabet optionally followed by any digit. For example: a, Z~, 

and Q9 are legal names. The same name may be used to identify different 
values, as long as the values they identify are of different types. 
For example, it is possible to have a scalar variable named AI, an 
array named AI, a string named AI$ and functions named FNAl and 
FNAI$. There is no relationship between these entities. 

OPERATORS 

Numeric: +, - I, *, t (or A on some keyboards) 

Relational: =, <, >, <>, >=, =>, <=, =< 
A relational operation gives a 1 (true) or ~ (false) result. 

Boolean: AND, OR, NOT 
A Boolean operand is true if non-zero, and false if zero. 
The result of a boolean operation is 1 or ~. 

STATEMENTS 

Only some statements listed below are accompanied by discussion. Consult the 
example programs in Appendix 1 for questions about the use of a particular type of 
statement. 

LET 
The LET is optional in assignment statements. Multiple assignments 
are not allowed. The statement A=B=~ assigns true or false to A de
pending on whether or not B equals ~. 

l~~ LET A A+I: B(J) = B(J-I) 

digital group software systems inc. 

pO box 1086, arvada, colorado 80001 
- 3 -



IF, THEN, ELSE 
An IF statement may optionally have an ELSE clause. A THEN or ELSE 
clause may be a LET statement, a RETURN statement, another IF statement 
or a GOTO, for example. If either the THEN clause or the ELSE clause 
is a simple GOTO, then the GOTO reserved word may be optionally omitted. 

l~~ IF A=B THEN 15~ ELSE A=A-I 

FOR, NEXT 

GO TO 

ON 

EXIT 

STOP 

END 

REM 

FOR loops may be multiply nested. The optional STEP value may be 
positive or negative. It is possible to specify values such that 
the FOR loop will execute zero times. For example: 

l~~ FOR J=5 to 4 PRINT J NEXT 
A NEXT statement may optionally specify the control variable for the 
matching FOR statement, as a check for proper nesting. 

The GOTO statement is a direct branch to the designated line number. 
l~~ G¢T¢ 71~ 

The ON statement provides a multi-branched GOTO capability. For 
example: 

l~~ ON J GOTO 5~~, 6~~, 7~~ 
will branch to 5~~, 6~~ or 7~~ depending on the value of J being 
1, 2, or 3 respectively. 

The EXIT statement is identical to a GOTO except that it has the 
effect of terminating any active FOR loops and reclaiming the 
associated internal stack memory. It should be used for branching out of a 
FOR loop. 

l~~ IF A (J)~l~~ EXIT 32~ 

The STOP statement halts execution of the program and displays 
the message "STOP IN LINE XXX". After a STOP has been encountered, 
the program can be continued starting at the next line by typing 
CaNT. 

l~~ STOP 

The END statement also halts the execution of the program. However, 
unlike STOP, there is no way to continue from an END statement. If 
the END statement is the last line number of the program, it may be 
optionally omitted. 

l~~ END 

The REM statement is used to annotate the program. Any REM statement 
is ignored by the MAXI-BASIC interpreter. 

l~~ REM THIS PROGRAM CALCULATES PI 

- 4 -

digital group software systems inc. 

pO box 1086, arvada, colorado 80001 



READ, DATA 

RESTORE 

INPUT 
INPUTI 

The READ and DATA statements allow the user to input pre-determined data 
into a program. The READ statement transfers data named in the DATA 
statement into the varriables or array which have been named by the 
READ statement. 

l~~ DATA 12.17, "VOLTS", 2.4E~9, "OHMS" 
ll~ READ V, V$, 0, 0$ 

The RESTORE statement may optionally include a line number, specifying 
where the READ pointer is to be restored to. In the absence of the 
optional line number, the READ pointer is set to the first line 
of the program. 

l~~ RESTORE 75 

The INPUT or INPUTI statement may optionally specify a literal 
string which is typed on the terminal as a prompt for the input 
instead of a question mark. To inhibit the echoing of the carriage 
return at the end of user input, use the INPUTI statement. 

