
Developer DocumeH1ta~n

•

Version 4.0
April 24, 1990

Evan Brooks
Robert Currie

Digidesign Inc.

Confidential
'This dC&'Ull'lent contains confidential information. Do not disclose any in1pnnation contained ~ this

document to any third-party Without the prior written consent of6i.gidesign Inc.'

Contents
Introduction .. 1

Organization Of This Manual .. 1
Required Background Materials .. 1
Getting Started ... 2
Support Policies ... 3

Writing Sound Accelerator Software .. 4
Standard Development Tools .. 4
Third Party Development Tools ... 4
Application Constru.ction ... 5

The Device Driver ... 6
Sound Accelerator Driver Control Calls ... 7
Sound Accelerator Driver Status Calls•..................•...•...... 12

Sound Manager 'snth' Resource ... 13
snth Initialization ... 14
Pascal 'snth' Data Structures .. 15
Format of a "Chunky" Sound File Buffer ... 15
Format of an "Interleaved" Sound File Buffer .. 16
snth Command Summary .. 16
Sound Installer Application ... 17

Debugging Applications ... 19
Speed Considerations ... 21
Miscellaneous Notes, Suggestions, and Warnings .. 23
Questions And Answers .. 25
MPW Shell Tool Parse56k ... 26
SASample and DSPWorkshop ... 28
Sound Designer I File Format ... ~ ... 29

Resource Fork .. 29
Data For~ ee •• e •••••••••• ee ••• 29

Sound Designer n File Format ... 33
Resource Fork .. 33
Other Parameter IResource Types ... 33
Reserved Parameter/Resource Types .. 35
Data Fork. .. 35

AIFF File Format ... 37
Macintosh Expansion Chassis ... 38
Control Signals and Magic Bits ... 39

CRB - S5! Control Register B: ... 39
PCD - Port C Control Register: ... 39
PCC and PCDDR: ... 40

The CTL_LATCH ... 41
Note About 'Old' vs 'New' Mode Signals and Local Mode 41
Standard Settings .. 41
CTL_LATCH Bit Descriptions ... 42
Sound Accelerator Rev. B and Rev. A SE30 CTL_LATCH bit summary 43

Sound Accelerator Rev. A ... 44
Memory Space ... 44
Board Reset.. 44
DSP Registers ... 44
Board Interrupts .. 44
Board Architectu.re ... 45

CTL_LA TCH .. 45
Sound Accelerator SE Rev. A .. 47

Memory Space ... 47
DSP Registers ~ .. 47
Board Interrupts .. 47
CTL_LA TCH .. 47

Sound Accelerator Rev. B .. 48
CTL_LATCH .. 48

Ad In Analog to Digital Converter .. 49
C-Bits ... 49

Sound Accelerator SE/30 Rev. A .. 51
crt_LATCH ... ~ .. 51

DAT I/O ... 52
C-Bits ... 52

Audiomedia Rev. A and B .. 54
Analog I/O .. 54
Digital Signal Processor ... 54
DMA Circuitry ... 55
CTL_LATCH Bit Descriptions .. 55
Device Driver ... 57
Memory Map ~ ... 58

Appendices .. 59

Introduction
This manual describes Digidesign's family of digital audio hardware and development software.
The emphasis is on technical details of the hardware as well as software issues related to third party
development. Since the first version of this documentation appeared in 1988, the number of
registered developers, both commercial and academic, along with the number of hardware
products has grown faster then our ability to provide support and documentation. This manual
represents a comprehensive description of our hardware products to date. Over the next year, the
number of hardware products will grow even more. As new products are released, we will provide
additional developer documentation in the form of additions to this manual as well as additional
sample source code. As the first third party commercial products and research projects using our
hardware are now appearing, we hope that through our support, developers will continue to
utilize our hardware in creative and new ways.

If you have been programming our hardware and/or Macintoshs for a while, you will have
noticed that things seem to be getting quite complicated (as if they weren't complicated enough
already) and in many ways non-orthogonal. We plan to continue to develop high end hardware
such as the Sound Accelerator, as well as low end consumer products such as the Audio Media
card. This dichotomy usually translates into 'compatibility hell' for programmers. Given that
Apple will be changing its hardware and operating system drastically in the near future, and that
our hardware will continue to evolve, please bear with various additions and exceptions that
enable everything to work together. Trust that as we come out with new hardware, and Apple
changes the rules, we will try to make everything work together, but this will most likely be at the
expense of pure elegance. We STRONGLY recommend that you adopt some sort of object oriented
approach to our hardware (as well as Apple's) so that the changes will be easier to weather.

t/ The core of Digidesign's hardware is the Sound Accelerator. The majority of this manual
relates to programming the Sound Accelerator, but the ideas and techniques are almost
identical when dealing with other hardware (such as the Audio Media card). As future
version of the Sound Accelerator are released and documented, the general sections in this
manual on the Sound Accelerator will still be applicable and relevant, while specific details
will be addressed in updates similar to the hardware descriptiOns at the end of the manual.
Unless specifically stated, Sound Accelerator refers to any of our cards, and Mac II means
any Mac II class machine (ll,llx,llcx,llci,llix and SE30 cards).

Organization Of This Manual
The information in this manual is organized loosely into three sections. The first covers overall
system information. The second covers related software such as the driver, snth, and example
source code. The third covers specific hardware such as the Sound Accelerator, Audio Media, and
OAT I/O and is organized in the order that the actual products were introduced. As future
hardware products are introduced, additions to the third section will be provided.

Required Background Materials
This documentation assumes that you are already familiar with writing a Macintosh application.
The Macintosh programming environment is extremely complicated, yet exceedingly rich.
Although you may be able to start programming our hardware concurrently with learning how to
program the Mac, we suggest you become familiar with programming the Mac first.

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 1

The 'bible' for programming the Mac is Inside Macintosh Volumes 1-5. Certain sections are
essential for even the most trivial Macintosh programs, while other sections are mandatory when
programming our hardware. Particularly important sections that relate to our hardware are:

• The 'snth' resource documentation assumes that you are familiar the Sound Manager as
described in Inside Macintosh Volume 5.

• Operations on sound files, as well as their various formats assume that you are familiar
with the HFS file system as described in Inside Macintosh Volume 4 as well as the Resource
Manager chapter in Inside Macintosh Volume 1.

• The driver documentation assumes that you are familiar with Device Manager chapters of
Inside Macintosh, Volumes 1-5.

• In order to make use of the sample programs you are expected to have a basic syntactic level
of familiarity with the Motorola 56000 assembler, as well as with the 56000 instruction set.
The example application code is written primarily in MPW Pascal, 68000 Assembler, and
56000 Assembler.

• A basic kDowledge of MPW and the MPW Shell editor is also assumed, although it is not
required if you are not using MPW to develop your software. Our development
environment at Digidesign is MPW and MacApp. The sample source code is primarily in
MPW Pascal and Assembler, with the more extensive examples in Objective Pascal and
MacApp. Many of our developers use Think C. The major disadvantage to using Think C is
the need to use the standalone versions of the 56000 Assembler, Linker and Parse56k, where
as in MPW these are all shell tools allowing a completely automated build. If you plan to do
extensive 56000 code development, we suggest you consider MPW due to its ability to use
shell tools as well as the ability to compile multiple languages. If you plan to only use a few
56000 algorithms (for example, only playing and recording sound), then either
environment is suitable and the choice will be your personal preference.

Getting Started
For those applications that only need high-quality playback of short digital audio data (ie a few
seconds long), the Simplest and quickest way to play sound is the Sound Manager 'snth' resource.
See the Sound Manager 'snth' Resource section for more information.

For applications that need to directly access the hardware (such as playing long sounds from a hard
disk, or digitally processing sound or data), you will need to come up a bit of a learning curve. The
following is a suggested path:

2

• Read the article "Digidesign's Sound Accelerator: Lessons Lived and Learned". It will give
you a general idea about the core of our hardware (The Sound Accelerator) as well as an
idea of how you go about programming it.

• Look over and compile the source code to SASample as a simple example of playing mono
16 bit sound.

• Look over the rest of this manual, in particular the section titled Sound Accelerator Rev. A.

• Look over the source code to DSPWorkshop, which contains more advanced uses of the
hardware as well as how to access various peripheral hardware. Specifically, the object
TSACard in the files USACard.p and USACard.a if the definitive source for driver
structures and card 110 examples.

Copyright <01988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

• H you plan to program the 56000 extensively, read chapters 1 through 7 Motorola's
DSP56000/DSP56000 Digital Signal Processor User's Manual (The 'Red Book').

Support Policies
Through its developer support program, Digidesign will supply its third-party developers with the
information necessary to begin developing both hardware and software to be used in conjunction
with our hardware and software.

Digidesign WILL provide technical support on subjects dealing with specific features of our
hardware, such as the Sound Accelerator's expansion port, or how to set up the 56000's registers to
access certain features of the card, such as stereo playback.

Digidesign WILL NOT be able to answer questions regarding Macintosh programming, 56000
programming, digital signal processing algOrithms, or hardware design. For information on these
subjects, refer to the following sources:

Macintosh Programming:
• Inside Macintosh, Volumes 1-5

Apple Computer, Inc.

• Designing Cards and Drivers for the Macintosh n and Macintosh SE.
Apple Computer, Inc.

56000 Programming:
• 56000 Programming and Hardware Design:

Audio Cassette Learning Course
Motorola Technical Operations, Phoenix
(602) 244-7579
Cost $125.00

• Motorola Technical Training Seminars
(BOO) 521-6274
Cost: $795.00 for a single student

Digital Signal Processing:
• Digital Signal Processing

A.V. Oppenheim and R. W. Schafer
Prentice-Hall, Englewood Cliffs, NJ 1975,1988

• Theory and Application of Digital Signal Processing
L. R Rabiner and B. Gold
Prentice-Hall, Englewood Cliffs, NJ 1975

• Appendix C in the 56000 Users Manual contains an excellent list of books ranging from
general DSP to graphics and speech processing. In addition it details how to access
Motorola's DSP bulletin board, Dr. Bub, which is a source of 56000 DSP code, and best of all
it's free.

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 3

Writing Sound Accelerator Software
Applications which require customized use of the 56000 require the Motorola 56000 development
software (assembler and linker). Typically an application stores already-compiled 56000 object code
within the application itself (embedded in the 68000 assembly code) or in the Resource File of the
application. When the application wants to use a card, it makes a driver call to allocate a card. If a
card is available, the driver will return the base address of the card as well as other information
about the card. It then makes another control call to the driver, and passes a pointer to a block of
56000 object code somewhere in the Mac's memory, and asks the driver to load it into the card.
After the card is allocated and loaded with code, the application communicates directly with the
card as a memory mapped peripheral. Typically this interaction is through the 56OOO's host port.
When the application is finished with the card, it calls the driver to free the card so that other
applications in the system can use the card.

tI' The differences between the Mac IT and Mac SE versions of the Sound Accelerator are only
in their register addressing. If you are planning on writing code that will run on both
'9 .. ftrs~"'_ro ... t .. l.. c _,."1 A 1 :_ 1", _ _ ___ ...:1 l.. Jul'",,_ TT ",,_...:I
........ .LVAlOl' VA t.,u .. o.I'V~lU. r"Io.\..\..t;;.u;.lClLV.I., nt;; .lU5.lUJ .l.:;\.,VUIUI.:;.a.IU UlClt. JVY. .llCl yt;; VVt.,u A l".I.A\.. .u. AUU

Mac SE available, each with their respective Sound Accelerators, even if the actual code
development is only done on the Mac n. Their are no software or register differences
between the Mac IT cards and the SE30 card.

_~Standard Development Tools
All the software tools run under the MPW environment as shell tools or as standalone
applicatiOns. The Motorola CLAS-B software package includes the following tools:

asm56000 - 56000 macro assembler (MPW shell tool and standalone application)
lnk56000 - 56000 relocatable linker (MPW shell tool and standalone application)
sim56000 - 56000 simulator (standalone application)

Also available from Motorola is a C Compiler for the 56000, but this is not required for
development. The CLAS-B package are available from Digidesign, separate from the standard
Developer Documentation.

Included in the Developer Documentation is Parse56K, a tool that can read the 56000 linker output
files, and generate a 68OOO-compatible assembler format source file, so that you may embed 56000
code within your Macintosh application. Parse56K can also output the 56000 code as a resource of
any type and ID should you wish to keep your 56000 code data in resources. Parse56k is written in C
and the source is included. Those using Think C may wish to customize its I/O interface. Also
included are two example Macintosh applications with 56000 code as well helpful suggestions as to
how to make the most effident use of the Sound Accelerator.

Third Party Development Tools
If you are planning on writing custom DSP algorithms, Zola Technologies has developed an
excellent environment called DSP Designer that is designed specifically for the development of
digital signal processing algorithms and software. DSP Designer is a set of tools and scripts which
expand the basic MPW environment, providing capabilities for design, analysis, and floating-point
simulation of DSP systems, with particular emphasis on digital filters. Additional tools create
assembly code to implement digital filters in Motorola 56000 assembly language that can be down
loaded to a Sound Accelerator for processing. Their address is:

4 Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

• Zola Technologies, Inc.
6195 Heards Creek Dr., N.W.
Suite 201
Atlanta, GA 30328
(404) 843-3913

Application Construction
The 56000 source code is typically written in the MPW shell editor. It is then assembled and linked
using the Motorola software. Then, Parse56K is run on linker output creating a resource which is
stored in the resource fork of your application. When your application wants to use the card, a
simple GetResource() call produces the required code which the driver can then load. All the
example code stores 56000 code in this manner.

If you need to embed 56000 code directly in your application itself (useful when writing INIT's,
CDEV's, or DA's), Parse56k can produce Motorola 68000 assembler output consisting of DC
directives, containing 56000 opcodes in Hex. The exact packing format of the 24 bit opcodes
depends on whether or not you choose the -p (packing) option in Parse56K See section on
Parse56K for more details. You can then "INCLUDE" this output file within an assembler file in
your Mac application. In this way, you can have 56000 object code stored within your application.
An example saipt that creates a 68000 compatible output file is as follows:

asm56000 -1 -B YourProgram.asm
lnk56000 -B -MY ourProgram.map YourProgram
Parse56K YourProgram.lod > YourProgram.a

The first line invokes the 56000 assembler on your 56000 code source file, called YourProgram.asm.
The assembler output file is YourProgram.lnk. Then, the linker is invoked on the assembler
output, producing the link output file YourProgram.lod. In practice, most 56000 code is written
within a single file, and the linker is only run to catch misspellings and typos as it tries to resolve
references. Then, Parse56K reads the linker output and generates a Motorola 68000 assembler file
called YourProgram.a. The .map file is useful to find the memory addresses of various symbols .
when using the Motorola simulator.

Confidential Copyright ce 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 5

The Device Driver
On a Mac II, each Sound Accelerator contains a piece of system software, called a Device Driver, on
its configuration ROM. When the Macintosh boots up, this Device Driver is read into system
memory. On a Mac SE, the Device Driver is loaded into the system by an INIT resource in the
System Folder. Most of the communications that an application has with the Sound Accelerator,
other than real-time data transfer, are done by talking to the card's driver.

The main purpose of the driver is to free the application from having to know which slot the card
is in, how many cards are installed, and fighting with other applications over use of the card itself.
We highly recommend and urge that you use the driver in the suggested fashion. The
consequences of not doing so are that your code may no longer work in the future, on different
Macintosh models, or different Sound Accelerator models. It may not work if the Sound
Accelerator has been removed, or if it has been put into a different slot. And it will have a difficult
time working and Coexisting with other applications that are also trying to use the card, such as the
operating system itself (for example, SysBeeps).

The driver is responsible for maintaining a list of all available Sound Accelerator cards installed in
the system. This includes multiple cards in a Mac IT, as well as multiple cards in a Mac SE
expansion chassis (available from several third-party developers). When an application needs to
use a card, it asks the driver to allocate a card from those available and free. The calling application
can specify minimum memory sizes for the card it needs, as well as an application signature and
algorithm 10 number, so that the driver can select a card that has the requested DSP code already
loaded. into it.

U such a card is available, the driver returns a pointer to a block of information describing the card.
U no card is available, the driver returns an error. Since the driver is solely responsible for
allocating and distributing the cards to the running applications, many co-existing applications can
use a card, as long as two do not need it at exactly the same time. To make the most efficient use of
a card, your application should allocate a card only when it needs it, and free the card (with another
control call to the driver) when it no longer needs it.

The driver control and status calls are summarized below, along with their passed parameters.
Included in the Developer Documentation is some example code showing how to access and talk to
the driver. Note that in a given Macintosh there is only one Sound Accelerator driver no matter
how many Sound Accelerators there are in the Mac. The one driver takes care of all Sound
Accelerators in the system. The driver itself is opened at boot time, and closed upon shut-down so
you never need to call CloseDriverO. You only need to call OpenDriverO to get the driver's
refNum when your application starts up. That call to OpenDriver just returns the driver's
refNum since the driver is already open.

6 Copyright C 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Sound Accelerator Driver Control Calls

tI' This document describes the device driver present on the Rev. 4.2 Configuration ROM on
the Mac IT Sound Accelerator cards, and the Rev. 20 Sound Accelerator !NIT for the Mac SEe

ctIKillIO
csCode - 1
This is called by a KillIO driver call. It calls ctlReset for each Sound Accelerator in the system.

ct1LoadDSPCode
csCode a= 4
-> csCardRefNum
-> csCodePtr
-> cSCodeSize

-> csCodeUserSig
-> csCodeAlgorithm
-> csForceLoad

-> csPackingType

EOU csParam
EOU cSCardRefNum+2
EOU csCodePtr+4

EOU csCodeSize+4
EOU csCodeUserSig+4
EOU csCodeAlgorithm+4

EOU csForceLoad+l

;refNum of card (word)
;pointer to code to load
;number of words of 56k
;code to load
;User Signature of owner
;Algorithrn ID of this code
;0 - don't load code if
;already loaded
;1 - load code regardless
; (byte)
;0 - unpacked 32 bits
;1 - packed 24 bits
; (byte)

Load the 56000 object code pointed to by csCodePtr into the Sound Accelerator given by refNum,
after first performing a board reset. csCodeSize indicates the number of 56000 words of program
code to load (24 bits per 56000 word), and csPackingType indicates how this code is packed in the
Mac's memory. 0 means that it is packed into consecutive 32-bit longwords, whose most significant
word is ignored, and the lower 24 bits contain the 56000 program word. 1 means that the data is
packed as consecutive 24 bit words, with no padding in-between words. sCodeUsetSig is the 4-byte
OSType signature of the application that is loading this 56000 code, and csCodeAlgorithm is a
unique longword identifying this 56000 code as a unique algorithm within this application. A User
Signature of I , (four spaces) combined with an Algorithm ID of 0 are considered illegal and
should not be used. If the board referred to by refNum already has the given User Signature and
already has the given Algorithm loaded into it, nothing happens and the call returns immediately.

dlAllocCard
csCode - 5

-> csAllocParamPtr

Allocate Parameter
<-> csAllocFlags

-> csUserSig
-> csAlgorithm

<-> csXMemWords
<-> csYMemWords
<-> csPMemWords
<- csBaseAddr
<- cslnfoRecPtr

<-> csACardRefNum

EOU csParam

Block:
EOU 0
EOU csAllocFlags+2
EOU csUserSig+4
EOU csAlgo rithm+4
EOU csXMemWords+4
EOU csYMemWords+4
EOU cSPMemWords+4
EOU csBaseAddr+4

EOU cslnfoRecPtr+4

;pointer to param block below

;requested/returned flags (word)
;requested/returned user signature
;requested/returned user algorithm
;requested/returned X memory size
;requested/returned Y memory size
;requested/returned P memory size
ireturned base address of 56000
ireturned ptr to this card's
;info record
;requested/returned card
; refNum (word)

CSAllocFlags bit fields

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 7

GetAnyAlgorithm EQU 0 ;1 - ignore card's
;signature/algorithm

GetAnyMemSize EQU 1 ;1 - get card regardless
;of mem sizes

GetAnyRefNum EQU 2 ;0 - get card regardless
;of refNum (Rev 4+)

Bas RequestedAlg EQU 15 ;1 - card has requested
:sig/alg in it

This control call is used to allocate a Sound Accelerator card for use by an application. It has only
one parameter, which is really a pointer to a large structure shown above. csAllocFlags is a word of
flags which are both read and set by this control call. The msbit (bit 15) is set by the driver if the card
it has allocated already has the User Signature and User Algorithm requested by the other
parameters in this control call. The application can test for this, sot hat it may avoid calling the
driver again to load that code into the board.

Bit 0 is set by the application if it wishes the driver to ignore any User Signature and Algorithm
th::at 'lftiaht h!:anna,., .1"\ ho ;,., !:a ,..~w-1 ~,.,A ,..~nnc!o !lI ,..~w-1 ""on-!lI1",,UOoI!!II:! n~ HoC! _._4 ,.n o ... ~ 0 1'1",..... , ~."'v w ~& ow.&,.., VA-.. &,., ... ' .. ~.A.I....,.

Bit 1 is set by the application if it wishes the driver to ignore the amount of memory that a given
card has, and choose the first available card regardless of how much memory it has on it. By not
setting this bit, an application can force the driver to allocate only a card which has the necessary
memory on it to perform a particular algOrithm.

Starting with the Rev. 4 ROM, Bit 2 is set by the application if it wishes to allocate a specific card,
whose refNum is passed in csACardRefNum. csUserSig and csAlgorithm are set by the Application
to tell the driver that it would like a card with those two parameters already in it, if possible. Note
that the user signature and algorithm ID for the card are not actually set until ctlLoadDSPCode is
called!

csXMemWords, csYMemWords and csPMemWords are set by the application to tell the driver that
the card it needs must absolutely have at least that amount of each type of memory on board.

csBaseAddr is set by the driver upon return to indicate the base address of the DSP chip on the
allocated board. This address can be used to talk directly to the board for real-time transactions.
This is set to NIL if the driver cannot allocate a card a requested.

cslnfoRecPtr is a pointer to a structure containing data about the card which is internally used by
the driver, and should not be changed by the application. Some of the information in this structure
may be useful to more advanced applications. See the file USACard.p in DSPWorkshop for deatails
on the structure of this record, as well as how to use the information in it. csACardRefNum is the
refNum of the card allocated by the driver. This refNum is used in all future driver control and
status calls to refer to the particular card that the driver just allocated. Starting with Rev. 4 ROM, if
you set bit 2 of the flags word (GetAnyRefNum), you can pass a card refnum to the driver in
csACardRefNum. The driver will attempt to allocate the card with that refNum, if it is not already
allocated. This way, an application can ask for a specific card in a machine which has more than
one in iL If the card asked for is not available, or if the refNum is invalid, the driver returns an
error.

