

The decimal fixed-point number (type F) has a decimal point but no exponent,

whereas the decimal floating-point (type E) has an exponent. On output,

the exponent always has the form shown, i.e., an "E" followed by a signed,

two digit integer. On input, however the "E" or the "+" sign, or the

entire exponent may be omitted on the external form. For example, the

following are all valid E15.6 fields:

.317250+2

.317250E2

.042739-45

31064

The field width w includes all of the characters (decimal point, signs,

blanks, etc.) which comprise the number. If a number is too long for

its specified field, the excess characters are lost. Since numbers are

right justified in their fields, the loss is from the most significant

part of the number.

During input, the appearance of a decimal point (.) in an E, or F type

number �o�v�e�r�r�~�d�e�s� the d specification of the field. In the absence of

an explicit decimal point, the point is positioned d places from the

right of the field, not counting the exponent, if present. For example,

a number with external appearance 27l828E-1 and specification E12.5

is interpreted as 2.71828E-l.

7.4.2 Scale Factors

Scale factors may be specified for E, and F type conversions. A scale

factor is written nP where P is the identifying character and n is a

signed or unsigned integer specifying the scale factor.

For F type conversion the scale factor �s�p�e�c�i�l�~�e�s� a power of ten such that

external number = (internal number)*(power of ten)

-58-

For E type conversions, the scale factor multiplies the number by a power

of ten but the exponent is changed accordingly, leaving the number un­

changed except in form. For example if the statement

FORMAT (F8.3,El6.5)

corresponds to the line

26.451 -4.l32lE-02

the the statement

FORMAT (-lPF8.3,lPEl6.5)

corresponds to the line

2.645 -41. 32l00E-03

The default s~ale factor is O. However, once a scale factor is given, it

holds for all following E.and F type conversions within the same format.

The scale factor is reset to zero by giving a scale factor of zero.

Scale factors have no effect on I conversions.

7.4.3 G-Fields

Output under control of a G-field is dependent on the magnitude of the

floating-point number being converted. Where m represents the magnitude

of the number, the following table shows the relationship between m and

the conversion field to be used.

-59-

Magnitude

O.l,::m<l

l<m~lO

Conversion Field

F(w-4).d,4X

F(w-4).(d-l),4X

F(w-4).l,4X

F(w-4).O,4X

sEw.d

s is the current scale factor and applies only when the E conversion field

is used, 4X denotes a field of four spaces.

Input under control of a G-field is the same as for the F-field.

7.4.4 Logical Fields

Logical data can be transmitted in a manner similar to numeric data by use

of the form:

Lw

where L is the control· character and w is an integer specifying the field

width.

Data is transmitted as the value of a logical variable in the input/output

list.

On input, the data field is inspected for a T or F. If one is found the

value of the logical variable is stored as true or false, respectively.

If the data field contains no T or F, a value of false is stored.

On output, w-l blanks followed by T or F is output if the value of the

logical variable is true or false, respectively.

-60-

7.4.5 Alphanumeric Fields

Alphanumeric data can be transmitted in a manner similar to numeric data

by use of the form Aw or Rw; A and R are the control characters and w

is the number of characters in the field. The alphanumeric characters

are transmitted as the value of a variable in an input/output list. The

variable may be of any type. For example, the sequence

READ (2,5)V

5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the

variable V.

The character information is transferred as 8-bit ASCII characters, stored

8 characters per 64-bit word.

Although w may have any value, the number of characters transmitted is

limited by the maximum number of characters which can be stored in the

space allotted for the variable. This maximum depends on the variable

type. If w exceeds the maximum, leading characters are lost on input

and replaced with blanks on output. When w is less than the maximum,

the A format causes left justification with blanks filled on input.

Only the left-most w characters are used for output. The R format

causes right justification with binary zeros filled on input. Only

the right-most w characters are used for output.

