
MTA GENERAL
CORPORATION

Southboro,
Massachusetts 01772

. (617) 485-9100

PROGRAM

Debug III User' s Manual

TAPES

Relocatable Binary: 099-000073

DOS Dump: 088-000002 (SYS.LB)

ABSTRACT

Debug III is a routine used for symbolic debugging of user programs.

Copyright (C) Data General Corporation, 1972
Printed in U. S. A.

093-000044-02

TABLE OF CONTENTS

INTRODUCTION • . • . . . 1

COMMAND SUMMARY . . • • . . • . . . • . • • 2

SYMBOLS AND CONVENTIONS • 5

USER TYPING ERRORS. • 6

OPENING, MODIFYING AND CLOSING MEMORY REGISTERS • • • • • • • • • 7

REMOVING AND RESTORING USER SYMBOLS • 9 .
STARTING AND RESTARTING A PROGRAM •••••••••••••••••••••• 19

SETTING AND DELETING BREAKPOINTS •••••••.•••••••••••••••• 11

ENTERING AND LEAVING THE DEBUGGER VIA BREAKPOINTS. • • • • • • • • 12

SEARCH COMMANDS ••.•.................•......•.•.•..•. 14

EXAMINING AND SETTING SPEC~L REGISTERS • • • • • • • • • • • • • • • • • 16

EXAMINING AND SETTING SPECIAL REGISTERS $T AND $C • • • • • • • • • • 18

PUNCH COMMANDS •••••••••••••••••••••••••••••••••••••• 19

CONVERSION MODE COMMANDS •••••••••••••••••••••••••••• 21

ERROR RESPONSES ..•..•...•....•......•...•........... 23

OPERATION . . • • • • . • • . . • 24
Symbol Table. • . 24
Loading Stand-alone Debug III • 2 5
Using Stand-alone Debug III •••••••••••••••••••••••••••• 26
Loading Debug III under DOS • 2 7

-i-

INTRODUCTION

The NOVA symbolic debugger, Debug III, is a program that interfaces with user
routines as an aid in debugging. Debug III provides for up to 8 active breakpoints
within the user's routines. The accumulators, carry, and memory can be examined

· and modified from the teletype after a breakpoint has occurred. The machine state
can be monitored during execution of a routine using simple commands to the
debugger from the teletype. The debugger interfaces with any NOVA routine, including
those using the NOVA interrupt structure. The Stand-alone version of Debug III
can also be used to punch ranges of memory in binary format acceptable as input to
the Binary Loader.

The following versions of Debug III are available:

1. Relocatable - No Disk Operating System (Stand-alone).

2. Relocatable - Disk Operating System (DOS).

The following differences exist between the two debuggers:

1. Punch commands and certain register commands are meaningless in
DOS operation and are therefore illegal. The commands involved are:

$F
!!_$F
$E
adr$E
adr1< adr2$P
$H

$I
$T
$L
$Y

punch commands

Interrupt register command
TTI register command
Location register command
Symbol table pointer register command

2. Under DOS, all I/O is handled by the system. Therefore, the DOS
debugger does not recognize I/O mnemonics (DIA, NIOS, DOAS, etc.) •
However, programmed system commands for I/Oare recognized
(.OPEN, • RDL, • CLOSE, • WRS, etc.) •

3. The $R command has a slightly different meaning in Stand-alone and DOS
Debug III. The difference is noted in the writeup of that command. The
$G and adr $G commands are only implemented in Stand-alone.

-1-

COMMAND SUMMARY

The Symbolic Debugger provides extensive facilities for examining and modifying
program status. The single-character command code may be preceded by an
argument. The argument is normally separated from the command code by the symbol
$ or the escape code (ESC) which echoes $. In the command summary following, the
argument may be null or one of the following:

Command

$K

!!_$K

sym$K
name%

adr

n

user symbol

an address having any legal address format, such
as an octal or decimal number, user symbol,
or expression. An expression has the format:

x+x+x •••

where each x is a symbol, octal, or decimal number
separated from the following x by either + or - •

an integer.

adr1 < adr2 a range of addresses from adr1 to adr2 inclusive.

name a user symbol that is the name of a user program.

