r

Y

£
L

DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

PROGRAM

Assembler

TAPES

Binary: 091-000002

Copyright (C) Data General Corp. 12¢9

1053-000017-02 -

. AR .

CONTEMTS

1 The Assembly Language

2 Format

3 Integers

L Symbols

5 Special Atoms

6 Operators and Expressions
7 Location Counter

8 Comments and Statements

9 Symbol Definition
10 Label and Equivalence Statements
11 Storage ‘ord Statements

12 Basic Pseudo-ops
Radix, location, block, cnd of tape, end, text

13 Symbol Table Pseudo-ops

14 9perating Procedure

APPENDICES
A Characters
B Fsecudo-ops
-C Symbol Table
D Error Mncmonics
E Lfsting Format

F Object Tape Format

LI{TRODUCT I OM

The OVA assembly program allows the programmer to write a source
program ‘in a symbolic; mnemonic language using the English alphabet, numerals,
and other common characters. The assembler takes the source program as
input (or more precisely the ASCIIl codes for the characters that make up the
source program) and assembles it into an cbject program. The output of the
assembler is a complete listing of the source program on some output device

and a tape of the object program ready for loading into memory by a binary

loader.

1 THE ASSE!MBLY LANGUACGE

The assembler recognizes the codes for all ASCII characters, tut null,
line feed, rubout and form feed sre transparent. The first three can be
used in any way in the input and the assembler responds to the input tape
as though those characters were not there at all; hence blank frames on the
tape have no effect, and mistakss can be overpunched with rubouts. A form
feed is =2aually transbarent with respect both to the assembly of the object
program and to the characters that appear in the listing, but it can affect
the format of the listing. Throughout this manual a reference to ''any
character' means any ASCII character except these four. Of the remaining
characters many can be used only to refer to themselves, ie to supply their
own codes to the assembler rather than being used as symbols to represent
something else.

Hence the set of characters in the symbolic language is a subset of
thé ASCII character set, and this subset is listed in Appendix A.’ 3asically
the characters in thé language are used as operators, as punctuation, as

elements in numbers, and as elements in symbols that provide insgtructions

to the assembler. Integers and numeric symbols are character strings used
as numbers. An integer, which specifies its own value, is a string of
numerals. A symbol is a string of letters, numerals and periods whose
value ‘is either predefined (an initiaql symbol) or is defihed by the source
program. Symbols may be numeric and/or operational. An operational symbol
tells the assembler to do something, purely operational symbols are called
pseudo-ops. A symbolic address is an example of a purely numeric symbel.
itany symbols, such as the instruction mnemonics, are nuheric in that they
represent numbers, but they are also operational as they provide informaticn
to the assembler concerning the characteristics of the statements in which
they appear.

Integers and symbols are the basic units or gtoms of the language.
There are also several special atoms that do not satisfy the definitions
for integers and symbols. A double quote combined with any character can
be used just as though it were an integer whose value is the code for the
charaéters. The special atoms also include the characters @ and # that
are used for indirect addressing and to inhibit loading in an arithmetic
and logical instruction. These characters can be used only in certain
statements, but they are completely transparent in relation to grammatical
structure, the assembler responds to one of these in terms of assembling an
instruction, but ignores it completely when dctermining the structure of
the statement in which it appears.

Operators are characters that specify arithmetic and logical relations
among numbers, te integers and numeric symbols. A string of integers and
symbols combined by operators is an expression.. Some characters are used
as punctuation to begin and end expressions, statements and comments, and

to specify how parts of the source program are to be interpreted.

3

The language has a formal hierarchy. Certain éharacters can be combined
into intergers and symbols; integers and numeric symbols can be combined
with operators into expressions. Using punctuation, expressions and purely
operational symbols can be combined into statements. These are the
fundamental macroelements of the languace: they provide instructions to the
assembler, they define all symbols that are not initial, and they specify
Soth the values of the words in the object program and the memory locations
that will eventually receive them. Storage word statements and certain
pseudo-op statements can generate output words for the object nrogram.
(Storage word statements are of two types, data statements and 7nstruction
statements.) Label statements, equivalence statements and the remaining
pseudo-op statements are used to define symbols, locate the object program
and control tne assemsly. Accompanying the statements are comments which
proVide commentary on the source program.

As menti¢ned above, the characters null, line feed and rubout are
totally transparent: the assemtler completely ignores them and responds
to a character string cohtaining them as though they simply were not there.

A form feed is recognized by the assembler but only fer format purposes (§52);
in any other respect it is just as transparent as a rubout. The charécterS'@
and # are also transparent with respect to grammatical structure even

though they have a very definite effect on the generation of the object
program; wheﬁ one of these characters appears in a statement the assembler
responds to its presence only after evaluating the entire statement as

though the character were not there. Among the characters used for punctua-
tfon, comma, space and tat, which are used to separate expressions in a
statement, are grammatically idantical and can be used interchangeaily.

‘oreover in a string of these characters, all after the first are rgdundant;

after encountering one such character, the assembler ignores them until
some other character appears. Following a carriage return all commas,
spaces, tabs and further carriage returns are ignored until some other
‘character appears.

At the micro-level the source program is a long string of characters,
but at tHe macro-level it is a string of lines separated by carriage
returns. A single line may contain a comment, any number of label state-
ments, but no more than one statement of another tybe. In other words a
carriagg return may be followed by 2 comment or any kind of statement;

a label statement may be followed by a comment or any kind of statement
including another label statement:; but any statement other than a label
statement must be followed either by a carriage return, which starts

a new.line, or by a comment, which in turn is terminated by a carriage

return,

2 FORMAT

The WOVA assembly lanquage is format free. However, the listing of
a symbolic source program has a very definite format. A listing is the
output produced when the characters that comprise the source program are
printed. The teletype is the usual output medium, but a listing can be
obtained 6n'the line printer, and tHe string of characters in the listing
can be punched in paper tape. The format of a listing is its visual
appearance vith respect to horizontal and vertical spacing, e the use of
spaces, tabs (tab settings) and carriage returns.

Sore format is intrinsic to the language because these format characters
are used as puhctuation, and the source program is automatically formatted
into lines by the requirement that sometime after any statement other than

a label statement, a carriage return must apoear before another statement

can be given. Furthermore these characters can be used expressly to format
the listing: all redundant spaces, tabs and carriage returns are interpreted
only with respect to the listing format. Eg a logically redundant carriage
return produces a blank line in the listing (although line feeds are

ignored in the input the assembler automatically follows every carriage
return with a line feed in order to properly ;pace paper in the listing
device).

Within broad limits, the programmer is free to determine the format cof
the listing for his program. All of these lines are identical as far as the
assembler is concerned, ie they differ only in format but are identical in
grammatical structure.

