
$:b
;p$ $:1;

$:h :$
;:I) :h ;i>

:b :£
~ :b
:b :Ii

$$$$$
$

$
$$$$
$
$
Jj:I>$

;h $::Jl$:b$

:h $:1i Ji
II $;p j)

;p $ JI .j)

;t; $ JI JI

$ J) " $ JI JI
$J)$;j)$:b ,j,)$;j)$

U::'Et-<=.J,Ju (~uEuE=LI"'T LJEVIL:E=,llLP01
:)E(~=:> PPRl=121 LPP=6.:) CPL=8iJ ruPIEJ=l LIMJ.T=4'f

Ct-<EATcD: 2Q-uCT .. n 15:4':>:24
t.1'il,iUt::.Ut.i); D-uF~-77 14:?!:O6
I"'P I N I I i'lG: a-UEl" -17 14:31:(;4

PAtH=:PDU:MEMO:Mt::.MU$j12.LS

:b J) $$$ JJ $$$.1>$ a> ;b$jj

;1>$ $~ $ $ $j)$:b JI $lj $ $
:Ii .:Ii :b $ $ ~ J) $:.b .j) ~.

;b :» J> $ q; $.:r..'B j,$a> ;j) $;j)

;II .:Ii $ ~ $:b $:b ;b

:6 J) $ $:t,$:b$ 'b $ J) q; Jl$

Jj $:b$;j) J) :t>$Jj ;pJj,J) $J)$,ll$.:b$

ADS XLPT REV 01.00

'I) $.to$

$ JI Ji
q; ~
$ ~$$

$ j)

$ $:il
$;j)S",$ $j)$

To: Y'All

From: John ~i lat, Michael Richmono

SubJect: CURUl S-languaae, 1977

Date: 20!Uct117 ~emo No. 312

Aostract:

This memo describes the CUBOl S-languape. lt supports 19M ~7U and
Eclipse CUBul data types, as well as the ANSI CUBul standara.

Data lypp.s

lhe data types supported by this COdOL s-languaae include
those mandAtea Oy the A~SI (1~7q) standard, as wel I as thOSP.
extensions offp.red Oy IbM 370 anrl the tCLIPSc. txcePt for some
mlnor storage allocatl0n differencp,s, tne extpnsions offpreo by
both of these potential "market targets" are identical. jhould it
become desirable (or np.cessary oecause of time constraints) th,S
s-languaae can oe strlPpea of support for these extensions, wltnout
effect on the ANSl core, DY deletlng most instructions containina
the word "B1NARy" and all instructions containina the word
"~luATING".

1.1 Data Type Consiaerations Masked by the ~ompiler

Some aspects of ~O~OL "typeness" wil j oe removed by the CuBul
compiler, And wi 11 be realized with expliclt instructions or
through storagp. allocatlon policy. These incluQP:

a) Source opprations reauiring SCdling or decimal point
alignmp.nt. Ihe compller wil I generate exnlicit lnstructlons
to alian or scale operands.

bl The determination ot radix ana the concommitant neeu for
conversl0n(s) in ooerations. Ahile this does have the
effect of proliferatina the number of instructions, it
allows the !RM/[CLIPSt extensions to he separated eAsily
from the remalning lnstrllctions and does not require d slow
seconaary decode for proqrams which use only AN~I stanoard
types.

c) The need for editing, " any.
explicit edit instructions.

rne compiler will generate

d) Synchronization and alignment.
storage allo~ation policy.

1.2 Non-numeric ~ata

1.2.1 AbCII as the NA1J~E Character Set

Memo no. 312
20/Qct/71
pAge 2

fhese are matters of

lhis CUBUL s-language supports A~CII as the NAT1Vt character
set. Character translation instructions are included to deal with
the alternate character set features of CUBUL.

1.2.2 EtiCUI~

Support of EbCUIC may oe requirea at all levels of commercial
software. The level of support required lS somethinp that must ~e
decided at the product planning level before ~BCD1C support Coeyond
the normal translation ,nstructions) can be Jefinea for a CuBUL
s-langua~e.

