
A P R I L 1 9 9 2

WRL
Technical Note TN-27

A Recovery Protocol for
Spritely NFS

Jeffrey C. Mogul

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

A Recovery Protocol for Spritely NFS

Jeffrey C. Mogul

April, 1992

Abstract

NFS suffers from its lack of an explicit cache-consistency protocol. The
Spritely NFS experiment, which grafted Sprite’s cache-consistency protocol onto
NFS, showed that this could improve NFS performance and consistency, but
failed to address the issue of server crash recovery. Several crash recovery
mechanisms have been implemented for use with network file systems, but most
of these are too complex to fit easily into the NFS design. I propose a simple
recovery protocol that requires almost no client-side support, and guarantees con-
sistent behavior even if the network is partitioned. This proves that one need not
endure a stateless protocol for the sake of a simple implementation.

I also tidy up some loose ends that were not addressed in the original experi-
ment, but which must be dealt with in a real system.

This is a preprint of a paper presented at the USENIX Workshop on File Systems, May, 1992.

Copyright 1992
Digital Equipment Corporation

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

ii

Table of Contents
1. Introduction 1
2. Goals and design philosophy 1
3. Review of Spritely NFS 2
4. Loose ends in Spritely NFS 3

4.1. Dealing with ENOSPC 3
4.2. Directory caching 5
4.3. Caching attributes for unopened files 6
4.4. Unmounting a server filesystem 8

5. Overview of the recovery protocol 8
6. Details of the recovery protocol 10

6.1. Normal operation 10
6.2. Client crash recovery 11
6.3. The server recovery phase 11
6.4. Log-based recovery 12
6.5. Recovery and the ENOSPC problem 13
6.6. Multiple file systems exported by one server host 14

7. Simultaneous mixing of NFS and Spritely NFS hosts 14
7.1. Automatic recognition of Spritely NFS hosts 14
7.2. Consistency between NFS and Spritely NFS clients 15

8. Performance 16
9. Software complexity 16

9.1. Client implementation issues 16
9.2. Server implementation issues 17

10. Other related work 17
11. Summary 18
Acknowledgements 18
References 18

iii

iv

1. Introduction

NFS has been extremely successful, in large part because it is so simple and easily im-
plemented. The NFS ‘‘stateless server’’ dogma makes implementation easy because the server
need not maintain any (non-file) state between RPCs, and so need not recover state after a crash.

Statelessness is not inherently good. Since many NFS operations are non-idempotent and
might be retried due to a communication failure, to get reasonable performance and ‘‘better cor-
rectness’’ the server must cache the results of recent transactions [8]. Such cache state is not
normally recovered after a crash, although this exposes the client to a possible idempotency
failure.

A more serious problem with NFS statelessness is that it forces a tradeoff between inter-client
cache consistency and client file-write performance. In order to avoid inconsistencies visible to
client applications, NFS client implementations (by tradition, rather than specification) force any
delayed writes to the server when a file is closed. This ensures that when clients use the follow-
ing sequence:

Writer Reader

open()
write()
close()

open()
read()
close()

the reader will see the most recent data, if the writer and reader explicitly synchronize so that the
reader’s open takes place after the writer’s close.

Unfortunately, this means that the close operation is synchronous with the server’s disk. Since
most files are small [2, 11], this means that most file writes effectively become synchronous with
the server’s disk, and NFS clients spend much of their time waiting for disk writes to complete.
Also, although many files have very short lifetimes and are never shared, and need never leave
the client’s cache, NFS forces them to the server’s disk and so wastes a lot of effort. Finally,
NFS does not guarantee any form of cache consistency for simultaneous write-sharing, with the
result that occasional consistency errors plague NFS users.

The Sprite file system [10] solves these problems by introducing an explicit cache-consistency
protocol. The fundamental observation is that write-sharing is rare, and can be detected by the
server if clients report file opens and closes (not done in NFS), so the write-through-on-close
policy can be eliminated. Instead, when write-sharing does occur, Sprite turns off all client cach-
ing for the affected file, and thus provides true consistency between client hosts.

2. Goals and design philosophy

Before describing the changes I propose for Spritely NFS, I want to briefly list the goals that I
think such a system should meet:

1

A RECOVERY PROTOCOL FOR SPRITELY NFS

• Simplicity: Spritely NFS was a successful experiment partly because it required
minimal changes to an NFS implementation, and almost no changes to any other
code. Any improved version should avoid unnecessary complexity, especially on
the client side.

• Consistency: Spritely NFS should provide guaranteed cache consistency at all
times. A partial guarantee is no improvement on NFS, since an application cannot
make use of a partially-guaranteed property.

• Performance: Spritely NFS is not worth doing unless its performance, even with
recovery, is better than that of NFS. While Spritely NFS also promises better con-
sistency, that in itself would not convince many users to switch.

• Reliability: Spritely NFS should be no less reliable than NFS or the local Unix file
system. (Note that I am satisfied with matching the lesser of these reliabilities in a
given situation; NFS is sometimes, but not always, more reliable than a local Unix
file system, and Spritely NFS sometimes must give up these NFS properties.)

• No-brainer operation: System managers should not need to do anything special to
manage a Spritely NFS system. In particular, they should not need to adjust
parameter values.

• Incremental adoption: Spritely NFS clients should interoperate with NFS servers,
and vice versa. Otherwise, users will not have much of an incentive to adopt
Spritely NFS, since this would mean replacing large parts of their infrastructure all
at once.

3. Review of Spritely NFS

Spritely NFS [15] was an experiment to show that a Sprite-like consistency protocol could be
grafted onto NFS, and to show that the performance advantage of Sprite over NFS was in large

part due to the consistency mechanism rather than other differences between Sprite and Unix .
In this section I will summarize the design of Spritely NFS.

Two new client-to-server RPC calls are added to the basic NFS suite, open and close. The
open call includes a mode argument that tells the server whether the client is writing the file or
just reading it.

The NFS server is augmented with a ‘‘state table,’’ recording the consistency state of each
currently-open file. In Spritely NFS, this state table is relevant only to the open and close RPCs;
all other client RPCs are handled exactly as in NFS. When a client issues an open RPC, the
server makes an entry in its state table and then decides, based on other state table information, if
the specified open-mode conflicts with uses by other clients. If the open is conflict free, the
server (via the RPC return value) notifies the client that it can cache the file. Otherwise, the
client is not allowed to cache the file.

In some cases, a conflict may arise after a client has opened a file and has been allowed to
cache it. For example, the first client host might open a file for write, and be allowed to cache it,
and then a second host might open the same file. At this point, in order to maintain consistency,
the first client must stop caching the file.

2

A RECOVERY PROTOCOL FOR SPRITELY NFS

For this reason, Spritely NFS adds server-to-client ‘‘callback’’ RPCs to the NFS protocol.
When a server decides that a client must stop caching a file, it does a callback to inform the
client. A client with cached dirty blocks may have to write these blocks back to the server before
replying to the callback RPC.