LABEL: 2DD# 2,3,SZR ;SKIP |F Sur ZEern
LAREL:ADD,2,3,SZR#;SKIP |F Su* ZEPD

LABEL:ADD 2 3 # SZR ;SKIP IF SU% ZERO
LABEL:,,,,#40D, .2, 3 SZR;SKIP IF SUM ZERQ
.LABEL :AD#D,2,3, SIF F;SKIP IF SUM ZERGC
A common practice is to divide each line inté four columns byvéeans of three
tab settings, using tne left column for labels, the second column for all
othzr statements with the arguments of an instruction mnemonic starting at
a second tab setting, and the right column fer program comments. This is
the format of the first example above. |If the]isiing device does not have
automatic tabbing (eg the ASR33), the asscmbler simulates tabs by spacing to
the nearest assemhler defined tab position (always leaving at least one
space). These positions aré every eight columns, {g columns %, 17, 25,

Although the form feed character is completely transnarent as far as ine
assembly is concerned, it does affect the listing format. The assembler puts

a form feed (and hence starts a new pace in the listing) before any line

.

in which that character is encountered. |f the device is not equipped for
form feeding, the function is simulated by line feeds, sixty lines per page.
In producing a listing the assembler actually orints out more than just
the source program. In each line of the listing the assembler first prints
one-letter mnemonics (flags) indicating errors that have been made by the
programmer, then thevaddress of the location that will contain the object
word (if any) generated by a statement in the line, then the contents of
that location (or if no storage word is generated, the value of whatever
statement does appear in the line), and finally the line of the source program
as fofmatted by the programmer. |If the first instruction statement given
above is assembled to be stored in location 3414, the line would appear in
the listing as follows: |
03k14 157014 LABEL: ADD# 2,3,52ZR ;SKIP IF SUM ZEROD
Following the program the assembler lists the values of the symbols defined

by the programmer.

3 IMTEGERS

An integer is a number computed in any radix from two to ten. The
assembler converts each integer into one 1{-bit unsigned number. The
decimal integers 0 to 32767 ylield the octal numbers 00002C to 277777,
- the decimal integers 32768 to 45535 convert to 100007 to 17777. Using
twos complement conventions the program may treat the former words as
positive numbers, thec latter as negatiQe. (The programmer can also
generate signed numbers by using integers with operators as discussed in §%.)

An integer is any string of numerals that is preceded and followéd by
an‘operator or punctuation character and is neither in a program comment
nor in a text string unless enclosed by angle brackets (§12). £g the four
strings.

3 38 99 12345678 g

arc all integers. (In all exemples such as the above it is to bc assumed
that appropriate delimiting characters, such as commas , spaces or operators,
precede and follow e2ach example.) Qlut the threc charactcr strings

31.27 584 £123

[U)

re not: the first two are illegal and would bc flagged 2s number errors {N);

the third is actuelly a symbol.
Thc asscmbler zssumes that all intcgers are octal unless tho programmer
. e
gives 2 radix pseudo-cp to specify otherwise (§12). An integer that contains
any numeral arcater than or eauzl to thc current radix is flagged os a

number error. An integer greater than or cqual to 216 is alsc flaggced and

15

is cvaluated module 2.

4 synpoLs
A symbol may have cither or both of twe propertics: 2 numeric symbol
eprusents a 15-%it number: an opzrationz] symbol conveys information to the

as

w

embler. Soms symbols are alrcady defined befors the asscmbly starts; these
are knowﬁ as initial symbcls and includc the instructicn mnemonics and
pscudc-ops. Other symbols can b: defined in the sourcc pregram as labels
(which rcpresent addresses), as other purcly numeric symbols, or @s cpera-
tiocnal symbols that function like the instructicn mnemenics. Operatienzl
symbols can bt uzed to tcll the a2ssembler to do semething; numeric symbols
can be ysed as numbirs in exprcssions. A symbol with both preperties éan be
used tc initiate an instruction statement. It is then used as a number in
cvaluating the statcment as well as Scing used te tell the asscembler how

to evaluate it. The difference botween a numaric symbol and an intcger is
that an intcger specities its own valuc, whereas the value ef a numecric
symbol must be lcoked up cduring assembly.

Any string th2t bcgins with @ letter or period and is composcd antircly

.

of letters, numcrals and periods is 2 symbol if it is precedcd and fellowed

by an operator or punctuation character and Is neither in a program comment

nor in a text string unless enclosed by angle brackets (§12). A period that

e ——————————

by itself obeys these conditions is a special sunole character symbol whose

value, which is determuned each time it is used is equal to the current

PRI

contents of the Iocatlon counter (§7) The character strlngs

A .Z. .123 M12345878 . G.1 ABC

are symbols (the fifth is the special location symbél), but the strings
1.27 123 LASE

are not: the first two do not begin with a letter or period (the second is
actually an integer), and the last contains an illegal character. Although
the assembler would flag the last string for a bad character (8), it would
interpret the string as two separate symbols. But depending upon the iype
of statement in which the string occurs, this interprhtation wouldbusually
lead tb other errors as well.

Although a symbol can have any number of characters, the assembler uses

only the first five to differentiate among them; in other words, all symbols

o e T

whose first five characters are the same are indistinguishable to the assembler.

Hence
G ITMASK BITMA.7 BITMAQPRXJSK
are treated as the same symbol and can be used interchangeably. Long symbols
are often used for clarity, but caution must be taken to ensure that symbols
that are meant to be different actually differ in the first five characters.
The assembler will accept the codes for lower case letters as input,
but in symtols it simply translates them into upper Case. Hence all of these
symbols as source program input
A3CD ABCd - abed AbcD abCd

are equivalent to ASCD, which is the only form that appears in the listing.

5 SPECIAL ATO!S

Atoms in the assembly language correspond to words in a natural
language. They are the strings of characters that are combined using
operators and punctuation into epxressions and statements. Besides
integers and symbols, there are a few special atoms that have some of their
pfoperties but which contain characters that cannot be used in integers
and symbols.

The character pair

Nx

where & is any character other than rubout, line feed, form feed or null,

e et s e

is interpreted by the assembler as an integer whose value is the 7-bit

[

ASCIl code for the character x, provided the pair otherwise satisfies

the conditions given for an integer. Hence giving the string

is the same as giving the octal integer 73, which is converted into the
octal word 207073. The charaéter Z is reccognized only to the extent of
using its value as an integer, and the preceding double cguotz destroys
whatever operational value it may ctherwise have, eg as punctuation or as
a user defined symbol.

The other two special atoms are the symbcls @ and #: the former is

used to nlace a 1 in the indirect bit of a memory reference instruction or
e e e e = 28 e e = =T e T e - - e S

address word, and can appear only in 2 statement that generates an output

word of these types; the latter is'uggd to place a 1 in the no-load bit of
an instruction statement of that tyoe. These atoms are comoletely transparent
with respect to the overall structure of any statement in which either appears

and with respect to the structure of any other atom in the statement.

The appearance of either @ cr # any number of times in a given statement

10

is equivalent to its appearance only once, and its effect is exactly the

same no matter where it appears in the character string that makes up the

e e - - et

iiiffwﬁﬁff The assembler first evaluates the entire statement as though

the special atom were not there at all, and then ORs a 1 into the appropriate

bit of the 16-bit result as indicated by @ or #. Hence all of these

character strings are interpreted by the assembler as being the same integer:
o4673 4673 6730 hes7e3

and all of these are interpreted as the same symbol:

#ADDZL AD#DZL ADDZL# A#DD#ZL

6 OPERATORS ALD EXPRESSIONS
Operators are characters that specify arithmetic and iogiéal relations
among integefs and symbols; both types of relations can be intermixed in one
exoression. An expression is any series.of integers and numeric symbols
separated by operators. The term ‘‘expression'' always includes the case of
an integer or 5 symbol standing alone. As with all integer; and ﬁuﬁér%éﬂfd

symbols, an expression has a 16-bit value, which the assembler computes by

pgrforming ?h?_i“diﬁﬁfﬁq logica[and arithmetic operations from left to
right. |

An operator specifies an operation to be performed cn the operands at
either sidc‘of it. The operand at the left is all of the expression at tﬁe
left, e that part of the whole exnression from the beginhing to the preéqding
_integer cr symbol, the operand at the righ; is the next inteqer or symbol.
Logical operators work.bitwise on rpairs of operands; arithmetic opesrators
ireat operanas as numbers. Note.that operands are intrinsically neither

arithmetic nor logical: they are simply 13-bit numbers that are treated in.

different ways.

