
DATA GENERAL
CORPORATION

Southboro.
Massachusetts 01772

(617) 485-9100

PROGRAM

Assembler

TAPES

Binary: 091-000002

Copyright (C) Data General Corp. 1;c9
•

093-0000,17-02

I
.;

' •

CONTE~!TS

l The Assembly Language

2 Format

3 Integers

4 Symbols

5 Special Atoms

(1 Oper<:1tors and Expressions

7 Location Counter

8 Comments and Statements

9 Symbol Definition

10 Label and Equivalence Statements

11 Storage I.lord Cjtatemcnts

12 Basic Pseudo-oos
Radix, location, block, end of tape, end, t~xt

13 Symbol Table Pseudo-ops

14 Operating Procedure

APPENDICES

A Characters

B Pseudo-ops

c Symbol Table

') Error Mnemonics

E Listing Format

F Object Tape Format

I aTRODUCT Im!

The ~OVA assembly program allows the programmer to write a source

program in a symbolic, mnemonic language using the English alphabet, numerals,

and other common characters. The assembler takes the source program as

input (or more precisely the ASCII codes for the characters that make up the

source program) and assembles It Into an object proqram. The output of the

assembler is a complete listing of the source program on some output device

and a tape of the object program ready for loading into memory by a binary

loader.

THE ASSE: 18LY LAr!~UA~E

The assembler recognizes the codes for all ASCII characters, but null,

line feed, rubout and form feed ~re transparent. Th~ first three can be

used in any way in the input and the assembler responds to the input tape

as though those characters were not there at all; hence blank frames on the

tape have no effect, and mistakes can be overpunched with rubouts. A form

feed is eaually transparent with respect both to the assembly of the object

program and to the characters that appear in the listing, but it can affect

the format of the listing. Throughout this manual a reference to "any

char~cter' ~eans any ASCII character except these four. Of the remaining

characters Many can be used only to refer to themselves, "ie to supply their

own codes to the assembler rather than being used as symbols to represent

something else.

Hence the set of characters in the symbolic language is a subset of

the ASCII character set, and this subset is listed in Appendix A. 3asically

the characters in the language are used as operators, as punctuation, as

elements in numbers, and as elements in symbols that orovide insiructions

to the assembler. Integers and numeric symbols are character strings used

as numbers. An integer, which specifies its own value, is a string of

numerals. A symhoZ is a string of letters, numerals and periods whose

2

value ·is either predefined (an initial symbol) or Is defined by the source

program. Symbols may be numeric and/or operational. An operational symbol

tells the assembler to do something, purely operational symbols are called

pseudo-ops. A symbolic address Is an example of a purely numeric symbol.

r!any symbols, such as the instruction mnemonics, are numeric in that they

represent numbers, but they are also operational as they provide information

to the assembler concerning the characteristics of the statements in which

they appear.

Integers and symbols are the basic units or atoms of the lanquage.

There are also several special atoms that ~o not satisfy the definitions

for integers and symbols. A double quote combined with any character can

be used just as though it were an integer whose value is the code for the

characters. The special atoms also include the characters @and # that

are used for indirect addressing and to inhibit loading in an arithmetic

and logical instruction. These ch3racters can be used only in certain

statements, but they are completely transparent in relation to grammatical

structure, the assembler responds to one of these in terms of assembling an

instruction, but ignores it completely when determining the structure of

the statement in which it appears.

Operators are characters that specify arithmetic and logical relations

among numbers, ie integers and numeric symbols. A string of integers and

symbo 1 s combined by operators is an expression. Some characters are used

as punctuation to tegin and end expressions, statements and comments, and

to specify how parts of the source program are to be interpreted.

3

The language has a formal hierarchy. Certain characters can be combined

into intergers and symbols; integers and numeric symbols can be combined

with operators into expressions. Using punctuation, expressions and purely

operational symbols can be combined into statements. These are the

fundamental macroelements of the language; they provide instructions to the

assembler, they define all symbols that are not initial, and they specify

both the values of the words in the object program and the memory locations

that will eventually receive them. Storage word state~ents and certain

pseudo-op statements can generate output words for the object orogram.

(Storage '.••ord statements are af two types, data statements and 'fn.g truction

statements.) label statements, equivalence st~tements and the remaining

pseudo-op statements are used to define symbols, locate the object program

and control the asser.lbly .. '\ccompc:nying the stater.ient~ are <Jamments ~·1hich

provide commentary on the source program.

As mentioned above, the characters null, line feed and rubout are

totally transparent: the assembler complete~y ignores them and responds

to a character string containing them as though they simply were not there.

A form feed is recognized by the assembler but only for forr1~t purposes (§2);

in any other respect it is just as transparent as a rubout. The characters@

and #are also transparent with respect to grammatical structure even

though they have a very definite effect on the generation of the object

program; when one of thes~ characters appears in a statement the assembler

responds to its ~resence only ~fter evaluating the entire statement as

though the character were not there. Among the characters used for punctua­

tion, comma, space and ta:, which are used to separate expressions in a

statement. are grammatically identical and can be used interchangeably.

::oreover in a string of these characters, all after the first are r~dundant;

after encountering one such character, the assembler ignores them until

some other character appears. Following a carriage return all commas,

spaces, tabs and further carriage returns are ignored until some other

character appears.

At the micro-level the source program is a long string of characters,

but at the macro-level it is a string of lines separated by carriage

returns. A single line may contain a comment, any number of label state­

ments, but no more than one statement of another type. In other words a

carriage return may be followed by~ comment or any kind of statement;

a label statement may be followed by a comment or any kind of statement

including another label statement; but any statement other than a label

statement must be followed either by a carriage return, which starts

a new. line, or by a comment, which in turn Is terminated by a carriage

return.

2 FORMAT

The NOVA a~sembly language is format free. However, the listing of

a symbolic source program has a very definite format. A listing is the

output produced when the characters that comprise the source program are

printed. The teletype is the usual output medium, but a listing can be

obtained on the line printer, and the string of characters in the listing

can be punched in paper tape. The format of a listing is its visual

appearance v•ith respect to horizont~l and vertical spacing, ie the use of

spaces, tabs (tab settings) and carriage returns.

4

So~e format is intrinsic to the language because these forMat characters

are used as punctuation, and the source program is automatically formatted

into lines by the requirement that sometime after any statement other tha~

a label statement, a carriage return Must apoear before another statement

5

can be given. Furthermore these characters can be used expressly to format

the listing: all redundant spaces, tabs and carriage returns are interpreted

only 1·Jith respect to the listing format. Bg a logically redundant carriage

return produces a blank line in the listing (although line feeds are

ignored in the input the assembler automatically follows every carriage

return with a line feed in order to properly space paper in the listing

device).

Within broad limits, the programmer is free to determine the format of

the listing for his program. All of these lines are identical as far as the

assembler is concerned, ie they differ only in format but are identical in

grammatical structure.

LABEL: A.DD# 2,3,SZR. ;SKIP IF SW'. ZEPO

LAHL:ADD,2,3,SZR#;SKIP IF SU" ZEM

;SKIP IF ')U~~ ZERO LABEL:A~D 2 3 II SZR

LAO~L:,,, ,#.\DD, ,2, 3 SZ~;SKIP IF SUM ZERO

LABEL :AD#D,2,3, szr ;SKIP IF SUM ZERO

A common practice is to divide each 1 ine into four columns by rnenns of three

tab settings, using the left column for labels, the second column for all

oth~r statements with the arguments of an instruction nnernonic starting at

a second tab setting, and the right column for program comments. This is

the format of the first example above. If the listin0 device does not have

automatic ta~bing (eg t~e ASR33), the assembler simulates t~bs by spacin0 to

the nearest assem~ler defined tab position (always leaving at least one

space). These positions ar~ every eight columns, ie columns~. 17, 25,

Although the form fe~d character is completely transparent as far as ~he

assembly is concerned, it does affect the listing format. The assembler p~ts

a form feed (and hence starts a new oace in the listing) before any line

•

6

in which that character is encountered. If the device is not equipped for

form feeding, the function is simulated by line feeds, sixty lines per page.

In producing a listing the assembler actually prints out more than ju~t

the source program. In each line of the listing the assembler first prints

one-letter mnemonics (flags) indicating errors that have been made by the

programmer, then the address of the location that will contain the object

word (if any) generated by a statement in the line, then the contents of

that location (or if no storage word is generated, the value of whatever

statement does appear in the line), and finally the line of the source program

as formatted by the programmer. If the first instruction statement given

above is assembled to be stored in location 3414, the I ine 1¥ould appear in

the listing as follows:

03414 157014 LABEL: ADD# 2,3,SZR ;SKIP IF SIJM ZERO

Following the program the assembler lists the values of the symbols defined

by the programmer.

3 IMTEGERS

·An integer is a number computed in any radix from t1¥0 to ten. The

assembler converts each integer into one 1(-bit unsigned number. The

decimal integers 0 to 32767 yield the octal numbers 000000 to 077777,

the decimal integers 32768 to ~5535 convert to 100000 to 17777. Using

twos complement conventions the program may treat the former words as

positive numbers, the latter as negative .. (The programmer can also

generate signed numbers by using integers with operato(s a~ discussed in §G.)

