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Abstract

Most recent cache designs use direct-mapped caches to provide the fast ac-
cess time required by modern high speed CPU’s.  Unfortunately, direct-
mapped caches have higher miss rates than set-associative caches, largely be-
cause direct-mapped caches are more sensitive to conflicts between items
needed frequently in the same phase of program execution.

This paper presents a new technique for reducing direct-mapped cache
misses caused by conflicts for a particular cache line.  A small finite state
machine recognizes the common instruction reference patterns where storing
an instruction in the cache actually harms performance.  Such instructions
are dynamically excluded, that is they are passed directly through the cache
without being stored.  This reduces misses to the instructions that would have
been replaced.

The effectiveness of dynamic exclusion is dependent on the severity of
cache conflicts and thus on the particular program and cache size of interest.
However, across the SPEC benchmarks, simulation results show an average
reduction in miss rate of 35% for a 32KB instruction cache.  In addition,
applying dynamic exclusion to one level of a cache hierarchy can improve the
performance of the next level since instructions do not need to be stored on
both levels.  Finally, dynamic exclusion also improves combined instruction
and data cache miss rates.
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1 Introduction

In recent years, the dramatic rise of CPU speed has increasingly stressed memory system
performance. Even though DRAM chips are now much denser, their speed has not kept
pace with CPU cycle times. This trend increases the importance of cache design to provide
the instruction and data bandwidth required by modern CPU’s. Furthermore, short CPU
cycle times often require both instruction and data caches to be on the same chip as the CPU
since crossing chip boundaries leads to unacceptable cache access times. On-chip caches
must necessarily be small. These factors leads to caches with relatively high miss rates and
large miss penalties.

For a given cache size, set-associative caches have a significantly lower miss rate than
direct-mapped caches. In a set-associative cache, every memory item can be stored in one of
multiple cache lines. Thus, any two items can be simultaneously stored in a set-associative
cache. In a direct-mapped cache, each item can be stored in only one cache line. Thus,
a direct-mapped cache can have many more misses if two items are needed repeatedly in
the same phase of program execution and they both must be stored in the same cache line.
In spite of this issue, direct-mapped caches often have better overall performance because
they have lower access times.

This paper presents a new hardware technique that improves the miss rate of direct-
mapped caches, particularly instruction caches. When two instructions compete for the
same cache line, the technique attempts to keep one instruction in the cache and the other
instruction out of the cache. Thus, if execution alternates between the two instructions, the
miss rate is halved. We call this selection of instructions to keep out of the cache dynamic
exclusion.

The key to dynamic exclusion is the recognition of the common instruction execution
patterns. These patterns are typically determined by the loops in the program. Section 3
describes the common loop structures, the resulting execution patterns, and the optimal
replacement policy for these patterns. Section 4 describes a simple finite state machine that
can recognize these patterns and guide a direct-mapped cache toward the optimal replace-
ment policy. Section 5 discusses an alternate finite state machine with better performance
for small caches where the reference patterns are slightly different. Section 6 describes the
implications of dynamic exclusion on the next level of the cache hierarchy. In particular,
it discusses how to handle misses in the next level cache and how dynamic exclusion can
reduce these misses. Section 7 describes the interaction between dynamic exclusion and
caches with block sizes larger than one instruction. Section 8 discusses using dynamic
exclusion on data and combined caches. Finally, Section 9 gives some concluding remarks.
First however, we begin with a short discussion of related work in the area of cache design.
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2 Related Work

The design of caches to improve memory system performance has been studied extensively.
For an overview, see Smith [Smi82]. One area of strong interest has been cache organization.
In this paper, we assume caches are direct mapped. Several studies have shown that direct-
mapped caches have better overall performance than set-associative caches because of their
lower access times [Prz88, PHH89, PHH88, Hil87].

Many cache replacement policies have also been studied. Belady [Bel66] gave an opti-
mal replacement policy in the context of page replacement for virtual memories. Belady’s
algorithm uses future information to establish a theoretical upper bound on the performance
of any other replacement policy. This paper attempts to predict the future and match
optimal replacement by recognizing the execution patterns caused by loops. Smith and
Goodman [SG85] also used a loop model to compared the effectiveness of different in-
struction cache replacement policies. Loops models have also been used to improve cache
performance with compiler techniques [HC89, PH90, McF89, WL91].