1.3 Numeric Data

COtiOL defines a data item to be numeric if its P1cture con
SlSts only of the cnaracters 9, S, ~, and p. Numeric data items
may be comblned freely in arithmetic statements. A rl,stinction 1S

made between data representations which must be in stanoard format
(USAGt IS DISPLAY) and those which may be in imolementor-defined
formats (USAGt IS CUM~UfArIONAl).

1.3.1 USA~E I~ DISPLAY

Al I non-numeric data is USAGE !S D1SPlAY. I~umer;c data can
also be of this form, which requires that the internal reoresenta
tion be character-oriented decimal uigits. {he programmer can
control the existence and 10cdt10n of an operational sign wlthin a
numeric DiSPLAY item. In all cases, the space character 1S a valid
substitute for the character zero.

1.3.1.1 IInsiqned

1'1 e m 0 no. 3!?
20/0ct/71
page 3

Tnis reoresentation is aenerate~ wnen a data item 1~ descrlbed
by a picture w~lch does not contain the operational s,qn ~pS;8nator
S. The numeric value is representeo as a strlnJ of tne c~aractprs
'O q ...

1.3.1.2 Separate ~i9n Leadino/Trail1ng

fhis is the stanaard interchange representation for si~ned
data. Ine sign ;s either '+' or '." and is tne first/last Charac·
ter position of the data fielu.)he oig;t values are as abuve,
.. 0" •• '9' •

1.3.1.3 Qverpunched S,qn Lead,ng/Tra; I ina

In this rppresentation, the first/last Character position of
the data fiela 1mplies both a digit and an operational Sidn. Ihis
encodlng 15 a de facto stanuard. It is present~d h~rewith Alona
with the tRCD!(encod,ng tor compar,son. Note that an ASLI!/~B~DiC
Character translation on a character declmal field pertorms the
correct mappino.

uecimal A~CII
Digit +

AS~I! ASCI! E~Cu!L EuC0TC
uns i ~med +

EcCI.IIl.
unsigned

--------~~~--~-----~~--------------------------~------ -------
0 7R 71) ~O Co uO Fv
1 ql 51 .$1 C1 u1 Fl
2 LI? 5~ ~? C~ u2 Fe:
3 43 5.3 .33 C5 u3 F~
4 411 54 .$4 C4 ULJ F/i
5 45 5,::> ~5 CI;) 05 F:,
6 46 50 .56 Co iJ6 Fo
7 47 57 .37 C I U7 F i
8 q8 58 058 CtS u~ Fe;
q 4'1 511 .59 C':I oq F9 _______________ w _____________________ ~ _____ ~ _________ ~_~ ____ _

(all table entrles in hexadecimal)

1.3.2 USAGE I~ COMPUTATIONAL Data

The ~O~OL standard requires no Particular representatlon for
COMPUTATIUNAL data. In the interest of ECLIPSf/ISM compatibi I;ty

we have made the bindings presented below.

1.3.2.1 CUMPUTA1IuNAL

1"1 e m 0 no. 3 1 2
20/0ct/7(
page 4

lhese data it~m9 wil I be represented as signed, two's comple
ment binary integers, s'ze~ R, 16, 24, 32, 40, qR, ~6, anu 04 b,ts.
The com p i I e r w ; 1 1 0 e n era t e MAG 1\1 I I U lJ E ins t r u C t , 0 n s as nee d edt 0

hanale unsigned binary aat~ (i.e., the interpreter need not worrY
about ; t) •

1.3.2.2 CQMPU1A1IuNAl-l and CuMPUrATIuNAL-2

COMPUTATIONAL-l aata items will he 32 b,t system floatinq
point. CUMPUTAIILlNAL-2 data items will be 04 hit system floating
point. Note that the interpreter must De prepared to handle
operations on mixes of the two precis,ons.

1.3.2.3 CUMPUrA1IuNAL-3

COMPUTATrO~AL-3 oata ,tems wil I
decimal.

1.4 Name lable tntries

be reoresented as packed

The COdDl s-lanquage makes extensive use of namespace aadres
s,ng features. All CuBUL subscripting ana inoexinq can be realized
directly in the naMe taole. 10M's extension which allows more than
one dimension of an array to vary in size based on a run time value
(which maKes conversion of some IuM COUOl programs difficult on
many systems) may also b~ realized directly.