7.4.6 Alphanumeric Constant Fields

An alphanumeric constant may be specified within a format by preceding

the alphanumeric string by the form nH. H is the control character and

n is the number of characters in the string, counting blanks. For example,

the statement

FORMAT (l7H PROGRAM COMPLETE)

-61-

can be used to output

PROGRAM COMPLETE

on the output listing.

Alphanumeric strings delimited by single quotes may be used in the same

manner.

7.4.7 Mixed Fields

An alphanumeric format field may be placed among other fields of the format.

For example, the statement

FORMAT (I5,8H FORCE=FlO.5)

can be used to output the line

22 FORCE=l7.6890l

Note that the separating comma may be omitted after an alphanumeric format

field.

7.4.8 Blank or Skip Fields

Blanks may be introduced into an output record or characters skipped on an

input record by use of the specification nX. The control character is X

and n is the number of blanks or characters skipped. n must be greater

than zero. For example, the statement

FORMAT (5H STEPI5,lOX,3HY=F7.3)

-62-

may be used to output the line

STEP 28~~~~~~~~~~Y=-3.872

where ten blanks separate the two quantities.

7.4.9 Tabulation

The position in the record where the transfer of data is to begin can be

specified by T format conversion. The specification is Tn where n is the

character position. For printed output, the first.character is for carriage

control and should not be counted.

EXAMPLE:

FORMAT (T20,'NAME',T40,'AGE',Tl,6H GRADE)

would print a line:

Position 1

of

GRADE

Position 19

"-
NAME

7.4.10 Repetition of Field Specifications

Position 39

"-
AGE

Repetition of a field specification may be specified by preceding the control

character E, F, G, I by an unsigned integer giving the number of repetitions

desired. For example

FORMAT (2El2.4,315)

is equivalent to

FORMAT (E12.4,El2.4,I5,I5,I5)

-63-

7.4.11 Repetition of Groups

A group of field specifications may be repeated by enclosing the group in

parentheses and preceding the whole with the repetition number. For example

FORMAT (2I8,2(EI5.5,2(F8.3»)

is equivalent to

FORMAT (2I8,El5.5,2F8.3,El5.5,2F8.3)

7.4.12 Complex Fields

Complex quantities are transmitted as two independent real quantities. The

format specification is given as two successive real specifications or one

repeated real specification. For instance, t~1 statement

FORMAT (2E15.4,2(F8.3,F8.5»

could be used in the transmission of three complex quantities.

7.4.13 Multiple-Record Formats

To handle a group of input/output records where different records have

different field specifications, a slash (/) is used to indicate a new

record. For example, the statement

FORMAT (3I8/15,2F8.4)

is equivalent to

FORMAT (3I8)

-64-

for the first record and

FORMAT (I5,2F8.4)

for the second reco~d.

The separating comma may be omitted when a slash is used.

Blank records may be written on output or records skipped on input by using

consecutive slashes.

Both the slash and the closing parenthesis at the end of the format indicate

the termination of a record. If the list of an input/output statement

dictates that transmission of data is to continue after the closing paren­

thesis of the format is reached, the format is repeated from the last open

parenthesis level of one or zero. If this parenthesis is preceded by a

repeat specification, the repeat specification is reused. Thus the statement

FORMAT (F7.2,2(El5.5,El5.4),I7)

causes the format

F7.2,2(El5.5,ElS.4),I7

to be used on the first record and the format

2(l5.5,ElS.4),I7

on succeeding records.

As a further example, consider the following statement.

FORMAT (F7.2/(2(ElS.S,El5.4),I7»

-65-

The first record has the format below.

F7.2

Successive records have the following format.

2(E15.5,E15.4),I7

7.4.14 Carriage Control for Printing

Every record that is transmitted to a listing device for printing is assumed

to have a carriage control character as the first character of the record.

The carriage control character itself is not printed. The carriage control

characters are:

Character

blank

o
1

Function Before Printing

Space one line

Space two lines

Skip to first line of next page

any other character is treated as a blank.