Jouppi [Jou90] also studied a hardware method of reducing the sensitivity of direct-
mapped caches to conflicts. A small second level associative cache, called a victim cache,
was used to avoid pathological conflicts between two frequently accessed items that use
the same cache line. Victim caches work well for data references where the number of
conflicting items may be small. For instruction references, there are usually many more
conflicting items than a victim cache can hold. This is where dynamic exclusion is most
effective.

3 Common Instruction Reference Patterns

To understand how direct-mapped cache performance can be improved, we need to look at
the misses that occur for common instruction reference patterns. For now, we assume that
each cache miss brings one instruction into the cache. Typically, misses are caused by the
interference between the pairs of instructions known as conflicting instructions that cannot
both be stored in cache at the the same time. Conflicts between three or more instructions
also occur, but less frequently. Normally, when execution of two conflicting instructions
alternate, there are two misses as each instruction must be brought into the cache. Our
goal is to change the replacement policy so that whenever possible there will only be one
miss. To explain how this can be done, we will examine the three most common sources of
instruction conflicts:

1. conflict between instructions in two different loops

2. conflict between an instruction inside a loop with an instruction outside the loop.

3. conflict between two instructions within the same loop.
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To guide our choice of a new replacement policy, we will compare a conventional direct-
mapped cache with an optimal direct-mapped cache. By optimal direct-mapped cache, we
mean that the cache stores instructions in the same place that a direct-mapped cache would,
but the cache has an optimal replacement policy. With this optimal policy, the cache retains
the instructions that will be used soonest in the future among those instructions that map to
each location in the cache. Furthermore, we assume an instruction can be passed directly to
the CPU without ever being stored in the cache. This allows the instruction in the cache to
be retained if it will be used sooner in the future than the current instruction will be needed
again.

3.1 Conflict Between Loops

An example of conflict between instructions in different loops can be seen in the following
example, where instructions a and b map to the same cache location.

for i = 1 to 10
for j = 1 to 10

instruction a
for j = 1 to 10

instruction b

Ignoring the instructions associated with the for loops, this example has the execution
sequence:

(a10b10)10

In this paper, exponents give the number of times a subsequence is repeated. The
subscripts h and m refer to instructions that hit or miss respectively. For the above
sequence, both conventional and optimal direct-mapped caches have the behavior:

(ama
9
h
bmb

9
h
)10

with miss rates:

mDM = mOPTDM = 10%

Every time an instruction is executed, it is either already in the cache or should be placed
in the cache because it is also the next instruction to be executed. Thus, a conventional
direct-mapped cache already has optimal performance. Any new replacement strategy for
direct-mapped caches should not change this performance.
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3.2 Conflict Between Loops Levels

The following example shows a conflict between an instruction inside a loop with another
instruction outside the loop:

for i = 1 to 10
for j = 1 to 10

instruction a
instruction b

Here, the behavior of an conventional direct-mapped cache is:

(ama
9
h
bm)10

mDM = 18%

The behavior of an optimal direct-mapped cache is:

ama
9
h
bm(a10

h
bm)9

mOPTDM = 10%

In the conventional direct-mapped cache, each access to b causes two misses. Not only
does instruction b miss, b knocks a out of the cache and causes a to miss the next time
it is executed. In the optimal cache, instruction a is kept in the cache even when b is
executed. Instruction a will only miss once. To achieve the optimal cache behavior, a new
replacement method should recognize instructions that will only be executed once before
some other instruction is repeated, and not add such instructions to the cache.

3.3 Conflict within Loops

The final example below illustrates the behavior when two instructions within a single loop
compete for space in the cache.

for i = 1 to 10
instruction a
instruction b

Here, the behavior of a conventional direct-mapped cache is:

(ambm)10
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mDM = 100%

The behavior of an optimal direct-mapped cache is:

ambm(ahbm)9

mOPTDM = 55%

In a conventional cache, both instructions continuously knock each other out of the
cache. Neither hits. Conversely, the optimal cache selects one instruction to keep in the
cache. This selected instruction will hit on later executions. To improve on the conventional
direct-mapped cache, the replacement policy should recognize when two instructions are
alternating and select one to be kept in the cache.