Spritely NFS clients need not write-through dirty blocks when a file is closed. The server
keeps track of closed-dirty files and can ask the client to write the blocks back if another client
opens the file for reading, but otherwise the writer client can write the blocks back at its own
leisure. A client with closed-dirty blocks might even remove the file before the blocks are writ-
ten back, thus avoiding wasted effort.

4. Loose ends in Spritely NFS

Besides lacking support for recovery, Spritely NFS failed to address a few other issues that
need to be solved in a real system. I will propose solutions for these before describing the
recovery protocol, since some of these issues complicate the basic recovery mechanism.

4.1. Dealing with ENOSPC

One problem with the delayed-write-after-close policy is that one or more of these writes
might fail. In NFS, since the client implementation forces all writes to the server before
responding to the close system call, an application which checks the return value from both write
and close calls will always know of any write failures. Not so in Spritely NFS, since the failure
might occur long after the application has released its descriptor for the file (or even after the
application has exited). This could cause trouble for applications that do not explicitly flush
their data to disk.

There are three categories of error that can occur on a client-to-server write operation:
1. Communications failure: the network is partitioned or the server crashes, and the

RPC times out before the failure is repaired.

2. Server disk hardware error: the disk write operation fails, or the disk fails after
the write completes.

3. Server out of disk space: no space is available on the server disk.
1The first error can be turned into a delay by simply retrying the RPC until the server responds .

If the client crashes in the interim, then the dirty block is lost ... but this is no different from a
normal local-filesystem delayed write in Unix.

The second error is not generally solvable, even by a strict write-through policy. It is true that
the NFS approach will report detectable write failures, but these are increasingly rare (because
techniques such as bad-block replacement can mask them). Again, normal Unix local-filesystem
semantics does not prevent this kind of error from occurring long after a file has been closed.

1This is not true if the client uses a ‘‘soft mount,’’ which turns RPC timeouts into errors rather than retries. Soft
mounts are generally thought of as living dangerously, although delaying writes after a close does make them even
more dangerous. Perhaps soft-writes-after-close should be made ‘‘harder’’ as long as the client has enough buffer
cache to avoid interference with other operations.

3

A RECOVERY PROTOCOL FOR SPRITELY NFS

The third error (ENOSPC, in Unix terms) is the tricky one. We want to report these to the
application, because it might want to recover from the condition, and because there is no obvious
way for the underlying file system mechanism to recover from ENOSPC. (Also, unlike the other
two kinds of errors, one cannot avoid ENOSPC errors through fault-tolerance techniques.)

My understanding is that Sprite does not completely solve this problem; that is, Sprite applica-
tions can believe their writes are safe but the delayed writes pile up in a volatile cache because
the server is out of space. I would be curious to know if and how AFS deals with this (although
in AFS, the client cache is ‘‘stable’’ and so the consequences are less urgent).

I propose solving the ENOSPC problem by changing the Spritely NFS close RPC to reserve
disk space for the remaining dirty blocks. That is, when a dirty file is closed, the client counts up
the number of dirty bytes and requests that the server reserve that much disk space for the file.
The server may respond with an ENOSPC error at this point, in which case the client can revert
to a write-through on close policy (note that we will allow the server to respond to close with
ENOSPC even when enough space does exist, so the client should attempt the writes and report
an error to the application only if a write actually fails.).

If a client, after it has obtained a reservation, decides it does not need to write back some of
the dirty blocks (because it instead removes or truncates the file), it can issue a release RPC to
release part or all of a reservation. Note that a write RPC might not actually change the size of a
file, so once the last dirty block is gone from the client, the client must set the reservation to zero

2with a release RPC (release might be implemented as close with a reservation request equal to
zero.)

When a server receives a reservation request, attached to a close RPC, it should arrange with
the underlying disk file system to reserve some of the remaining free space for the file in ques-
tion. (If the space is not available, the server responds to the close with ENOSPC.) The file
system need not actually allocate space on disk for the reservation; rather, it only needs to keep a
count of the number of free bytes and the number of reserved bytes, and ensure that the dif-
ference never becomes negative.

The server keeps track of a file’s reservation in its state table entry. When a server handles a
write RPC for a closed file, it decrements the reservation, and does a special kind of write to the

3underlying file system that tells the file system to decrement the count of reserved bytes . If a
client in the closed-dirty state tries to write more blocks than its reservation allows, the writes
will fail (this is to prevent cheating and inconsistencies in the reservation count). Note that a
client which has not asked for a reservation can write blocks as long as non-reserved space exists
in the file system. Note also that the underlying file system must prevent local applications from
allocating disk space if the non-reserved space drops to zero.

2The original Spritely NFS design does not have an explicit operation to cause a transition from the closed-dirty
state to the closed state. This could cause the server’s state table to fill up. In the original system, the plan was that
the server would do a callback to force the transition, if necessary. The release RPC solves this problem.

3The count is decremented by the amount of space actually allocated in the file system, not the size of the write.
This avoids a double decrement of the reservation when a write RPC is retried.

4

A RECOVERY PROTOCOL FOR SPRITELY NFS

If a client crashes while holding a reservation, or simply never makes use of it, the space could
be tied up indefinitely. Thus, the server should set a time limit on any reservation grant (perhaps
in proportion to the number of blocks reserved; if a client reserves space for a billion bytes, it is
unlikely that they could all be written back within a short interval. A server might also refuse to
honor a reservation for more than a few second’s worth of disk writes). When the time limit
expires and space is low, the server can reclaim the reservation by doing a callback (to force the
client to write back the dirty blocks).

A client that fails to respond to the callback, perhaps because of a network partition, might end
up being unable to write dirty blocks if the server reclaims its reservation. Since a partition
might last arbitrarily long, there is not much that can be done about this: conceptually, this is the
same as a disk failure. However, to avoid provoking this problem, a server might refrain from
reclaiming timed-out reservations as long as sufficient free space remains.

One subtle problem can occur with this scheme if two processes on one client are writing the
same file. After one successfully closes the file (i.e., the server grants a reservation), if the other
client extends the file so much that the server runs out of disk space, some part of the file might
not be written to the server. This is not an entirely contrived example; the file might be a ‘‘log,’’
appended to by multiple processes. The client implementation can preserve correct semantics in
such a case by ordering the disk writes so that none of the blocks dirtied after the close are
written to the server before the other dirty blocks of that file.

4.2. Directory caching

Spritely NFS did not address the issue of directory caching. This is important because a large
fraction of NFS traffic consists of directory lookups and listings. Many NFS implementations
cache directory entries, but because NFS has no consistency protocol these caches must time out
quickly and can nevertheless become inconsistent.

Recent measurements on Sprite suggests that it is better to cache (and invalidate) entire direc-
tories rather than individual entries, since a directory is often the region of exploitable locality of
reference [14]. This nicely matches the Spritely NFS model; the client simply does an open on a
directory before doing readdir RPCs, and keeps the result of the readdir in a cache. When the
client removes a directory from its cache, it does a close RPC to inform the server. If another
client modifies the directory (using an RPC such as create, remove, rename, etc.), then the server
does a callback to cause the first client to invalidate its cache.