l~~ INPUT "TYPE VALUE: ",V 

GOSUB, RETURN 

PRINT 

FILL 

The GOSUB statement branches the program to a subroutine with the 
starting line number specified in the GOSUB statement. The RETURN state
ment is the last line of the subroutine, and branches the program to the 
line following the GOSUB statement. 

l~~ GOSUB 13~~ 
1350 RETURN 

The PRINT statement may include a list of expressions, variables, 
or constants separated by (,) commas, or semicolons (;). Note 
that if the list of variables is terminated by a comma, or semicolons 
then a carriage return is not typed. A comma separator will output five 
spaces between variables. A semicolon separator will output no 
spaces between variables. The PRINT "" statement will cause a 
carriage return to be printed. All values are printed in free format, 
unless formatting is specified. If a value will not fit on the current 
output line, then it is printed on the next output line. Advancement 
of the printer to a specified output position may be accomplished with the 
TAB function. Formatting may be accomplished by including a "format 
string" in a print statement (see below). A # sign is interpreted 
as the word PRINT. 

l~~ PRINT "P'!'=": P: PRINT"": PRINT D, 17.5, E 

This statement permits filling a specified byte in the computer memory 
with a given expression value. For example, FILL l~~, J+3 will fill 
memory byte l~~ with J+3. 

l~~ FILL l00, J+3 

- 5 -

digital group software systems inc. 

pO box 1086, arvada, colorado 80001 



OUT 

ARRAYS 

This instruction permits doing an 8~8~ 
example, OUT 5,3 will perform an OUT 5 
or Z-8~ accumulator. 

l~~ OUT 5,3 

or Z-8~ OUT instruction. For 
instruction with 3 in the 8~8~ 

Arrays may be dimensioned with any number of dimensions, limited only by 
available memory, e.g., 

l~~ DIM A(l), B7(5,2,3,4,5,6) 
Array indexing starts at element~. Array A in the above example actually has 
two elements, A(~) and A(l). Use of an undimensioned array causes automatic 
dimensioning to a one dimension, l~ element array. Arrays may not be re-dimensioned 
within a program. 

STRINGS (See Appendix 1, Page 3) 
Strings of 8-bit characters may be dimensioned to any size, limited only by 
available memory, e.g., 

l~~ DIM A$(l),Al$(l~~~~) 
Note that a string name is a variable name followed by a ($) dollar sign. 
Substrings may be accessed as A$ (N,M) which is the substring of characters 
N thru M. For example, if A$ is "ABCDEF" then A$(3,5) is "CDE". Alternatively, 
A$(N) identifies the substring including characters N thru the last character in the 
string. The concatenation operator is a plus sign. 

If an assigned value is larger than the destination string or substring, then it 
is truncated to fit. If an assigned value to a substring is shorter than the substring, 
then the extra characters of the substring are left unmodified. A string 
variable used before being DIMensioned is given the default dimension of l~. 
Strings may not be redimensioned within a program. Strings may not be modified 
until they have been defined by a LET A$= or INPUT A$ statement. 

Strings, substrings and string expressions may be used in conjunction with: LET, 
READ, DATA, PRINT, IF, and INPUT statements. The string IF statement does alphabetic 
comparisons when the relational operators are used, e.g. 

l~~ IF A$+B$<"SMITH" THEN 5~ 
When string variables are INPUT, they must not be quoted. When strings appear 
in data statements, they must be quoted. 
NOTE: A string array is initialized as follows: (Where N = Length of string). 

For X = 1 to N ;A$=A$+" " : NEXT X 
USER DEFINED FUNCTIONS 
User-defined functions (either of type string or numeric) may be I-line or 
multiple line functions. There may be "'any number of numeric arguments. Parameters 
are "local" to a particular call of a function. That is, the', value of the variable 
is not affected outside of the execution of the function. 

Functions are defined before execution begins (at RUN time), so definitions need 
not be executed, and functions m~y be defined only once. 