An integ~r is any string of numerals that is preceded and follow~d by

an operator or punctuation character and is neither in a program comment

nor in a text string unless enclosed by angle brackets (§12). Eg the four

strings

3 38 99 12345678

7

arc 211 integers. (In all cx2mplcs such as the 2bovc it is to be assumed

that appropriate delimiting characters, such as commas, spaces or operators,

precede and follow 2ach example.) ~ut the thrcci character strings

31. 27 f.12 3

ere not: the first two 2.rG illcg2l anc would be fl~ggcd 2S number errors un;
the third is actually a symbol.

The assembler assumes that all intcg~rs ere octal unless th~ programmer

gives a rod ix pseudo-op to specify otherwise (§12). ;n int2gcr th~t contains

any numeral greater than or equal to the current radix is flagged ~s a

I ' • t . - 1 "' 16 • 1 f 1 d d numocr error. ~n 1n cgcr greater tnan or cqua to L 1s a sc aggc- an

is evaluated module 2 15 •

A symbol m~y have cith~r or both of tw0 properties: 2 numeric symbol

rcprusents a lS-~it number; an op~ration2l symbol conveys information to the

.:iss-::mbler. Soms symb'.Jls <ir.; alrc::icy defined b~for·:: the :=isscmbly starts; these

arc known as initial symbcls and include th.: instruction mnemonics·and

pseudo-ops. Oth..::r symbols c.~n b..:: defined in the source progr0m ~s labels

(which r~prcsant addr~sscs), 1~ other purely numeric sy~bols, or 25 cpcr2-

ticnel symbols that function like the instruction mnemonics. Operational

sym~ols can be used to t~ll the ~ssc~blcr to do scmcthinlJ; numeric symbols

can be used as numbers in exorcssions. ~symbol with both properties can be

used tc initiate an instruction stetc~~nt. It is then us~d as a number in

evaluating the statement as w~ll n3 ~Ling us~d to tell th~ assembler how

to evaluatL it. The differ~~ce b~twe~n ~ num8ric symbol and ~n integer is

th~t an integer specifics its o~n value, ~hcrcas the valu~ cf a numeric

symbol must be leaked up ~uring assembly.

Any string th~t begins with~ letter or period and is composed 2ntircly

of letters, numcr8ls and periods is a symbol if it is preceded and followed

8

by an operator or punctuation character and Is neither in a program comment

nor in a text string unless enclosed by angle brackets (§12). A period that

by itself obeys these conditions is a special single character symbol whose -------·-···· ··-·- -~-- - -- .----- .-.,------·----~---·-~··-----

value, which is determined each time it is use~, is equal to the current

contents of the location counter (§7), The character strings

A . z. . 123 M12345678 G. 1 ABC

are symbols (the fifth is the special location symbol), but the strings

1.27 123 LA$B

are not: the first two do not begin with a letter or period (the second is

actually an integer), nnd the last contains an illegal character. Although

the assembler would flag the last string for a bad character {B), it would

interpret the string as two separate symbols. But depending upon the type·

of statement in which the string occurs, this interpretation would usually

lead to other errors as well.

Although a symbol can have any number of characters, the assembler uses

only the first five to differentiate among them; in other \."t0rds, all symbols

whose first five characters are the same are indistinguishable to the assembler.

Hence

DITMASK elTMA.7 BI T~1AQPRXJ SK

are treated as the saMe symbol and can be used interchangeably. Long symbols

are often used for clarity, but caution must be taken to ensure that symbols

that are meant to be different actually differ in the first five characters.

The assembler will accept the codes for lower case letters as input,

but in symbols it simply translates them into upper case. ~ence all of these

symbols as source pro9ram input

A.3CO AB Cd abed Abc:::'I ab Cd

are equivalent to ASCD, which is the only form that appears in the listing.

9

5 SPEC I AL ATO:·:S

Atoms in the assembly language correspond to words in a natural

language. They are the strings of characters that are combined using

operators and punctuation into epxressions and statements. Besides

integers and symbols, there are a few special atoms that have some of their

properties but which contain characters that cannot be used in integers

and symbols.

The character pair

"x

where x is ~-~~-·=~~~-.:o"""t.,_h=eo.:.r~t~h~a.;..:n.......:...r..=u=.bo=.::.u.:.t.!.'-:...1:.;.in:..:..e::........feed, form feed or nul 1,
------~~---- -- .

is interpreted by the assembler as an integer whose value is the 7-bit

ASCII code for the character x, provided the pair otherwise setisfies

the conditions given for an integer. Hence 9ivinq the string

... ,
is the same os giving the octal integer 73, which is converted into the

octal word 001073. The character x is reco~nized only to the extent of

using its value ~s an integer, and the preceding double quote destroys

whatever operational value it may otherwise have, eg as punctuation or as

a user defined symbol.

The other two special atoms are the symbols @ and #: the former is

used to nlace a 1 in the Indirect bit of a memory reference instruction or
------~-_,____ .. -----···

address word, and can appear only in e statement that generates an output

1-1ord of these types, the latter is used to place a 1 in the no-load bit of

an instruction statement of that tyoe. These atoms arc cornoletely transparent

with respect to the overall structure of ~ny statement in which either appears

and with respect to the structure of any other atom in the statement.

The appearance of either@ er# any number of times in a given statement
•

10

is equivalent to its appearance only once, and its effect is exactly the

same no matter where it appears in the character string that makes uo the
,____ ____ .-.-~-·<----. -·-----~-··--·------------·------·--------'" : - . ·------~----

statement. The assembler first evaluates the entire statement as though

the special atom were not there at all, and then ORs a 1 into the appropriate

bit of the 16-bit result as indicated by@ or #. Hence all of these

character strings are interpreted by the assembler as being the same integer: ·

@4673 46@73 4673@ 4@67@3

and all of these are interpreted as the same symbol:

#ADDZL AD#DZL ADDZL# A#DD#ZL

6 OPEP..ATORS A1;0 EXPRESS I OMS

Operators are characters that specify arithmetic and logical relations

among integers and symbols; both types of relations can be intermixed in one

exoression. An expression is ~ny series. of integers and numeric symbols

separated by operators. The term i•expression 11 alwc.iys includes the case of

an integer or a symbol standing alone. As 1AJith all integers an·d rrumeric

symbols, an expression has a 16-bit value, ~1hich the assembler computes by

performing the indicated logical and arithmetic operations from left to
··-··-·----.. ···---.............. --

ri9ht.

An operator specifies an operation to be performed en the operands at

either side of it. The operand at t~e left is all of the expression at the

left, ie that ::>art of the whole exnression from the beginning to the prece~.ding

integer er symbol. the operand at the right is the next inteqer or symbol.

Logical operators work bitwise on pairs of operands; arithmetic operators

treat ooerands as numbers. Note that operands are intrinsically neither

arith~etic nor logical: they are simoly le-bit numbers that are treated in.

different 1vays.

11

The assembler interprets the following six characters as oper;,)tors to

specify two logicc:l and four arithml'!tic operations ,,lith no check for overflow.

Ope rater

+

;':

I

,..
C.•

Operation

/1dd it ion

Subtraction

1·1u 1 ti p 1 i cat i on

Division

Logical ANC

Logical O!\

Interpretation of Operand~

'!nsigned 1(-bit integers

Unsigned 16-bit integers

Signed twos complement integers; result
is low order word

Signed twos complement integers., result
is one word, unrounded

lG-bit logical words

1G-bit logical words

The plus and minus sign ar~ additive operators, the others are procuct

operators. An additive operator may take either one or two operands, but

in the former case tht operator must be at the left in order to be meaningful.

Actually the asscmbl~r assumes a zcrc op3rand at the beginning of any

expression that begins with an operator ~nd at the end of any cxpr~ssion

that ~nds with an operator, but this can cause difficulty only with product

operatcrs--it has no effect on additive operators. Conseauently

+A

being equival0nt to

:)+A

is alright; the operator in

{;··

is meaningless but not illegal, and the expression is equivalent io A. ~ote

that an inrcgcr that is used to produce a negative number must have a

magnitude less than or equal to zl~: ep the expression

-11J0001

is net evaluated correctly but is not flagged ~s an error sinca there is no

overflow check.. The expression -.~ wh.::rc;:; is grc·atcr than 215 is 1;;valuat~d

as 2 1 ~-x. which results in a positive number less thjn 215 • In the example

given, the evaluation is 077777.

Expressions are evaluated from left to right taking one operand at

a time; in evaluating

A+B/C

12

the assembler adds A to ~ and then divides the sum by C. If two op€rators

are contiguous, the assembler assumes a zero operand between them. For a

string of additive operators this means that only the final one is signi­

ficant:

A+-+-B

is interpreted as

A+0-0+0:-El

which is equivalent to

A-0

But with product operators you lose;

A*-B

is interpreted as

A~~o-o

which is simply -B. To multiply A by -8 the prograMmer must either give

-B*A

or define some symbol C as equal to -~and then use the expression

7 LO CAT I OM COUilTE R

As the assembler translates the source program into an object program.

it not only generates the object words, but also generates information as

to where they will be stored; for this purpose the assembler keeps a loca­

tion count. 1.Jhenever a storage word is generated, it is assigned to the

location addressed by the current contents of the location counter .