On NuBus machines, the card refNum is the same as its slot number. On the Mac SE, the card
refNum is a positive integer, starting with 1, and additional cards in the system are given refNums
of 2, 3, 4, etc.

ctlFreeCard

8 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

csCode - 6
-> csCardRefNum
-> csCardStatus

EQU csParam
EQU cSCardRefNum+2

;refNum of card (word)
;Free status for InUse
;parameter (byte)
;<0 - free, but will be needed soon
;0 - free

The currently allocated Sound Accelerator board referred to by refNum is to be freed and de
allocated by the driver. The board's current User Signature and Algorithm will remain installed in
it, and the board will not be reset.

The csCardStatus parameter lets the application specify several different types or categories of de
allocation. H csCardStatus is set to 0 by the application, the board is marked as "free", meaning that
the driver can re-allocate it at any time, to any application wanting it. H csCardStatus is less than 0,
then the board is marked as "free, but needed soon". This tells the driver that the next time the
driver is called to allocate a board, it should attempt to allocate another board before allocating this
one. Essentially, the driver will allocate a board marked "free" before it will allocate one marked
"free, but needed soon", unless the requested User Signature and Algorithm match identically.

ctlAllocateAllCards
csCode a:: 7
Used during development only. All known Sound Accelerator cards in the system are marked as
"In Use", and none will be able to be allocated until etlFreeAllCards is called. This is useful for
determining an application's response to a situation where there are no free cards available to it.

ct1FreeAllCard s
csCode - 8
Used during development only. All known Sound Accelerator cards in the system are marked as
"Free", regardless of whether or not they are currently in use by an application. This is useful for
freeing cards that may have become allocated by an application which crashed, and left the card in
an allocated state.

ctllnstallSElnterruptHandler
csCode - 9
-> csCardRefNum EQU csParam
-> cslntHandler EQU csCardRefNum+2

-> cslntA1Value EQU cslntHandler+4

;refNum of card (word)
;pointer to interrupt
;routine (pointer)
;value to load A1 with (longword)

This routine will install an interrupt handler for a specific Sound Accelerator card in a Macintosh
SE only. Do not use this for Macintosh IT code - you should use slot interrupts instead.
csIntHandler is a ProcPtr to your interrupt handler code. The value you pass in csIntA 1 Value will
be loaded into A1 before your interrupt routine is called. The Sound Accelerator interrupt handler
will save and restore AO-A3 and 00-D3 - your interrupt handler must preserve the rest. Your
interrupt handler will be called at interrupt levell, and must return via an RTS with the interrupt
level still at 1.

H you are writing code for both Mac IT and Mac SE Sound Accelerators, you can use the same
inteITU:pt handler code (except for board register addressing differences), passing a pointer to it to
SIntInstall on a Mac IT (to use Slot Interrupts), and passing it to this driver control call on a Mac SE
(to use level-1 interrupts). See the example code for more details.

ctlRemoveSEInterruptHandler
csCode - 10
-> csCardRefNum EQU csParam ;refNum of card (word)

Confidential Copyright CO 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 9

This routine will remove the current interrupt handler for the given Sound Accelerator card in a
Macintosh SE only. Do not use this for Macintosh II code - you should use slot interrupts instead.

ctlGetUser
csCode - 11
-> csCardRefNum. EQU csParam ; refNum. of card (word)
-> csResultPtr EQU csCardRefNum +2 ; ptr to longword return value

Returns the 4-byte OSType User Signature installed in the board referred to by refNum.

ctlGetAlgorithm
csCode - 12
-> csCardRefNum.
-> csResultPtr

EQU
EQU

csParam
csCardRefNum. +2

; refNum. of card (word)
; ptr to longword return value

Returns the User Algorithm ID installed in the board referred to by refNum.

ctlGetXMemWords
csCode - 13
-> csCardRefNum. EQU csParam ; refNum of card (word)
-> csResultPtr EQU csCardRefNum. +2 ; ptr to longword return value

Returns the total number of X Data memory words in the board referred to by refNum.

ct1GetYMemWords
csCode - 14
-> csCardRefNum. EQU csParam ; refNum. of card (word)
-> csResultPtr EQU csCardRefNum. +2 ; ptr to longword return value

Returns the total number of Y Data memory words in the board referred to by refNum.

ctlGet~emWords

csCode - 15
-> csCardRefNum. EQU csParam ; refNum. of card (word)
-> csResultPtr EQU csCardRefNum. +2 ; ptr to longword return value

Returns the total number of Program memory words in the board referred to by refNum.

ctlGetOockRate
csCode - 16
-> csCardRefNum. EQU csParam ; refNum. of card (word)
-> csResultPtr EQU csCardRefNum. +2 ; ptr to longword return value

Returns the 56000 crystal oscillator frequency in Hz for the board referred to by refNum .

." Note: Early versions of the driver (ROM Rev. 3 and lower) incorrectly returned the value of
the frequency .. l00! This has been fixed in the Rev. 4 ROMs and Rev. 2 SE !NIT. See the file
USACard for code that determines the version and corrects the value.

dlGetCardCPUType
csCode - 17
-> csCardRefNum EQU csParam
-> csResultPtr EQU csCardRefNum +2

refNum of card (word)
ptr to longword return value
msword - card type
o - Sound Accelerator SE Rev. A
1 - Sound Accelerator Mac II Rev.A
2 - Sound Accelerator Mac II Rev.B
3 - Sound Accelerator SE/30 Rev.A
4 - Audiomedia Rev. A
lsword - DSP CPU type

10 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

; 0 - 56000 Rev. A silicon
; 1 = 56000 Rev. B silicon
; 2 - 56000 Rev. C silicon

Returns a longword describing the type of Sound Accelerator board and type of DSP chip on that
board. The ms word is the card type, and the lsword is the CPU type. refNum identifies the board
in question. This call should be used to determine whether a Mac IT or Mac SE Sound Accelerator
is installed, as well as the version of 56000 silicon on that board. Different versions of silicon may
have slightly different capabilities, and software developers that want to take advantage of any new
features should use this call to determine the exact version of 56000 silicon they are using.

ctIResetAllCards
csCode - 18
Used during development only. All known Sound Accelerator cards in the system are reset,
regardless of whether or not they are currently in use by an application. This is useful for resetting
cards that may have become allocated by an application which crashed, and left the card in an
allocated and possibly hung state.

ctlReset
csCode - 19
-> csCardRefNum EQU csPararn ; refNum of card (word)

Perform a board reset on the board identified by refNum. The call returns after the board has been
completely reset, and can be safely accessed. The UserSignature of the board is set to' '(four
spaces) and the User Algorithm ID is set to 0 to indicate that no code has been loaded into this
board.

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 11

Sound Accelerator Driver Status Calls

stNumFreeCards
csCode - 2

<- csResult tQU csParam ; longword return result
Returns the total number of un-allocated Sound Accelerator cards installed in the system.

stNumUsedCards
csCode - 3
<- csResult EQU csParam ; longword return result

Returns the total number of allocated Sound Accelerator cards installed in the system.

stNumCards
csCode - 4
<- csResult EQU csParam ; lonqword return result

Returns the total number of Sound Accelerator cards installed in the system.

12 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Sound Manager Isnth' Resource
If your application is currently using the standard Apple snth ID 5 (the sampled sound snth), then
after installation of the Sound Accelerator snth, your application will automatically play sound
through the Sound Accelerator instead. This requires almost no work, but you will only get 8-bit
monophonic sound.

If you want 16 bit sound, or stereo sound, you will need to slightly modify your code that calls the
Sound Manager. You will want to package your sounds as Chunky or Interleaved buffers (see
below) to take advantage of the fact that the Sound Accelerator snth can play 16-bit stereo sounds.
Of course, if your sounds currently are only 8-bit monophonic, you will need to re-record them in
16-bit mono or stereo.

On a Macintosh SE or Plus, System 6.0 or higher is required to be able to use the Sound Manager. It
does not exist in earlier systems on these machines.

A 'snth' resource allows the Macintosh Sound Manager (not the Sound Driver!) to play sounds
through a Sound Accelerator. In fact, when the Sound Accelerator 'snth' resource is installed in
the system or an application, any calls that previously went to the Apple Sampled Sound Snth aD
5) are automatically rerouted to play through the card, with no rewriting or recompiling of any
software.

The immediate advantages of this approach are obvious: you plug the card in, run an install
program to install the snth resource into your system and/or applications, and all sampled sounds
that previously came out the Mac speaker will now come out of the card.

Of course, this can only work with sound produced by calls to the Sound Manager, not the Sound
Driver, and only to those calls that are passed to snth ID 5 (the Sampled Sound snth). The resulting
sounds come out in 8-bit, monophOniC 44.1 KHz playback through the card. The bandwidth and
pitch-shifting that the card provides are much superior to what you can get from the Macintosh
speaker and audio output, so that even your existing 8-bit files will sound brighter and clearer.

To take full advantage of the Sound Accelerator, however, the snth resource will accept sampled
sound data (using SoundCmd and BufferCmd commands) in two other formats.

One format, called the "Chunky" format, is designed to allow up to 16-bit stereo sound data, while
still remaining compatible with the original Apple 8-bit monophonic sound hardware. The data
foi"mat of this type of sound is not very convenient for editing or displaying, but you are
guaranteed of forward and backward compatibility. A Macintosh with an available Sound
Accelerator will play such a sound as a 16-bit stereo sound file, while a Mac without a card will play
the exact same file as an 8-bit mono (left channel of the stereo pair) soundfile through the
Macintosh speaker.

The other format is much easier to edit and display, being stored in an interleaved format, but it is
not backward compatible with the Apple sound hardware. It is forward compatible with future
Digidesign sound hardware and software, though.

The choice between the current 8-bit mono format, and the two new 16-bit stereo formats is up to
the developer. The Sound Accelerator snth resource can deal with all three. If an application
needs to produce a sound through the Sound Accelerator, but there are no available cards at that
time, or there are no cards installed in the Mac, the snth will re-route the request for sound to the
original Apple snth resource, and the sound will then play out of the Mac speaker. Of course, if the

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 13

sound is stored in the Interleaved format, it cannot be passed on, since the original Apple snth
resource cannot read this type of sound.

The Sound Accelerator comes with Sound Installer, a snth Installer I DeInstaller program.
Normally, the snth needs to be installed only in the System file. However, for applications that
have their own versions of Apple's ID 5 snth resource (such as HyperCard, Sound Designer and
TurboSynth), the installer will install the new snth resource directly into those applications. The
new snth will work with or without a Sound Accelerator card installed in the Mac, so de
installation is rarely necessary.

The Sound Accelerator snth will accept and respond to the following standard commands:

InitCmd, AvailCmd, NoteCmd, FreqCmd, SoundCmd, BufferCmd, ContBufferCmd,
. RequestNextCmd, QuietCmd, FreeCmd, howOftenCmd, gainCmd, releaseCmd, flushCmd.

In addition, it also responds to the following commands which support the alternate Chunky and
Interleaved sound n::tta fo!!!'.ats:

ChunkyBufferCmd, ChunkyContBufferCmd, InterleavedBufferCmd, InterleavedContBufferCmd,
ChunkySoundCmd, InterleavedSoundCmd.

The new commands are described and documented below. They are just variants on the standard
BufferCmd and SoundCmd. The ContBufferCmd, and its counterparts for the Chunky and
Interleaved commands, are identical to the regular BufferCmd and its counterparts, with the
exception that the pitch-shifting algorithm on the DSP will reset its resampling phase at the start of
each BufferCmd, but will not reset it for a ContBufferCmd.

The reason for this is to allow the smooth, continuous playback of a sound divided up into a series
of consecutive buffers. To play such a sound, you would send a BufferCmd for the first packet of
sound data, and then a ContBufferCmd for each packet of data thereafter.

snth Initialization
When your application calls SndNewChannel to allocate a new sound channel and snth resource,
you pass an lnit longword in the SndNewChannel call. This longword shows up in the param2
field of the initCmd which is passed to the snth after the snth has been loaded. Currently, only one
bit in this init longword is defined. All other bits are ignored, but should be set to 0 for future
compatibility .

ForceAppleSNTH - $80000000

When this bit is set in the init longword, the snth will act as if it is unable to allocate a Sound
Accelerator card, and attempt to locate and load the original Apple snth ID 5 (or its variants)
instead. The result is that any Normal or Chunky buffers passed to the snth will end up playing
out of the Mac's speaker in 8-bit resolution.

This is useful for applications which want to allow the user to disable the use of an installed card.
Perhaps the user does not have any headphones or amplifiers available at a particular instant, and
needs to get audio output. In any case, it allows the application to override the snth's desire to use
a Sound Accelerator card if there is one present.

14 Copyright ~ 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

The benefit of this technique is that your application only has to call SndNewChannel for snth ID
5, regardless of whether you want to use the Sound Accelerator or not. Only the lnit longword in
the SndNewChannel command needs to change.

Pascal 'snth' Data Structures
CONST

ChunkyBufferCmd - -81;
ChunkyContBufferCmd c -83
InterleavedBufferCmd - -10001;
InterleavedContBufferCmd - -10002;

ChunkySoundCmd - -80;
InterleavedSoundCmd - -10003;

TYPE
NewSoundBuffer - RECORD

SoundPtr: Ptri

Length: LongInt;
SampleRate: LongInt;
LoopStart: LongInt;
LoopEnd: LongInti
Flags: SignedByte;

BaseNote: SignedByte;
END;

{Pointer to the sound data. NIL if it
follows this record}

{the number of SAMPLES of sound. X2 if stereo.}
{Unsigned Fixed type: 0 to 65535.9999 Hz}
{same as for BufferCmd}
{same as for BufferCmd}
{Bit 7: 1 - 16 bit samples, 0 - 8-bit samples}
{Bit 6: 1 - Stereo sound, 0 - monophonic sound}
{BitsS,4: these for.m a 2-bit

e~coded field as follows:}
11: Reserved - do not use}
10: Interleaved Buffer follows}
01: Chunky Buffer follows}

{ 00: Nor.mal Buffer follows}
{Bit 3: Reserved.

Set to 0 for future compatibility}
{Bit 2: Reserved.

Set to 0 for future compatibility}
{Bit 1: Reserved.

Set to 0 for future compatibility}
{Bit 0: Reserved.

Set to 0 for future compatibility}
{MIDI note number to play this sound at}

NewSoundBufferPtr - A NewSoundBufferi

Format of a "Chunky" Sound File Buffer
Chunky sound buffers are stored as Offset Binary data, where $0000 is the lowest value and $FFFF is
the highest value. This is the native data format for the DAC on the Macintosh. Chunky buffers
are encoded in Offset Binary so that they are backwards-compatible with the original Apple snth ID
5. There are 4 different versions of a Chunky soundfile buffer, one for each possible combination
of 8/16-bit and mono/stereo as follows:

S-bit mono:
Same as current sound resources. A single block of consecutive 8-bit offset binary samples.

s.bit stereo:
A block of all the Left Channel samples followed by a block of all the Right Channel samples.

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 15

16-bit mono:
A block of all the most significant bytes of each sample, followed by a block of the least significant
bytes of each channel.

16-bit stereo:
4 consecutive blocks of data as follows:

The most Significant bytes of the Left Channel
The least significant bytes of the Left Channel
The most significant bytes of the Right Channel
The least Significant bytes of the Right Channel

Format of an ''Interleaved'' Sound File Buffer
Interleaved sound file buffers store their data in Two's Complement encoding, as opposed to Offset
'R''ft'!ll'l'''lF I"...,. r'hU'ft1"F '!II ~ M"'''''''''''!IIl ~nU4_ ~'!IIn~4".1 .h4 4'ft,..nA''ftL9 !!II A i 4..,.14!!11,"'ftL9 !!II i'ft.o ... lo~uor1 ".,&.1.'1.06.&1 .&v.& ' 1L .. "'a.&.au..& ..,w.&.&a..,. .,~~ ~,. v&. ~.& .. '-'£." ... """'-&&..& .. 0a t.& y o' ""
buffer is not backwards-compatible with the original Apple snth ID 5, and will not play through it.

An interleaved buffer is stored in the same manner as an AIFF sound file. That is, the samples are
stored consecutively as sample frames, where a frame is the sample data for all sound channels at
that instant For example, a stereo sound file stored in this fonnat would look like this:

Left Channel sample #1
Right Channel sample #1
Left Channel sample #2
Right Channel sample #2
Left Channel sample #3
Right Channel sample #3
etc.

If there are 8 bits per sample, then each line above would be one byte of data. If there are 16 bits per
sample, then each line above would be 2 bytes of data, most significant byte first.
In a stereo soundfile, the Left Channel data always comes first, as shown above.

snth Command Summary

and = ChunkyBufferCmd
paraml = NIL
param2 = NewSoundBufferPtr
Sent by an application, ChunkyBufferCmd plays the buffer pointed to by param2 at the given
sample rate and at the last set amplitude. The sample rate conversion phase values are reset to
zero at the start of this buffer. The buffer format ("Chunky Format") is shown below. The channel
pauses until the sound has played. If a Sound Accelerator is not available, this command is
translated into a BufferCmd, and the 8 most significant bits of the left channel are played by the
standard Mac snth resource on the Mac sound hardware. Otherwise, the Sound Accelerator can
play 8 or 16 bit samples, in mono or in stereo.

~ LoopStart, LoopEnd and BaseNote are ignored.

and = ChunkyContBuf£erCmd
param1 = NIL

16 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

param2 = NewSoundBufferPtr
Same as ChunkyBufferCmd, except that the sample rate conversion phase values are not affected at
all.

and = InterleavedBufferCmd
patam1 = NIL
param2 = NewSoundBufferPtr
Same as ChunkyBufferCmd, except that the data format of the sound samples themselves
corresponds to the Interleaved Buffer format as described above. Also, if a Sound Accelerator is not
available, this command is ignored and no sound is played, since the standard sampled sound snth
resource cannot play buffers of this format.

and = InterleavedContBufferCmd
param1 = NIL
param2 = NewSoundBufferPtr
Same as InterleavedBufferCmd, except that the sample rate conversion phase values are not
aHected at all.

cmd = ChunkySoundCmd
param1 = NIL
param2 = NewSoundBufferPtr
Sent by an application, ChunkySoundCmd specifies the sound to be played by succeeding note and
frequency commands. Param2 contains a pointer to the NewSoundBuffer format sound header to
be played. The sample rate conversion phase values are reset to zero at the start of this buffer. The
buffer format is the "Chunky Format". H a Sound Accelerator is not available, this command is
translated into a SoundCmd, and the 8 most significant bits of the left channel are played by the
standard Mac snth resource on the Mac sound hardware. Otherwise, the Sound Accelerator can
play 8 or 16 bit samples, in mono or in stereo.

t/ LoopStart and LoopEnd are ignored.

cmd = InterleavedSoundCmd
paraml = NIL
param2 = NewSoundBufferPtr
Same as ChunkySoundCmd, except that the sound data is stored in the ''Interleaved Fo~t". Also,
if a Sound Accelerator is not available, this command is ignored and no sound is played, since the
standard sampled sound snth resource cannot play buffers of this format.

Sound Installer Application
In order for the above commands to work, the Sound Accelerator snth resource must be installed.
If the sound to be played is done so by the system (SysBeep, etc.), then it is sufficient to install the
snth resource only in the System file. However, if the sound is to be played by the Application (via
calls to the Sound Manager), then the snth resource should be installed in the application itself as
well, but only if the application has its own snth 10 5 resource to begin with.

Examples of such programs are Hypercard and most Digidesign software. If you need to only rely
on the standard snth 10 5 resource that is in the Standard System file, then you do not need to
install the Sound Accelerator snth into your application. Installation is accomplished by using the
Sound Installer application that comes with the developer materials.

The Sound Accelerator snth works by renaming the existing snth ID 5 resource, and installing itself
as snth ID 5. When your program makes a call to the Sound Manager, it should specify snth ID 5 as

Confidential Copyright @ 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 17

the snth to play on your sound channel. The Sound Accelerator snth will attempt to allocate a
Sound Accelerator card when it needs to playa sound. If it cannot get one for any reason, it then
invokes the renamed original snth 10 5, and passes the translated command on to it. In this way,
you will hear the sound in the best possible manner that the current state of the hardware allows.
If one piece of sound hardware is busy, you will hear it on the next best thing.

Because both the snth and the Device Driver are working together to efficiently manage the
existing sound hardware resources (the internal Apple sound hardware and any Sound Accelerator
cards installed), it is up to the application to be careful in its use of the Sound Manager. The best
practice is to allocate a Sound Channel from the Sound Manager only at the time you need to make
a sound, and to dispose of the Sound Channel immediately after. In this way, the Sound
Accelerator that played your sound can be released for use by other applications and the System.

If you absolutely must keep a Sound Channel open for the duration of your application, then you
should use the ReleaseCmd and GainCmd to release and regain control of the sound hardware
when you do not need it, as Hypercard does.

18 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Debugging Applications
Debugging Sound Accelerator applications can be particularly difficult because much of the I/O is
done during interrupts and there is no easy way to stop the 56k and see what it is doing. The
following are a few suggested approaches to this problem.

Debug your 56k algorithm using the simulator first, or make sure your algorithm (particularly
complicated digital signal processing algorithms) works in non-real time using a high level
language - before you burn up huge amounts of time getting it to run in real time. There are
basically two parts to Sound Accelerator algorithms: the I/O (transferring samples and parameters
to and from the card), and the DSP algorithm itself. You will save a lot of time if you are confident
that one of these two processes is correct.

The slot interrupt handlers in DSPW orkshop provide a method for the 56k to notify the Mac about
its status and current position. The 56k always sends an opcode to generate a slot interrupt which
the Mac can interpret as a request to transfer data or an error/debugging message. When you are
developing an algorithm, it is useful to activate the reporting of the messages (remove the semi
colons in USampler.a) and use this method to single step the 56k.