1
The assembler interprets the following six characters as operators to

specify two logicel and four arithmetic operations with no check for overflow.

Operatcr Operation Interpretation of Operands
+ Addition '‘Insigned 1€-bit integers
- Subtracticn Unsigned 16-bit integers
* Multiplication Signed twos complzment integers; result

is low order word

/ Division Signed twos complement integers., result
is one word, unrounded

& Logical ANC 1€-5it logical words

Logical oR 16-bit logical words
The plus and minus sign arc additive operators, the others are procuct
operatcrs. An additive cperatcr may take eitirer one or two operands, but
in the former case the operator must be at the left in order to be meaningful.
Actually tne essembler assumes a zerc opcrand at the beginning of any
expression that begins with an opcrator and at the end of any exprzssion
fhat aends with an operator, but this can cause difficulty conly with product
operaters--it has no cffect on additive operators. Conseauently
+A

being eguivalent te

is alright; the operator in

Pl

is meaninglcss but not illecal, and the expression is equivalent t§ A. lote
that an integer that is used to produce a necyative numier must have a
magnitude less than or cgual to 215 eg the expression

-100001
is nct evaluated correctly but is not flagged as an crror since there is no
overflow check. Thc expression -x where x is greater than 215 ic ezvaluated

14

. . - 1 -
as 2 -z, which results in a positive numbcr lcss than 2 5. In the cxample

given, the evaluation is 077777.

12

Expressions are evaluated from left to right taking one operand at
a time; in evaluating
A+B/C
the assembler adds A to B and then divides the sum by C. If two operators
are contiguous, the assembler assumes a zero operand between them. For a

string of additive operators this means that only the final one is signi-

ficant:
A+-+-B
is interpreted as
A+0-0+0-B
which is equivalent to
A-B

But with product operators you lose:

is interpreted as
A*0-3

which is simply -B. To multiply A by -E the programmer must either give
-B*A

or define some symbol C as equal to -U and then use the expression

ARC

7 LOCATION COUNTER
As the‘aSSembler translates the source program intc an object program.
it not only generates the object words, but also generates information as
to where they will be stored; for this purpose the assembler keeps a loca-
tion count. \lhenever a storage werd is generated, it is assigned to the

location addressed by the current contents of the location counter.

13

At the start of an assembly, the assembler initializes the counter te

location C. Durina assembly the contents of the counter can be altered in

several ways:

The source program can set the counter to any desired 15-bit address
by means of a location statement (§12).

Every time a storage word is generated in the object program, the
counter is incremented by one. Hence unless something else changes
the counter, words are assigned to consecutive memory locations.
(The location following 77777 is 00100.)

At the appearance of the pseudo-op .SLK the counter is incremented
by the value of the argument of the pseudo-op (§12).

The period, when used alone, is a special symbol whose value is equal

[S—— U U—— —

@ e ————— . = SO

to the currenswfgnffnts of the location counter. Thus
LDA 3,.+6
is equivalent to
LDA 3,6.1
If the instruction is assembled at location 1215, it is also equivalent
simply to

LDA 3,1223

3 COMMENUTS AlD STATEMENTS

As previously mentioned, a source program can be reygarded as cne long
chafacter string. Except for redundant carriagc returns, tabs, spaces and
commas, every character in the string either is part of a comment or state-
ment, or terminates a comment or statement.

A comment is not really part of the source program because it cannot
affect the generation of the object proaram. Its only function is5 in
conjunction with the source program listing--a ccmment rnresumahly 2xplains
somethina related to the portion of the program where it apnears. A semi-

colon as a statement terminator or -as the first significant character

14

following a étatement or comment terminator indicates the bcginning of a
comment; the comment terminates with the next carriage return. Any
character except carriage return, but including semicolon, can be used in
a comment. Of course a control character produces no printable output--it
has its given effect (if any) on the listing device at the point that it
appears. (Remember, a form feed is execufed prior to the line in which it
appears and‘cannot be part of a comment).

Statements in the assembly language correspond to the statements or
sentences in a natural language. A statcment cither definzs a symbol,
generatés a word in the object program, or supplics information to thc
assembler. The next three sections describe the four types of statements:
label statements, cquivalence statemcnts, storage word statements, and
nseudo~op s5tatements.

A statement terminator is a character that ends a statement but is
not itself part of the statement. No character is used to indicate the
beginning of a statement. Instead a statement is assumed to begin with
the first significant character that follows a statement or comment
terminator, provided this character is not a semicolon (which indicates the
beginning of a comment). A statement that contains a single undefincd
symbol terminated by a colon is a lab;l statement. Every other statemant
is terminated by a semicclon or a carriage rcturn. An cguivalence state-
ment begins with an undefined symbol fol lowcd byvén equal sign; a pseudo-op
statement begins with a pscudo-op. A statement that is none of the above
.s taken to be a storage word statement, and the assembler inspects the
first nontransparent atom in it to datermine the type. |If it begins with an
integer or a purely numeric symbecl, it is a data statement and can contain

only one expression; if it begins with an instruction mnemonic or equivalent,

15

it is an instruction statemcnt and thc number of expressions it may contain
depends upon the instruction class to which it belongs. In determining the
structure of a statement or cvaluating it, the assembler ignores all spaces,
tabs and commas that immediately preccde the statement or its torminator,

or precede or follow an equal sign.

S SYMBOL DEFINITION

A symbel is said to be defined if the assembler has 2 value for it.
The value of a numeric symbol is the 1é-bit number it reorescnts: the value
of an opecrational symbol is its meaning. Somc symbols, such as the instruc-
tion mnemonics, have both numeric and opcrational propertics. for such a
symbol to be defined the assemblcr must both have a numceric value for it
and also know its meaning. #~11 symbeols that appear in a program must be
defined. The initizl symbols zre predefined and hence alrcady have values
at the start of the assembly. The sourcc program can define a symbol as a
symbolic address by means of a labal statement, 3s a numeric symbol by
.-means of an zquivalence statcment, or as a symbol that may have both numeric
and cpcrational properties by means of certain pscudo-op statements.