4 Dynamic Exclusion Replacement Policy

We now present a new method for improving direct-mapped cache performance. The
basic idea is to recognize the patterns presented in the previous section and mimic the
behavior of an optimal direct-mapped cache. The recognition process treats each cache line
independently. In this section, we assume each cache line can hold a single instruction at a
time. Section 7 will generalize the result to larger cache line sizes.

In a conventional direct-mapped cache, the most recent reference is always placed in
the cache. As we saw in Section 3, optimal direct-mapped caches can get fewer misses by
excluding some instructions from the cache. We now consider a new cache replacement
policy that reduces the number of misses by dynamically determining which instructions
should be excluded from the cache. The determination uses a simple finite-state machine
(FSM) in conjunction with two new state bits associated with each cache line. These new
bits are called sticky and hit-last and are denoted s and h[ ] respectively. Figure 1 shows
one cache organization that stores these new state bits. The Level 1 (L1) cache contains
both bits. The Level 2 cache contains only the h[ ] bit. An alternate organization that does
not require the h[ ] bits to be stored in the L2 cache will be discussed in Section 6. For
simplicity, Figure 1 and later discussions assume dynamic exclusion is applied to the L1
cache. Application to other cache levels is also possible.

To understand the function of the dynamic exclusion state bits, consider again the
patterns shown in Section 3. Both the second and third patterns require the cache to retain
an instruction while a conflicting instruction is executed. The sticky bit allows the cache to
do this without having to exclude instructions forever. Whenever there is a hit, the sticky
bit for that cache line is set. Normally, an instruction is held in the cache while the sticky
bit is set. Whenever there is a miss, the sticky bit is reset. Thus, two sequential misses to a
cache line will always remove it from the cache.
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tags lineshsLevel 1

tags lineshLevel 2

Figure 1: Direct-Mapped Cache with Dynamic Exclusion State Bits

The hit-last bit tells whether an instruction hit the last time it was in the cache. This
allows some instructions to be brought immediately into the cache even when the sticky bit
is set. Without the hit-last bit, the number of misses caused by switches between execution
phases would double.

The hit-last bit must be remembered while an instruction is not in the cache. In addition,
the value associated with an instruction is only needed when that instruction misses. Thus,
the hit-last bit is logically associated with a lower level in the memory hierarchy. For now,
we will assume the hit-last bit is stored in the next level cache. Methods for treating misses
in the next level cache are discussed in Section 6.

Even though the value is not necessarily used, the hit-last bit could be set on every
access to the first level cache. Unfortunately, the second level cache is normally too slow
to be written on all these accesses. The hit-last bit in the first level cache shown in Figure 1
avoids this problem. Whenever the hit-last bit needs to be set, the L1 copy is set. This copy
is then transferred to the L2 cache when the instruction in the L1 cache is replaced.

Figure 2 gives the state transition diagram for dynamic exclusion FSM. Only the states
and transitions for two instructions, a and b, are shown. The behavior for other instructions
is symmetrical. The notationA and B indicate instruction a or b is in the cache respectively.
s and !s indicate whether the sticky bit associated with the current cache line is set or reset
respectively. The notation h[x] refers to the hit-last bit associated with instruction x. As
discussed above, h[x] refers to the L1 bit when the value is changed and the L2 bit when the
value is used. The semicolons in arc labels separate the input conditions on the left from
state assignments on the right. As in the language C, assignment is represented by an equal
sign.

The state diagram can be understood by examining its behavior for the three common
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a;   h[a]=1 b;  h[b]=1

b,!h[b]

a,!h[a]

b,h[b];   h[b]=0

a,h[a];   h[a]=0

a;   h[a]=
1

b;   h[b]=
1b;

  h
[b

]=
1a;   h[a]=1

A,s B,s

A,!s B,!s

Figure 2: Dynamic Exclusion State Diagram

instruction reference patterns described in Section 3. Consider first the conflict between
loops in the pattern (a10b10)10. The initial states of the sticky bit, the hit-last bits, and
the current instruction in the cache are unknown. However, for all possible initial states,
instruction a will be loaded into the cache after at most two misses. During sequential
executions of a, the cache will remain in State A; s and the hit-last bit h[a] will be set since
a will hit several times. When b is executed the initial action depends on the initial state of
h[b]. However, after at most two misses, b will be loaded into the cache and subsequently
h[b] will be set.