H you get persistent S5! undemm exceptions (ie, not just when you turn the SS! on or of 0, then
your 55! interrupt routine is probably too long. This symptom is a good way to find out just how
much you can do in real time. H you are developing an algorithm that can be scaled (such as the
number of taps in a filter algorithm), then you can find out just how much you can do by
increasing the algorithm until you get persistent 551 exceptions. This is useful because the I/O to
and from the Mac is often hard to calculate as discussed in the section Speed Considerations. H you
use this, be sure that you scale the algorithm depending on the machine you are using. A Mac II
may run slower then a ncx and an 5E may run faster or slower then either of these.

A common 56k code error is to execute a DO or REP loop with a count of zero. This is interpreted
not as zero iterations, but as 65536 iterations (see page 1-123 of the gray book) which will be evident
when your algorithm seems to run incredibly slow or just dies altogether. Also note that REP loops
are not interruptable. H you need to run a long one instruction loop in the background while an
interrupt can occur (ie an 55! Tx interrupt), use a 00 loop so that the interrupt can occurr.

The host flags HF0-3 can be very useful when trying to coordinate the 56k and the Mac. Note that
the host flags are in HCR and HSR. It is very easy but terribly wrong to try to set a flag in the HSR
register, as it is a read-only register for the 68000. Make sure that if you are setting a flag, it can be set
from the processor you are setting it from. See the gray book page 7-13 and 7-15 for more details.

Note that the host port is double buffered. A common error in transfering data between the Mac
and the 56k occurs if you control the transfer using the host flags. The problem occurs when one
end signals the other to stop sending/receiving by setting a flag before the current data is read in.
This will result in a piece of data remaining in the host port causing the next routine that transfers
data to read garbage. You can avoid this by either making sure both ends know how many pieces of
data will be"transferred, or by reading from the host port until the TXDE/TROY (see page 7-19 in the
gray book) flags are clear.

The developer source code disk includes a primitive 56k debugger which allows you to read the
value of data locations in the Sound Accelerator's data memories from the MPW shell. This can be
quite useful if you are tracking the value of a certain variable stored in the 56k's memory, or for
doing post mortems on an algorithm (providing the 56k side of the debugger isn't dead also). If you
are developing on an a card with DMA abilities (such as the Audiomedia), we suggest you store

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. AI1 Rights Reserved 19

variables in off chip RAM (ie DMA RAM) so that you can read it from Macsbug. When you have
debugged your algorithm, you can move the variables into on chip RAM for faster access.

20 Copyright e 1988,. 1989 . .1990 Digidesign; InC'. An Rjghts Reserved Confidet1tia]

Speed Considerations
The 56000 on the Sound Accelerator is an extremely fast processor. Its instruction cycle time is 100
ns, and with the fast static RAM on board, it always runs at zero wait states. The 56ooo's host port
and SS! port both operate Simultaneously and independently of the main DSP, and thus do not
slow it down.

Because the 56000 host port is only 8 bits wide, and its native word width is 24 bits, it is necessary to
transfer a word of data to it with 3 byte-wide accesses. In addition, you must read a status bit in one
of the host port registers to determine if it is okay to send or receive data to/from the card before
you access the data register in the host port. All summed up, a 24-bit data transfer to/from the card
really requires up to 4 byte-wide, sequential Nubus accesses.

This number can be whittled down somewhat by clever programming, however. The check of the
status bit can be eliminated if your 56000 code is fast enough to read/write data at the same rate as
the Mac's processor. Considering that the 56000 is many times faster than the 68020, this situation
is not difficult to achieve.

Also, since most digital audio data that is transferred to or from the card is really 8 or 16-bit data,
and not 24-bit data, you only need to transfer the 8 or 16 least significant bits of the 24-bit word. The
24-bit data register in the host port is divided up into three 8-bit registers: high, mid and low.
When the low byte register is written or read, the 56000 considers the entire 24-bit register to have
been accessed. Therefore, when reading or writing to the host port data regis fer, the low 8-bit
register should be the last one of the three that is read or written. So, for an 8-bit data transfer, you
access only the low register. For a 16-bit data transfer, you access the mid register, and then the low
register. For a 24-bit data transfer, you access the high register, then the mid register, and finally the
low register.

Since we end up placing the data in the least Significant bits of the host port's data register, it is
necessary to shift them up into the most significant bits of the 24-bit word once they have been read
into the 56000. This is usually accomplished by having the 56000 execute a MPY (multiply)
instruction, which accomplishes the desired shift. See the example 56000 code for specific
implementation details of this technique. The important point here is that we are trading one or
two 1.25 tJ.Sec Nubus accesses for a single 100 ns 56000 instruction cycle. This results in a significant
increase in throughput to and from the card.

On the Mac SE version of the Sound Accelerator, the card is attached directly to the 68000's address
and data bus lines. Although the 68000 is slower than the 68020 in the Mac IT, the direct connection
to the 68000 makes up for the decrease in processor speed. The overall throughput of the two
versions of the card are therefore about the same, about 1.25 J.LSec per card access.

A simple calculation shows that at a digital audio rate of 44.1 kHz, a single channel of 16-bit data
has a sample period of 22.6 J1SeC. If we assume that a 16-bit data transfer to the card requires one
Nubus read for a status check, and then 2 Nubus reads or writes to transfer the 2 bytes of data per
16-bit word, then we have an overhead of 3 ·1.25 = 3.75 J.LSec per sample. At this rate, we should be
able to run 22.6 / 3.75 = 6.02 channels of 16-bit digital audio to a card Simultaneously. This number
goes up as sample rate or word length goes down, or if the status check can be eliminated by careful
programming.

Note that the above discussion is referring only to the transfer rate of data in and out of the card.
While this data transfer is going on, the 56000 on the card is capable of simultaneously processing
the data that is going through it. At 44.1 kHz mono, the 56000 can execute 223 instructions per

Confidential Copyright ce 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 21

sample! And this is all happening in real-time. The overall processing power of this system is
several orders of magnitude greater than what can be done with the Macintosh alone.

H you are coding for the Audiomedia card using its DMA transfer abilities, the total bandwidth is
considerably higher. This increase comes from a number of sources. First, you are able to transfer 24
bit words into DMA memory during only one NuBus transaction. Using the calculation above, 1
NuBus read per 1.5 16-bit samples (ie if you pack consecutive samples into 24 bit words) yields .83
J1seC per sample. At this rate, we should be able to run 22.6 / .83 = 27.2 channels of 16-bit digital
audio to a card Simultaneously. How dose you come to this "ideal" rate involves a number of
factors. H the 56000 is continuously accessing its external memory (ie the DMA memory) the 56000
and the NuBuss will have to arbitrate for the memory which effectively increases their access
times. Synchronizing NuBuss and 56000 accesses to the memory, and moving commonly accessed
code and data on the 56000 into on chip RAM (which is not accessible to the NuBus) can help
reduce arbitration. In addition, if you are doing disk I/O, a large part of the 68OOO's processing can be
used up handling the disk transfers. We have found that using real world algorithms and
applications, you can achieve 8-10 channels of audio if you are using RAM based storage on the
Mac, and 4-6 channels of audio if you are reading from a fast hard disk. As before, if you use
smaller then 16 bit word widths or lower then 44.1kHz sampling rates, these numbers will go up.

22 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Miscellaneous Notes, Suggestions, and Warnings
The surgeen general has determined that 99.9% ef 56k algerithm bugs are caused by the incerrect
use er interpretatien ef fixed point arithmetic. Make sure yeu understand the censequences ef page
4-15 in the gray book and hew this affects meving data from locatien to. lecatien (ie, frem A into.
RO, as opposed to. Al into. RO). This is best learned by experimenting in the simulater. Also., make
sure yeu understand hew SASample shifts the sample data by fixed peint multiplying in the
reutines FillBufLe and FillBufHi. This is a pewerful technique that can reduce the time spent
transfering data to. and frem the 56k as well as turning multiple shift operations in an
algorithm into one single-cycle multiply.

MIDI Manager users: Beware ef interrupt level cenflicts between MIDI manager reutines which
operate at a HIGHER level than slet interrupts. This presents a preblem fer applicatiens which
need to. play audio. (a time-aitical process) in response to. MIDI data. The solution depends on your
application, but generally you sheuld keep the MIDI manager routines as shert as pessible, so that
pending slet interrupts are not postponed too leng.

H you are working with multiple cards or multiple applications using the Sound Accelerator,
SATest can be useful running in MultiFinder to allocate a card and hold it. This is available using
the menu option 'Allocate a card' which turns into 'Release card in slot xx' after being selected. It
just grabs a card from the driver so that you can see if your program can gracefully deal with being
denied a card. It also has an option to reset all the cards and clear out the driver (ie, de-allocate all
cards). This is useful after you exit a program (using ES in Macsbug) that has crashed, while still
holding onto. a card. It is also useful when changing DSP code, so that the driver will load the new
code and not just use the old code already loaded in the card. The object 1SACard in USACard.asm
clears the driver and resets all card automatically each time you run the application, if you cempile
with the debug option in MacApp.

To save space on the distribution disk, SATest only has a 'snd ' resource with id 10. To use the
menu options to. play other 'snd ' resources, you must install your own in the application with id
numbers corresponding to the ones appearing in the File menu.

Note that after system reset the Sound Accelerator driver always allocates cards starting from the
highest address and decreasing. Using this fact and the new driver control call which requests a
particular card, you can be sure that if there are multiple cards in a system, the one yeu receive is
the one with an Ad In cennected.

Finally, please note that the DSP clock frequency of the 56000 is subject to. change. De NOT assume
it to have a certain value. Use the ctlGetClockRate call of the device driver to. find the DSP clock
rate for a particular card. This is especially impertant if yeu are using the en-chip cleck generater
of the 56000, instead of the eff<hip, on<ard clock. The on<hip clock is divided down frem the
DSP's clock, so any change in the DSP clock will affect the on<hip clock generator. The frequency
of the eff<hip, on<ard clock is guaranteed to. always be 44.1 kHz (meno er stereo). As such, we
recommend that you use the eff<hip, on-card clock.

H yeu program the DSP to. allew the use of its internal memeries, yeu can access the 'everlapped'
external memery by wrapping areund at the high end ef memery. Fer example, if yeu have 2048
werds ef external pregram memery, locatiens $0000 - $OlFF will refer to the DSP's internal
memory, locations $0200-$07FF will refer to external pregram memery, and locatiens $0800-$09FF
will refer to. the lowest $0200 locatiens in external program memory. Yeu can treat pregram and
data memeries as a contigueus space, with the external memery immediately fellewing the
internal memery. Fer applications that require extremely large buffers, you can place these buffers

Confidential Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 23

at $1000 to $2000 (ie 4k buffers) so that you satisfy the modulus register constraints on a 56000, and
still use the low 256 words of internal memory for local fast processing. The buffers will in affect
start at the base of external memory because of the address wraparound. Your memory map will
then have a 'hole' in it from $0100 to $1000, but you will be able to utilize the entire 4k + 256 of
memory completely.

24

t/ It is not a good idea to use this technique with program RAM, if you have 32K words of
program RAM installed, as the overlap address range will run into the control latch on
Rev. B cards!

Copyright @ 1988, 1989,1990 I;>igidesign, Inc. All Rights Reserved Confidential

Questions And Answers
Q: Does Digidesign plan to incorporate a software interface to Sound Designer n so that developers
can develop signal processing 'XCMD's?
A: At this point we have no plans to add a software interface to Sound Designer. We researched the
idea of an XCMD /XFCN interface but found that signal processing applications developers wanted
to add were in general too extensive to live in a simple XCMD interface, and that most would
resort to writing their own application in the end.

Q: What kind of filters do you use in Sound Designer n?
A: The parametric EQ and graphic EQ modules use variable IIR (infinite impulse response) filters.
The sample rate conversion module and tapedeck module use FIR (finite impulse response) filters.

Q: How do you implement hard disk recording and playback?
A: It's really not so complicated. You basically set up a double buffer on the card (as in
DSPWorkshop SamplerPlay.asm) and another larger double buffer (about 32k depending on disk
access time) in the Mac's main memory. The main program keeps reading or writing the Mac's
buffers to and from disk while the slot interrupt jumps in and reads/writes samples (depending on
whether you are recording, playing, or doing both). The general fonn of the code is as follows:

1) Double buffers are used throughout. On the card their are two double buffers (one for each
channel) that are approximately 1k samples in size. In the Mac's main memory there are also two
double buffers that hold samples that are being read from or about to be written to the disk. These
are about 32k depending on the access time of the hard disk in question.

2) Playback is achieved as follows: Fill the low buffer in the Mac's memory and start the card
playing. The card's algorithm generates a slot interrupt and asks for a card buffer of samples from
the Mac, which the Mac proceeds to send (ie lk samples). This is the same as DSPWorkshop except
that when the slot interrupt routine reaches the end of the Mac's RAM buffer, it wraps around to
the start of the buffer (like the buffer in the card ie modulo addressing). Meanwhile, the program
running below the slot interrupt level watches the RAM buffer pointer that the slot interrupt
routine uses and waits until it crosses a buffer boundary. When this occurs, it initiates a disk read
to fill the buffer half that the slot interrupt has just left. This continues until the end of the disk file
is reached. If the slot interrupt pointer has not crossed a boundary, the main program can update
screen graphics, or decided which file to play next.

3) Recording is similiar to playback, except that the card sends a buffer of samples to the Mac's
memory during each slot interrupt and the main program writes out a buffer to disk after the slot
interrupt pointer crosses over a buffer boundary.

4) All disk reads and writes can be done using standard PB calls (see Inside Mac Vol IV). This is
primarily because FSWrite does a read verify therefore doubling the access time when recording.

Several developers have managed to write their own hard disk code given the above information
and the DSPWorkshop source code. Typically the 56000 and slot interrupt code can be taken directly
from DSPWorkshop (with additions if you want to support crossfades ie varying an amplitude
scaler in time). The only thing you have to add is the code to manage and fill the disk buffers.
Typically, the choice of which file to read and when is rather application specific hence developers
have to code it themselves (ie our internal code would not necessarily apply).

Q: What's James Brown's address in jail?
A: See Apple's January 1990 Develop Journal.

Confidential Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 25

MPW Shell Tool Parse56k

Syntax
Parse56k [-r rezFlle rezType rezID] [-s] [-p] [file]

. Description
Parse56k is an MPW shell tool (as well as standalone application) that reads the output of the
Motorola 56000 linker and converts it into a number of useful forms for Sound Accelerator
program development. The default option is OC.L directives for embedding 56000 code into Mac
assembler code files. The source code to Parse56k is included on the developer documentation
disk. It is essentially a simple text file parser. If you work under another development
environment (ie Think C) you may want to create your own version. .

t/ Because the Sound Accelerator driver only loads P memory, Parse56k IGNORES X AND Y
DATA INITILIZATION. This is most often used in FFf algorithms to load a sine table into
data memory. The correct way to load tables is by using a host interrupt as demonstrated in
tho 4=ilo T'TJOltop !:IIC!,"" iC!AA T)C:PWnplrC!hnn ,..nr1o\ Tt;C! l1C!of'l11 tn uc!o tho ~;,..Ot'".h,AC! npO' y. !:IIT\~
.............. ...,, & ,,...,.. •• " .. .&"JW.jP "'}' ~""' ~& ~&.a y,..., ""A b ' " ••• ,..

org Y: .•. to initialize tables before using the 56000 simulator in which case you just don't call
the corresponding host commands when Simulating. Because the simulator works using
the linker's output file, it will get the X /Y data directives even though Parse56k ignores
them ..

t/ Parse56k requires that the linker file be in 'order'. This means that in your .asm files you
must make sure that ORG P:xxxx statement are in order of INCREASING xxxx or address.

Input
Motorola 56000 linker output.

Output
Mac assembler directives or modification of an existing resource file/application.

Status
0- Worked.
1 - Had problems usually with opening the resource file.

Options
-s - Just output the size in the number of 24 bit words that the code would occupy in the 56Ooo's
program memory space.

-p - Output the assembler directives in packed format (ie: DC.B followed by OC.W). This avoids
wasting the high byte in the OC.L default output format.

-r rezFIle rezType rezID - Modify or create a data resource in rezFile of type rezType and ID
number rezID. This is useful in a make file for automatically inserting your code into a resource so
that at run time the program can just get a handle to the code and pass this to the driver to load it.

Examples
Parse56k foo.Iod
Outputs to standard output something like the following:

OC.L $OC0040 iPC-O
OC.L $081234 iPC-1
etc ...

Parse56k -p foo.lod
Outputs to standard output something like the following:

26 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

DC.B
DC.W
DC.B
DC.W

See Also

SOC
$0040
$08
$1234

;high byte PC=O
;low word PC=O
;high byte PCz:l
;low word PC=l

SASample and DSPWorkshop makefUes both show how to use Parse56k to automate your build
process. The source code to Parse56k is included with the Developer Documentation.

Confidential Copyright @ 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 27

SASample and DSPWorkshop
SASample and DSPWorkshop are sample programs provided in source form which are intended
as examples of how to write programs that use the Sound Accelerator and Ad In. They are not
meant to be the most optimal or the basis for a full blown Macintosh audio application.

SASampie is written in MPW Pascal and Assembler. It is an extremely simple example with as
little Macintosh interface included as possible. It load Sound Designer I format files into memory
an plays them out of the card.

DSP Workshop is a more complicated program written in MacApp version 2.0 (Apple's object
oriented Macintosh shell) that graphically displays buffers, reads and writes Sound Designer IT
format files, and allows you to record, play, and low pass filter buffers of sound stored in RAM. In
addition it contains a very simple spectrum analyzer that displays the magnitude of a 256 pOint FFT
as computed by the card on incoming audio data. It uses an object called TSACard (which lives in
the file USACard.p and .a) that hides many of the hardware details of interacting with the Sound
Accelerator.

If you are not familiar with object oriented programming or MacApp, DSP Workshop is still a
useful example. In particular, the file U5ACard.a includes a variety of routines which transfer data
to and from the Sound Accelerator as well as test and set certain status bits. In addition, USACard.a
includes examples of tranferring data using the Audiomedia's DMA I/O. The file UFilter.asm

-demonstrates how to use the card purely as a compute engine. USamplerRecord and USamplerPlay
demonstrate how to record (using the Ad In) and play stereo or mono sound data. Note that both
of these operate only at 44.1 kHz. If you want to play or record at other rates you will have to
develop your own sample rate conversion routines.

If you recompile DSPWorkshop, it is interesting to note what proportion of time is spent designing
the filter (which uses SANE) and what proportion of time is spent actually filtering the data.
Almost all of the time is spent designing the filter. In fact, because you have about 220 instructions
per output sample, the algorithm in UFilter.asm can run in real time depending on the number of
taps you select. A good first exercise in writing Sound Accelerator code would be to merge
USamplerPlay.asm and UFtlter.asm so that the sound is filtered in real time as it is played. This
involves adding a host command to USamplerPlay.asm to load the desired filter table as well as
modifying the 55I interrupt routine to perform the same operations as the routine CrunchBuffer
in UFilter.asm before playing a sample.

28 Copyright @ 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Sound Designer I File Format
Sound Designer I file format is the original Digidesign sound file format first released in 1985. It is
widely used and supported as evidenced by the many CD ROM discs with sound effects stored in
this format It is primarily used to store mono 16 bit short duration (on the order of seconds) audio
samples. We recommend that you support this format for short sounds, but that you use Sound
Designer n format as a primary format due to its flexibility.

Fue Type: 'SFIL'

Resource Fork
The resource fork is not used.

Data Fork
The first 1336 bytes of the data fork contain the sound header (see the Pascal HeaderType record
below) followed by the sample data itself. The most important fields are in bold. Default values are
given in () within the comment next to a field. Byte offsets are indicated to the left at various
offsets. Fields with the comment DO NOT USE are for Sound Designer internal use and should not
be changed except when initializing the file. The size of the data types are detailed in Inside
Macintosh, Volume 1, page 86.