Meaning

Open register adr and type contents.
Open register adr.
Close open register.
Close open register and open next.
Close open register and open previous.

Remove all local and global symbols from input and
output.

Remove all local symbols from input and output but
retain (or enable) globals.

Remove sym from output permanently.
Enable all local and global symbols or restore to

output all symbols removed by $K and !!_$K com -
mands within program name.

-2-

Page Where
Described

7
7
7
7
7

9

9

9

9

COMMAND SUMMARY (Continued)

Command-

$P

Meaning

Proceed from current breakpoint with break proceed
counter set at +1.

Page Where
Described

12

~$P Proceed from current breakpoint with break proceed counter 12

~$Q

$B
adl$B
$D
n$D

$M
$W
$S
adr$S
adr <$S
adr1 < adr2$S

$R

adr$R
$G

adr$G

$A
~$A
$1
$L
$N
$Y

$T
$C

set at n.
Open break proceed counter~(~= 0-7).

Print locations of all user program breakpoints.
Insert breakpoint at location adr.
Delete all breakpoints.
Delete breakpoint~· (~ = 0-7)

Open mask register.
Open word register.
Search all memory.
Search memory locations 0 to adr.
Search memory locations adr1 to 077777 inclusive.
Search memory locations adr1 to~ inclusive.

Restart program at address in location register
(Stand-alone). Restart program at starting
address in UST (USTSA) (DOS).

Restart program at address adr.
Restart program at address in location register

and set C(AC3) to address of debugger. *
Restart program at address adr, set C(AC3)

to address of debugger.*

Print all accumulator register contents.
Open accumulator register~· (~ = 0-7)
Open interrupt register. *
Open location register. *
Open numbers register.
Open symbol table pointer register.*

Open TTI done register. *
Open Carry and TTO done register.

*Only implemented in Stand-alone Debug III.

-3-

12

11
11
11
11

14
14
14
14
14
14

10
10

10
10

10

16
16
16
16
16
16

18
18

COMMAND SUMMARY (Continued)

Command

$F
E:$F

$E
adr$E
adr1 <adr2 $P
$H

=

&

$=
$:
$;
$~

$'
$&

Meaning

Punch 10 decimal inches blank tape. *
Punch ~(octal or decimal) inches blank tape. *
Punch end block on tape. *
Punch end block with transfer point adr. *

Page Where
Described

Punch binary tape from location adr\ to adr2 inclusive. *
Open search/punch output register.

19
19
19
19
19
19

Print last typed quantity in numeric form.
Print last typed quantity in symbolic form.
Print last typed quantity in instruction form.
Print last typed quantity in half-word form.
Print last typed quantity in ASCII form.
Print last typed quantity in byte-pointer form.

Print subsequent quantities in numeric form.
Print subsequent quantities in user symbol form.
Print subsequent quantities in instruction form.
Print subsequent quantities in h<:.if-word form.
Print subsequent quantities in ASCII form.
Print subsequent quantities in byte-pointer form.

21
21
21
21
21
21

21
21
21
21
21
21

* Only implemented in Stand-alone Debug III.

-4-

SYMBOLS AND CONVENTIONS

SYMBOL

+

(Space)

@

"

MEANING

Addition.

Subtraction.

Separate instruction fields.

Separate instruction fields.

Add 10 to data (used with
source-destination accumu­
lator instruction.)

Add 100000 to data, and add
2000 to an instruction.

Delimit beginning and end of a
one character string; delimit
beginning and, optionally, the end
of a two-character string.

Can be used as any character

\..

EXAMPLE

NEXT+SUM+l

SUM2-SUM1

LDA 0 0 0

LDA 0, O, 0,

command

@=
LDA 0 @O O==

T

command

"A"
"AB"
"AB

within a user symbol. • PR2

Denote a decimal number. -5.

Can be used to represent the AA/ NEG 0 0
current location. In the example,
AA is the current location symbol • I NEG 0 0
and the commands AA/ and • I produce
identical results.

-5-

response

100000
022000

) '---.,_-)

response

$YMBOLS AND CONVENTIONS (Continued)

SYMBOL

$

MEANING

Conventional representation for
pressing carriage RETURN key.
This closes a memory register
after examination and possible
modfication.