The asscmbly of a source program is done in two nasscs, <€ the asscmbler
goes through the @ntire charcctar string twice. The fifstqga§§_loca;§§7the

PSS SR

program and determines the definitions of all symbols. ticnce the

cntire

gssembler must be 3blc to evaluate o1l symbol-defining stetements in the
firstmpaggi This means thc source orogram cannot use a pseudo-op or
cquivalcncc statement to define A as 2 function of the symbol B unless the
statement that dcfincs 8 appears carlicr in the source program. In order

to define all symbels and locats the nrogram, the asscmbler must also be

able on the first pass to cvaluatc all statements that indicate how integers

16

are to be interprcted or that alter the normal cénsecutivc sequence of the
location counter. Hence the assemblcr-must be ablc fo evaluate any expression
that appears in 2 radix, location or block pseudo-op statement. If two

or morc stataments define (Ze assign values to) the same symbol, every
occurrence of the symbol is flagged as multiply-defined (M).

As part of the assembler's initialization, it determings the memory
sizec of the configuration in which it is running. This cnables onc
version of the Assembler to run in all memory sizcs cfficiently, building
its symbol table upward until thc mcmery capacity is rcached. An attempt
by the program to*dcfine morc symbols than the assembler can accomodate
in the area of corc sct asidc for them rcsults in a symbol table crror (S),
and the assembler will accept no more symbol definitions.

The assembler evaluates all other statements in the sccond pass. Any
symbol whosc valuc is not known to thc asgcmb]er whcn it is cnceuntered in
the sccond pass or in an cxpression that must bc eveluated in the first pass
is flagged as an undcfined symbol (U). A symbol whose valuc in the second

pass differs from its value in the first pass is flagged as a phasc crror (P).

10 LABEL AND EQUIVALEWCE STATEMEHTS

Only numeric values can be assigned to symbols by label and equivalence
statements. These statements arc cvaluated in the first pass and must b;
used to assign values to symbols that arc not dafined elscwherce.

A label statement follows a carriage return or colon, consists of
one syhbol that has not been definaed previously in pass 1, and is terminated
by a colon. The statement.dcfineé the symbol, and its value is taken from
the current contents of the location counter. Ordinerily a label Statement

is used in conjunction with a storage word statement. |If the lattcr

17

immediately follows the formcr, the label provides 2 (symbclic) address for
the memory location that will receive the storage word when the object
program is loaded. If the storage word statement
LDA 2,30
is immcdiatcly preceded by a label statement, say
LOOP:

e if the coding is

Loo . LDA 2,35
or zquivalent, then the storage word statement

JMP LCOP

is assembled to produce a jump to the same location that raceives the stcrage
word LﬁA 2,30 (orovided of course that locaticon LOOP is in page zero or within
range of the location containing the Jii® LOOF (sce 511)). A crcviously.
defined symbel torminated by @ colon is rocegnized as a label stetement, and
the symbol is recdefinced and flagged (). A labci-typc statement containing

other atoms besides an undcfined symbel is flagged as a colon crror (C).

An equivalence statement follows a carriage return or colon and uscs an
M—.ww,.‘__‘__m_”__’ e < e JRRSS——

cqual sign to definc the symbol at its left by assigning to it the value of

.

— e

the sterage word statement at its risht. These arz all legal cquivalence

B e —

statements.

The symbol at the loft must be previously undefinced in pass 1, and the

statement at the richt must be capablz of eavaluation in pass 1, e any

18

symbols in it must alrcady have beccn defined (an undefined symbol is
flagged as a equivalence error (E)). The statement at the right of the
equal sign is not rcally a storage word statement in that the asscembler
does not actually gencrate a storage word from it, but it must be recognized
by thc assembler as cguivalent to such a statemcnt. Note that in the_last
examplc, the statemcnt at the right is rccognized as a storage word stato-
ment for a format crror (F) but would assemble it corrcctly, Ze wculd assign
the actual value of thc expression at the right to the symbol at the left.
An squivalence statement terminates with the first sezmicolon cr carriage
return, but any exprossion following a complcte storage ward statement
after thc cqual sign is ignored. Any number of tabs, spaccs or commas
at eithcr side of thc cqual sion arc also iznored.

deither a label statement nerc an cquivalence statement has ony effect

on the location counter. Bcginning at location 1322,

LOA 1,.
A=,
LCA 2,.
B C:
D LDA 3,.
A

is assemblad as cguivalent to

LcA 1,1322

A=1323
LDA 2,1323
E: C: |
D;‘ LDA 3,1324
1323

when 8, C and D are all assignced the value 1324,

19

11 STORAZE YORD STATEMENTS
A storage word statement gencratos the output for onc word to be
stored as part of the object program. Except for 2 text or end pseudo-op
statement, only this type of stetcment actually produces output, although
other types can affect the valuc of the 16-bit word produced. The following

arce tyrical storage word statements.

135602
157 @A+C,2
STA 3,D

ComM# 1.1,S2R

; . /}Z"J{JZ{_ LT k
A+3/7C%D ~—=

HALT

The currant content: of the location counter desiarate the memory
location that is to reciive the werd when the object program is loaded.
The counter is incrementod every time 2 storade word statcment is procoessad,
<o the words generally are assigned to ceonsccutive locaticns unlcess the
counter is chanqud Ly a2 locetion or 5lock pseudc-op statcrent.

Aostatiment that is not o label statement and doos not contain an
<aual sign or 2 pscudo-on is assumed to Lo a storage word statem.nt
trat is toerminated by the first scmicolon or carriage roturn. The ssscmbler
T

CXTTINCS th rst nontransparant ctom in the statoment to dotermine tha

ang Moenc. tne maximum number of axorossicns or [Toide the statoemoent

-~

can contain nnd the minimum number it must cent2in. A statoment with fower
than th. mininum or more than the maximum is flagged fer a format crror (7)),

sut the »ssembicr igncrcs any uxprossions beyond the meximum a2llowed in it.

20

A transparent atom can appear anywherc from the first character to the
last before the terminator,; whcn one is uscd, thc assembler first
evaluates the statement without' it, and then adjusts the result for the -
special atom by ORing a 1 into the appropriatc bit (hencc it has no effect

if the bit is already 1).

Data

If the first nontransparent atom in a storage word statement is an

integer or a purely numeric symbol, the assembler takes it as a data state-

ment containing a single expression. In the abovc examples the first,
fifth and sixth are data statcments. In guch a statement the special
atom @ can be used in generating a full word indircét address. Since it
has its offect after the statcment is evaluated,lall of these data statc-
ments have the same value,

102644

102644Q

2644@

1322%2 3@
although the last one is flagged for a format crror. Recmember that the
special atom is neither an intager, a symbol, nor an operator, and therc-
fore cannot be part of an expression. Hence either of thesc,

100000@

@0
is a data statement whose value .is 100000, but this,

e
is not. In other words a storage word statement must contain at Ieést one

expression--@ by itself does not suffice.