MarkerType - RECORD
Free: Boolean;
Position: LongInt;
Name: STRING[32];

END;

SideType c (leftSide,rightSide);

EditRecord - RECORD
HiAddr: LongInt;
LOAddr: LongInt;
ExtendSide: SideType;

END;

{TRUE if this marker is free for use (TRUE/l)}
{byte position in file (O)}
{name of the marker (~Untitled")}

{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}

ScaleNames - (Time,SampleNumber,HexSampNum,Volts,Percent,dbm,User);

ModeType - (Select,Draw,ZoomSelect);

ZoomType - RECORD
v: Integer;

h: LongInt;

END;

ScaleType - RECORD
VFactor: LongInt;

VType: ScaleNames:

{vertical scale factor:
positive - magnification
negative - reduction (-256)}

{horizontal scale factor:
positive - magnification
negative - reduction (l)}

{scale factor for vertical axis tick units:
positive = magnification
negative = reduction (327)}

VString: STRING[32]:
{type of vertical axis tick mark unit (4)}
{vertial axis tick units string (~%Scale")}
{scale factor for horizontal axis tick units: HFactor: LongInt;

Confidential Copyright <01988, 1989,1990 Digidesign, Inc. All Rights Reserved 29

HType: ScaleNames;
HString: STRING[32]:

END;

Beada~e - RECORD
aead.rSiza: Integar;

Version: Integer;
Preview: Boolean:
WPtr: WindowPtr;
WPeek: WindowPeek:

HInxPage,HInxLine: LongInt;
VInxPaqe,VInxLine: LongInt:
HCtlPage,HCtlLine: LonqInt;
VCtlPaqe,VCtlLine: Longlnt;

VOffset: LongInt;

HOffset: LonqInt:

VOffConst: Integer;

Zoom: ZoomType;
Scale: ScaleType;

VScrUpdate: Integer:
BufPtr: Ptr:
BufBytes: Size;
BufOffset: LongInt;
WaveRgn: rgnHandle;
ClipArea: rgnHandle;
ScaleArea: rgnHandle;
CtlWidth: Rect:
VScroll: ControlHandle;
HScroll: ControlHandle;

rileSize: Size;

BUName: STRING[64]:
rilaHama: STRIHG[64];

BURefNum: Integer:
refNum: Integer:
vRefNum: Integer:
BufChanged: Boolean:
FileChanged: Boolean;
NoBackup: Boolean:
Mode: Mode Type ;

Edit: EditRecord:

CursorPos: LongInt:
CursorRgn: RgnHandle;

positive c magnification
negative ~ reduction (l)}

{type of horizontal axis tick mark unit (O)}
{horizontal axis tick units string:

~ec,msec,sec,samples ("sec")}

{size in byte. of the file header (1336)}

{DO NOT USE (32)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}

{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
(DO NOT USE CO)}

{position of vertical center of window in
quantization units ie -32768 to 32767 (O)}

{position of left edge of sample window
in tSAMPLES (O)}

(DO NOT USE CO)}

{see above}
{see above}

{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}

{2 * number of samples in this file
ie num]:)er of bytes of aound data}

{name of edit backup file}
{name of this file (Mac Filename»)

{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}

{see above}

{cursor position relative to window start (O)}
{cursor region in which it can be grasped (O)}

MarkerOata: ARRAY[O .. 9] OF MarkerTypei (see above}

MarkerOffset: Lonqlnti {offset to qet relative time (O)}

30 Copyright @ 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

LoopStart: LongInt;
LoopEnd: LongInt;
ZeroLineOn: Boolean; .
CursorOn: Boolean;
ScalesOn: Boolean;

Comment: Str255;

SampRate: Longlnt;
SampPeriod: Longlnt;
SampSize: Integer;

CodeType: STRING[32];

UserStrl: Str255;
BufSize: Size;

Loop2Start: Longlnt;
Loop2End: LongInt;
LooplType: siqnedByte;
Loop2Type: siqnedByte;
User4: Integer;

END;

Header Notes

{starting byte f of loop (-l)}
{ending byte f of loop (-l)}
{ (FALSE/O)}
{(FALSE/O)}
{(FALSE/O)}

{file comment (~ ")}

(sample rate in hertz ie "lOO}
(sample period in microseconds}
{number of bits in a sample (16)}

{type of sample data (~Linear")}

{for user comments or reserved for future}
{size of the RAM wave buffer in bytes}

{release loop start in bytes (-l)}
{release loop end in bytes (-l)}
{type of loop: 1 - forward 2 - forward/backward}
{type of loop: 1 - forward 2 - forward/backward}
{DO NOT USE (O)}

Integers (2 bytes) and LongInts (4 bytes) are stored in Motorola 68000 format with the most
significant bytes stored first, followed by the least Significant bytes. For example, to store the
hexadecimal value 0123 4567 as a LongInt, we would store in ASCENDING memory locations: 01,
23,45,67. Leading zeros must be considered as part of the number.

The total length of the header is 1336 bytes. It is the first thing in the file, so if a file is rewound to
an offset of 0 from the beginning of the file, the file position marker will be pointing to the first
byte in the header.

If a default value is given for a variable in the header, it MUST be set to that value when creating
the header for the first time. All default values for numeric data in the header are given in
DECIMAL. A header variable with the comment "00 NOT USE" should be set to its default value
when creating a file, and under no circumstances used otherwise.

The notation for strings in the Macintosh is STR[NN] where NN is the length in bytes of the string.
The actual string stored in memory or the header will have one extra byte preceding it. This byte
contains the length of the string, NN. For example to store a STR[32] in the header; the first byte
will be 32 (decimal), followed by 32 bytes of ASCll representing the string. A string constant is
specified above by using quote marks ie (II "). 00 NOT include the quote marks as part of the
string itself. Note that the string values in the header give the MAXIMUM length of that string
variable. If you wish to use a string which is shorter (and you usually will), then the first byte of
that string should give the actual number of ASCll characters in the string you wish to use. For
example, although FileName is specified as a STR[64], you may wish to use less characters for a
filename. If you wish to use l'New File" as the filename, you would store the byte 08 (ie the length
not including the length byte itself) followed by the ASCll values for the characters in the string
~ew Flle". The byte 08 says that there are 8 bytes in the string itself.

End addresses, such as Loop End addresses are the address of the first byte AFTER the last byte IN
THE LOOP. They 00 NOT refer to the last byte of the loop. Start addresses, however, refer to the
first byte of a selection.

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 31

There are currently no user bytes available in the header for independent use. This does not
preclude the possibility that there will be some date, however at this time you must assume that no
bytes in the header may be used for any purpose other than described above. All bytes which are
NOT listed above are reserved for use exclusively by Digidesign Inc. until further notice.

32 Copyright <e 1988, 1989,1990 Digidesign, Inc. All Ri~'1ts Reserved Cordidential

Sound Designer II File Format
Sound Designer n files store all sound samples in the data fork and all sound parameters in the
resource fork. This is extremely conveniant for sound data where the data fork may grow to a
hundred megabytes or more. Regardless of the size of the data fork you can add, delete, and modify
sound parameters at will without compacting the sound data or moving it around the disk (and
extremely time consuming procedure if the file is 100 MB). In addition, you may add your own
parameters to a file (as long as their resource types don't conflict with Sound Designer n's) while
allowing the file to be read by both Sound Designer and your program. We recommend that
developers standardize on the Sound Designer n file format as the primary format due to its
customizability. For multi-track operations, we recommend that each track be recorded in a
separate single mono Sound Designer n file using stereo Sound Designer n files as the mastering
medium.

Flle Type: 'Sd2f

Resource Fork
The resource fork contains many different kinds of resources which specify everything from the
sample rate to loop points to graphic eq settings. Most of these are application-specific to Sound
Designer n. There are three core parameters/rsrcs in an son file:

Type: ISTR ' 10: 1000 Name: Isample-size'
Value: Integer numeric string specifying the number of bytes per sample (ie 2· for standard 16 bit
samples).

Type: ISTR ' ID: 1001 Name: lsample-rate'
Value: Floating point numeric string specifying the sample rate in hertz of the file (ie '44100.0000'
for a standard 44.1kHz sample rate file).

Type:ISTR' 10:1002 Name: Ichannels'
Value: Integer numeric string specifying the number of channels in the file (ie 2 for stereo).

The above resources are all that are specifically required in an son file. Given only these three
parameters, Sound Designer n can read in and play the file. H your program modifies the sound
data or above 'STR' resources in any way, it is your responsibility to delete any other resources that
may have become out of sync with the file. This can happen if you delete a large section of the file
without updating the playlist pointers. Notice that the length of the file is not stored. This is
because you can derive the length given the sample size, number of channels, and the length in
bytes of the data fork (using file system calls) using the following formulas:

Length of file (in sample frames)
= Length of data fork / (number of channels • sample size)

Length of file (in seconds)
= (Length of data fork / (number of channels • sample size)) / sample rate

Other ParameterlResource Types
The following resources store file information used by Sound Designer IT for various advanced
playback and processing. Unlike the above tore parameters, these are stored as Pascal RECORD
structures written out to resources. Therefore they are defined by the associated Pascal RECORD

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 33

definitions below. Default values are given in () within the comment next to 3 field. Byte offsets
are indicated to the left at various offsets. Fields with the comment 00 NOT USE are for Sound
Designer internal use and should not be changed except when initializing the file. The size of the
data types are detailed in Inside Macintosh, Volume 1, page 86.

Type: IsdDD' ID: 1000
Use: Stores· general document information such as comments.
Structure: A DocumentDataRecord as defined below.
EditRecord - RECORD

HiAddr: LongInt;
LoAddr: LongInt;
ExtendSide: SideType;

END;

ZoomType - RECORD
v: Integer;

h: LongInt;

END;

ScaleType - RECORD
VFactor: LongInt;

VType: ScaleNamesi
VString: STRING[32];
HFactor: LongInt;

HType: ScaleNames;
HString: STRING[32];

END;

DocumentDataRecord - RECORD
Version: Integer;
BufOffset: LongInt;
MarkerOffset: LongInt;
Comment: Str255;
HOPlayBufMultiple: Integer;
SMPTEStartTime: LongInt;
FramesPerSec: Integer;
FilmSize: Integer;
StartBarNum: LongInt;
StartBeatNum: LongInt;

StartFrame: Longlnt;
Tempo: Fixed;
TimeSiqnature: Fixed;

CursorPos: Longlnt;
CursorOn: Boolean;
Zoom: ZoomType;
Scale: ScaleType;
Edit: EditRecord;
VOffset: Longlnt;

{DO NOT USE (O)}
{DO NOT USE (O)}
{DO NOT USE (O)}

{vertical scale factor:
poaitive - magnification
negative - reduction (-256)}

{horizontal scale factor:
positive - magnification
negative - reduction (l)}

{scale factor for vertical axis tick units:
positive - magnification
negative - reduction (327)}

{type of vertical axis tick mark unit (4)}
{vertial axis tick units string (~%Scale")}
{scale factor for ho~izontal axis tick units:

positive - magnification
negative - reduction (l)}

{type of horizontal axis tick mark unit (O)}
{horizontal axis tick units string:

~ec,msec,sec,samples (~sec")}

(version/format of this resource(l)}
{DO NOT USE (O)}
{offset to get relative time of markers}
{file comment (~ H)}
{HO play buf multiple for this file (a)}
{SMPTE start time of this file (O)}
{SMPTE frame rate of this file (30)}
{16mm or 35mm fi~ (35)}
{starting Bar Number (O)}
{starting Beat Number (O)}

{the sample frame this new entry starts at}
{tempo in beats/sec}
{HiWord - numerator, LoWord - denominator}

{cursor position relative to window start (O)}
{(FALSE/O)}
{see above}
{see above}
(see above}
{position of vertical center of window ~n

34 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

BOffset: Longlnt;

CtlWidth: Rect;
Zoomcrndex: Point;
SelectMode: Integer;

END;

Type: IsdML' ID: 1000

quantization units ie -3276S to 32767 (O)}
{position of left edge of sample window

in 'SAMPLES (O)}

{DO NOT USE (O)}
{h and v indices in zoom increments}
{DO NOT USE (O)}

Use: Stores a list of text and numeric markers.
Structure:
Version: Integer;
MarkerOffset: LongInt;
NumMarkers: Integer;

{version/format of this resource(l)}
{DO NOT USE (O)}
{number of MarkerRecords to follow}

Followed by 'NumMarkers' of the following records:

MarkerRecord - RECORD
MarkerType: Integer;
MarkerType: Integer;

Position: Longlnt;
Text: Longlnt;
CursorID: Integer;
MarkerID: Integer;
TextLength: Longlnt;

{l - numbered marker, 2 - text marker (l)}
{DUPLICATE of previous value

- for historical reasons }
{sample frame in file}
{DO NOT USE (O)}
{24430 - numeric, 3012 - text (24430)}
{unique unsigned ID for each marker}
{length of marker text}

» The Text (ie TextLength bytes of ASCII characters) «
END;

Type: 'sdLL' ID: 1000
Use: Stores a list of audio loops (commonly used with samplers).
Structure:
version: Integer;
HScale:Integer;
VScale:Integer;
NumLoops: Integer;

{version/format of this resource(l)}
{DO NOT USE (O)}
{DO NOT USE (O)}
{number of LoopRecords to follow}

Followed by 'NumLoops' of the following records:

LoopRecord - RECORD
LoopStart: LongInt;
LoopEnd: LongInt;
LoopIndex: Integer;
LoopSense:Integer;
Channel: Integer;

END;

{reference to start sample frame of this loop}
{reference to end sample frame of this loop}
{identifies which loop this is (l .. NumLoops)}
{117-foward loop, llS-backwards/forwards loop}
{channel which loop is on (O .. NumChannels-l)}

Reserved ParameterlResource Types
Digidesign reserves all resource types that begin with the letters 'sd' or 'dd' (capital and lower case)
ie'sdPL', 'SDxx', 'DDxx' or 'dDxx', for present and future use by Sound Designer n and other
Digidesign programs.

Data Fork

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 35

Byte one of the data fork is the first byte of sound data. The sound data is organized as interleaved
samples (if more then one channel) of either 8 or 16 bit samples depending on the value of the
'sample-size' STR resource (see below).

For example, a standard 16 bit stereo file would be organized as follows:
Left Channel sample t1
Right Channel sample t1
Left Channel sample t2
Right Channel sample t2
Left Channel sample t3
Right Channel sample t3
etc .••

Where each sample is the MSB (most significant byte) followed by the ISB (least significant byte) or
better known as little endian format.

A four channel file would be as follows:
Channel 1 sample +1
Channel 2 sample t1
Channel 3 sample t1
Channel 4 sample t1
Channel 1 sample t2
Channel 2 sample t2
Channel 3 sample t2
Channel 4 sample .2
etc •.•

36 Copyright ce 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

AIFF File Format
The Audio Interchange File Format (Audio IFF) provides a standard for storing sampled sounds.
The format is quite flexible, allowing for the storage of monaural or multichannel sampled sounds
at a variety of sample rates and sample widths. It also allows for the storage of various sound file
parameters such as markers, instrument definitions, MIDI data, recording session information and
comments. The CD-I (Compact Disc Interactive) industry has adopted it as a standard format for
CD-I audio files. IT IS PRIMARILY AN INTERCHANGE FORMAT, although application designers
may chose to use it as a primary file format. Sound Designer n can read, write, and edit AIFF
format files, but it cannot record directly into them. This is because the actual sound data in an
AIFF file can be located BEFORE the file parameters. A typical sound file can contain a sound data
chunk of 10-100 MBytes followed by parameter chunks totaling at most l00kbytes. Recording into
the file, and extending the sound data's length would require moving the sound data to the end of
file, which given the Macintosh's file system, would be quite time consuming to say the least. We
recommend that your application be able to read and write AIFF files, but not necessarily edit AIFF
files.

We have included version 1.2 of the AIFF standard from Apple Computer, Inc. with the developer
documentation for your convenience.

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 37

Macintosh Expansion Chassis
For developers wishing to use the Sound Accelerator with the Mac Plus, or use multiple cards with
an SE or SE30, Second Wave provides a variety of external card cages. Second Wave also
manufactures a NuBus expansion chassis, which contains slots 1-8 on the NuBus. Programs must
access all cards in this chassis in 32-bit mode, since the Mac OS will not decode the chassis addresses
in 24-bit mode. Version 4.2 of the Sound Accelerator configuration ROM as well as all Audio
Media cards contain 32-bit clean drivers. Sound Designer IT is NOT 32-bit clean at this point in time
but will be in the near future. The example code is for the most part written to be 32-bit clean and
should be used as a model of card access if you plan to address external expansion chassis, run
under system 7.0, or A/UX.
For more information contact:

38

• Second Wave, Inc.
9430 Research Blvd.
Echelon IT, Suite 260
A'I'IC!H", TV 7Q7C;O

.................. "1 .&." • VI..".,

(512) 343-9661

Copyright <e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Control Signals and Magic Bits
The Sound Accelerator utilizes the 56000's I/O interface registers to control the DAC's, clock
sources, and expansion port. IT you don't plan to use any of these (ie you are using the card as a
compute engine only) then see the 'magic bit' settings in the file UFilter.asm from DSPWorkshop.
These basically tum the I/O and interrupts off so the 56k can just compute.

In general, it is best to just copy the appropriate lines from the sample programs. IT you need to use
non-standard settings, the following is provided and assumes that you have read chapter 11 in the
56000 users manual (the red book). A graphic picture of these bits can also be found in the
appendices.

t/ The function's of some of the following bits have been replaced by the CTL_LA TCH on
Rev. B Sound Accelerators, the SE30, and the Audi~media card. See the CTL_LATCH
section for more details.

CRB - SSI Control Register B:

Bit 5: SCKD (Output):

1 Select on-chip baud rate generator to drive the 551.

o Select off-chip clock. This will be either the on-card crystal oscillator of the expansion port
clock input depending on the PCD register.

Bit 1: OFt (Output):

1 Stereo clock generation.

o Mono clock generation.

t/ Sound Accelerator Rev. A and SE versions only. All later hardware uses the CTL_LATCH
to select between mono and stereo.

Bit 0: OFO (Output):

1 Select on-chip baud rate generator to drive the 55!.

o Select off-chip clock. This will be either the on-card crystal oscillator of the expansion port
clock input depending on the PCD register.

t/ OFO AND SCKD SHOULD ALWAYS BE SET TO THE SAME VALUE.

pen -Port C Control Register.

Bit 2: PC (Output):

1 Select off-card clock source. Off-card means that the clock comes from the expansion port on
the end of the card. IT you are using anoff-card clock source, you must also have enabled
the expansion port, by setting PCO (see below).

o Select on card clock source. This can be either the 56k's internal clock or the on card crystal
oscillator depending on the setting of OFO/SCKD (see above).

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 39

t/ Sound Accelerator Rev. A and SE versions only. All later hardware uses the crL_LATCH
to select between mono and stereo.

Bit 1: PO (Input):

1 In stereo mode, indicates card. expects the left sample to be output and that the input sample
is from the right channel.

o In stereo mode, indicates card expects the right sample to be output and that the input
sample is from the left channel.

Bit 0: PC (Output):

1 Enable expansion port. In general it is a good idea to enable the expansion port so that
external boxes (such as external DAC's or a digital I/O box) can get hold of the data you are
generating.

o Disabl~ thp PYnan~;nn nnTt A ftQ1" ~M 1"~Dt- t-'hD h;. unll hl!lO n nl!S f.hl!lO a~"!l"''''''.''''''' "" 'U"11 \..,.. - - ________ -r-...... ---. r--·· --......... ...,.... """'"" ,,&t. ... ".&.&.& ., '" \~ ""'1" ~YU"'Ik7'&U"'1 yu.& ... nu..l I.IIf;

disabled).

t/ Sound Accelerator Rev. A and SE versions only. All later hardware uses the CTL_LATCH
to select between mono and stereo.

,J'CC and PCDDR:
The I/O pins in the PCD and CRB must be configured as general purpose I/O pins so the Sound
Accelerator can use them for the above purposes. To use PCO, PCl and PC2, their respective bits in
the Port C Control Register (PeC) must be cleared to indicate that these pins are now used for
general purpose I/O and not for the SCI port. In addition you ll)ust properly set up their respective
bits in the Port C Data Direction Register (PCDDR). Generally, PCC and PCDDR will be set to the
following values:

PCC:$01F8

PCDDR: $0005

See the 56000 register diagrams in the appendices and in the user manual for more details.

40 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

The CI'L_LATCH is an I/O control register first introduced on the Sound Accelerator Rev. B
NuBus card. It is used to control communication with external devices (such as the Ad In or OAT
I/O) as well as replace some of the functionality of the SCI I/O pins as described in the last section.
CTL_LATCH is set by writing the appropriate bit pattern to address $FFFF in P (program) memory.
At boot time, the Sound Accelerator device driver sets the control latch to an initial value. 5ince
this value is subject to change, you should not depend on it being in any particular state when your
code is loaded. Make sure that you set it as one of the first things your program does, so that the
card's hardware is set correctly to begin with.

~ Currently, all cards EXCLUDING the Rev. A Sound Accelerator for the Mac n and the Rev.
A Sound Accelerator for the 5E have a CTL_LA TCH.

~ CI'L_LA TCH is a write-only register. If you change individual bits within the CTL_LA TCH
while your algorithm is running, you will want to store a copy of the settings before you
write them so that next time you change a bit, you know the settings of all the other bits.

Note About 'Old' vs 'New' Mode Signals and Local Mode
You will notice that certain C-Bit settings for external devices such as the DAT I/O or the Ad In
refer to old mode and new mode. Generally, old mode means that the external device generates bit
clock and data while the Sound Accelerator generates the L/R or frame sync signal. This mode was
designed for the original Rev. A Sound Accelerator which had a 15 pin serial connector, and
therefore was not able to support multiple Signals. In general, new mode means that the device
generating the data also generates all clock signals (bit clock, frame sync, and L/R). In the case of
external peripherals that can generate as well as receive data (such as the OAT I/O) there are two
'new' modes depending on which source generates the clock Signals.

The term 'local mode' means that all settings for the external peripheral (ie left-right-stereo switch
on the Ad In) are controlled manually on the peripheral itself. Non-local modes allow front panel
settings to be controlled remotely from the Sound Accelerator using various C-Bit settings.

Standard Settings
To remain compatible with all versions of the Sound Accelerator and the Audiomedia card, there
are 3 primary CTL_LA TCH setting you should use:

Mono, On-Chip Oock: CI'L_LATCH = $001327
The 55! generates its own clock using the 56000's internal baud rate generator. The OACs clock the
same sample out of both channels. This mode should be used only when you need to control the
speed of the SS! clock directly. Generally this is desired when you are interfacing the 551 to custom
external hardware.

Stereo, On-card Oock: CI'L_LATCH :I $001377
The 551 gets its clock from the Sound Accelerator's on-card (but off-chip) clock and the DACs send
separate samples out of the left and right channels. This is the most common mode since it
requires no external device to generate a clock, and can accommodate both mono and stereo.
Mono playback is achieved by sending the same data out of the left and right channels. The files
USamplerPlay.asm and SASample.asm both use this mode for playback.

Stereo,Off-Card Clock: CI'L_LA TCH = $00l3F7

Confidential Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 41

The 55I gets its clock from the expansion connector and the OACs send separate samples out of the
left and right channels. Typically, the external clock will be supplied by the Ad In or OAT I/O. If
you want to record mono, you should just record one channel. You will need this mode only if
you require an off-card dock to drive the 551 or want to receive external data. The file
USamplerRecord.asm uses this mode to record and mOnitor/play sound data.

CTL_LA TCH Bit Descriptions

The details for each bit follow but BEWARE, all the magic bits (CRB, PCD, CTL_LATCH, etc.) are
not mutually exclusive. Some of the bits must be coordinated with others (ie, selecting mono or
stereo with CI'L_LATCH and OF1). We haven't tested all possible combinations, so start out using
the settings in the example programs and then modify things from there making sure that
everything is coordinated.

Bits 23-13: Not Used
These bits are reserved for other present or future products.

Bits 12..8: Extemal device control bits:
The control bits (or C-bits) are 4 general purpose output lines used by cards to control external
devices such as the Ad In or the OAT I/O. Each external device uses the bits in a different way. For
the specific meaning of the C-bits, see the C-bits section in the appropriate external device
documentation. Bit 12 has the same use on all cards.