Multiple line functions must end with a FNEND statement. A multiple-line function 
returns a value by executing a RETURN statement with the value to be returned, for 
example: 

l~~ DEF FNA(X,Y,Z) 
2~~ IF Z=l THEN RETURN X 
3~~ X-Y*Z+X*3 
4~~ RETURN X 

5~~ FNEND 
6~~ PRINT FNA(1,2,X+Y) 

digital group software systems inc. 

pO box 1086, arvada, colorado 80001 
- 6 -



BUILT IN FUNCTIONS 

FREE(~) 
ABS(expr) 
SGN (expr) 
INT(expr) 
LEN (string 
CHR$ (expr) 
VAL (string 
STR$(expr) 
ASC(string 
SIN (expr) 
COS (expr) 
RND (expr) 
LOG (expr) 
EXP (expr) 
SQRT (expr) 
CALL (expr, 
EXAM (expr) 
INP(expr) 

returns number of bytes remaining in free storage. 
returns the absolute value of the expression 
returns l,~, or -1 if the value is +, ~, or -
returns the integer portion of the expression value 

name) returns the length of the specified string +;..-/- ItS c... <-- '> 
returns a string with the specified character - crp'fJt1}{,-( II , 

expr) returns the numeric value of the string 
returns a string with the specified numeric value _J~ 

name) returns ASCII code of first character in string (t(,et-c~( v ,&{vtlZ.- vT 
fl-S C-.fJ. (otk ) returns SINE of the expression 

returns the COSINE of the expression 
returns a random number between ~ and 1 
returns the natural log of the expression 
returns the value of e raised to the specified power 
returns the positive square root of the expression 

optional expr) see below 
return contents of addressed memory byte 
return result of 8~8~ or Z-80 IN to specific port 

MACHINE LANGUAGE SUBROUTINE INTERFACING 

The built-in function CALL takes a first argument which is the decimal address of 
a machine language subroutine to call. The optional second argument is a 
value which is converted to an integer and passed to the machine language sub
routine in DE. The CALL function returns as value the integer which is in 
HL when the machine language subroutine returns. 
NOTE: CALL is a function and not a verb. Therefore: 10 LET X=CALL(1234) and not 

10 CALL (1255) 
FORMATTED OUTPUT 

If no format string is present in a PRINT statement, then all numeric values 
will be printed in the "default format". (The default format is initially 
set to be free format.) A format string appears anywhere in the print list 
and must begin with a per cent (%) character, e.g. 

PRINT %$1~F3,J 
A format string consists of optional format characters followed optionally 
by a format specification. The format characters are: 

C place commas to the left of decimal point as needed 
$ put a dollar sign to the left of value 
Z suppress trailing zeroes 
? make this f9rmat string the default specification 

Format specifications (similar to FORTRAN) are: 
nFm* F-format. The value will be printed in a n-character field, right 
justified, with m digits to the right of decimal point. 

nI* I-format. The value will be printed in a n-character field, right 
justified, if it is an integer~ (Otherwise an error message will occur.) 

- 7 -

digital group software systems inc. 

PO box 1086, arvada, colorado 80001 



nEm* E-format. The value will be printed in scientific notation in a n
character field, right justified, with m digits to the right of the decimal 
point. 

All printed values are rounded if necessary. A null format string will print 
values in free format. 
*N includes preceeding +or-, and all commas and dollar signs 

The general form is PRINT % XY;I 
Where X=any combination (or none) of C,$, and Z 

Y=any format specification 
I=variable or constant 
and where the separating comma or semicolon is as in any non
formatted PRINT statement 

i.e. PRINT %C$Z12F3;1234.56~9 
$1,234.561 

Control-C 

PRINT %C$Z12F2;1234.56~~ 
$1,234.56 

Typing the control-C character (ETX on some keyboards) has the effect of 
prematurely interrupting MAXI BASIC from whatever it is doing. If a LIST 
is in progress, the listing will be terminated at the completion of the 
output of the current line. If a RUN or CaNT is in progress, then execution 
will stop after the completion of the currently executing statement, and a 
CaNT will continue executing the program. 

DIRECT STATEMENTS 

,When MAXI BASIC is in command mode, certain statements may be typed for 
immediate execution. This is typically used for examining the values of certain 
variables to diagnose a programming error. Note that a pound sign(#) may be 
used as a shorthand way of typing the PRINT reserved word. No direct statement 
is permitted which transfers control to the BASIC program. Also, DATA, DEF, 
FOR, NEXT, INPUT, and REM are forbidden. 