21

A statement being taken as a data statemont docs not mean that the
object word guncratud by it is neccssarily an operand in thc program. A
data statcment is simply a way of representing 2 18-bit valuc: it nced not
bc used as an operand anymorc than a number gznerated by an instruction
mnecmonic necd be executed as an instructicn. £7 the first example of a
storage word statement given at the beginning of this section,

135092

if cxecuted &s en instruction would be ccuivalent to

[¥]

1NC" 1,3,52C

Instructions

If the first nontransparcnt atom in 2 storage word statement is an
instruction mncmonic (cr cquivalant), the asscmbler tekes it as an
instruction statement, dctcrmincs the clasé to which it balongs (mcmory
reference, with or without accumulator: arithmctic and logic; input-output,
with or without accumulctor) and therofore the number of ficlds in it.
In gonersl 2n instructicon statemcnt is made up of a mncmonic fizld followed
by 2 numbcr of argumcnt ficlds, thc standard procedure is to scparate the
argument ficlds from the mnumonic ficld by a tab and the argument ficlds
from cach other by commas, but sinco tab, space snd comma arc 2quivalent,
thzy cz2n be uszd arbitrarily as fizld seccaretors. Evcry ficld is an
exsression which is zvaluated in the normal way. The mnemonic ficld should
be.simply the mnemonic, which spccifics only certain bits in the instruction
word, but results in a 138-bit valuc (ez A1DZL is cvaluated as 113530).
A mncmonic Ticld containing more than just @ mncmonic is flagged as a
format crror but is cvaluated correctly. In any cvent the expression must
beair with 2 mnemonic; 27 onc could give

LTDZL+400

which (although flagged with an F) is equivalent tc
103130+400

e to ANDZL. Thc argument fields rcpresent other parts of the instruction
word, such as an accﬁmulator address or a skip function; and their affccts
arc limited to those parts of thc word--each argumcnt ficld is cvaluated as
a 16-bit number, but the asscmbler evaluates thc total statcment by teking
only the nccessary low order bits from ecach argument valuc and CRing them
into thc appropriate bits for the total statcment value. If the statemcnt
contains a transparcent ctom (which is not rcgarded as a ficld even though it
reprisents a specific part of the instruction word), its valuec is ORad into
the result after cvalusting all ficlds.

Although the ossembler masks out unnccessary bits in the values of

field prrbssuons, it flags as a ficld ovcrflow crror) any AC address or

index field whose value is greater than 3, any sklp ficld whose valuc is gruﬂter

than 7, cnd any chlCu fl :1d whose valuc is creater than o3 The assembler

flags as a format crror (F) any instruction statement that contains a
transparent atom when none is allowed. An overflow crror also results if
any argumenf ficld requircs the assembler to place a nonzero number in any
field of thc storage word that has alrcady rcccivéd a2 nonzcro number due to
the evaluation of the mn;ménic field; eg ecxcept for incorrcct format in
;hc sccond, thise two statements arc cquivalent:

AND 0,2,SKP

AND+] 0,2
so this statemcnt results in both format and overflow errors:

AND+1 0,2,SKF

Memory Reference. A statemcnt for an instruction that referonces
memory has onc or thoe other of thesc forms depending upon whether it
rcquires an accurulator,

Mnermonie ddress, Index (opticnal)
Miermonie Aceunulator, Address. Index (opticnal)

The mnecmonics for thesce two forms arc os follows.

Without Accurulator With Accumulator
JHe LDA
JSR STA
152
0Sz

The transparcnt atom @ may S uscd to indicate indircct addressing; it is

usually =laced immediately befeore the address ficld.
The index ficld determinags thc octicon the asscmbler takes with respect
te thoe address ficld, Lzt [be the current voluce of the lacation countcor,

A the valuc of the address fiold, and ¥ the value of the index ficld.

Index Action
0 or dlank (e 17 4 < 377, place 0C in bits £-7 and 4 in bits 2-15
no expression) (pagc zcre addressing). If [- 200 < 4 <L + 177,
plzce 21 in bits -7 and 4 - [in bits £-15 (rclative
1ddr.nsing).
1,203 If -202 < 4 <177, place x in Zits 5-7.and A in

APl
.

Sits -1
If the condition asscciat.d with a given index valuc is not sctisficd, the
assemblar flags the statcment for an address crror (A) and placcs the low
order Sits in tho displacement and indcex parts of the instruction word as

shovn in this flow chart.

24

YES
OiAiy NO
YES
NO
\ \ .
00+BITS €-7 01+BITS 6-7 FLAG STATE- X+BITS 6-7
MENT FOR ADD}
A-+BITS 8-15 A-I»BI1TS8-15 ~ |RESS ERROR (4) ‘A+BITS 8-15

Arithmetic and Logic. A statement for an instruction in the arithmctic
and logical class has this form

Mnemonic Source AC, Destination AC, Skip Function (optionai)

The instruction and skip mnemonics for this class arc as fcollows.

Instruction Skip
cM SKP
iEC L szC
MOV R SNC
INC S R
ADC 2 L SNHR
SUs 0} R SEZ
ADD o S SBN
AND

The transparent atom # may be uscd to inhibit the processor from loading the
~instruction result into thc destination accumulator; it is usually placed im-

mediatcly after the instruction mnemonic.

25

Input-output. A statement for an instruction in thc in-out class has

one or the other of these forms depending upon whether it requires an

accumulator.
Mnemonic Device
Mnemonic Accumulator, Device

The mnemonics for thecse two forms are as follows.

Without Accumulator With Accumulator
{s DIA
NiodC DOA
P p1s { \S
SKP8N neB gc
SKPEZ DIC P
SKPDH . pOC
SKPDZ

Special Mnemonics. The asscmblor also recognizes some special

instruction mncmonics which combinc a basic in-out code with the central
processor device code. This eliminatcs the nced for a device ficld, and

two of thcm even eliminate the usu2lly required accumulator ficld.

Special ‘ : Required
Mnemonic Equivalent Arguments
iREADS plA 0,CPY Accumulator

10RST picc 0,CPU Mone

HALT 03¢ 9,CPU None

INTEN NIOS CRU Yone

INTDS NiOC CPU Hone

INTA DIR 9,CPU Accumulator
MSKD | DO8 0,CPU Accumulator

Hence the assembler recognizes
READS 3
as a storage word statement cquivalent to

DIA 3,CPU

and ignores anything aftcr onc argument ficld in 2 statement beginning
with READS.

The pscudo-ops discusscd in §13 allow the programmer to dcfine symbols
that will then be a2ccepted by the asscmbler as cquivalent to instructicn
mnecmonics.

Floating Point Insiructions. Thc programmer must remember that it is
illcgal for him to define symbels that arc identical to the initial symbols.
The initial symbols include thc instruction mnemonics listed in Appendix D
of How to Usc thc Nova and also thc floating point instructicn mnemonics
that arc assembled like ordinary instructions but for cxecution by an
interpretive routine. The floating point mnemonics are cxplained in the

writcup of thc Flocating Point Intcrprcter program and arc listed below.

Instruction Mnemonics Option Mnemonics
FAGD Fiei FSGE
FALG F1sz ' FSGT
FATN FJmp FSKP
FCOS FJ5R FSLE
FDFC FLD3 FSLT
FDFCI FLDA FSNR
FDIV FMCV _ FSZR
FDSZ FMNS

FETR FHPY

FEXP FNEA

FEXT FPOS

FFDC FRMD

FFDFF FSIN

FFIX FSQR

FFLO FST3

FHLY FSTA

FiC2 Fsue

FIC3 FTAN

27

12 3ASIC FSEUND-OPS

A pscudo-op is a2 purcly operaticnal symbol. Such symbols arc commands
to tho assembler rather then symbolic reoresentations of numbirs; they can
affect the intcrnal operation of tho assemblor, gencrate portions of the
objzct program, and define symbols (the last typs is trecated in the next
section). Most pseudo-op statemcnts have the form of a pscudo-op followed
by onc argument.