Bit 12: C-bit enable

1 Enable the C-bit output lines.

o Tri-state the C -bit lines.

Bits 7-4: Cock signal control:

Bit 7 - Bit 4

o 0 0 0
o 0 0 1
o 0 1 0
o 0 1 1
o 1 0 0
o 1 0 1
011 0
011 1
1 0 0 0
1 0 0 1
1 010
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Description of state

audio output off, 56k internal on-chip clock selected
reserved
mono audio, 56k internal on-chip clock selected
stereo audio, 56k internal on-chip clock selected
audio output off, on-card clock selected (88.2 kHz)
reserved
mono audio, on-card clock selected (88.2 kHz mono)
stereo audio, on-card clock selected (44.1kHz stereo)
reserved
reserved
reserved
reserved
audio off, external (expansion port) clock selected
reserved
mono audio, external (expansion port) clock + 2 selected
stereo audio, external (expansion port) clock selected

Bit 3: Left-Right Signal Source

1 56k reads the left-right signal from the expansion port.

o 56k reads the left-right signal (ie PCl) from the on card circuitry.

~ BIT 3 SHOULD ALWAYS BE SET TO THE OPPOSITE OF BIT L

Bit 2: Bit Clock Signal Source

42 Copyright CC 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

1 SS1 derives its bit dock from an off-chip device (either the on card crystal or from the
expansion port).

o SS1 derives its bit dock from the on-chip baud rate generator.

Bit 1: Frame SyndChannel Source and Direction

1 Send frame sync and left-right signals out of the carei.

o Receive frame synch and left-right signals from the expansion connector.
This is useful when trying to synchronize multiple cards whereby one card becomes the master
sending frame sync, bit clock, and channel signals to the other cards.

Bit 0: Bit clock/data output control

1 Send bit clock and data from the 551 out to the expansion connector.

o Don't send bit clock and data from the 551 out to the expansion connector.
This is similar to PCO in the PCD register.

Sound Accelerator Rev. B and Rev. A SE30 en_LATCH bit summary

Bit Number

23
22
21
20

19
18
17
16

15
14
13
12

11
10
09
08

07
06
05
04

03
02
01
00

Confidential

Function

not used (0)
not used (0)
not used (0)
not used (0)

not used (0)
not used (0)
not used (0)
not used (0)

not used (0)
not used (0)
not used (0)
C-bit enable (l-enable,O=tri-state C-bit output lines)

C-bit Bit 3 (see C-bit definitions for a given external device)
C-bit Bit 2
C-bit Bit 1
C-bit Bit 0

PAL clock control Bit 3 (see above table)
PAL clock control Bit 2
PAL clock control Bit 1
PAL clock control Bit 0

L/R channel source (l c receive off card, O-generate on card).
SSI bit clock source (le off chip, O-on chip)
Frame Sync direction (lc send frame sync & L/R signal, O-receive)
SSI bit clock enable (l-send bit clock/data to expansion, O-don't)

Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 43

Sound Accelerator Rev. A
The Sound Accelerator (Mac IT version) is a slave-only Nubus card. As a slave, it cannot initiate
Nubus transactions. It can, however, interrupt the main processor on the motherboard via a slot
interrupt when it needs attention. Communication with the board takes place via an 8-bit
bidirectional host port on the DSP.

t/ The Sound Accelerator Rev. A was the first piece of hardware Digidesign produced. As
such, the information in the section is assumed in the sections covering other hardware.

Memory Space
On a Mac IL the board's registers are memory-mapped into the normal Nubus slot space. In 24-bit
addressing mode, the base address of the board is SOOsOOOOO, where s is the slot number ($9-$E). In
32-bit addressing mode, the base address of the board is $FsOOOOOO, where s is the slot number ($9-
$E). All board addresses mentioned will be written as an offset from the board's base address. The
board supports byte-wide transactions on ByteLane 3 (byte-wide accesses on addresses whose 21sbits
are both set, ie.: $00s00003, $OOsOOOO7, etc.).

Board Reset
The board will automatically reset on power-up. To manually reset the board under program
control, write any byte value to the reset register. The approved method of resetting the board is by
making a driver control call to the board's driver. The reason this is safer is that the board takes a
small amount of time (typically from 4-20 JlSec) to internally reset, and trying to access the board
before that time has passed will result in errors.

DSP Registers
The only 56000 registers accessible from Nubus are the registers in its Host Port. These are 8-bit
registers, sequentially numbered (in ByteLane 3 addressing) starting at an offset of $00080003. The
registers and their offsets are listed below:

Register offsets for Mac II NuBus Boards:

Register Name Mac U Address Offset

Reset (write-only) $00000003
lCR (r/w) $00080003
CVR (r/w) $00080007
lSR (read-only) $0008000B
lVR (r/w) $0008000F
RXH (read-only) $00080017
RXM (read-only) $0008001B
RXL (read-only) $0008001F
TXB (write-only) $00080017
TXM (write-only) $0008001B
T.XL (write-only) $0008001F

." A read or write of any host port register takes 2 Nubus cycles to complete, which is the
minimum amount of time that a NuBus read or write cycle can take.

Board Interrupts

44 Copyright e 1988. 1989,1990 Digidesign. Inc. All Rights Reserved Confidential

On a Mac IT, the board can issue a slot interrupt to the main processor on the motherboard. The
HREQ" line of the DSP's host port is attached to the NMRQ" line of the board's Nubus slot. The
user can program the DSP's host port to activate the HRE~ pin (driving it low) whenever the the
host port's data register is empty or full. Thus, the DSP program can request service via a slot
interrupt just by writing to its host port. See chapter 10 in the 56000 User's Manual for more
information on the host port and host port interrupts. A useful technique is to write an opcode to
the host port in order to generate a slot interrupt which the Mac can interpret as a request to
transfer data or an error/debugging message. See USampler.a and USampler.asm as an example.

Board Architecture
The 56000 on the board is connected to the Nubus via its host port. Its external address and data
lines are connected to several banks of high-speed, no wait-state static RAM. One bank is for
Program Memory and the other two banks are for Data Memory.

t/ If you change the memory configuration, you must also change the position of the jumpers
in the on-board jumper blocks. Refer to the appendices for details.

The program memory comes with 21< X 24 using 300-mll 21< X 8 45 ns. static RAMs. It is expandable
to 8K X 24 using 300-mll 8K X 8 static RAMs, and to 321< X 24 using 300-mll 321< X 8 static RAMs.

The data memory comes with 8K X 24 using 6OO-mll 8K X 8 55 ns. static RAMs. It is expandable to
16K X 24 using a second bank of 8K X 8 static 45 ns. static RAMs, and to 64K X 24 using two banks of
321< X 8 45 ns. static RAMs. The total amount of available data memory is eq\1ally divided between
X and Y external memory. On Rev. A cards and Mac SE cards, the second bank of RAM fits into 600-
mll sockets. On Rev. B cards, the second bank fits into 300-mil sockets.

The external program and data memory is mapped starting at location $0000 to the DSP. This
means that the first 256 X and Y data memory locations and the first 512 program memory
locations overlap with the internal DSP memory at those addresses.

The SCI of the DSP is not used, as several of its function pins are used for general purpose I/O. The
SSI of the OSP is used for digital audio transmission and reception. The transmit lines go to the
two DAC channels on the card, and both the transmit and receive lines go to the digital expansion
port.

One clock drives both the transmit and receive lines, and its source can come from one of three
places: the on-chip baud rate generator, the on-card crystal oscillator, or an off-card clock generator
(via the expansion port).

Using the on-chip baud rate generator, you can generate a wide range of sample rates, in both
mono and stereo. However, you cannot generate 44.1 kHz stereo with the on-chip baud rate
generator. If you need stereo at that sample rate, you must use the on-card crystal oscillator, which
will only generate 44.1 KHz mono and stereo.

Although it is possible to vary the actual sample rate of the card, the audio output circuitry is
optimized for a sample rate of 44.1 kHz. This is because the output reconstruction filters are fixed,
high-quality filters that cut everything above 22 kHz. If you use a sample rate that is lower than
44.1 kHz, it is possible that the audio output may have some imaging/aliasing components in it
that are noticeable.

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 45

There is no CTL_LATCH on the Rev. A NuBus Sound Accelerator.

46 Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Sound Accelerator SE Rev. A
The Mac SE version of the Sound Accelerator is a slave-only SE-bus card, plus a
separate analog card which is installed at the expansion slot connector opening at the rear of the
Mac SE. The card cannot initiate any transactions, and sits as memory-mapped I/O in the SE's
address space. An 8-position DIP switch on the card allows the selection of the board's base address.
Of the 256 possible values, only 72 are valid within the SE's current memory mapping scheme: $50-
$57 ,$6O-$8F and SCO-CF. These 8 bits are decoded as address lines A23-A 16.

Memory Space
On a Mac SE, the board's registers are memory-mapped into the SE's RAM and I/O space, with the
8-position DIP switch on the card determining address bits A23-A16 of the board's base address. All
board addresses mentioned will be written as an offset from the board's ·base address. The board
supports only byte-wide transactions on the lower data bus (byte-wide accesses on odd addresses).

DSP Registers
The only 56000 registers accessible from Nubus are the registers in its Host Port. These are 8-bit
registers, sequentially numbered (in ByteLane 3 addressing) starting at an offset of $00080003. The
registers and their offsets are listed below:

Register offsets for Mac SE Boards:

Register Name

Reset (write-only)
ICR (r/w)
CVR (r/w)
ISR (read-only)
IVR (r/w)
RXH (read-only)
RXM (read-only)
RXL (read-only)
TXH (write-only)
TXM (write-only)
TXL (write-only)

Mac SE Address Offset

$000003
$004001
$004003
$004005
$004007
$00400B
$00400D
$00400F
$00400B
$00400D
$00400F

On a Mac SE, no additional wait states are introduced by any access of the Sound Accelerator.

Board Interrupts
On a Mac SE, the board can issue a level-1 interrupt to the main processor on the motherboard.
The HRE~ line of the DSP's host port is attached to the IPLO line of the SE bus. The user can
program the DSP's host port to activate the HRE~ pin (driving it low) whenever the the host
port's data register is empty or full. Thus, the DSP program can request service via a level-1
interrupt just by writing to its host port.

CTL_LATCH

There is no CTL_LATCH on the Rev. A SE Sound Accelerator.

Confidential Copyright CO 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 47

Sound Accelerator Rev. B
The Sound Accelerator Rev. B NuBus card provides additional I/O interface abilities while
remaining compatible with the Sound Accelerator Rev. A card. The primary differences between A
and B are as follows:

• The expansion port connector is a 25 pin D type connector. The additional pins provide
added control over external devices as well as increased flexibility in terms of clock and
frame sync signals. The details of the added expansion port control signals are outlined in
the 'CTL_LATCH' section.

• There is a set of edge connector pins along the upper edge of the card which allow direct
access to the S6OOO's address and data lines as well as the complete I/O interface. These may
be used in future products, hence their use will not be detailed in this document. See the
appendices for a complete pinout of the edge connector.

• The extra bank of X /Y data RAM is 3OO-mil sockets, similar to the program memory sockets
__ &.1.._ 'D ___ A. ___ ..2

u.u LlIIC "'ICV. n \.AUU.

• The 56000 case style is a SLAM package.

• The analog audio output filter circuitry is improved over the Rev. A card.
Otherwise, the two cards are identical. Software written to run on the Rev. A board should run
without modification on the Rev. B board as long as the additional capabilities of the Rev. B board
(ie CTL_LA TCH) are not utilized.

en_LATCH

See the CTL_LATOi section for details on the Rev. B Sound Accelerator.

48 Copyright C 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Ad In Analog to Digital Converter
The Ad In is a two-channel analog to digital converter which attaches to the Sound Accelerator'S
expansion connector. It acts as the recording end of the system. The data it generates is received by
the 56000's SS1 port and generally read in during a SS1 receive interrupt. See the file USampler.asm
for details on receiving data from the Ad In.

The front panel switch selects whether the digitized data will be stereo or only the left or right
channel In the left or right position, the Ad In digitizes at a rate of 88.2 kHz, so you should only
store every other sample in your programs. You could store the entire signal bandwidth, but the
input anti-aliasing filters on the Ad In are optimized for a 44.1kHz Signal. Channel selection can
also be controlled by software using the CfL_LATCH register. See the Sound Accelerator Rev. B
section for more information.

Because the Ad In has a 25 pin connector while the Sound Accelerator Rev. A has a 15 pin
connector, a special conversion cable is required. See the appendices for a description of the signals
and connector pinouts.

C-Bits
The following details the meaning of C-Bit settings and their associated signal directions/meanings
for the Ad In. The signal lines such as 'Bit Clock' refer to lines on the 25 pin connector used on all
Digidesign equipment. Most of the settings require the associated clock signal bits in the
CI"L_LATCH to be set appropriately. For example, if you set the C-Bits for the Ad In to send the L/R
signal, you must set bit 1 in the CI'L_LA TCH to 0 so that the Sound Accelerator receives the L/R
signal.

t/ WARNING: Use the following information with care and at your own risk. Every possible
combination of settings has not been tested. Only the standard settings in the example code
are guranteed to work.

Bit 11 .• 10: Not Used
These bits are reserved for other present or future products. They should always be set to O.

Bit 9 .. 8: Ad In channel and clock control

00 Ad In generates bit clock, frame sync, and left/right signals with the 56k slaving. The Ad In's
input is selected via the front panel switch.

01 Causes the Ad In to digitize and send only the left channel of its inputs at 88.2 kHz
regardless of the front panel setting. This allows the Mac/56k to select whether to record
mono or stereo signals without the user having to use the front panel switch. This would
be achieved by always leaving the front panel switch in the stereo position. The 56k could
then select stereo (00 or 11) or mono (01) input.

10 Turns the Ad In off by tri-stating the output buffers.

11 Ad In generates bit clock while the 56k generates frame synch and left/right signals. The Ad
In's input is selected via the front panel switch.

Serial connector signal summary

• S = Send, R = Receive, Z = high impedance

Confidential Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 49

Mode Name Bit 9-8 Bitek L/R Data

NEW MODE STEREO 00 S S S

NEW MODE LEFT 01 S S S

MOTE 10 Z R Z

OLD MODE STEREO 11 S R S

so Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Sound Accelerator SE/30 Rev. A
The Mac SE/30 version of the Sound Accelerator is a slave-only SE direct slot card, plus a separate
analog card which is installed at the expansion slot connector opening at the rear of the Mac SE/30.
The card cannot initiate any transactions, and sits as memory-mapped I/O in the SE/30's address
space. The architecture of the board is virtually identical to the Sound Accelerator Rev. B NuBus
board. In fact, the operating system on an SE/30 simulates the slot manager on a Mac n machine so
software running on the SE/30 can be written as if it is running on a Mac n class machine.

CTL_LATCH

See the CTL_LATCH section for details on the Rev. B Sound Accelerator.

Confidential Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved S1

DAT 110
The OAT I/O is an external digital audio interface that attaches to the Sound Accelerator's
expansion connector. It allows you to receive and send AFS/EBU and S/POIF format serial audio
data at 32, 44.1 and 48kHz data rates. It sends and receives data through the SSI port on the 56000 in
much the same manner as ~e Ad In. In fact, if you don't utilize the added C-bits control, the Ad In
and OAT I/O look identical from a software point of view. Like the Ad In, it can ~nerate bit clock,
frame sync, and left/right signals as well as various combinations of receiving an generating.
Unlike the Ad In, the OAT I/O can slave completely to the card. This means that it can receive bit
clock, frame sync, and left/right signals from the card while generating and receiving data.

C-Bits

The fonowing details the meaning of C-Bit settings and their associated signal directions/meanings
for the OAT I/O. Because the OAT I/O operates at multiple speeds, and it has the ability to both
Vfm@1"atp !!and TPl'Pivp hit rlnrk, mTnA Q'U"ftl'" !:!Inri T 1'0 e!-i~!!al '!lie! '-'t.Fftll '!II~ ,. __ ._."._"1: -...1 .. _...I g------ ~-- -----. - --- _. __ - -I ' ~ -, ~ .. , o ... u.&&, ""'"' .,y~ AO;II' ~U&'~'-'A,&1I;;.l,ul &~~.&y~ CU;IU ;:,c:~lU

data, its C-Bits are a bit (pun intended) complicated. The signal lines such as 'Bit Clock Out' refer to
lines on the 25 pin connector used on all Digidesign equipment. Most of the settings require the
associated clock signal bits in the CfL_LATCH to be set appropriately. For example, if you set the C
Bits for the OAT I/O to send the L/R Signal, you must set bit 1 in the CTL_LATCH to 0 so that the
Sound Accelerator receives the L/R signal.

52

~ WARNING: Use the following information with care and at your own risk. Every possible
combination of settings has not been tested. Only the standard settings in the example code
are guranteed to work.

• 5 = Send, R = Receive, Z = high impedance

• Be Out = Bit Clock Out

" CB Out = C-Bits Out ie Passed to Ad In connector on back of OAT I/O

Copyright C 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Record Source: Ad In
Receive Mode Transmit Mode

Mode Name Bits 11-8 BC Out L/R Data CBOut BCOut L/R Data CBOut
PRO 32 0000 Z R Z 0000 Z R Z 0000

UNDEFINED 0001 S R S 0001 S R S 0001

OAT 32 0010 S S S 0010 S S S 0010

OLD LOCAL 0011 Z R Z 0011 Z R Z 0010

PRO 44.1 0100 Z R Z 0100 Z R Z 0100

UNDEFINED 0101 S R S 0101 S R S 0101

OAT 48 0110 S S S 0110 S S S 0110

OAT RCV 0111 S S S 0111 S S S 0110

PRO 44.056 1000 Z R Z 1000 Z R Z 1000

UNDEFINED 1001 S R S 1001 S R S 1001

OAT 44.1 1010 S S S 1010 S S S 1010

NEW LOCAL 1011 Z R Z 1011 Z R Z 1010

PRO 48 1100 Z R Z 1100 Z R Z 1100

UNDEFINED 1101 S R S 1101 S R S 1101

OAT EXT. 1110 S S 5 1110 S S S 1110

OLD LOCAL 1111 Z R Z 1111 Z R Z 1110

Record Source: DAT 110

Receive Mode Transmit Mode

Mode Name Bits 11-8 Be Out L/R Data CB Out BCOut L/R Data CB Out
PRO 32 0000 Z R Z 0000 Z R Z 0000

UNDEFINED 0001 5 R 5 0001 S R S 0001

OAT 32 0010 S 5 S 0010 S S S 0010

OLD LOCAL 0011 S R 5 0010 S R S 0010

PRO 44.1 0100 Z R Z 0100 Z R Z 0100

UNDEFINED 0101 S R S 0101 S R S 0101

DAT 48 0110 S S 5 0110 S S S 0110

OAT RCV 0111 S 5 S 0110 S S S 0110

PRO 44.056 1000 Z R Z 1000 Z R Z 1000

UNDEFINED 1001 S R 5 1001 S R S 1001

OAT 44.1 1010 S S 5 1010 S S S 1010

NEW LOCAL 1011 5 S 5 1010 S S S 1010

PRO 48 1100 z R Z 1100 Z R Z 1100

UNDEFINED 1101 S R S 1101 S R S 1101

OAT EXT. 1110 S S S 1110 S S S 1110

OLD LOCAL 1111 S R S 1110 S R S 1110

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved S3

Audiomedia Rev. A and B
The Audiomedia card is a NuBus card which is very similar to the Rev. B Sound Accelerator. The
primary differences are as follows:

• On-card stereo A/D converters as well as stereo D / A converters.

• Consumer level RCA-type audio inputs and outputs.

• High impedance microphone input.

• No digital expansion port connector.

• Faster DSP: 22.578MHz vs 19.7568MHz on a Rev. B Sound Accelerator.

• DMA Circuitry for improved performance.

• Software-selectable Mic/Line switching and input level control.

• New and improved device driver.

• DSP RAM configurations are different.

AnalogUO
The Audiomedia card, unlike the other Sound Accelerator cards, has no digital expansion port or
connector. As such, it cannot be hooked up to an AD-In, DAT I/O or other digital peripherals. It
does, however, have both analog inputs and outputs. These are in the form of RCA-type
connectors on the back panel, 2 for input and 2 for output. The inputs and outputs are adjusted to
consumer (-10 dB) levels. It also has a low impedance 1/4" phono jack microphone input.

The DSP has control over the input level (8 selectable attenuation levels), and whether or not the
Mic input is enabled. The line input is always enabled, so if the Mic input is also enabled, the Mic
signal sums equally to both the left and right analog inputs. The card's Control Latch controls
these functions.

The card has a stereo AID converter that is connected to the analog inputs. It uses an on-card 44.1
kHz clock as its sample rate, like the AD-In. Any DSP recording code written for the AD-In should
work for the Audiomedia card as well. The Audiomedia card's Control Latch ignores any
references to on-card or off-card clocking, since all docking is on-card.

Digital Signal Processor
The card has the same Motorola 56000 used on other Sound Accelerators, except that it is running
at about 22.578 mHz, or about 15% faster. This translates into about 256 real 56000 instructions (ie
MAC XO,YO,A X:(R5)-,xO Y:(R2)+N2,YO is one instruction) per stereo sample pair at 44.1kHz.

The catd is shipped with 8 kwords of external data RAM (4k X memory and 4k Y memory), with
expansion to 32 kwords possible (16k X memory and 16k Y memory). It also has sockets for either 8
or 32 kwords of external program RAM. Rev. A Audio Media cards were shipped with 8 kwords of
external program RAM. Rev. B Audio Media cards have an additional jumper which allows them
to use 2 kword external program RAM chips which they are shipped with. From a developer
viewpoint, the Sound Accelerator and Audio Media both come with the same base configuration
of memory (4k X, 4k Y, 2k P), but the Sound Accelerator can be expanded to the full capadty of the

54 Copyright e 1988 r 1989,1990 Oigidesign; Int:. An Ri~hts Reserved

S6000 (64k X, 64k Y, 64k P) while the Audio Media card can only use a quarter of the full capacity of
the S6000 (16k X, 16k Y, 16k P).