EXAMPLE:

10 FORMAT(9Hl PAGE ,I3/1HO)

7.5 Auxiliary I/O Statements

These statements are used to control the positioning and file marking of

sequential files.

-66-

7.5.1 REWIND Statement

FORM:

REWIND u

where u is an I/O unit designation.

This statement directs the I/O unit designated to reposition to the first

record. u must not be an asynchronous variable.

EXAMPLES:

REWIND 2

REWIND K

7.5.2 BACKSPACE Statement

FORM:

BACKSPACE u

where u is an I/O unit designation.

This statement directs the I/O unit designated to backspace one record. u

must not be an ansynchronous variable.

EXAMPLES:

BACKSPACE 5

BACKSPACE N

-67-

7.5.3 END FILE Statement

FORM:

END FILE u

where u is an I/O designation.

The statement directs the I/O unit designated to write an end-file mark.

u must not be an asynchronous variable.

EXAMPLE:

END FILE 4

END FILE T

-68-

SECTION VIII - PROGRAM UNITS

8. Introduction

A FORTRAN program consists of one main program and, optionally, SUBROUTINE

subprograms, FUNCTION subprograms, and BLOCK DATA subprograms. Each of

these is termed a "program unit".

8.1 PROGRAM Statement

FORM:

PROGRAM identifier

The PROGRAM statement defines the program name that is used as the entry­

point name for the object module. The identifier must not appear any­

where else in the program unit. This statement, if present, must be the

first statement of a main program. If not present, the main program name

defaults fo F%MAIN.

8.2 END Statement

FORM:

END

The END statement must be the last physical statement of each program unit.

It informs the compiler of the end of the program unit. The END statement

must be on a single source line; continuation lines are not allowed.

8.3 RETURN Statement

FORM:

RETURN

-69-

This statement returns control from a FUNCTIa~ or SUBROUTINE subprogram

to the calling program unit. Normally, the last statement executed in a

subprogram is a RETURN statement. It need not be the last statement of

the program. Any number of RETURN statements may be used.

8.4 RESUME Statement

FORM:

RESUME

This statement is used to place a function or subroutine in the asynchronous

or parallel mode. It allows the calling program unit to continue execution;

however, the function or subroutine continues to execute as well until a

RETURN statement is executed.

8.5 Subprogram Communications

The main program and subprograms communicate with each other by means of

COMMON variables and parameters. If the means of communication is by

p~rameters, the arguments of the subroutine or function call are known as

actual parameters. Corresponding arguments in the subrou~ine or function

argument list are known as formal parameters.

8.5.1 Actual Parameters

The actual parameters which appear in a subroutine call or a function

reference may be any of the following:

An arithmetic expression

A logical expression

A constant

A simple variable

An array element reference

An array name

A FUNCTION name

A SUBROUTINE name

-70-

8.5.2 Formal Parameters

The formal parameters appearing in the parenthetical list of a FUNCTION

or SUBROUTINE statement may be any of the following:

An array name

A simple variable

A subprogram name

(either function or subroutine)

The formal parameters are replaced at each execution of the subprogram by

the actual parameters supplied in the CALL statement or function reference.

Formal parameters representing array names must appear within the sub­

program in type or DIMENSION statements giving dimension. information. In

a type or DIMENSION statement, formal parameters may be used to specify

variable dimensions for array name formal parameters. Variable dimensions

may be given only for arrays which are formal parameters.

Within a subprogram~ the use of formal parameters is restricted as follows:

1. Formal parameters must not appear in COMMON statements.

2. Formal parameters must not appear in EQUIVALENCE statements.

3. Formal parameters must not appear in DATA statements.

8.5.3 Correspondence Between Actual and Formal Parameters

When a subprogram is called, the formal parameters must agree with the

actual parameters as to number, order, type, and length. For example, if

an actual parameter is an integer constant, then the corresponding formal

parameter must be of INTEGER type.

Also, the formal and actual parameters must be either both synchronous or

both asynchronous, they must not be mixed.

-71-

If a formal parameter is an array name, the corresponding actual parameter

may be either an array name or an array element.