Radix. At the bocginning of cach pass thoe asscembler starts by intcorpreting
integers as octal. Tho source program can change the radix by giving a
statament of the form

DX Ixpression

s

[

where integers in the exoression arc always interpreted as decimil. The

“valuz of the cxorassion becomes the naw radix for intoger evaluation. |If
the. cxprassion cannot be cvaluatad in pass 1 or its valuc is lcss than two
or greater than ten, the asscmbler flags thoe statumernt for 2 radix crror (D)
and continucs to us: the pravious radix.

This cxample of source coding illustrates the effect of the radix

pscudo-op on thz octal valucs of uxnri.ssions.

Location Value Statement
503002 LRDX 2
n0000 000037 1111011 :5 ORED '"1TH 33
| 900003 DX 3)
00001 200013 21+11 c7+h
Nn0002 000006 12%12/11 s 6x53h
000012 20X 10
30003 000115)
30004 000077 53

0009% 00C037 2%C/3+7 .

28

Loecatton, ‘henever the asscmbler oncounters a statement of the form

Lt _Erpression

it sets the location countcr to the value of the expression. |If the

expression cannot be ecvaluated in pass 1 or its value cxcceds 32;76710
(Ze produccs an address of more than fiftecn bits), the asscmbler flags it
for 2 location =rror (L) and ignores thc statement. In othcr words an
crroneous location statement has no cffcct on the location countcr.

When resctting the counter, the programmer should be careful not to

produce an overlap, as in

Location

00214 M3Ko ©

00215 o LDA 0,TTSAV
00216 INTEN

00217 JMP eTTSAV+1
00220 TTSAV: O

90221 c

00222 n

.Loc 220

100220 PTFIN: STA n,PPSAV
00221 | STA 1,PPSAV+1
90222 STA 2,PPSAV42

The asscmblcr would assign thc zero words to locations 220-222. EBut
resctting the counter to 220 causcs the next threc instructions to be
assignec to the same throc locations with no crror diegnostic. ‘'hen the
object program is loaded the zcro dat2 werds arc loaded first, but are
replaced ky the 5TAs when they arc loaded. Furthermore, as soon as the

program saves somcthing in thc TTSAV locations, the STAs arc dcstroyed.

29

A location statcment can be uscd to resurve a block of storage. The
following cxample allocatcs a block of twenty locations for a tablc whercin
thc first location in thc tablc is labeled TAB20, and the first location
aftcr the tablc is labeled TEND.

TRB20: .LOC +2h

TEMD:

Block. This pscudo-op is used cxplicitly‘to allocatc blocks of
storage. At the appearance of a2 statement of thc form

-BLK Expression

s

the asscmbler increments the location counter by an amount cqual to the

A

veluc of the expression. A location crror (L) results if the expression

cannot be cveluated in pass 1 or its valuc wheon odded to the current value
of thcilocation counter cxcecds 215 - .
This linc of source coding rcscrves @ block of six words starting at
location BLKE,
S5LKE. .BLK 2%3
End Of‘Tape. It is sometimes necessary to continuc a program onto
ancthcr sourcc tepe. Upon cncountsring the pseudo-op
LEOT
the assembler stops the sourcc input device and halts with 00006 in the
address lights. The assembly can be continucd by loading a new tape and
and pressing the console continuc switch.
End. The final statement in a sourcc program must bc one of these,
JEND Expression

L —— T——

LEND

e Y

and thc line in which it appecars (including 2 commecnt if any) must be

terminated by a carriage return. |If the pscudo-op has an argument, its

30

value is taken as the starting addruoss of the program just assembled:
after reading in the object tape, thc loader automatically starts the
execution of the program at the location given. jf there is no argument,
the loadcr halts after loading the object program.
Caution

An cnd statement rust be fblloéed by a carriage return.

Omission of this character causecs the asscmbler to act as’

though it had encountcred an end of tape statement instcad.

It will thus halt and woit for further acticn by thc operator.

Text. To storc thc octal codcs for a string of charactcrs packed two

S —— SO

to a word, the programmer can usc the tcxt pscudo-ops. The basic text

statcment is of the form

(RN e

LTIXT Etext stringk

where & is any charactcer other than carriage return, space, tab, comma,
null, line feed, form feed or rubout, and which docs not appcar in the

tcxt string. Upon cncountering the sseudo-op .TXT, the cssbmblcr takes

the next sngn|f|cant character cther than a carriage rcturn as the text

delimiter, and then assigns succeeding pairs of characters to consecutive

memory locations until it again cncounters thc delimiter. |If the string

contains an odd number of charactcrs, the final onc is paired with a null

character; if an even number, a null word is assigncd to the location

M\
following the string. Thns provides a convenient mcans for an output
e e s e T e e

routine to detect the c¢nd of the string.

—

As usual, null, Ilnc fgcd form fg;d and rubout are not regard;d as
elements in thc statement; but from the time the asscmbler encounters the
first delimiter until its sccond occurrence, carriagc returns are also

ignored (of course a carriage return preceding the first occurrence

31

terminates the statement). Hence when the programmer is preparing an
input tepc on an ASR, he can continue the text string onto additional
lincs on thc tcletype peper without introducine sﬁurious carriage rcturns
into thc statement.

Thc programmer can introducc any charactcr, even a rubout, into the

text string by znclosing an expressian for it in anglc brackcts: hence

anglc brackets cannot themsclves appear =s characters in the string. Upen
encountcring = left brackzt. the assembler cvaluatcs the expression contained:
Ectween it and thé ncxt right bracket, and takcs the lew order seven bits
of that valuc as the ASCIIl code for the next byte te be packed. Thus to
storc the scntence
60 T2 <>

the programm:r can give a text statement of the form

OXT 970 TN <745 19<7658
or, if he cannot remember the codes,

TXT RGO TO <tiex IN<''>>6
The cxamplz just given would appear in the listing this way.

TIXT @0

T
]
<te> |
Mt
§
The asscmbler generates #-hit bytcs, made up cf the 7-bit ASCII code and a
\—'—‘~—-—-—-4\“—- [e e e - T s —
l=ftmost bit of 0, and packs them from right to left in the storage words.

‘Our example would thus produce thc words

32

0G 047507
T 052040
0 320117
1< olhh7k
>.N 537116
00 003000

Altogether there are four forms of thc text pseudo-op that vary the

disposition of thc lcftmost bit in the 8-bit bytes gencrated from the text

string.
Pseudo-op | ' Effect on Left Bit
JTIXT ' Left bit is 0.
W TXTO ~Left bit is odd parity for the byte.
.TXTE _ cht bit is even parity for the byte.
TXTF Forces left bit to be 1.

The assembler nnut|1lly _packs text bytes from right to lcft unless the

programmer glves a tcxt mode pseudo -op. After the appcarance of the statement

.TXTM Expresszon

wuth a nonzero pxprussuon, ‘the asscmbler uses left-right packing for any

tcxt strung it encounters, The programmer can switch back to right-left

packing by giving .TXTM with a zero argument. £g in this sequence,

JXTH 0
JXT /8
TR 1

TXT /0

the second statement generates the storage word 000101, the fourth generates

cLoLoo.