1.4.1 Startlng Address ana Fetch lJirection

All COt:lOL (jata wll1 be aadressed from the leftmost (i.e., low
address) bit an(j be fetched to the right. ~hile it miont aPpear
that numeric operanas shoula be aadressed from the riqhtmost cit,
this is not the case. first, the riRhtmost bit does not correspond
to the low oraer digit (the address of start of the rlqht most
digit is seven less than the adaress of the rightmost oit). More
importantly, an item adaressed from the right woulrl require another
name table entry in order to be moved without regard to its type.

1.4.2 Length

l"IE'mo no. 312
~O/Oct/71
pa8e C;

lhe l~nqth field in the name t~ble contains An ent,ty's bit
length. lhe LObOL s-language uses entlty length to distinguish
between some source language data types. Sin81e and double pr~cl-
510n floating point lCUMPUIAfIuNAL-l and CUMPUTA1IUNAL-2) are
dist;nqu;she0 hetween eaCh other by 32 or 64 in the length tield.
S,ze aistlnctions specified in a picture are also (o~v;ously)
reflected in the lenoth field.

1.4.3 Type

The CO~OL s-Ianquage uses the name tahle typ~ fielu to distin
guish amon~ CU~UL's cornucopia of decimal data types. Note that of
tnese seven types, only packed ~ecimal ;s non-stAndar~! The
interpreter need only examine tne type fi~ld when an operan~ is
numeric decimal (someth,ng is numerlC declmal if the oPcooe says lt
is). The encoding of the four bit type field is as fol lows:

0000: Packed decimal, unSl\=mea.

0001: Packea aecimal, siqnea.

001u: Character d~ci",al, unsigned.

0011: Character decimal, sign is separate and lea(,jinq.

0100: Character decimal, sign i s separate and traill n8.

(1101: ChArActer rlecimal, sign is overpunchea ana leadin 8.

Ollu: ChAr~cter decimal, sign is overpunChE'd anu tralllnl:J.

The decimal operations are defined to accept any of these decimal
formats. Note that when the interpreter stores a s;onea VAlue (be
it decimal, floating or binary) into a declmal uatum Whose type
field indicates "unsigned", only the maqnituae of the value is
storeo.

1.5 Instructions l100)

Ihe notation used to describe instructlons is as follows:

Angle hrackets < > enclose operands Which are
example, <source> is the name (index into thE'

names. For
name table)

of the sourcp. opprand.

i"lemo no. 312
~O/Oct/71

paIJe h

E4ual S19ns = = enclose operands ~hich are iit~rais or
offsets. For pxample, =pc= de~iqn~tes an offset from the
program counter.

1.5.1 Moves (4)

M~mo no. 312
cO/Oct/71
pa8e 7

* MUVt_~HARACrEkS <source>,<dest;nation>

The len9ths ot the operanos as specified 1n the name tahle
need not be equal. tt the length of the source lenqth
exceeos the length of the destinat10n, onlY "destination
length" bits are moved. If the lenRth of the destination
is greater than the length of tne sourc~, the exc~ss

destination bits are filled w1th ~SLll blank. I~ote that
the lengths of the operandS will always be some multiple of
eipht.

* MUVE_CHARACTEHS_E~UAL <source>,<destination>

Exactly "source_length" hits are moved to the destination
from the source.

This 1nstruction is described in terms of pointers to the
source, destination and picture. These pointers are not
part of the ~acro state. One Plctur~ element exists for
each ei~ht o;t character in the destination. Ihe P1cture
is processeo land its pointer bumpeo) in ~yncnrony with the
destination. ~ach pixel is ei9ht bits. Its int~rpr~tat;on
is as follows:

0001nnnn: Iransfer "nnnn" characters
source to the destination. Botn source
ation pointers are bumped by "nnnn". If
is exhaustea, the source pointer is not
an ASCII blank is transferred.

trom the
and destin
the source
bumpeul and

All others: The P1xel character is transferred to
the destination ana the destination pointer is
bumped Oy one.