If a formal parameter is assigned a value in the subprogram, the corres­

ponding actual parameter must be a simple variable array element, or

array name. A constant or expression should not be used as an actual

parameter if the corresponding formal parameter may be assigned a value.

8.6 Statement Function Definition Statement

FORM:

identifier(identifier,identifier, •••)=expression

This statement defines an internal subprogram. The entire definition is

contained in a single statement. The first identifier is the name of the

subprogram being defined.

Statement function subprograms are functions; they are single-value and

must have at least one argument. The type of the function is determined

by the type of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the

function. These are formal parameters which have meaning and must be

unique only within the statement. They may be identical to identifiers

of the same type appearing elsewhere in the program. These identifiers

must agree in order, number, type, and length with the actual parameters

given at execution time.

~he use of a parameter in the defining expression is specified by the use

of its paramete~ identifier~ Expressions are the only permissible arguments

of internal functions; hence the parameter identifiers may appear only as

simple variables in the defining expression. They may not appear as array

identifier.

Identifiers appearing in the defining expression which do not represent

parameters are treated as ordinary variables.

The defining expression may include references to external functions or

other previously defined internal functions.

All statement function definition statements must precede the first exe­

cutable statement of the program.

EXAMPLES:

SSQR(K)=K*(K+l)*(2K+l)/6
NOR(T,S)=.NOT.(T.OR.S)

ACOSH(X)=(EXP(X/A)+EXP(-X/A»/2

In the last example above, X is a parameter identifier and A is an ordinary

identifier. At execution, the function is evaluated using the current

value of the quantity represented by A.

8.7 FUNCTION Subprograms

A FUNCTION subprogram is' a function; it returns a single value and is

referenced as a basic element in an expression. A FUNCTION subprogram

begins with a FUNCTION declaration and returns control to the calling

program by means of a RETURN or RESUME statement. It is a program unit

and, consequently, must terminate with an END statement.

8.7.1 FUNCTION Statement

FORM:

FUNCTION identifier(identifier,identifier, •••)

This statement declares the program which follows to be a function subpro­

gram. The first identifier is the name of the function being defined. This

-73-

identifier must appear as a simple variable ~~1 be assigned a value during

execution of the subprogram. This value is the function value.

Identifiers appearing in the list enclosed in parentheses are formal

parmeters represent~ng the function arguments.

EXAMPLE:

FUNCTION FLOAT (I)

FLOAT=I

RETURN

END

8.7.2 FUNCTION Type

The type of the function is the type of identifier used to name the function.

This identifier may be typed implicitly or explicitly in the same way as

any other identifier. Alternately, the function may be explicitly typed

in the FUNCTION statement itself by replacing the word FUNCTION with one

of the following:

INTEr:;~ER FUNCTION

REAL FUNCTION

DOUBLE FUNCTION

DOUBLE PRECISION FUNCTION

COMPLEX FUNCTION

LOGICAL FUNCTION

for example, the statement

COMPLEX FUNCTION HPRlME(S,N)

is equivalent to the statements

FUNCTION HPRlME(S,N)

COMPLEX HPRIME

-74-

EXAMPLES:

FUNCTION MAY(RANG~XP,yp,ZP)

REAL FUNCTION COT (ARG)

8.7.3 Library Functions

The FORTRAN system supplies a library of standard functions which may be

referenced from any program. Appendix A lists these library functions.

These are divided into two sets: basic external functions and intrinsic

functions. The basic external functions are called by the object program

in the same manner as normal, user-supplied functions. Intrinsic func­

tion names are known to the compiler and intrinsic function references

may be treated in non-standard ways (such as expanding the function

in-line). The programmer can supply his own function in place of an

intrinsic function by including the name in EXTERNAL statements in all

calling programs.

8.8 SUBROUTINE Subprograms

A SUBROUTINE subprogram is not a function; it can be referred to only

by a CALL or CREATE statement. A SUBROUTINE subprogram begins with a

SUBROUTINE declaration' and returns control to the calling program by

means of a RETURN or RESUME statement.