One open issue is whether a client should write-through any changes (i.e., creations, renames,
or removals), or if directory changes can be done using write-behind. My hunch is that the latter
is far more complex, especially because it makes it much harder to provide the failure-atomicity
guarantee that Unix has traditionally attempted for directory operations. If only write-through is
allowed, then open on a directory always allows the client to cache; it serves solely to inform the
server of which clients might need callbacks when an entry is changed.

In order to avoid the potential for thrashing that would result if a large shared directory was
continually being modified by several clients, when a directory is invalidated (via a callback) the

5

A RECOVERY PROTOCOL FOR SPRITELY NFS

4client should remember this and not re-cache the directory for a period of several minutes . That
is, when an invalidate occurs, the client should close the directory (so that the server will not
need to do further callbacks) and not cache the result of readdir during the inhibition period.

There are a few issues that arise which prevent a client from simply replacing a bunch of
lookup RPCs with one readdir:

• Lack of attributes and filehandle information: The NFS lookup RPC returns a
filehandle and file attributes value that is not returned by readdir.

• Lack of symbolic link values: If the directory entry is a symbolic link, the client
must do a readlink to resolve the reference.

• Extra delay: When a client wants to lookup one entry in a large directory, it should
not have to wait for the server to provide the entire directory contents before con-
tinuing.

Together, these suggest the following approach, assuming a cold cache:
1. The client starts by doing the lookup RPC that it would normally do.

2. In parallel, it performs an open RPC and then a readdir RPC (or a series of readdir
RPCs, if the directory is large) to load the directory into the cache.

3. The result of the lookup is inserted into the cache, in such a way that it can be
invalidated if the server does a callback on this directory.

4. If the lookup indicates that the file is a symbolic link, the client does a readlink and
inserts that into the cache.

Once the directory is opened, the client can cache the results of lookup and readlink RPCs, since
if anyone else modifies the directory the client will receive a callback.

One would think that doing the readdir RPC is unnecessary, since the information returned by
readdir does not obviate the need to do lookup (and perhaps readlink). This is not entirely true;
the reason is that applications (especially the shells) often attempt to lookup files that do not
exist. Without the full set of names in the directory cache, the client cannot avoid going to the
server to lookup these non-existent names. The consistency guarantee provided by Spritely NFS
ensures that such ‘‘negative’’ caching is accurate, and so many lookup RPCs can be avoided.

4.3. Caching attributes for unopened files

Spritely NFS provided consistency for file attributes (length, protection, modification time,
etc.) only for open files. Clients, however, often use the attributes of files that they won’t (or
can’t) open; commands such as make, ls -l, or du fall into this category. Because such com-
mands are so frequent, NFS implementations are forced to provide ‘‘attribute caching’’ using a
probabilistic consistency mechanism: cached attributes time out after a few seconds. The
timeout is often based on the age of the file; for files that have not recently been modified, the
timeout is extended.

4This is one of those parameters that I wanted to avoid, but it can be set fairly long because during this period the
directory will simply revert to the normal uncached NFS behavior. Traces of real directory activity might help here.

6

A RECOVERY PROTOCOL FOR SPRITELY NFS

Experience with NFS has shown that such weak consistency usually sufficient, because rela-
tively few applications depend on strong consistency for unopened files. (Weak attribute-
consistency on open files causes errors when two client hosts simultaneously attempt to append
to the same file, since they have an inconsistent view of the length of the file.)

It is possible to support strong consistency in Spritely NFS, by providing a mode of the open
RPC that says ‘‘I am reading the attributes of this file, not its data.’’ A client would be allowed
to open a file for attributes-read even if it were not allowed to open it for data-read, just as in the
local Unix file system.

Any attempt to change the attributes of a file would cause the server to do an implicit ‘‘open
for attributes-write,’’ causing the appropriate callbacks to invalidate cached attributes. That is,
there is no explicit open-for-attribute-write operation, because explicit attribute-writes are rare.
Implicit attribute modification, such as a file length change caused by a write RPC, does cause a
cache-invalidation callback, but the invalidation should happen only once per open-for-
attributes-read.

A client will often want to read the attributes for all the files in a directory, and it does not
make sense to read each of them one using a separate RPC. For this reason, and also to stream-
line the recovery process (see section 6.3), the Spritely NFS open RPC could allow ‘‘batched’’
operation, taking a list of files to open rather than just one. (Note that the open RPC returns the
current attributes, so there is no need to do a subsequent getattr RPC.)

John Ousterhout suggests that a new form of the readdir RPC be added, which instead of just
returning a set of file names would return a set of (file name, file attributes) pairs. An attempt by
another client to modify any of the files would cause a callback referring to the directory, rather
to the file itself. This might be tricky to implement because the server would have to maintain a
map between files and the directories that reference them, and the client would have to manage
two different kinds of cached attributes.

A more straightforward approach would be to use a new statdir RPC, which returns a set of
(file name, file attributes, file handle, caching info) tuples. Effectively, the client would open all
the files in the directory for attributes-read access, and would obtain all the attribute values at the
same time. Given the 8k byte limit on NFS RPC packets, in one RPC a client could read all the
names and attributes for a directory containing about 60 entries. The problem with this approach
is that it forces the client to close each of these file handles at some subsequent point. A batched
form of the close RPC would avoid excess network traffic, although the client code to decide
when to close a set of attributes might be rather involved.

It is not clear that strong consistency is really necessary, and it appears to be expensive to
provide. However, it is feasible and if supported by the protocol, it could be enabled at the
client’s option. (A client that does not participate would not cause inconsistencies in other client
caches, since all explicit attribute changes are write-through.)

7

A RECOVERY PROTOCOL FOR SPRITELY NFS

4.4. Unmounting a server filesystem

A system manager sometimes must ‘‘unmount’’ a local file system at a file server, either to
work on that file system or to cleanly shut down the entire system. With NFS, this is no
problem; the unmounted file system looks like a dead server, so the client simply keeps trying.
With delayed-write-after-close, however, one would like the client to be able to get the dirty
blocks onto the disk before unmounting it (lest the client go down before the disk is mounted
again).

More generally, the clients should discover that the file system is being unmounted, so that the
server can release file references for those files that are no longer actually open. In standard
Unix local-filesystem practice, one cannot unmount a file system with active references. One
could preserve this behavior in Spritely NFS, but that would make system management more
complex (although Spritely NFS, unlike NFS, can tell the system manager exactly which clients
are using a file system). Or, one could implement an option to the unmount operation that would
force clients to close their open files.

Since a Spritely NFS server can issue callbacks to its clients, it is fairly easy to implement
whatever policy seems most appropriate. When the local file system receives an unmount re-
quest, it should call a special routine in the Spritely NFS server to say ‘‘this file system is about
to be unmounted.’’ Spritely NFS can then do callbacks to all clients with open files on that file
system, simply to force them to write back their dirty blocks, or to force them to close their files.
Once this is done, Spritely NFS returns control to the local-disk file system, which can then
proceed with the unmount operation.

One possible approach is that the ‘‘unmount’’ callback causes the clients to act as if the server
for this file system is down. Once the disk is remounted, the server can then enter into a
simplified version of the recovery protocol (described in section 6.3); in the meantime, the server
can release all its state-table references into the file system (because they will be rebuilt during
the recovery phase, just as if the server had crashed and rebooted).

