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Abstract

Modifying code after the compiler has generated it can be useful for both
optimization and instrumentation.  This paper compares the code modifica-
tion systems of Mahler and pixie, and describes two new systems we have
built that are hybrids of the two.
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1. Introduction

Late code modification is the process of modifying the output of a compiler after
the compiler has generated it. The reasons one might want to do this fall into two
categories, optimization and instrumentation.

Some forms of optimization must be performed on assembly-level or machine-
level code. The oldest is peephole optimization [11], which acts to tidy up code that a
compiler has generated; it has since been generalized to include transformations on
more machine-independent code [2,3]. Reordering of code to avoid pipeline stalls
[4,7,18] is most often done after the code is generated because the pipeline stalls are
easier to see.

Other forms of optimization depend on having the entire program at hand all at
once. In an environment with separately-compiled modules, this may mean we must
apply the optimization to machine-level code. Global reorganization of code to reduce
instruction cache misses [10] is one example. Intermodule allocation of registers to
variables is another; the Mahler system [16] chose the register variables during linking
and modified the object modules being linked to reflect this choice. Register allocation
is a fairly high-level optimization, however, and other approaches have been taken, such
as monolithic compilation of source modules or intermediate-language modules [15] or
compilation with reference to program summary databases [14].

Optimization removes unnecessary operations; instrumentation adds them. A com-
mon form of machine-level instrumentation is basic block counting. We transform a
program into an equivalent program that also counts each basic block as it is executed.
Running the instrumented program gives us an execution count for each basic block in
the program. We can combine these counts with static information from the uninstru-
mented program to get profile information either at the source level, such as procedure
invocation counts, or at the instruction level, such as load and store counts [9,12].

Some events that we might want to count require inter-block state. Counting pipe-
line or coprocessor stalls, for example, can be done with basic-block counting only if
any stall is guaranteed to finish before we leave the basic block. Counting branches
taken or fallen through, or the distribution of destinations of indirect jumps, are other
examples. Instrumentation to count these events is no harder than counting basic
blocks, but requires different instrumentation [17,18].

Still other kinds of instrumentation are not hard to do by code modification.
Address tracing for purposes of cache modeling [1,12] can be done by instrumenting
the places where loads and stores occur and also the places where basic blocks begin.
A 1988 study [19] compared software register allocation with hardware register win-
dows, by instrumenting the code to keep track of procedure call depth and counting, for
example, the times when a machine with register windows would overflow its buffer of
windows.

Naturally, certain kinds of transformation are best done before we reach machine-
level code. Transformations like macro expansion are usually defined as source-to-
source transformations, and are nearly always implemented as such. Global movement
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of operations out of loops could in principle be done at the machine level, but it makes
more sense to do it earlier, when more of the semantics of the program are easily avail-
able. Inline procedure expansion is often most useful if it can be followed by normal
global optimizations, because the latter act to specialize the body of such an expansion,
so inline expansion might not be done at the machine-level.

Nevertheless, it is clear that a wide variety of transformations for purposes of
optimization and instrumentation can be done on machine-level code. This paper com-
pares two existing systems for late code modification, finds advantages and disadvan-
tages to both, and then describes two new systems we have built that represent
compromises between these two, combining the advantages (and a few of the disadvan-
tages) of both.

2. Overview of late code modification.

There are two different questions to address. How do we decide what
modifications to make? How do we make those modifications and still get a working
program?

The former depends on the transformation. In basic block counting, we simply
insert a load, add, and store at the beginning of each block, to increment the counter
associated with that block. In interprocedure register allocation, we decide which vari-
ables to keep in registers -- the hard part -- and then we delete loads and stores of those
variables and modify instructions that use the values loaded and stored. In any case
this paper will not discuss how to decide what changes to make, except in passing.

There are two main problems associated with making the modifications correctly.
The first is that adding and deleting instructions causes the addresses of things to
change. We must be able to correct for these changes somehow, or references to these
addresses will not work right. The second is that the modifications may themselves
need resources that must somehow be acquired. Most commonly these resources are
registers: for example, in block counting we need at least one register in which to do
the increment, and another to hold the address of the count vector.