SAVING AND RELOADING PROGRAMS 

To save a current program onto cassette, the user should turn on his recorder 
(on record ) and type SAVEcr. The CRT screen will indicate that the tape is being 
written. When finished, the screen will return with the READY message. 

To reload a program from cassette, the user should start playing the cassette. 
When the leader tone is heard, type LOAD cr.' The CRT screen will indicate t~at 
the tape is being read. When finished the screen will return with the READY message. 

All programs written on the Z-8~ are useable on the 8~8~ version of MAXI-BASIC 
and vice versa. Also, cassettes written with level I MAXI BASIC will be upward 
compatible on all later levels of MAXI BASIC. 

- 8 -

digital group software systems inc. 

pO box 1086, arvada, colorado 80001 



L-S AI 

/Y1A-X~ 8A-SIC FUJJCT/tJ!V CJJ()£$ (HE~) 
N U/ /fr') -eVIC L nT'/ i-,:; 

t1S tJ ... -------............. -----
(8 ~--.--.--.---. --

. _. 
q A .IL- e 

f) L£T PN ~(A N' (0) (w) 

1 FrJR o IJ~ LiS' r (:;J 

2 PRINT j;I- NULL ( D) 

'3 /Y6X T D..Ii .. .. 5.G. .. ~~_ .. ______ 
-- .--

1f IF o fA'r CLG-Af\ sa({T 

5 /~r;AO PnL LOAO (it,11" ) 

6 INpuT E. X f r co N r (2) IN! 

7 DATA *'- 5T~ 1 !-:L~.-__ .. ( I; 
. _.-------- -

g GO flJ V Pr L fiEN 

C; 6IJsaB A5C OUNP (&) 

A RETU!},M C Htl.~ SA V£ ( ->0) S6AI 
" . 

B 0111 ELSE (1)) (-+~) SIN 
. " .. ---, --- --"---~ .. ",.---- --'. ._-----

-. ------------

C SloP fA@ ( -0>(1) LGN 
-

0 ~N f) THfN 1 *) CALL 

E Rl!STOJ\c r() r.N~ 

F ReM 5 -rEP (:,) ( ~) ._--
-..........~---'--........ ----~ ........ :-------- .-

AI pt,J b--6' h c. . I-/S"i-i I), q 

A t3 S- OB eXIT q" L],7 Ai 

AAIO eC f-XP DE i.()AfJ AlJ 

4SC qC( FILL qr; LOb DD 

CAl.-L CO FN 1(1 Nf.x:r ~, 

CHY{~ 9A- FOP- f61 Nor F"7 

[!. ~A({ AI}- F({SI3 Og N 1;1 L t- A2 

CONT Ab G()5lAe 8'1 ON 1~ 

co) DC GtJTO g<g ott 130 

o f.t ,A S7 J.F gtf OlAT q'l 
Org;C rtf fNP Dey P j?,J NT ~2 

-. - ---- -~-

DJM fiB INPUT fJ' r< fAD g~ 

o fA I~,p Aq JNT CG y\ r5/V'/ gp. 

61..5£ 18 LEN CC P,0,1\,) A<6 
--. - - - ---- --- --

END go ~ r; T so A ~)ToY\e ge 
E. x Af"ji DA LiN e. A7 ~ r: Ti~f\AI gA 

b 
(w) 

(i') 
-------.' -

( ~) 

(/4 ) 

U~ ... 
F/~ee 

tNP 

SXAfI'( 

11-85 

LO, 

to6 

G.xp 

( 11_) 
-----

f'ZAlO CE 

rUtiN At) 
)A\J[; APr 

>c.J( A3 
S'GN LA 

5J "I ~l3 

5&Rf (.¥ 

.. 5TEP OJ f= 

~T() fJ gc 

5Tr<.h 97 

fA 8 1(. 

[HeN CfO 

TO 9tE 

VAL 91 

f _F __ 

.. C (:=, 

l' <'7 
'* -::) 
t .~( 

(II) <: 

/ N~T 
'-'~--..... , 

U) 

AND 

Of.. 