33
13 SYMBOL TABLE PSEUDN-0PS

By using certain pseudo-ops thc proygrammer can define symbols like
the special instruction mnecmonics (such as ITEN and MSKC), f{e symbols
that include an instruction mnemonic and other fields of an instruction state-
ment as well. The general form of a symbol-defining pseudo-op statement is

Pseudo-op Equivalence Statement
ie

Pseudo-op Undefined Symbol = Storage Word Statement

The simplest of these pseudo-ops, .DUSR, deflnes symbo}s whnch retain

[P—— - SO

no operatnonal propcrtlcs, in othcr words |t acts Just llke a snmple

equ|v§lgnce statement insofar as thc value of the symbol IS concerned Defin-
ing CNT by

| .DUSR ChT = 24
means that

STA 2,CNT

is equivalent to

Similarly
.DUSR RDR = DIAS C,PTR
allows us to give
RDR
to bring in 2 character from the reader to ACO and start the reader again.
But-we cannot give |
| RDR 1

A_symbol defined by -DUSR _has no operataonal propertues and thcrefore can

e e e

——— e e

take no arguments; the last example would be flagged for a format error (F).
°

34

The other six pscudo-ops of this type define symbcls with operational

’Bzgggggigi, Typically each pseudo-op allows the programmer to define a

symbol as equivalent to an instruction statement in which certain fields

are zero. The symbol is then used with arguments corresponding to the

ZS£9~fEEl§EMEP"Fh¢‘ﬁefiﬂ?F?QQ: Suppcse we often have to compare the
magnitudes of unsigned numbers in the accumulators. We could use .DALC for
thesc definitions:
.DALC SL = SUBZ# 0,0,52C
-DALC SLE = ADCZ# 0,0,SZC
Then
SL x,Y
skips if ACy < ACx, and
SLE =,y
skips if ACy < ACz. In other words thesc newly defined symbols act just
like instruction mnemonics in the arithmetic and logical class. The
number of arguments given with the symbol plus the number absorbed in it is
equal to the number the original mnemonic.takes. With a symbol defined
by .DALC, a skip field is opticnal if none was given in the definition.
The effect of a transparent atom can accompany every use of a3 symbol by
givfng it in the definition, or it can be given at the programmer's
discretion when the symbol is uscd.

Now even though a symbol defined by .DALC has certain operational
properties (specifically taking certain arguments), the storage word state-
ment in the definition need not have any. Hence SL could just as well be
defined this way:

.DALC SL = 102432

and it would still require two accumulator arguments in use. Also, the
. .

35

argument fields requirad in use nced not be zerc in the definition--the
restriction is that thc programmer must not attempt t6 put a nonzero
quantity in the same storage word ficld twice. Thus to have a convenient
symbol for testing whether AC1 is less than some other accumulator, we could
define TEST by
.DALC TEST = SUBZ# 0,1,S2C
or cquivalently
.DALC TEST = 106432
Then
TEST 2,0
skips if AC1 < AC2. Hote that the rcquired arguments must be given even if
zero.

The table on page 27 lists =11 ~f these n3.udc-eps,. the tyncs of
symbols they can define, and for cach type, Ehe Aarguments that nmust
accompany the symbol when it is used. Optional elements are indicated by
square brackets.

Caution

The programmer can specify certain parts‘of ALC 2nd 10 instruc-
tion words by appending latters to the basic three-letter
mncmenics for these instructicns. This property is rctained
by the equivalcent symbol types cdefined by'the pscudo-ops
discussed here. Eg if the prcgrammer uscs .DALC té define a

" symbol whose fourth character is ¢, whenever the assembler
encounters a statcment in which that symbol is used, it will
place Is in bits 8 and 9 of the storege word generated from
the statement (just as it would if the programmer used ADDS

or MEGS) regardless of the value assigned to the symbol by

the .DALC statecment. Hence unless thc programmer actually
wishes to usc this function of the assembler in generating
storage words, he should avoid the following:

Using L, R, S, Z, 0 or C as the fourth character in a
symbol defined by .DALC;

Using L, R or S as the fifth character in a symbol
defined by .DALC and whose fourth character is Z, 0
or C,

Using S, C or F as the fourth character in a symbel
defined by .DIO or .DIOA.

Conversely if the programmer limits his symbols of these types

to thrce characters,he can append thc above letters to them to
produce the samc effects as with ALC and 10 mnemonics. (In

fact the instruction mnemonics are not built into the assembler--
they are defined by oscudo-ops.)

Although symbols defined by .DUSR téke no arguments, therc is one
property that all symbols dcfined by these pseudo-ops have in common and
that differentiates them from symbols defined by label and equivalence
statements. All symbols defincd by pseudo-ops become initial symbols, ie
they become initial entries in fhc symbol tablc and can be used without’
definition by programs that are assembled after they are defined. (This
also means that a latzr program cannot usc the samc character string for
some other purpose, eg as a label.) Thesc symbols remain in the symbol
teable until the assembler is relocaded or the prcgrommer expunges the table.
Reloading the assembler reduces thc table to its initiai state, in which
it contains only the instructicn mnecmonics and tho permanent symbols, e
‘the special location counter symbol (.) and the pscudeo-ops. Civing the
pseudo-op

. XPNG

37

undefines all but the permanent symbols and rccovers the space uscd by

the expunged dcfinitions.

After cxpunging the table, the programmer can

even define instruction mnemonics such as ADD and JMP in any way hc wishes.

Pseudo-op

.DUSR

.DHR

. DMPA
.DALC

D10
.DIOA

.DIAC

SYMAOL DEFINWING PSEUDO-OPS

Symbol Type
Defined

Uscr (purcly
numeric)

ifemory reference

Memory reference
with AC

Arithmetic and
logical class

In-out
In-out with 4C

Instruction
Wi th i?\c

Arguments in Use

Nonc (can be usced in
any exprcssion)

[@laddress [,index]

AC, (@]Address [,Indcx J
[#]ACS, FCD [,Skip]

Jevice

AC, Devicc

AC (in bits 3 and 4)

14 OPERATIMG PROCEDURE

To assemble a source program it is first necessary to load thebobject
tape of the assembler (a tape is included in the standard NOVA softwarc
package). Once loaded, the assembler automatically takes control and
prints requests for various parametcrs on the teletype. The programmer
supplies the necessary information by typing numerals back.

The assembler first types

14

in response to which the programmer identifiess the source input device by

typing one of the following numerals.

1 Teletype reader without parity checking

2 Teletype reader with parity checking

3 Paper tape rcader without parity checking
y Paper tape reader with parity checking

5 | Teletype kecyboard without parity checking

When parity is checked the asscmbler substitutes a backward slash () for
any incorrect character and flags the line containing it for an input error
(1. |
Hext
LIST:
requests the programmer to select the device on which the assemdbler fs to

list the source program.

1 Teletype ASR33 (tabs and form fceds simulated)
2 ' Teletype KSR35S

3 Line printer

4 Paper tape punch with tape prepared for later

listing on an ASR33

5 Paper tape punch with tapc prepared for later

listing on an ASR35

33

After
M
is typed, sclect the output device on which the objcct (binary) tapc is
to be punched.
1 Teletype punch
2 Paper tape punch
The above responses identify the 10 devices to be uscd during
assembly, and at this time thc sourcc tapc should be mounted on the
selected input devicec. The asscmbler types out
MODE :

to dctermine what function to perform during the upcoming pass.