A code modification system that knows enough about the program can address
both these problems without introducing much or any overhead in the transformed pro-
gram. This makes the system a suitable medium for optimization as well as for instru-
mentation. If we are forced to introduce overhead, to deal with the problems dynami-
cally rather than statically, optimization is unlikely to be feasible, and a large overhead
will reduce the usefulness of the system even for instrumentation.

Next we will look at two systems for late code modification, and compare their
approaches.

3. Mahler

The Mahler system [16,17,18] is the back-end code generator and linker for the
Titan [8,13], an experimental workstation built at DECWRL. The Mahler system does
code modification in the linker. A wide variety of transformations are possible:
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intermodule register allocation, instruction pipeline scheduling, source-level instrumen-
tation compatible with gprof [6], and instruction-level instrumentation like basic block
counting and address tracing [1]. The linker decides in the usual manner which
modules to link, including modules extracted from libraries. Each is passed to the
module rewriter, which modifies it according to the transformations requested. The
transformed modules are then passed back to the linker proper, which links them just as
if they had originally come from object files.

Correcting for changed addresses is easy in this context. An object module con-
tains a loader symbol table and relocation dictionary, which mark the places where
unresolved addresses are used. An unresolved address may be one that depends on an
imported symbol whose value is not yet known, or may be one that is known relative to
the current module but that will change when the module is linked with other modules.
In either case the linker is responsible for resolving it, and the relocation dictionary tells
the linker what kind of address it is. This same information lets us correct the value, if
only by leaving the relocation entry in place so that the linker will correct it.

Other addresses are not marked for relocation, because they are position-relative
addresses and will not change when the module is linked with others. These are all
manifest in the instruction format itself, as in the case of a pc-relative branch instruc-
tion. If instructions are inserted between a branch and its destination, we increase the

magnitude of the displacement in the instruction word.*

If the module rewriter is applying a transformation that requires some new regis-
ters, such as block counting, they are easy to obtain, because global register allocation
is also done in the linker. Thus we can choose to allocate fewer registers than the max-
imum, reserving a few for the use of the instrumentation code. This leads to some
overhead, because the variables that would have used those registers must now live in
memory and must be loaded and stored as needed. However, the Titan has 64 registers,
and losing the last few never made much difference to performance.

Mahler code modification is made still easier by the combination of two cir-
cumstances. First, the presence of the loader symbol table means that the compiler can
pass hints through it. Second, the Mahler compiler is the back end of all the high-level
language compilers, and is also the only assembler available for the Titan, which means
that any code the module rewriter sees is guaranteed to have been produced by the
Mahler compiler. For example, the Titan has no variable-shift instruction; this opera-
tion is implemented as an indexed jump into a series of 32 constant-shift instructions.
The code modifier must be careful not to damage this idiom, and would wreak havoc if
for example it blithely changed the order of these shifts. The Mahler compiler flags
this idiom with a symbol table entry, which tells the module rewriter what it is.
333333333333333
* Although this might seem to handle all the cases, in theory there is another that would be troublesome.
If we did an unrelocated computation of some kind, added the result to the pc, and jumped to that
address, it would be very difficult to correct this address statically. Such a computation is one possible
implementation of a case-statement, but the more common one is to use the computation to select the
destination from a table of complete addresses, each marked for relocation.
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Mahler’s approach of code modification in the linker arose from the desire to do
intermodule register allocation without giving up separate compilation. With that
machinery in place, it was natural to do instrumentation there as well. This unfor-
tunately means that to request instrumentation a user must relink, and so must have
access to the object modules and libraries that the program is built from. On the other
hand, this approach means the user need not recompile, and means we need not main-
tain instrumented versions of the libraries, as has been the usual practice, for example,
in systems that support gprof [6]. The need to relink is inconvenient, however, and it is
interesting that another approach is possible.

4. Pixie

Pixie [9,12], developed by Earl Killian of MIPS, does block counting and address
tracing by modifying a fully-linked executable. The executable file may even have had
its symbol table removed, though the block counts are normally analyzed by tools that
need to see the symbol table. This approach is much more convenient for the user, who
does not have to be able to rebuild the executable. It is less convenient for pixie, how-
ever, which must work harder to preserve program correctness, and introduces run-time
overhead in doing so.