>= 

#-
( 

+ 
-
'" 
/ 

l' 

< 
<== 
;( 

!: 

.. (> 
)= 
::) 

1 

9'2 
!3¢ 

63 

£.~ 

62 
f7 
(;1 

F'+ 
F¢ 

F3 
F5 
Fl 
eF 
F2 
I;: b 





APPENDIX 1 

EXAMPLES OF PROGRAMS 

100 REM PRINT A VERTICAL SINE WAVE 
110 REM 
11S FOR J=l TO 10 STEP .3 
120 S=INT(lS*(SIN(J») 
140 PRINT TAB(lS+S)i"*" 
1S0 NEXT J 
160 STOP 
READY 
REN 10,2 
READY 
LIST 

10 REM PRINT A VERTICAL SINE 
12 REM 
14 FOR J=1 TO 10 STEP .3 
16 S=INT(lS*(SIN(J») 
18 PRINT TAB(lS+S)·"*" I 
20 NEXT J 
22 STOP 
READY 
RUN 

* 
* .. 

* 

* .. 
* 

* 

* 
* READY 

* 

* 

* 
* if 

* 
* 

,,; 
,,; 

* 

Appendix 1 
- 1 -

* ,,; 
,'I 

* 

* 

.. ~ 
if 

* 

* ,,; 

* 

WAVE 



100 REM A NUUERIC SORT PROGRAM 
110 REM 
120 DIM A(15) 
130 PRINT "INPUT FIFTEEN VALUES, ONE VALUE PER LINE" 
140 FOR J=l TO 15 
150 INPUT A{J) 
160 NEXT J 
170 REM DO EXCHANGE SORT UNTIL ALL IN ORDER 
175 F=O : REM THIS FLAG USED TO SIGNAL WHETHER ARRAY IN ORDER YET 
180 FOR J=2 TO 15 
190 IF A(J-l)<=A{J) THEN 220 
200 T=A{J) : A{J)=A(J-l) : A(J-l)=T ; REM EXCHANGE A{J) AND A(J-l) 
210 F=l : REM SET FLAG 
220· NEXT 
230 IF F=l THEN 175 : REM LOOP IF EXCHANGES HAPPENED 
240 PRINT"SORTED ARRAY: u; 
250 FOR J=l TO 15 : PRINT A{J)j" It; : NEXT 
READY 
RUN 

INPUT FIFTEEN VALUES, ONE VALUE PER LINE 
?123 
?22 
?-37 
?O 
?2 
?-54 
?31 
?8 
?-9.4 
?1.54 
?-3.8 
?36 
?21 
?-43 
?213 
SORTED ARRAY: -54 -43 -37 -9.4 -3.8 0 1.54 2 8 21 22 31 36 
123 213 

READY 

Appendix 1 
- 2 -



STRING INITIALIZATION 

10 REM TO INITIALIZE A STRING VARIABLE 
20 REM USE THE FOLLOWING ROUTINE 
30 REM BEFORE ATTEMPTING TO ALTER THE STRING 
40 DIM A$(n) Where n=string length 
50 FOR X=l to n 
60 LET A$=A$+" " 
70 NEXT X 

10 REM CHARACTER SORT 
20 REM EXAMPLE USING STRINGS AND FUNCTION 
30 DIM A$(72) 
40 INPUT "TYPE A STRING OF CHARACTERS; ",A$ 
50 IF LEN(A$)=O THEN 40 : REM MAKE SURE SOMETHING WAS ENTERED 
60 IF FUA(LEN(A$»=l THEN 60 ; REH CALL FNA UNTIL IT RETURnS A ZERO VALUE 
70 PRINT"SORTED ARRAY: "jA$ 
80 END 
90 DEF FNA(N) : REM CHARACTER SORT 
100 REM RETURN 0 IF A$ SORTED, ELSE RETURN 1 
110 LET F=O 
120 FOR J=2 TO N 
130 IF A$(J-l,J-l)~=A$(J,J) THEN 160 
140 T$=A$(J,J) : A$(J,J)=A$(J-l,J-l) A$(J-l,J-l)=T$ 
150 F=1 
160 NEXT J 
170 RETURN r 
180 FNEND 
READY 
RUN 