Conventional representation for
pressing LINE FEED key. This
closes a memory register after
examination and possible modifi­
cation and opens the next con -
secutive register.

Conventional representation for
the ESC key (although the $
symbol may also be typed by
pressing the Shift and 4 keys).
$ delimits the argument from
the command. (ABCB is
ambiguous, ABC$B is not.)

Symbol is used to close a memory
register after examination and
possible modification and open
the previous register.

USER TYPING ERRORS

EXAMPLE

AA/NEG 0 0 NEG 1 iJ

AA/NEG 1 lf

AA+l/LDA 0 Fo21i

AA+2/STA 1 FDlO

$S
$L

AA+2/STA 1 FOlOt
AA+l/LDA 0 FD21

The user can kill an incorrect command or typing error by pressing RUBOUT
key.

-6-

OPENING, MODIFYING, AND CLOSING MEMORY REGISTERS

FORMAT

adr!

NOTES:

EXAMPLES:

ABC!

ABc/ADD 0 1

MEANING

Open register adr.

Open register adr and print contents.

Close most recently opened register.

Close most recently opened register and open the succeeding
register.

Close most recently opened register and open the previous
register.

When a register is opened and a command is given that does
not reference the register, the register is automatically closed.
If $ is typed with a register open, the error message ? will
be printed. / or I remain in effect until changed when opening
and closing registers repetitively using t and~.

+ Open register ABC.

+ Register ABC is opened and contents printed.

AA/ ADD 0 0 SZC SUB 0, 0 t + Register AA is opened, modified and closed.

AA/ADD 0 0 SZC SUB 0 0 ~
AA+l LDA 3 -1 3

AA/ADD 0 0 SZC SUB 0, ot +

A STA 0 TR

Register AA is opened, modified and closed , and
the next location is opened and its contents
printed. (/ remains in effect during chained
openings.)

Register AA is opened, modified and closed, and
the previous location,A, is opened and its contents
printed.

AA/ADD 0 0 SZCt
AA+ 1 LDA 3 -1 3 1'­
AA+2 JMP BB.
AA+l LDA 3 -1 3J

+ Series of openings and closing of sequential registers.

-7-

OPENING. MODIFYING AND CLOSING MEMORY REGISTERS (Continued)

EXAMPLES (Continued)

AA/JMP BB/ ADD 0 0

AA/JMP BB = 000423

AA/ JMP BB • = 003000

The second / closes register AA unmodified and
opens a register via the 15-bit C(AA).

Register AA is still open.

Register is closed by . = The value of address
AA is 3000.

-8-

REMOVING AND RESTORING USER SYMBOLS

The symbol tables of the assembled programs loaded with the debugger contain the
user symbols lmown to the debugger. These are the local symbols - those lmown
only in a single assembled program - and the global symbols lmown throughout
the loaded programs.

FORMAT

$K

~$K

sym$K

name%

NOTE:

EXAMPLES:

MEANING

Remove all symbols (local and global) from input and output.
Absolute values are used instead.

Remove all local symbols from input and output but retain or
enable global symbols. Absolute values are used instead of
local symbols. ~is any single digit.

Remove the user symbol named sym permanently from output.
The user symbol having a value closest to ~ is used instead,
provided there is a user symbol within 20008'

Restore to output all user symbols previously removed from the
program named name by ~$Kand $K commands, i.e., enable
all local symbols except any removed by a ~ $K command.

Symbols are removed from output by the sym $K command but
may still be used on input. If no local symbols have been loaded,
0$K will enable all glbbals.

Suppose that a program given in the title XX by the . TITL
pseudo-op contains symbols C72, . FD40 and T2. Then:

505/ LDA 1 C72
C72$K
505/LDA 1 • FD4o+7
• FD40$K
. /LDA 1 T2+23
1$K
. /LDA 1 +50
XX3
505/LDA 1 T2+23

+- In this example, each time a symbol
is removed, the debugger substitutes
the closest symbol with appropriate
off set. When all local symbols are
removed by a 1 $K command, an
absolute value is substituted. The
command XX3 restores all symbols
not permanently removed from output.

-9-

STARTING AND RESTARTING A PROGRAM

Four commands are available for starting and restarting a user program at a location
other than a breakpoint.