As with Mahler, some address correction is easy. Pc-relative branches and jumps
are easy to recognize, and pixie can change their displacements just as Mahler can.
Indirect jumps pose more of a problem, because their destinations are computed at other
points in the program, and we no longer have the relocation dictionary to let us recog-
nize those points. Pixie constructs a big translation table that maps code addresses in
the original program into code addresses in the modified program. This table is built
into the modified executable, and every indirect jump is preceded by code that
translates it at run time by lookup into this table. Even when pixie knows it is comput-
ing a code address, it computes the old version of that address, so that the runtime
translation lookup will always work correctly regardless of where the address came
from. This leads to a rather odd expansion of a jump-and-link instruction, which
expands to an ordinary jump together with a pair of instructions that load what would
have been the return address in the unmodified program.

Fortunately for pixie, data addresses do not change even though the code segment
gets larger. By convention, data segments on MIPS systems occupy a place in the
address space that is far removed from the code segment; there is ample room for a
code segment to grow manyfold before it affects data addresses. Without this conven-
tion, data addresses might change (as in fact they do under Mahler on the Titan); pixie
would have to do loads and stores with an extra level of indirection, just as it does
indirect jumps.

The instrumentation added by pixie needs three registers for its own use, which it
must steal from the registers already used by the program. Pixie accomplishes this by
maintaining three memory locations that have the ‘‘user’’ values of these three regis-
ters, and replacing uses of these registers by uses of the memory locations. Since the
MIPS processor has a load-store architecture, this adds some overhead, but it is
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typically small compared to the overhead of the instrumentation itself. These three
registers can then be used for pixie’s purposes, and also as temporaries in the expan-
sions of user instructions that use them. To pick the registers to steal, pixie looks for
the registers that have the fewest number of static references.

Pixie uses no hints from the compiler, and in fact does not even use knowledge
about the patterns of code the compiler generates. This means it can tolerate assembly
code and even code from ‘‘foreign’’ compilers, neither of which is sure to adhere to the
MIPS compiler conventions.

5. What more do we need?

Pixie is convenient to use, but incurs a fair bit of runtime overhead. By far the
majority of indirect jumps are subroutine returns, and most of these are from ordinary
direct calls. In these cases the overhead of going through the address table is logically
unnecessary. If all we want to do is instrumentation, the overhead is probably accept-
able, though there are certainly times when we might want to do lightweight or time-
critical instrumentation. In any case, the overhead makes it an unsuitable vehicle for
optimization.

Mahler’s use of the loader information lets it transform a program with much
smaller runtime overhead. It is built into the Titan linker, however, and depends to an
unknown extent on the integration of the back-end compiler and the linker. Moreover,
it is currently targeted only at the Titan family and is unlikely to be retargeted to the
MIPS.

It seems that a compromise between Mahler and pixie might be in order. Much of
pixie’s overhead is not logically necessary: for instance, if a procedure is certain to be
called only directly, those calls and returns can safely be translated as calls and returns,
without going through the address table. Moreover, all of the MIPS compilers have the
same backend, so we can be almost as sure of understanding coding conventions as we
are with Mahler on the Titan. A variant of pixie that paid attention to compiler conven-
tions and other information might be able to reduce the overhead significantly, perhaps
enough to let us use it for optimization as well as instrumentation. The rest of this
paper describes prototypes of two such compromises that we have built at DECWRL.

6. Nixie

The first compromise we built was a system called nixie. Nixie works very much
like pixie, but makes certain assumptions about the code it modifies. The framework of
this approach is threefold. First, the MIPS architecture has a strong bias in favor of
using r31 as the return address register. Second, the direct jump-and-link (JAL) and
jump-register (JR) instructions used for normal procedure call and return in the original
code will work just fine in the modified code, provided that we change the literal desti-
nation field from an old address to a new one. Third, all of the MIPS compilers use the
same back end code generator, whose coding conventions are therefore uniform over all
compiled code.
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Nixie therefore assumes that any JR via r31 is in fact a return, and (sensibly) that
any JAL is a call, and leaves them both unchanged. A jump-and-link-register (JALR)
instruction is assumed to be an indirect call to a procedure whose address is in the
instruction’s operand register; this instruction is preceded by address translation code to
look up the procedure address and convert it from the old space to the new.