8.8.1 SUBROUTINE Statement

FORMS:

SUBROUTINE identifier

SUBROUTINE identifier(identifier,identifier, •••)

This statement declares the program which follows to be a SUBROUTINE sub­

program. The first identifier is the subroutine name. The identifiers

in the list enclosed in parentheses are formal parameters.

-75-

A SUBROUTINE subprogram may use one or more of its formal parameters to

represent results. The subprogram name is not used for return of results.

A SUBROUTINE subprogram need not have any parameters at all.

EXAMPLES:

SUBROUTINE EXIT

SUBROUTINE FACTOR (CEF,N,ROOT$)

SUBROUTINE RESIDUE .(NUM.D,DE~,M,RES)

8.8.2 CALL Statement

FORMS:

CALL identifier

CALL identifier(argument,argument, ••• ,argument)

The CALL statement is used to transfer contro.L to a subroutine subprogram.

The identifier is the subprogram name.

The parameters may be expressions, array identifiers, alphanumeric strings,

or subprogram identifiers, as in the case of a function reference. Unlike

a function, however, a subroutine cannot be referenced as a basic element

in an expression. A subroutine may use one or more of its arguments to

return results to the calling program. If no arguments at all are required,

the first form is used.

EXAMPLES:

CALL EXIT

CALL SWITCH (SIN,2.LE.BETA,X**4,Y)

CALL MULT (A,B,C)

The identifier used to name the subroutine is not assigned a type and has

no relation to the types of the arguments.

-76-

8.8.3 CREATE Statement

FORMS:

CREATE identifier

CREATE identifier(argument,argument, ••• ,argument)

The CREATE statement is used to execute a subroutine as a parallel pro­

cess. The identifier is the subroutine name.

The CREATE statement is the only way to directly initiate execution of

an asynchronous subroutine. Note, however, that parallel execution is

also obtained through the use of the RESUME statement.

EXAMPLES:

CREATE GRAPH ($IN,X)

CREATE PROC

-77-

A.I Intrinsic Functions

Type of
FUNCTION Parameter

ABS(a) Real

lABS (a) Integer

DABS (a) Double

AINT(a) Real

INT(a) Real

IDINT(a) Double

AMODea l,a2) Real

MOD(al,a2) Integer

AMAXO(al,a2, •••) Integer

~1(al,a2"") Real

MAXO(al,a2, •••) Integer

MAXI (a 1 , a 2 , • • •) Real

DMAXI(al,a2, •••) Double

AMINO(al,a2, •..) Integer

AMINI(al,a2, •••) Real

MINO(al ,a2, •..) Integer

MINl(al,a2, .••) Real

DMINl(al,a2,.") Double

FLOAT (a) Integer

FULL(a) Any

APPENDIX A

LIBRARY FUNCTIONS

Type of
Result

Real

Integer

Double

Real

Integer

Integer

Real

Integer

Real

Real

Integer

Integer

Double

Read

Real

Integer

Integer

Double

Real

Logical
asynchronous
type

-78-

Definition

lal

Truncation

al (mod a2)

Max (a 1 ,a2 , •••)

Min (a 1 , a 2 , • • •)

Conversion from integer
to real

Test FULL access state

Type of Type of
Function Parameter Result Definition

EMPTY (a) Any Logical Test EMPTY access state
asynchronous
type

IFIX(a) Real Integer Conversion from real to
integer

SIGN(al,a2) Real Real Sign of a2 times I all

ISIGN(al,a2) Integer Integer

DSIGN(al,a2) Double Double

DIM(al ,a2) Real Real al-Min(al,a2)