Two of the commands simply give a starting location. The other two commands pro­
vide that AC3 will contain the address of the debugger at restart time, so that a return
is made to the debugger if an instruction points to C(AC3).

FORMAT

$R

adr$R

$G

adr$G

EXAMPLES:

$L 000261
$R

7B BQ
TOP$R

USE4$G

MEANING

Restart program at address given in location register,
C($L). (Stand-alone Debug III).

Restart program at program's starting address in User
Status Table (USTSA, location 402.). (Debug III under DOS).

Restart program at address given by adr.

Restart program at C($L); set C(AC3) to address of debugger
(Stand-alone Debug Ill).

Restart program at address given by adr; set C(AC3) to
address of debugger. (Stand-aloneDebug III).

+- contents of location counter checked and user program
restarted at that point if using Stand-alone Debug III.

+- after a break, user restarts his program at a location TOP.

+- user restarts program at a different location and sets
the debugger location in AC3.

-10-

SETTING AND DELETING BREAKPOINTS

The user can set up to eight breakpoints in his program. When a breakpoint is encountered
during execution, the breakpoint causes a transfer to the debugger before the instruction
at which it is set is executed. In effect, the setting of the breakpoint causes the program
instruction to be transferred to the debugger and a JMP instruction to the debugger to be
substituted in the user program.

Eight (108) locations bf zero relocatable code are reserved for the eight debugger break­
points. Any attempt to place other information in these locations and then execute will
wipe out the user program. Breakpoint numbers are assigned in reverse numeric
order: 7 6 5 O.

FORMAT

$B

adr$B

$D

n$D

NOTES:

EXAMPLES:

$B
7BTT
6B TT2
TT4$B
$B
7BTT
6B TT2
5BTT4
6$D
$B
7BTT
SB TT4

MEANING

Print locations of all breakpoints.

Set a breakpoint at location adr.

Delete all breakpoints.

Delete breakpoint~ where E. = 7 6 o.

See page 11 to resume execution after a break.

Breakpoints should not be set at the following types of locations:

1. Data words.
2. Instructions modified during execution.
3. Locations where interrupts cannot be delayed for relatively

long times.

+ command to print out existing breakpoints.
+ response

+ command to set a new breakpoint

+ command to delete breakpoint 6.

-11-

ENTERING AND LEAVING THE DEBUGGER VIA BREAKPOINTS

A user can set a breakpoint at a given instruction in his program, as described
in "Setting and Deleting Breakpoints". Breaks are not visible to the user unless the
STOP and EXAMINE switches on the operator's panel are used. During program
execution a transfer is made to the debugger when the breakpoint is encountered. The
instruction at which the breakpoint is set is not executed. The debugger prints
the breakpoint number, the instruction address, and the current status of the accumu­
lators.

When the user has completed debugging and wishes to restart execution, he issues a
$P or !!_$P. Execution resumes with the breakpoint instruction. The user, in resuming
execution, can set the number of times the instruction at which the break occurred will
be executed before the debugger is to be reentered.

FORMAT MEANING

$P Set break proceed counter to + 1 and proceed with execution from
current break. Command $Pis equivalent to 1$P.

!!_$P Set break proceed counter to!!_, where!!. is the number of times
the instruction will execute before a transfer to the debugger
occurs; proceed with execution.

!!_$Q Open break proceed counter!!_, where!!. is 0-7, and print contents.

EXAMPLE: Suppose a user program contains three breakpoints at symbolic
locations ATOMl, ATDIG, and ATOM2. A partial listing might
be:

00011-006201-A TOMl :
00012 -0000 52 -
00013-024000-
00014-106032
00015-024001-
00016-107046
00017-000417

00020-045407 ATDIG:
00021-024002-
00022-045402
00023-021403
00024-025404
00025-006201-
00026-000621
00027-000001

CALL
CHAR
LDA 1, C72
ADCZ# 0, 1, SZC
LDA 1, M60
ADDO 0, 1, SEZ
JMPATOM2

;ACO WILL CONTAIN THE
;INPUT CHARACTER.