At this point, both h[a] and h[b] are set, indicating that both a and b are repeated
whenever they are executed. Subsequently, the cache behavior is the same as an optimal
direct-mapped cache. Whenever either a or b is executed, the instruction will either already
be in the cache or be immediately loaded just as an optimal cache would. Thus, for this
pattern, a direct-mapped cache with dynamic exclusion has at most two more misses than
an optimal direct-mapped cache depending on the initial state.

In the conflict between loop levels pattern (a10b)10, a direct-mapped cache with dynamic
exclusion again matches the behavior of an optimal direct-mapped cache,perhaps after some
initial training time. The initial executions of instruction a are identical to the earlier pattern.
After at most three executions, a will be in the cache and h[a] will be set. Instruction b

will be loaded only if h[b] is initially set. However, even in this case, h[b] is reset and the
sticky bit will keep b from ever being loaded again. Again, a direct-mapped cache with
dynamic exclusion has at most two more misses than an optimal direct-mapped cache. This
is significantly better than a normal direct-mapped cache where each execution of b causes
two misses.
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benchmark description
doduc Monte Carlo simulation
eqntott conversion from equation to truth table
espress minimization of boolean functions
fpppp quantum chemistry calculations
gcc GNU C compiler
li lisp interpreter
mat300 matrix multiplication
nasa7 NASA Ames FORTRAN Kernels
spice circuit simulation
tomcatv vectorized mesh generation

Figure 3: SPEC Benchmarks Used for Evaluation

Finally, in the pattern of conflict within a loop (ab)10, a direct-mapped cache with
dynamic exclusion again acts like an optimal direct-mapped cache after some initial activity
to correctly set the h[ ] and s bits. Depending on the initial conditions, either instruction
a or b may be kept in the cache. However, eventually one instruction will be kept in. For
example, if a is initially in the cache, the finite state machine will cycle between states A; s
andA; !s. Again, after some initial misses the direct-mapped cache with dynamic exclusion
has only half the misses of a normal direct-mapped cache.

Before going further, we should note that the state diagram in Figure 2 contains a small
exception to the definition of h[ ]. The bit does not always mean that the relevant instruction
hit the last time in the L1 cache. For example, in the transition A; !s ! B; s, the h[a]

bit is set even though there is no a hit. This aberration improves the cache performance by
allowing more random references to get in the cache sooner. This is especially useful for
data and mixed caches.

To evaluate the effectiveness of dynamic exclusion, we will use the SPEC benchmarks
shown in Figure 3. These benchmarks include a mix of symbolic and numeric applications.
However, to limit cache simulation time, only the first 10 million references from each
benchmark were used. Results using the full reference streams are similar.

Figure 4 shows the instruction cache performance for each of the SPEC benchmarks
for a normal direct-mapped cache, a direct-mapped cache with dynamic exclusion, and
an optimal direct-mapped cache, all at a cache size of 32KB. The improvement varies
between benchmarks largely depending on the relative frequency of the patterns discussed
in Section 3. All the benchmarks with a high instruction cache miss rate show a significant
improvement. Benchmarks nasa7 and tomcatv show a slight increase in misses with
dynamic exclusion. This is caused by a small increase in cold-start misses while the
dynamic exclusion state bits are initialized. For the full instruction reference streams, this
increase is negligible.

Figure 5 shows the average instruction cache miss rate across the SPEC benchmarks for
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Figure 4: Instruction Cache Performance for Various Benchmarks (S=32KB)

a range of cache sizes with the same three types of caches as in Figure 4. Figure 8 shows
the percentage reduction from the normal direct-mapped cache miss rate. For very large
caches, the potential improvement decreases since there are no conflicts when the programs
fit in the cache. For very small cache sizes, the conflicts are more likely to involve more
than two instructions and thus not be recognizable by the FSM in Figure 2. The potential
improvement is also smaller as the degree of conflicts increases. This is reflected by the
decline in the percentage improvement for an optimal direct-mapped cache for these small
cache sizes. The average improvement for dynamic exclusion peaks at 35% at a cache size
of 32KB.

5 Additional Sticky State

So far, we have assumed that all conflicts for cache space involve two instructions. Clearly,
conflicts among three or more instructions are also possible. For example, if the outer
loop in Section 3.2 has two instructions that map to the same cache location, the execution
sequence could be (a10bc)10. Similarly, if the loop in Section 3.3 has four instructions that
map to one cache location the execution sequence would be (abcd)10.

