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Preface

This document describes the LASTport architecture, a model of the software that
controls the transport of messages in a local area network (LAN).

The goal of this document is to specify the LASTport protocol syntax and
semantics in sufficient detail to facilitate interoperable implementations.
The document does not describe implementation–specific data structures and
interfaces.

Document Structure
This document contains six chapters and an appendix:

• Chapter 1 explains how the LASTport protocol differs from other transport
protocols and provides an overview of the LASTport architecture and its
environment.

• Chapter 2 describes how the LASTport protocol performs and controls
transactions.

• Chapter 3 describes Solicitation layer functions.

• Chapter 4 describes Circuit layer functions.

• Chapter 5 describes Association layer functions.

• Chapter 6 describes LASTport messages.

• Appendix A describes the LASTport checksumming algorithm.

A glossary defines terms used in the document.

Associated Documents
For information on porting the architecture to a C–language environment, refer
to the Portable LASTport Interface Specification document. For information
on the LASTport/Disk architecture, refer to the LASTport/Disk Architecture
Specification document.

Intended Audience
The audience for this document includes implementers of the architecture and
programmers who intend to port the architecture to various environments.
Readers should be familiar with the functions and terminology of network
transport layers.
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Conventions
Table 1 lists typographic conventions used in this document. Table 2 describes
architecture format types. All numeric values are decimal unless specified
otherwise. All format types are defined with the right most bit as the least
significant bit of the byte.

Table 1 Typographic Conventions

Convention Meaning

Initial Caps Names of messages, such as Solicit Request, or names of achitecturally controlled
variables, such as Service Name.

italics Names of events, such as AppConnect or AsnTransComplete, that are generated
or processed by LASTport and LASTport/Disk clients and severs, or user
applications.

boldface New terms or terms defined in the Glossary.

UPPERCASE Names of messsage fields, such as CUR_PRTCL_VER or STATUS.

MixedCase Names of processes, such as AsnClientRcv; names of routines and variables in
process pseudocode examples, such as GetNextService or dataRequestLength;
names of timers, such as SolicitResponseTimer or AsnConnectResponseTimer.

TAZIOR Transmit As Binary Zeros and Ignore On Receipt. Specifying TAZIOR in Message
Format fields allows Engineering Change Order (ECO) extensions to the protocol
without changing major version numbers.

Table 2 Architecture Format Types

Type Meaning

Bit mask A variable-length field (in bits), in which each bit has an assigned meaning. Bit
value 1 indicates ‘‘true’’ or ‘‘do’’ relative to the assigned bit meaning.

Byte (8 bits)
Word (16 bits)
Longword (32 bits)

These fields describe either signed or unsigned integers. Unsigned integers can
range in value from 0 to 255 (bytes), 65,535 (words) and 2**32–1 (longwords).
Signed integers are specified in two’s complement form; bytes range from –128 to
127, words from –32,768 to 32,767 and longwords from –2**31 to 2*31–1.

Name Unsigned byte-counted string containing the characters described in the Local
Area Disk Architecture Specification document.

Text string Unsigned byte-counted string containing the characters described in the
LASTport/Disk document.
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1
LASTport Concepts

On paper, transport protocols look much alike. In practice, however, a
specialized protocol can enhance the efficiency of system applications by
taking advantage of their message flow characteristics. The LASTport protocol
is designed specifically to support applications that use request–response
semantics.

Rather than attempting to achieve acceptable performance for all possible
transactions, the LASTport protocol is designed to optimize transaction
processing in one particular environment: a local area network (LAN) that
includes many clients and only a few servers. Furthermore, only naturally
idempotent procedures, such as disk reads, access to read-only data in general,
and name translation, can use the protocol directly.

The LASTport protocol is not intended to replace a traditional transport model
like DECnet Network Services Protocol (NSP) or Open Systems Interconnect
(OSI) TP4. Instead, the LASTport protocol is designed to move block data
between memories. For example, it operates as an efficient transport for a virtual
disk service.

In the LAN environment for which it is designed, the LASTport protocol offers
the following features:

• Specialized request–response semantics with minimal latency

• Reduced message flow over the interconnect

• Efficient encoding of messages

• Reduced memory consumption at the server system

• Support for large numbers of concurrent transactions

• High availability with redundant paths

• Effective error recovery

This chapter introduces the LASTport protocol and architecture and provides an
overview of LASTport transaction management. Topics include

• LASTport and other transport protocols

• LASTport operating environment

• Functional layers

• Transaction management

• Concurrent transactions and transaction identifiers
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1.1 LASTport and Other Transport Protocols
Transport protocols normally perform the following tasks:

• Create a channel that can detect and correct data loss and duplication

• Deliver data in order of transmission

• Govern the rate of data flow across a circuit and operate multiple circuits
independently

These tasks must be performed efficiently and in a way that isolates the Session
layer from changes in the hardware technology.

A LAN transport protocol must manage all types of data transfer that are
possible in the environment. Typically, the Transport layer accepts data from
the Session layer and then does the following:

1 Divides the data into smaller units, if necessary

2 Passes these units to the Network layer

3 Ensures that the units arrive correctly at the destination

The methods that the transport uses to ensure that the units arrive correctly are
called end-to-end guarantees, and such guarantees are often made at the cost
of performance.

Transport performance is usually measured by the following criteria:

• Response time per end-to-end communication

• Number of network messages required per transaction

• Throughput in bits per second

• Use of system compute power and memory

• Efficiency of encoding user data

The LASTport protocol differs significantly from other transport protocols in
several ways. To clarify these differences, Sections 1.1.1 through 1.1.3 compare
a traditional peer-to-peer transport protocol with the local area transport (LAT)
protocol and the LASTport protocol in the following areas:

• The relationship of one node to another, such as peer to peer or client to
server

• The number of transactions that can be conducted simultaneously on a single
connection

• The order in which transactions complete

To facilitate comparison, all three transport systems are discussed in general
terms. Actual implementations might not match the models described.

1.1.1 Traditional Peer-to-Peer Transport Protocol
In a traditional peer-to-peer transport protocol such as DECnet NSP, data
exchanges between nodes operate symmetrically. Usually, only one transaction
can be conducted at a time, and one transaction must complete before another
can start. The protocol used at both nodes is identical. By contrast, in a client–
server protocol, one node has priority over the other, and this difference is
reflected in the way messages are processed.
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In traditional transports, each request for service on the network requires that
a circuit be established between nodes. One circuit is dedicated to one pair of
communicating processes; multiple connections require multiple circuits. Each
data exchange between the processes requires overhead processing to handle
loss detection and error control. The transport orders messages before they are
delivered to the application.

In these transports, a typical data exchange includes the following operations:

1 Node 1 sends a data request message to node 2.

2 Node 2 receives the data request and sends an acknowledgment message to
node 1 indicating that node 2 received the request message.

3 Node 2’s application processes the data from node 1 and transmits a response
message to node 1.

4 Node 1 receives the response message and must send an acknowledgment
message to node 2 indicating that the response message has been received.

Half the messages in the data exchange are acknowledgments that do not
carry transaction data; the acknowledgment messages are required for error
recovery. While acknowledgment messages can often be combined with normal
data messages, acknowledgment messages are always required to complete a
transaction.

Note

In traditional peer-to-peer transports, receipt of an acknowledgment
message in response to a request does not guarantee that data has been
processed — only that the remote node received a request message. To
ensure that the remote node processed the data, an additional protocol
layer must usually be added for each application.

Figure 1–1 illustrates a traditional peer-to-peer transport with three separate
circuits.
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Figure 1–1 Traditional Transport with Three Circuits
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1.1.2 LAT Protocol
Unlike traditional transports, the LAT protocol implements node-to-node
communication as a client–server relationship. However, the data is presented
at the System Application layer as if the transactions are peer to peer. Several
data transfers can be in progress at one time, and data is always delivered in the
order it is sent over each connection.

Two other major differences between the LAT protocol and traditional transports
are in the number of circuits created and the kind of packets sent.

In the LAT protocol, data transmission is based on timers. The first request for
service on the network creates a new circuit between node 1 and node 2. If there
are multiple requests for connections (sessions) between the same nodes, the
LAT protocol combines messages from more than one session into single packets
and sends them along a single node-to-node circuit. Using the timers, the LAT
protocol delays transmitting data from individual sessions to accumulate the data
into a single packet. As shown in Figure 1–2, a LAT packet is divided into data
slots, which contain the data from each session.

Figure 1–2 LAT Packet
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By using only one circuit and encoding data efficiently in packets, the LAT
protocol reduces the need for circuit path maintenance. However, use of a single
circuit has disadvantages. More latency occurs at each end as data accumulates
to form a packet. In addition, fault tolerance is affected: if the circuit fails, all
the overlying connections also fail, because they depend on that circuit.
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A typical LAT data exchange still includes acknowledgment messages:

1 A timer event occurs, indicating that user data from all sessions should be
sent from the terminal server client to the server.

2 The client transport builds a data packet with data loaded from each session.

3 The server transport receives the data packet and sends an acknowledgment
message, which can contain response data, such as a character displayed from
a keystroke.

4 The server transport responds with a ‘‘no data waiting’’ flag set.

5 The exchange ends if the client has no more data at the next timer event.

Figure 1–3 shows multiple processes using one LAT circuit.

Figure 1–3 Multiple Processes Using One LAT Circuit
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1.1.3 LASTport Protocol
Like the LAT protocol, the LASTport protocol models communications from node
to node as a client–server relationship. However, unlike the LAT protocol, the
LASTport protocol distinguishes client and server up to the System Application
layer and presents data to that layer as a client–server relationship. This design
feature eliminates the need for acknowledgment messages, significantly reducing
the number of messages needed to complete a transaction.

For example, a LAT client requires both a request acknowledgment message and
a transaction response acknowledgment from the server. In contrast, a LASTport
client does not require an acknowledgment message. The server’s transaction
response guarantees that the server received the request and processed the data
successfully.

The LASTport protocol differs from the LAT protocol in other respects:

• The LASTport protocol can perform concurrent transactions independently.
LASTport transactions can complete in an arbitrary order; that is, they are
processed concurrently by the server system application and are returned to
the client as they are completed.
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• The LASTport protocol can concurrently use multiple paths to the destination
node.

These differences result from certain assumptions, discussed in Section 1.2, about
the LAN operating environment in which the LASTport protocol is used.

1.2 LASTport Operating Environment
The LASTport protocol is designed with the assumption that the underlying
network (shared interconnect) is reliable. Transport performance depends on
low-probability events (fewer than one in one thousand) occurring infrequently
and very-low-probability events (fewer than one in one trillion) not occurring at
all. This kind of reliability is available in a LAN environment with the following
characteristics:

• Data Link capacity of more than 10,000 messages per second.

• Low probability of datagram loss or duplication. (The LASTport protocol
includes a checksum feature.)

• Low probability of delays of more than 50 milliseconds between source and
destination ports.

• Very low probability of of datagram corruption or of datagrams being
delivered to the wrong destination address.

The LASTport protocol makes the following additional assumptions:

• The environment includes many clients and a small number of servers.
Therefore, the LASTport protocol attempts to conserve server resources
wherever possible.

• The clients and servers are system applications, not user-written applications.
This approach is especially effective in an environment where clients access
servers that are distributed on the network, because network-based servers
can be implemented as ‘‘black box’’ systems without the typical overhead
associated with crossing the user–system protection boundary.

• All transactions issued by the client are in the form of idempotent requests
and are commutative relative to each other.

• The network is capable of handling multicast messages.

If these conditions exist in the environment, the LASTport protocol can enhance
performance for certain types of applications, such as virtual disk services.

1.2.1 Protocol Advantages
In a LAN environment with the characteristics listed in Section 1.2, the LASTport
protocol provides the following advantages:

• Reduced message flow over the interconnect

• Efficient encoding of messages

• Reduced memory consumption at the server system

• Support for large numbers of concurrent transactions

• High availability with redundant paths

• Effective error recovery

The following sections describe these advantages.
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Reduced Message Flow over the Interconnect
Because the LASTport protocol is based on a client–server relationship, client and
server operate using different protocols. Only the client can initiate a request,
and the server must respond. In contrast, traditional transports do not require a
server to respond to a request. One service call issues requests, and a separate
service receives a response. Therefore, the relationship between nodes must be
maintained by using acknowledgment messages. Some transports might use four
messages to complete an exchange of data, as described in Section 1.1.1.

The LASTport protocol pairs data exchanges into transactions, sets of two
messages resulting in a round-trip exchange of data. Because a message from
a LASTport client requires a response, all messages occur in pairs. The first
element is the client’s request, and the second is the server’s response to the
request. The transport matches the request with the response as follows:

1 The client sends a data request.

2 The server sends a response.

Because the LASTport protocol requires that servers respond to client requests,
no acknowledgment messages are necessary: the number of messages exchanged
over the LAN interconnect can be reduced by 30 to 50 percent.

Efficient Encoding of Messages
The LASTport protocol handles requests and responses atomically. Client and
server semantics allow for atomic processing of messages, because the beginning
and end of requests and responses are made visible.

The system application is not bound to fixed-size data messages; it can send
messages of almost any size. If required, the LASTport protocol segments
the data into packets of the size that the Data Link layer supports. However,
messages cannot be arbitrarily large. For instance, Ethernet LAN messages
should not be larger than approximately 50 KB, because protocol efficiency would
decrease dramatically. In general, messages should not be so large that a one-way
burst could cause one or more packets to be lost.

Reduced Memory Consumption at the Server System
Transactions are assembled by the application, not by the transport. If necessary,
the LASTport protocol divides transaction requests into segments, each of which
as a segment number, before transmitting them on the circuit. In this respect,
the protocol is similar to other transport protocols. However, segmentation is
controlled by the system application, which assigns each message segment a
unique identifier.

Because each segment is uniquely identified, packets can be delivered in non-
sequential order and reassembled at the destination. Figure 1–4 shows how the
LASTport protocol identifies message segments.
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Figure 1–4 LASTport Packets
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The system application reassembles the message from the packets by using
information available in the LASTport message headers. The LASTport server’s
ability to process messages in arbitrary arrival order conserves server system
memory.

Support for Large Numbers of Concurrent Transactions
The LASTport protocol can conduct up to 255 processes concurrently on a single
circuit path and can support up to 65,536 paths concurrently. Figure 1–5 shows
multiple processes using a single LASTport circuit path.

Figure 1–5 Multiple Processes Using a Single Path
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High Availability with Redundant Paths
Because a LAN can support multiple adapters to each interconnect as well as
multiple interconnects, more than one path to a destination is often available on
a single circuit, which is maintained until the client disconnects. The LASTport
protocol can detect and use all possible paths to send packets to a destination. If
multiple paths between a client and a server are available, the LASTport protocol
dynamically load-balances packets across all available paths.

Multiple paths also make the LASTport transport more robust than single-path
transports. When one path fails, packets are still sent successfully over the other
available paths.

The LASTport protocol uses a rate-based algorithm to control congestion and to
prevent interconnect saturation.
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Figure 1–6 shows multiple processes using two circuit paths.

Figure 1–6 Multiple Processes Using Two Paths
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Effective Error Recovery
The LASTport protocol detects and controls errors by requiring that the system
application generate only transactions that are both idempotent and commutative;
identify transactions; and use timers.

• Idempotent transactions can be repeated without changing the system
state. Any service can be structured to be idempotent.

• Commutative transactions can be processed in any order without affecting
the outcome. For example, successive additions are commutative.

• A transaction identification scheme allows multiple transactions to be
processed concurrently and ensures that any transaction is processed once
and only once, even though the request might be transmitted more than once.

• The LASTport protocol uses timers to limit the response time to a request,
limit the completion time for a transaction, and resynchronize transactions.

The LASTport protocol can recover both from path failures and from lost
individual transactions. Adapter and interconnect failures do not affect the
continuity or correctness of service. Such failures can delay service but do not
stop it.

If a higher level of error detection and correction is needed, the system application
can so specify. Note that security issues are outside the scope of the LASTport
architecture.

1.2.2 Protocol Constraints
As compared with traditional transport protocols, the LASTport protocol offers
a reduced set of service guarantees to clients. Constraints and rationales are as
follows:

• CONSTRAINT: The client can initiate requests; the server cannot. This
constraint simplifies connection management, buffer management, and
flow control. Application relationships are client to server, not peer to peer.
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RATIONALE: To create a transaction that operates as peer to peer, two
independent associations must be established. Asymmetry simplifies
protocol design, specifically error recovery.

• CONSTRAINT: The LASTport protocol performs error correction by
retransmitting the entire request, which must be idempotent.

RATIONALE: The environment assumes a low rate of errors. Because failure is
rare, retransmission is assumed to be infrequent and therefore to consume
comparatively few resources.

• CONSTRAINT: The client must describe the entire operation at the time the
request is made to the transport. At the time of the request, the system
application must define the address and size of both the request buffer and
the response buffer.

RATIONALE: This mechanism allows messages to be processed in arbitrary
order and avoids unnecessary copying of data.

• CONSTRAINT: The system application request size is bounded by the error rate
from all LAN sources: very large requests might never complete.

RATIONALE: Although individual segments can be recovered, such recovery
would complicate the protocol and consume additional CPU and memory
resources.

• CONSTRAINT: The system application must implement transactions that are
both idempotent and commutative, and it is responsible for transaction
request, execution, and response sequencing.

RATIONALE: The LASTport protocol identifies transactions and provides
transaction concurrence: transactions complete across the session interface
in the order that responses arrive. No circuit state need be maintained to
preserve relative transaction ordering.

1.3 Functional Layers
The LASTport architecture comprises three functional layers:

1 The Solicitation layer, which is a network naming service

2 The Circuit layer, which performs some functions of an OSI Network layer

3 The Association layer, which performs some functions of an OSI Transport
layer

Sections 1.3.1 through 1.3.3 briefly describe these layers.

Figure 1–7 shows LASTport functional layers in the context of a computer system
and indicates how the layers correspond to the seven-layer OSI network model.
Note that the figure illustrates only formal correspondences, not the relative
number of functions performed or lines of code executed in each layer.
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Figure 1–7 Comparison of OSI Network Model and LASTport Architecture
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As shown in Figure 1–7, LASTport layers are bounded on the top by their
interface to the System Application layer and on the bottom by their interface to
the Data Link layer. Naming services, performed by the LASTport Solicitation
layer, are not illustrated in the figure.

1.3.1 Solicitation Layer
The Solicitation layer locates services on the network for the Association layer.
This function is also called a directory or naming service. The Solicitation layer
uses the multicast capability of the LAN to determine where a required service
is located and multicasts solicit messages to all adapters on the network. The
service responds with a message identifying its address, and the Solicitation layer
passes this information to the Association layer. Chapter 3 describes Solicitation
layer functions in detail.