•

13

At the start of an assembly, the assembler initializes tl•c co1111tPr t•~

location 0. Durin0 asse~bly the contents of the counter can be altered :n

several w2ys:

Th~ source program can set the counter to any desired 15-bit address
by means of a location statement (§12).

Every time a storage word is generated in the object program, the
countsr is incremented by one. Hence unless something else c~angcs
the counter, words are assigned to consecutive memory locations.
(The location following 77777 is 00000.)

At the appearance of the pseudo-op .SLK the counter is incremented
by the value of the argument of the--ps-eudo-or (§12).

The period, when used alone, is a special symbol whose value is equal

to the current contents of the location counter. Thus

LDA 3, .+6

is equivalent to

LOA 3,6.1

If the instruction is assembled at location 1215, it is also equivalent

simply to

LOA 3,122J

3 COMME! ffS A:iO ST ATE'~E'.JTS

As previously mentioned, a source progra~ can be re~arded as one long

character string. Except for redundant carriag~ returns, tabs, spaces and

commas, every character in the string either is part of a comment or state-

ment, or terminates a comment or statement.

A com~ent is not really ~art of the source program because it cannot

affect the gener~tion of the object prooram. Its o~lv function is in

conjunctlon with the source program listing~-~ ccmment ~resumably 2xplains

something related to the portion of the program where it appears. A seni-

colon as~ staterncnt terminator or ~s the first significant char~cter

14

following a statement or comment terminator in~icates the beginning of a

comment; the comment terminates with the next carriage return. Any

character except carriage return, but including semicolon, can be used in

a comment. Of course a control character produces no printable output--it

has its given effect (if any) on the listing device at th6 point that it

appears. (Remember, a form feed is executed prior to the 1 ine in which it

appears and cannot be part of a comment).

Statements in the assembly language correspond to the statements or

sentences in a natural language. A statement either defin2s a symbol,

generates a word in the objact program, or supplies information to the

assembler. The next three sections describe the four types of statements:

label statements, equivalence statements, storage word statements, and

pseudo-op statements.

A statement terminator is a character that ends a statement but is

not itself part of the statement. No character is used to indicate the

beginning of a statement. Instead a statement is assumed to begin with

the first significant character that follows a statement or comment

terminator, provided this character is not a semicolon (which indicates the

beginning of a comment). ~statement that contains a single undefined

symbol terminzited by a colon is a label statement. Every other statemznt

is terminated by J semicolon or a carriage return. An ~quivalcncc state­

ment begins with an undefined symbol followed by ~n equal sign; a pseudo-op

statement begins with a pseudo-op. A statement that is none of the above

.s taken to be a storage word· statement, and the assembler inspects the

first nontransparent atom in it to determine the type. If it begins with an

integer or a purely numeric symbol, it is a data statement and can contain

only one expression; if it begins with an instruction mnemonic or equivalent,

•

15

it is an instruction statement and the number of expressions it May contain

depends upon the instruction class to which it belongs. In determining the

structure of~ statement or evaluating it, the assembler ignores all spaces,

tabs and commas that immediately precede the statement or its tcrminetor,

or precede or follow an equal sign.

9 SYMBOL DEFINITl0N

A symbol is said to be defined if the:. assemblu has :i v~lu~ for it.

The VJlua of a numeric symbol is the 16-bit numb~r it rcorcscnts~ the value

of un operutional symbol is its m8anin9. Som:: syribols, such as the instruc-

c!on rr.ncmonics, hav~ both numeric 2nd operational propcrti~s. for such a

symbol to be defined th~ asscmbl~r must both have a num~ric value for it

and also know its meaning. ;11 symbols th~t appear in a progra~ must be

dafinod. The initiol symbols are predefined and hence already have values

at the start of the ~ssambly. Th~ sourc2 program can def inc a synbol 3S a

symbolic address by means of a lab2l statement, as~ numeric £ymbol by

means of an ~auivalcncc statement, or 3s a symbol that m2y hava both numeric

and cocrational cropcrti2s by ~cnns of certain pscudo-oD st~temcnts.