5. Overview of the recovery protocol

Several different recovery mechanisms might have been used for Spritely NFS. The original
recovery mechanism used in Sprite [17] depends on a facility implemented in the RPC layer, that
allows the clients and servers to keep track of the up/down state of their peers. When a client
sees a server come up, the Sprite layer then reopens all of its files.

This approach provides more general recovery support than is needed for Spritely NFS, and it
has several drawbacks. First, it would require changes to the RPC protocol now used with NFS,
some additional overhead on each RPC call, and some additional timer manipulation on the
client. In other words, it complicates the client implementation, which is something we wish to
avoid. Second, recent experience at Berkeley [4] has shown that such a ‘‘client-centric’’ ap-
proach can cause massive congestion of a recovering server. Sun RPC has no way to flow-
control the actions of lots of independent clients (a negative-acknowledgement mechanism was
added to Sprite’s RPC protocol to avoid server congestion [4]).

8

A RECOVERY PROTOCOL FOR SPRITELY NFS

Third, the server has no way of knowing for sure when all the clients have contacted it; even if
all the clients actually respond quickly, the server still must wait for the longest reasonable client
timeout interval in case some client hasn’t yet tried to recover. This can make fast recovery
impossible. Fourth, if a partition occurs during the recovery phase, partitioned clients may never
discover that they have inconsistent consistency state.

Another possible approach is the ‘‘leases’’ mechanism [6]. A lease is a promise from the
server to the client that, for a specified period of time, the client has the right to cache a file. The
client must either renew the lease or stop caching the file before the lease expires. Since the
server controls the maximum duration of a lease, recovery is trivial: once rebooted, the server
simply refuses to issue any new leases for a period equal to the maximum lease duration. A
server will renew existing leases during this period (which works as long as clients do not cheat);
the clients will continually retry lease renewals at the appropriate interval. Once the recovery
period has expired, no old lease can conflict with any new lease, and so no server state need be
rebuilt.

The problem with leases is that they do not easily support write-behind. Consider what can
happen if a client holding dirty data is partitioned from the server during the recovery phase (not
an unlikely event, since a network router or bridge might be knocked out by the same problem
that causes a server crash), or if the server is simply too overloaded to renew all the leases before
they expire. In such a case, the client is left holding the bag; the server will have honored its
promise not to issue a conflicting lease, but will not have given the client a useful chance to write
back its dirty data before a conflict might result.

Another potential problem with leases is that the duration of a lease is a parameter that must
be chosen by the server. The correct choice of this parameter is a compromise between the
amount of lease-renewal traffic and the period during which a recovering server cannot issue
new leases, and it is unlikely that the average system manager will be able to make the right
choice. The original Sprite protocol has a similar parameter, the interval between ‘‘are you
alive’’ null RPCs, which again trades off extra traffic against the duration of the recovery phase.
We would like to avoid all unnecessary parameters in the protocol, since these force people to
make choices that might well be wrong. (Also, timer-based mechanisms require increased timer
complexity on the client.)

The current proposal is a ‘‘server-centric’’ mechanism, similar to one being implemented for
Sprite, that relies on a small amount of non-volatile state maintained by the server [1]. The idea
is that in normal operation, the server keeps track of which clients are using Spritely NFS; during
recovery, the server then contacts these clients and tells them what to do. Since the recovery
phase is entirely controlled by the server, there is less chance for congestion (the server controls
the rate at which its resources are used). More important, the client complexity is minimal:
rather than managing timers and making decisions, all client behavior during recovery is in
response to server instructions. That is, the clients require no autonomous ‘‘intelligence’’ to
participate in the recovery protocol.

For this to work, the use of stable storage for server state must be quite limited, both in space
and in update rate. The rate of reads need not be limited, since a volatile cache can satisfy those
with low overhead. Stable storage might be kept in a non-volatile RAM (NVRAM) (such as
PrestoServe), but if the update rate is low enough it is just as easy to keep this in a small disk

9

A RECOVERY PROTOCOL FOR SPRITELY NFS

file, managed by a daemon process. Updates to this disk file might delay certain RPC responses
by a few tens of milliseconds, but (as you will see) such updates are extremely rare.

6. Details of the recovery protocol

6.1. Normal operation

The stable storage used in this protocol is simply a list of client hosts, with a few extra bits of
information associated with each client. One is a flag saying if this client is an NFS client or a
Spritely NFS client. Only Spritely NFS clients participate in the recovery protocol, but we keep a
list of NFS clients because this could be quite useful to a system manager. Another flag records
whether the client was unresponsive during a recovery phase or callback RPC; this allows us to
report to the client all network partitions, once they are healed.

During normal operation, the server maintains the client list by monitoring all RPC operations.
If a previously unknown client makes an open RPC, then it is obviously a Spritely NFS system.
If a previously unknown client makes any file-manipulating RPC before doing an open, then it is
an NFS client. One can devise a set of procedures to handle the cases of clients that start out
using one protocol and switch to the other (perhaps as the result of a reboot); that is covered in
section 7.1.

The client list changes only when a new client arrives (or changes between NFS and Spritely
NFS). This is an extremely rare event (most servers are never exposed to more than a few
hundred clients) and so it does not matter how expensive it is. My assumption is that it is com-
parable in cost to a few disk accesses; that is, not noticeable compared to the basic cost of an
open or file access.

On the other hand, the server must check the cached copy of the client list on almost every
RPC. This should be doable in a very few instructions, if the client list is kept in the right sort of
data structure (such as a broad hash table). The overhead should be less than is required to
maintain the usual NFS transaction cache.

Note that the server’s volatile copy of the client list need not contain the entire list of clients,
but could be managed as an LRU cache, as long as it is big enough to contain the working set of
active clients. This might conserve memory if there are a lot of inactive clients on the list.

If a client fails to respond to a callback (or during the recovery phase, described later) then the
server marks it as ‘‘embargoed.’’ This could be because the client has crashed, but it might be
because the client has been partitioned from the server. When an embargoed client tries to con-
tact the server, the server responds with a callback RPC to inform the client that it was par-
titioned during an operation that might have invalidated its consistency state; once the client

5replys to this callback RPC, the server clears the embargoed bit . The client thus knows that its
state is inconsistent, and can take action to repair things (or at least report the problem to the
user).

5And returns an error response to the original RPC?

10

A RECOVERY PROTOCOL FOR SPRITELY NFS

Some additional design work is required to figure out how best to reestablish a consistent state
after an embargo is lifted. One approach would be to follow a ‘‘scorched earth’’ policy, in
which both the client and server return to an initial condition. However, it is probably possible
(using generation numbers) for a client to detect which of its open or cached files are still consis-
tent, and only scorch those files which actually have conflicts. The ‘‘reintegration’’ techniques
used in the Coda system [13] might also prove useful.