1.3.2 Circuit Layer
The Circuit layer isolates the Association layer from failures in the network
topology by detecting node failures and reporting them to the Association layer.
Because Association layer functions are separated from Circuit layer functions,
the Association layer continues to perform its tasks even when changes occur in
path availability. If one path fails, the Circuit layer maintains any other available
paths. The Circuit layer can detect when a failed path becomes available again.
Chapter 4 describes Circuit layer functions in detail.
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1.3.3 Association Layer
The Association layer, which manages connections between a client and a server,
performs the following functions:

• Executes transactions

• Monitors transactions

• Segments and reassembles transaction data

• Assigns unique transaction identifiers to each transaction

• Handles errors

The Association layer presents four services to the system application:

1 Registration services. Registration services enable the system application
to interact with the LASTport protocol. These services make the Directory,
Association, and Data Transfer services available to the system application.
Registration services are not described in the LASTport architecture, because
they are implemented differently for each system.

2 Directory services. Directory services, which are implemented in the
Solicitation layer, locate a server for the system application.

3 Association services. Association services enable a client to connect to and
disconnect from a server.

4 Data transfer services. Data transfer services enable clients to send
requests to servers and enable servers to respond.

Chapter 5 describes Association layer functions in detail.
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Transaction Management

This chapter explains how the LASTport protocol performs and controls
transactions. Topics include the following:

• Transaction guarantees and requirements

• Transaction timing

• Transaction identification

• Transaction error handling

• Summary of transaction processing operations

2.1 Transaction Guarantees and Requirements
A LASTport transaction consists of a request and a response, either of which can
include multiple messages. In this request–response model, the client initiates
all requests, which can be for connections, data processing, or disconnections;
the server must respond to client requests. The client is responsible for detecting
errors and for retransmitting the request if necessary. Using timers, system
applications control the interval and retry limits for each request and response
(see Section 2.1.4).

The LASTport protocol guarantees that a transaction is performed at least once
by the server and that the transaction is completed only once at the client. To
qualify for LASTport guarantees, transactions initiated by system applications
must be both idempotent and commutative. Section 2.1.1 discusses transaction
guarantees; Sections 2.1.2 and 2.1.3 describe transaction requirements. The
LASTport protocol also identifies valid transactions, as discussed in Section 2.2.

2.1.1 Transaction Guarantees
In peer-to-peer transport protocols, each message is an independent event, and a
message to a peer node elicits an acknowledgment. However, the acknowledgment
guarantees only that the message has been delivered, not that the data has been
processed.

In contrast, the LASTport protocol pairs the request with the response. A
LASTport transaction is circular, consisting of the client message to the server
and the server response. The client considers the entire transaction active until
the client receives either a response or a notification that the transaction has
aborted. The response guarantees that the server both received the transaction
request and processed the transaction, and that all retry activity at the server
has completed.

If the client does not receive a response or a message to resynchronize or abort
the transaction within an established time, the client recovers by retransmitting
the entire transaction. However, this behavior can cause the server to receive
more than one transaction request.
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To support the guarantee that a transaction is completed once and only once,
and that retransmitting a transaction request does not endanger data integrity,
the LASTport protocol requires that transactions be both idempotent and
commutative. Sections 2.1.2 and 2.1.3 discuss these characteristics.

2.1.2 Idempotent Transactions
Implementers of system applications must ensure that all transactions issued by
the client are idempotent.

An idempotent transaction can be repeated without changing the system state.
The repeated transaction request has the ‘‘same strength’’ as the original request,
assuming that the request is repeated in isolation from other requests.

For example, the operation a <– a + 1 (set the value of the variable a to a + 1) is
not idempotent. If the initial value of a is zero, then the first time the operation is
performed, the value of a is 1, and the second time the value of a is 2. Repeating
the message changes the state of variable a. In contrast, the operation a <– 1 (set
the value of the variable a to 1) is idempotent, because repeating the operation
always sets the value of the variable a to 1.

The LASTport protocol is designed so that if a transaction is repeated in an
attempt to receive an acknowledgment, the state of the application data remains
consistent. The result is the same as if the transaction were completed only once,
even if the server executes the transaction more than once.

This feature greatly simplifies error handling. The state of the server is
consistent even if the operation is performed multiple times. Thus, the server
state partially supports the guarantee that transactions complete only once: at
the server, processing the transaction more than once is equivalent to processing
it only once.

To ensure idempotency at the client, the LASTport protocol need only guarantee
that the client receive the response from the server and can pair it with the
correct iteration of the transaction, declaring all other transmissions of the
transaction request obsolete. The LASTport protocol guarantees that, when the
transaction completes at the client, all processing has completed at the server,
and that multiple attempts to complete the same transaction do not endanger
data integrity at the server.

Naturally idempotent procedures, such as access to read-only data, naming
services, and time services, can use the LASTport protocol directly. However,
any service can be structured to be idempotent. For example, end-to-end checks
in the System Application layer can transform nonidempotent operations into
idempotent operations. Some distributed operations that are not idempotent can
be made so by inserting a layer between the procedure and the communication
interface.

2.1.3 Commutative Transactions
Commutative transactions can be completed in any order without introducing
errors in the result. The LASTport protocol requires that all concurrently
executing transactions be commutative. This requirement enables the LASTport
protocol to process multiple transactions concurrently, because transactions can
complete across the session interface in the order that responses arrive. No state
need be maintained to preserve the order of transactions.
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The system application must implement transaction request sequencing,
transaction execution sequencing, and transaction response sequencing. If an
applications’s transactions are commutative, the LASTport protocol supports the
application.†

2.1.4 Transaction Timing
The LASTport protocol uses the variable AsnTransactionResponseTimer
to perform error control during the execution of a transaction. When
initiating a transaction, the client system application sets two values for the
AsnTransactionResponseTimer:

1 The AsnTransactionResponseShortTimer value, which is an initial time limit
for receipt of a Resync Response message or Transaction Response message.
This value is required to determine whether the request message is lost.

2 The AsnTransactionResponseLongTimer value, which is subsequently used as
a time limit for completion of the transaction and can be reset by the server
using Resync Response messages. This value is required because actual
application processing delay can never be known in advance.

In Figure 2–1, the server resets the AsnTransactionResponseTimer to the value of
AsnTransactionResponseLongTimer to indicate a delay in processing Transaction
A and notifies the client with a Resync Response message. The client delays
retransmitting the transaction request.

Figure 2–1 Resync Response Message Notifies Client of Processing Delay
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Note that request and response can be segmented into multiple messages if either
is greater than the maximum LAN packet size. However, request and response
are treated architecturally as two separate atomic message streams. In contrast,
the Resync Response message is always a single message segment that the server
sends to the client to indicate that a transaction is being delayed.

Timer functions for a normal transaction are typically as follows:

1 The client system application specifies the following
AsnTransactionResponseTimer values:

AsnTransactionResponseShortTimer = 3 seconds

† If an application’s transaction requests are not or cannot be made commutative, the
application can specify a TRANS_SLOT value of 1 (see Table 6–14) to ensure that
transactions are processed sequentially.
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AsnTransactionResponseLongTimer = 30 seconds

2 The client issues a transaction request, setting the
AsnTransactionResponseShortTimer value to 3 seconds.

3 If the client’s AsnTransactionResponseShortTimer expires, the client does the
following:

a Resets the AsnTransactionResponseTimer to the value of the
AsnTransactionResponseShortTimer.

b Calls the CircEvent process with a CircPathMaintReq event (see
Table 4–2).

c Reissues the request up to the number of times specified by the
AsnTransRetransmitLimit variable.

d If the transaction is still unsuccessful, the client Association layer declares
an AsnTransFailure event to the system application (see Table 5–2). The
association is then aborted and the corresponding circuit terminated.

4 In response, the Circuit layer calls the AsnClientEvent process with an
AsnCircuitUp or AsnCircuitDown event (see Table 4–3).

• An AsnCircuitUp event causes the transaction to be retried.

• An AsnCircuitDown event causes all underlying associations and all
multiplexed transactions to be asynchronously aborted.

5 If a transaction is delayed at the server beyond
AsnTransactionResponseShortTimer (for example, a large compute-
bound transaction is being processed), the server sets the
AsnTransactionResponseTimer to the AsnTransactionResponseLongTimer
value (30 seconds in this example) and sends a Resync Response message to
the client. This mechanism prevents lengthy server computation from being
aborted by the client reissuing redundant transaction requests. If the server
AsnResyncResponseTimer expires, the server transmits a Resync Response
message to the client and resets the timer.

To avoid unnecessary transaction retries, the server accounts for the transient
delay with the AsnResyncResponseTimer, an architectural constant with a
value of one second.

6 After the server association system application finishes processing the
transaction, the server transmits the response message to notify the client
that the transaction has completed.

2.2 Transaction Identification
The LASTport protocol can accommodate concurrent transactions between a client
and a server and enables transactions to be segmented and sent on the network
as independent packets. The LASTport protocol must therefore include a method
of identifying the packets by transaction. When the Association layer receives
a request from the client system application, the Association layer assigns a
transaction identifier to each transaction. When a node running the LASTport
protocol receives a packet, the node reads the transaction identifier and passes
each packet to its appropriate destination buffer.
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A LASTport transaction identifier enables independent clients to determine the
sequence of operations at a server. In particular, the transaction identifier is used
to detect and correct problems caused by lost or delayed packets. Error handling
is discussed in Section 2.3.

The transaction identifier supports the following semantics:

• Client request semantics. Perform the server procedure at least once or
cause the association to fail. The client specifies the retry interval and the
retry count.

• Client response semantics. Perform the procedure at least once. No
execution at the server occurs after the response is delivered successfully.

• Server request semantics. Perform the procedure exactly once.

• Server response semantics. Return the result of the executing procedure
exactly once.

The transaction identifier has two parts: a transaction slot and a transaction
sequence number. Section 2.2.1 discusses transaction slots, and Section 2.2.2
discusses transaction sequence numbers.

2.2.1 Transaction Slots
Transaction slots are used to differentiate concurrent transactions and can be
thought of as teller windows at a bank. Customers who want to make bank
transactions wait in a queue until a teller is available. The number of tellers
defines the number of transactions that can be performed concurrently. Whenever
a teller becomes available, the teller can serve the next customer in the queue,
even if other customers have not finished performing their transactions with
other tellers.

In the same way, the total number of slots available determines the number
of LASTport transactions that can be performed concurrently over a single
association. Whenever a slot becomes available, the LASTport protocol performs
the next transaction in the queue, even if earlier transactions have not completed.

The client Association layer assigns a transaction slot number in the
transaction request, and the server responds using the same slot number.
Each transaction is assigned to one slot. If transactions must be retried, they are
always retried on the same slot. In other words, if more than one transaction
is being processed, the transactions and their retries are differentiated by slot
number. To continue the bank analogy, each customer in a bank requests a single
teller and receives responses only from that teller.

A slot is implemented as an 8-bit field, and slots are numbered from 1 to 255. The
maximum number of slots at a given time in the system is negotiated between
the client and the server. At the time of solicitation, the server can request that a
smaller number of slots be used for the association.

The client Association layer uses all available slots to perform transactions. If all
slots are full, the Association layer queues the transactions until a slot becomes
available.

Figure 2–2 illustrates two transactions, A and B, that use Slots 1 and 2
concurrently. Note that B completes before A, though B was queued after A.

2–5



Transaction Management
2.2 Transaction Identification

Figure 2–2 Two Transactions Using Two Slots Concurrently
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2.2.2 Transaction Sequence Numbers
A transaction sequence number is an 8-bit field (value 1 to 255) that, along
with the transaction slot number, uniquely identifies a transaction. In the client
Association layer, each transaction slot has a counter to record the current
sequence number. On an initial transaction attempt, the client Association layer
assigns the next available slot number and sequence number. When it receives
the transaction, the server Association layer records the current sequence number
for each slot. Thus, for a normal successful transaction, the sequence number at
both the client and server is always the same.

However, if the intitial transaction attempt fails (for example, if packets are
lost or a transaction timer expires), the client Association layer increments
the sequence number for the transaction slot before retrying the transaction.
Thus, for a transaction retry, the slot number remains the same while the
sequence number is incremented. When it receives the transaction retry with the
incremented sequence number, the server processes this transaction immediately.
To support the guarantee that only viable transactions are completed, the server
remembers the sequence number of the most recent transaction and rejects
transactions with earlier sequence numbers (see Figure 2–3).

2.2.3 Sequence Number Algorithm
A range of forward sequence numbers is defined for each slot at the server as
n + 1 to n + 127, where n is the sequence number of the most recent transaction
processed on that slot.† This range covers half of the 256 possible sequence
numbers. Sequence numbers outside that range are assumed to be from previous
transactions, and such transactions are rejected at the server. To accommodate
the possibility of lost, and therefore, non-sequentially numbered requests, the
server processes any requests in the set of forward sequence numbers.

By identifying and rejecting expired transactions, the LASTport protocol
successfully conserves resources at both the server and the client.

† In the next version of the architecture, the range will be n + 1 to n + (231 + 1).
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2.2.4 Concurrent Transactions
The transaction identifier, with its slot and sequence numbers, enables the
LASTport protocol to handle concurrent transactions, detect errors, and ensure
idempotency of transactions. When a transaction is issued, it is assigned the next
available slot and sequence number. If the transaction must be retried, the slot
number remains the same while the sequence number is incremented.

Figure 2–3 shows that sequence numbers must be incremented when the client
reissues a transaction request. If the numbers are not incremented, recovery
from lost or delayed messages would be impossible, because the server would
execute a request for a transaction that has already been completed. In so doing,
the server would violate the client’s guarantee to the system application that a
transaction is completed once and only once. Therefore, the client uses sequence
numbers to identify an initial transaction request and each retry uniquely. The
client increments the sequence number each time the client reissues a transaction
request.

In Figure 2–3, incrementing the sequence number enables the server to discard
the failed transaction A on Slot 1, Sequence 1, because the server has already
processed the reissued transaction A on Slot 1, Sequence 2. Thus, the client can
guarantee to the system application that the transaction has processed correctly
and will not be reprocessed.

Figure 2–3 Sequence Number Incremented to Recover from Lost Message
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The events shown in Figure 2–3 are as follows:

1 The client issues transaction A on Slot 1, Sequence 1. The request sets the
value of variable A to 4. This transaction is delayed on its way to the server,
and the transaction times out.
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2 The client reissues transaction A using the same slot but increments the
sequence number. The second attempt is issued on Slot 1, Sequence 2 and
completes immediately. The value of variable A at the server is 4.

3 The server returns the response to the client, and the client marks
transaction A as complete. The value of variable A at the client is 4.

4 The client issues transaction B on Slot 2, Sequence 1 and sets variable A to 5.
The server completes the transaction and returns a value of 5 to the client.

5 The delayed transaction A request arrives at the server and is discarded.

Incrementing the sequence number for each transaction attempt, new or repeated,
eliminates the problem of having two transactions with the same transaction
identifier. However, the server must be able to recognize a set of sequence
numbers that are higher than the ones previously received.

2.2.5 Guarantees for Concurrent Transactions
The LASTport transaction identification scheme makes possible the following
guarantees for concurrent transactions:

At the client:

• The client knows which transaction is current on any slot by recording the
transaction identifier, which includes the assigned sequence number.

The client identifies and rejects responses that come from expired
transactions. Expired transactions have transaction identifiers that are
not identical to the current transaction identifier at the client.

• The client knows which transactions are repeated. It always attempts to
receive a response from the server by retransmitting the entire transaction,
but differentiates between transaction versions using the transaction
identifier.

Guarantee:
The client guarantees that once a transaction completes at the presentation
interface, activity associated with the transaction request at the server,
including retries, is complete.

At the server:

• The server knows which transaction identifiers have forward sequence
numbers, thereby minimizing the number of times it attempts to process
expired transactions.

• Because server cannot detmine whether a particular transaction is a
retransmission of a previous transaction, the server treats each valid
transaction it receives as a new transaction.

Guarantee:
The server guarantees that it executes a transaction request only once and
only if the transaction’s sequence number is in the range of forward sequence
numbers. The server’s response to the client guarantees that the transaction
has been processed exactly once.
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2.3 Transaction Error Handling
The LASTport protocol handles the following error conditions:

1 Incomplete transactions

2 Orphan transactions

Incomplete transactions result when packets are lost. Refer to Section 2.3.1 for
a description of this condition. Orphan transactions are completed transactions
that are not current. These are discussed in Section 2.3.2.

All errors are corrected the same way: the client retransmits the entire
transaction to the server.

2.3.1 Incomplete Transactions
Only the client can detect that a transaction has failed and perform error
recovery. If a timer expires and the client has not received the complete response
to a request, the client assumes that packets have been lost and reissues the
transaction. This condition occurs in the following circumstances:

1 A segment of the request is lost on the way to the server. The server waits
for the entire transaction to arrive before executing it; however, the lost
segment never arrives. If the AsnTransactionResponseTimer expires, and the
client has received neither the transaction response nor a resynchronization
message, the client transmits the same transaction on the same slot with
an incremented sequence number. When the server receives this transaction
request with the same slot number but a higher sequence number, the server
deletes the previous request from its buffers and begins to process the current
transaction.

2 The response is completed at the server, but a portion of the response is
lost on its way to the client. The client waits for the rest of the response,
which never arrives. The process timer expires, and the client deletes the
incomplete transaction from its buffers, increments the sequence number, and
reissues the transaction. The server generates another response.

2.3.2 Orphan Transactions
Orphan transactions are a special error category that the LASTport protocol
controls to enable independent clients to determine the sequence of operations
at a server. An orphan transaction is a complete request or response that is no
longer current but is still active in the circuit.

This condition differs from the case in which errors result from lost packets.
When packets are lost in the circuit, the transmission never completes and
retransmitting the original request results in only one response.

In contrast, orphan transactions occur when a request or response is delayed in
the circuit. During the delay, the AsnTransactionResponseTimer at the client
expires, and the client retransmits the request. Both a current version and an
expired version of the transaction exist in the circuit. To ensure that expired
(orphaned) transactions do not endanger data integrity, the LASTport protocol
implements special policies to detect orphan transactions both at the server and
at the client.
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At the server:
A transaction is an orphan at the server if the sequence number is not within the
range of forward sequence numbers for that slot.

Typically, the first transaction request is delayed on its way to the server, and the
client retransmits the request using the same slot and an incremented sequence
number. The server processes and returns the second request to the client. The
delayed first request arrives at the server after the server has processed and
returned the second request. Because the delayed first request has the same slot
number as the already processed second request but a lower sequence number,
the server rejects the first request.

At the client:
As shown in Figure 2–4, a transaction is an orphan at the client if the
transaction’s sequence number is not equal to the sequence number of the current
request on a specific slot. Note that the sequence number is incremented at each
retry so that the client can distinguish the response to the most recent request
from responses to previous requests.

Figure 2–4 Orphan Transaction at the Client with Delayed Response
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The events shown in Figure 2–4 are as follows:

1 The client issues transaction A on Slot 1, Sequence 1.

2 The server processes the transaction and returns it on Slot 1, Sequence 1, but
the transaction is delayed in transmission.

3 The client times out on transaction A, Slot 1, Sequence 1, because the client
received neither a response nor a resynchronization message from the server
for this transaction. The client reissues transaction A on Slot 1, Sequence 2.

4 The server processes the transaction because Sequence 2 is a forward
sequence number. The server transmits the response to the client.
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5 The transaction results from Slot 1, Sequence 1 arrive at the client before the
results from Slot 1, Sequence 2.