The assembly of a source progr~m i~ done in two oasscs, ~e the asscmbl~r

goes through the entire chJr~ct~r strin~ twice. T~c First cass locat~s the

~~~e __ P!_Q.9-f..2_fT1_an~determinc.s Jhc definitions of all symbols. iicnc.:! the 

ass8rnbler must be :iblc to evaluate ~;11 symbol-definin_g_s_~2te':'1e_~~~--in th2 ...... _______ _ 

first pass. This means the sourc~ nrogram cannot use 3 pseudo-op or 

equivalence st~te~cnt to dcf ine A as ~ function of the symbol B unless the 

statement that dcf incs 9 ?Dpcars ~arl icr in the sourca program. In order 

to define all symbols and locate t~~ program, th~ ass8mbler rnust also be 

able on the first pass to evaluate all statc~~nts that indicate how integers 



16 

are to be interpreted or that alter the normal consecutive sequence of the 

location counter. Hence the assamblcr must be able to evaluate any expression 

that appears in a radix, location or block pseudo-op statement. If two 

or more stat3ments define (ie assign values to) the same symbol, every 

occurrence of the symbol Is flagged as multiply-defined (~:). 

As part of the ass~mbter•s initialization, it dctcrminas the memory 

siz0 of the configuration in which it is running. This enables one 

version of the Assemblor to run in all m~mory sizes cffici~ntly, building 

its symbol tabl~ upward until the memory capacity is reached. An attempt 

by the program to•dcfinc more symbols th~n the assembler can accomodate 

in th~ araa of core s~t aside for them results in a symbol t~blc error (S), 

and the assembler will accept no more symbol definitions. 

The assombl~r evaluates all other statements in the second pass.· Any 

symbol whose value is not known to the asscmbkr when it is encountered in 

the second pass or in an expression that must be cvaluat~d in the first pass 

is flagged as ~n undefined symbol (U). A symbol whose value in the s~cond 

pass differs from its v~lu~ in th~ first pass is flagged as a phase error (P). 

10 LABEL AND EQUIVALE~CE STATEMENTS 

Only numeric values can be ~ssigned to symbols by la~al and equivalence 

statements. These statements arc cva?uatad in the first pass and must be 

used to assign values to syMbols that arc not d~fincd alscw~crc . 

• 'J... labd stateme:nt follows a carriagi:;; return or colon, consists of 

one symbol that has not been defined prcv1ously in pass 1, and i~ terminated 

by a colon. Tho statement defines the symbol, and its value is taken from 

the: current cont~nts of the location counter. Ordin~rily a lab~l statement 

Is used in conjunction with a storage word statement. If the latter 



17 

imm~dicitely follows the form•:r, the label provides 2 (symbolic) :iddrcss for 

the memory location that will receive th~ storage word when the object 

program is loaded. If the storage word statement 

LOA 2,30 

is i mmcd i a tel y preceded by a 1abe1 s ta tcmen t, say 

LOOP: 

ie if the coding is 

LOOP. LOA 2, J:) 

or cquiv?lcnt, then thG storage word statc~~nt 

JMP LOOP 

is assembled to produce u jump to the snmc location that rzccive~ the stcragc 

word LOA 2,30 (provJd2d of course th3t location LD0P is in page zero or within 

range of the location cont~ining the JM~ L06P (sc~ §11)). ~previously 

defined symbol terminated by 2 colon is r~ccgnizcd ~s a label st2tcment, and 

the symbol is rcdcfinad und flagged (•'). A label-type stat8mcnt containing 

other atoms besides an und~fined sy~bcl is flagged 35 a colon error (C). 

An ~quivalcnce st~tcmcnt follows 3 carriage return or colon and uses an 
---

equal sign to define the symbol at its left hy ussigning to it th~ value of . --" --------·------~---·-·--·····--------·-~-----

the. storacy: '11.•ord stat.:::ment at its ri~ht. Thcs~ arc r1ll legal ~quivalc::nce 

statc:mE!nts. 

8 =P../2 

C= SZC+17•':A/11-8 

Q = LOA 2,35@,3 

E=A::>OZ··S:·!C 

The sy~bol at the left must be previously und~fincd in pass 1, and th~ 

stateme:.nt 3t the ri~ht must be: caoabb of ~v3Juation in p;~ss 1, ie any 



18 

symbols in it must already have bc~n dafincd (an undefined symbol is 

flagged as D equivalence ~rror (E)). Tha statement at the right of the 

cquul sign is not really a storage word statement in that the assembler 

docs not actually generate a storage word from it, but it must be recognized 

by the asscmbl~r as equivalent to such a statcm~nt. Note thet in the last 

example, the statement at the right is rccogniz~d as a storage word st~tc-

ment for a format error (F) but would ass~mblc it correctly, ie would assign 

the actual value of the ~xpr~ssion at the right to the symbol at the left. 

An equivalence st~tcment terminates with the first s8micolon er c2rriagc 

r..:'.turn, but .:Jny express ion fol lowing ,) complete storage word statement 

after the ~qual sign is ignored. Any number of tabs, spaces or co~mas 

at either side of th~ equal sign arc 2lso i2norcd. 

~either a label statement norc an equivalence statement has dny effect 

on the location counter. Beginning at location 1322, 

LDA 1 , • 

/\-,.-. 

LDA 2,. 

B ~ C: 

D: LOA 3,. 

A 

is assembled cs ccuival~nt to 

LD:'\ 1 , 1 322 

A=1323 

LOA 2,1323 

[j: c: 

D: LOA 3,1324 

1323 

when 9, C and Dare al 1 assigned th~ value 1324. 



13 

11 ST~nAGE WORD STATEMENT~ 

A storag~ word statement gcn~rat;:;s the output for one word to b8 

stored ~s pJrt of thu object progrnm. Except for 2 tuxt or end psLudo-op 

statement, only this type cf st2t0mcnt 2ctu3lly produces output, although 

oth~r tvp~s c~n off~ct the v~luc of the 16-bit word produc~d. The following 

~re typic~l stor3g2 word stat8mcnts. 

135602 

l':Z @t,+C,2 

$TA 1,D 

COM# 1.1,SZR 

@3]2:;+E 

"., ?T~ 

HllLT 

Th~: curr(;nt cont~nt::. of th(; loccit:ion c.ountt:r J-.;si9i~·~tc. th-: m•::riorv 

loc~tion th~t ls to rcc~iv~ th'-' word whtn thL obj..::ct crogram is lo~d~d. 

Th,: ::ount1 r is ir>cr.:mcnt.:d cv;:;ry tim;.; J stor2gc; 1,.,iord st.:itcm,;nt is rroc~ss:d, 

so the words J~n~r~lly arc assign..::d to ccnsccutiv~ locations unless th~ 

count..:r is chan'.:J•.:d tv J loc2tion or ~,Jock ;.iscudc-oo stat;:.r1..:nt. 

~ ~t~t~m~nt thot is not J l~~el statem~nt ~nd dc2s not contJin ~n 

~·Ju.JI sic;n or;:; ps...:udo--,)p is 2ssuPi.."d to b.: a storag.:.:: word stc:t~~·~;-;t 

ti:2t i', t..:.rmin,Jt.:::d by th..:: first s..;micolon or C'.'lrrieg..:: r.~turn. Th.: .:.'55...:~bl;:;r 

cir1 cor.t,dn ·~,d th:.; r.iinimur:i nur.ib~r it r:iust ccnt:~in. A st:~t..::rrii..:r.t \,dth·f.:wcr 

th2n th ... ::iinir;;un1 or more th3n th..; ;;nximum is fl~g;;.::d fer a format error (;), 

0ut th..; ~ss0mbl~r i1ncrcs any i..:x~r-ssicn5 b2yond the maximum allow~d in it . 

• 



20 

A transparent atom can appear anywhere from the first character to the 

last before the terminator; when one is used, the assembler first 

evaluates the statement without' it, and then adjusts the result for the 

special atom by ORing a into the appropriate bit (hence it has no effect 

if the bit is a 1 ready 1) . 

Data 

If the first nontransparent atom in a storage word statement is an 
.,__. _________ ·--·-·------------------~------ ----------·--·---·----- -----·- - -· 

integer or a purely numeric symbol, the assembler takes it as a data state-

ment containing a single expression. In the above examples the first, 

f lfth and sixth are data statements. In such a statement the special 

atom@ can be used in generating a full word indirect address. Since it 

has its ~ffect after the statement is evaluated, all of these data state-

men.ts have the same va 1 ue, 

102644 

102644@ 

2644@ 

1322*2 3@ 

although the last one is flagged for a format error. Remember that the 

special atom is neither an int~ger, a symbol' nor an operator, and there-

fore cannot be part of an expression. Hence either of these, 

100000@ 

@0 

is a data statement whose value is 100000, but this, 

@ 

is not. In other words a storage word statement must contain at least one 

cxp~ession--@ by itself does not suffice. 

• 



21 

A stat~m~nt buing taken as a dat3 statement docs not mean that the 

object word g~n~ratcd by it is ncccss2rily an operand in the progr~M. A 

d3ta statement is simply a way of rcprcscntins ~ 16-bit v~luc~ it need not 

be used as an operand anymore than a number gcnEratcd by ~n instruction 

mnemonic n1~.:;d be executed as an instructicn. i'c the first <.)Xarnplc of a 

storage word statcm~nt yivcn 3t th~ bcqinning of this section, 

135(Cl2 

if ~xecut0d as ~n instruction would be cquiv~lcnt to 

Inst2°uetions 

If the first nontransparent ~tom in 2 storage word statement is an 

instruction m~cmonic (er cquiv3l:nt), the 2sscmblcr t?kcs it as ~n 

instruction statemant, determines the class to which it b2longs (m~~ory 

rcfcr~nc~. with cir without accumul~tor; arithmetic and logic; input-output, 

with or \'lithout <~ccumulz,tor) and thc:r •. forc the nurib·~r of fields in it. 

In goner:=;! 2n instruction stztcmcnt is mad-::: up of .:.1 mncrionic fi'3ld followed 

by 2 number of argum~nt fi2lds, the stand~rd procedure is to scp~ratc the 

2rgum2nt f iclds from the mn~monic field by a tab and the ~rgumcnt f i(:lds 

from ~ach other by commas, but sine~ t~b, sp~c2 Gnd comma Qrc ~qu!valcnt, 

th;y c:n be us~d 3rbitr1rily as field S8C~r2tors. Evcry fi~ld is 2n 

cxpr~ssion which is ~v1luatcd in th~ normal w2y. The mn~monic field should 

be simply th~ mn~monic, which soccifi~s only certain bits in t~~ instruction 

•t1crd, but r;.;suits in 2 lS-bit v:iluc.. (ee A:ID2.L is cvalunte:d us 103530). 

A mn~monic f i~ld containing moro th2n just a mncmcinic is fl~gg~d as a 

format ~rror but is ~vnluatcd correctly. In Dny ~v~nt the expression must 

bcgi~ with~ mnemonic; er one could give 

4DDZL+400 



22 

which (although flagged with an F) is equivalent tc 

103130+400 

ie to ANDZL. The argument fields represent other parts of the instruction 