We would not be far wrong if we further assumed that any other JR is the indexed
jump from a case-statement. These we can handle by noting that the MIPS code gen-
erator produces only a few distinct code templates for these indexed jumps. By exa-
mining the instructions before the JR, we can confirm that this JR is indeed the indexed
jump from a case-statement, and can also determine the address and size of the associ-
ated jump table in the read-only data segment. This allows us to translate the entries in
this table statically, so that we need not insert translation code.

The only hole in this argument is that a program can contain code that was origi-
nally written in assembly language. Such code was not produced by the code genera-
tor, and might not follow its conventions. Users tend not to write such code, but it is
not uncommon in the standard libraries. Fortunately, most assembly routines in the
libraries follow the conventions well enough for our purposes: they return through r31,
and they seldom have case-statements at all.

In the standard libraries, nixie knows of two dozen assembly routines that have
unusual jumps. It finds these in an executable by looking for the file name in the loader
symbol table, and then pattern-matching the code at that address to confirm that the
routine is really the one from the library. If the symbol table is absent, nixie searches
the entire executable for the patterns. When one of these nonstandard routines is found,
nixie marks the violations so that it will know what to make of them later.

Any jump that we have been unable to explain with this whole analysis triggers an
error message. In programs without procedure variables, we are normally able to
translate all jumps cleanly, without using the runtime address table, and if so we do not
include the address table in the transformed executable. In accomplishing this, we have
conveniently also assigned a meaning to all jumps, distinguishing between procedure
calls, procedure returns, and case-statement indexed jumps. This lets us consider doing
global analysis using the control structure of the program. The reduction, often to zero,
of the runtime overhead of doing program transformation, together with the ability to
do global analysis, means that we should be able to use this technique to do low-level
optimization as well as instrumentation.

On the other hand, certain assumptions are necessary. We assumed that a JAL or
JALR is used only for procedure call; if this is false our understanding of the global
structure may suffer. More seriously, we assumed that a JR via r31 was a return; if this
is false we will not translate the destination of the jump correctly, and the transformed
program won’t even run correctly.

Moreover, we can’t always remove the runtime address table. Mahler never
needed it, and it would be nice to dispense with it in general. This is the motivation for
the second compromise system.
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7. Epoxie

Mahler can do all of its address translation statically, because it operates on object
files, which still have loader symbol tables and relocation dictionaries. We wanted a
pixie-like tool that would work the same way, but didn’t want to change the standard
linker. One option would be to make the tool transform an individual object file, and
then apply it to each of the object files in turn, but this would make it inconvenient to
include library files. Our solution was to assume that we can begin by completely link-
ing the program but retaining all of the loader information. In practice this is easy to
do: most standard linkers have an option for incremental linking, which lets us link
together several object files into what is essentially one big object file that can then be
linked with others to form a complete executable. In our case we will link together
everything there is, but we will pretend there might be more so that the linker will keep
the relocation information we want.

This done, we can modify the result in the same manner as Mahler. Where the
code or data contains an address, either the use is marked for relocation or else the use
is self-evident, as with a pc-relative branch. Like Mahler, this system translates not
only code addresses that appear in the code, but also code addresses that appear in the
data, the relocation dictionaries, and the symbol table. Unlike Mahler, this system need
not translate data addresses, because the addresses of the data segments do not change.

The resulting system is nearly identical in structure to nixie, and is called epoxie,
because all the glue holding the executable together is still visible. With epoxie, we
never need runtime address translation. For many applications, we need not do as
thorough an analysis of the program’s jumps: for basic-block counting, for example, we
do not care whether a JR is a case-statement or a subroutine return, and epoxie does not
need to know this for a safe translation.

8. Pitfalls

There are several tricky bits worth explaining.

There is occasionally a reason to have code in the data segment. For example, an
instruction might be constructed on the fly for emulation purposes. None of the code
modification systems discussed here understand this possibility, and therefore will not
instrument such code. Fortunately, such code arises seldom. Not counting it as a basic
block will probably not skew results much. On the other hand, branching to code in the
data segment and then back to the code segment could easily confuse us if we are doing
a transformation that requires understanding the control flow.