6 The client discards the data that arrives on Slot 1, Sequence 1, because
Sequence 1 is not the most recent request on Slot 1. The client waits for the
response on Slot 1 that is labeled Sequence 2.

7 When the transaction on Slot 1, Sequence 2 arrives, the client marks the
transaction as complete.

Note that if the client completed the transaction at step 5, independent clients
could not determine the sequence of operations at the server. That determination
would be impossible, because the requent generated at step 3 would be valid and
would execute successfully at the server any time after the transaction completed
in step 5.

2.4 Summary of Transaction Processing Operations
The LASTport protocol processes transactions in three phases:

1 Association start (solicit and connect to service)

2 Data transfer

3 Association disconnect

To illustrate the interaction of the Solicitation, Association, and Circuit layers
during normal transaction processing, Sections 2.4.1 through 2.4.3 describe the
operations performed in each phase.

2.4.1 Association Start
To start an association, the LASTport protocol performs the following operations:

1 Solicits a service

The system application on a client instructs the Solicitation layer to locate
a service on the network. In this case, a user wants to mount the device
represented by the Service Name ONLINE_DOC.

Using all available adapters, the client Solicitation layer multicasts a Solicit
Request message to the stations on the network.

2 Responds to the service request

A server that offers the service ONLINE_DOC responds with a Solicit
Response message to the client Solicitation layer. The message includes the
network address of the ONLINE_DOC service.

The client Circuit layer records all paths on which Solicit Response messages
are received and stores them in the event that a circuit is established. This
information is purged periodically.

The client Solicitation layer passes the location of the service to the system
application.

The client system application evaluates all the responses, selects the preferred
service, and passes its location to the Association layer.

3 Creates a circuit for the association

The Association layer sends a request to the Circuit layer to create a circuit
with the server node. In this example, it is assumed that a circuit does not
already exist.
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The client Circuit layer sends a Start message to the server, and the server
responds with a Stack message.

Once the circuit is established, the client Circuit layer notifies the client
Association layer that the circuit is up.

If a circuit already exists between the client and the server when the client
Association layer requests the client Circuit layer to create a circuit with the
server, the Circuit layer immediately responds that the circuit is up and does
not issue a Start message.

4 Connects to the service

The client Association layer sends a Connect Request message to the server
to establish an association.

When the server sends a Connect Response message, the connection is
established over the circuit.

The client Association layer notifies the system application that the
connection is established. The association is started, and data can now
be processed.

2.4.2 Data Transfer
The following operations assume that the client system application writes data to
the server.

The system application allocates buffer space for the expected response and then
requests the client Association layer to perform a transaction. The application
supplies both the data to be passed to the server and the address of a buffer
for the response. Note that passing the buffer address to the Association layer
eliminates the need for a buffer copy between the system application and the
Association layer.

To transfer data, the LASTport protocol performs the following operations:

1 Identifies the transaction

The client Association layer assigns a transaction identifier to the transaction.
The transaction identifier uses slot and sequence numbers to identify all
messages belonging to a particular transaction. Both the client requests and
server responses carry the identifier.

2 Segments the data if necessary

If necessary, the client Association layer divides the transaction data into
segments. Each segment carries both the transaction identifier and a
segment number. The segment number identifies the position of that
segment in the transaction and is used to reassemble a transaction once the
transaction packets reach the destination node.

The segments are numbered 1 of n, 2 of n, ....n of n, and so on, where variable
n is the total number of segments. For example, a segment number might
identify a segment as number 5 of 9 segments. If the transaction can be
sent within one network frame, the transaction is not segmented, but it still
carries a segment number such as number 1 of 1.

Each transaction packet is therefore uniquely identified. The slot number
identifies the entire transaction, the sequence number identifies the iteration
of that transaction, and the segment number identifies the position of that
packet within the entire transaction.
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This identification mechanism enables the LASTport protocol to perform
concurrent transactions and to send packets across all available paths. When
a packet arrives at a node, the Association layer has the information to
determine the following:

• The transaction to which the packet belongs

• The status of the transaction, which is either current or obsolete

• The placement of the packet within the transaction

3 Transmits the data

The client Association layer passes the segments to the Circuit layer and
starts a timer to monitor the transaction.

The client Circuit layer transmits the packets. As a result of the solicitation
process, the Circuit layer is aware of all known paths to the server. Packets
using this circuit can be multiplexed across all available paths.

If there is more than one packet, and more than one path is available, the
circuit load-balances the packets across the available paths.

If the client receives neither a response nor a request for resynchronization
before the timer expires, the Association layer resends the entire transaction.
Section 2.3 describes the conditions for repeating transactions.

4 Resegments (reassembles) the data

The server Circuit layer receives the packets and passes them to the
Association layer for processing.

Until the first segment arrives, the server does not know the size of the
transaction. Rather than allowing the Association layer to reassemble the
entire transaction and copy it to the system application, the LASTport
protocol performs the following operations:

a As the segments arrive at the server Circuit layer, the Circuit layer
passes each packet to the Association layer in order of arrival.

b The server Association layer buffers the segments until it receives the
first segment, number 1 of n, or eventually discards the transaction
request. The first segment contains information about the total size of
the request. The Association layer passes segment number 1 of n to the
system application.

c The system application allocates adequate buffer space and passes the
address of the buffer to the Association layer. Reassembly of message
data in the buffer can now proceed in arbitrary message order.

d The server Association layer reassembles the message into sequential
order in the system-level buffer and notifies the system application
when reassembly is complete. Note that if some segments are lost, the
Association layer eventually notifies the server that the transaction has
been aborted.

The system application can now process the transaction data.

5 Transmits a response

The server system application passes the response data to the server
Association layer.
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The server Association layer identifies the transaction by using the same
transaction identifier that was assigned by the client. If the response is
larger than one network frame, the response is segmented as described in
Section 2.1.4. Segments are passed to the Circuit layer.

The server Circuit layer distributes the segments across all available paths,
thus making efficient use of the available bandwidth.

Note that the server never sends the client an acknowledgment message for
the request, thereby conserving network bandwidth for request and response
messages containing data.

6 Resynchronizes the transaction if necessary

If the client system application does not respond within the time allowed by
the client request, the server issues a resynchronization message to the client.
This message is an important exception to the rule that all transactions
take place in pairs. The message informs the client that the transaction is
processing but will take longer than the time allotted by the client. The client
then resets its timer for that transaction. The resynchronization message
prevents the client from sending the server redundant requests that would
unnecessarily consume server resources.

7 Processes the response data

The response data arriving at the client is passed from the Circuit layer
to the Association layer in the order the packets are received. The client
Association layer reassembles the response data in the buffer that the system
application supplied at the beginning of the transaction.

Rather than buffering segments until it receives number 1 of n, as the server
does, the client Association layer immediately reassembles the segments in
the available buffer at the system application level. The client can do this
because the client system application allocated buffers for the response when
it issued the request, and because all segments except the final one are equal
in length. Because the LASTport protocol need not buffer response data in
system buffers, latency of individual transaction operations decreases, and
the number of simultaneously supported associations increases.

2.4.3 Association Disconnect
To disconnect (release) an association, the LASTport protocol performs the
following operations:

1 Initiates the disconnect

The client system application notifies the client Association layer that it
wants to disconnect from the server. The client Association layer constructs
a Disconnect Request message and passes it to the Circuit layer for
transmission to the server.

When the server receives the request, the server Association layer notifies the
server system application.

2 Disconnects the server

The server system application notifies the Association layer that it is
disconnected and transmits any response data related to the disconnection.

The server Association layer constructs a Disconnect Response message to
confirm the disconnection and passes the message to the Circuit layer for
transmission to the client.
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3 Disconnects the client

When the client receives the Disconnect Response message, the client
Association layer notifies the system application that the response to the
disconnect request has arrived.

The Association layer also notifies the Circuit layer that the association
has been disconnected. If this was the only association using the circuit,
the circuit is terminated. If there are other associations still active on that
circuit, it remains active.
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3
Solicitation Operations

The Solicitation layer provides a combined service for directory operations,
association management, and task naming.

This chapter discusses Solicitation layer operations. Topics include the following:

• LASTport naming service

• Solicitation work groups

• Solicitation event processing

3.1 LASTport Naming Service
Naming services are critical to the LASTport architecture. The LASTport naming
service uses Advertisement, Solicit Request, and Solicit Response messages to
enable client applications to find services offered by servers on the LAN. The
naming service assumes that a LAN-based multicast service is available and
requires participation by the systems on which the clients and servers reside.
Servers multicast Advertisement messages to advertise node-specific services
to their potential clients. Clients find services by multicasting Solicit Request
messages to all servers on the LAN.

To ensure that all potential servers hear requests, clients transmit requests on
all available adapters. Any server that offers the requested service answers
the client with a Solicit Response message addressed back to the requesting
node’s physical address. If the client receives several responses to a Solicit
Request message, the client selects the response that offers the best service. If
no Solicit Response message is received, Solicit Request messages can require
retransmission.

The Advertisement, Solicit Request, and Solicit Response messages have the
same basic format but differ in the MSG_TYPE field in the circuit message
header (see Chapter 6). The Solicit Request and Solicit Response messages are
also used to maintain circuit topology, as described in Chapter 4.

Note

The LASTport architecture accommodates third-party general naming
services. However, such services have the following drawbacks:

• They can drain resources.

• They can prevent integrating the association with the LASTport
naming service.
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3.1.1 Solicit Request Message
Solicit Request messages are directed to a particular server application. A client
application addresses its Solicit Request message to a set of server applications
on the LAN by specifying a particular Service Class. When the Solicitation
layer receives a Solicit Request message, the message is parsed, and all the
information in the message is passed to the server application. The server
application searches its database and responds if it offers the requested service.
To ensure that all the servers on the LAN receive the request, Solicit Request
messages are transmitted on all adapters.

3.1.2 Solicit Response Message
Although the Solicit Request message is multicast to an entire Service Class, the
message receives, at most, a small number of replies. The server transmits the
Solicit Response message on the same adapter that received the Solicit Request
message. The Solicit Response message is transmitted directly to the requesting
node and is not multicast.

When the server Solicitation layer generates a Solicit Response message, the
REQUEST_SEQUENCE field from the Solicit Request message is copied to the
same field in the Solicit Response message (see Table 6–8).

3.1.3 Solicitation Response Policies
The system application must negotiate a dally protocol for Solicit Response
messages. For example, the LAD architecture defines a range in which messages
can be randomly transmitted. For more information, refer to the Local Area Disk
Architecture Specification document.

3.2 Solicitation Work Groups
The LASTport architecture supports segmenting networks into classes of nodes
by labeling each client and server with a work group code. These work group
codes determine the subset of nodes that participate in the naming service. The
Solicitation layer defines work group codes to multicast messages to a subset of
the servers on the LAN, thus using the available bandwidth more efficiently.

For example, assume that LASTport nodes exist on either side of a point-to-point
synchronous bridge. Creating a work group on each side of the bridge allows
multicast addresses to be filtered by the bridge.

A member of a group transmits and receives a particular multicast address on the
LAN. LASTport nodes can be members of several or all groups simultaneously.
The LASTport architecture defines 1023 separate groups.

The LASTport protocol uses the multicast addresses 09–00–2B–04–00–00 through
09–00–2B–04–FF–FF for work groups. The work group code is added to the last
two bytes of a multicast address. Table 3–1 shows the order in which the bytes
must appear on the wire.
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Table 3–1 Codes for Work Groups

Work Group Multicast Address

0 (default) 09–00–2B–04–00–00

1 09–00–2B–04–01–00

2 09–00–2B–04–02–00

15 09–00–2B–04–0F–00

100 09–00–2B–04–64–00

512 09–00–2B–04–00–02

1023 09–00–2B–04–FF–03

1024–65535 Reserved

When a Solicit Request message is transmitted, it is sent to all the multicast
addresses that correspond to the work group or groups of which the node is a
member. Only servers in these work groups have these multicast addresses
enabled and are the only nodes to receive the Solicit Request message.

3.3 Solicitation Event Processing
The Solicitation layer has two states at the client (listed in Table 3–2) and is
stateless at the server. A state can change when local events occur or when a
message is received from a system application.

Table 3–2 Client Solicitation States

State Description

Halted A solicitation is either inactive or does not exist.

Running A solicitation is active.

A solicitation moves through the defined states by processing events. Events are
either generated locally or in response to a message from a system application.
Tables 3–3 through 3–5 list Solicitation layer events.

Table 3–3 Events Processed by the Client Solicitation Layer

Event Description

SolReqMsgSend Declared by the client system application to generate a Solicit
Request message. The client system application must supply
the length of time to wait for Solicit Response messages.

SolRspMsgRcv Generated when a Solicit Response message is received.

SolTimeout Generated when the solicit period ends.

SolCancelReq Declared by the client system application to terminate the
solicitation process.
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Table 3–4 Events Processed by the Server Solicitation Layer

Event Description

SolReqMsgRcv Generated when the server receives a Solicit Request message.

SolRspMsgSend Declared by the server system application after receiving a
Solicit Request message. The server system application then
generates a Solicit Response message.

Table 3–5 Events Generated by the Solicitation Layer

Event Description

AppSolReqMsgRcv Declared by the server Solicitation layer to the server system
application to indicate that a Solicit Request message needs to
be processed.

AppSolRspMsgRcv Declared by the client Solicitaion layer to the client system
application to indicate that the client received a Solicit
Response message.

AppSolTimeout Declared by the client Solicitation layer to the client system
application to indicate that the solicit period has ended.

3.3.1 Solicitation Timer
The Solicitation layer uses a timer called SolicitResponseTimer to control the
listening period during which Solicit Response messages are passed to the client.
The length of this timer is set when the client starts the solicit process. The
Solicitation layer passes all solicit responses to the client application until the
SolicitResponseTimer expires. After the timer expires, the client ignores Solicit
Response messages for the particular Solicit Request message.

3.3.2 Solicitation Processes
To manage state transitions, the Solicitation layer uses the following processes:

• SolClientRcv

• SolClientEvent

• SolClientTimer

• SolServerRcv

• SolServerEvent

Sections 3.3.2.1 through 3.3.2.5 describe these processes. The processes rely on
the Solicitation Context Block (SCB) data structure, which holds the state and
context of each solicitation. For example, the SolClientTimerProcess described in
Section 3.3.2.3 uses the SCB to point to the system application’s Session State
Block (SSB), which contains association data. Note that the following process
pseudocode examples do not provide all details and are intended only as rough
guidelines. Note further that the ‘‘sysApp’’ prefix refers to the current system
application.
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3.3.2.1 SolClientRcv Process
The SolClientRcv process is called by the SolClientEvent process to notify
the Solicitation layer when messages arrive and to effect appropriate state
transitions. The process performs actions shown in the following pseudocode
example.

void SolClientRcv(event, message, scb)
int event;
SolicitMessage *message;
SCB *scb;
{

/*
* Call SolClientEvent process to determine actions to be performed.
*/

SolClientEvent(event, message, scb);
}

3.3.2.2 SolClientEvent Process
The SolClientEvent process is called by the SolClientRcv process and recursively
to generate the solicitation protocol.

The process uses the current state and the events shown in Table 3–6 to identify
the new state. (For example, if the current state is Halted and the event is
SolReqMsgSend, the new state is Running.) The process then extracts the new
state, updates the SCB with this state, and executes actions indicated by the
callout (for example, !). These actions are described following the table. A dash
(—) indicates that no action is required.

The SolClientRcv process performs actions shown in the following pseudocode
example.

void SolClientEvent(event, message, scb)
int event;
SolicitMessage *message;
SolicitContextBlock *scb;
{

int newState;
int (*actionRoutine)( );

/*
* Using state table, retrieve new state and action routine.
* Call action route to start or continue protocol message exchanges.
*/

newState = solicitClientStateTable[event, scb–>state].newState;
actionRoutine = solicitClientStateTable[event, scb–>state].actionRoutine;
scb–>state = newState;

(*actionRoutine)(message, scb, ...);
}
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3.3.2.3 SolClientTimer Process
The SolClientTimer process is called by the operating system once each second.
The process performs actions shown in the following pseudocode example.

void SolClientTimer( )
{

/*
* For each outstanding solicitation request, decrement time
* remaining to wait for responses.
*/

scb = scbListHead;
while ((scb !=NULL)
{

scb–>SolicitResponseTimer-- ;
if (scb–>SolicitResponseTimer = = 0))
{
/*
* When timer expires, notify system application that
* solicitation process has completed.
*/

sysAppClientEvent(SolTimeout, scb–>ssb);
}
scb = scb–>next;

}
}

3.3.2.4 SolServerRcv Process
The SolServerRcv process is called by the SolServerEvent process to notify the
Solicitation layer when messages arrive. The process performs actions shown in
the following pseudocode example.

void SolServerRcv(event, message, scb)
int event;
SolicitMessage *message;
SCB *scb;
{

if (message–>SERVICE_CLASS = = 0)
{

CircRcv(message, scb–>CircuitId, scb–>nodeId);
}
else
{

/*
* Call SolServerEvent process to determine actions to be performed.
*/

SolServerEvent(event, message, scb);
}

}
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3.3.2.5 SolServerEvent Process
The SolServerEvent process is called by the SolServerRcv process and recursively
to generate the solicitation protocol. The SolServerRcv process performs actions
shown in the following pseudocode example.

void SolServerEvent(event, message, scb)
int event;
SolicitMessage *message;
SolicitContextBlock *scb;
{

int newState;
int (*actionRoutine)( );

/*
* Using state table, retrieve new state and action routine.
* Call action routine to start or continue protocol message exchanges.
*/

sysAppServerSolicitRcv(message)
}

3.3.3 Solicitation Client State Transitions and Server Actions
Table 3–6 shows client events and resulting state transitions. Callouts indicate
any actions that result.

Table 3–6 Solicitation Client Events and Resulting State Transitions

Current State

Halted Running

Events

SolReqMsgSend Running ! —

SolRspMsgRcv Halted Running "

SolTimeout — Halted #

SolCancelReq — Halted

Actions for the state transitions shown in Table 3–6 are as follows:

! Generate a Solicit Request message (see Table 6–8) based on data supplied
with the SolReqMsgSend event.

Start the SolicitResponseTimer to measure the solicitation period.

" Parse the Solicit Response message (see Table 6–8) and call the targeted
client system application with an AppSolRspMsgRcv event.

# Call the client system application with a SolTimeout event.

Table 3–7 shows server events and actions.
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Table 3–7 Solicitation Server Events and Actions

Event Action

SolReqMsgRcv Parse the Solicit Request message (see Table 6–8) and call the
targeted server system application with an AppSolReqMsgRcv
event.

SolRspMsgSend Generate a Solicit Response message (see Table 6–8) based on
data supplied with the SolRspMsgSend event.
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4
Circuit Operations

The Circuit layer performs the following functions:

• Defines and maintains circuit topology.

• Detects new instances of nodes or node paths and forces the higher layers to
resynchronize when nodes crash and reboot.

• Distributes message segments across all possible paths between the source
and destination nodes — a process called load balancing. A maximum of one
circuit at a time can exist between any node pair.