;IS IT A DIGIT?
;NO

STA 1, ATEM, 3 ;SAVE THE DIGIT.
LDA 1, Cl2
STA 1, NUMB+l, 3
LDA 0, NUMB+2, 3 ; FORM A NUMBER
LDA 1, NUMB+3, 3 ;FROM THE STRING OF DIGITS.
CALL
DMPY
NUMB

-12-

;MULTIPLY PREVIOUS
;NUMBER BY 10.

ENTERING AND LEAVING THE DEBUGGER VIA BREAKPOINTS (Continued)

0003S-0007S4
00036-024003-ATOM2:
00037-106032
00040-024004-

JMP ATOM!
LDA 1, C133
ADC# 0, 1 SZC
LDA 1, MlOO

;IS THE CHARACTER IN
;ACO A LETTER?

Presume the user is in the debugger. He prints out his breakpoints and his current
location:

$B
7B ATOMl
6B ATDIG
SB ATOM2

./JMP ATOM2

. = 417
• : ATOM1+6

ATDIG+4$R

SB ATOM2
0 000000 1 000000 2 001461 3 001S22

S$Q 000001 3
6$Q 000007

$P

SB ATOM2
0 000003 1 000000 2 001461 3 001S22

100$P

SB ATOM2
0 000103 1 000000 2 001461 3 001S22

} See Conversion Mode Commands •

+ Debugger prints status information.

+ Break proceed counter S is changed to 3.
Break proceed counter 6 is at 7.

+ Execution resumed. Since S$Q was
changed to 3, this is equivalent to
3$P.

+ C(ACO) set to 3 by looping through
breakpoint S.

+ Execute, looping through breakpoint
100 times.

+ C(ACO) set to 103 by 100 (+3) loops
through breakpoint 5.

-13-

SEARCH COMMANDS

Search commands allow all or part of memory to be searched for the contents of
the word register $W, as modified by the contents of the mask register $M.

The search algorithm is implemented as follows:

1. The contents of each successive location is read from memory.

2. The debugger performs a logical AND with this word and the contents
of the mask register.

3. The result of the logical AND is compared with the word register.

a. If the words are equal, the true contents of the memory location
are printed,based on the contents of the search/punch register
$H. (See page 19, "Punch Commands.")

b. If the words are unequal, nothing is printed.

NOTE: If $H = ~©<b<b</H, search output will be to the line printer. If print mode is
instruction or numeric, search output will be in both modes; all other output
modes will result in the single associated output. See page 19, "Punch
Commands" and page 21, "Conversion Mode Commands."

FORMAT

$W

$M

$S

adr$S

adr < $S

MEANING

Open word register and print contents.

Open mask register and print contents. A value of -1 (177777)
indicates no masking of word register.

Search from location f/J to 77777 inclusive.

Search from location ~to adr inclusive.

Search from location adr to 77777 inclusive.

adq < adr 2 $S Search from location adr 1 to adr2 inclusive.

NOTES: In Stand-alone mode, pressing any teletype key will cause the search to
be aborted.

To output all locations, $W and $M should = 0.

-14-

SEARCH COMMANIB (Continued)

EXAMPLES: If the current contents of the word register = LDA 1, FIELD
and current contents of the mask register = -1, then:

$S <-might produce a response:
FIE LDA 1 FIELD
FIE2 LDA 1 FIELD
FIE3 LDA 1 FIELD

FIE3-DIM$S ~ might produce a response:

FIE LDA 1 FIELD
FIE2 LDA 1 FIELD

FIE2-2 < $S ~might produce a response:

FIE2 LDA 1 FIELD
FIE3 LDA 1 FIELD

FIE2 < FIE3+SYN$S ~might produce a response:

FIE2 LDA 1 FIELD
FIE3 LDA 1 FIELD

If the current contents of the word register= FIELD and the
contents of the mask register= (Jc/Jr/J377, then:

$S ~might produce a response:
FIE LDA 1 FIELD
FIE2 LDA 1 FIELD
FOO ADDZR# ~ 1 SZC
FIE3 LDA 1 FIELD

~Match on 8 bits if FIELD= 232
(Since ADDZR# flJ 1 SZC = 103232).

$W 0000f)f) NEG
$M 000fJ00 -1

$S

~ NEG loaded into word register.
~Mask register loaded to permit

search on NEG 0 £1 field format.
4- A search will cause printout of all

NEG 0 0 instructions.