In both these new sequences, an optimal direct-mapped cache locks instruction a in the
cache and keep the other instructions out. Unfortunately, the finite state machine presented
in Section 4 cannot recognize these patterns because they require an instruction to be kept
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Figure 5: Instruction Cache Dynamic Exclusion Performance for Various Cache Sizes

in the cache despite multiple misses. However, we can easily add this ability by adding
sticky bits. The resulting finite state machine is shown symbolically in Figure 6. Here, s
is a sticky counter. If the counter has only one bit, then Figure 2 is equivalent to the state
diagram in Figure 2. However, with a two bit counter the finite state machine in Figure 6
can recognize the more complex sequences discussed above.

The results using a two bit counter are shown in Figure 7. The two bit counter has better
performance for small cache sizes. Here, typical patterns tend to have more instructions
because a given loop is more likely to reuse the same cache locations. The two bit counter
has worse performance for larger cache sizes. This is because patterns involving more than
two instructions are relatively infrequent and a two bit counter takes longer to initialize.
In addition, the two bit counter can confuse some patterns involving two instructions. For
example, it might confuse pattern (abcd)10 with (ab3)10 and keep a in the cache where
keeping b would have much better performance.

6 Choices for Lower Level Caches

In Section 4, we assumed that the second level cache was large. With this assumption, the
hit-last bits flushed out of the L1 cache can normally be found in the L2 cache. In this
section, we consider smaller L2 caches where there is more interference between hit-last
bits. In particular, we will consider three ways a cache with dynamic exclusion could
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state A,s>0f
a ! state A,s=smax; h[a] = 1;
h[b],b! state B,s=smax; h[b] = 0;
!h[b],b! state A,��s;

g

state A,s==0f
a ! state A,s; h[a] = 1;
b ! state B,s; h[b] = 1;

g

Figure 6: Dynamic Exclusion Finite State Machine
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Figure 7: Instruction Cache Performance Improvement for Various Cache Sizes
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respond to an L2 miss:

1. use the existing hit-last bit (hashed)

2. assume the hit-last bit is set (assume-hit)

3. assume the hit-last bit is not set (assume-miss)

The first option has a significant structural advantage. The hit-last bits previously kept
in the L2 cache can be kept in the L1 cache since there is no need to insure that the current
instruction matches the instruction stored in L2. This avoids the need to communicate the
hit-last information between the caches and even the need for the L2 cache to know that the
L1 cache is using dynamic exclusion. Also, there is no need for the original hit-last bit in
L1 since the bits previously stored in L2 can be accessed directly at L1 speeds.

Figure 8 shows the L1 miss rates with dynamic exclusion using each of the three options
as the L2 cache size is increased. For most L2 cache sizes, the assume-hit option has slightly
fewer L1 misses. Assuming instructions will hit is usually correct. However, if the L2
cache is the same size as the L1 cache, the assume-hit option gives no improvement since
the cache degenerates to conventional direct-mapped behavior. With all three schemes,
most of the performance is achieved as long as the L2 cache is at least 4 times as large as
the L1 cache. This is large enough to insure that most L1 misses are found in the L2 cache.
This also implies that the hashing strategy needs only four hit-last bits for each cache line
to get good performance.

Figures 9 and 10 show the results of the three options on the L2 miss rates. With the
hashed and assume-miss strategies, all instructions stored in the L1 cache do not need to
be stored in the L2 cache. This allows the L2 cache to store other instructions and get a
lower miss rate. This could be particularly useful if the L2 cache is on the same chip as the
CPU and needs to to be kept small. As the figures show, the assume-miss strategy is best
at improving the L2 miss rate. This is because it maximizes the difference between the two
caches. The hashed strategy also has a significant improvement. The assume-hit strategy
does not help the L2 cache because everything in the L1 cache will also be in the L2 cache.