* MUV~_CHARACrFkS_THANSL_rEU
<s0urc~>,<destinat;on>,<translate table>

Memo no. 3i?
20/0ct/77
pag~ 8

Th~ translate table is a strinp of eight-oit elements.
This move behaves exactly like MOvE_CrlAHACTtRS except that
as each character is fetcheo from the source strina, lt is
usee as an index into tne translate tabl~. The content~ of
the transl~te table at the indexeo location are transferred
to the de~tination. ~ote tn~t if blank paadl"g is
requirPd, the blank pad must be translated as weI I.

1.5.2 Convp.rsions (15)

Mpmo no. 312
20/0ct/7(
~age 9

Mpmo no. 312
dO/Oct/7f
page 10

* D~CIMAL_RuUND =rounainp position=,<source>,<destination>

1.S.3 Numeric Eoitina (1)

* EuIl_i~UI'IjF:kIL <source>,<tarqet>,<picture>

r-lema nu. 312
20/0ct/71
pagE" 11

The source is a decimal number which is editeo into the
target according to the oicture. The precise interpreta
tlon of the Plcture is defineo oy an ~PL proredure in tne
appenuix.

Memo no. 312
20/0ct/71
p~gP lc

1.5.4 Numeric Comparison branches (~O)

The numeric comparison branch~s compare two
values, or a sinqle named value and zero, and branch
indicated PC offset if the inaicated comparison is
The type of the source(s) and the comoarlson to oe
formed is specified by each instruction's name.

named
to the
true.
per-

ME"mo no. 312
20/0ct/71
fJage t.)

~emo no. 312
dO/Oct/71
page 14

1.S.S Non-numerlC Comparison dranches (12)

i'1 e rn 0 no. 3 1 2
cO/Oct/7!
page 1';:)

Each non-numeric comparison e~ecutes a hranch to the
PC offset if ,ts sperified condition is true. Ihe compari
sons operate on eiqht bit Characters in sequence from low
to high aodress ("left-to-riqht). The CHAP_ClA~S_N0Mt:.RIC
and ChA~_CLASS_NOr_NUMEHIC instructions also operate on
packed 4-bit oi8its (if indicated by the name table type
field).

When more than one source is speclfiea, they need not ~e
tne same lenoth. When the sources are not the same len8th,
the snorter source should be treated as if lt were extended
on the right by the ASCII blank cnaracter. Tne two-source
comparisons effectively proceed by comparing characters in
corresponoinq character pOSitions until eitner a pair of
uneyual characters is encountered, or unt,l the enn is
reached, wh'Che~er comes first. rhe first pair of uneyual
characters encountered is usee to determine if tne condi
tion specified by each ,nstructlon's name is true. The
sources are consioered equal if all pairs of characters
compare equally through the last palr.

* CHAr<_COIVIPAPt._GRE.A, I Ek_1 RANSLATt::D
<sou r cel>,<source2>,<taole>,=pc=

This ,nstruction behaves like CH~R_COMPAHE_GKEAT~R e~cept
that the sources are translated through "table" as they are
compared.

* CHArCCOrlljPARE_(,RE. A T Ek_UR_El>lUAL_ TkA iliSlATEu
<sourcel>,<sou~ce2>,<taole>,=pc=

Ivlemo no. 312
20/0ct/7,
page 10

This instruct10n behaves like (HAK_~OMPAR~_~P~A1E~_uR_EwUAL
except that the sources are translated throuah "teule" as
they are comparerl.

The condition is true if all the characters in the source
are in the set of AjCII cnaracters "A" thru "i" ana the
blank. Note that lower case letters are not in tne set'

The coneition is true if all the characters in
contain the ri;pits U throuqh ~ and if tne sign
The sicn is considerea valia 1f its existence anrl
are as described by the name table type f1elrl.
the source must be checKea 4 uits at a time if
table type fiela for <source> indicates "packe rl ".

<source>
15 valid.

position
('l0 t e t hat

tne name

The conaition is true it all the characters in the source
are equal to ASLIl clank.

This instruction 1S the inverse of CHAR_S~ACES.

M~mo no. 3!2
~O/Oct/7(

page 1/

I.S.A Arithmetics (~a)

Ihe type ot the sou~cels) and destinationls) for an
arithmetic instruction is specified by the first part of
the instruction's name. The operation to be pertormed 15
sRecified by the second part of the instruction's name.