6.2. Client crash recovery

When a client crashes and reboots, the server will be left believing that it has files open even
though it does not. This could lead to false conflicts and thus reduced caching. The server will
discover some false conflicts when it does a callback and the client says ‘‘but I don’t have that
file open.’’ In other cases the false conflict would not cause a callback (i.e., if caching is already
disabled). Also, these ‘‘false opens’’ clutter up the server’s state table and space reservation
count.

A client can ameliorate these problems by issuing a special ‘‘I just rebooted’’ RPC the first
time it mounts each file system after a reboot. The server uses this RPC to force a close on all
the files that were open from that client, and also to reclaim all disk space reserved for that
client’s dirty blocks. (If the client uses non-volatile RAM technology to keep dirty blocks across
a crash, it should also use it to preserve a list of all dirty file handles, and write back the dirty
blocks before sending the ‘‘I just rebooted’’ RPC.)

If a client reboots while a server is down (or unreachable because of a network partition), the
client simply keeps retrying its mount operation until the server recovers (or becomes reachable),
just as is done in NFS.

6.3. The server recovery phase

When a server crashes and reboots, it enters a recovery phase consisting of several steps. The
server herds the clients through these steps by issuing a series of recovery-specific callback
RPCs, each of which requires a simple response from the client. The steps are:

1. Read the client list from stable storage: The server obtains the client list from
stable storage and loads it into a volatile cache.

62. Initiate recovery: The server contacts each Spritely NFS client on the client list .
The callback tells the client that the recovery phase is starting; until the recovery
termination step is complete, clients are not allowed to do new opens or closes, and
cannot perform any data operations on existing files.

When a client responds to this RPC, the server knows that the client is participating
in the recovery protocol; clients that do not respond are marked as embargoed.

6Should it contact embargoed clients? If so, then we need to let the client know at this point that it has already
been embargoed, and that will complicate the rest of the recovery process. If not, then the damage from a partition
may be compounded even further. Simplicity, and an aversion to incurring timeouts, suggests that we should not
bother to contact already-embargoed clients at this point.

11

A RECOVERY PROTOCOL FOR SPRITELY NFS

During the rest of recovery, embargoed clients are ignored and we can assume that
the other clients will respond promptly, but during this step long timeouts may be
needed. On the other hand, this step can be done for all clients in parallel, so the
worst-case length of this step is only slightly longer than the maximum timeout
period for deciding that a client is down or partitioned.

At the end of this step, we can update the stable-storage client list to reflect our
current notion of each client’s status.

3. Rebuild consistency state: The server contacts each non-embargoed client and
instructs it to reopen all of the files that it currently has open, using the same open-
mode (read-only or read-write) that was used before. If the clients do not cheat, the
resulting opens will have no conflicts, since before the server crashed there were
no conflicts and no new opens could have taken place since the crash.

Since each server may have to open multiple files, and since file-open operations
are moderately expensive (requiring manipulation of the state table), the server
may want to do these callbacks serially rather that in parallel (or semi-parallel, to
limit the load to a reasonable value). This should not result in too much delay,
since we are reasonably sure that the clients involved will respond.

Note that a client may hold dirty blocks for files that it does not actually have
‘‘open’’. This means that there must be a special mode of the open RPC, used only
for ‘‘reopening’’ closed-dirty files. It might be better to define a special reopen
RPC that allows the client to reopen several files in a single network interaction.
Otherwise, the RPC layer could become the bottleneck during recovery. (Or, the
basic open RPC could allow batched operation, which might be useful in providing
consistent attributes caching as in section 4.3.)

A client responds to this callback only when it has successfully reopened all of its
open files. If a client fails to respond, then the server marks it as embargoed and
updates the stable-storage list.

Once this phase is done, the server has a complete and consistent state table, listing
all of the open and closed-dirty files.

4. Terminate recovery: The final step is to contact each client to inform it that
recovery is over. Once a client receives this RPC, it can do any operation it wants.
As in the recovery initiation step, the server can do these callbacks in parallel, but
in any case the clients are unlikely to timeout so the duration of this step should be
brief.

One issue that I have not yet considered is what might happen if a server crashes during its
recovery phase. It may be that a simple crash-generation number scheme, passed with the crash-
recovery callbacks, will allow the clients to keep track of what is really going on.

6.4. Log-based recovery

Because the recovery protocol is server-centric, it leaves the implementor of the server a lot of
freedom to choose different strategies. V. Srinivasan has pointed out that nothing in the protocol
prevents the server from using additional stable storage to obviate part or all of the recovery
protocol.

12

A RECOVERY PROTOCOL FOR SPRITELY NFS

The server could, for example, log all opens and closes to stable storage. Since the ‘‘open
lifetime’’ of files is fairly short (often less than 100 milliseconds [2]) it would not make sense to
log every such event to disk. Instead, the server could keep the head of the log in NVRAM,
which would allow it to elide the short-lived opens before writing the log to the disk. Some sort
of log-cleaning algorithm, analogous to that required by a log-structured file system [12], would
be necessary. Alternatively, the on-disk information could be structured as a database, which
would take more work to update but which would not need cleaning. Using the log or database,
the server could recover its consistency state without any help from the clients.

A much simpler approach would be to keep track, in the client list, of those clients that have
any files open at all. During crash recovery, the server could ignore any client known to have no
open files, thus speeding recovery and perhaps avoiding timeouts for clients that have been
removed from service. This modification would increase the update rate for the stable-storage
copy of client list. However, the server could delay the update on a client’s last close, anticipat-
ing a subsequent open in the near future, because this would not affect the correct behavior of the
recovery protocol. A delay interval of, say, one minute would probably avoid almost all extra
updates without significantly increasing the cost of recovery.

6.5. Recovery and the ENOSPC problem

Since the server host’s count of reserved disk blocks may be updated quite often, it does not
make sense to keep it in stable storage. (Maintaining a stable accurate value could ap-
proximately double the latency of disk writes for closed-dirty files.) Instead, we can recompute
this value during the recovery phase. When recovery starts, we set the value to zero. We then
have the clients tell us what their reservation needs are, either by an extra argument to the RPC
call for ‘‘reopening’’ closed-dirty files, or perhaps by having the client also explicitly close those
files (since the close RPC always carries a reservation request). Once recovery is done, we have
a consistent count of the total reservation requirements.

Note that during recovery, a client cannot simply request a reservation for the number of dirty
blocks it currently holds, because this number might have increased since the server crashed.
Instead, the client must remember the reservation it has left as the result of a normal close RPC,
and use this value when ‘‘re-opening’’ a closed-dirty file.

If the network is partitioned during recovery, we might end up in a state where the server does
not know of a client’s reservation requirements, and so gives the space away once recovery is
over. If the partition heals, we may discover that no conflicting open prevents the embargoed
client from writing its dirty blocks, but there is no longer any space to hold them.

One (rather crude) approach to this problem is to set aside some disk space in anticipation of
this problem. For example, some file systems, such as the Berkeley Fast File System [9], reserve
a certain amount of free space in order to obtain better performance. This so-called ‘‘minfree
zone,’’ which can be used by super-user processes on normal Unix systems, might also be
employed to store blocks written back from embargoed clients. However, this is at best a stop-
gap solution and can lead to some tricky management problems: what do you do when this space
runs out?