There is also occasionally reason to have data in the code segment. The MIPS

Fortran compiler puts constant arguments of subroutines in the text segment.* The
documentation for pixie suggests that an early version of the MIPS Fortran compiler
333333333333333
* Presumably this is so it can pass these arguments by reference, secure in the knowledge that a protection
violation will occur if the subroutine tries to modify them. I don’t know why it doesn’t put them in the
read-only data segment instead.
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used code-segment data as part of the implementation of FORMAT statements. There
are two problems with data in the code segment. First, we access this data via an
address into the code segment, and code modification will probably change the address.
Second, if we mistake the data for code, we may instrument or modify it, causing the
computations that depend on it to get the wrong values.

Pixie and nixie deal with both problems by including a copy of the original code
at the beginning of the modified code segment. Since loads and stores do not have their
addresses translated as jumps do, following the untranslated address will lead to the old,
unmodified code. This means we will both look in the right place and get an unaltered
value.

Because epoxie corrects all addresses statically according to the relocation diction-
ary, the address will lead us to the right place in the modified code. It won’t help, then,
to include a copy of the original code. Instead, we must distinguish between instruc-
tions and data in the code segment, and be sure not to alter the latter. Fortunately, it
turns out that the MIPS loader symbol table contains information that makes this possi-
ble. This information also lets nixie determine (if the symbol table is present) whether
including the old code is necessary.

Nixie uses the runtime address translation table only if there are indirect procedure
calls in the program. Unfortunately, our standard C library has one routine, called
fwalk, that takes a procedure address as an argument and makes indirect calls to that
procedure. Fwalk is called in all programs, as part of the normal exit sequence. Rather
than surrender and use the translation table all the time, nixie recognizes the fwalk rou-
tine, and also recognizes direct calls to it. It inspects the instructions around these calls
to find the instructions that compute the procedure address passed. If these instructions
compute a literal address, as is usually the case, nixie simply modifies them to compute

the corrected address. This is admittedly unsafe*, because fwalk might itself be called
indirectly, in which case we can’t recognize the call and therefore won’t do the transla-
tion of its argument. Pixie and epoxie do not have this problem, because all code
addresses are translated at the same time: at run time for pixie and at modification time
for epoxie.

The MIPS and Titan architectures both have delayed branches, so when a branch
or jump is taken, the instruction after the branch (sometimes called the ‘‘branch slot’’)
is executed before control is transferred. Code modification may replace the branch slot
instruction by a series of several instructions. In that case we cannot just leave these
instructions in place, because only the first will be executed if we take the branch. For-
tunately, a branch slot is often filled with an instruction from before the branch, in
which case the expansion of this instruction can be safely moved back before the
branch.

333333333333333
* The technical term for this is ‘‘sleazy.’’

8



SYSTEMS FOR LATE CODE MODIFICATION

It may be incorrect, however, simply to move the slot back before the branch, if

the slot changes a register that the branch uses.* In this case there are two possible
approaches. One is to duplicate the expansion, so that we replace

conditional-branch to L
slot instruction

by

reverse-conditional-branch L1
nop
slot expansion
unconditional-branch to L
nop

L1: slot expansion

(If we are careful we can do without the two nops.) This is roughly what pixie does.
Another choice is to expand to

tempreg := evaluate condition
slot expansion
if tempreg branch to L
nop

Epoxie and nixie do this, for a bad reason: I didn’t understand a tricky property of the
relocation dictionaries, which I thought made it impossible to correctly duplicate the

code if it was marked for a particular kind of relocation.† Pixie’s approach is longer but
simpler, and works better in the case where there is a branch from somewhere else to a

branch slot.‡ Pixie can simply consider everything up to L1 as part of the expansion of
the branch, and everything at L1 and beyond as the expansion of the slot. In contrast,
epoxie must do an ugly thing: it changes