IDIM(a 1 ,a2) Integer Integer

SNGL(a) Double Real Conversion from double
to real

REAL (a) Complex Real Obtain real part of complex

AIMAG(a) Complex Real Obtain imaginary part of
complex

DBLE(a) Real Double Conversion from real to
double

CMPLX(al,a2) Real Complex al + a2r-Y

CONJG(a) Complex Complex Obtain conjugate of
complex

IOR(al,a2) Integer Integer Inclusive OR

LAND(al,a2) Integer Integer Logical AND

-79-

Type of Type of
Function Parameter Result Definition

NOT(al) Integer Integer Logical negation

IEOR(al,a2) Integer Integer Exclusive OR

ISHFT(al,a2) Integer Integer Shift al by a2 bits

-80-

A.2 Basic External Functions

Type of Type of
Function Parameter Result Definition

EXP(a) Real Real a
e

DEXP(a) Double Double

CEXP(a) Complex Complex

ALOG(a) Real Real In(a)

DLOG(a) Double Double

CLOG(a) Complex Complex

ALOGlO(a) Real Real logl() (8.)

DLOGlO(a) Double Double

SIN (a) Real Real sin(a)

DSIN(a) Double Double

CSIN(a) Complex Complex

COS (a) Real Real cos (a)

DCOS(a) Double Double

CCOS(a) COlJlplex Complex

TANH (a) Real Real tanh (a)

SQRT(a) Real Real (a)1/2

DSQRT(a) Double Double

CSQRT(a) Complex Complex

ATAN(a) Real Real arctan(a)

DATAN(a) Double Double

ATAN2(al,a2) Real Real arctan(al/a2)

DATAN2(al,a2) Double Double

-81-

Function

CABS (a)

Type of
Parameter

Double

Complex

-82-

Type of
Result

Double

Complex

Definition

Absolute value of Complex

B.l Introduction

APPENDIX B

FORTRAN LISTING FORMAT

The printed output from the FORTRAN compiler is organized as follows for

each program or subprogram in a compilation:

1. Program listing.

2. Allocation of variables for each COMMON block and for non-COMMON

variables - gives location within the block, variable name, data

type, size, and whether scalar or array.

3. Cross-reference (optional)- lists each symbol followed by the line

number of each statement in which the symbol appears. A line

number surrounded by slashes indicates appearance in a speci­

fication statement. A line number surrounded by asterisks

. indicates assignment of a value to the variable.

4. Object code listing (optional) - lists the program again with the

generated machine language code following each statement. The

generated code portion shows the memory type, location, hexa­

decimal contents, and dis-assembly (assembly language equivalent)

of each instruction generated.

5. Subprograms called - lists name, type, and number of arguments.

6. Statement labels - lists memory location, label name, and how

used.

7. Statement locations - gives source line number and memory loca­

tion (within a block) of each non-comment and non-continuation

line in the program.

-83-

8. Number of warnings and errors.

B.2 Statement Error Diagnostics

Duringoompilation, statements which violate the syntactic or semantic

rules of the language are recognized and error indications are printed.

There are two levels of statement diagnostics: warnings and errors.

Warnings are issued for minor infractions where the compiler can still

, determine what is to be done and compile the statement. Errors are

severe violations of the language. In the case of errors, compilation

proceeds as if the statement was never encountered. The statement label,

if any, remains defined. If the error statement is ever executed, it

will cause a link to a system routine which will terminate execution

of the program and notify the user that an attempt has been made to

execute an erroneous statement. The name of the program and the line

number of the statement will be displayed.

One character of the statement is marked with an up-arrow symbol (A)

output directly beneath the erroneous character, for example:

ZATA = X + y* A.
A

The character If_If is marked as an error.

In the case of a syntax error, the marked character itself was unacceptable,

as in the example above. In the case of a semantic error, an identifier

or other construct is in error. The mark indicates the last character of

the construct in error. For example, in the line:

COMMON ALPHA, BETA, ALPHA, GAMMA
A

the mark indicates that the identifier ALPHA is misused.

-84-

The compiler attempts all interpretations of statement type before dis­

carding a statement. The marked position indicates the greatest amount

of correct information found under the most logical assumption of

statement type.