13

A RECOVERY PROTOCOL FOR SPRITELY NFS

6.6. Multiple file systems exported by one server host

NFS servers traditionally export more than one file system; a large server might export dozens
of file systems. This allows a network manager to reconfigure servers without broad disruption,
and to tailor security controls according to the nature of the data being protected.

The recovery protocol described in this paper is most simply understood as applying to each
individual file system. That has two implications:

1. One client list is maintained for each file system, not just one for each server host.

2. The steps in the recovery protocol must be repeated for each file system exported
by a server. (The server should not attempt to contact clients that failed to respond
during an earlier iteration.)

The latter requirement is not actually a serious problem. The initial and final phases, during
which all clients are contacted in parallel, can be done in parallel for the various file systems.
The number of packets exchanged in these steps will increase, but the number of packets ex-
changed as the clients reopen their files will not be affected.

The former requirement increases the amount of storage space needed to keep client lists, both
stable storage and in-memory cache. Since these lists are not likely to be very large, keeping one
for each file system should not be too wasteful. The alternative, keeping one list for the entire
server, could add run-time complexity, since it is conceivable that a given client might mount
one file system via Spritely NFS, and another file system from the same server via pure NFS.
This would force the server to use a complex data structure to represent a client list, reducing the
incentive to keep one list instead of several.

It is tempting to try to avoid these requirements by making the recovery protocol messages
express things in terms of server hosts rather than server file systems. That is, the three callback
types used in the recovery process inform a client that it should perform a particular function for
all the files opened from a specified server host, rather than a specified file system. I believe this
will work, but some problems might be lurking in the background.

7. Simultaneous mixing of NFS and Spritely NFS hosts

I argued that without a path for incremental adoption, users will have little incentive to install
Spritely NFS, because all-at-once changeovers cause major disruption. A sudden change to a
new, untried system makes system managers nervous.

Spritely NFS clients and server can easily coexist with pure NFS hosts. The two problems to
solve are automatic configuration (so that network managers need not worry about who is run-
ning what) and maintenance of consistency guarantees (so that NFS clients get at least the level
of consistency that they would if all clients were using NFS).

7.1. Automatic recognition of Spritely NFS hosts

It is possible for Spritely NFS clients and servers to ‘‘recognize’’ each other in a sea of NFS
hosts. Suppose that Spritely NFS were to use the same RPC program number as NFS; we can
establish a set of rules that will allow Spritely NFS hosts to discover if their peers speak Spritely
NFS or just NFS.

14

A RECOVERY PROTOCOL FOR SPRITELY NFS

Consider a Spritely NFS client. It need not know if the server supports Spritely NFS (i.e.,
cache-consistency protocols) until it wants to open a file. At that point, it simply issues its open
RPC. If the server speaks only NFS, it will respond to this with a PROC_UNAVAIL error code.
The client can then cache this fact (in a per-filesystem data structure) and treat the file system as
a pure NFS service.

A Spritely NFS server recognizes Spritely NFS clients because they issue open RPCs before
issuing any file-manipulating RPCs. Thus, when a new client is added to the server’s client list,
the RPC that causes this addition also tells the server what kind of client is involved.

If we want to follow this ‘‘automatic’’ scheme for recognizing Spritely NFS hosts, then it
should work even with a client or server changes flavors. In principle, client changes should be
easy to detect, since a client changing from NFS to Spritely NFS will issue an open RPC, and the
server can check on each open to make sure that its client list records the client as a Spritely NFS
host. A client changing back to NFS would reveal itself, sooner or later, by using a file that it
had not previously opened. This trick requires the server to check a file’s consistency state on
every RPC, which is otherwise unnecessary (this is normally the job of the client) and could add
some slight overhead.

If a Spritely NFS server changes back to an NFS server, the Spritely NFS clients will detect
this as soon as they do an open or close operation. If an NFS server changes into a Spritely NFS
server, however, the clients might not realize this immediately. It might be possible for the serv-
er to signal its nature by the use of a callback, but this could cause problems to pure-NFS clients
that are not expecting any callbacks.

Another approach, instead of basing automatic recognition on RPC procedure types, is to use a
separate RPC program number for Spritely NFS. This makes the server’s task a lot easier; it
simply distinguishes clients based on which program number they use. The server would not
have to check to see if a client had previously opened a file in order to catch transitions between
Spritely NFS and pure NFS. This does not, however, solve the problem of how a client realizes
that a server has changed from NFS to Spritely NFS.

7.2. Consistency between NFS and Spritely NFS clients

When NFS and Spritely NFS clients are sharing a Spritely NFS file system, the NFS clients
will not have the same consistency guarantees as Spritely NFS clients. However, the Spritely
NFS server can guarantee the NFS clients no-worse-than-NFS consistency, by treating each NFS
operation as if it were bracketed by an implicit pair of open and close operations.

In other words, if an NFS client reads from a file which is write-cached by a Spritely NFS
client, the server first does a callback on the Spritely NFS client to obtain the dirty blocks. If an
NFS client writes a file cached by a Spritely NFS client, the server does a callback on the
Spritely NFS client to invalidate its cache. If this reduces performance too badly, perhaps
Spritely NFS callbacks should optionally specify a particular block to flush or invalidate ... but I
suspect that if such NFS-to-Spritely-NFS write-sharing happens at all, then it is likely to involve
most of the blocks in a file.

15

A RECOVERY PROTOCOL FOR SPRITELY NFS

8. Performance

Our original goal with Spritely NFS was to improve performance over NFS. Since NFS does
not need to support a recovery protocol, we must show that the added recovery overhead in
Spritely NFS does not eliminate our advantage. Note that the original, non-recovering version of
Spritely NFS did better than NFS on realistic benchmarks even though NFS does not have to do
any open and close RPCs; that is, Spritely NFS saves enough through better use of the client
cache to make up for the extra RPCs.

The recovery protocol has two kinds of costs: in normal operation, there is a small overhead
on each RPC, and after a server crash, there is a recovery phase. Since NFS has no recovery
phase, it will always be faster at continuing after a server reboot. These should be rare events, so
the cost of recovery will be amortized over a long period of useful work. At any rate, the server-
centric approach should allow us to do efficient recovery, since we are not put at risk of server
overload during the recovery phase.

The per-RPC overhead comes from the maintenance of the client list. I argued earlier that this
is negligible; most of the time, we simply do a hash-table lookup to discover that the client is

7already known and not embargoed . Very rarely, we must update stable storage, but it is un-
likely that a server would see such a high rate of new clients that this becomes a measurable
overhead. In short, I do not think the per-RPC overhead will cause a measurable difference in
Spritely NFS performance.

9. Software complexity

Since I have described this recovery protocol as ‘‘simple,’’ it seems appropriate to describe
how much work it would take to convert an NFS implementation to support Spritely NFS with
recovery. Note that the original Spritely NFS implementation was written in the course of a
month or so by a programmer who had never before studied the Unix kernel. See [15] for details.