-15-

EXAMINING AND SETTING SPECIAL REGISTERS

Some of the registers that are used for special purposes and can be altered by the
user are:

Accumulators 0 to 3.

Symbol Table Pointer register which contains a pointer USTSS; USTSS is a User
Status Table address (location 402) that contains a pointer to the beginning of the
symbol table. The pointer to the end of the symbol table, USTES, is in location
403 immediately following USTSS. The register is only meaningful for Stand-alone
Debug III.

Numbers register which determines whether numbers in the special registers will
be interpreted as decimal (non-zero) or octal (zero).

Location register which contains a starting location set by the user, to be used when
a $R command is issued, provided no argument address precedes $R. The register
is only meaningful for Stand-alone Debug III.

Interrupt register which contains the status of Interrupt Enable. The register is set
to -1 if interrupts are enabled when the debugger is entered. Otherwise, the register
is all zeroes. The interrupt register is only meaningful for Stand-alone Debug III.

FORMAT MEANING

$A Print contents of the four accumulators.

E_$A Open accumulator~(~= 0-3).

$Y Open symbol table pointer register and print contents.

$N Open numbers register and print contents.

$L Open location register and print contents.

$I Open and print contents of interrupt register.

EXAMPLES: $N 000000 + numbers register contains all zeroes (octal).

$A 0 000100 1 000040 2 000011 3 000017

Number of the register is printed followed by the contents, given in octal.

2$A 000011 000015} +- AC2 is opened, contents altered to 000015, then cloer '

-16-

EXAMINING AND SETTING SPECIAL REGISTERS (Continued)

EXAMPLES: (Continued)

$N 000000 1 + user puts 1 in numbers register.

$A 0 +64. 1 +32. 2 +13. 3 +15.

Contents of accumulators again printed, this time in decimal.

$N 000001 0

$L 000071
$R

$Y 000402

+ numbers register modified to zero.

+ contents of location register checked
before resuming execution at that location.

+ symbol table pointer register normally
points to location 402. Contents of the
register can be altered, however.

-17-

EXAMINING AND SETTING SPECIAL REGISTERS $T AND $C

The teletype input register $T contains the status of teletype input. Bit 0 is set to
1 if teletype input is not done. The register contains the character if teletype input
is done. The teletype input register is only meaningful for Stand-alone Debug III.

The carry and teletype output register $C contains the current state of the carry
flag and the status of teletype output. Bit 0 is set to 1 if the carry flag is 1, bit 15
is set to 1 if teletype output is done.

FORMAT

$T
$C

EXAMPLES:

A:

User Coding

SKPDN TTI
JMP -1
JMP DEBUG

AMOD: SKPDN TTI
JMP. -1
DI! .. C 0 TTI
JMP DEBUG

B: ADCZ 0, 0
DOAS 0 TTO
JMP DEBUG

BMOD: ADCO 0 0
DOAS 0 TTO
SKPDN TTO
JMP. -1
JMP DEBUG

MEANING

Open and print contents of teletype input register.
Open and print contents of carry and ~eletype output register.

$T and $C Register Status When Debug Entered

$T 000101 (A was typed)

$T 100000

$C 000000

$C 100001

-18-

PUNCH COMMANDS

FORMAT

$H

$F

!!_$F

$E

adr$E

NOTES:

EXAMPLES:

MEANING

Open and print contents of search/punch register.

Bit 0 = 0 - Punch output is to teletype punch.
Bit 0 = 1 - Punch output is to high-speed punch.
Bit 15= 0 - Search ($S) output is to teletype printer.
Bit 15= 1 - Search ($S) output is to line printer.

Punch ten inches of blank tape.

Punch!!. inches (octal or decimal) of blank tape. A decimal point
immediately following!!. indicates decimal output.

Punch an end block on the tape.

Punch an end block on tape with transfer to location adr when the tape
is read in the binary loader.

Punch in binary from address adr1 to adr2 inclusive.

Any $P command that does not contain the symbol< will be interpreted.
as a break proceed command (See page 11).

The Debug III version used with the Disk Operating System does not have
punch commands.