1 Pass 1 (all symbols are defined)

2 - Pass 2 - Qutput an object tapc

3 Pass 2 - Cutput a listing (including an alphabctical
symbol list)

4 Pass 2 - Output both an object tape and a listing

5 ' Output an alphabetical symbol list

Note thet 4 is illecgal if the programmer sclected the same device in
responsc to both BIN: and LIST:. Whcn a pass is complcted, the a2sscmbler
again types
MODE :

to rcauest thc next function to be performed, if any.

If it is neccssary at any timc tc sclect @ new 10 device, do the
following:
1. Pross RESET
2. Sct 000002 into the data switches

3. Press START

40

To reassign the modec, do this:
1. Press RESET
2. Set 000003 into the data switches
3. Press START

To save the symbol table (eg because new initial symbols have been
defined), punch 2 new object tape of the assembler itsclf after pass 1 as
follows.
1. Pcrform pass 1 on.the defining tape.
2. VWhen the assemtler finishes pass 1 it types out 'MODE''. Respond by
typing in "1, This causcs the assembler to eliminatc noninitial entries
from the symbol tablc, and it then stops since therc is no source tape in
the reader.
3. Using the Binary Punch Program (qv). punch thc tape from location
000002 to thec location addressed by thce contents of location 000004
(location 000004 addresses the last location in the symbol table).
L. Specify 000002 as thc asscmbler start address to be punched in the

start block at the end of the tapc.

APPENDIX A

CHARACTERS
7 Bit 7 Bit 7 Bit
Charact;r ASCI I Character ASCIHI Charactcr ASCIHI
Null 200 4 064 | 11
Horizontal Tab 011 5 065 J 112
Line Foed 012 6 066 K 13
Form Fecd - 014 7 067 L 114
Carriage Rcturn 01¢5 ‘8 070 M 115
Spacc Lo 9 071 2 114
! oL ' : 072 0 117
" oL2 . 073 P 120
: 43 < 074 Q 121
& 45 = 075 R 122
* 052 > 076 S 123
+ 053 @ 130 T 124
, 054 A 101 u 125
- 055 B 102 \ 126
. 056 C 103 L 127
/ 057 D 104 X 139
0 060 E 105 Y 131
1 081 F 106 z 132
2 062 § 107 Rub Out 177

APPENDIX B

PSEUDD-OPS

Hnemonic | Effect
.BLK Assign a block of sforage
.DALC Dcfine an arithmetic and logical instruction
.DIAC Definc an instruction requiring an accumulator
.DI10 Definc an input/output instruction
.DI0A Define an input/output instruction requiring an accumulétor
.DMR Define a memory rcference inétruction
.DMRA Definec a memory rcfercnce instruction requiring an

accumulator

.DUSR Define a uscr symboIs

LEND ;nd of source input

.EOT End of tapc

.LOC 4 Assign 2 lecation countcer value

<RDX ‘Change the number radix

.TXT : Definc packed test strings in octal--force parity to G
.TXTE .Define packed text strihgs in octal-~computc even parity
LTXTF Define packcd‘text strings in octal--force parity to 1
LTXTH Definc text packing modc

TXTO . Definc packed textAstrings in octal--compute odd parity
. XPNG Expungc all but the permanent symbols from the symbol

table

NPPENDIX C

SYMBOL TABLE

A1l predzfined and user defined symbols are cntcred in a table called
the symbol table. This table is origined at the cnd of thc assembler and
is upward expandable until the memory capacity of the machinc being used is
exhausted. Each entry in thc table occupies threc 16-tit words. The maximum
length of a stored symbcl is five characters and is reprcsented in radix 508
form. This mcthod uscs the first word to store the first three characters
of the symbol and eleven bits of thc sccond word to store the last two
characters of the symbol. The five remaining bits of the second werd are
uscd to define attritutes of the symbol, eg, a memery reference instruction
symbel. The third word is used to stere the numeric value of the symbel.
Symhol tablc capacity for 2 LK system is epproximately 400 symbols..

Radix 53 representation is uscd to condensc symbcls of five characters
intc two wcrds of sforage using only 27 Lits. Assume a symbol of thc form:

ay @z Gy Oy O

b

ai may bc A-1 (26)
0 -9 (10)
or . (1)

A1l symbcls arc padded (if necessary) with nulls. Therefere, thore are

38, = L&

10 8 fach charactcr can be translated as follows:

nossible charactars.

character (ai)

translation (Bi)

Null 00
0 to 9 1 to 12

P
N

c2

If a; translates to B;, we can compute the following numbers:

=
(]

I ((Bh * 50)+83)*50+82

(8, * 50)+8,

Nl maximum is (SO)3 -1 which equals 174777 and will take 2 maximum of 16 bits

to represent. M2 maximum is (50)2 -1 which cquals 3077 and will take 11 bits

to represent. The symbol is thus represented by M] and NZ which take 27 bits
of storage.
A number of symbols exist which arc permanently dcfined in the assembler.

They cannct be eliminated by the .XPNG pscudo-cp. These symbols are:

.BLK .DMRA LTXT

.DALC .DUSR LTXTE
.DIAC .END TIXTF
.DIO LEOT LTXTH
DI0A .LoC .TXTO
.DMR .RDX < XPHG

These symbols will never appear in the symhol list follewing an assembly
listing. HNote that.a sccond class of symbols cxists (initial symbols) which
have been entered in the symbol table by thc cperator defining pscudo-ops
(§12). A1l of the MAVA instruction mnemonics arc in this category. They

are never printed in the symbcl list following an assembly listing. They

can be eliminated, however, by using the .XPMG pscudo-op. Carc must be taken
not to confuse this sccond class of symbcls with permanent symbols whan

using the .XPNG pseudo-op.

APPENDIX D

ERROR MNEMOMICS

Extensive examination of statcment syntex takes place during both
passes of the assembly in order to detect syntactic errors in the input. A&
statement fqund to be in error will te flagged with from one to three letters
indicating general classes in which the errér(s) fall, Statecments in error
during p2ss 1 will be printed (with flags) on the tcletype. /rfter pass 1
the user may decide whether to continuc to pass 2 or to correct any crrors which
have occurred thus far. Statements in crror during pass 2 will bc printed on
the tcletype as well as flags 2ppcaring oppesite the statements on the list-
ing device (if any).

An alohabetical list of crror codes aleng with examples of statcments

causing such errors is given on tha next page.

D2

EFROR| CGENERAL CLASS
FLAG | OF PROBLE™ XAMPLES - COMMENTS
A Addrzss error LDA 2,400
152 .+317
B 3ad charactar LASL: LDA 1,23 ; S NOT PERMITTED
c Cclon errcor N+2 ; MO EXPRESSION PERMITTED REFORE
;A COLOY
D fadix arror .RDX 12 RADIX 12 NOT PERMITTED
E Equal crror REG= 3+8 5 WHERE 2 IS UMDEFIMED
F Format error ADD 2 © WEED AT LEAST 2 NPERANDS
| Input crror ; PRIATY CHECKED OW INPUT ANMD SOHE CHARACTEF WAS<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>