9.1. Client implementation issues

Starting with a client NFS implementation, the modifications necessary to support Spritely
NFS are fairly simple. The open and close operations have to be implemented, the per-file data
structures need to include cachability information, and the data access paths need to observe the
cachability information. A daemon, patterned closely on the existing NFS server daemon, needs
to be added to handle callback requests, along with ‘‘server’’ code to respond to the callbacks.

Very few changes are needed in other components of the client operating system. The code
that manages the table of open and closed files (the equivalent of the Unix inode table) must
inform the Spritely NFS client when a closed file is being removed from this table to make room
for a new entry. It is also useful to provide a mechanism to remove dirty blocks from the file

7The per-RPC operations in the original Sprite recovery mechanism apparently made a small but measurable
difference in the RPC overhead. This might have been because on each RPC request and reply, the code was forced
to manipulate timers.

16

A RECOVERY PROTOCOL FOR SPRITELY NFS

cache, for use when the file that contains those blocks is deleted (this improves performances by
eliminating useless write-backs).

9.2. Server implementation issues

The changes to the server are obviously more extensive. For Spritely NFS without recovery,
the changes were quite localized: the existing RPC server procedures were not touched, and all
the new code related to handling the open and close RPCs and performing callbacks. Spritely
NFS requires a small amount of stable storage to support the ‘‘generation number’’ mechanism
used to detect certain conflicts. One 64-bit value kept per file system (or even per server), and
updated every hour or so, should suffice.

To support recovery, the server code for all NFS operations has to check the client list on each
RPC, and perhaps call functions to maintain the client list or do necessary callbacks.

Most of the complexity in the recovery protocol can be implemented in user-mode code. The
Spritely NFS kernel code would have to provide some hooks so that the recovery process can
disable the servicing of certain RPCs during the recovery phase.

In order to provide full consistency between Spritely NFS clients and local file system ap-
plications running on the server, there will have to be some linkages between the local file
system’s open and close operations and the Spritely NFS state-table mechanism. For example,
when a local process opens a file, this might require Spritely NFS to change a client’s cachability
information for that file. The local file system must also support the disk-space reservation
scheme described in section 4.1; this means providing a special form of the write operation that
decrements the reservation.

10. Other related work

Several interesting papers related to recovery in distributed file systems have never been
published. Rick Macklem worked on ‘‘Not Quite NFS,’’ an attempt to use the leases model to
provide recovery for an NFS extended with a Sprite-like consistency protocol. Meanwhile, the
Echo file system project at Digital’s Systems Research Center has grappled with a number of
similar issues, especially those related to write-behind [5, 7, 16].

Mary Baker and Mark Sullivan describe a similar approach to state recovery [3], using a
‘‘recovery box’’: stable storage for selected pieces of system state, to allow a system to reboot
quickly. In their approach, a file server would store all the open file handles in stable storage,
with the assumption that these are unlikely to be corrupted by (or just prior to) a crash. My
proposal is more conservative, both in that it does not require low-latency stable storage, and
because it makes far weaker assumptions about the effects of a crash. Their proposal, however,
leads to much quicker recovery.

17

A RECOVERY PROTOCOL FOR SPRITELY NFS

11. Summary

Spritely NFS was an interesting experiment, but without a recovery protocol it is not suitable
for production use. The recovery protocol proposed in this paper, together with tying up some
loose ends, should be enough to make Spritely NFS a real alternative to NFS. The mechanism is
so simple, especially on the client side, that one can no longer claim that only a stateless protocol
admits a simple implementation.

Even if Spritely NFS never becomes a real system, I believe that this bare-bones approach to
recovery will be useful in other contexts. A similar approach is being used now in Sprite, and
their experiences should validate the design.

Acknowledgements
The design in this paper has evolved (sometimes rather discontinuously) in lengthy exchanges

among many people, including (in alphabetical order) Mary Baker, Cary Gray, Chet Juszczak,
Rick Macklem, Larry McVoy, John Ousterhout, V. Srinivasan, Garret Swart, and Brent Welch.
Most of these people have talked me out of at least one bad idea.

References
[1] Mary G. Baker. Private communication. 1991.

[2] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John
K. Ousterhout. Measurements of a Distributed File System. In Proc. 13th Symposium on
Operating Systems Principles, pages 198-212. Pacific Grove, CA, October, 1991.

[3] Mary Baker and Mark Sullivan. The Recovery Box: Using Fast Recovery to Provide
High Availability in the Unix Environment. In Proc. Summer 1992 USENIX Conference. San
Antonio, Texas, June, 1992. To appear.

[4] Mary Baker and John Ousterhout. Availability in the Sprite Distributed File System.
Operating Systems Review 25(2):95-98, April, 1991.

[5] Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann, and Garret Swart. The
Echo Distributed File System. In preparation. 1992.

[6] Cary G. Gray and David R. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency. In Proc. 12th Symposium on Operating Systems
Principles, pages 202-210. Litchfield Park, AZ, December, 1989.

[7] A. Hisgen, A. Birrell, T. Mann, M. Schroeder, and G. Swart. Availability and Consis-
tency Tradeoffs in the Echo Distributed File System. In Proceedings of the Second Workshop on
Workstation Operating Systems, pages 49-53. Pacific Grove, CA, September, 1989.

[8] Chet Juszczak. Improving the Performance and Correctness of an NFS Server. In Proc.
Winter 1989 USENIX Conference, pages 53-63. San Diego, February, 1989.

[9] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A Fast
File System for UNIX. ACM Transactions on Computer Systems 2(3):181-197, August, 1984.

18

A RECOVERY PROTOCOL FOR SPRITELY NFS

[10] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the Sprite Net-
work File System. ACM Transactions on Computer Systems 6(1):134-154, February, 1988.

[11] John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Mike Kupfer, and
James G. Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. In

Proc. 10th Symposium on Operating Systems Principles, pages 15-24. Orcas Island, WA,
December, 1985.

[12] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation ofa Log-
Structured File System. In Proc. 13th Symposium on Operating Systems Principles, pages 1-15.
Pacific Grove, CA, October, 1991.

[13] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen
H. Siegel, David C. Steere. Coda: A Highly Available File System for a Distributed

Workstation Environment. IEEE Transactions on Computers 39(4):447-459, April, 1990.

[14] Ken W. Shirriff and John K. Ousterhout. A Trace-Driven Analysis of Name and At-
tribute Caching in a Distribute System. In Proc. Winter 1992 USENIX Conference, pages
315-331. San Francisco, CA, January, 1992.

[15] V. Srinivasan and Jeffrey C. Mogul. Spritely NFS: Experiments with Cache-Consistency
Protocols. In Proc. 12th Symposium on Operating Systems Principles, pages 45-57. Litchfield
Park, AZ, December, 1989.

[16] Garret Swart, Andrew D. Birrell, Andy Hisgen, and Timothy Mann. The Failure Seman-
tics of Write Behind. In preparation. 1992.

[17] Brent B. Welch. The Sprite Distributed File System. PhD thesis, Department of Electri-
cal Engineering and Computer Science, University of California—Berkeley, 1989.