If no preposition follows the first two parts ot th~
instruction's name, then the operation uses two sources
distinct from the destinationl~). 1f a prepositiun aoes
fol low the 1nstruction's name, then tne secono operand 15
specified by <destination> or <quotient>.

For SWRIRACI instructions, the first source is the
hend anJ the second source (wnich might also
destination) is the minuend.

subtra
he the

For DIVlnt instruct,0ns the first source is the divlsor and
the second source (Wh'Ch might also be the quotl~nt) is the
dlvidend. Note that DIVIDt 1nstruct10ns proauce t~o
results, a quotlent and a remainder.

* DtCIMAL_A0D <sourcel>,<source2>,<uestinatlon>

* DtCIMAL_~ULTI~LY csourcel>,csource2>,cdestination>

* DiCIMAL_DIVID£ <sQurcel>,<source2>,<quotient>,<remalnoer>

* DtCIMAL_SURfRACT_FRUM <source>,<destination>

* DtCIMAL_MUL1I~LY_BY <source>,crlestination>

Memo no. 312
20/0ct/77
page Id

* BINARY_ADU csourcel>,csource2>,coestinat;on>

* BiNARY_utvIuE <sourcel>,<source2>,<quotipnt>,~rema;nder>

* BINARY_UIVIDE_I~Tu csource>,<quotlent>,<remainder>

* FLOATINu_Ar.J csourcel>,<source2>,<destinat;on>

* FLOATING_SUdTRACT <sourcel>,<source2>,<destination>

* FLOATING_MULTiPLY <sourcel>,<source2>,<~estination>

M@mo no. 312
~O/Oct/71

pagp. 1~

1.5.7 Slze trror Handlina (~)

Memo no. 312
~O/Oct/7{

page ?O

Many arithmetic and conversion operations can proauce
results which ar~ too long to fit in the specifieo uestina
tion (CUBUL lumps dlv1s;on by zero, overflow ana underflow
into this cateqory). Explicit si~e error hanulinw, when
specified by the proarammer, mAndates tnat the destination
field remain unchan8ed when a size error occurs.

fhe ~ObOL s-lanauaWp therefore has two I-bit wize
error f)a8s which are part of ~rocess aata space. The
first is called "OP_BAD". 0P_BAD is ~et to one by any
operation which causes a size error. All operations exce~t
the conaitional moves defined below are allowed to change
the destination, even when a size ~rror occurs. ror tnose
instances Where a size error is specified, the comPlIer
will allocatp a temporary as the aestination, qeneratin~ A
checked assiqnment after the operdtion. The second size
error fla~ 1S cal lea "STMT_bAu". It is set to one it any
operation in a statement lncurs a size ~rror. uP_BAD is
aiways aesignated by name O. S'~r_oAU is always uesi8nated
by name 1.

The action of this operation depenas on the settinq of
O~_oAU:

OP_oAU = 1. STMT_BAD is set to 1. OP_oAu is set
to O.

np_bA~ = O. If the source fits in the aestlnat1on,
then the source is assigned to the aestination, dS
in the uncheckeu ASSIG~_DtC1MAL_TJ_uECIMAL. If the
source aoes not fit in the aestination, SJMI_oAu is
set to 1. Note that the condition "fits in the
destination" may depend on the number of signifi
cant decimal digits in the source, and not Just its
length!

* CHECKtn_ASSIGN_bINA~Y_TU_tlINAHY
<source>,<lim.it>,<destination>

1"1 e m 0 no. 3 1 2
~O/Oct/71

page 21

The Action of this operation depenas on the settino of
OP_dAU:

OP_dAU = 1. STMT_BAD is set to 1. OP_bAu is set
to v.

OP_oAI.> = O. If tne source fits in the aest,ndtlon,
then the source is assigned to the destination, as
in the uncheCKea ASSIbN_R1NMRY_Tn_BINAPy. If tne
source aoes not fit in the destination, SlMl_oAu is
set to 1. Ihe condit,on "fits in tne destlnatlon"
is true if the magnltude of "source" does not
exceeo "limit".