DMA Circuitry
To reduce the bus bandwidth that transferring digital audio data requires, Audiomedia has a special
DMA circuit on-card, to allow direct access of all external DSP RAM from the NuBus. 16 and 32-bit
read and write transfers are supported:

32-bit Write:
The 24 msbits are written to the 24-bit word in DSP RAM.

32-bit Read:
The 24 bits of the word in DSP RAM are transferred to the 24 msbits of the 32-bit word. The 8 lsbits
are indeterminate.

16-bit Write:
The 16-bit word is transferred to the 16 msbits of the 24-bit DSP RAM word. The 8lsbits of the DSP
RAM word are cleared to zero.

16-bit Read:
The 16 msbits of the DSP RAM word are transferred to the 16-bit NuBus word.

Consecutive DSP RAM addresses are actually 4 addresses apart in the NuBus address space. This
conforms to 32-bit style addressing, although in our case we have only 24 bits, and the extra byte is
ignored. Furthermore, Audiomedia does not support byte transfers to the DSP RAM via NuBus.
Under ideal conditions, we have been able to transfer 5 channels of 44.1kHz 16 bit digital audio
from or to a Macintosh hard disk (Quantum 80 ie about 12-18 msec access time) in real time. This
translates to about 4 channels of digital audio accross the DMA drcuit under real world conditions.

tI' Note: When using auto-increment mode on the 68OxO to transfer data to or from
Audiomedia using DMA, the Audiomedia RAM address must increment by 4 for each
transfer, regardless of whether it is a 16 or 32-bit transfer! See the file USACard. p and
U5ACard.a for examples of DMA I/O using the Audiomedia card.

en_LATCH Bit Descriptions
The control latch on Audiomedia has extra bits defined for A/D and input level and switching
control. All bits are backward-compatible with all other Sound Accelerator cards. For example,
setting level control bits on a card without on-board A/D will not hurt anything.

tI' Note: On reset (either a NuBus reset or software generated reset) all data bits will be set to o.
The driver sets the control latch to $OOlFF4 on power-up ie this will be the state of the bits
when your application receives a card. Bits that are marked "not used" should always be set
to zero.

Bits 23-20: Not Used
These bits are reserved for other present or future products.

Bit 19: Microphone Switch

1 Enable Mic input which sums the microphone's input mono signal across the stereo line
level analog inputs before the signals reach the ADC's.

o Disables the Mic input. Only the line level inputs are fed to the ADC's.

Confidential Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved ss

Bits 18-16: Input Level Control
These three bits select one of 8 input attenuation levels. A value of 0 gives no attenuation and a
value of 7 gives about 18 dB of attenuation. Intermediate values are somewhat linear, with the
exception that a value of 3 has less attenuation than a value of 4! This is an unusual side effect of
the attenuation circuit The attenuation circuit is just before the ADC's so both the Mic input signal
(if it is enabled) and the line input signals will be attenuated. The approximate attenuation levels
are as follows:

D18 D17 D16 Level relative to Full Scale = 0 dB (in dB)

1
1
1
0
1
0
0
0

1 1 0
1 0 -4.86
0 1 -7.97
1 1 -10.25
0 0 -11.63
1 0 -14.20
0 1 -15.41
0 0 -18.85

t/ Note: The attenuation levels are subject to change but the relative order with relation to
attenuation will remain the same.

Bit 15: Not Used
This bit is reserved for other present or future products.

Bit 14: DSP RAM NuBus Lockout
When set, NuBus accesses of external DSP RAM via the DMA circuit will be held off. This can be
used to synchronize shared data between the card and the Mac ie when implementing semaphores.

1 Lockout the NuBus from accessing the DSP RAM. Any NuBus accesses to the DSP's external
RAM will be held off until the bit is set to O. This can be useful when implementing
semaphores between the two processors (56k and 68k) allowing shared data to be accessed
atomically.

o Allow the NuBus to access the DSP RAM. This is the normal mode of operation for DMA
access. The NuBus and the DSP arbitrate access to the card's RAM.

t/ WARNING: do not set this bit for more than 256 NuBus clock cycles, or a NuBus access of
DSP RAM will result in a Bus Error!

Bit 13: AID Calibrate
Setting this bit will cause the A/D to go into Power Down mode. Clearing the bit will take the A/D
out of power down mode and initiate an internal calibration cycle. The calibration period is 4096 X
Left/Right clocks (92.88 ms @ 44.1 kHz). The generation of the Left/Right clock is dependent on the
Frame Sync from the 56000 so the S6000 must be in an active transmit and/or receive mode in
order to complete the calibration. The minimum time that the bit must remain in power down is
150 ns. An application should not normally need to use this function because the driver on Audio
Media cards automatically calibrates the A/D converter when the card is powered up (see below).

Bits 12..8: Extemal device control bits:
The control bits (or C-bits) are 4 general purpose output lines used by cards to control external
devices such as the Ad In or the DAT I/O. Because the Audiomedia card lacks an expansion port,
the bits have no specific meaning or use. If you are writing Audiomedia specific software, you can
ignore their settings. If you are writing software that must run on the Sound Accelerator also, set
the bits as described in the C-Bits section of the appropriate external device.

56 Copyright e 1988, 1989,1990 Digidesign. Inc. All Rights Reserved Confidential

Bit 1-4: Oock control bi~
Bits 7-4 are used on Sound Accelerators to control various clock and expansion interface signals.

Bit 1 - Bit 4 Description of state

o 0 0 0 audio output off, 56k internal on-chip clock selected
o 0 0 1 reserved
o 0 1 0 mono audio, 56k internal on-chip S5I clock selected
o 0 1 1 stereo audio, 56k internal on-chip SSI clock selected
o 1 0 0 audio output off, on-card clock selected (88.2 kHz)
o 1 0 1 reserved
o 1 1 0 mono audio, on-card off chip clock selected (88.2 kHz mono)
o 1 1 1 stereo audio, on-card off chip clock selected (44.1kHz stereo)
1 0 0 0 reserved
1 0 0 1 reserved
1 0 1 0 reserved
1 0 1 1 reserved
1 1 0 0 audio off, external (expansion port) clock selected
1 1 0 1 reserved
1 1 1 0 mono audio, external (expansion port) clock + 2 selected
1 1 1 1 stereo audio, external (expansion port) clock selected

II' D7 is not actually hooked up. It is shown here for convenience with its meaning on a
Sound Accelerator. On the Sound Accelerator, D7 controls access to the external clock, a
function that the Audio Media board does not have. In other words D7 is a don't care on
this board, any code written using the external clock will default to the PAt clock.

Bits 3-0: Not Used
These bits are reserved for other present or future products.

Device Driver
The config ROM on the Audiomedia card contains a new version of the Sound Accelerator device
driver. Make sure that any Audiomedia card in a multi-card system are installed in the lowest
numbered NuBus slot so that its driver is the one loaded into the system at boot time.

The new driver is 32-bit clean. It goes into 32-bit mode to access any card, and restores the MMU
mode afterward. The card base address returned by the driver's Allocate control call is still in 24-bit
mode. The translation between addresses in the two modes is as follows:

24-bit mode: $OOsO 0000 (s = slot number)
32-bit mode: $FsOO 0000

II' Note: The files USACard.a and USACard. p in DSPW orkshop contain details on accessing
the card in 32 bit mode. In addition, the file 'USACard.p' in DSPWorkshop contains up to
date driver interface definitions and examples.

The new 'driver adds power-on test support for the AID and DMA circuitry on the Audiomedia
card, and its Allocate control call now returns a full flags word, indicating the features an allocated
card has, such as AID, DIA, DMA, etc. The flags word bit definitions are now as follows:

csAllocFlags bit fields for ctlAllocCard driver control call

GetAnyAlgorithm EOU 0 1 - ignore cardls signature/algorithm
GetAnyMemSize EOU 1 1 - get card regardless ~f mem sizes
GetAnyRefNum EOU 2 0 - get card regardless d£ refNum (Rev 4+)
HasDMA EOU 4 0 - no DMA circuitry

Confidential Copyright C 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 57

HasAD
HasNoDA
HasRequestedAlq

EQU 5
EQU 6
EQU 15

o - no AID converters
1 - no D/A converters
1 - card has requested sig/alg in it

Memory Map
The current Audiomedia memory map (relative to board base address ie $FsOO 0000 in 32 bit mode)
is:

Audio Media Rev. A and B Memory Map

SlartAddr.

$XXXOOOOO
$xxx40000
$xxx60000
$xxx70000
#> ____ O~

iPXXXO uuuu

58

EndAddr.

$xxx5FFFF
$xxx6FFFF
$xxx7FFFF
$xxx800iF

Use

DSP and Board Reset
External P Memory (32 kwords available - 2kwords standard)
External X Memory (16 kwords available - 4kwords standard)
External Y Memory (16 kwords available - 4kwords standard)
56000 Host Port Registers

Copyright e 1988, 1989,1990 Digidesign, Inc. All Rights Reserved Confidential

Appendices
The following pages contain an assortment of diagrams, additional information, tables, and other
random details. Most of the information involves specialized advanced uses of the card that go
beyond the standard example programs. If you have questions about their meanings, or need
advice on advanced applications, please call Digidesign for specific information.

Confidential Copyright © 1988, 1989,1990 Digidesign, Inc. All Rights Reserved 59

Appendices

.,.:

SOund Accelerator Rey. A Serial Pinout and Si&nals

Connector is a female 15 pin D-type connector with pinout
and signal definitions as shown and described below.

Pin # 0
1 e. 9
2 •• 0
3 ee 1
4 ee 2 5 e.
6 3
e.

7
4

e.
8

5 e
0

Figure 4. 15-Pin connector as viewed from the back
when installed in a Macintosh II computer.

Signals are differential balanced.

pint
1. Reserved (Don't Use)
2. Reserved (Don't Use)
3. LeftlRight+
4. Bit Clock Out+
5.STD+
S. SRD+
7. Bit Clock In+
S. Sample Sync+

9. Ground
10. LeftlRight-
11. Bit Clock Out-
12. STD
-13. SRD-
14. Bit Clock In-
15. Sample Sync-

Explanation of signals:

Left/Big ht:

Output. A high level indicates that left channel data is being transmitted
and a low level indicates that right channel data is being transmitted.
For mono this signal should be ignored.

an Clock Out: _

Output This clocks the serial audio data at thirty-two times the sampling
frequency for stereo and sixteen times the sampling frequency for mono.
The data is valid on the falling edge of the clock. This signal is analogous
to the TXC signal in the Motorola 56001 data manual.

m;.
Output: Serial output for sixteen bit audio data. -- The most significant bit
is transmitted first.

ait Clock In;

Input. This input may be used just as an external sample clock or it may be
used to clock in serial 16-bit audio samples. Data must be valid on the
falling edge of the bit clock. This signal is analogous to the RXe signal in
the Motorola 56001 data manual.

Input. Serial 16-bit audio data may be input on this pin. The most significant
bit should be first.

Sample sync:
Output. A falling edge indicates the completion of the transmission of one
sample, or 16-bits, of data regardless of whether it is the left or right
channel. This signal may be used to latch audio data or start transmission
of the next sample of audio. This signal is analogous to the frame sync signal
of the Motorola 56001.

All timing is per the Motorola 56001 technical document ADI1290 Rev. 1,1988
with the exception of the letVright clock, which is shown on the next page.

Sample sync

Left/right

39 ns max.

Figure 5. Timing for left/right signal.

Sound Accciegto(Rev. A RAM PI'"OKnt

Installation of static RAM (SRAM):
The board comes from the factory with 8K X 8 SRAMs installed in sockets Ul·U3 and 2k X 8 SRAMs in sockets Ul-U9.The board can have
four different configurations of data SRAM and three different configurations of program SRAM. These configurations are listed below
along with the minimum address access time that the parts are required to have. Refer to Figures 2 and 3 for clarification. When changing
the configuration of SRAM the corresponding jumpers must be set accordingly. The jumper settings are shown on the following page.

Data SRAM: 1) Bank 1 has 55 nanosecond 8k X 8 SRAMs. Bank 2 is empty. (factory configuration)
2) Bank 1 has 55 nanoseco~ 8k X 8 SRAMs. Bank 2 has 45 nanosecond 8k X 8 SRAMs.
3) Bank 1 has 55 nanosecond 32k X 8 SRAMs. Bank 2 is empty.
4) Bank 1 has 55 nanosecond 32k)(8 SRAMs. Bank 2 has 45 nanosecond 32k X 8 SRAMs.

Program SRAM: All SRAMs must have 45 nanosecond address access times.
1) Ul·U9 have 2K X 8 SRAMs. (fac:tory configuration)
2) Ul-U9 have 8k X 8 SRAMs.
3) Ul-U9 have 32k X 8 SRAMs.

Ul-U6 are the data SRAM sockets. Bank 1 SRAM are
sockets U1-U3 and Bank 2 SRAM are sockets U4-U6.

Ul-U9 are program
SRAM sockets

When installing 2k X 8 SRAMs. please be sure that
they are placed to the bottom of the socket The
bottom of the socket is the end which is closest

1 ••• 1 ••• ••• ••• 3 ••••••
- 4'1 •••
a: a: •••
II) lis ••• •••
• l~~

DATA tv£tJORY JUMlERS

to the middle of the board .

•
PAL3

U27 U28

PAl2 PAL1

Figure 1. Component side of Dlgldesign Sound Accelerator board.

level
conlroll

Sound Accelerator Rev. A RAM Jumper Information

BANK 1 : 8k X 8 SRAMs BANK 1: 32k X 8 SRAMs
BANK2:Emp~ BANK2:Emp~

1 _ _ _ 1 I_ -I-
••• • •• ••• • •• ••• • •• ••• • •• ••• • •• ••• • ••
~U')(O a::a:c:
Il..Il..Il.. .., .., ..,

BANK 1: 8k X 8 SRAMs
BANK 2: 8k X 8 SRAMs

1

1

_
1
_

1

_
1

••• ••• ••• ••• ••• •••
~U')(O a::a:c:
D.1l..D., .., ..,

BANK 1 : 32k X 8 SRAMs
BANK 2: 32k X 8 SRAMs

1

• ••
~U')(O
a:: a:: a:
D.1l..1l.., ..,,

Figure 2. Data SRAM jumper settings

2kX8SRAMs

1 -6-•••
3 •••

~NC")

a:: a:: a:
Il..Il..Il.. ..,, ..,

8kX 8 SRAMs 32kX8 SRAMs

16·· •••
3 •••

Figure 3. Program SRAM jumper settings

SQund Accelerator SE Serial Pinout and Si&nals

Connector is a female 15 pin D-type connector with pinout
and signal definitions as shown and described below.

Pin # 8 7 6 5 4 :3 2 1

0········ 0 •••••••
151413 1211 10 9

Figure 4. 15-Pin connector as viewed from the back
when installed in a Macintosh SE computer.

Signals are differential balanced.

pint
1. Reserved (Don't Use)
2. Reserved (Don't Use)
3. LeftlRight+
4. Bit Clock Out+
5.STD+
6. SRD+
7. Bit Clock In+
8. Sample Sync+

9. Ground
10. Left/Right-
11. Bit Clock Out-
12. STD-
13. SRD-
14. Bit Clock In-
15. Sample Sync-

Explanation of signals:

leftlBight:

Output. A high level indicates that left channel data is being transmitted
and a low level indicates that right channel data is being transmitted.
For mono this signal should be ignored.

Bit Clock Out:

Output. This clocks the serial audio data at thirty-two times the sampling
frequency for stereo and sixteen times the sampling frequency for mono.
The data is valid on the falling edge of the clock. This signal is analogous
to the TXC signal in the Motorola 56001 data manual.

.sm.
Output: Serial output for sixteen bit audio data. The most significant bit
is transmitted first.

Bit Clock In:
Input. This input may be used just as an external sample clock or it may be
used to clock in serial 16-bit audio samples. Data must be valid on the
falling edge of the bit clock. This signal is analogous to the RXC signal in
the Motorola 56001 data manual.

Input. Serial 16-bit audio data may be input on this pin. The most significant
bit should be first.

Sample sync:
Output. A falling edge indicates the completion of the transmission of one
sample, or 16-bits, of data regardless of whether it is the left or right
channel. This signal may be used to latch audio data or start transmission
of the next sample of audio. This signal is analogous to the frame sync signal
of the Motorola 56001.

All timing is per the Motorola 56001 technical document ADI1290 Rev. 1, 1988
with the exception of the left/right clock, which is shown on the next page.

Sample sync

Left/right

39 ns max.

Figure 5. Timing for left'right signal.

Sound Accelerator Rey. B Serial Pinout and Shwals

Connector is a female 25 pin D-type connector with pinout
and signal definitions as shown and described below.

Pin # 0 1.
2 • • 14
3 •• 15

4 • • 16
5 •• 17
6 •• 18

7 •• 19

8 •• 0
9 •• 1

10 •• 2

11 •• 3

12 •• 4

13 •• 5

o
Figure 1. 15-Pin connector as viewed from the back

when installed in a Macintosh II computer.

Signals are differential balanced.

pin #

1. +5 V 14. Ground
2. Control BIT 3+ 15. Control BIT 3-
3. Control BIT 2+ 16. Control BIT 2-
4. Serial Data In+ 17 Serial Data I n-
5. Bit Clock In+ 18. Bit Clock In-
6. Left/Right In+ 19. Left/Right In-
7. Ground
8. Sample Sync+ 20. Sample Sync-
9. Serial Data Out+ 21. Serial Data Out-
10. Bit Clock Out+ 22. Bit Clock Out-
11. Control BIT 1 + 23. Control BIT 1-
12. Control BIT 0+ 24. Control BIT 0-
13. + 12 V 25. -12 V

Explanation of slgnals:

Left/R i ght:t:

Bidirectional. A high level indicates that left channel data 1s being transmitted
and a low level1ndicates that right channel data is being transmitted.
For mono this signal should be ignored.

8jt CJock Out:t:
Output. This clocks the serial audio data at thirty-two times the sampling
freQuency for stereo and·sixteen times the sampl lng frequency for mono.
The data is valid on the falling edge of the clock. This signal 1s analogous
to the TXC slgnal1n the Motorola 56001 data manual.

Output: SerIal output for Sixteen bit audio data. The most significant bit
Is transmitted first.

8it CJock fo:t:
Input. This input may be used just as an external samp Ie clock or it may be
used to clock in serial 16-blt audio samples. Data must be valid on the
falling edge of the bit clock. This signal is analogous to the RXC signal in
the Motorola 56001 data manual.

Serial Data fn:t·
Input. Serial 16-bit audio data may be input on this pin. The most significant
btt should be first.

Sample sync:t:

Bidirectional. A falling edge indicates the completion of the transmission of one
sample, or 16-blts, of data regardless of whether it is the left or right
channel. This signal may be used to latch audio data or start transmission
of the next sample of audio. This signal is analogous to the frame sync signal
of the Motorola 56001.

Cootrol BitsQ-3:t:
Outputs. Used to control various states in the Ad In. May be used for other
genera 1 purpose contro 1.

+Sy.-J2Y+12Y

Voltage outputs from the Macintosh power supply. These p1ns should not
be used or connected to any external device. Use or connection of these
pins may cause permanent damage to the Sound Accelerator Card andlor
the Mac1ntosh computer.

All timing is per the Motorola 56001 technical document ADI1290 Rev. 1,
1988 with the exception of the signals shown below:

\
i\ ___ -+-__

Sample sync

Left/right)\/
_______ --+----..J \'----_

- .. - -

39 ns max.

Figure? Timing for left/right signal.

When using the external clock please allow for an extra 25 nanoseconds
(maximum) of propagation delay before arriving at the 56000 relative to
the external Sarnp le sync (Frame Sync) input and Serial Data Input.

Sound Accele@tor Rey. B RAM PlaCfment

Installation of static RAM (SRAM):
The board comes from the factory with 8K X IJ SRAMs installed in sockets Ul-U3 and 2k X 8 SRAMsln sockets U7-U9.Theboard can have
four different configurations of data SRAM and three different configurations of program SRAM. These configurations are Hsted below
along with the minimum address access time that the parts are required to have. Refer to Figures 2 and 3 for clarification. When changing
the configuration of SRAM the corresponding jumpers must be set accordingly. The jumper settings are shown on the following page.

Data SRAM: 1) Bank 1 has 55 nanosecond llik X 0 SRAMs. Bank 2 is empty. (factory configuration)
2) Bank 1 has 55 nanosecond Ok ~(8 SRAMs. Bank 2 has 45 nanosecond Ok X 0 SRAMs.
3) Bank 1 has 55 nanosecond 321< X 8 SRAMs. Bank 2 is empty.
4) Bank 1 has 55 nanosecond 32k. X 8 SRAMs. Bank 2 has 45 nanosecond 32k X 8 SRAMs.

Program SRAM: All SRAMs must have 45 nalnosecond address access times.
1) U7 -U9 have 2K X 8 SRAMs. (fclCtory configuration)
2) U7 -U9 have 8k X 8 SRAMs.
3) U7 -U9 have 32k X 0 SRAMs.

56001 Addr ... And Data Jumper Block

U1-U6 are the data SRAM sockets. Bank 1 SIAAM
are sockets Ul-U3 and Bank 2 SRAM are U7-U9 are program
sockets U4-U6. SRAM sockets

When installing 2k X 8 SRAMs, please be sure that
they are placed to the bottom of the socket. The
bottom of the socket Is the end which is closest

~I ----------------------11

, ... ••• ••• ••• ••• ••• •••
ii~12

• Rs9;9;

0000000000 0000000000000000000000000
•••••••••• • ••••• 0 ••••••••••••••••••

U27

PAl2

to the middle of the board.

•
PALl

U28

PALl

level
ClOntrols

PROGRAM AND DATA tJa.«)RY -lJJJPERS Figure 1. Component side of Digideslgn Sound Accelerator Rev B board.