• Provides a simple form of rate–based congestion control (see Section 4.4).

Because the Association layer determines the policy for detecting duplicate
messages and retransmitting messages. The Circuit layer does no error
correction, message sequencing, or duplicate detection.

This chapter discusses the following topics:

• Circuit topology

• Circuit states

• Circuit event processing

• Congestion control

4.1 Circuit Topology
Before an association is created between a client and a server, the client Circuit
layer must establish a circuit to the server. The client system application locates
the server by using the solicitation services described in Chapter 3.

During the solicitation process, the LASTport protocol uses Solicit Request and
Solicit Response messages to map the paths between client and server. The set
of network paths connecting the client and server forms the circuit topology.
This topology can change depending on which paths (logical links) and network
adapters are available at a given time.

Figure 4–1 shows a general-case complex topology.
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Figure 4–1 General-Case Complex Topology
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In Figure 4–1, the numbers 1 to 9 are network physical address instances in the
Data Link layer. Usually, each node address corresponds to a single system, but
a system can implement multiple-node service access points.

Notice that all paths are logically point to point. Any environment that requires
OSI Layer 3 Network functions (see Figure 1–7) must use bridges so that all
paths remain logically point to point.

A path consists physically of two controllers and one network segment. Thus,
in Figure 4–1, nodes X and Y can communicate with all other nodes, and nodes
Z and A can communicate with nodes X and Y. But there is no way for nodes Z
and A to communicate using the LASTport architecture. Support for the topology
shown in Figure 4–1 might be viewed as a network layer function, but because
of the simplifying assumptions made, it is represented here as a function in the
transport layer.

4.1.1 Path Maintenance
Path maintenance is the process of determining which paths remain viable
between a client and server after the solicitation process completes. A circuit is
maintained as long as messages arrive on a path during a timed interval.

The client and server follow the same protocol for maintaining the circuit
topology. In general, the client Circuit layer builds a list of available paths based
on the responses from the solicitation process and load-balances the packets over
all paths.

Path failures are detected at either the client or server Association layer when a
transaction fails to complete because of missing packets. The Association layer
informs the Circuit layer that a failure occurred, forcing the Circuit layer to
perform a path maintenance procedure.

The Circuit layer sends a special Solicit Request message (with SERVICE_CLASS
equal to zero) to the destination node on all available paths, and the destination
node responds. The source node rebuilds the topology based on the responses to
the special solicitation. To recover from the error, the entire failed transaction is
repeated.

Note that LASTport path maintenance does not involve identifying the failed
path and resending a particular packet. The LASTport protocol resolicits the
remote node to identify currently available paths and resends the transaction
on those paths. The LASTport protocol takes no action to restore a path or to
test a path: any message that arrives at its destination confirms that a path is
available. Occasionally, new paths are discovered as advertisement messages
arrive from nodes with active associations.
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4.1.2 Path Availability
By supporting multiple paths between client and server, the LASTport Circuit
layer achieves the following goals:

• Increases availability by allowing messages to arrive at the destination over
multiple paths. Individual paths are free to transmit again as soon as they
are available and can fail without affecting applications.

• Increases bandwidth between any single node and the network by
transmitting messages concurrently, using all adapters through which
the destination node can be reached.

• Decreases latency of individual transaction operations by splitting messages
into segments that travel across all available paths.

As shown in Figure 4–1, multiple paths are created in the following ways:

• A client or server can be redundantly connected to the LAN. For example, a
client is redundantly connected when it has two adapters connected to the
same LAN. If either adapter fails, communications can continue.

• Clients and servers can be connected redundantly to separate LAN segments.
For example, a server has one adapter on each of two LAN segments. If
either adapter fails, or if either segment fails, communications can continue.

Each LASTport circuit is associated with all possible paths over which messages
can be transmitted successfully to the destination node, so that a node can receive
messages from remote nodes that have different data link source addresses. For
instance, in Figure 4–1, messages transmitted from node X to node Y can be
received from LAN address 3 or address 6.

4.2 Circuit States
A circuit can be in one of the states described in Table 4–1. The circuit can
change state when local events occur or when it receives a message from a remote
node.

Table 4–1 Circuit States

State Description

Halted A Circuit is either inactive or does not exist.

Started A Circuit is being started. The client node is waiting for the server to
acknowledge a Start message.

Stack Sent A Circuit is being started. The server node has sent a Stack message and
is waiting for a Run message to enable circuit transition to the Running
state.

Running A Circuit is active. Associations can use the circuit.

4.3 Circuit Event Processing
The Association layer and the Circuit layer communicate with events. The
Association layer declares events to the Circuit layer to start and stop circuits
and to perform path maintenance. The Circuit layer declares events to the
Association layer to indicate circuit up and circuit down events. By processing
events, a circuit passes through the states defined in Table 4–1.
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Because the Circuit layer cannot detect transaction or path failures, the
Association layer must notify the Circuit layer to perform path maintenance.
When a transaction fails more than once, the Association layer notifies the Circuit
layer with an AsnTransFailure event on a particular circuit. This event causes
the Circuit layer to perform path maintenance, verifying all paths between the
client and server.

Table 4–2 describes events processed by the Circuit layer; Table 4–3 describes
events generated by the Circuit layer and passed to the Association layer.

Table 4–2 Events Processed by the Circuit Layer

Event Description

CircCreate Declared by the Association layer to create a circuit to a
server. If a circuit to the targeted server already exists, the
Circuit layer need not create the circuit.

CircTerminate Declared by the Association layer to indicate that an
association is finished using a circuit. Once all the
associations using a circuit delcare a halt event, the Circuit
layer can terminate the circuit.

CircRunMsgSend Declared by the client Association layer to send a Run
message.

CircCreateTimeout Indicates that a Start message must be sent to the server.
The server failed to send a Stack message in response to a
previous Start message.

CircKeepaliveTimeout Indicates that the client Circuit layer must send a Solicit
Request message (with SERVICE_CLASS equal to zero)
to the server. The server responds with a Solicit Response
message to indicate that it received the request. The purpose
of this exchange is for the client and server to acknowledge
that they are both still up. This event occurs only when the
circuit has been idle.

CircTimeout Indicates that no messages have been received on this circuit
in the time set by the negotiated progress timer. The circuit
is terminated.

CircPathMaintReq Declared by the client Association layer to indicate that a
Data Request message did not generate a Data Response or
Resync Response message in the negotiated time limit. This
event causes path maintenance to occur on the circuit.

CircPurgeAllPaths Declared by the CircRcv process to direct the Circuit layer to
delete all known paths.

Table 4–3 Events Generated by the Circuit Layer

Event Description

CircStartMsgRcv Generated when a Start message is received.

CircStackMsgRcv Generated when a Stack message is received in response to a
Start message.

CircStopMsgRcv Generated when a Stop message is received. A Stop message
terminates the circuit and all associations using the circuit.

(continued on next page)
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Table 4–3 (Cont.) Events Generated by the Circuit Layer

Event Description

CircRunMsgRcv Generated when a Run message is received at the Circuit
layer. Run messages are passed to the association layer.

CircSolReqMsgRcv Generated when a Solicit Request message is received with
SERVICE_CLASS equal to zero.

CircAdvMsgRcv Generated when an Advertisement message is received with
SERVICE_CLASS equal to zero.

CircSolRspMsgRcv Generated when a Solicit Response message is received with
SERVICE_CLASS equal to zero.

AsnCircuitUp Notifies the Association layer that a circuit is up.

AsnCircuitDown Notifies the Association layer that a circuit is down.

4.3.1 Circuit Timers
The Circuit layer uses timers for error control. Timers are used to retry delivering
the data and to abort an attempt to communicate between the client and server.
Table 4–4 describes circuit timers events.

Table 4–4 Circuit Layer Timers

Timer Function

CircCreateTimer Notifies the client when to send a Start message to the server.

CircKeepaliveTimer Notifies the client when to send a Solicit Request message to
the server in order to maintain connectivity. Note that this
timer is one-third of the PROGRESS_TIMER value negotiated
in the Start/Stack message exchange.

CircDownTimer Notifies the client that a circuit has timed out.

4.3.2 Circuit Processes
To manage state transitions, the Circuit layer uses the following processes:

• CircRcv

• CircEvent

• CircTimer

• CircPathMaintReq

• CircPathMaintRsp

Sections 4.3.2.1 through 4.3.2.5 describe these processes. he processes rely on the
Circuit State Block (CSB) data structure, which contains the state and context of
each circuit. Note that the accompanying pseudocode examples do not provide all
details and are intended only as rough guidelines.
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4.3.2.1 CircRcv Process
The CircRcv process is called by the Data Link layer receive process to deliver
LASTport packets to the Circuit layer. The process performs actions shown in the
following pseudocode example.

Note

Some memory optimizations can be implemented when storing other
nodes in the NDB cache. For example, client-only implementations need
only store servers, because they never connect to other clients.

void CircRcv(message, circuitId, nodeId)
CircuitMessage *message;
char circuitId;
char nodeId[6];
{

NDB *ndb;
SolicitMessage solicitmessage = message + sizeof(circuitMessageHeader);
CSB *csb;

/* For each message received: */

NDB = findNDB(nodeId);
if (ndb = = 0)
{

CreateAndInitNdb(nodeId, message, CSB);
}
else
{

/* Validate circuit header fields with NDB values. */

if (CheckCircuitHeader(ndb, message) = = FALSE)
{

CircEvent(CircHalt,message, nodeId, csb);
return;

}
}
csb = ndb–>csb;
ResetTimer(csb–>CircDownTimer);
ResetTimer(csb–>CircCreateTimer);
AddPathToCircuit(circuitId, csb);

/* For each message type, call CircEvent process with appropriate event. */

switch (message–>type)
{

case Start:
CircEvent(CircStartMsgRcv, message, nodeId, csb);
break;

case Stack:
CircEvent(CircStackMsgRcv, message, nodeId, csb);
break;
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case Run:
CircEvent(CircRunMsgRcv, message, nodeId, csb);
break;

case Solicit:
if (solicitmessage–>flags & PurgeAllPaths) = = 0)

CircEvent(CircSolReqMsgRcv, message, nodeId, csb);
else

CircEvent(CircPurgeAllPaths, message, nodeId, csb);
break;

case Advertisement:
case SolicitResponse:

if (csb–>commandFailure > 0)
{

csb–>commandFailure = 0;
AsnClientRcv(AsnCircuitUp, NULL, nodeId, csb–>ndb);

}
break;

}
}

4.3.2.2 CircEvent Process
The CircEvent process is called by the CircRcv process and recursively to generate
the circuit protocol.

The process uses the current state and the events shown in Table 4–5 to identify
the new state. (For example, if the current state is Started and the event is
CircHalt, the new state is Halted.) The process then extracts the new state,
updates the CSB with this state, and executes actions indicated by the callout
(for example, %). These actions are described following the table. A dash (—)
indicates that no action is required.

The CircEvent process performs actions shown in the following pseudocode
example.

void CircEvent(event, message, nodeId, csb)
int event;
SolicitMessage *message;
char nodeId[6];
CSB *csb;
{

int newState;
int (*actionRoutine)( );

/*
* Using state table, retrieve new state and action routine.
* Call action route to start or continue protocol message exchanges.
*/

newState = circuitStateTable[event, csb–>state].newState;
actionRoutine = circuitStateTable[event, csb–>state].actionRoutine;
csb–>state = newState;
(*actionRoutine)(message, csb, ...);

}

4–7



Circuit Operations
4.3 Circuit Event Processing

4.3.2.3 CircTimer Process
The CircTimer process is called by the operating system once each second. The
process performs actions shown in the following pseudocode example.

void CircTimer( )
{

CSB *csb = csbListHead;

/*
* For each circuit starting or running, perform maintenance
* on its timers.
*/

while (csb != NULL)
{

if ((csb–>circuitState = = Started)
or (csb–>circuitState = = StackSent))

{
csb–>CircCreateTimer-- ;
if (csb–>CircCreateTimer = = 0)
{

csb–>StartRetransmitCounter ++;
if (csb–>StartRetransmitCounter = = csb–>StartRetransmitLimit)
{

CircEvent(CircStartFailed, message, nodeId, csb);
}
else
{

CircEvent(CircCreateTimeout, message, nodeId, csb);
}

}
}

if (csb–>circuitState = = Running)
{

csb–>CircKeepaliveTimer-- ;
if (CircKeepaliveTimer = = 0)
{

CircEvent(CircKeepaliveTimeout, message, nodeId, csb);
}
csb–>CircDownTimer-- ;
if (CircDownTimer = = 0)
{

CircEvent(CircTimeout, message, nodeId, csb);
}

}
csb = csb–>next;

}
}
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4.3.2.4 CircPathMaintReq Process
The CircPathMaintReq process is called by the CircEvent process if path
maintenance is required by the Association layer after several transaction
failures. The process performs actions shown in the following pseudocode
example.

void CircPathMaintReq(event, message, nodeId, csb)
int event;
char *message;
char nodeId[6];
CSB *csb;
{

SolicitMessage *solicitMessage;

/*
* CircRcv process resets timer or forces Path Maintenance Response.
*/

csb–>CircDownTimer = PathMaintTimeout;
csb–>commandFailure ++;
if (csb–>commandFailure > 1)
{

PurgeAllPaths(csb);
csb–>solicitId ++;
/*
* Table 6–8 describes Solicit message fields.
*/

solicitMessage = constructSolicitMessage(csb, PurgeAllPaths);

SendSolicitOnAllPaths(solicitMessage, LastportMulticastAddress);
}

}

4.3.2.5 CircPathMaintRsp Process
The CircPathMaintRsp process is called by the CircEvent process to generate
messages that maintain the circuit topology. The process performs actions shown
in the following pseudocode example.

void CircPathMaintRsp(event, message, nodeId, csb)
int event;
SolicitMessage *message;
char nodeId[6];
CSB *csb;
{

AdvertisementMessage *advertisementMessage;

/*
* Compare Solicit ID stored in CSB with Solicit ID in received message.
*/

if (message–>solicitId = = csb–>solicitId)
{

AddPathToCircuit(message, csb);
}
else
{

csb–>solicitId = message–>solicitId;
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PurgeAllPaths(csb)
AddPathToCircuit(csb);
advertisementMessage = constructAdvertisementMessage(csb);

SendMessageOnAllPaths(advertisementMessage,
LastportMulticastAddress);

}
}

4.3.3 Circuit State Transitions
An event can, but does not always, change a circuit’s state. Using the states
defined in Table 4–1 and the events defined in Table 4–2, Table 4–5 shows the
new states that can result from the occurrence of each event in each state.

Table 4–5 Circuit Events and Resulting State Transitions

Current State

Halted Started Stack Sent Running

Command Events

CircCreate Started ! Started +A Stack Sent +A Running (

CircTerminate — Started # Stack Sent # Running #

CircHalt Halted Halted % Halted % Halted %

Message Events

CircStartMsgRcv Stack Sent " Stack Sent +B Stack Sent +B Halted %

CircStackMsgRcv — Running ) Running ) Running

CircRunMsgRcv — Started Running +C Running $

CircSolMsgRcv — — — Running +E

CircAdvMsgRcv — — — Running

CircSolRspMsgRcv — — — Running

CircStopMsgRcv — Halted +? Halted +? Halted +?

CircRunMsgSend — — — Running &

Timer Events

CircCreateTimeout — Started +> Stack Sent +B Running

CircKeepaliveTimeout — — Stack Sent +@ Running +@

CircTimeout — — Halted % Halted %

Path Maintenance Events

CircPathMaintReq — — — Running '

CircStartFailed — Halted +? — —

CircPurgeAllPaths — — — Running +D

Actions for the state transitions shown in Table 4–5 are as follows:

! Allocate a CSB for the new circuit.

Assign a unique circuit ID to represent this circuit.

Bind the association to the CSB.
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Increment the reference count in the CSB.

Construct a Start message, initializing appropriate message fields (see
Table 6–2).

Construct a circuit message header for the Start message, initializing
appropriate message fields (see Table 6–1) and send the message to the target
node.

Enable the CircCreateTimer to indicate when a Start message needs to be
transmitted.

" Initialize a CSB.

Increment the reference count in the CSB.

Construct a Start Acknowledgement (Stack) message, initializing appropriate
message fields (see Table 6–2).

Construct a circuit message header for the Stack message, initializing
appropriate message fields (see Table 6–1), and send the message to the
target node.

# Decrement the reference count in the CSB.

If the count is zero, call the CircEvent process with the CircHalt event.

$ Call the AsnClientRcv process with the AsnRunMsgRcv event message and
NDB.

% Construct a Stop message, initializing appropriate message fields (see
Table 6–7).

Construct a circuit message header for the Stop message, initializing
appropriate message fields (see Table 6–1), and send the message to the
target node.

For each association bound to the circuit, call the AsnClientRcv or
AsnServerRcv process with the AsnCircuitDown event.

Return all resources.

& Construct a circuit message header for the Run message, initializing
appropriate fields (see Table 6–1) and transmit the Run message.

Reset the CircKeepaliveTimer.

' Call the CircPathMaintReq process.

( Bind the association to the CSB.

Increment the reference count on the CSB.

Call the AsnClientRcv or AsnServerRcv process with the AsnCircuitUp event.

) For each association bound to the circuit, call the AsnClientRcv or
AsnServerRcv process with the AsnCircuitUp event.

Enable the CircDownTimer and CircKeepaliveTimer.

Disable the CircCreateTimer.

+> Construct a Start message, initializing appropriate message fields (see
Table 6–2).

Construct a circuit message header for the Start message, initializing
appropriate message fields (see Table 6–1) and send the message to the target
node.

Reset the CircCreateTimer.
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+? For each association bound to the circuit, call the AsnClientRcv or
AsnServerRcv process with the AsnCircuitDown event.

Return all resources to the system.

+@ Construct a Advertisement message, initializing appropriate message fields
(see Table 6–8).

Construct a circuit message header for the Advertisement message,
initializing appropriate message fields (see Table 6–1), and send the message
to the target node.

Send a CircAdvMsgRcv advertisement message to the the circuit partner.

+A Increment the reference count in the CSB.

Bind the association to the CSB.

+B Compare remote SOURCE_NODE_ID from Start message with the local node
Id. If the remote SOURCE_NODE_ID is greater than local node Id, construct
a Stack message, initializing appropriate message fields (see Table 6–2).

Construct a circuit message header for the Stack message, initializing
appropriate message fields (see Table 6–1) and send the message to the target
node.

If the remote SOURCE_NODE_ID is less than local node Id, ignore the
message.

+C For each association bound to the circuit, call the AsnClientRcv or
AsnServerRcv process with the AsnCircuitUp event.

Enable/Reset the CircDownTimer.

Call the AsnClientRcv or AsnServerRcv process (described in Chapter 5) with
the AsnRunMsgRcv event.

+D Call the CircPathMaintRsp process.

+E Construct a Solicit Response message, initializing appropriate message fields
(see Table 6–8).

Construct a circuit message header for the Solicit Response message,
initializing appropriate message fields (see Table 6–1) and send the message
to the target node.