$H 100000
40.$F
LTT<BRR$P
LTT$E
50$F
$H 000001
$H 100001

+high speed punch in effect; search output to teletype.
+punch 40 decimal inches of blank tape.
~binary punch from location L TT to BRR.
..,.punch end block and set binary loader to start at LTT.
•punch 40 decimal inches blank tape.
+search output to line printer •
..e-search output to line printer; punch output to high-speed

punch.

When using the teletype punch, ($H Bit 0 = 0), the user must stop and
start the punch to prevent debugging commands from being punched as
shown:

~ teletype punch in effect.
+punch 10 decimal inches blank tape. Computer

HALTs with carry light ON. User then presses
ON button on teletype and presses CONTINUE

-19-

PUNCH COMMANDS (Continued)

EXAMPLES: (Continued)

• X< X3$P

8. $F

on the operator panel.

When punch stops, the computer HALTs with
carry light OFF. The user presses OFF on
the teletype punch, presses CONTINUE on
operator panel •

~ punch from. X to X3. User presses ON
on the TTY and CONTINUE.

When punch stops, user presses OFF on
the TTY and CONTINUE.

~ punch end block and set start for • X
when the tape is read in. User presses ON
on the TTY and CONTINUE.

When punch stops, user presses OFF on
the TTY and CONTINUE.

<E- punch 8 decimal inches of blank tape. User
presses ON on the TTY and CONTINUE.

When punch stops, user presses OFF on the
TTY and CONTINUE.

-20-

CONVERSION MODE COMMANDS

There are six different formats in which information may be printed out, and a
symbol associated with each format.

FORMAT MEANING

=

&

$=

$:

$;

$~

$'

$&

NOTE:

Print last quantity in numeric format.

Print last quantity in user symbol format.

Print last quantity in instruction format.

Print last quantity in half-word format.

Print last quantity in ASCII characters. (The symbol is an
apostrophe or an acute accent.)

Print last quantity in byte-pointer format.

Print information following in numeric format.

Print information following in user symbol format.

Print information following in instruction format.

Print information following in half-word format.

Print information following in ASCII format.

Print information following in byte-pointer format.

The default format for memory words is instruction format; the
default format for accumulator and other special register contents
is octal.

EXAMPLES:

INIT/JMP ABC :BUFF+3 =000777 ;]MP ABC+ 1 370 '< 1 > <370> & 000377 1

The instruction at location INIT is printed out in default instruction format.
Then in each subsequent conversion, the quantity printed last is converted
to the requested format.

-21-

CONVERSION MODE COMMANDS (Continued)

EXAMPLES: (Continued)

Note that non-printing ASCII characters are printed in octal, enclosed by
angle brackets (< >).

ATI/JSR @.SAVE

$:
• /CALL +
ATI+cHAR +
A Tl+2 24050 J
$=
. I 24050
17552
17553
17554

+
017550 +
016635 +
006331 IL

+- print instruction at location ATI (Default instruction
format)

+ change to user symbol format •
+- print current location and next two locations

in symbol format.

+- change to numeric format .
+ print current location and next three locations

in numeric format.

-22-

ERROR RESPONSES

The debugger uses the followLTlg two error responses:

SYMBOL

u

?

MEANING

Undefined symbol

Do not understand;
command attempt
aborted.

EXAMPLES

140o+SST/U

(where SST is not found)

./LDA 1 FDF LDA 1 FFU

(attempt to substitute unidentified
symbol FF for user symbol FDF.)

ADD@?
-1$R ?

(in each case the command is
improperly terminated, contains a
given symbol in an illegal position, etc.)

AB$B?

(An attempt to set a breakpoint
at location AB when there are already
8 breakpoints set.)

-23-

OPERATION

Debug III is loaded into memory with a user program or programs. · Debug III can
be loaded before or after the user program.

Symbol Table

To use symbolic addressing for local symbols when debugging, the program title
must be specified to the debugger. User symbols are made known to the debugger
by issuing the command:

where: name is the title given the user program via the • TITL pseudo-op.

The command can be issued as soon as the debugger and user program are loaded.

By default, for both Stand-alone and DOS debuggers, the starting and terminating
address of the symbol table are stored in the User Status Table in locations 402
and 403 respectively.