The action of this operation depends on the setting of
OP_bAu:

OP_bAU = 1. STMT_BAD is set to 1. OP_b4u is set
to o.

OP_bAU = u.
executed.

If STMT_BAD ;s v, a branch to the pc offset is taken.

1.5.A St~ing lnstructions (S)

IlIjemo no. 312
~O/Oct/71

page i?~

Ihe following ;nstruct,ons support th~ ~ObO~ SIR1N u ,
UNSfRIN u and IN::>PE:.Cl statements. In all th~se
inRtructions, <sou~ce> and <destination> name cnaracter
(i.e. len8th is 3 multiple of eioht) data. The data named
by <start>,<end> and <index> are binary inteqers which
",ndex" either the source or the destination. rhe value
one desi8ndtes the fi~st character position, two the
second, etc. li.e. the strin~s are entity indexed).

MuVE_~TKII~G <source>,<start>,<end>,<~estination>,=pc=

The characters in "source" from "start" through "~nd" are
moved to "destination". If the numoer of characters to De
moved exceedS the space ava,lable in "destination", trunca
tion tak~s place, and a branch to the pc offset is
executed.

* M0Vt_TO_STRINb csource>,<aestination>,<start>,<ena>,=pc=

All the characters in "source" are movea to that portlon of
"destination" hounded by "start" throu9h "end". If the
numoer of characters to be moved exceeds the space in the
delimited destination, truncation takes place and a ordnch
to the pc offset ;s executed.

The characters in "source" from "start" throuwh "end" are
scanned fo~ character(s) in "delimiter". If the delim,ter
;s not founa, ",naex" is set to the "end", plus i, and a
branch to the PC offset is executed. If a rlel,miter is
found, "index" is set to the character position preceeoin~
the start of the aelimiter. Note if the delimiter contains
more than one Character, al I the characters must occur in
sequence in "source".

1.S.Q M,sc€"llaneous (0)

1'1 €" m 0 no. 3 1 2
~O/(lct/71

pS'/je 2.:>

This instruction cauSes rep\acem€"nt of the offset portio~
of the propram counter OY "po offset".

This ,nstruct,on causes a branch to be taKen tu the pc
offset.

The following two instructions are deneratel.l as
mentary pair. lhe "ending adaress varidbl€"" 18
both instructions.

* PtPFOHM_THPu <ending address variable>,=cc=

a compl;
the same ,n

The address of the ,nstruction following the ~EKFuRM_IHHU
is assigned to t~e enuinq address variable, tnen a oranch
;s executed to the pc offset.

The ClJrre~t Value of the end1nd aLldress 'varidble is
fetched. The aedress of the instruction tollowin8 the
ENn_p~RrORM is stored in the enainc aduress variaule. A
branch to the fetched end1ng address completes the execu·
tion of this instruction. lhe compiler must ensure that
the initial value of the ending address variable is the
address ot the instruction tol lowi~g the tNJ_PEnFuRM.

* CALL ~procedure>

This instruction invokes the common external call
mechanism, with no param€"ters.

* CAL.L_US1NG =n=,<procedure>,<oarameter-l> ••• <parameter-n>

This instruction invokes the common external call
mechanism, with "n" parameters.

rllemo no. 3.L 2
cO/Oct/71
pAge ?Ii

APpenciix- :;>PL uescription of EIJIT_IilHEIiIL.

procedure edit_numeric (read onlY
write only
reao onlY

s: numeric,
t: alpnanumeric,
p: picture);

type picture 1S array [picture_counter] ot oyte;
picture_counter is O •• SS;

alphanumeric is array ltarget_counterl of oyte;
tarqet_counter is 1 •• 3uJ

numeric 1S any of the seven aecimal Qwarves;
source_counter is 1 •• 10;

byte is bit d as O •• 25~;

variaQle finished:
negative:
tr1Qgereo:

boolean;
ooolean;
boolean;

digit_suostitute:
negative_insert:
positive_insert:

si: source_counter;
ti: tarpet_counter;
pi: picture_counter;

byte;
byte;
byte;

function aerive_opcode lread only plxel: oyte)

type edit_opcode is (move_numeric,
move_numeric_suppresseu,
mnve_numeric_floatln~,
insert_character,
insert_character_suppressed,
insert_slQn,

begin

end_floatinq,
olank_when_zero,
end_edlt,
set_suppression,
set_float;na_;nserts);

select pixel<u:4> of

case 1 : return move_numeric;
case 2 •• 1: return insert_character;
case 8: return move_numerlc_sup~resseQ;
case q. . return move_numeric_floating;
Cnse 10. • 1 ';) : return insert_cnaracter_suppresseu;

case 0: select pixel<4:4> of

case 0: return set_suppression;