TYPE A STRING or CHARACTERS: DIGITAL GROUP 
SORTED ARRAY: ADGGIILOPRTU 
READY 

TV DESIGNER 

, ENTER LINE FREOUENCY 60 
ENTER HORZ HOLDorF RATIO 1.5 
ENTER VERT HOLDorF RATIO 1.25 
ENTER CHARACTERS/LINE 64 
ENTER ROWS OF CHARACTERS 16 
ENTER HORZ PEL/CHARACTER 7 
ENTER H PEL SPACES 1 
ENTER LINES/CHARACTER 12 
ENTER LINES DURING JUMP 1 
H FREO 15600 XTAL 11980 
VIS H PEL 512 TOTAL H PEL 768 
VIS LINES 208 TOTAL LINES 260 
H RATIO 1.50 V RATIO 1.25 
NS/PEL 83.5 NS/CHAR 667.7 
H LINE 64.10 H BLANK 21.37 
FRAME 16.67 V BLANK 3.33 

READY 
.tt ..... 

Appendix 1 
- 3 -



SCR 
READY 
LOAD 

READY 
LIST 

10 REM TV DESIGNER 
20 REM 
30 F'OR A=lT05 : PRINT"" : NEXTA 
40 PRINT TAB(8);"TV DESIGNER" 
50 PRINT 

, 60 INPUT"ENTER LINE F'REOUENCY It, L 
70 INPUT"ENTER HORZ HOLDOF'F' RATIO ",H 
80 INPUT"ENTER VERT HOLDOF'F' RATIO ".V 
90 INPUT"ENTER CHARACTERS/LINE ",C 
100 INPUT"ENTER ROWS OF' CHARACTERS ",R 
110 INPUT"ENTER HORZ PEL/CHARACTER ",P 
120 INPUT"ENTER H PEL SPACES ",S 
130 INPUT"ENTER LINES/CHARACTER ",X 
140 INPUT"ENTER LINES DURING JUMP ",J 
150 REM 
160 REM CALCULATIONS 
170 REM 
180 REM CORRECTED TOTAL LINES 
190 LET A=INT«(X+J)*R*V)+.5) 
200 REM CORRECTED V HOLDOF'F RATIO 
210 LET V=A/«X+J)*R) 
220 REM HORZ FREOUENCY 
230 LET B=A*L 
240 REM VISIBLE H PEL 
250 LET D=C*(P+S) 
260 REM CORRECTED EFF'ECTIVE H PEL 
270 LET E=INT«D*H)+.5) 
280 REM CORRECTED HORZ HOLDOF'F RATIO 
290 LET T=E/D 
300 REM PEL RATE IN MHZ 
310 LET F'=E*B/I000 
320 REM TIME/PEL IN NS 
330 LET G=(1/F)*1000000 
340 REM TIME /CHARACTER IN NS 
350 LET I=G*(P+S) 
360 REM HORZ LINE TIME IN US 
370 LET K=(1/B)*1000000 
380 REM HORZ BLANKING TIME IN US 
390 LET M=K*«E-D)/E) 
400 REM FRAME TIME IN MS 
410 LET N=(1/L)*1000 
420 REM VERT BLANKING IN MS 
430 LET O=(N*«A-«X+J)*R»/A» 
440 REM TOTAL VISIBLE PEL 
450 LET O=D*(P+S) 
460 REM TOTAL VISIBLE LINES 
470 LET U=(X+J)*R 
480 PRINT"H FREO";INT(B);" XTAL";INT(F) 
490 PRINT"VIS H PEL";D~" TOTAL H PEL"jE 
500 PRINT"VIS L~NES";U;" TOTAL ~INES";A 
510 PRINT"H RATIO ";%4F'2;T;" V RATIO ";%4F'2;V 
520 PRINT"NS/PEL ";%4F'1;Gj" NS/CHAR ";%5F'1;I 
530 PRINT"H LINE "j%6F'2jKj" H BLANK "j%6F2;M 
540 PRINT"FRAME ";%5F'2iNf' V BLANK ";%6F2;0 
550 PRINT TAB ( 10) ."***;.,'r •• *" 
READY 

Appendix 1 
- 4 -