402

403

UST

USTSS

UST ES

The debugger is initialized to have the USTSS address, 402, in the symbol table
pointer register ($Y).

Users having versions of Stand-alone Debug III described in manual #093-000044-00 should
note that this is a change from the pointer set in location 44 by the Relocatable Loader.

44/ ~ ZMAX

SST

EST

-24-

~ is a pointer to ZMAX. 1!!,+1
contains the address of the
start of the symbol table.

Symbol Table (Continued)

The Extended Relocatable Loader will set the proper pointer for this current version
of Debug III. When using an older version of the relocatable loader, use the following
procedure:

After loading Debug III:

1. Open location 44 to determine the value of 1E-.

2. Use the $Y command to open the symbol table pointer register. It will
contain 000402. Change the value of the register to contain 1!!. +l •

3. Enter name% to make local symbols known to Debug III.

Loading Stand-alone Debug III

1. Load the Bootstrap loader as described in document 093-000002.

2. Load the Binary Loader as described in document 093-000003.

3. Load the Relocatable Loader or the Extended Relocatable Loader as described
in document 093-000039.

Following are the loader signals and standard user responses to load Debug III and
the user program. User responses are underscored.

SAFE=)

*2

*4S

*2

*6

NMAX
ZMAX
EST
SST

*8

+ carriage return gives a standard save of 200 locations.

+ Debug III should be in high speed tape reader for loading when this
command is given.

+ command to load all symbols.

+ user program should be in high speed tape reader ready for loading
when this command is given.

+ additional programs can be loaded from the reader using *2 signal.

+ command to print a loader map is usually given.

005640
000255
004027
004077

+ terminate loading.
-25-

Using Stand-alone Debug III (Continued)

4. User sets the data switches on console panel to DEBUG and presses START.

5. User is now in the debugger and can issue any Debug commands.

Stand-alone Debug III can be used with any NOVA configuration. However, in order
to load the user program, symbol table, and Debug III, a core configuration of at
least 8K is recommended.

Storage is allocated by the Relocatable Loader as shown below:

grows down

grows up

Du ring Loading

SAFE

SYMBOL
TABLE

AVAILABLE
SPACE

LOADED
USER'S

ROUTINES
AND

DEBUG III

LOADER

After Termination of Loading

+ top of memory+'

-26-

SAFE

SYMBOL
TABLE

AVAILABLE
SPACE

LOADED
USER'S

ROUTINES
AND

DEBUG III

Loading Debug II I under DOS

Debug I I I is supplied as a relocatable binary file within the library SYS. LB. The
library is, in turn., supplied as one file of dumped tape 088-000002. Debug II I
is loaded when the global switch/Dis given in the RLDR command, e.g.,

RLDR /D PROGl PROG2 PROG3 J.

Debug I l I is, by default, loaded after the other programs. To adjust the loading
of Debug I I I, the name of the library file is put into the command line in the
desired place:

RLDR /D SYS. LB PROGl PROG2 PROG3 ~

In this case Debug I I I will be loaded before all other programs. The starting
address of Debug II I is stored in the User Status Table in location 406.

During loading the loader reserves 108 locations at the beginning of ZREL storage
for the eight Debug I I I breakpoints.

To start in the debugger, the user issues the command:

DEB filename)..

where: filename is the name of the save file produced as output by the loader.

-27-

Storage is allocated by the Relocatable Loader under DOS as shown below:

Loading
Direction

1
Disk

Operating
System

1----- ---·-------!
Symbol

Table

1-------------.....,
Debug III

(default position)

User
Program

(NREL) r
User

Tables

User
Program

(ZREL) 1

Reserved for
DOS

.__ top of memory

NMAX

SST

- EST

1000

+- 400

- 50

- 16

+- 0

-28-

SST - Start of Symbol
Table.

EST - End of Symbol Table.
First address below
the symbol table
during loading.

NMAX - The first available
address for further
loading.

The Relocatable Loader permits
loading beginning at location
16. ZREL code begins at
location 50. NREL code begins
at location 1000.

The Disk Operating System
resides in upper memory
only. The first 16 locations,
0-15, are reserved for use
by DOS.

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