word 1 such as an accumulator address or a skip function; and their effects 

arc limited to those parts of the word--each argument field is evaluated as 

a 16-bit number, but the assembler evaluates the total stJtcmcnt by teking 

only th~ necessary low order bits from each argument value and C'r,ing them 

into the appropriate bits for the total st~tcmcnt value. If the statem~nt 

contains a transpar~nt ~tom (which is not regarded as a field even though it 

repr,.:.s;;:nts a specific part of the instruction word), its value: is OR,;d into 

the result cfter ~valuating all fi~lds. 

Although the csscmblcr masks out unncccssnry bits in th~ values of 

field expressions, it flags as ~ field overflow .:.rror (0) Rny AC ~ddr~ss or 
--------·----·---~--··-------~~~--·-

index field whose value is gr~atcr th~n 3, any skip f i~ld whos~ value is greater 
---·-··-·-----------------

than 7, and any devic;:; fi;.;lc! \'-J'QOSC valu.:.: is great(;~ thJn_§3. Th..; assembler 

flags as a format error (F) any instruction statement that contains a 

transp;1rent atom "Jh,~n non0 is allowed. r~n overflo\-1 error also results if 

any argument field r~quircs th~ ass~mbl~r to place a nonz~ro number in any 

field of tho storage word that has already received~ nonzero number due to 

the evaluation of the mn~monic field; cg except for incorrect format in 

the s~cond, th~sc two statements arc ~quiv2l0nt: 

AND 0, 2, SKP 

AND+l 0,2 

so this statement results in both format and overflow errors: 

AND+l 0, 2, SKF 



2.3 

Nemorry RefeT'ence. A st.:iti.!rn.:nt for an instruction that r<.:fr;rGncc.s 

~cmory has on~ or th~ other of th~sc forms dcpunding upon wh~thcr it 

rcouir~s an ~ccunulator. 

Mnemonic AJd:i•essJ Index (opticinaZJ 

Nnenonic JlccJumuZatoT'.; Address. Index (opt1~onalJ 

Th.::: rnncmonics fer th,;s~ t\-\/O forms .:::r.::.; <~S follows. 

~17i thou t A ccumu latoT' With Accumulator 

JM? LDA 

JSR ST . .'.'; 

ISZ 

DSZ 

Th~ trnnspar(.nt ato~ ~may ~2 usud to indic~ta indlr~ct addressing; it is 

usually ')l:cc:d immedi:it,;ly b\::fcr-.: t!1;.;; .::!ddr.::;ss fkld. 

Th·:: index fi.::ld dct-:.:rmin . .:s the ;)ction the risscmbk.r takes 1vith respect 

to th.; addr\...SS fi:.::.ld. Lot L be th" current v.:ilu~ of the l0cation counte:r, 

A th~ vnluc cf th~ vddress f i~ld, and x the VQluc of th~ lnd~x f icld. 

0 or- ~lank (ie 

no expres3ion) 

1, 'J. c::• 3 

llction 

IF A~ 377, pl2cc 00 in bits ~-7 and A in bits 3-15 

(oa3~ zcrc ciddr ... :ssing). If r., - 200 ~-A_<__µ + 177, 

pl~c~ Jl in bits ~-7 0nd A - L in bits 8-15 (rc.lativ~ 

1ddr .. ~.s ing). 

If ·-2n~ ~A < 177, plac; x in ~its f-7 and A in 

"lits 8-15. 

If thL condition associat~d wit~ a JiVLn index value is not s~tisfi~d, the 

ass~~blcr fl~gs th~ statc~0nt for Qn address 3r~or (~) and plnccs th~. low 

order ~its in th·:: disol~ccment .::ind index p:irts of the instruction word as 

shov·n ir. this flow ch:1rt. 

• 



YES 

OCH-BITS E-7 

A-+BITS 8-15 

NO 

NO 

01-+BITS 6-7 

A-L-+BITS8-15 

START 

NO 

YES 

FLAG STATE­
MENT FOR ADD 
RESS ERROR(A 

24 

X-+BITS 6-7 

.A-+&ITS 8-15 

.Al'ithmetic and Logic. A statement for an instruction in the arithmetic 

and logical class has this form 

Mnemonic Source ACj Destination AC, Skip Function (optionaZJ 

The instruction and skip mnemonics for this class ?.re as fol lows. 

Instruction 

C"l"1 
ilE~ 

M~V 
INC 
ADC 
SUS 
f\DD 
AMO 

L 
R 
s 

nu 

Skip 

SKP 
szc 
SNC 
sz~ 
SNR 
SEZ 
S8N 

Tho transparent atom# may be used to inhibit the p~oce~sor from loading the 

instruction result into tho d~stination accumulator; it is usuully placed im-

mediately after the instruction mnemonic. 



25 

Input-output. A statement for an instruction in the in-out class has 

one or the other of these forms depending upon whether it requires an 

accumulator. 

Mnemonic Device 

Unemonic Accumulator, Device 

The mnemonics for thcs~ two forms are as follows. 

Without Accumulator 

IHO (~ 
1r 

SKP9~ 

SKPBZ 
SKPDI~ 

SKPDZ 

With Accumulator 

DIA 
DOA 
018 
DOB 
DIC 
DOC 

Speaial Mnemonics. The assembler also recognizes some special 

instruction mnemonics which combine ~ basic in-out code with the ccntrdl 

processor d~vicc code. This elimin~tcs the need for a device fiold, and 

two of them ~vcn eliminate the usu~lly r~quired accumulator field. 

Speaial 
nnemonic Equivalent 

READS DI.~ O,CPU 

IORST DICC O,CPU 

HALT DOC O,CPU 

INTEN i~ 105 CPU 

INTDS r .. 11 oc CPU 

INTA DIB '),CPU 

~ISK~ DOB O,CPU 

Hence the asscm':llcr recognizes 

RE.A.OS 

as a storags word statement equivalent 

DIA 

3 

to 

3,CPU 

Required 
Arguments 

Accumulator 

~lone 

None 

None 

tJone 

Accumulator 

~.ccumulator 



26 

and Ignores anything after one argument f iald in a statement beginning 

w i th REi\DS. 

The pseudo-ops discussed in §13 allow th<.: programmer to define symbols 

that will then be accepted by the asscmbl~r as equivalent to instruction 

mnemonics. 

Floating Point Instructions. The programmer must remember that it is 

illegal for him to define symbols that arc identical to the initial symbols. 

The initial symbols include the instruction mn~monics listed in Appendix D 

of Mow to Use the Nova and also the. f lonting point instruction Mnemonics 

that ar~ assembled like ordin~ry instructions but for execution by an 

interpretive routine. The floating point mnemonics are explained in the 

writeup of the Floating Point Interpreter program and ere listed below. 

Instr>uction Mnemonias 

FADD 
F;..LG 
FATN 
FCOS 
F"OFC 
FDFCI 
FDIV 
FDSZ 
FETR 
FEXP 
f EXT 
FFDC 
FFDFF 
FFIX 
FFLO 
FHLV 
FIC2 
FIC3 

Fir.II 
FISZ 
FJ~P 

FJSP 
FLD3 
FL0;1 
FMC\! 
FMNS 
FMPY 
FNEG 
FPOS 
F~.MD 

FS It·' 
FSQR 
FST3 
FSTA 
FSUC 
FTP..N 

Option !-!nemonios 

FSGE 
FSGT 
FSKP 
FSU: 
FSLT 
FSNR 
FSZR 



27 

12 JASIC ~SEUQO-OPS 

A pseudo-on is a purely op~r~ticn~l symbol. Such symbols Jrc commands 

to th~ assembler rather than symbolic r~pr~sentations of numb~rs; th~y can 

off~ct the internal opcr~ticn of th~ asscmbl~r, gcncrat~ portions of the 

object program, and def in~ symbols {the last typ~ is trc~t~d in thn next 

!':icction). ·~ost pseudo-op statements h?v;:; the form of a pseudo-op fol lowed 

by ono argument. 

Radix. ;;t th~; beginning cf .::acf'i pass th~ ,'"lsscnblcr st~rts by intcqn·0ti11v 

int~gcrs as octal. The source program can ch~ngc the radix by giving a 

stat~m~nt of th~ form 

. ~rnx T,I • .;,xpress'Z-on 
------~ 

·vclu:: of the cxpr.:ssion b1-come:s t'l~ n,_,,,1 rc::dix fer integer t:vnlu.3tion. If 

th,; cxpn.:ssion c.1nnot ')c cvaluat,::d in puss 1 or its valu..: is l=:ss thnn two 

er grc~t~r than t~n, tha ass~mbl~r flvgs thL stnt~m~nt for a r~dix ~rror (0) 

and continues to us~ the previous radix. 

Thi~ example cf sourc~ coding illustrat0s the effect of th~ radix 

pseudo-op on the octal values of ~xnr~ssions. 

Location VaZ.ue Statement 

oo~no2 • ~.DX 2 

00000 000037 101!11:~11 ; 5 OREO \.'ITH 33 

000003 . ~D:< 3 

00001 J00013 21+11 ;7+4 

00002 000006 12>~12/11 ;5x5+4 

000012 • '?.DX 10 

000115 17 

'J00077 63 

00005 000037 9·~8/3+7 • 



28 

Loaation. ''h~nevi:.:r the ass.cmbkr .:.:ncountcrs a stat~mcnt of the form 

.LOC Expressicn 

it sets tho location counter to the value of the expression. If the 

expression cannot be cvaluat~d in pass 1 or its value exceeds 32,7l7 10 

(ie produces an ~ddrcss of more than fifteen bits), the assembler flags it 

for ~ location ~rror (L) and ignores the statement. In oth~r words ~n 

erroneous location st~tem~nt h~s no effect on the location counter. 

1 . ./hcn resetting tha counter, the programmer should be careful not to 

produc~ an overlap, as in 

Loaation 

00214 

00215 

0021(-, 

00217 

00220 

00221 

00222 

00220 

00221 

'.)0222 

TTSA\I: 

.LOC 

PTF I ~I: 

>iSKO 

LDP 

I MTE.'! 

J~P 

I) 

c 

0 

220 

STi\ 

ST.; 

~iA 

0 

O,TTSAV 

@TTSl\V+l 

", PPSJW 

1,PPSAV+l 

2, PPs;.v+2 

The assembler would cssign the zero words to locations 220-222. Sut 

res~tting the counter to 220 causes the next three instructions to be 

assignee to the same three locations.with no error diagnostic. '~h~n the 

object program is 16adcd the zero dat? words ar~ loadad first, but arc 

replac~d ty the STAs when they arc loaded. Furthermore, as soon ~s th~ 

program saYes something in the TTSAV locations, th~ ST~s arc destroyed. 



29 

A location statcm~nt can b~ used to ros~rvc a block of storage. The 

following ~xamplc al locates a block uf twenty locations for a table wherein 

the first location in the tabl~ is labeled TAB20, and the first location 

after the table is labeled TEHD. 

TAB20: .LOC .+24 

TEMD: 

Block. This pseudo-op is used \.!Xplicitly to allocate blocks of 

stor~gc. At the appearance of n statement of the form 

• BLK E::cpress·Z.:On 

the Jss..;mb br i ncri;iments the location counter !:>y C1n amount cqua 1 to the 

V?luc of the expression. A location ~rror (L) r~sults if thG expression 
.~~~~~~·~---'---~~--------

cannot be ~veluatcd in pass 1 or its value when cdd·;d to the current value 

of the location counter cxcc~ds 215 - 1. 

This line of source coding rcscrvas a block of six words starting at 

location OLK6. 

SLK(.. . BLK 

End of Tape. It is sometimes ncccssJry to continue a program onto 

another source tap~. Upon encountering the pseudo-op 

.EOT 

th~ assembler stops the source input device and halts with 00006 in the 

address lights. The Assembly can be continued by loading a new tape and 

and pressing the console continue switch. 

End. The final statement in a source program must be one of these, 

.EMO E::cpre$Gion 

.END ...___... 
and the line in which it appears (i~cluding a comment if any) must be 

terminated by a carriage return. If the pseudo-op has an arg~mcnt, its 



30 

value is taken as the starting addr~ss of th~ program just assembled: 