7 Caches with Longer Line Sizes

In the discussion so far, we have assumed each cache line contains one instruction. Larger
cache lines present two problems. First, the sequence of instructions that use each tag
is much different. If the dynamic exclusion state bits are updated whenever a given tag
is accessed, the patterns described in Section 3 will no longer be seen. Using the same
finite state machine, cache lines would rarely be excluded because there are almost always
several instructions executed sequentially that use the same tag. The second problem is
that even if the FSM excluded whole cache lines, this would result in poor performance as
each sequential instruction generated a new miss.
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Figure 8: Dynamic Exclusion L1 Performance for Various L2 Cache Sizes (L1=32KB)
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Figure 9: Dynamic Exclusion L2 Performance for Various L2 Cache Sizes (L1=32KB)
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Figure 10: Dynamic Exclusion L1 Performance Improvement for Various L2 Cache Sizes
(L1=32KB)

We can solve both these problems once we recognize that the pattern of references to
each position within a cache line is essentially the same. Likewise, if we treat the sequential
references to each cache line as one reference, the sequence of these references is essentially
the same as the sequence of references to each instruction within the line. Moreover, the
pattern of these line references is the same as the patterns discussed in Section 3. If each
cache line holds one instruction, we were able to reduce the number of misses by excluding
instructions that are only used once before a competing instruction is executed. A similar
improvement is possible with larger line sizes if we recognize lines that will only be used
for sequential instruction executions. These lines should be excluded from the cache, but
they do need to be held somewhere so that only one miss is required for the sequential
references in the line. This allows dynamic exclusion to be used without losing the benefits
of spatial locality.

There are two particularly simple methods of implementing exclusion of longer cache
lines:

1. use an instruction register the same size as the L1 cache line.

2. logically add a special line to the cache with its own tag to hold the most recently
referenced line.

In the first alternative, missing lines are always stored in the instruction register. How-
ever, the line is only stored in the L1 cache if the dynamic exclusion FSM suggests it should
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Figure 11: Dynamic Exclusion Structure with Longer Cache Lines

be. Sequential requests for the next instructions are taken from the instruction register
without changing the dynamic exclusion state. It is only necessary to access the cache
again when there is a taken branch or the program counter rolls over to the next line.

The structure for the second alternative is shown in Figure 11. All missing lines are
stored in the special last-line area. Subsequent sequential references are taken from the
last-line when there is a match to the last-tag field. Lines are only stored to the L1 cache
as directed by the dynamic exclusion FSM. Finally, the dynamic exclusion state is only
changed when the current instruction address does not match last-tag.

Figure 12 shows the performance of the second scheme as the cache line size increases
with a 32KB instruction cache. The percentage improvement in the miss rate declines
progressively from 35% with four byte lines to 23% at 64 byte lines. This loss in efficiency
tracks the internal fragmentation problem of long cache lines. In particular, two instructions
that do not conflict with a small line size may conflict with a longer line size. These
added conflicts can prevent the FSM from finding a line that can be excluded to improve
performance.

8 Data and Mixed Caches

The previous sections have only discussed instruction caches. A natural question is whether
the same techniques can be applied to data caches as well. Figure 13 shows the result of using
the single bit dynamic exclusion FSM to the data references from the SPEC benchmarks.
Again, only the first 10 million references were used to keep simulation time reasonable.
For small cache sizes there is a small improvement. However, for larger cache sizes, the
dynamic exclusion FSM has slightly worse performance than a direct-mapped cache. The
common data reference patterns are different than those for instructions. In addition, a
normal direct-mapped cache is closer to optimal for data references than for instruction
references. Thus, there is less potential for dynamic exclusion to help.

Figure 14 shows the performance of dynamic exclusion for various sizes of combined
data and instruction caches with a line size of 4 bytes. For smaller cache sizes, the
improvement is nearly as large as the improvement for instruction caches. For large caches,
the improvement is smaller. With these benchmarks, instruction references dominate the
miss rate for small caches and data references dominate for large caches.
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Figure 12: Instruction Cache Dynamic Exclusion Performance for Various Line Sizes
(S=32KB)
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Figure 13: Data Cache Dynamic Exclusion Performance for Various Cache Sizes
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9 Conclusions

This paper has presented a new technique named dynamic exclusion that reduces the miss
rate of direct-mapped caches. The technique uses a small finite state machine to recognize
the common instruction reference patterns. By keeping instructions that will not hit anyway
out of the cache, the remaining instructions have fewer misses. The reduction in miss rate
depends on the benchmark and the cache size. However, for a 32KB instruction cache,
the average miss rate for the SPEC benchmarks is reduced by 35%. In addition, dynamic
exclusion can improve the performance of the second level cache since some instructions
only need to be stored in the first level cache. Finally, by reducing the number of instruction
misses, dynamic exclusion is also useful for combined instruction and data caches.
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