Sound Accelerator Rev. B RAM Iumper Infonnation

Program SRAM Jumper Configurations
2k X 8 SRAM
1 •••

••• ••• ••• ••• ••• -I- -I •••
N(,,)~ a: a: a:
0..0..0.. .., .., ..,

8k X 8 SRAM 32k X 8 SRAM 1... 1 •••
••• • •• ••• • •• ••• • •• ••• • •• ••• • ••
'-1-1-

1
I- -I-••• • ••

C\J(,,)~ a: a: a:
0..0..0..
-:> .., -:>

Data SRAM Jumper Configurations

BANK 1: 8k X 8 SRAM BANK 1 : 8k X 8 SRAM
BANK 2: nothing BANK 2: 8k X 8 SRAM

1 I_ -,- q- -I-••• • •• --- ,- -,-••• • ••
- - - I- -I-••• • •• ••• • •• ••• • •• C\J(,,)~ a: a: a:
0..0..0.. .., -:> ..,

BANK 1: 32k X 8 SRAM
BANK 2: nothing

1'- -,••• ••• ••• ••• ••• ••• ••• N(,,)~ a: a: a:
0..0..0.. .., .., ..,

N(,,)~ a: a: a:
0..0..0..
-:> .., -:>

BANK 1 : 32k X 8 SRAM
BANK 2: 32k X 8 SRAM

1 -,- -, • •• • •• • •• • •• • •• • •• • •• N(,,)~ a: a: a:
0..0..0.. -:> .., ..,

Sound Accelmtor Ikv, B Header InformatioQ

56001 SERIAL PORT JUMPER BLOCK PINOUT
AND SIGNAL DESCRI PT ION.

00@G)@@0)@@€)
00000@@@@@

I: BITCLK (SCK Pin on 56000)
3: SSI TXOAT A (STO Pin on 56000)
5: SSI RXOAT A (SRD Pin on 56000)
7: Frame Sync (SC2 Pin on 56000)
9:SCI
11: SCO
13: No Connect
15:SCLK
17: L/R* (left/right signal, TXO
Pin on 56000)
19:RXD
2-20: Ground

5600 I Serial Port
Jumper block

56001 ADDRESS AND OAT A JUMPER BLOCK PINOUT AND DESCRIPTION

GG00@@G>@@€>@@@@@@@@@@@@@@@
m0000G@@@@@@@@@@@@@@@@@@@
I: AO 2: Ground
3:A2 4:AI
5:A4 6:A3
7:A6 8:A5
9:A8 10:A7
II: AIO 12: A9
13: A 12 14: AI 1
15:A14 16:A13
17:WR* 18:A15
19:X/Y* 20:RD*
21: NC (see note) 22: OS*
23:BR* 24:BG*
25:00 26: Ground

27:02
29:04
31: 06
33:08
35:010
37:012
39:014
41: 016
43:018
45:020
47:022
49: Ground

28:01
30:03
32:05
34: 07
36:09
38: 011
40:013
42:015
44:017
46:019
48:021
50:023

Note: Should have been PS* but due to PC fab error pin not connected.

5600 I ADDR 5 AND OAT A JUMPER BLOCK

e ••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••• U15 e level
control."

, ...
••• ••• ••• ••• ••• ••• Nnv

e Q.Q.Q. ..,..,..,

U21

PALl

U23
U27 U28

PAL2 PALl

Nubus connector

Figure 7. Component side of Olgldeslgn Sound Accelerator board, Revision B.

5

25-pln
110

Audiomedia MemQry Upgrade Iumper CQnfi~atiQn

Note Rev Version Here

Data SRAM Sockets

P-----~~~--• lID ... ~------- JP4 only on Rev. B

I
I

al
'o
<
>
LLI
a:

DSP56001 Program SRAM Sockets

On Rev. A Audio Media boards both Data and Program SRAM may only be configured as
either 8k X 24 or 32k X 24.
On the Rev B. Audio Media boards Program SRAM may also be configured as 2k X 24.
The jumper configurations for various SRAM configurations are shown below:

Data SRAM Program SRAM Program SRAM
Rev A or Rev B: Rev A onl~ Rev B onl~

8kx24 32kx24 8kx24 32kx24 2kx24 8kx24 32kx24

~I ~I ~I ~I
JP4 JP4 JP4

~I- ~I" ~I"
'Shunt

Memory Upgrades

The Sound Accelerator (all models) and Audiomedia cards support a variety of
memory configurations. The following are suggested configurations and part
numbers. Digidesign no longer supplies memory upgrades due to the volatile
nature of the memory market. Most of the following parts are available at reduced
cost from national mail order parts companies or from local electronic and
computer retailers. The upgrade paths are described in the form of 'kits' that you
need to upgrade to a certain configuration.

Upgrade kit #1: Three 8kX8 SRAMs, 600 mil, 45 ns
Upgrade kit #2: Three 32kX8 SRAMs, 600 mil, 55 ns
Upgrade kit #3: Three 32kX8 SRAMs, 600 mil, 45 ns
Upgrade kit #4: Three 8kX8 SRAMs, 300 mil, 45 ns
Upgrade kit #5: Three 32kX8 SRAMs, 300 mil, 45 ns

Memory DataSRAM Program upgrade kits
1ll1SIag~ BankQ Bankl SRAM n~ded

A: 8kX8t 8kX8 4
B: 8kX8t 32kX8 5
C: 8kX8t 8kx8 2kX8 1
E: 8kX8t 8kX8 8kX8 1,4
F: 8kX8t 8kX8 32kX8 1,5
G: 32kX8 2kX8 2
H: 32kX8 8kX8 2,4
I: 32kX8 32kX8 2,5
J: 32kX8 32kX8 2kX8 2,3*
1<: 32kX8 32kX8 8kX8 2,3·,4
L: 32kX8 32kX8 32kX8 2,3*,5

It 55 ns parts are placed in Bank 0 and 45 ns parts are placed in Bank 1.
t Comes standard with board

Upgrade kit #1: Three 8kX8 SRAMs, 600 mil, 45 ns
Vendor Vendor #
Motorola MCM6164C45 or MOd6164P45
Cypress CY7CI86-4SPC or CY7CI86L-45PC
IDT ID17164S45P or ID17164L45P

Upgrade kit #2/3: Three 32kX8 SRAMs, 600 mil, 55/45 ns
Vendor Vendor #
Motorola MCM6206P55 (55 ns part)
Motorola MCM6206P45 (45 ns part)
Cypress CY7CI99-SSPC (55 ns part)
Cypress CY7Cl99-4SPC (45 ns part)
lOT ID1712S6S55P or lO17164LS5P (55 ns part)
lOT ID1712S6S45P or ID17164145P (45 ns part)

Upgrade kit #4: Three 8kX8 SRAMs, 300 mil, 45 ns
Vendor Vendor #
Motorola MCM6264P45·
Toshiba TMM2088P-45
Cypress CY7Cl85-45PC or CY7Cl85L-45PC
IDT IDl7164S45TC or ID17164L45TC

Upgrade kit #5: Three 32kX8 SRAMs, 300 mil, 45 ns
vendor Vendor #
Cypress CY7C198-45PC
Toshiba TC5S328P-35

Note: These vendors and other vendors (Hitachi, for example) may have new
product out that matches our needs.

FSynch Mod Notes

The Revision A Sound Accelerator© (SA) board (Macintosh n board only) will not
allow a user to bring digital data into the board via the IS-pin external connector
using an external Frame Sync. The solution to this problem can be solved in one
of two ways: 1) Enable the 56000 internal Frame Sync and use it with either an
external clock or the SA internal clock. With either choice of clock the Frame sync
will be generated by the 56000 (thus synchronized to your choice of clock) and can
then be brought off board via the IS-pin connector and used to trigger an A/D or
other device according to your application. 2) By modifying the hardware. If the
Frame Sync can only be generated externally then extensive hardware
modifications are necessary. Listed below are the modifications necessary to
provide a bi-directional (but enabled for one direction at a time) Frame Sync signal:

These modifications should only be performed by a qualified individual. Please
follow all necessary precautions when working with static sensitive devices. Note
that any modification to the board will void .the warranty.

Make the PCB trace cuts as shown in Figure 1.

Make the following jumper connections (Reference Fig. 1 for V connections):
V4 to U17-pin 9
V5 to U17-pin 11
V2 to U17-pin 10
Ul7-pin 12 to U17-pin 16
VI to U17-pin 5 and Ul6-pin 9
V6 to U17-pin 6 and Ul6-pin 10
V3 to U17-pin 7 and Ul6-pin 11
Ul7-pin 4 to U1D-pin 3
UI6-pin 12 to U1D-pin 4

These modifications will provide you with a bidirectional buffer whose direction
is controlled by the RXD pin of the SCI port (configured as general purpose I/O) .
When the RXD pin is not configured, such as after a 56000 hardware reset, then the
RXD pin will be tri-stated and the buffer direction signal will be pulled low
enabling the Frame Sync input; this is also true when RXD is configured as an
output and is deasserted (active high), the input Frame Sync buffer will be enabled
and the output Frame Sync buffer disabled. Asserting RXD will enable the output
Frame Sync buffer and disable the input Frame Sync buffer. After these
modifications the output data and clock buffers. will always be active.

Solder Side

FSynch Mod (cont)

U17 • .1 · -• • :#.4

U16

• .1 • • • • • • - . • • • • -/-
Vl0X11·~6

• V2_

9~ x.
X I: cut trace at or near this po1nt

U1n U __

Component Side

Figure 1

VIA or Through hole

I pV3

V6

Sound Tools DB-25 Pinout
The Sound Tools system (Sound Accelerator Rev. B SE3Q cards, OAT I/O, and Ad In)
uses a common 2S pin interface cable. The following line description applies to all
hardware in the system.

PIN SIGNAL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2S

N.C.
CBIT3+
CBIT2+
RXDATA+
BITCLKIN+
LIt/R+
GND
FSYNC+
TXDATA+
BITCLKOUT+
CBIn+
CBITO+
N.C.
GND
CBIT3-
CBIn
RXDATA
BITCLKIN
LIt/R
FSYNC
TXDATA
BITCLKOUT
CBITl
CBIYO-
N.C.

All signals are RS-422 pairs:
"+tt indicates non-inverting input/output
".tt indicates inverting input/output

DIRECTION

OUT
OUT
IN
IN
IN/OUT

IN/OUT
OUT
OUT
OUT
OUT

OUT
OUT
IN
IN
IN/OUT
IN/OUT
OUT
OUT
OUT
OUT

CBrr signals are static control bits used to configure
peripheral equipment, and to determine bidirectional
signal directions

N.C. = No Connection
GND = 0 volt reference

PAT 110 Rey C 25 Pin to Bowd Accelerator Rey. A (II and SE) Cable lS-Ptn D-type Male Tin plated shell
with grounding Indents.

25-Pin D-type Male Tin plated shel1
with grounding Indents.
AMP 207464-2 or equlv. 1 EA.
Pins: 0.04 diameter
wI insulation support,
strip form.
Amp 66507-3 or equiv. 21 EACH

The twisted pa1rs sha11 be connected as
follows:

a-b x-y
(means a is connected to x and b is
connected to y, and that th 1 s connect i on 1 s
a tw isted pair.)

25 pin J 5 Pin Name
4-17 6-13 RXDATA
5-18 7-14 BC-IN
6-19 3-10 L/R*
8-20 8-15 FSYNC
9-21 5-12 TXDATA
1 0-22 4- 1 1 BC -OUT

2,3,11,12 1 +12V
14, 15, 16, 23,24 9 GROUND

Cab 1e shie Ids w 111 be grounded to connector
she 11 at both ends.

25 Conductor Shield
(metal plated plastiC ok)
Amp: 745833-9 or equiv.
AND 745508-4 1 EA.

"

AMP 205206-3 or equlv. 1 EA.
Pins: 0.04 diameter wI Insulation
support, strip form.
Amp 66507-3 or equlv. 14 Ej

Cable will be 8 twisted pair,
28 gage stranded conductor w 1 th
SR-PVC insulation, foil shield,
and chrome PVC jacket.

Belden: 8138
Alpha: 3478
Carol: C0671

6 feet

15 Conductor Shield
(metal plated plastiC ok)
Amp: 747099-5 or equiv.
AND 745508-4 1 EA.

Useful Pro&1Smmin& Information

twt
e

lin
e e a a

I:lu
8
9
A
B
C
D
E
F

lin Mgc 11 Regjster Offsets'
1 e eel CR SET $03

Mgc SE Regjster Offsets·
ICR • $01
CVR • $03 1

2
3
4
S
6
7

8 e e 1
8 8 1 8
e e 1 1
8 1 e 8
8 1 8 1
8 1 1 8
e 1 1 1

Bit 15

RIE

CRB
Bit 7

I
0

Bit 7

PCD

Bit 7

I INIT

1 8 8 1 CVR SET $07
1 e 1 a I SR SET $eB
1 8 1 1 IVR SET $eF
1 1 8 8 TXH SET $17
1 1 8 1 TXM SET $ 1 B
1 1 1 8 TXL SET $1F
111 1

PCDOR: 8a0S
pee: 81F8

56001 Registers

TIE RE TE

SCKD SCD2

o O. ext elk
1 .Int elk

Mac Registers

MOD

0

SCD1

1

HM1 HMO HF1 HFO

ISR • $0S
IVR • $e7
TXH • $0B
TXM • $00
TXL • $0F

CTL.LArCH
$001327 Mono on chip clock
$0e1377 Stereo on-card clock
$e013F7 Stereo off-card clock

Bit 8

GCK SYN FSL I
0

Bit 0

SCDO OF1 OFO I
o. mono o. ext elk
1 • stereo 1 .Int cJk

Bit 0

PC2 PC1 PeO I
o • on channel flag: O. disable
card clock Oaplay right expo port
source receive left 1 • enable
1 • off 1.p1ay left expo port
card clock receive right
source Ie
enable ext
data and
clock input

Bft 0

o "TREQ RREQ I ICR
(RIW) host flags set by Mae 1.56k 1 a56k causes

eVR
(RIW)

Bit 7

I He 0
1 • host cmd pending
o • host cmd acknowledged

Bit 7

o

HF3

causes slot slot interrupt
interrupt after raading
when from RX
sending

Bit 0

HV

code of the current or last host command

Bit 0

HF2 RXDF ISR I HREQ I OMA 0
(Read-only)

1.56k TX register

"TROY I TXDE I
host flags set by 56k 1aboth 1a56k is 1a56k Is

Is full or RX
register is empty Ie
generates a slot
interrupt

buckets are
empty

ready to sending
accept something
some data

AIFF File Format

•

Audio Interchange File Format: "AIFF"

A Standard/or Sampled Sound Files
Version 1.2

Apple Computer,lnc.

The Audio Interchange Ftle Format (Audio IFF) provides a standard for storing sampled sounds.
The format is quite flexible, allowing for the storage of monaural or multichannel sampled sounds at
a variety of sample rates and sample widths.

Audio IFF conforms to the "EA IFF 85" Standard/or Interchange Format Files developed by
Electronic Am.

Audio IFF is primarily an interchange format, although application designers should find it
flexible enough to use as a data storage fonnat as well. If an application does choose to use a
different storage format, it should be able to convert to and from the format defined in this
document. This will facilitate the sharing of sound data between applications.

Audio IFF is the result of several meetings held with music developers over a period of ten months
in 1987-88. Apple Computer greatly appreciates the comments and cooperation provided by all
developers who helped define this standard.

Another"EA IFF 85ft sound storage fonnat is"BSVX" IFF 8-bit Sampled Voice, by Electronic Ans.
"8SVX", which handles 8-bit monaural samples, is intended mainly for storing sound for playback
on personal computers. Audio IFF is intended for use with a larger variety of computers, sampled
sound instniments, sound software applications, and high fidelity recording devices.

Data types

A C-like language will be used to describe data structures in this document. The data types used
are listed below:

char:

unsigned char:
short:
unsigned ahort:
lone;:

unsigned lone;:

extenc!ed:

pstrinq:

IO:

8 bits, signed. A char can contain more than just ASCn characters. It can
contain any number from -128 to 127 (inclusive).
8 bits, unsigned. Contains any Dumber from zero to 255 (inclusive).
16 bits, signed. Contains any number from -32,768 to 32,767 (inclusive).
16 bits, unsigned. Contains any number from zero to 65,535 (inclusive).
32 bits, signed. Contains any number from -2,147,483,648 to
2,147,483,647 (inclusive).
32 bits, unsigned. Contains any number from zero to 4,294,967,295
(melusive).
80 bit IEEE Standard 754 floating point number (Standard Apple Numeric
Environment [SANE] data type Exzended).
Pascal-style string, a one byte count followed by text bytes. The total
DUmber of bytes in this data type should be even. A pad byte can be
added at the end of the text to accomplish this. This pad byte is not
reflected in the count.
32 bits, the concatenation of four printable AScn character in the range · ·
(SP, Ox20) through I_I (Ox7E). Spaces (MO) cannot precede printing
characters; trailing spaces are allowed. Control characters are forbidden.

OSType:

Constants

Audio Interchange File Format: -AIFP' version 1.2

32 bits. A concatenation of four characters, as defined in Inside
Macintosh, vol II.

Decimal values are referred to as a string of digits, for example 123,0, 100 are all decimal
numbers. Hexadecimal values are preceded by a Ox - e.g. OxOA12, Oxl, Ox64.

DQZ/J Organization

All data is stored in Motorola 68000 formal Data is organized as follows:

~ Ii'> 2 J ~\ I~s~ ii3 & .~

char tsb

151413 1211 10 9 8 7 6 5 4 3 2 1 0
short Imsb byte 0 I byte' ls§

151413 1211 10 9 8 7 6 5 4 3 2 1 0

long Imsb ~eo
h i 2 I b:1

b A:3 l:ibl

Referring to Audio IFF

The official name for this standard is Audio Interchange File Fonnar. H an application program
needs to present the name of this format to a user, such as in a "Save as ... " dialog box, the name
can be abbreviated to Audio IFF.

Apple Computer, Inc. 2 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

File Structure

The"EA IFF 85" Standard/or InJerchange Format Files defines an overall structure for storing
data in files. Audio IFF conforms to the "EA IFF 85" standard. This document will describe
those portions of "EA IFF 85" that are germane to Audio IFF. For a more complete discussion of
"E.A IFF 85", please refer to the document "EA IFF 85" Standard/or Interchange Format Files.

An "EA IFF 85" file is made up of a number of chunks of data. Chunks are the building blocks of
-EA IFF 85" files. A chunk consists of some header information followed by data:

cklD
} header info

ckSize

A chunk. data

A chunk can be represented using our C-lilce language in the follov.ring manner:

typedef struct

IO ckIO; 1* chunk ID */
long ckSize; 1* chunk Size */

char ckData [J; 1* data *1

J Chunk;

ckID describes the format of the data portion a chunk. A program can detennine how to interpret
the chunk data by examining ckID. .

ckSize is the size of the data portion of the chunk, in bytes. It does not include the 8 bytes used by
cklD and ckSize.

ckData contains the data stored in the chunk. The format of this data is detennined by ckID. If the
data is an odd number of bytes in length, a zero pad byte must be added at the end. The pad byte is
not included in ckSize .

Note that an may with no size specification (e.g. char ckData r 1 ;) indicates a variable-sized
array in our C-like language. This differs from standard C.

An Audio IFF file is a collection of a number of different types of chunks. There is a Common
CIwnk which contains important parameters describing the sampled sound, such as it's length and
sample rate. There is a Sound Data Chunk that contains the actual audio samples. There are
several other optional chunks that define markers, list instrument parameters, store
application-specific infonnation, etc. All of these chunks are described in detail in later sections of
this document

The chunks in a Audio IFF file are grouped together in a container chunk. "EA IFF 85" defines a

Apple Computer, Inc. 3 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

n~ber of container chunks, but the one used by Audio IFF is called a FORM:. A FORM has the
following format:

typedef struct

ID
long

ID
char

J Chunk:

ckIO;
ckSize:

formType:
chunks [J:

cUD is always 'FORM'. This indicates that this is a FORM chunk.

ckSize contains the size of data portion of the 'FORM' chunk .. Note that the data portion has been
broken into two pans, formType and chunksO.

formType describes what's in the 'FORM' chunk. For Audio IFF flles,formType is always
'AIFF. This indicates that the chunks within the FORM penain to sampled sound. A FORM
chunk oflormType 'AIFF is called a FORM AlFF.

chunks are the chunks contained within the FORM. These chunks are called local chunks. A
FORM AIFF along with its local chunks make up an Audio IFF file.

Here is an example of a simple Audio IFF file. It consists of a flIe containing single FORJ\.1 AIFF
which contains two local chunks, a Common Chunk and a Sound Data Chunk.

FORM AIFF Chunk
adD .'FORM'
formType. 'AIFF'

Common Chunk
c:kIO • 'COMM'

Sound Data Chunk
c:kIO • 'SSNO'

There are no restrictions on the ordering of local chunks within a FORM AIFF.

On an Apple /I, the FORM AIFF is stored in a PRO DOS file. The file type is OxCB and the aux
type is OXOOOO.

On a Macintosh, the FORM AIFF is stored in the data fork of an Audio IFF fIle. The Macintosh
file type of an Audio IFF file is 'AIFF. This is the same as the /ormType of the FORM AIFF.

Macintosh applications should not store any infonnation in Audio IFF fue's resource fork, as this
information may not be preserved by all applications. Applications can use the Application Specific
Chunk, defined later in this document, to store extra information specific to their application.

Appie Computer, inc. 4 June i 7, 1988

Audio Interchange File Format: -AIFP' version 1.2

On an operating system that uses file extensions, such as MS·DOS or U1\TIX. it is recommended
that Auclio IFF fIle names have a tf.AIF" extension.

A more detailed example of an Audio IFF file can be found in Appendix A. Please refer to this
example as often as necessary while reading the remainder of this document.

Local Chunk Types

The formats of the different local chunk types found within a FORM AIFF are described in the
following sections. The ckIDs for each chunk are also defined.

There are two types of chunks, those that are required and those that are optional. The Common
Chunk is required. The Sound Data chunk is required if the sampled sound has greater than zero
length. All other chunks are optional. All applications that use FORM AIFF must be able to read
the required chunks, and can choose to selectively ignore the optional chunks. A program that
copies a FORM AIFF should copy all of the chunks in the FORM AIFF.

To insure that this standard remains usable by all developers, only Apple Computer, Inc. should
define new chunk types for FORM AIFF. If you have suggestions for new chunk types, Apple is
happy to listen! Please refer to Appendix B for instructions on how to send comments to Apple.