A comment specifying the reason for the failure is output directly after

the marked line. There may be more than one diagnostic per line. The

diagnostics are listed left-to-right. Each diagnostic is f~llowed by a

sequence of characters: "E*E"cE ••• E" or "W*W*W ••• WIt indicating "error"

or "warning", respectively.

An alphabetic list of possible statement diagnostics follows:

ARGUMENT CONVERTED (Warning)

The type of the indicated parameter for an intrinsic function was

converted to agree with the type required by the function.

ARGUMENT COUNT (Warning)

The number of parameters to a subprogram is wrong either because

it is an intrinsic function which the compiler knows about or

because the same subprogram was called previously with a different

number of parameters.

BLOCK DATA ONLY

A DATA statement not in a BLOCK DATA subprogram attempted to

initialize a variable in COMMON.

An executable statement has been included in a BLOCK DATA

subprogram.

-85-

CONSTANT SIZE

The size of the indicated constant is outside the allowable

range.

DATA TYPE

The type of a constant in a DATA statement does not agree with

the type of the variables it- is to initialize.

DATA COUNT

The number of variables in a DATA statement does not agree

with the number of constants.

DECLARATION CONFLICT

An attempt has been made to declare an identifier as a FORTRAN

entity (simple variable, array, subprogram, statement function

name) which has already been used otherwise.

DUPLICATE DUMMY

A formal parameter has been declared twice in a statement func­

tion definition, FUNCTION, or SUBROUTINE statement.

EXTRA COMMA (Warning)

More than one comma has been encountered at a point where a

single comma was expected.

-86-

FORMAT LABEL

The indicated statement number was declared in the label field

of a FORMAT statement and is being used in some manner other

than as a format reference.

ILLEGAL DO CLOSE (Warning)

A DO loop was closed with an illegal statement.

ILLEGAL LABEL

1. Statement number is less than 1 or greater than 99999.

2. A DO statement references a previously defined label or

a label previously referenced as a FORMAT.

ILLEGAL NUMBER

1. FORMAT, DATA or CONST repeat count not greater than zero.

2. Unary minus of Hollerith or Hexadecimal constant.

3. Illegal complex number format.

JUMP LABEL

1. Statement number which is not a FORMAT label has been used.

as if it were.

2. A FORMAT label has been previously referenced by an IF or

GO TO statement.

-87-

LABEL MISSING (Warning)

1. Indicated statement cannot be executed because it has no

statement number.

2. The indicated FORMAT cannot be used because it has no

statement number.

MISSING COMMA (Warning)

A comma was missing at a point where one was expected but com­

pilation could continue.

MISUSED NAME

An identifier has been used in the wrong contex, such as:

- A formal parameter in a DA1A or EQUIVALENCE statement.

A variable dimension which is not a simple formal

parameter.

- A subprogram name used without parameters in an ex­

pression.

MULTI DEFINED

A statement number is defined more than once.

NOT ARRAY

An identifier which is not an array name has been used where

an array name should have appeared.

-88-

NOT INTEGER

A variable or expression of type other than integer has been

used where only integer type is allowed.

NUMBER OF SUBSCRIPTS

RANGE

The number of subscripts in an array reference is incorrect.

1. The second character in the declaration of an IMPLICIT range

does not alphabetically follow the first character.

2. A constant subscript array reference has a subscript which

falls outside the size of the array.

STATEMENT NOT ALLOWED

1. A statement has been used in an illegal context.

2. An illegal logical IF secondary statement or the statement

is in the wrong order, such as a statement function defini-·

tion not preceding executable statements.

SYNTAX

1. Usually erroneous punctuation or an illegally constructed

expression.

2. The character marked shows how much of the statement was

scanned before it ceased to make sense.

-89-

TYPE CONFLICT

1. The same first character has been declared two different

types in an IMPLICIT statement.

2. The types of the operands of an arithmetic or logic~l

operator are illegal.

3. The types of the right- and left-hand sides of an assign­

ment are improper.