333333333333333
* This can happen, for example, if the assembler filled the branch slot by moving an instruction from the
destination block or the fall-through block. It does this only if it is safe; i.e. if the register changed by
this instruction is set before it is used in the alternative block.
† Specifically, the MIPS loader format has a pair of related operations, R_REFHI and R_REFLO, which it
uses to relocate a pair of instructions that compute a 32-bit address by combining two 16-bit parts. These
relocation entries must be consecutive in the dictionary, because we must inspect both instructions to
know how to relocate the first. The problem arises if the slot instruction is relocated R_REFLO, where
the associated R_REFHI relocation appears before the branch. If we duplicate the expansion of the slot,
we will have two R_REFLO entries and only one R_REFHI entry, which I thought at first was illegal. In
practice, though, a R_REFHI can be followed by any number of R_REFLOs, as long as they all make the
same assumptions.
‡ This can happen explicitly in assembly code, of course, but also occurs as the result of pipeline
scheduling, if a branch slot is filled from the fall-through block, but the fall-through block is itself the
destination of another branch.
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conditional-branch to L
LL: slot instruction

to

tempreg := evaluate condition
branch to L2
nop

LL: tempreg := false
L2: slot expansion

if tempreg branch to L
nop

so that branches to LL will follow the right path. This works, but it is distinctly
inelegant.

System calls present a few problems to these systems. System calls are allowed to
destroy the first 16 registers, which makes them unsuitable choices as bookkeeping
registers. A sigreturn trap restores the values of the other 16 from a data structure, so
pixie, nixie, and epoxie precede this trap with code that copies the saved values of the
bookkeeping registers into its own memory representation, and stores the bookkeeping
values of these registers into the sigreturn data structure. In addition, either a sigreturn
or a sigvec call involves a text address that will eventually be transferred to by the
operating system kernel. The code of the kernel is not modified by our tools, so pixie
and nixie precede these traps with code to translate the address. Epoxie need not,
because the original address computation, wherever it is, has relocation entries that
cause epoxie to translate it. If we want to do anything just before termination, like
write a file of basic block counts, we can insert code to do so before each _exit system
trap: pixie, nixie, and epoxie all work this way.

Probably the biggest pitfall is the use of pattern-matching to recognize certain
library routines. This is relatively fail-soft, because a routine that is listed as present in
the symbol table but that does not match the pattern triggers a warning, and a jump that
cannot be classified triggers an error. Nonetheless, the patterns are very specific, and a
new version of the library routine will probably fail to match. The right solution is to
raise the level of the assembly language slightly, so that assembly code adheres to the
same conventions as compiled code. One simple way to do this is by requiring the
assembly programmer to explain the violations of the conventions, and encoding these
explanations in the symbol table. If we do not wish to change the assembler, a less
attractive solution is to develop a tool that looks for violations in the libraries them-
selves, and asks the nixie/epoxie maintainer to categorize them. These explanations
would in turn generate the patterns used by nixie and epoxie.
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mahler epoxie nixie pixie22222222222222222222222222222222222222222
ccom 1.4 2.1 2.1 3.0+

doduc 1.3 1.6 1.6+* 2.0+*

eco 1.5 2.0 2.0 2.9+

egrep 1.6 2.1 2.1 2.9+

eqntott 1.5 2.1 2.2+ 3.0+

espresso 1.5 2.1 2.1+ 2.7+

fpppp 1.2 1.6 1.6+* 2.0+*

gcc1 1.6 2.4 2.4+ 2.7+

grr 1.5 2.0 2.0 2.7+

li 1.6 2.1 2.1+ 3.1+

linpack 1.4 1.9 1.9 2.7+

livermore 1.6 2.0 2.0 2.7+

matrix300 1.6 2.1 2.2+* 3.0+*

met 1.5 2.0 2.0 2.8+

nasa7 1.4 1.9 1.9+* 2.6+*

sed 1.5 2.0 2.0 2.7+

spice 1.3 1.7 1.8+* 2.1+*

stanford 1.4 2.0 2.0 2.8+

tomcatv 1.5 2.1 2.1+ 2.9+

whetstones 1.5 2.0 2.0 2.8+

yacc 11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1.5 2.1 2.1 2.8+

+ means runtime address table required; add 1.0

* means original code required; add 1.0

Figure 1. Ratio of code size to original.

9. A few numbers

We have a prototype version of nixie and epoxie. To compare its code
modification to that of Mahler and pixie, we implemented basic block counting. Figure
1 shows the expansion in code size for a variety of programs.