Common Chunk

The Common Chunk describes fundamental parameters of the sampled sound.

fdefine CommonIO • COMM , /* ckIO for Common Chunk */

typedef struct

IO
long

short
unsigned long
short
extended

CommonChunk;

ckIDi
ckSizei

numChannelsi
numSampleFramesi
sampleSizei
sampleRate;

cklD is always ·CO:MM'. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 byteS used by cklD and ckSize. For the Common Chunk, ckSize is always 18.

nUmClriJrJMls contains the number of audio channels for the sound. A value of 1 means
monophonic sound, 2 means stereo, and 4 means four channel sound, etc. Any number of audio
channels may be represented.

The actual sound samples are stored in another chunk, the Sound Data Chunk, which will be
described shanly. For multichannel sounds, single sample points from each channel are
interleaved. A set ofintcrleaved sample points is called a samplefrome. This is illustrated below
for the stereo case.

Apple Computer, Inc. 5 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

safl1)le sample
frame 0 frame 1

I en 11 ch 21 ch 1 I ch 21

sample
frame N

· .. I ch 11 ch 21

D · one sarTl>le point

For monophonic sound, a sample frame is a single sample point

For multichannel sounds, the following conventions should be observed:

1 ,
ItlrlO 11ft right

3 channel 11ft right

quad
front front
left right

4 channa I left center

left left
canter 6 channel

~

.......... 1

clnter

rlar
left

.4

rear
right

right surround

center right

~

right
center

,;

surround

numSampleFrames contains the number of sample frames in the Sound Data Chunk. Note that
numSampleFrames is the number of sample frames, not the number of bytes nor the number of
sample points in the Sound Data Chunk. The total number of sample points in the file is
numSampleFrames times numChanneIs.

stlmpleSize is the number of bits in each sample point It can be any number from 1 to 32. The
format of a sample point will be described in the next section, the Sound Data Chunk.

sampleRate is the sample rate at which the sound is to be played back, in sample frames per
second.

One and only one Common Chunk is required in every FORM: AIFF.

Apple Computer, Inc. 6 June 17. 1988

Audio Interchange File Format: -AIFF" version 1.2

Sound Data Chunk

The Sound Data Chunk contains the actual sample frames.

'define SoundDataID 'SSND' 1* ckID for Sound Data Chunk *1

typede! struct

ID
long

unsigned long
unsigned long
unsigned char

SoundDataChunk;

ckID:
ckSize;

offset:
blockSize:
soundData[);

cldD is always 'SSNDI. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckID and ckSize.

offset determines where the fU'St sample frame in the soundData stans. offset is in bytes. Most
applications won It use offset and should set it to zero. Use for a non-zero offset is explained in the
Block-Aligning Sound DaUJ section below.

blockSize is used in conjunction with offset for block-aligning sound data. It contains the size in
bytes of the blocks that sound data is aligned to. As with offset, most applications won't use
blockSize and should set it to zero. More infonnation on blockSize is in the Block-Aligning Sound
Data section below.

soundDazQ contains the sample frames that make up the sound. The number of sample frames in
the soundData is detennined by the numSamp/eFrames parameter in the Common Chunk.

Sample Points

Each sample point in a sample frame is a linear, 2's complement value. The sample points are
from 1 to 32 bits wide, as determined by the sampleSize parameter in the Common Chunk.
Sample points are stored in an integral number of contiguous bytes. One to 8 bit wide sample
points are stored in one byte, 9 to 16 bit wide sample points are stored in two bytes, 17 to 24 bit
wide sample points are stored in 3 bytes, and 2S to 32 bit wide samples are stored in 4 bytes.
When the width of a sample point is less than a multiple of 8 bits, the sample point data is left
justified, with the remaining bits zeroed. An example case is illustrated below. A 12 bit sample
point. binary 101000010111, is stored left justified in two bytes. The remaining bits are set to
zcrD.

Sample Frames

1':°:':0:0:0:0:,10:, :1:1:0: 0:0:01 . .~ .
12 bit sample point right most

is left justified 4 bits are
zero padded

Sample frames are stored contiguously in order of increasing time. The sample points Vr'ithin a

Apple Computer, Inc. 7 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

sample frame are packed together, there are no unused bytes between them. Likewise, the sample
frames are packed together with no pad bytes.

Block-Aligning Sound Data

There may be some applications that, to insure real time recording and playback of audio, wish to
align sampled sound data with fixed-size blocks. This can be accomplished with the offset and
blockSize parameters, as shown below.

~ oftS.1 _ --C---
bytes

f+ blockSizebytes.r

soundData []

sample frames ~

block N·' block N

Block-aligned sound data

In the above figure, the first sample frame SLanS at the beginning of block N. This is accomplished
by skipping the first offset bytes of the soundDazQ. Note too that the soundData may can extend
beyond valid sample frames, allowing the soundData amy to end on a block boundary.

blockSize specifies the size in bytes of the block that is to be aligned to. A blockSize of zero
indicates that the sound data does not need to be block-aligned. Applications that don't care about
block alignment should set blockSize and offset to zero when writing Audio IFF files. Applications
that vmte block-aligned sound data should set blockSize to the appropriate block size. Applications
that modify an existing Audio IFF file should try to preserve alignment of the sound data, al though
this is not required. If an application doesn't preserve alignment, it should set blockSize and offset
to zero. If an application needs to realign sound data to a different sized block, it should update
blockSize and offset accordingly.

The Sound Data Chunk is fequired unless the numSampleFrames field in the Common Chunk is
zero. A maximum of one Sound Data Chunk can appear in a FORM AIFF.

,Apple Computer, Inc. June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

Marker Chunk

The Marker Chunk contains markers that point to positions in the sound data. Markers can be used
for whatever purposes an application desires. The Instrument Chunk, defined later in this
document, uses markers to mark loop beginning and end points, for example.

A marker has the folloVling format.

typedef short

typedef struct {

Markerld
unsigned long
pst:ing

} Marker;

Ma:kerld;

id;
position;
markerNamei

id is a number that uniquely identifies the marker within a-FORM AIFF. The id can be any positive
non-zero integer, as long as no other marker within the same FOR1v1 AlFF has the same id.

The marker's position in the sound data is detennined by position. Markers conceptually fall
between two sample frames. A marker that falls before the fU'St sample frame in the sound data is at
position zero, while a marker that falls between the first and second sample frame in the sound data
is at position 1. Note that the units for position are sample frames, not bytes nor sample points.

Sample Frames

I I I
t t t

position 0 position 5 position 12

mtJTwName is a Pascal-style text string containing the name of the marie.

Note: Some "EA IFF 85" files store strings as C-strings (text bytes followed by a null tenninating
character) instead of Pascal-style strings. Audio IFF uses pst rings because they are more
efficiently skipped over when scanning through chunks. Using pstrings, a program can skip
over a string by adding the string count to the address of the first character. C strings require that
each character in the string be examined for the null terminator.

ADDIe Comouter. Inc. 9 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

Marker Chunk Format

The format for the data within a Marker Chunk is shown below.

Id.efine MarkerIO 'MARK' 1* ckIO for Marker Chunk */

typed.ef struct

It)

long

unsigned. short
Harker

} MarkerChunk;

ckIO;
ckSize;

numMarkers;
Harkers [l;

ckID is always 'MARK'. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckID and ckSize.

numMarkers is the number of markers in the Marker Chunk

numMarkers, if non-zero, it is followed by the markers themselves. Because all fields in a marker
are an even number of bytes in length, the length of any marker will always be even. Thus,
markers are packed together with no unused bytes between them. The markers need not be ordered
in any particular manner.

The Marker Chunk is optional. No more than one Marker Chunk can appear in a FORM AIFF.

Appie Computer, Inc. 10 June 17, 1988

Audio Interchange File Format: -AIFP version 1.2

Instrument Chunk

The Instrument Chunk defines basic parameters that an instrument, such as a sampler, could use to
play back the sound data.

Looping

Sound data can be looped, allowing a portion of the sound to be repeated in order to lengthen the
sound. The structure below describes a loop:

typedef struct

short
MarkerId
MarkerId

} Loop;

playModei
beqinLoopi
endLoopi

A loop is marked with two points, a begin position and an end position. There are two ways to
, playa loop, forward looping and forwardlbackward looping. In the case of forward looping,
playback begins at the beginning of the soun~ continues past the begin position and continues to
the end position, at which point playback restans again at the begin position. The segment between
the begin and end positions, called the loop segment, is played over and over again, until
interrupted by something, such as the release of a key on a sampling instrument, for example.

sample frames

begin position end position

With forwardlbackward looping, the loop segment is rust played from the begin position to the end
position, and then played bac/cwards from the end position back to the begin position. This
flip-flop panern is repeated over and over again until inteITUpted.

playMode specifies which type of looping is to be performed.

'define NoLoopinq 0
'define ForwardLoopinq 1
'define ForwardBaekwardLoopinq 2

If NoLooping is specified, then the loop points are ignored during playback.

beginLoop is a the marker id that marla the begin position of the loop segment

endI.«Jp marks the end position of a loop. The begin position must be less than the end position.
If this is not the case, then the loop segment has zero or negative length and no looping takes place.

Apple Computer, Inc. 1 1 June 17, 1988

Audio Interchange File Format: -AIFP version 1.2

Instruml!nt CJumk F onnat

The format of the data within an Instrument Chunk is described below.

.define 1nstrument10 '1NST' 1* ckID for Instrument Chunk */

typedef struct

10 ckIO:
long ckSize:

char baseNote:
cha~ detune;
char lowNote;
char hiqhNote:
char lowVelocitYi
char hiqhVelocity;
short gain:
Loop sustainLoop;
Loop releaseLoop;

InstrumentChunk;

cklD is always 'INIT. ckSize is the size of the data portion of the chunk, in bytes. For the
Instrument Chunk, ckSize is always 20.

baseNote is the note at which the instrument plays back the sound data without pitch modification.
Units are MIDI (MIDI is an aaonym for Musical Instrument Digital Interface) note numbers, and
are in the range 0 through 127. Middle C is 60.

tieruM detennines how much the instrument should alter the pitch of the sound when it is played
back. Units are in cents (1/100 of a semi tone) and range from -SO to +50. Negative numbers
mean that the pitch of the sound should be lowered, while positive numbers mean that it should be
raised.

IowNote and highNote specify the suggested range on a keyboard for playback of the sound data.
The sound data should be played if the instrument is requested to playa note between the low and
high notes, inclusive. The base note does not have to be within this range. Units for lowNore
and highNote are MIDI note values.

IowVe1ocity and IdghVelociry specify the suggested range of velocities for playback of the sound
data. The sound data should be played if the nOle-on velocity is is between low and high velocity,
inclusive. Units are MIDI velocity values, 1 Oowest velocity) through 127 (highest velocity).

,ain is the amount by which to change the gain of the sound when it is-played. Units are decibels.
For example, 0 db means DO change, 6 db means double the value of each sample point. while -6
db means halve the value of each sample point

sustlJinLoop specifies a loop that is to be played when an instrument is sustaining a sound.

reJeaseLoop specifies a loop that is to be played when an instrument is in the release phase of
playing back a SOWld. The release phase usually occurs after a key on an instrument is released.

The Instrument Chunk is optional. No more than one Instrument Chunk can appear in a FORl\1
AIFF.

Apple Computer, Inc. 12 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

MIDI Data Chunk

The MIDI Data Clunk can be used to store MIDI data (please refer to Musical Instrument Digital
Interface Specification 1.0, available from the International :MIDI Association, for more details on
MID!).

The primary purpose of this chunk is to store MIDI System Exclusive messages, although other
types of MIDI data can be stored in this block as well. As more instruments come on the market,
they will likely have parameters that have not been included in the Audio IFF specification. The
MIDI System Exclusive messages for these instruments may -contain many parameters that are not
included in the Instrument Chunk. For example, a new sampling instrument may have more than
the two loops defined in the Instrument Chunk. These loops will likely be represented in the MIDI
System Exclusive message for the new machine. This MIDI System Exclusive message can be
stared in the MIDI Data Chunk.

'define MIDIDataID 'MIDI' 1* ckID for MIDI Data Chunk *1

typedef struct

ID
long

unsigned char

} MIDIDataChunk:

ckID:
ckSize:

MIDIdata[J:

ckID is always' MIDI'. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by cldD and ckSize.

MIDIDazo. contains a stream of MIDI data.

The MIDI Data Chunk is optional. Any number of 1vflDI Data Chunks may exist in a FORM
AlFF. If MIDI System Exclusive messages for several instruments are to be stored in a FOR1v1
AlFF, it is better to use one MIDI Data Chunk per instrument than one big :MIDI Data Chunk for all
of the insttuments.

Apple Computer, Inc. 13 June 17. 1988

Audio Interchanr;e File Format: -AIFP version 1.2

Audio Recording Chunk

The Audio Recording Chunk contains information pertinent to audio recording devices.

'define AudioRecordingID • AESD •

typedef struct {

10
long

ckID;
ckSize;

1* ckID for Audio Recording */
1* Chunk. */

AESChannelStatusData(24);

AudioRecordinqChunk;

cklD is always 'AESDt
• ckSize is the size of the data portion of the chunk, in bytes. For the

Audio Recording Chunk, ckSize is always 24.

The 24 bytes of AESChannelStarusDara are specified in the AES Recommended Practice for Digital
Audio Engineering· Serial Transmission Format/or Linearly Represented Digital Audio Data,
section 7.1, OlanneI Status Data. That document describes a fonnat for real-time digital
transmission of digital audio between audio devices. This infonnation is duplicated in the Auelic
Recording Chunk for convenience. Of general interest would be bits 2, 3, and 4 of byte 0, which
describe recording emphasis.

The Audio Recording Chunk is optional. No more than one Audio Recording Chunk may appear in
a FORM A IFF.

Apple Computer, Inc. 14 June 17, 1988

Audio Interchange File Format: -AIFP version 1.2

Application Specific Chunk

The Application Specific Chunk can be used for any purposes whatsoever by manufacturers of
applications. For example, an application that edits sounds might want to use this chunk to store
editor state parameters such as magnification levels, last cursor position, and the like.

'define ApplicationSpecificID 'APPL' 1* ckID for Application *1

typedef struct

ID
long

OS Type
char

ckID;
ckSizei

applicationSiqnature;
data [J;

I ApplicationSpecificChunk;

1* Specific Chunk. *1

ckID is always 'APPL'. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by cklD and ckSize.

applicarionSignarure identifies a particular application. For Macintosh applications, this will be the
application's four character signature.

dma is the data specific to the application.

The Application Specific Chunk is optional. Any number of Application Specific Chunks may exist
in a single FORM AIFF.

Apple Computer, Inc. 15 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

Comments Chunk

The Comments Chunk is used to store comments in the FORM AIFF. "EA IFF 85" has an
Annotation Chunk that can be used for comments, but the Comments Chunk has two features not
found in the "EA IFF 85" chunk. They are: 1) a timestamp for the comment; and 2) a link to a
marker.

Comment

A comment consists of a time stamp, marker id, and a text count followed by text

typede! struct (

unsigned long
MarkerID
unsigned short
char

Comment;

timeStamp;
marker;
count;
text;

timeStamp indicates when the comment was created. Units are the number of seconds since
January 1, 1904. (This time convention is the one used by the Macintosh. For procedures that
manipulate the time stamp, see The Operating System Utilities chapter in Inside Macintosh, vol II).

A comment can be linked to a marker. This allows applications to store long descriptions of
markers as a comment. If the comment is refening to a marker, then marker is the ID of that
marker. Otherwise, marker is zero, indicating that this comment is not linked to a marker.

count is the length of the text that makes up the comment. This is a 16 bit quantity, allowing much
longer comments than would be available with a pstrinq.

tat contains the comment itself. This text must be padded with a byte at the end to insure that it is
an even number of bytes in length. This pad byte, if present, is not included in count.

COI1I1Mnts CIwnJe F onnat

Ic!efine CommentID

typedef struct

10
long

unsigned short
Comment

CommentsChunk:

'COMT'

ckID:
ckSize;

1* ckID for Comments Chunk. *1

numComments:
comments(]:

ckID is always' COMT'. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by cUD and ckSize.

numCommenu contains the number of comments in the Comments Chunk. This is followed by

Apple Compute" Inc. 16 June 17, 1988

Audio Interchange File Format: -AIFP' version 1.2

the comments themselves. Comments are always an even number of bytes in length, so there is no
padding between comments in the Comments Chunk..

The Comments Chunk is optional. No more than one Comments Chunk may appear in a single
FORMAIFF.

Apple Computer, Inc. 17 June 17, 1988

Audio Interchange File Format: -AIFP version 1.2

Text Chunks • Name, Author. Copyright, Annotation

These four chunks are included in the definition of every "EA IFF 85" file. All are text chunks; their
data portion consists solely of text Each of these chunks is optional.

'define
'define
'define
'define

HameID
AuthorID
CopyrightID
AnnotationID

typedef struct {

ID
long

char

TextChunk;

'NAME'
'AUTH'
'(c) ,

'ANNO'

ckID;
ckSize;

text (];

1 * ckID for Name Chunk. * 1
1* ckID for Author Chunk. *1
1* ckID for Copyright Chunk. *1
1* ckID for Annotation Chunk. *1

clcJD is either' NAME', ' AUTH', '(c) I, or' ANNO" depending on whether the chunk as a Name
Chunk, Author Chunk, Copyright Chunk, or Annotation Chunk, respectively. For the Copyright
Chunk, the 'e' is lowercase and there is a space (OxlO) after the close parenthesis.

ckSize is the size of the data portion of the chunk, in this case the text.

text contains pure ASCn characters. It is not a pstrinq nor a C string. The number of characters
in tat is detennined by ckSizt. The contents of text depend on the chunk, as described below:

Name Chunk

tat contains the name of the sampled sound. The Name Chunk is optional. No more than one
Name Chunk may exist within a FORM AIFF.

Author Chunk

tat contains one or more author names. An author in this case is the creator of a sampled sound.
The Author Chunk is optional. No more than one Author Clunk may exist within a FORM AIFF.

Copyright Chunk

The Copyright Chunk contains I. ~yright n9ti~ f~'the sound ID;l conudns a dl,t,e followtd by
the copyright owner. The chunk In f (c) • serIes ISJh'ecopyright charactm Ie'. For example, a
Copyright Chunk containing the text "1988 Apple C--OtnpUiC', Inc." ~ tiC 1988 Apple
Computer, Inc." , . , .' '"

The Copyright Clunk is optional No more than one Copyright Cturii: may exist within a FORM
AIFF.

Annotation CIumk

tat contains a comment Use of this chunk is discouraged within FORM AIFF. The more
powerful Comments Chunk should be used instead. The Annotation Chunk is optional. Many
Annotation Chunks may exist within a FORM AIFF.

Apple Computer, Inc. 18 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

Chunk Precedence

Several of the local chunks for FORM AIFF may contain duplicate information. For example, the
Instrument Chunk defines loop points and MIDI system exclusive data in the MIDI Data Chunk
may also define loop points. What happens if these loop points are different? How is an
application supposed to loop the sound?

Such conflicts are resolved by defIning a precedence for chunks:

Common Chunk

+
Highest Precedence

Sound o;a Chunk

Marker Chunk

+
Instrument Chunk

+
Comment Chunk

t
Name Chunk

+
Author Chunk

+
Copyright Chunk

+
Annotation Chunk

t
Audio Recofing Chunk

MIDI Oata Ct1Jri(

t
Application Specific CtlJnk Lowest Precedence

The Common ChunJc has the highest precedence, while the AppliclJlion Specific Chunk has the
lowest. Information in the Common Chunk always takes precedence over conflicting infonnation
in any other chunk. The Application Specific CIpmk I:1ways lO5e$in conflicts with other chunks.
By looking at the chunk hierarchy, for example.Qne sees :tbattheloop points in the J nstrumenl
Chunk take precedence over conflicting ~~P poii'1ts found.in the MIDI Data Clumk.

It is the responsibility of applications that write data into the lower precedence chunks to make sure
tbat:. the higher precedence ch~ ~ updated accordingly.

. '. ~-

Apple Computer, Inc. 19 June 17, 1988

Audio Interchange File Format: -AIFF" version 1.2

Appendix A· An Example

lliustratcd below is an example of a FOR.\1 AIFF. An Audio IFF file is simply a fue containing a
single FORM AIFF. On a Macintosh, the FORM AIFF is stored in the data fork of a file and the
file type is 'AIFF.

R:>RMAIFF

Common
Chunk

Marker
Chunk

Instrument
Chunk

cklD __ ~~ __ -I

ekSiZfi
.... mChannels --.-.p~--....

numSampleFrames _.....;:~~ __
~~Sae __ ~~ _______________________ __

Rate

cklD t----_----I ckSize I--____ ~ __ -'

.... mMarkers
1----*--4

id position 1----olI~ ______ _

m~~ame~~~~~~~~ __ ~~~~~~~~~-J
id 1----==---------

position
marke~ame""'~~~~~--~--~----~-----------

cklO __ ;;.;..;.;;:~ ___ -I

detune
lowNote

highNote
IowVelocity

highVelocity ~-...
gain t-----....

sustainLoop.playMode t-----....
sustainLoop.beginLoop 1--"";;'--1

austainLoop.endLoop t--~-""
raleaseLoop.pIayMode
,. ... eLoop.beginLoop 1-------1

1OU~IIB.a ~~~ ~ .' .. , • .1 cb-l C]· is!l:')
882OOIk'sarnpIit'1Iame

fplt. ciifputer, Inc. ,;' ';""'1, 1988

Audio Interchange File Format: -AIFP version 1.2

Appendix B • Sending comments to Apple Computer, Inc.

lf you have suggestions for new chunks to be added to the Audio Interchange File Fonnat, please
describe the chunk in as much detail as possible, and give an example of its usc. Suggestions for
new FORMs, ways to group FORM AIFFs into a bank, and new local chunks are welcome.
When sending in suggestions, be sure to mention that your comment refers to the Audio
Interchange File FOrrnDl: "AIFF" document. .

Send comments to:

Developer Technical Support
Apple Computer, Inc.
2052S Mariani Avenue, MS: 27-T
Cupertino, CA 95014 USA

21 June 17, 1988

. ...,. .~ .. ~'~'
.,#0. • ~,~

22

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22