4.3.4 Circuit State Transition Examples
Sections 4.3.4.1 through 4.3.4.3 contain examples illustrating several common
circuit state transitions and actions taken by the client and server during the
transitions. The state transitions discussed are as follows:

• Normal circuit start

• Attempt by two clients to connect to each other simultaneously

• Normal circuit terminate

4.3.4.1 Normal Circuit Start
This example describes the state transitions and actions at the client and server
during a normal circuit start.

The following activities occur on the client:

1 The Association layer directs the Circuit layer to start a circuit by declaring a
CircStart event.
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2 The client builds a CSB and sends a Start message to the server. The client’s
circuit changes to the Started state.

3 Later, the client receives a Stack message, processes it, and changes state to
Running. The Circuit layer declares an AsnCircuitUp event to the Association
layer.

4 The Association layer declares a CircRunMsgSend event to the Circuit layer
to transmit a Run message.

The following activities occur on the server:

1 The server receives a Start message, creates a CSB, sends a Stack message,
and changes the circuit state to Stack Sent.

2 The server receives a Run message, changes the circuit state to Running, and
passes the Run message to the Association layer.

4.3.4.2 Attempt by Two Clients to Connect to Each Other Simultaneously
This example describes the state transitions and actions that occur when two
clients attempt to start circuits to each other at the same time. Note that to
prevent a deadlock starting scenario, one node is forced to become the slave end
of the circuit. This node sends a Stack message, and the other node (master)
ignores Start requests from the slave node. The algorithm uses the SOURCE_
NODE_ID in the Circuit Message Header to determine master and slave.

The following activities occur on Client A:

1 The Association layer directs the Circuit layer to start a circuit with Client B
by calling the CircEvent process with the CircCreate event.

2 Client A builds a CSB and sends a Start message to the server. Client A’s
circuit changes to the Started state.

3 Later, Client A receives a Start message. Client A compares its SOURCE_
NODE_ID with Client B’s. Because Client A’s is less than Client B’s, Client A
sends a Stack message and changes state to Stack Sent.

4 Later, Client A receives a Run message and changes state to Running. The
Circuit layer declares an AsnCircuitUp event to the Association layer.

The following activities occur on Client B:

1 The Association layer directs the Circuit layer to start a circuit with Client A
by calling the CircEvent process with a CircCreate event.

2 Client B builds a CSB and sends a Start message to the server. Client B’s
circuit changes state to Started.

3 Later, Client B receives a Start message, Client B compares its SOURCE_
NODE_ID with Client A’s. Because Client B’s is greater than Client A’s,
Client B ignores the Start message.

4 Later, Client B receives a Stack message and changes state to Running. The
Circuit layer declares an AsnCircuitUp event to the Association layer.

5 Client B sends a Run message (Connect Request) to Client A.
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4.3.4.3 Normal Circuit Terminate
This example describes the state transitions and actions performed to terminate
a circuit.

1 The Association layer on the client directs the Circuit layer to terminate a
circuit. Because this is the only association using the circuit, the client sends
a Stop message to the server.

2 The server receives a Stop message and terminates the circuit.

4.4 Congestion Control
The goal of congestion control is to manage the use of a congested adapter by
limiting transmitters to a message-per-second rate. The algorithm used to control
congestion across circuits and multiple paths is symmetrical and is based on
three architected values: Maximum_Message_Rate, Current_Message_Rate and
Message_Rate.

• Maximum_Message_Rate is a 16 bit integer and represents an overestimation
of the maximum sustained throughput, measured in messages per second, of
the data link It is established during the data link initialization phase and
remains constant while that data link is in use.

• Current_Message_Rate is a 16 bit integer representing the current receiver
based congestion control policy for a data link. It establishes the maximum
number of Run message segments per second that all remote nodes may offer
to the receiver.

• Message_Rate is a 16 bit integer representing the maximum number of Run
message segments per second a single remote node may offer to the receiver.
A Message_Rate can vary from 0 to 32,767 messages per second.

A Message_Rate is associated with each data link available to the transport.
Different Message_Rates may be concurrently enforced based on congestion of
the various data links involved.

4.4.1 Congestion Detection
Congestion occurs when a data link is unable to receive all messages directed to
its address. When congestion occurs, the implementation voluntarily restricts
its use of the data link by enforcing a Message_Rate for that data link to all
connected nodes. This Message_Rate restricts the number of Run message
segments per second that can be transmitted to the data link. The Message_Rate
setting does not affect other data links available to the receiver.

The LASTport protocol periodically performs a data link congestion check. This
check determines whether a data link experienced congestion during the previous
interval. This check occurs no more than once per second.

If congestion is detected, the congestion control algorithm is enabled.

For example, when a node detects congestion, the following events occur:

1 The SB field in the circuit message header is set to one (see Chapter 6).

2 The RATE_VALUE field in the circuit message header is set to the number of
Run message segments per second that can be transmitted to the data link,
enforcing the congestion control.

3 The congested data link is identified by the source address of the message
containing the new Message_Rate value.
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Only Run message are affected by congestion control policies. All other message
types can be exchanged without regard to any congestion control policy in effect.

4.4.2 Congestion Control Algorithm
Initially, a data link is assumed to be uncongested. When a data link is
uncongested, the receiver enforces a Message_Rate of zero. A Message_Rate
of zero is architecturally defined as a no-congestion policy.

When the LASTport transport initializes, it computes two congestion variables:
Maximum_Message_Rate and Current_Message_Rate:

• The Maximum_Message_Rate is computed by multiplying the a controller
specific value by 2.

• The Current_Message_Rate is initially set to the Maximum_Message_Rate
and is modified when congestion is detected.

When congestion is detected, the following events occur:

1 The LASTport protocol sets the Current_Message_Rate to one half the
Maximum_Message_Rate and recomputes the Message_Rate.

2 This new Message_Rate is copied to the circuit header RATE_VALUE field.

3 The SB bit is set to one for all traffic over that data link.

4 When the rate is successfully communicated to the remote node, that is, when
LAST_RATE_VALUE equals RATE_VALUE, the SB bit is cleared until a new
Message_Rate is established.

5 If congestion persists, the Current_Message_Rate is halved and a new
Message_Rate is communicated in normal traffic.

This process continues until the Message_Rate equals a minimum value of 1 or
until congestion is no longer detected.

If congestion is not detected during the periodic check, the following events occur:

1 The Current_Message_Rate is incremented by 10 messages per second.

2 A new Message_Rate is established and communicated in normal traffic as
described above.

When the Current_Message_Rate equals the Maximum_Message_Rate, the
congestion algorithm is disabled and a Message_Rate of zero is communicated in
normal traffic.

4.4.3 Congestion Control Policy
Effective congestion control must ensure that minimal per-message overhead
occurs when a Message_Rate is not being set. The LASTport architecture
facilitates congestion control implementation by using the signed bit of the
word containing the Message_Rate being set. If the bit is not set, the receiver can
ignore the Message_Rate specified in the RATE_VALUE, regardless of its absolute
value.

A transmitter always sets the LAST_RATE_VALUE to the Message_Rate most
recently established for the remote node’s data link. A receiver always checks
whether the LAST_RATE_VALUE equals the Message_Rate currently in effect.
If the fields are not equal, the LASTport protocol causes the correct rate to be
communicated in return traffic by performing the following operations:

1 Sets the SB field to one

4–15



Circuit Operations
4.4 Congestion Control

2 Sets the RATE_VALUE field to the applicable Message_Rate

Table 4–6 describes the effect on Message_Rate as congestion is detected on the
sample network shown in Figure 4–2. The network has one server with two data
links and six associated clients, each with a single data link.

Figure 4–2 Network with One Server and Six Clients

Client Client

Client

Client

Client

Client

Server

DL A DL B

Network Interconnect

Table 4–6 Congestion Example

Network Event Maximum_Message_Rate Current_Message_Rate Message_Rate

DL A DL B DL A DL B DL A DL B

Transport Initialization ! 700 700 1 1 1 1

Congestion on DL A " 700 700 350 1 58 1

Next second # 700 700 360 1 60 1

Next second $ 700 700 370 1 61 1

Next second $ 700 700 380 1 63 1

Next second $ 700 700 390 1 65 1

Second n % 700 700 1 1 1 1

! At transport initialization, the Maximum_Message_Rate is set to 700 packets
per second. Typically, this value should be set to twice the known capacity of
the data link controller. The table shows a controller capable of forwarding
350 packets per second. The Current_Message_Rate and Message_Rate are
set to infinite.

" Congestion is detected on controller A.

# The LASTport protocol starts congestion control on controller A, but the B
controller is unaffected. Client systems are allowed to transmit only 60 Run
message segments to the server on controller A, but they can transmit any
number of segments to controller B.

$ Each second thereafter, the Current_Message_Rate is incremented by 10 and
a new Message_Rate is created.

% The process continues until congestion is again detected, or until the Current_
Message_Rate equals the Max_Message_Rate. The Message_Rate is then set
to infinite, and congestion control is disabled.
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When a client or a server detects that a Message_Rate is being enforced by the
remote data link, the client or server immediately computes two variables for the
data link enforcing the Message_Rate:

• Remote_Message_Rate. The Remote_Message_Rate is set to the RATE_
VALUE.

• Remote_Rate_Left. The Remote_Rate_Left is initially set to the Remote_
Message_Rate and can be modified as described below.

All message traffic is multiplexed through the circuit; congestion control policy is
implemented at the circuit level.

For example, when higher layers attempt to transmit Run messages to a remote
node, the Circuit layer performs following operations:

1 Selects a remote data link to receive the transmitted message.

2 If the remote data link is enforcing a Message_Rate, the Circuit layer checks
whether the Remote_Rate_Left for that data link is zero and performs the
following operations:

• If a positive rate exists, the Circuit layer decrements the Remote_Rate_
Left value and transmits the message.

• If Remote_Rate_Left is equal to zero, the Circuit layer selects another
remote data link. If the remote data link is congested, the Circuit layer
checks the Remote_Rate_Left field until it finds a data link with a positive
rate.

• If it cannot find a remote data link with a positive Remote_Rate_Left, the
Circuit layer buffers the message locally.

3 Once per second, the Circuit layer sets Remote_Rate_Left to Remote_
Message_Rate for each congested remote data link.

4 At this time, the Circuit layer attempts to transmit all locally buffered
messages.
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The Association layer performs the following tasks:

• Pairs request messages with response messages at the association interface

• Performs any necessary segmentation and reassembly of the request and
response messages into request and response message streams

• Detects and optionally corrects duplicate or lost requests and responses
(client only)

• Multiplexes client transactions over the Circuit layer

• Signals the Circuit layer when transaction faults are detected

• Manages the association interface to system applications

This chapter describes Association layer operations. Topics include the following:

• Connection services

• Association states

• Association event processing

5.1 Connection Services
The Association layer provides a simple mechanism to connect a client to a server.
After locating the server, the client system application instructs the Association
layer to connect to the server. The connect event causes the Association layer to
perform the following operations:

1 Instruct the Circuit layer to establish a circuit with the server node.

2 After the circuit is established, transmit Connect Request messages to the
server at the frequency and rate instructed by the client system application.

3 Notify the client system application when either of the following events
occurs:

• The client receives a Connect Response message from the server
indicating that the circuit is up.

• The connect process times out.

Once the circuit is up, an association is started between client and server, and
transactions can be executed. Section 5.2 describes association states; Section 5.3
describes association event processing.
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5.2 Association States
Every association has a client and a server. Because each member of the
association has different responsibilities, client and server have different events
and can be in different states. Table 5–1 describes association states.

Table 5–1 Association States

State Description

Halted An association is either inactive or does not exist.

Started An association is starting. The association is waiting for the circuit to be
declared up and for the server to respond to the Connect Request message.

Running An association is up; the system application can execute transactions.

Stopped An association is disconnecting (being torn down).

5.3 Association Event Processing
An association passes through the defined states by processing events. Events
are either locally generated or result from receiving a message.

Some events, such as AsnConnect, carry data as parameters when the event is
declared. For example, AsnConnect includes the connect data as a parameter.

Table 5–2 lists and describes events processed by the client Association layer.
Table 5–3 lists and describes events processed by the server Association layer.
Table 5–4 lists and describes events generated by the Association layer and
passed to the Circuit layer and the system application.

Table 5–2 Events Processed by the Client Association Layer

Event Description

AsnConnect Declared by the system application to create an association to
a server.

AsnConRspMsgRcv Generated when a Connect Response message is received from
a client.

AsnConTimeout Indicates that a Connect Request message timed out. The
Connect Request message is sent multiple times before a
AsnConFailure event is generated.

AsnConFailure Generated when a Connect Request attempt fails to generate a
Connect Response from a server.

AsnRunMsgRcv Generated when any Run message is received. The Circuit
layer generates this event to the Association layer. The
Association layer parses the Run message and declares an
event to itself based on the Run message type.

AsnDisconnect Generated by a system application to stop an association.

AsnDisconTimeout Indicates that a Disconnect Request message timed out. The
Disconnect Response message is sent multiple times before an
AsnDisConFailure event is generated.

AsnDisconFailure Generated when a Disconnect Request attempt fails to elicit a
Disconnect Response from a server.

(continued on next page)

5–2



Association Operations
5.3 Association Event Processing

Table 5–2 (Cont.) Events Processed by the Client Association Layer

Event Description

AsnDisconRspMsgRcv Generated when a Disconnect Response message is received.

AsnTransSend Generated by a system application to initiate a transaction to
a server.

AsnDataRspMsgRcv Generated when a client receives a Data Response message.

AsnTransTimeout Indicates that a transaction attempt failed to generate a
transaction response from a server. The transaction is sent
multiple times before a AsnTransFailure event is generated to
the system application.

AsnTransFailure Generated to indicate that a transaction failed. Once a
transaction fails, the association must be aborted.

AsnResyncMsgRcv Generated when a client receives a Resync Response message.
The Resync Response message acknowledges a transaction if a
server does not generate a Data Response message.

AsnCircuitDown Generated by the Circuit layer to notify an association that a
circuit is down.

AsnCircuitUp Generated by the Circuit layer to notify an association that a
circuit is up.

Table 5–3 Events Processed by the Server Association Layer

Event Description

AsnRunMsgRcv Generated by the Circuit layer when it receives a Run
message and passed to the Association layer. The Association
layer parses the Run message and declares an event to itself
based on the Run message type.

AsnConReqMsgRcv Generated when the server receives a Connect Request
message from a client.

AsnConRspMsgSend Generated to send a Connect Response message.

AsnDisconRspMsgSend Generated to send a Disconnect Response message.

AsnDisconReqMsgRcv Generated when the server receives a Disconnect Response
message.

AsnDataMsgRcv Generated when the server receives a transaction.

AsnTransRspMsgSend Generated by a system application to respond to a
transaction.

AsnResyncTimeout Indicates that a Resync Response message must be sent to
prevent a transaction attempt from failing. A server sends a
Resync Response message to notify the client that it received
the transaction and is processing it.

AsnCircuitDown Generated by the Circuit layer to notify an association that a
circuit is down.
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Table 5–4 Events Generated by the Association Layer

Event Description

AppAsnUp Declared to a system application to indicate that the
association is up.

AppAsnStopped Declared to a system application to indicate that the
association terminated correctly.

AppAsnAborted Declared to a system application to indicate that the
association terminated prematurely.

AppTransReq Declared by the server Association layer to indicate that a
transaction was received and needs to be processed.

AppTransComplete Declared by the client Association layer to indicate that a
transaction completed.

AppConFailure Declared to a system application to indicate that a connect
attempt failed.

AppDisconFailure Declared to a system application to indicate that a disconnect
attempt failed.

AppTransFailure Declared to a system application to indicate that a transaction
failed. When a transaction fails, the association is aborted.
To continue communicating with the server, the system
application must create a new association to the server.

CircCreate Creates a circuit to a server. If a circuit already exists to the
targeted server, the Circuit layer need not create the circuit.

CircTerminate Indicates that an association is finished using a circuit. Once
all the associations using a circuit delcare a halt event, the
Circuit layer terminates the circuit.

CircRunMsgSend Declared by the client Association layer to send a Run message.

CircPathMaintReq Declared by the client Association layer to indicate that a Data
Request message did not generate a Data Response or Resync
Response message in the negotiated time limit. This event
causes path maintenance to occur on the circuit.

5.3.1 Association Timers
The Association layer uses timers for error control. Timers manage attempts to
retry delivering data and can abort attempts to communicate between the client
and server. Table 5–5 describes Association layer timers. For information on
timer policies, refer to Section 2.1.4.
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Table 5–5 Association Layer Timers

Timer Function

AsnConnectResponseTimer Notifies the client when to send a Connect Request
message to the server.

AsnDisconnectResponseTimer Notifies the client when to send a Disconnect Request
message to the server.

AsnTransactionResponseTimer Notifies the client that transaction processing is
delayed. This timer has two values:

1 The AsnTransactionResponseShortTimer, which
is an initial time limit for receipt of a request
message acknowledgment or transaction response
message.

2 The AsnTransactionResponseLongTimer value,
which is subsequently used as a time limit for
completion of the transaction, but can be reset by
the server using Resync Response messages.

AsnResyncResponseTimer Notifies the server when to send a Resync Response
message to the client to avoid a retransmission of the
current transaction.

5.3.2 Association Client Processes
To manage state transitions, the Association layer uses the following client
processes:

• AsnClientRcv

• AsnClientEvent

• AsnClientTimer

• AsnClientTransSend

• AsnClientTransSendRetry

• AsnClientTransRcv

Sections 5.3.2.1 through 5.3.2.6 describe these processes, which rely on the
following data structures:

• Association State Block (ASB), which contains the state and context of each
association.

• Session State Block (SSB), which is the Handle used by the system
application to reference an association.

• Transaction Context Block (TSB), which contains the state and context for
each transaction in an association.

Note that the following process pseudocode examples do not provide all details
and are intended only as rough guidelines.
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5.3.2.1 AsnClientRcv Process
The AsnClientRcv process is called by the CircEvent process to notify the
Association layer when messages arrive and to effect appropriate circuit state
transitions. The process performs actions shown in the following pseudocode
example.

void AsnClientRcv(event, message, NDB)
int event;
RunMessage *runMessage;
NDB *ndb;
{

/*
* Association State Block holds state and context for each association.
*/

ASB *asb

/* For each event received: */

asb = locateAsb(runMessage –>asbId);
if (event = = AsnRunMsgRcv)
{

/*
* Parse Run message header, verifying fields in Table 6–10.
* For each message subtype, call AsnClientEvent process
* with appropriate event.
*/

switch (runMessage–>subtype)
{

case ConnectResponse:
AsnClientEvent(AsnConRspMsgRcv, message, ndb–>nodeId, asb);
break;

case DataResponse:
AsnClientEvent(AsnDataRspMsgRcv, message, ndb–>nodeId, asb);
break;

case ResyncResponse:
AsnClientEvent(AsnResyncMsgRcv, message, ndb–>nodeId, asb);
break;

case DisconnectResponse:
AsnClientEvent(AsnDisconReqMsgRcv, message, ndb–>nodeId, asb);
break;

}
}

if ((event = = AsnCircuitUp) k (event = = AsnCircuitDown))
{

asb = asbListHead;
while (asb != NULL)
{

AsnClientEvent(event, message, ndb–>nodeId, asb);
asb = asb–>next;
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}
}

}

5.3.2.2 AsnClientEvent Process
The AsnClientEvent process is called by the AsnClientRcv process and recursively
to generate the association protocol.