UNDIMENSIONED

A simple variable is followed by a left parenthesis.

UNRECOGNIZABLE

The entire statement was unrecognizable.

UNSUCCESSFUL COPY

A COpy statment could not be performed.

B.3 Program Error Diagnostics

After the source program has been listed, summary error messages pertaining

to the program as a whole are listed.

The following describes each of these messages or set of messages.

FUNCTION NAME NOT REFERENCED

This message appears at the end of any FUNCTION subprogram in

which the function name does not appear on the left-hand side

of an assignment statement.

-90-

OPEN DO LOOPS

Following this heading, all DO loops which were not closed are

listed in the form:

"statement-number OPENED AT LINE line-number"

UNDEFINED LABELS

All undefined statement numbers are listed after this heading.

Each undefined statement number appears as:

statement-number FIRST REFERENCED AT LINE line-number

ALLOCATION ERRORS

This heading is followed by a list of identifiers that were

incorrectly assigned memory locations by the program. .These

errors are caused by COMMON and/or EQUIVALENCE statements.

Such errore as:

- EQUIV~LENCE statement references variables for different

COMMON blocks.

- Extending a COMMON block backward.

- Specifying an impossible equivalence group.

-91-

C.l Introduction

APPENDIX C

COMPILER OPTIONS

The following compiler options are placed in parenthepes on the compiler

invocation control card.

Conditional Compilation - CO

This option causes lines containing a D'in column one to be compiled.

Statements with a D in column one are treated as comments if this option

is not selected.

Cross Reference - XR

This option causes the compiler to print an alphabetic listing of each

identifier and where it was defined, altered, or referenced.

List Object - LO

This option causes the compiler to print pse~~~-assembly language state­

ments corresponding to the object code generated.

-92-

D.l Introduction

APPENDIX D

FORTAN RUNTIME LIBRARY

The programs involved with the process of executing a FORTRAN program may

be divided into two categories:

Funtion Library

Arithmetic Larbrary

D.2 Function Library

The Function Library consists of the basic (~~t~rnal functions and non­

inline intrinsic functions. These are all referenced directly by the

FORTRAN program, therefore, the module name is the same as the FORTRAN

function name.

The Function Library contains the following modules:

ALOG CLOG DCOS EXP

ALOGlO COS' DEXP IDINT

ATAN COSH DLOG SIN

ATAN2 CSIN DLOGlO SINH

CABS CSQRT DMOD SQRT

CCOS DATAN DSIN TANH

CEXP DATAN2 DSQRT

D.3 Arithmetic Librarl

The Arithmetic Library consists of the functions indirectly referenced by

the FORTRAN program. These modules all have the prefix F% to identify

them as part of the FORTRAN run-time library and to limit conflicts with

user names.

-93-

Name

F%CVDI

F%CVID

F%DADD

F%DSUB

F%DMUL

F%DDIV

F%CMUL

F%CDIV

F%DTNE

F%DTEQ

F%DTLE

F%DTLT

F%DTGE

F%DTGT

F%CTNE

F%CTEQ

F%PW11

F%PW1R

F%PWID

F%PW1C

F%PWRI

F%PWRR

F%PWRD

F%PWRC

F%PWDI

F%PWDR

F%PWDD

F%PWDC

F%PWCI

F%PWCR

F%PWCD

F%PWCC

Function

Convert double precision to integer.

Convert integer to double precision

Double precision add

Double precision subtract

Double precision multiply

Double precision divide

Complex multiply

Complex divide

Double precision test .NE.

Double precision Test .EQ.

Double precision test .LE.

Double precision test .LT.

Double precision test .GE.

Double precision test .GT.

Complex test .NE.

Complex test .EQ.

1**1 power routine

I**R power routine

I**D power routine

I**C power routine

R**I power routine

R**R power routine

R**D power routine

R**C power routine

D**I power routine

D**R power routine

D**D power routine

D**C power routine

C**I power routine

C**R power routine

C**D power routine

C**C power routine

-94-