after reading in the object tape, the loader automatically starts the 

execution of the program at the location given. If there is no ?rgumcnt, 

the loader halts after loading the object program. 

Caution 

An end statement .":TUst be foU01;,1ed by a carnage return. 

Omission of this character causes the assembler to act as· 

though it had encountered an end of tape statement instead. 

It will thus halt and w~it for further action by the operator. 

Text. To store the octal codes for a string of characters packed two 
--------·- --- - -- -----

t~~rd_,_~~~- erogrJmmE:r_ can_ use t~·1c text pseudo-ops. The basic text 

stateMent is of____tb.c.-~m --------·-·----... .. -. 

.TXT ~text s trZng ~ 

whcr~ t is any chAractcr other th~n c~rriage return, space, tab, comma, 

null, line feed, form feed or rubout, and which docs not appear in the 

text string. Upon encountering tho ?Seudo-op .TXT, th.:; 2sscmblcr __ ~~?S 

th~ next significant _Cl}_<,1_rac tcr ether then c:i cu r_r_i.;ig;:_ _ __r::_i,;tur_n fj_?_ __ J:hg _text -------· -- --~----,-·--~-~----·--,------··--·- .. -·· --- ----

d~limiter, and then assigns succeeding pairs of characters to consecutive 

memory locations untjl it again encounters the; delimiter. If the string ------
contains an odd number of characters, th~ final one is paired with a null 
-----

character; if an even number, a null word is 2ssigncd fo the location 
-------·--··-···---------- __________ , __ -··-··-----·--------
f o 11 owing the string. This provides a conv0ni~nt means for an output 

·---~~----------~-,.,.~----------~""'~. ----~ .. ------------~-------~-

routine to detect the ~nd cf the string. 
- '" ... ---·- .. ., .. ------~-~--

As usual, null, line feed, form feed and rubout are not regarded as 

clements in the statement; but from the tim~ the assembler encounters the 

first delimiter until its second occurrence, carriage returns are also 

ignored (of course a carriage return preceding the first occur~ence 



31 

terminates th0 st~tcmznt). Hcnc~ when the programm~r is prsparing ~n 

input t2pc on an ASR, he cnn continue the text string onto additional 

lines on the teletype p2pcr without introducing spurious carriage returns 

into the stat~mcnt. 

Thu progrJmmer can introduc~ any character, 0vcn u rubout, into the 

text string by cnclos ing "'n expf.ess ictn for it in angle brackds: hence 

Jnglc brackets c3nnot themselves ~ppcar ~s characters in thLl string. Upon 

encount2ring ~ left br~ck~t, the ~SSLmblcr cvalu2tcs the expression contained 
I 

b~twccn it 2nd the next right bracket, ~nd takes the lcw order sev~n bits 

of that value as the ASCII code for the next byte to be packed. Thus to 

store th2 scnt~ncc 

GO T0 <I:'> 

th;:; programrn::·r can give.. .:i t-:xt st::~t<::rn-::.nt of th<:: forrn 

or, if he c3nnot rem8m~~r th~ cod~s, 

The ~xarnplo just given would app8Jr in the listing this way . 

. TXT @t.O 

T 

<"<>I 

~k">> 

CT· 

The ~ss~rnblcr g~ncratcs ~-bit bytes, rn~dc up cf the 7-bit ASCII code and a 
"--------------- - -· .. 

laftmost bit of 0, and packs th0m from riqht to left in the storage words. 
r ~- --~-~- ------· ·--_:~------------------=~-------------- -

Our ~x~mplc would thus produce the words 



32 

OG 047507 

T 052040 

0 020117 

I< 044474 

>M 037116 

00 000000 

Altogether there are four forms of the t~xt pseudo-op that very the 

disposition of the leftmost bit in the 8-bit bytes generated from the taxt 

string. 

Pseudo-op· Effeat on Left Bit 

.TXT Lcf t bit i 5 0. 

·.TXTO Left bit is cdd parity for the byte. 

.TXTE L.:;ft bit is ii!vcn parity for the byte. 

.TXTF Forces left bit to be 1. 

The assembler initi~lly packs t~xt bytes from right to left unless the 

programmer gives a text mode pseudo·~op. After th~ appearance of the statement 

• TXTM · Expression ........ ___ _ .. -··-·--

with a nonzero expression, t_h~_}l_S_sc._111_bkr u~cs bft-right packing for any -- -- - - --- --~----- ---- --- -- -- -

text string it encounters~ The programmer can switch b3ck to right-left 
-----·---·--·- --------~------·--· ,..... '""' 

packing by giving .TXTM with a zero argument. Eg in this sequence, 

• TXT; .. ~ 0 

.TXT r.1 

. TXTi-1 1 ' 

.TXT /tJ 

the second statement generates the storage word 000101, the fourth generates 

040400. 



13 SY~BOL TABLE PSEUD0-0PS 

By using certain pseudo-ops the programmer can def~ne symbols 1 ike 

the special instruction mnemonics (such as ITEN and MSKO}, ie symbols 

33 

that include an instruction mnemonic and other fields of an instruction state-

ment as well. The general form of a symbol-defining pseudo-op statement is 

Pseudo-op EquivaZence Statement 

ie 

Pseudo-op Undefined SymboZ = Storage Word Statement 

The simplest of these pseudo-ops, .DUSR, defines symbols which retain 

no operational properties; in other words it acts just like a simple 

equivalence statement insofar as the value of the symbol is concerned. Defin-

ing CNT by 

.DUSR cr:T = 24 

means that 

STA 2,WT 

is equivalent to 

STA 2,24 

Similarly 

.DUSR RDR = DIAS C,PTR 

allows us to give 

RD~ 

to bring in 3 character from the reader to ACO and start the reader again. 

But we cannot giv(;; 

RDR 

A symbol defined by .DUS~ has no operational properties and therefore can 
----·----- -- . -·--------·------·-----·-···· ------··- -------- --

take no arguments; the last example would be flagged for a format error (F) . 
• 



34 

The other six pseudo-ops of this type define symbols with operational . --·-·---·---'------·------·--------·------- ··-

proper~_!_£~· Typically each pseudo-op al lows the programmer to define a 

symbol as equivalent to an instruction statement in which certain fields 

are zero . 
...r=: The symbol is then used wi_t~~_r::_~_~me.12_!_s corresponding to the 

zero fields in the definition. Suppose we often have to compare the _ _, ____ 0 --.,~~·-""·W·-"-••·-·-

magnitudes of unsigned numbers in the accumulators. We could use .DALC for 

these definitions; 

Then 

skips if ACy < ACx, and 

.DALC SL = SU8Z# 0,0,SZC 

.DALC SLE = ADCZ# 0,0,SZC 

SL x,y 

SLE x,y 

skips if ACy ~ ACx. In other words these newly defined symbols act just 

like instruction mnemonics in the arithmetic and logical class. The 

number of arguments given with the symbol plus the number absorbed in it is 

equal to the number the original mnemonic takes. ~ith a symbol defined 

by .DALC, a skip field is optional if none was given in the definition. 

The effect of a transparent atom can accompany every use of 3 symbol by 

giving it in the definition, or it can be given at the programmer's 

discretion when the symbol is us0d. 

Now even though a symbol defined by .DALC has certain operational 

properties (specifically taking certain araumcnts), the storage word state-

ment in the definition need not have any. Hence SL could just as well be 

defined this way: 

.DALC SL = 102432 

and .~t would still require two accumulator arguments in use. Also, the 
• 



35 

argument flc1ds required in use need not be zero in the definition--thc 

restriction is that the programmer must not attempt to put a nonzero 

quantity in the same storage word fic1d twice. Thus to have a convenient 

symbo1 for testing whether ~Cl is 1ess than some other accumulator, we cou1d 

define TEST by 

.DALC TEST= SUBZ# 0,1,SZC 

or equivalently 

.DALC TEST = 106432 

Then 

TEST 2,0 

skips if ACl < AC2. Hotc that the required arguments must be given even if 

zero. 

The tabk on page 37 1ists -.11 r·f th~sc: !)3,·{JJe:-~·ps •. t~-' t~/'h.S •:if 

symbols they can def inc, and for each type, the nrgumcnts that must 

accompany the symbol when it is used. Optional clements are indicated by 

square bn:?ckets. 

Caution 

The programmer can specify certain parts of ALC ~nd 10 instruc­

t ion words by .Jppending L~ttcrs to the basic three-letter 

mnGrnonics for these instructicns. This property is retained 

by the cquival~nt symbol types d~fined by the p5~udo-ops 

discussed here. Eg if the programmer uses .~ALC tc d~f ine a 

symbol whose fourth ch3racter is ~,whenever the assembler 

encount~rs a st~tcmcnt in which thdt symbol is used, it will 

place ls in bits 8 and 9 ~f the storag~ word generated from 

the statement (just ~s it would if the programmer used ADDS 

or HE~S) reg~rdless of the value assigned to the symbol by 



the .DALC statement. Hence unless the programmer actually 

wishes to uso this function of the assembler in generating 

storage words, ho should ovoid the following: 

Using L, R, S, Z, 0 or C as the fourth character in a 
symbol dcf ined by .DALC; 

Using L, R or Sas the fifth character in a symbol 
defined by .DALC and whose fourth character is Z, 0 
or c~ 

Using S, C or P as th8 fourth character in a symbol 
defined by .DIO or .DIOA. 

Conversely If the programmer limits his symbols of these types 

to thr~e charactcrs,he can append the above letters to them to 

produce the same effects as with ALC und 10 mnemonics. (In 

fact the instruction mnemonics ere not built into the assembler--

they are defined by oscudo-ops.) 

Although symbols defined by .Dusq take no arguments, there is one 

property that all symbols define~ by these pseudo-ops h~ve in common and 

that. differentiates them from symbols defined by label and equ_ivalence 

statements. All symbols defined by pseudo-ops become initial symbols, ie 

they becomo Initial entries in the symbol table and can be used without 

definition by programs that are ~ssemb16d after they ~re defined. (This 

also means that a later program cannot use the same character string for 

some other purpose, eg as a label.) These symbols remain in the symbol 

table until the assembler is reloaded or the progrGmmer expunges the table. 

Reloading the assembler reduces the table to its initi~l st~te, in which 

it contains only the instruction mn~monics vnd tho pe~manent symbols, ie 