The AsnClientEvent process uses the current state and the events shown in
Table 5–6 to identify the new state. (For example, if the current state is Halted
and the event is AsnConnect, the new state is Started.) The process extracts the
new state, updates the ASB with this state, and executes actions indicated by the
callout (for example, !). These actions are described following the table. A dash
(—) indicates that no action is required.

The AsnClientEvent process performs actions shown in the following pseudocode
example.

void AsnClientEvent(event, message, nodeId, asb)
int event;
Message *message;
ASB *asb;
{

int newState;
int (*actionRoutine)( );

/*
* Using state table, retrieve new state and action routine.
* Call action route to start or continue protocol message exchanges.
*/

newState = AsnClientstateTable[event, asb–>state].newState;
actionRoutine = AsnClientStateTable[event, asb–>state].actionRoutine;
asb–>state = newState;
(*actionRoutine)(message, asb, ...);

}

5.3.2.3 AsnClientTimer Process
The AsnClientTimer process is called by the operating system once each second.
The process performs actions shown in the following pseudocode example.

void AsnClientTimer( )
{

ASB *asb = asbListHead;
while(asb != NULL)
{

if (asb–>state = = Started)
{

asb–>AsnConnectResponseTimer-- ;
if (asb–>AsnConnectResponseTimer = = 0)
{

asb–>AsnConnectRetransmitCounter++;
if (asb–>AsnConnectRetransmitCounter = =

asb–>AsnConnectRetransmitLimit)
{

AsnClientEvent(AsnConFailure, NULL, NULL, asb);
}
else
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{
AsnClientEvent(AsnConTimeout, NULL, NULL, asb);

}
}

}

if (asb–>state = = Running)
{

for (i = 1; i < asb–>AsnMaxSlots; i++)
{

if (asb–>slot[i] = = 1)
{

asb–>AsnTransactionResponseTimer[i]-- ;
if (asb–>AsnTransactionResponseTimer[i] = = 0)
{

asb–>AsnTransactionRetransmitCounter[i]++;
}
if (asb–>AsnTransactionRetransmitCounter[i] = =

asb–>AsnTransactionRetransmitLimit[i])
{

AsnClientEvent(AsnTransFailure, NULL, NULL, asb);
}
else
{

AsnClientEvent(AsnTransTimeout, NULL, NULL, asb);
}

}
}

}

if (asb–>state = = Stopped) /* For each association: */
{

asb–>AsnDisconnect ResponseTimer-- ;
if (asb–>AsnDisconnect ResponseTimer = = 0)
{

asb–>AsnDisconnectRetransmitCounter++;
if (asb–>AsnDisconnectRetransmitCounter = =

asb–>AsnDisconnectRetransmitLimit)
{

AsnClientEvent(AsnDisconFailure, NULL, NULL, asb);
}
else
{

AsnClientEvent(AsnDisconTimeout, NULL, NULL, asb);
}

}
}

asb = asb–>next;
}

}
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5.3.2.4 AsnClientTransSend Process
The AsnClientTransSend process is called by the AsnClientEvent process to send
a transaction. The process performs actions shown in the following pseudocode
example.

void AsnClientTransSend(dataRequest, dataRequestLength, asb)
char *dataRequest;
int dataRequestLength;
ASB *asb;
{

int slot;
tsb *tsb;

/* Serialize all transaction requests in case all slots are busy. */
QueueTransaction(asb);
tsb = allocateTsb( );
slot = FindFreeSlot( );
if (slot != 0)
{

DequeueTransaction(asb);
AsnClientTransmitTransaction(dataRequest, dataRequestLength,

tsb, asb, slot);
}

}

void AsnClientTransmitTransaction(dataRequest, dataRequestLength,
tsb, asb)

char *dataRequest;
int dataRequestLength;
TSB *tsb;
ASB *asb;
{

char *segment;
char *message;

asb–>sequenceNumber[slot]++; †

/*
* Based on negotiated segment size:
*/

tsb–>maximumSegments = (dataRequestLength/asb–>segmentSize) + 1;
DivideIntoSegments(dataRequest, dataRequestLength,

asb–>segmentSize, tsb);

segment = tsb–>segmentList;
while (segment != NULL)
{

message = constructDataRequestMsgHeader(segment);
/* See Table 6–14. */

message = constructRunMsgHeader(message);
/* See Table 6–1. */

† A transaction sequence number is associated with a particular slot and is independent
of all other sequence numbers on all other slots.
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CircEvent(CircRunMsgSend, message, asb–>csb–>nodeId, asb–>csb);
AsnEnableTimer(AsnTransactionResponseTimer);
segment = segment–>next;

}
asb–>flags | = ActiveTransaction;

}

5.3.2.5 AsnClientTransSendRetry Process
The AsnClientTransSendRetry process is called by the AsnClientEvent process
to retry sending a transaction on failure of an earlier attempt. Using the same
inputs as the previous transaction attempt, the process performs actions shown
in the following pseudocode example.

void AsnClientTransSendRetry(asb, tsb)
ASB *asb;
TSB *tsb;
{

CircEvent(CircPathMaintReq, NULL, asb–>csb–>nodeId, csb);
AsnClientTransmitTransaction(tsb–>dataRequest,
tsb–>dataRequestLength, tsb, asb);

}

5.3.2.6 AsnClientTransRcv Process
The AsnClientTransRcv process is called by the AsnClientEvent process to
reassemble a transaction response. The process performs actions shown in the
following pseudocode example.

void AsnClientTransRcv(dataResponseSegment, asb)
char *dataResponseSegment;
ASB *asb;
{

tsb *tsb;

/* Verify that data response sequence number
matches current request, discarding orphan responses. */

if (CurrentSequenceNumber(dataResponseSegment) = = TRUE)
{

tsb = LocateTsb(dataResponseSegment);

CopySegmentToResponseBuffer(dataResponseSegment,
tsb–>responseBuffer); ‡

if (TransactionResponseComplete(tsb) = = TRUE)
{

sysAppClientRcv(AppTransComplete, tsb–>responseBuffer, asb–>ssb);
AsnDisableTimer(AsnTransResponseTimer);

/* Check whether transactions are waiting to be executed.
If so, initiate them on this free slot. */

if (TransactionsQueued(asb))
StartNextTransaction(asb);

}
}

}

‡ This buffer is supplied by the client system application when the transaction is initiated
(see Section 2.4.2).
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5.3.3 Association Client State Transitions
Table 5–6 shows association client events and resulting state transitions. Use the
current state and the event to determine the new state.

Table 5–6 Association Client Events and Resulting State Transitions

Current State

Halted Started Running Stopped

Command Events

AsnConnect Started ! — — —

AsnDisconnect — Halted ) Stopped # —

AsnCircuitUp — Started " Running Stopped

AsnCircuitDown — Halted % Halted % Halted %

AsnConFailure — Halted $ — —

AsnDisconFailure — — — Halted '

AsnTransSend — — Running ( —

AsnTransFailure — — Halted +? —

Message Events

AsnConRspMsgRcv — Running & Running Stopped

AsnDataRspMsgRcv — — Running +> Stopped

AsnResyncMsgRcv — — Running +@ Stopped

AsnDisonReqMsgRcv — — Halted +A Halted +A

Timer Events

AsnConTimeout — Started " — —

AsnDisconTimeout — — — Stopped #

AsnTransTimeout — — Running +B Stopped

Actions for the state transitions shown in Table 5–6 are as follows:

! Initialize an ASB for the new association.

Assign a unique association id to represent this association.

Bind the client system application to the ASB.

Call the CircEvent process with the CircCreate event.

" Construct a Connect Request message, initializing appropriate message fields
(see Table 6–12).

Construct an association Run message header for the message, initializing
appropriate message fields (see Table 6–10), and call the CircEvent process
with the CircRunMsgSend event.

Activate and initialize the ConnectResponseTimer in the ASB for this
association.

# Construct a Disconnect Request message, initializing appropriate message
fields (see Table 6–12).
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Construct an association Run message header for the message, initializing
appropriate message fields (see Table 6–10), and call the CircEvent process
with the CircRunMsgSend event.

Activate and initialize the ConnectResponseTimer in the ASB for this
association.

$ Call the sysAppClientRcv process with the AsnConFailed event and SSB.

Call the CircEvent process with a CircTerminate event.

Return all resources.

% Call the sysAppClientRcv process with the AppAsnAborted event and SSB.

Return all resources.

& Call the sysAppClientRcv process with the AppAsnUp event, passing the
ConnectResponseData buffer and SSB.

Disable the ConnectResponseTimer.

' Call the sysAppClientRcv process with the AsnDisconFailed event.

Call the CircEvent process with a CircTerminate event.

Return all resources.

( Call the AsnTransSend process with the transaction data and the ASB.

) Call the sysAppClientRcv process with the AsnAborted event.

Call the CircEvent process with a CircTerminate event.

Return all resources.

+> Call the AsnClientTransRcv process with the segment and the ASB.

+? Call the sysAppClientReceive process with the AppTransFailed event and
SSB.

Call the sysAppClientReceive process with the AppTransAborted event and
SSB.

Call the CircEvent process with the CircTerminate event.

Return all resources.

+@ Locate the TSB for this transaction and reset the
AsnTransactionResponseTimer in the TSB.

+A Call the sysAppClientReceive process with the AppAsnStopped event and
return the disconnect data.

Call the CircEvent process with the CircTerminate event.

Return allocated resources.

+B Call the sysAppClientReceive process with the AsnTransSendRetry event,
ASB, and TSB.

5.3.4 Association Server Processes
To manage state transitions, the Association layer uses the following server
processes:

• AsnServerRcv

• AsnServerEvent

• AsnServerTimer
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• AsnServerTransRcv

• AsnServerTransRspSend

These processes are described in Sections 5.3.4.1 through 5.3.4.5. Note that the
following pseudocode examples do not provide all details and are intended only as
rough guidelines.

5.3.4.1 AsnServerRcv Process
The AsnServerRcv process is called by the CircEvent process to notify the
Association layer when messages arrive and to effect appropriate circuit state
transitions. The process performs actions shown in the following pseudocode
example.

void AsnServerRcv(event, message, ndb)
int event;
char *message;
NDB *ndb;
{

/*
* For each event received:
*/

ASB = locateAsb(runMessage–>asbId);
if (event = = AsnRunMsgRcv)
{
/*
* Parse Run message header, verifying fields in Table 6–10.
* For each message subtype, call AsnServerEvent process
* with appropriate event.
*/

if (runMessage–>subtype = = ConnectRequest)
AsnServerEvent(AsnConReqMsgRcv, message, ndb–>nodeId, asb);

if (runMessage–>subtype = = DataRequest)
AsnServerEvent(AsnDataReqMsgRcv, message, ndb–>nodeId, asb);

if (runMessage–>subtype = = Disconnect Request)
AsnServerEvent(AsnDisonReqMsgRcv, message, ndb–>nodeId, asb);

}

if ((event = = AsnCircuitUp) k (event = = AsnCircuitDown))
{

asb = asbListHead;
while (asb != NULL)
{

AsnServerEvent(event, message, ndb–>nodeId, asb);
asb = asb–>next;

}
}

}
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5.3.4.2 AsnServerEvent Process
The AsnServerEvent process is called by the AsnServer process and recursively to
generate the association protocol.

The process uses the current state and the events shown in Table 5–7 to identify
the new state. For example, if the current state is Halted and the event is
AsnConReqMsgRcv, the new state is Started. The process extracst the new state,
updates the ASB with this state, and executes actions indicated by the callout
(for example, "). These actions are described following the table. A dash (—)
indicates that no action is required.

The AsnServerEvent process performs actions shown in the following pseudocode
example.

void AsnServerEvent(event, message, nodeId, asb)
int event;
Message *message;
char nodeId[6];
ASB *asb;
{

int newState;
int (*actionRoutine)( );

/*
* Using state table, retrieve new state and action routine.
* Call action route to start or continue protocol message exchanges.
*/

newState = AsnServerstateTable[event, asb–>state].newState;
actionRoutine = AsnServerStateTable[event, asb–>state].actionRoutine;
asb–>state = newState;

(*actionRoutine)(message, asb, ...);
}

5.3.4.3 AsnServerTimer Process
The AsnServerTimer process is called by the operating system once each second.
The process performs actions shown in the following pseudocode example.

void AsnServerTimer( )
{

ASB *asb = asbListHead;

/*
* For every association, do the following:
*/

while(asb != NULL)
{

if (asb–>state = = Running)
{
/*
* For every association transaction, do the following:
*/

tsb = asb–>tsbListHead;
while (tsb != NULL)
{

tsb–>AsnResyncResponseTimer-- ;
if (tsb–>AsnResyncResponseTimer = = 0)
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{
AsnServerEvent(AsnResyncTimeout, NULL, asb–>nodeId, asb);

}
tsb = tsb–>next

}
}
asb = asb–>next

}
}

5.3.4.4 AsnServerTransRcv Process
The AsnServerTransRcv process is called by the AsnServerEvent process to
reassemble a transaction request. The process performs actions shown in the
following pseudocode example.

void AsnServerTransRcv(dataRequestSegment, asb)
DataRequest *dataRequestSegment;
ASB *asb;
{

/*
* Detect orphan transaction requests at the server. Verify
* that the transaction sequence number is forward in number space.
*/

if (CurrentSequenceNumber(dataRequestSegment, asb) = = FALSE)
{

return; /* Drop this orphan request. */
}
/*
* Find transaction for which data is intended. When first segment
* arrives at server, notify system application. After inspecting
* first segment, system application supplies receive buffer for
* remaining data.
*/

tsb = LocateTsb(asb, dataRequestSegment);
if (dataRequestMessage–>sequenceNumber = = 1)
{

tsb–>receiveBuffer = sysAppServerRcv(AppFirstSegment,
dataRequestSegment,asb–>ssb); †

CopyAllSegmentsFromTsb(tsb, tsb–>receiveBuffer);
tsb–>segment1Arrived = TRUE;

}

if (tsb–>segment1Arrived = = TRUE)
{

CopySegmentToRcvBuffer(dataRequestSegment, tsb–>receiveBuffer);
}
else
{

QueueSegment(tsb);
}

if (TransactionRequestComplete(tsb) = = TRUE)

† This process returns a receive buffer for reassembly of the transaction request.
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{
sysAppServerRcv(AppTransReq, tsb–>receiveBuffer,asb–>ssb);
AsnEnableTimer(AsnResyncResponseTimer);

}
}

5.3.4.5 AsnServerTransRspSend Process
The AsnServerTransRspSend process is called by the AsnServerEvent process
to fragment and send a transaction. The process performs actions shown in the
following pseudocode example.

voidAsnServerTransRspSend (dataResponse, dataResponseLength, asb, tsb)
char *dataResponseSegment;
int dataResponseLength;
ASB *asb;
TSB *tsb;
{

char *segment;
char *message;

/*
* Based on negotiated segment size:
*/

tsb–>maximumSegments = (dataResponseLength/asb–>segmentSize) + 1;
DivideIntoSegments(dataResponse, dataResponseLength,

asb–>segmentSize, tsb);

segment = tsb–>segmentList;
while (segment != NULL)
{

message = constructDataResponseMsgHeader(segment);
/ * See Table 6–14. */

message = constructRunMsgHeader(message);
/ * See Table 6–1. */

CircEvent(CircRunMsgSend, message, asb–>csb–>nodeId, asb–>csb);
AsnDisableTimer(AsnResyncResponseTimer);
segment = segment–>next;

}
}
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5.3.5 Association Server State Transitions
Table 5–7 shows association server events and resulting state transitions.

Table 5–7 Association Server Events and Resulting State Transitions

Current State

Halted Started Running Stopped

Command Event

AsnCircuitDown — Halted ( Halted ( Halted )

Message Events

AsnConReqMsgRcv Started " Started # Running —

AsnConRspMsgSend — Started # — —

AsnDisonReqMsgRcv — Stopped ' Stopped ' Stopped +?

AsnDisconRspMsgSend — Halted ! Halted ! Stopped +>

AsnDataMsgRcv — Running $ Running $ —

AsnTransRspMsgSend — — Running % —

Timer Event

AsnResyncTimeout — — Running & —

! Construct a Disconnect Response message (see Table 6–18) and send the
message by calling the CircEvent process with a CircTerminate event.

Return all resources allocated for this association.

" Initialize an ASB for the new association.

Assign a unique association id to represent this association.

Bind the server system application association to the ASB.

Call the sysAppServerRcv process with the AppAsnUp event and connect
data.

# Construct a ConnectResponse message, initializing appropriate message fields
(see Table 6–12).

Construct an association Run message header for the message, initializing
appropriate message fields (see Table 6–10), and call the CircEvent process
with the CircRunMsgSend event.

Activate and initialize the ConnectResponseTimer in the ASB for this
association.

Save the Connect Response data in the ASB.

$ Call the AsnServerTransRspSend process with Data Request message and
ASB.

% Call the AsnServerTransRspSend process with the Data Response message,
ASB, and TSB.

& Construct a Resync Response message, filling in appropriate fields (see
Table 6–16), and send the message by calling the CircEvent process with a
CircRunMsgSend event.
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' Call the sysAppServerRcv process with the AppAsnStopped event and the
disconnect data.

( Call the sysAppServerRcv process with the AppAsnStopped event.

Return all resources to the system.

) Return all resources to the system.

+> Construct a Disconnect Response message using the disconnect response data
supplied by the server system application and filling in appropriate fields (see
Table 6–18).

Send the message by caliing the CircEvent process with a CircRunMsgSend
event.

+? Construct a Disconnect Response message using the disconnect response data
in the ASB and filling in appropriate fields (see Table 6–18).

Send the message by caliing the CircEvent process with a CircRunMsgSend
event.

5.3.6 Association State Transition Example
The following events occur during a normal association startup:

At the Client:

1 The client system application declares an AsnConnect event to the Association
layer.

2 The Association layer allocates and initializes an ASB for the association. The
Association layer declares a CircCreate event (see Chapter 4) to the Circuit
layer and waits.

3 Sometime later, the Circuit layer declares an AsnCircuitUp event to the
Association layer. The Association layer sends the Connect Request message
to the server to establish an association. The Association layer starts the
AsnConnectResponseTimer. If a Connect Response message is not received,
the timer sends additional Connect Request messages to the server.

4 Sometime later, the Association layer receives a Connect Response message
and passes the Connect Response data to the client.

5 The client system application declares an AppTransSend event and passes
data to the Association layer. The Association layer segments and transmits
the data. It starts a transaction response timer to detect a transaction failure.

6 Sometime later, the Association layer receives a transaction response. It stops
the transaction response timer and declares an AppTransComplete event to
the system application.