I"~ e m 0 no. 3.1. 2
2(')/Oct/71
pa~e 2~

case 1 : return set_flnati n8_inserts;
case 2: return end_floatin9;
case 3: return inse r t_ si 8 n ;
case 4: return blank_wnen_zero;
case s: return end_edit;

otherWlse: nothinq;

end select;

end select;

end function deriv€_opcode;

proceoure P,xpc_p;xel lre~a only pixel:

inherits (read write
reaa only
write only
re~a wrlte
read write
reao write

triggereo:
np.8ative:
finisherl:
d;8;t_sub~titute:
negative_insert:
positive_insert:

1"1 e m 0 no. 3 1 2
20/0ct/7i
page ?b

oyte)

ooolean,
ooolean,
ooolean,
oyte,
OytP,
oyte);

variable cc:
sc:
z:

byte;
bytp.;
boolean;

~ work;n8 character
Yo scratch character
% is source oi8;t zero[

begin

select derivp_opcooe(pixel) of

case move_numeric:

times pixel<<<:4> repeat

get_o;g;t_from_source (ce, z);
trlqgerea := trig~ered or not z~
put_character_,nto_target (cc),

end times;

times pixel<4:4> repeat

get_u;git_trom_source lcc, z);
if z and not trigqered

then ec := digit_suostitute;
ena If;
triqgerea := tri8qered or not z;
put_c naracter_,nto_taryet (cc);

end times;

times oixel<a:4> repeat

get_digit_from_source (ee, z);
if not tr;gqered

i"l P m 0 no. 3 1 2
c:O/Oet/71
page 21

then ,f z then ee := digit_suustitutp.;
else ,f ne~at've

eno 1 f;
end if;

then sc := n~gative_insert;
else sc := posit;ve_insert~

end if;
put_e haractp.r_into_tar8et (se),

tr;qgereu := triggered or not 2;
put_eharaetpr_into_target (ec)i

enrl tif'l'1e~;

ease insert_char:

ce := plxel<1:7>;
put_eharacter_;nto_tar~et (ee);

if triqgerea
then ee := Plxel<1:7>;
else ce := diait_5ubstitute;

end ; t;
out_cnaracter_into_target (ce);

case insert_sign:

~et_ne)(t_p;xel (se);
~ e t _n ex t_p ; x e I (e c) ;
if negative then cc := sCi end if;
put_enaraeter_into_tarqet (ee);

if tri~gerea
then notrlinq;
else if npgative

enn it;

then cc ;= neqat1ve_;nsert;
else cc := pos,t,ve_,nsert;

end if;
~ut_character_into_tarqet (ec);

if not triqgereo then bl~nk_targeti enn if;
finlsheu := true;

finlshed := truei

case set_suppression;

qet_next_pi xpl
qet_next_pixel

end select;

return;

lneqative_,nsertion),
lposltive_insert;on)i

end proceaure expc_pixel;

Memo no. 3!2
~()/Oct/71

page ?d

be~ln

% MAl~ L1NE tDIT CUnt %
% %

%---------~-------------%

finisheo := false;
neqatlve := is_negative(s);
tr;gqered := false;

diqit_suhstitute := ASC1I_space;
neqatlve_;nsp,rtlon := ASClI_m;nUSi
Posltlve_insertlon := ASCII_space;

s i .- 1 ; .-
t i .- 1 ; .-
p; .- 0; .-

repeat

8 e t _ n ext _p;)(e 1 (c c P
e)(e c: _p i x e 1 (c c) ;
if finishpd then return; end if;

end repeat;

end procedure edit_numeric;

1111 e m 0 no. 3 J. 2
~O/()ct/71

page 29