the special location counter symbol (.}and the: pseudo-ops. Giving the 

pseudo-op 

.XPNG 



37 

undefines all but the permanent symbols and rccov~rs the space used by 

the expunged definitions. After ~xpunging the table, the programmer can 

even define instruction mnemonics such as f,DD <!nd JMP in any way he wishes. 

Pseudo-op 

.DUS:\ 

.DMR 

• DMP.J\ 

.010 

• D 10.'\ 

.Dl!IC 

SYMSOL DEFINING PSEUDO-OPS 

Symbol Type 
Defined 

User (purely 
numcr i c) 

Memory r8f ere nee: 

~~mory reference 
with /\C 

tirithmctic ond 
logical class 

ln•out 

In-out with t.C 

Instruction 
with ,~.c 

Arguments in Use 

Non.:: (can be used in 
any ~xprcssion) 

(@}Address (,I ndcx J 
P.C; (@}Address (,Index J 

9cv IC.::? 

AC, Device 

AC (in bits 3 and q) 



14 OPERATING PROCEDURE 

To assemble a source program it is first necessary to load the object 

tape of the assembler (a tape is included in the standard NOVA software 

package). Once loaded, the assembler automatically takes control and 

prints requests for various parameters on the teletype. The programmer 

supplies the necessary information by typing numerals back. 

The ass~mbler first types 

l!.J: 

in response to which the programmer identifies the source input device by 

typing one of the fol lowing numerals. 

2 

3 

4 

5 

Tel~type reader without parity checking 

Teletype reader with parity checking 

Paper tape reader without parity checking 

Papor tape reader with parity checking 

Teletype keyboard without parity checking 

When parity is checked the ~sscmbler substitutes a backward slash (") for 

any incorrect character and flags the line containing it for an input error 

( I ) . 

1Jext 

LIST: 

requests the programmer to select the device on which the assembler is to 

1 ist the source program. 

2 

3 

4 

5 

Teletype ASR33 (tabs and form feeds simulated) 

Te 1 etypc KSR.35 

Line printer 

Paper tape punch with tape prepared for later 

listing on an ASR33 

Paper tape punch with tap~ orepared for later 
• 

I isting on an 4SR35 

38 



33 

After 

is typed, select the output device on which the object (binary) tape is 

to be punched. 

Teletype punch 

2 Paper tape punch 

The above responses identify the 10 devices to be used during 

assembly, and at this time the sourca tape should be mounted on the 

selected input device. The assembler types out 

'..400E: 

to determine whcit function to perform during the upcoming pass. 

P0ss (all symbols are defined) 

2 Pass 2 - Output nn object tap~ 

3 Pass 2 - Output a listing (including an alphabetical 
symbo 1 1 is t) 

4 Pass 2 - Output both an object tape and a listing 

5 Output an alphabetical sym~ol 1 ist 

Note th2t 4 is illegal if thc ~rogrammcr selected the same device in 

response to both BIN: and LIST:. When a pass is completed, the assembler 

ag3in types 

~WDE: 

to request the next function to be p~rformed, if ar.y. 

If it is necessary c:it any time tc select <.l new 1(1 device, do th~ 

following: 

1. Press RESET 

2. Set 000002 into the data switches 

3. Pr8SS ST.C.~T 



40 

To reassign the mode, do this: 

1. Press RESET 

2. Set 000003 into the data switches 

3. Press START 

To save the symbol table (eg because new initial symbols have been 

defined), punch a new object tape of the assembler its~lf after pass 1 as 

follows. 

1. Perform pJss 1 on the defining tape. 

2. \Jhcn the asseml::ler finishes pass 1 it types out 1 =MODE 11 • Respond by 

typing in ' 11' 1 • This causes the asscmbkr to el iminatc noninitinl entries 

from the symbol table, and it then stops since there is no source tape in 

the reader. 

3. Using the Binary Punch Program (qv): punch the tape from loc~tion 

000002 to the location addr~sscd by the cont~nts of location 000004 

(location 000004 addresses the last loc?tion in the symbol table). 

4. Specify 000002 as the assembler start address to be punched in the 

start ~lock at the end of the tape. 

• 



APPENDIX A 

CHARACTERS 

7 Bit 7 Bit 7 Sit 
Character P.sc 11 Character ,;sc 11 Character ASC 11 

Nu 11 000 4 064 111 

Hor!zontal Ta!::.> 011 5 065 J 112 

Line Focd 012 6 066 K 113 

Form F£cd (J 14 7 067 L 114 

Carri.:;igc Re: turn 015 8 070 ~ 115 

Sp<icc 040 9 071 d 116 

041 072 0 117 

II 042 073 p 120 

# ')43 < 074 Q 121 

& 046 ::: 075 R 122 

* 052 > 076 s 123 

+ 053 @ 100 T 124 

054 A 101 u 125 

055 B 102 v 125 

056 c 103 u 127 

I 057 " 104 x 130 :.1 

0 060 E 105 y 131 

061 ~ 10(: z 132 

2 OG2 ,.. 107 Rub Out 177 l.J 

3 0,., 
0.) P. 110 



Mnemonic 

.BLK 

.DALC 

.Dr;.,c 

.010 

.010{... 

.D~R 

.DMRA 

.DUS~ 

• n!D 

.EOT 

• LOC 

.R.DX 

.TXT 

. TXTE 

. TXTF 

.TXTM 

.TXTO 

APPENDIX 9 

PS EU 00-0 PS 

Effect 

Assign a block of storage 

Def inc an arithmetic and logical instruction 

Define an instruction requiring an accumulator 

Def inc an input/output instruction 

Define an input/output instruction requiring an accumulator 

Dcf ine a memory reference instruction 

Define a memory reference instruction requiring an 
accumulator 

Ddinc a user symbol' 

End of source input 

End of t<ipc 

1 . .. ss1gn c location counter value: 

Change the number radix 

Def inc packed test strings in octal--forcc parity to 0 

Define packed text strings in octal--computc even parity 

Def inc packed text strings in octal--force: parity to 1 

Def in~ text packing mode 

Define packed text strings in octal--compute odd parity 

Expunge wll but the permanent symbols from the symbol 
table 



/'PPEt·!DIX C 

SYMBOL TABLE 

All pred~fined end user d~fined symbols ar~ entered in a table called 

the symbol tabk. This tcclc is origined at ths end of the assembler and 

is upward expandable until the me:;mory cc:ipacity of the machine b.:;ing used is 

exhausted. Ecch entry in the ta~lc occupies thre~ 16-bit worcs. The maximum 

length of a stort:d symbol is fivE; characters ~nd is represented in radix 5013 

form. This method uses the first worrl to store the first thre0 characters 

of the symbol and eleven ~its of the second word to store the last two 

charncters of th8 symbol. Th0 five remaining bits of the second wcr<l are 

us~J to def inc attriLutcs of the symbol, eg, a memory reference instruction 

symbol. The third word is used to stcr~ the numeric valu~ of the symbol. 

Sym~ol table capacity for g 4K syst~m is 2pproxi~atcly 400 symbols. 

Radix 50 r~prescntation is us~d to condense symbols 0f fiv~ characters 

into two wcrds of storage using only 27 bits. ~ssumc a symbol of the form: 

CL. 
I may be A - Z (26) 

(i -· 9 (10) 

or ( 1 ) 

All symbols arc_ padded (if necessary) with nulls. Therefore, there ar2 

38 10 = 4C, 8 possibl8 charact;;rs. Each ch11ract(.;r can b.::; translated as foll01~s: 

character (Ci • ) translation ( s. ) 
I I 

Nu 11 00 

0 to 9 1 to 12 

" to z 1 3 to Lt4 , .. 

45 



If a. translates toe., w~ can compute the following numbers: 
I I 

Nl = ((B4 * 5o)+e3)*SO+B2 

N2 = (e1 * 5o)+e0 

C2 

N1 maximum is (50) 3 -1 which equals 174777 and will take a maximum of 16 bits 
... 

to represent. N2 maximum is (SO)L -1 which equals 3077 and will take 11 bits 

to represent. The symbol is thus represented by M1 and N2 which take 27 bits 

of storag;;:. 

A number of symbols exist which are permanently defined in the assembler. 

They cannct be eliminated IJy the .XPNG pscudo-cp. These symbols are: 

• BLK • DMR1'.I. .TXT 

.DALC .DUSR .TXTE 

.DIAC .mo .TXTF 

.DIO .EOT .rxr~ 

.nlOA .LOC .TXTO 

.DMR .RDX .XPMC 

These symbols will never appear in the symbol 1 ist following Rn assembly 

listing. Note that a second class of symbols exists {initial symbols) which 

have been entered in the symbol table by the operator dcf ining pseudo-ops 

(§12). Al 1 of the WW/\ instruction mnemonics are: in this category. They 

are never printed in the symbcl list following 3n 3sscmbly listing. They 

can be eliminat~d, however, by using th~ .XPNG pseudo-op.· Care must be taken 

not to confuse this second class of symbcls with permanent symbols when 

using the .XPNG pseudo-op. 

• 



APPENDIX D 

ERROR MNEMONICS 

Extensive examin~tion of statement syntax takes place during both 

passes of the assembly in order to detect syntactic errors in the input. A 

statement found to ba in error will be flagged with from one to three letters 

indicating general classes in which the error(s} fall. Stat~mcnts in error 

during pass 1 will be print~d (with flags} on tha teletype. !ftcr pass 1 

the user may decide whether to continue to pass 2 or to correct ony errors which 

have occurred thus far. Statements in error during pass 2 will be printed on 

the teletype as well as flags !Dpzaring opoosit~ the statements on tl1c list-

ing device (if 3ny}. 

i1n alphabetical list of ~rror codes along with examples of statements 

causing such errors is given on th~ next page. 

• 



02 

Er.ROR GENERAL cL~.ss I FU,G OF PRO SL E'1 EXA~PLES - COi~~1EfffS 

A /~ddr2ss error LDA 0,400 
ISZ .+317 

i3 S.1d ch2r<ict2r lt~.$ l : Lor~ 1 '23 ; s 1JOT PU1\I TTED 

c Cclon crrcr .'\+2: !-.10 El~P~ESS I ON PERMITTED CEFOfl.E 
' 'I COLO~! 
' 

h 

D ::>dix .:;rror . fl.DX 12 PADI:< 12 ?·lOT PEP.'11 TTED 

E Eq ua 1 error ~EG= 3+8 _;_ HHE~E £! IS Ur·!DE FI ti ED 

F Forrn2t error /:,00 2 i·JEED ,~.T LE!·ST 2 f)PER;V!DS 

I Input error ; Pt.r~ITY CHECKED Q\J INPUT ,t,r.JD SO!~E CH.'/\/,CTEF 1.ir.s IN ERP.OR 

L • L '1C error .LOC -1 BIT 0 SET 

M t·!u 1 tip 1 y dcf in.:.:d -. ,, : 3 SYMBOL W'-.Y t.PPE/\R 0'lL y 
symbcl 'I. 

h- s , 0:·~CE 1 ;·~ U,2EL r I ELD 

i~ ~!umte. r error en: 7;., NO LETTEP.S PERii i TH:O I •.1 /-\ 

' 
PUr·~3E~ 

0 Field ovE.:rflo.'1 t i' I\ 
L.~)t··. 4.LOC t!O F'.EG I ST!'.:r. I_, 

-
p Ph<:sc error 1.',-·ll.JE OF '· SY 1FiOL I i1i P ."IS S 1 DI Fn:0s F :\()~ THt.T OF P r-.s s 2 "· 

Q Qucs ti onab J ;,~ 

1 inc .+. E'.·iD 

s Symbo I tcibl-:.: 
' 