7 The client declares an AsnDisconnect event. This causes the Association
layer to send a Disconnect Response message to the server and starts the
AsnDisconnectResponseTimer to detect the loss of the Disconnect Request
message.

8 Sometime later, the client receives a Disconnect Response and notifies the
client that the association is gone. The client returns all resources to the
system.

At the Server:

1 The Circuit layer at the server receives a start message to create a circuit and
establishes a circuit with the client system (see Chapter 4).
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2 The Association layer at the server receives a Connect Request message and
declares an AppAsnUp event to the server system application.

3 Sometime later, the sysAppServerEvent process declares an
AsnConRspMsgSend event, which causes the Association layer to send a
Connect Response message to the client.

4 Sometime later, the server receives a transaction from the client.
The Association layer declares an AppTransReq event, passing the
data request to the sysAppServerRcv process. This process starts an
AsnResyncResponseTimer to indicate when a Resync message might need to
be sent.

5 Sometime later, the sysAppServerRsp process declares an
AsnTransRspMsgSend event, causing the Association layer to send one or
more Data Response messages to the client.

6 The Association layer receives a Disconnect Response message and declares
an AppAsnStopped event, passing the disconnect data to the sysAppServerRcv
process. The process declares an AsnDisconRspMsgSend event and sends a
Disconnect Response message.
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6
Message Formats

This chapter describes the following LASTport messages:

• Circuit layer messages

• Solicitation layer messages

• Association layer messages

All messages contain the Circuit message header.

In the messages formats shown, bit 0 is transmitted first on the wire.

6.1 Circuit Layer Messages
There are two types of Circuit layer messages: the Start/Stack message (described
in Section 6.1.1), and the Stop message (described in Section 6.1.3).

Figure 6–1 shows the Circuit message header format; Table 6–1 describes the
fields.

Figure 6–1 Circuit Message Header Format
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Table 6–1 Circuit Message Header Fields

Field Length Description

MESSAGE_LEN 2 bytes unsigned Number of bytes in the segment (buffer) including field
itself. See MSG_FLAGS for additional information.

MSG_TYPE 1 byte The following values define message types:

0 = Run
1 = Start
2 = Stack
3 = Stop
4 = Loop
5 = Advertisement
6 = Solicit Request
7 = Solicit Response

MSG_FLAGS 1 byte The following bits are valid for flags:

• Bit 0 = 1. The data is checksummed from MESSAGE_
LEN through MESSAGE_LEN bytes. The checksum
follows the message after rounding up modulus 4 and
is not included in the MESSAGE_LEN count. The
checksum is a 4-byte unsigned value. Appendix A
describes checksumming.

• Bits 1–7 = TAZIOR.

DST_CIR_ID 2 bytes A reference to the destination node CSB.

SOURCE_NODE_ID 6 bytes A LAN-wide unique identification of the source node, which
remains constant across transport incarnations. Typically,
implementations use a physical hardware address for
this value. Note that FDDI physical hardware addresses
are specified in reverse bit order relative to Ethernet
addresses.

SB 1 bit When set, indicates that RATE_VALUE is being
established.

RATE_VALUE 15 bits unsigned A segment-per-second count.

LAST_RATE_VALUE 16 bits unsigned A segment-per-second count.

Note that the data link driver software typically supplies the LAN header.
Because this header is subject to change in newer LAN message formats, it is not
included in LASTport implementations. It is assumed that the message header
minimally provides the source address of the transmitter and that LAST can
address it.
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6.1.1 Start/Stack Message
Start message headers have MSG_TYPE fixed at 1. Stack message headers have
this value set to 2. Otherwise, the format and meaning of values in Start and
Stack messages are equivalent and symmetric.

Figure 6–2 shows the format of the Start/Stack message; Table 6–2 describes
messsage fields. Table 6–3 describes the Start/Stack message flags.

Figure 6–2 Start/Stack Message Format
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Table 6–2 Start/Stack Message Fields

Field Length Description

SRC_CIRC_ID 2 bytes A reference to the source node CSB, to be
used by the circuit partner when generating
circuit-based messages.

FLAGS 16 bits Flags used to negotiate circuit level features.
See Table 6–3.

LAST_DATAGRAM_SIZE 2 bytes unsigned Each data link implementation restricts the
minimum and maximum sizes of frames. An
implementation must specify the maximum
datagram size that it supports. The circuit
client sets its datagram size in the Start
message. The server does not offer larger
messages for transmission to the client. The
server can specify a lower value in the Stack
message, instructing the client to use this
value. This value determines the size of
datagrams that the client offers to the Data
Link layer.

PROTOCOL_VER 1 byte Protocol version of this message and of all
messages transmitted on this circuit. An
exact match of protocol version must exist
before the circuit can be created. If a protocol
mismatch exists, the circuit layer ignores the
message. Select the Start message protocol
version using information supplied by the
Solicit (directory service) messages.

PROTOCOL_ECO 1 byte Protocol version ECO of this message and of
all messages transmitted using this circuit.
For any given protocol version, ECOs are
backward compatible. The PROTOCOL_
ECO level reflects patches made in the field
by automatic updates or by field software
specialists.

MAX_SIM_CONNECTS 2 bytes unsigned Maximum number of simultaneous
associations that can be opened on this
circuit. The client offers a number, and
the server can negotiate a lower value if
it cannot support the offered value. The
value returned in the Stack message is the
maximum number of associations supported
on this circuit. This value corresponds to the
ASB vector length in the CSB.

PRODUCT_TYPE_CODE 2 bytes unsigned See Section 6.1.2.

PROGRESS_TIMER 2 bytes unsigned A timer, specified in seconds. This value
is negotiated in the same way as the
MAX_SIM_CONNECTS. The Circuit layer
is required to transmit a message every
PROGRESS_TIMER seconds divided by 3 if
no other traffic has been transmitted on the
circuit.

SOURCE_NODE_INCARNATION 2 bytes Unique value assigned at transport
initialization. This value must be different
from any recent value used by a previous
incarnation of this transport.

(continued on next page)
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Table 6–2 (Cont.) Start/Stack Message Fields

Field Length Description

NODE_NAME_LEN 1 byte unsigned Length in bytes of NODE_NAME field.

NODE_NAME 16 bytes, fixed
length

Text in this field specifies the name of the
client or server node.

Table 6–3 Start/Stack Message Flags

Flag Bits Description

INTRA_BURST_DELAY 0 Indicates how the transmitter should pipeline
transmit message segments. If the flag is set to 1,
message segments are transmitted one at a time,
and the transmitter waits for a transmit complete
event for each message segment. If the flag is set
to 0, the transmitter can pipeline BURST_SIZE
message segments. Notice that this flag is not
negotiable and affects all circuit-based transmit
operations for nodes receiving this message.

FORCE_CHECKSUMMING 1 If the FORCE_CHECKSUMMING bit is set,
checksumming verification is enabled in the
Start/Stack message. Either end of a circuit can
require data checksumming.

TAZIOR 2–15 Transmit as zero and ignore on receipt.

6.1.2 Product Type Codes for Start/Stack Messages
The LASTport protocol supports client associations, server associations, or both
for various products. Figure 6–3 shows the format of the 16-bit PRODUCT_TYPE
field. Table 6–4 describes the field segments; Table 6–5 lists PRODUCT_TYPE
codes for Digital COMPANY code 0, and Table 6–6 lists COMPANY codes. In the
future, other companies may be assigned their own PRODUCT_TYPE codes.

Figure 6–3 Format of PRODUCT_TYPE_CODE Field

15 8 7 0

COMPANY PRODUCT_TYPE

Table 6–4 PRODUCT_TYPE_CODE Field Segments

Segment Bits Description

PRODUCT_TYPE 0–7 Product type (256 values). A value of zero indicates that
no product type is specified. See Table 6–5.

COMPANY 8–15 Company name (256 values). See Table 6–6.
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Table 6–5 PRODUCT_TYPE Codes for Digital COMPANY Code 0

Product Type Codes

Digital VAX/VMS client/server system 1

Digital VAX/VMS client system 2

Digital VAX/VMS server system 3

PATHWORKS for DOS client 4

PATHWORKS for DOS server 5

PATHWORKS for DOS client/server 6

Digital VAX/VMS small timesharing system 7

Digital VAX/VMS medium timesharing system 8

Digital VAX/VMS large timesharing system 9

Digital VAX/VMS mainframe timesharing system 10

OS/2 PC 11

UNIX small system 12

UNIX medium system 13

UNIX large system 14

UNIX mainframe system 15

Routers 16

Terminal servers 17

Network server 18

InfoServer 50 19

InfoServer 100 20

InfoServer 200 21

InfoServer 300 22

VXT 2000 23

Other 24–255

Table 6–6 COMPANY Codes

Company Codes

Digital Equipment Corp. 0

IBM (International Business Machines) Corp. 1

Apple Computer, Inc. 2

Microsoft Corp. 3

Sun Microsystems, Inc. 4

AT & T Corp. 5

Hewlett-Packard Co. 6

The Santa Cruz Operation, Inc. 7

Cisco, Inc. 8

Alphaphatronix, Inc. 9

(continued on next page)
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Table 6–6 (Cont.) COMPANY Codes

Company Codes

Prime Computer Corp. 10

Data General Corp. 11

Virtual Microsystems, Inc. 12

Ricoh Corp. 13

Sony Corp. 14

Novell Corp. 15

Silicon Graphics, Inc. 16

Reserved 17–255

6.1.3 Stop Message
Figure 6–4 shows the Stop message format. Table 6–7 describes the message
field.

Figure 6–4 Stop Message Format
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Table 6–7 Stop Message Field

Field Length Description

CIRCUIT_DISCONNECT_REASON 2 bytes unsigned A zero value means that no reason is
given. The currently defined reasons
are as follows:

1 = Invalid response timer
2 = Circuit stop from user
3 = Protocol error
4 = No resources
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6.2 Solicitation Layer Messages
Figure 6–5 shows the common format of Solicitation layer Advertisement, Solicit
Request, and Solicit Response messages. Table 6–8 describes message fields.

Figure 6–5 Format of Advertisement and Solicit Messages
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Table 6–8 Advertisement and Solicit Message Fields

Field Length Description

CUR_VERSION 1 byte unsigned Protocol version of this
message. This node supports
message exchanges using this
protocol version.

ECO_LEVEL 1 byte unsigned ECO of this message and this
protocol version.

LOW_VERSION 1 byte unsigned Lowest version supported by
this node.

HIGH_VERSION 1 byte unsigned Highest version supported by
this node. When attempting
to create a circuit (construct
a Start message), choose a
protocol version in the range
defined by LOW_VERSION
and HIGH_VERSION.

FLAGS 1 byte unsigned Bitfield describing the
transmitter transport type and
flags. This field is required
in all Advertisement and
Solicit messages. Transports
use the field to determine
whether the transmitting node
is maintained in the topology.
For example, because a client-
only node has the CLIENT_
FLAG bit set, the node ignores
messages from other client-
only nodes. Both the CLIENT_
FLAG and SERVER_FLAG
bits can be set. Table 6–9 lists
flags and settings for this field.

NODE_NAME_LEN 1 byte unsigned Length in bytes of the
transport node name in the
range 1 to 16. This field is
required for all Advertisement
messages.

NODE_NAME 16 bytes Name associated with the
transmitting transport.
This field is required for all
Advertisement and Solicit
messages.

REQUEST_SEQUENCE 4 bytes Reserved for use by the
transmitter. This field must be
copied to any Solicit Response
message. During path
maintenance operations, the
LASTport protocol uses this
field as the Solicit Identifier.

(continued on next page)
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Table 6–8 (Cont.) Advertisement and Solicit Message Fields

Field Length Description

SERVICE_CLASS 2 bytes unsigned A unique identifier indicating
the service type. Clients
and servers are registered
with the transport and are
assigned Service Class values.
If SERVICE_CLASS is zero,
a Solicit Response message
is required. Currently
defined service classes are
the following:

1 Virtual Disk Service

2 Primitive Distributed
Queueing Service

3 LANsess File Service

4 Virtual Tape Service

SERVICE_RATING 2 bytes Field used by the server
system application to indicate
quality of service.

SOURCE_NODE_INCARNATION 2 bytes The unique value assigned at
transport initialization. This
value must be different from
any recent value used by a
previous incarnation of this
transport.

SERVICE_NAME_LEN 1 byte unsigned Length in bytes of Service
Name. This field is valid for
all directory service messages.
If SERVICE_NAME_LEN
is zero, the message is
interpreted as a topology
message. If the SERVICE_
NAME_LEN is not zero, it is
interpreted as service related.

SERVICE_NAME † SERVICE_NAME_LEN bytes Service Name of interest.
SERVICE_CLASS users
are free to construct the
Service Name to suit their
applications.

SERVICE_DESCRIPTOR_LEN 2 bytes unsigned Length in bytes of the
following
SERVICE_DESCRIPTOR field.

SERVICE_DESCRIPTOR † SERVICE_DESCRIPTOR_LEN
bytes

Data associated with the
SERVICE_NAME field.

†Because the length of the SERVICE_NAME and SERVICE_DESCRIPTOR fields is limited by the LAST_DATAGRAM_
SIZE, the Solicit message length cannot exceed the LAST_DATAGRAM_SIZE.

Maximum Solicit message length = CIRCUIT_HEADER (16 bytes) + SERVICE_NAME_LEN +
SERVICE_DESCRIPTOR_LEN + remaining message fields (35 bytes).

When transmitting Solicit Request and Solicit Response messages, system applications must take into account the
LAN topology to achieve complete connectivity. Bridges between different LAN interconnects (for example, Ethernet,
FDDI, LocalTalk™) might not be capable of forwarding Solicit messages. System applications might want to limit the
size of these messages.
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Table 6–9 FLAGS Field Settings

Flag Setting Description

CLIENT_FLAG Bit 0 = 1 CLIENT_FLAG set if transport type is client.

SERVER_FLAG Bit 1 = 1 SERVER_FLAG set if transport type is server.

PURGE_ALL_PATHS_FLAG Bit 2 = 1 All known path data is purged for the SOURCE_
NODE_ID node except the path on which the
message arrived.

TAZIOR Bits 3–7 Transmit as zero and ignore on receipt.
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6.3 Association Layer Messages
Association layer messages, also called Run messages, are used to identify
transactions. The following message subtypes are defined:

• Connect Request

• Connect Response

• Data Request

• Data Response

• Resync Response

• Disconnect Request

• Disconnect Response

These are described in Sections 6.3.2 through 6.3.8. Section 6.3.1 describes the
Run message header.

6.3.1 Run Message Header
Run messages are transmitted after completion of a Start/Stack message
exchange and continue until a Stop message deletes the CSB. The MSG_TYPE
field in Run messages is set to 0 by default.

Run messages include the common header (CIRCUIT HEADER and RUN
MESSAGE HEADER) shown in Figure 6–6. Table 6–10 describes the message
fields. Table 6–11 describes the mode indicators for Run messages.

Figure 6–6 Run Message Header Format
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Table 6–10 Run Message Fields

Field Length Description

MSG_SUBTYPE 1 byte unsigned The value for this message type. The
following message subtypes are defined:

0 = Data Request
1 = Data Response
2 = Connect Request
3 = Connect Response
4 = Reserved
5 = Resync Response
6 = Disconnect Request
7 = Disconnect Response

STATUS_FLAGS 8 bits Association modifiers are as follows:

Bits 0–1 (2 bit unsigned integer) is the mode
indicator. Mode indicators are assigned as
described in Table 6–11.

Bits 3–7 = TAZIOR.

DST_ASB_ID 2 bytes unsigned An index to the remote ASB. This value
must be zero for a connect request message,
and must not be zero for any other Run
message.

APPLICATION_REFERENCE 4 bytes This field, also called the Client Handle, is
supplied by the client system application
when a request is made. The server
returns this field in response Run headers,
allowing the client to match a particular
response with the application request. If
the response does not match the request,
the client ignores the response.

Table 6–11 Mode Indicator for Run Messages

Mode Mode Name Description

Mode 0 Idempotent_mode The server can discard transaction responses
immediately, without waiting for acknowledgment.
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6.3.2 Connect Request Message
Figure 6–7 shows the format of the Connect Request message. Table 6–12
describes the message fields.

Figure 6–7 Connect Request Message Format
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Table 6–12 Connect Request Message Fields

Field Length Description

SRC_ASB_ID 2 bytes unsigned The handle of the client ASB.

SERVICE_CLASS 2 bytes unsigned A value representing the type of
service being connected.

SEGMENT_SIZE 2 bytes unsigned Segment size used to fragment
transaction requests. Represents
the amount of user data transferred
in a Data Request/Data Response
message. See Section 6.3.2.1.

MAX_SLOTS 1 byte unsigned Maximum number of transactions
that a client can pipeline. See
Section 6.3.2.2.

SERV_NAME_LEN 1 byte unsigned Number of characters in the
SERVICE_NAME_TEXT field.

SERV_NAME_TEXT SERV_NAME_LEN bytes Destination Service Name used in
forming the connection.

CONNECT_REQUEST_LEN 2 bytes unsigned Length in bytes of CONNECT_
REQUEST field.

CONNECT_REQUEST CONNECT_REQUEST_LEN
bytes

CONNECT_REQUEST_LEN bytes
of application-specific data. The
total length of the Connect Request
message is limited by the LAST_
DATAGRAM_SIZE. The maximum
message length is computed as for
Solicit messages. (See Table 6–8.)

6.3.2.1 Segment Size Computation
A segment size cannot be larger but can be smaller than the size computed using
the following formula:

SS = DS - RH - 7

Elements are as follows:
SS = Segment size
DS = Datagram size (from Start message)
RH = Run request header size (8 bytes)
7 = Allowance for data checksumming and rounding

The client specifies its segment size in the Connect Request message. The server
can return a smaller value in the Connect Response message. Transactions are
segmented using the negotiated segment size.

6.3.2.2 Maximum Slots Computation
The MAX_SLOTS value is the maximum number of transactions that this
client concurrently supports. The client specifies its MAX_SLOTS value in the
Connect Request message. The server can return a smaller value in the Connect
Response message. The value associated with the Connect Response message is
the maximum number of concurrent transactions available for this association.
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6.3.3 Connect Response Message
Figure 6–8 shows the format of the Connect Response message. Table 6–13
describes the message fields.

Figure 6–8 Connect Response Message Format
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Table 6–13 Connect Response Message Fields

Field Length Description

SRC_ASB_ID 2 bytes unsigned The handle of the server ASB.

SEGMENT_SIZE 2 bytes unsigned Segment size used to fragment
transaction requests. Represents
the amount of user data transferred
in a Data Request/Data Response
message. See Section 6.3.2.1.

MAX_SLOTS 1 byte unsigned Maximum number of transactions
that the server can pipeline
(support simultaneously). See
Section 6.3.2.2.

DST_SERVICE_NAME_LEN 1 byte unsigned Number of characters in the
DST_SERVICE_NAME_TEXT field.

DST_SERVICE_NAME_TEXT SERVICE_NAME_LEN bytes Destination service name used in
forming the connection.

CONNECT_RESPONSE_LEN 2 bytes unsigned Length in bytes of CONNECT_
RESPONSE field.