19

A RECOVERY PROTOCOL FOR SPRITELY NFS

20

A RECOVERY PROTOCOL FOR SPRITELY NFS

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip Ad-
Representations.’’ ders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

21

A RECOVERY PROTOCOL FOR SPRITELY NFS

‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’

Jeffrey Y.F. Tang and J. Leon Yang.‘‘Spritely NFS: Implementation and Performance of
WRL Research Report 90/1, January 1990.Cache-Consistency Protocols.’’

V. Srinivasan and Jeffrey C. Mogul.
‘‘Efficient Generation of Test Patterns UsingWRL Research Report 89/5, May 1989.

Boolean Satisfiablilty.’’

Tracy Larrabee.‘‘Available Instruction-Level Parallelism for Super-
WRL Research Report 90/2, February 1990.scalar and Superpipelined Machines.’’

Norman P. Jouppi and David W. Wall.
‘‘Two Papers on Test Pattern Generation.’’WRL Research Report 89/7, July 1989.
Tracy Larrabee.

WRL Research Report 90/3, March 1990.‘‘A Unified Vector/Scalar Floating-Point Architec-

ture.’’
‘‘Virtual Memory vs. The File System.’’Norman P. Jouppi, Jonathan Bertoni, and David
Michael N. Nelson.W. Wall.
WRL Research Report 90/4, March 1990.WRL Research Report 89/8, July 1989.

‘‘Efficient Use of Workstations for Passive Monitor-‘‘Architectural and Organizational Tradeoffs in the
ing of Local Area Networks.’’Design of the MultiTitan CPU.’’

Jeffrey C. Mogul.Norman P. Jouppi.
WRL Research Report 90/5, July 1990.WRL Research Report 89/9, July 1989.

‘‘A One-Dimensional Thermal Model for the VAX‘‘Integration and Packaging Plateaus of Processor
9000 Multi Chip Units.’’Performance.’’

John S. Fitch.Norman P. Jouppi.
WRL Research Report 90/6, July 1990.WRL Research Report 89/10, July 1989.

‘‘1990 DECWRL/Livermore Magic Release.’’‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,sor with High Ratio of Sustained to Peak Perfor-

Don Stark, Gordon T. Hamachi.mance.’’
WRL Research Report 90/7, September 1990.Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.
‘‘Pool Boiling Enhancement Techniques for Water at

Low Pressure.’’‘‘The Distribution of Instruction-Level and Machine
Wade R. McGillis, John S. Fitch, WilliamParallelism and Its Effect on Performance.’’

R. Hamburgen, Van P. Carey.Norman P. Jouppi.
WRL Research Report 90/9, December 1990.WRL Research Report 89/13, July 1989.

‘‘Writing Fast X Servers for Dumb Color Frame Buf-‘‘Long Address Traces from RISC Machines:
fers.’’Generation and Analysis.’’

Joel McCormack.Anita Borg, R.E.Kessler, Georgia Lazana, and David
WRL Research Report 91/1, February 1991.W. Wall.

WRL Research Report 89/14, September 1989.

22

A RECOVERY PROTOCOL FOR SPRITELY NFS

‘‘A Simulation Based Study of TLB Performance.’’ ‘‘Cache Write Policies and Performance.’’

J. Bradley Chen, Anita Borg, Norman P. Jouppi. Norman P. Jouppi.

WRL Research Report 91/2, November 1991. WRL Research Report 91/12, December 1991.

‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’‘‘Analysis of Power Supply Networks in VLSI Cir-
William R. Hamburgen, John S. Fitch.cuits.’’
WRL Research Report 92/1, March 1992.Don Stark.

WRL Research Report 91/3, April 1991.
‘‘Observing TCP Dynamics in Real Networks.’’

Jeffrey C. Mogul.

WRL Research Report 92/2, April 1992.‘‘TurboChannel T1 Adapter.’’

David Boggs.

WRL Research Report 91/4, April 1991.

‘‘Procedure Merging with Instruction Caches.’’

Scott McFarling.

WRL Research Report 91/5, March 1991.

‘‘Don’t Fidget with Widgets, Draw!.’’

Joel Bartlett.

WRL Research Report 91/6, May 1991.

‘‘Pool Boiling on Small Heat Dissipating Elements in

Water at Subatmospheric Pressure.’’

Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.

WRL Research Report 91/7, June 1991.

‘‘Incremental, Generational Mostly-Copying Gar-

bage Collection in Uncooperative Environ-

ments.’’

G. May Yip.

WRL Research Report 91/8, June 1991.

‘‘Interleaved Fin Thermal Connectors for Multichip

Modules.’’

William R. Hamburgen.
WRL Research Report 91/9, August 1991.

‘‘Experience with a Software-defined Machine Ar-

chitecture.’’

David W. Wall.

WRL Research Report 91/10, August 1991.

‘‘Network Locality at the Scale of Processes.’’

Jeffrey C. Mogul.

WRL Research Report 91/11, November 1991.

23

A RECOVERY PROTOCOL FOR SPRITELY NFS

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘Systems for Late Code Modification.’’

Brian K. Reid and Christopher A. Kent. David W. Wall.

WRL Technical Note TN-4, September 1988. WRL Technical Note TN-19, June 1991.

‘‘TCP/IP PrintServer: Server Architecture and Im- ‘‘Unreachable Procedures in Object-oriented Pro-

plementation.’’ gramming.’’

Christopher A. Kent. Amitabh Srivastava.

WRL Technical Note TN-7, November 1988. WRL Technical Note TN-21, November 1991.

‘‘Smart Code, Stupid Memory: A Fast X Server for a ‘‘Cache Replacement with Dynamic Exclusion’’

Dumb Color Frame Buffer.’’ Scott McFarling.

Joel McCormack. WRL Technical Note TN-22, November 1991.

WRL Technical Note TN-9, September 1989.
‘‘Boiling Binary Mixtures at Subatmospheric Pres-

‘‘Why Aren’t Operating Systems Getting Faster As sures’’

Fast As Hardware?’’ Wade R. McGillis, John S. Fitch, William

John Ousterhout. R. Hamburgen, Van P. Carey.

WRL Technical Note TN-11, October 1989. WRL Technical Note TN-23, January 1992.

‘‘Mostly-Copying Garbage Collection Picks Up ‘‘A Comparison of Acoustic and Infrared Inspection

Generations and C++.’’ Techniques for Die Attach’’

Joel F. Bartlett. John S. Fitch.

WRL Technical Note TN-12, October 1989. WRL Technical Note TN-24, January 1992.

‘‘Limits of Instruction-Level Parallelism.’’ ‘‘A Recovery Protocol For Spritely NFS’’

David W. Wall. Jeffrey C. Mogul.

WRL Technical Note TN-15, December 1990. WRL Technical Note TN-27, April 1992.

‘‘The Effect of Context Switches on Cache Perfor-

mance.’’

Jeffrey C. Mogul and Anita Borg.
WRL Technical Note TN-16, December 1990.

‘‘MTOOL: A Method For Detecting Memory Bot-

tlenecks.’’

Aaron Goldberg and John Hennessy.

WRL Technical Note TN-17, December 1990.

‘‘Predicting Program Behavior Using Real or Es-

timated Profiles.’’

David W. Wall.
WRL Technical Note TN-18, December 1990.

24