~~~;·~Q~Y C:?f'.C I TY C() !:;' 
I - '

,l'J.. Gt vr~:.~ r':~c~ I ME Ht:S .SEEiJ
overflow '-E.'~C!'::D

T error in tab le. 14+. ;(p;.!'] •.• ('\ EXP~ESS IO~J [ff Of.'.[•' T;C.BLE .. ~.· n

pse:;udo-oo ~S[L'!)O-OP

u Undcf incc Syrr~ol r SY ~31)L IM Qf' F !'."~.':..r (I rlELD '·.'/\S ME 1/ER DE~T~ED

x T2xt error LET. "C'.3 ONLY ()i~ E CH/',Rt.CTE i.. IM II r-.TOt·•
3+.TXT , 1·10 EXP;-{ESSION PER i1 I SS I 3 LE

r: 8EFO:,E .TXT

APPENDIX E

LISTING FORMAT

J SA~PLE ASSE~BLY LISTING

00000 024002 STRTt LDA 1 ... +2
00001 050000 STA 2 -l
00002 157000 ADD 2 .. 3
00003 01"1020 DSl ee
C0004 170401 NEG 3 .. 2 .. Sl<P
00005 0il2524 ·TXT •TE
00006 052130 Xl
00007 0050 t 5 <15><12>
00010 000000 •

00'30-40 ACNST:s ~e
000002· ·RDX 2
000005 BCNSTc 101

00011 000135 CNSTt 1011101
e00010 ·RDX 8

A 00012 020766 LOA 0.t490 J ADDRESS ERROR
A 00013 010717 ISZ 317 .. J J ADDRESS ERROR
UB 00014' 024023 LA$LI LDA 1 .. 23 J BAD CHARACTER IN LABEL
t-'C A+2 a J MULTIPLY DEFINED AND

J COLON ERROH
UUF REG= 3+B J EQUIVALENCE £RROR
f 00015 143000 ADD 2 J FORMAT ERROR
l ·LOC ·1 J LOCATJON EflROR

MP AAP16 000e03 At3 J PHASE ff\ROR
M ~~e11 000005 A!S J to:UL T IPL y on· INED
N 00020 0P0007 C77t 7A J NU"1SER ERROR
0 0{!1021 020016 LOA 4'#. ··:3 J r JELD OVERFLOW

R ·RDX 20 J RADIX ERROR
T 2•3+.DllSR J SYMBOL TABLE ERR~
u Ae022 03ee1s LOA 2 .. s J B JS UNDEFINED
x 3+.TXT+2 J TEXT ERROR

Q •+•END J QUESTIONABLE

A
ACNST
B
RCl\1 ~-T
C77
cr-;s T
LA
LAL
REG
STRT

0~0017
0Nrn40
00,rn 1 s
~P,'110e ~,

~0~N~f'

0Nrn 11
00ee114
~~me l 4
0e'0015
000000

E2

. . .

f\PP!::i!'.::i IX F

OBJECT T~rE FORM~T

The output of the assembler is an object tape. Its format is accept~hlo

as input to the binary loader. The tape is punched in blocks separated by

null (all ::l) characters. There ar<.: three block types: rfata, start and

error. Th~ Loader reads two tape characters to form 2 16-bit word. The

fornat is as follows:

tap:-. channc 1

~ 7 G S L 3 2 1
---.....:.. 0

('

0

ii 1 0

2 0

0

0

1 c<i rec ti on cf mot ion

::: > o 7G 15
2 I ,ij 1 I

word

I~ other w0r~s, the first t~pc chJractc~ forms ~its ~-15 of the d~ta word

((~anncl 3 to bit 8, etc.) 2nd the second tape character forms bits J-7

of the d~ta word (Ch0nn~l 8 to bit 0, etc.). The ftrst non-null tap~

ch<'rc:ict.::r signifies th:it su~rt cf a !:;lock. The block type is· det::rmind

by the first word read. ~ ~cscription of ~2ch tlock type follows:·

D~ta Block - Eit 0 of first word is~ 1.

word

1 1-wc
2 odd r:~-.1 s s __

3 chl:.CX.?_JJI!L
4 dcit:: qrj 1

] c (.!,:>te< \!·Id
') _, , _

\'JC ::;; n

... !-,----'----··
) + n c ~ l ~ •t1;:1 n

The two 1 s complement of ti1c numl2r of data words in the block ls given in

thL first w~1rd (th;:r,;for~: bit J is a 1). \!ormilly 16 data words will be

punched per Cr>tJ block. Hov;ev.:..r. tt'.c. . C'.H: ;:ind . LOC pseudo-ops r.ic1y cause

F2

short blocks to be punched. The second word contains the address at which

the first dat3 word is to b~ 1oaded. Subsequ~nt data words arc 102ded in

sequentially ascending locations. The third word contains a checksum. This

number is such that the binary sum of 211 words in the block shou1d give a

zero result. The rem~ining words arc the date to be loaded.

Start Jlock - First word is 000001.

0 1 15
000001

S ~-i.::-S-S---4

chcckSum

The first word contains 1. The s8cond word uses the sign bit as 2 fla9.

If S=O, the loe~cr will tr~nsfcr to the address in bits 1-15 of the word.

If S=l, the loader will halt. Th~ third word checksum is the same as that

for a dat~ block.

Error 9lock - First word> 1.

>

The first word is greater th~n +1.

~n error block is ignored in its ~ntircty by the loader. All error ~locks

arc terminated by a rubout.

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	A1
	B1
	C1
	C2
	D1
	D2
	E1
	E2
	F1
	F2