(continued on next page)
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Table 6–13 (Cont.) Connect Response Message Fields

Field Length Description

CONNECT_RESPONSE CONNECT_RESPONSE_LEN
bytes

Application data. The total length
of the Connect Response message is
limited by the LAST_DATAGRAM_
SIZE. The maximum message
length is computed as for Solicit
messages. (See Table 6–8.)

6–17



Message Formats
6.3 Association Layer Messages

6.3.4 Data Request Message
Figure 6–9 shows the format of the Data Request message. Table 6–14 describes
the message fields.

Figure 6–9 Data Request Message Format
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Table 6–14 Data Request Message Fields

Field Length Description

TRANS_SLOT 1 byte Multiple transactions can be pipelined
through an association. This value provides
an index to the current transaction slot for
this message. Cannot be zero.

SEQUENCE_NUM 1 byte † Unique sequence number associated with this
message for this transaction ID. This field is
incremented for each new transaction within
a slot. Can be zero.

MAX_SEG_NUM 1 byte unsigned Used to identify the number of segments in
this transaction request. Cannot be zero.

CUR_SEG_NUM 1 byte unsigned Used to identify this segment number.
Cannot be zero.

CMD_RESPONSE 1 byte unsigned The value in seconds specified by the client,
which is an initial time limit for receipt
of a request message acknowledgment or
transaction response message. This value is
required to determine whether the request
message is lost. This value is referenced as
the AsnTransactionResponseShortTimer. (See
Section 2.1.4.)

†In the next version of the architecture, length will be 4 bytes.

(continued on next page)
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Table 6–14 (Cont.) Data Request Message Fields

Field Length Description

TRANS_RESPONSE 1 byte unsigned The value in seconds specified by the client,
which is subsequently used as a time limit
for completion of the transaction and can be
reset by the server using Resync Response
messages. This value is referenced as the
AsnTransactionResponseLongTimer. (See
Section 2.1.4.)

DATA_REQUEST_LEN 2 bytes unsigned Length in bytes of the next field.

DATA_REQUEST DATA_REQUEST_LEN
bytes

User-supplied data.
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6.3.5 Data Response Message
Figure 6–10 shows the format of the Data Response message. Table 6–15
describes the message fields.

Figure 6–10 Data Response Message Format
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Table 6–15 Data Response Message Fields

Field Length Description

TRANS_SLOT 1 byte This value provides an index to the
current transaction ID for this message.
Cannot be zero.

SEQUENCE_NUM 1 byte † Unique sequence number associated with
this message for this transaction ID.
This field is incremented for each unique
transaction. Value is copied from the Data
Request message. Can be zero.

MAX_SEG_NUM 1 byte unsigned Used to identify the number of segments
in this transaction response. Cannot be
zero.

CUR_SEG_NUM 1 byte unsigned Used to identify this segment number.
Cannot be zero.

TAZIOR 2 bytes Transmit as zero and ignore on receipt.

DATA_RESPONSE_LEN 2 bytes unsigned Length in bytes of the next field.

DATA_RESPONSE DATA_RESPONSE_LEN
bytes

User-supplied data.

†In the next version of the architecture, length will be 4 bytes.
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6.3.6 Resync Response Message
Figure 6–11 shows the format of the Resync Response message. Table 6–16
describes the message fields.

Figure 6–11 Resync Response Message Format
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Table 6–16 Resync Response Message Fields

Field Length Description

TRANS_SLOT 1 byte Multiple associations can be pipelined through a
association. This value provides an index to the
current transaction ID for this message. Cannot be
zero.

SEQUENCE_NUM 1 byte † Unique sequence number associated with this
message for this transaction ID. This field is
incremented for each unique transaction. Can
be zero.

Call Phil Wells re next
two fields

TRANS_TIMER 1 byte unsigned An unsigned byte. The units are 10 millisecond
intervals.

BITMAP_LEN 1 byte signed A byte indicating the length of the following field.

BITMAP variable length A bitmap of transaction segments.

†In the next version of the architecture, length will be 4 bytes.
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6.3.7 Disconnect Request Message
Figure 6–12 shows the format of the Disconnect Request message. Table 6–17
describes the message fields.

Figure 6–12 Disconnect Request Message Format
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Table 6–17 Disconnect Request Message Fields

Field Length Description

DISCONNECT_REASON 2 bytes unsigned Disconnect reason. A reason of 0 is undefined.
The defined reasons are as follows:

1 = Invalid message format received
2 = Invalid local connection identification

received
3 = Invalid remote connection identification

received
4 = Association_halt event received from

client
5 = No progress being made
6 = Time limit expired
7 = Retransmit limit reached
8 = No resources
9 = Service Name has changed
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6.3.8 Disconnect Response Message
Figure 6–13 shows the format of the Disconnect Request message. Table 6–18
describes the message fields.

Figure 6–13 Disconnect Response Message Format
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Table 6–18 Disconnect Response Message Fields

Field Length Description

DISCONNECT_REASON 2 bytes unsigned Disconnect reason. A reason of 0 is undefined.
The defined reasons for disconnects are as
follows:

1 = Invalid message format received
2 = Invalid local connection identification

received
3 = Invalid remote connection identification

received
4 = Association_halt event received from

client
5 = No progress being made
6 = Time limit expired
7 = Retransmit limit reached
8 = No resources
9 = Service name has changed
10 = Server rejects connect
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A
Checksumming Algorithm

This appendix describes the checksumming algorithm that the LASTport protocol
uses to detect errors. The checksumming flag contained in the Circuit message
header controls checksumming for all LASTport messages.

The option to require checksumming under circuit control is negotiated at
circuit startup in the Start and Stack messages. If either end of the circuit
requires checksumming, both must generate checksummed messages and verify
the received message checksum. This mechanism protects user data when
communication equipment is known to be faulty.

The algorithm shown in Example A–1 shows a correct VMS checksum
implementation that checks for groups of eight longwords and is designed to
take advantage of certain VAX processor pre-fetch instructions. The $DISPATCH
macro is commonly used to generate a CASEx instruction. Note that because
checksum calculation for large packets can be a lengthy process, implementations
must take hardware capabilities into account.

Example A–1 VAX Checksum Code

MOVAL LAST_MESSAGE, R0 ; Get begin address of message
MOVZWL LAST_MSG_LEN(R0), R4 ; Get byte count
ASHL #-2, R4,R4 ; Make it a longword count
BICL3 #^C^B111, R4, -(SP) ; Compute entry into checksum loop
ASHL #-3,R4,R4 ; Remaining group of 8 longwords
CLRL R1 ; Init accumulator

$DISPATCH (SP)+, TYPE=L,- ; Dispatch into summing vector
< <0 90$>,-

<1 91$>,-
<2 92$>,-
<3 93$>,-
<4 94$>,-
<5 95$>,-
<6 96$>,-
<7 97$>>

; The following is the summing vector. R4 contains the count of
; Eight-longword groups to be checksummed. Entry into the table
; is based on the remainder of ((:MESSAGE_LEN/4)/8

(continued on next page)
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Example A–1 (Cont.) VAX Checksum Code

98$: ADDL (R0)+,R1 ; Accumulate sum
97$: ADDL (R0)+,R1 ; Accumulate sum
96$: ADDL (R0)+,R1 ; Accumulate sum
95$: ADDL (R0)+,R1 ; Accumulate sum
94$: ADDL (R0)+,R1 ; Accumulate sum
93$: ADDL (R0)+,R1 ; Accumulate sum
92$: ADDL (R0)+,R1 ; Accumulate sum
91$: ADDL (R0)+,R1 ; Accumulate sum
90$: SOBGEQ R4,98$ ; Loop

MOVL R1, (R0) ; store checksum at end of
; message stream

Checksums are calculated as a cumulative total of 32-bit unsigned integer values.
Carries are dropped. The 32-bit values start with the low-order bit of the circuit
message header MESSAGE_LEN field, which is added to each successive 32-bit
value for (MESSAGE_LEN+3)/4 32-bit integer values. The actual checksum
itself is a 32-bit unsigned integer value located at offset MESSAGE_LEN +
((MESSAGE_LEN+3)/4).
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Glossary

advertisement

A data multicast primitive message that allows LASTport server nodes to
advertise node-specific services to their potential clients. The LASTport Circuit
layer users Advertisement, Solicit Request, and Solicit Response messages to
maintain connectivity.

application

See system application.

association

The active relationship between a client instance and a server instance for a
particular service provided by a server instance. An association is required to
perform transactions between a client and a server.

Association layer

A component of the LASTport protocol than manages connections and
transactions between a client and a server.

checksum

A sum of digits or bits used to verify whether a number or an operation is valid.

circuit

The relationship between two nodes. Only a single circuit exists between any two
nodes, regardless of the number of associations.

Circuit layer

A component of the LASTport protocol that defines and maintains the circuit
topology and distributes messages between source and destination nodes.

circuit topology

The set of paths (logical links) that connect client and server nodes in a local
area network. The circuit topology is mapped during the solicitation process.
The topology can change depending on which paths and network adapters are
available.

client

The software requesting a service of a server.

client request semantics

A set of rules that ensures execution of a transaction by a server at least once
or causes an association to fail. The client specifies the retry interval and the
retry count for the transaction.
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client response semantics

A set of rules that ensures execution of a transaction by a client at least once.
No execution at the server occurs after the response is delivered successfully.

client–server protocol

A protocol in which one node has priority over the other. For example, in the
LASTport protocol, the client has priority over the server. The client initiates
all requests for a service, and the server must respond to the client’s request.

communication interface

A mechanism by which system components located on the various nodes in a
network can interact through the exchange of messages conveying data and
control information. Communication interfaces are usually implemented using
communication protocols.

commutative transaction

A transaction that can be completed in any order without introducing errors
in the result. The LASTport protocol requires that all concurrently executing
transactions be commutative. This requirement allows the protocol to process
multiple transactions concurrently, because transactions can complete across
the session interface in the order in which responses arrive. No state need be
maintained to preserve the order of transactions.

component

A constituent element of a system.

congestion control

The mechanisms that prevent catastrophic collapse of the distributed system
(also known as ‘‘livelock’’) when instantaneous demand for service exceeds the
available network capacity.

connection

The function that creates a new, agent–specific association between a client
and a server. A connection is initiated by a client.

dally

A system application mechanism used to prevent flooding of the client’s network
adapter when multiple servers respond to a Solicit Request message.

datagram

A packet assembled into a network frame for transmission to remote nodes.

data link

An extended local area network (LAN) segment.

Data Link layer

A network protocol component that transmits datagrams between a client
and a server. The Data Link layer assembles packets into network frames for
transmission to remote nodes as datagrams.
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data link port

The device that connects a node to a data link, also called an adapter. A data
link port is associated with a single node. A node can have multiple data link
ports.

data slot

A division of a LAT packet that contains the data from a LAT session.

data transfer service

A service that enables a client to send requests to a server and that enables
servers to respond.

directory service

A service that locates a server for the system application. Directory services
occur in the LASTport Solicitation layer.

disconnection

The act of terminating an association.

end-to-end guarantee

A guarantee ensuring that all transaction segments transmitted by a client
arrive at a server, that the complete transaction is processed by the server, and
that the results are returned to the client.

forward sequence number

A number defined for each transaction slot at the server as n + 1 to n + 127,
where n is the sequence number of the LASTport transaction processed on that
slot. This range covers half of the 256 possible sequence numbers. † Sequence
numbers outside that range are assumed to be from previous transactions, and
they are rejected at the server. To allow for the possibility of lost, and therefore,
non-sequentially numbered requests, the server processes any requests in the set
of forward sequence numbers.

frame

The primitive unit of data transfer between nodes on the local area network.

header

The control information prefixed in a message text, such as source or destination
code or message type.

idempotent transaction

A transaction that can be repeated without changing the system state. The
repeated transaction request has the ‘‘same strength’’ as the original request,
assuming that the request is repeated in isolation from other requests.

idempotent procedure

A procedure that can use the LASTport protocol directly, such as Digital
Equipment Corporation’s Mass Storage Control Protocol (MSCP), access to
read-only data in general, and name translation.

† In the next version of the architecture, the range will be n + 1 to n + (231 + 1).
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interface

A point of interaction between two components or between a system and its
environment. The LASTport protocol contains interfaces of the following types:

• User interfaces

• Communications interfaces

• Programming interfaces

• Data interfaces

• System interfaces

LAN

See local area network.

LAT protocol

A communications protocol used in a local area network. LAT is Digital’s local
area transport product.

layer

A set of software that is ordered partially with respect to dependency; that is
higher layers can depend on lower layers, but lower layers cannot depend on
higher layers.

The LASTport protocol includes three functional layers: the Circuit, Association,
and Solicitation layers.

local area network (LAN)

Loosely, the set of nodes capable of communicating with any other node in the set
across some data link segment. All nodes in the LAN must have at least one data
link segment in common.

message

A datagram that is formatted with one of the architecturally defined LASTport
protocol headers and identified in the local area network header as a LASTport
protocol packet.

multicast

The ability to ‘‘address’’ a single message for receipt by any data link port
that enables the multicast address. This capability supports the LASTport
advertisement and solicit primitives.

Name Space

A collection of logically related names, such as LASTport/Disk Service Names,
that identify objects accessible on a network.

Name Space Handler

A system application data structure that identifies a Name Space.

Network layer

A layer that provides user control of and access to operational parameters and
counters in lower layers.
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network topology

The physical arrangement and relationship of interconnected nodes in the
network.

Name String

An architecturally specified name conveyed in a Parameter Code.

node

A computer system on the local area network. The LASTport protocol requires
only that a node be able to identify itself uniquely in space and time. A 48-bit
identifier, such as the hardware address of a particular local area network
controller, identifies the node in space, and a 16-bit value identifies a specific
instance of the operating system.

orphan transaction

A complete transaction request or response that is no longer current but is still
active in a circuit.

packet

The unit of data created by the LASTport Circuit layer and transmitted to
the Data Link layer. A packet is inherently unreliable; that is, the local area
network can neither guarantee reliable delivery of packets nor indicate delivery
of any given packet.

performance

A measurement of the resources required to perform an operation. The most
common measurement is the elapsed time needed to perform an operation. The
elapsed time from the end of user input until output data is displayed is called
response time. Consumption of other resources such as processor, communication,
I/O, and memory resources might also be measured as part of performance.

Parameter Code

A system application code that conveys architecturally specified names called
Name Strings.

Parameter List

A LASTport/Disk mechanism that allows extensions to message formats and
Name Spaces.

path maintenance

The process of determining which paths remain viable between a client and
a server after the solicitation process. A circuit is maintained as long as
messages arrive on a path during a timed interval.

The client and server follow the same protocol for maintaining the network
topology.

peer-to-peer transport protocol

A transport protocol such as DECnet NSP, in which data exchanges between
nodes operate symmetrically. Usually, only one transaction can be conducted at
a time, and one transaction must complete before another can start. The protocol
used at both nodes is identical. By contrast, in a client–server protocol, one node
has priority over the other.
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platform

A combination of computer hardware and software that provides an environment
for higher-level software.

protocol

A complete specification of a sequence of operations and messages needed to
accomplish some specified processing or information exchange.

Examples: DECnet NSP protocol, LASTport protocol, LAT protocol, OSI stack,
TCP/IP stack, X.400 protocol.

registration service

A service that allows the system application to interact with the LASTport
protocol. Registration services make the Directory, Association, and Data
Transfer services available to the system application. Registration services
are not described in the LASTport architecture because they are implemented
differently for each system.

reliability

The extent to which a system or part of a system yields the expected results on
repeated trials. ‘‘Expected results’’ means correct output, without unintended side
effects, meeting the performance specification. Reliability is measured by mean
time between failures (MTBF).

request

The data that a client sends to a server.

request–response semantics

A set of rules that defines the relationship between a client and a server. The
client sends a request to the server, and the server sends a response to the
client.

response

The data returned by a server reacting to the request data supplied by a client.

segment

The unit of communication created by the LASTport Association layer and
passed to the Circuit layer for transmission. Each segment has a transaction
identifier.

segment number

A number that identifies the position of a segment in a transaction. The
segment number is used to reassemble a transaction once the transaction packets
reach the destination node.

sequence number

See transaction sequence number.

server

Software that provides a service to a client.

server name

A Name String that uniquely identifies a server on the local area network.
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server request semantics

A set of rules that ensures execution of a transaction by a server exactly once.

server response semantics

A set of rules that requires a server to return the results of a transaction to a
client exactly once.

service

A set of invocable routines that provides a complete, well-defined function. A
service comprises a number of operations and can also maintain state.

The software that uses a service is called a client; the software providing a
service is called a server. A given piece of software can be both a client and a
server (for different services) at the same time. In a distributed system, client
and server may be on different nodes of a network.

Examples: file services, naming services, virtual disk services.

Service Instance

A description of an instance of the requested Service Name.

Service Name

The name of a system application virtual disk. Multiple virtual disks or a single
disk can be mapped to a single physical medium. Conversely, a single virtual
disk can span multiple physical media.

Session layer

A layer that defines the system-dependent aspect of logical link communication.
A logical link is a circuit on which information flows in two directions. Session
control functions include name-to-address translation, process addressing, and, in
some systems, process activation and access control.

slot

See transaction slot.

slot number

See transaction slot number.

solicitation

A function that allows a client to transmit data to all servers and receive
response data from specific servers. A client builds a dynamic service binding
capability, in which the decision to connect to a particular server can be deferred
until a specific service is needed.

Solicitation layer

A component of the LASTport protocol that provides a combined service for
directory operations, association management, and task naming.

subsystem

See system.
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system

A set of components organized in a particular fashion and working together to
achieve a certain outcome or objective. A system exists within an environment
and interacts with objects in that environment.

Systems themselves can be composed to form even larger systems, sometimes
referred to as macrosystems; the constituent systems are then known as
subsystems.

system application

An application program that facilitates the development, management, or use of
an information system.

Examples: language compilers, data structure viewers, backup and restore
tools, file editors, system builders, command language interpreters, compound
document editors, mail viewers.

transaction

The fundamental client–server communication paradigm supported by the
LASTport protocol. A transaction comprises a two-step sequence that takes place
within the context of a preexisting association. First, the client establishes the
association and supplies request data to the server. The server then returns
response data to the client in the context of the transaction that supplied the
request data.

transaction identifier

An identifier that includes a transaction slot number and that is found in the
header of every segment passed from the Association layer to the Circuit
layer.

transaction sequence number

An 8-bit field (value 1 to 255) that, along with the transaction slot number,
uniquely identifies a transaction. In the LASTport client Association layer, each
transaction slot has a counter to record the current sequence number. On an
initial transaction attempt, the client Association layer assigns the next available
transaction slot number and transaction sequence number.

transaction slot

An active exchange in the context of its association. The number of slots
supported by an association defines how many exchanges within that association
can be active concurrently.

transaction slot number

A one-byte number that identifies a slot. The slot number identifies a segment
as belonging to a particular transaction. All segments for one transaction carry
the same slot number for both the request and the response.

Transport layer

A layer used to route a datagram to its destination. A Transport layer also
provides congestion control and packet lifetime control.
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