The ratio of code size reflects only the difference in size between the executable
instructions in the original and instrumented versions. In addition, pixie and occasion-
ally nixie need the address translation table that converts old addresses to new, which is
as long as the original code segment. Moreover, pixie and nixie sometimes need the
original code to be included before the instrumented code, because data items exist in

the code segment.*

333333333333333
* In practice, pixie and nixie align these pieces on particular boundaries for convenience, resulting in even
larger instrumented versions; I believe this is not logically necessary, and so the empty space between
pieces is not counted.
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mahler epoxie nixie pixie2222222222222222222222222222222222222222222
ccom 1.6 2.1 2.1 3.0

doduc - 1.2 1.2 1.3

eco 1.7 1.9 1.9 2.5

egrep 1.6 2.0 2.0 2.4

eqntott 1.5 2.1 2.2 2.7

espresso 1.6 1.9 1.9 2.2

fpppp 1.0 1.1 1.1 1.2

gcc1 1.7 2.2 2.2 2.7

grr 1.6 1.4 1.4 1.7

li 1.7 2.0 2.0 2.7

linpack 1.1 1.1 1.1 1.1

livermore 1.1 1.3 1.3 1.4

matrix300 - 1.1 1.1 1.1

met 1.5 1.7 1.7 2.3

nasa7 1.0 1.1 1.1 1.1

sed 1.6 = = =

spice 1.2 1.3 1.3 1.4

stanford 1.5 1.7 1.7 2.1

tomcatv 1.1 1.1 1.1 1.1

whetstones 1.2 1.3 1.3 1.6

yacc 11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1.6 1.9 1.9 2.4

- means runtime error in unmodified program

= means run too short for resolution of system clock

Figure 2. Ratio of runtime to original.

Figure 2 shows the ratio of execution times. It is interesting that the increase in
execution time is typically rather less than the increase in executable code size.
Perhaps this is because both versions are slowed by cache misses, which are likely to
be comparable in the two versions. Or perhaps long blocks, whose expansion is propor-
tionately smaller, are executed more frequently than short ones.

We can tell Mahler, epoxie, and nixie to perform all the transformations for basic-
block counting, but to leave out the actual counting code. This tells us how much of
the expansion in code space and time is the overhead of stealing the bookkeeping regis-
ters and possibly doing some runtime address translation, as opposed to the instrumen-
tation itself. Figure 3 shows the result. We can see that the expense of the bookkeep-
ing overhead is very small: it is amusing that adding the overhead of nixie or epoxie
made grr 8% faster! From this we see that the smaller time and space expansion of
nixie in comparison to pixie must come from nixie’s ability to do most address transla-
tion statically. We can also see that using nixie or epoxie to do optimization seems
quite feasible, even if we are forced to introduce a little translation overhead. Mahler’s
time and space expansion due to overhead alone is nearly negligible: the largest

12
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code size run time

mahler epoxie nixie mahler epoxie nixie222222222222222222222222222222222222222222222222222222222222
ccom 1.00 1.02 1.02 1.01 1.11 1.11

doduc 1.00 1.02 1.03+* - 1.04 1.03

eco 1.00 1.04 1.04 1.01 1.17 1.17

egrep 1.00 1.06 1.06 1.02 1.00 1.00

eqntott 1.00 1.06 1.07+ 0.99 1.01 1.01

espresso 1.00 1.07 1.07+ 1.00 1.00 1.00

fpppp 1.00 1.01 1.03+* 1.00 1.01 0.99

gcc1 1.00 1.03 1.03+ 1.01 1.08 1.08

grr 1.01 1.05 1.05 1.01 0.92 0.91

li 1.00 1.02 1.02+ 0.99 1.00 1.02

linpack 1.00 1.05 1.05 1.00 1.01 1.01

livermore 1.00 1.05 1.05 1.00 1.10 1.10

matrix300 1.00 1.03 1.05+* - 1.00 1.00

met 1.01 1.05 1.05 1.01 1.00 1.00

nasa7 1.00 1.06 1.07+* 1.00 1.02 1.02

sed 1.00 1.05 1.05 1.00 = =

spice 1.00 1.05 1.05+* 0.99 1.02 1.02

stanford 1.00 1.04 1.04 1.00 1.00 1.00

tomcatv 1.01 1.02 1.04+ 1.00 1.02 1.02

whetstones 1.00 1.04 1.04 1.00 1.00 1.00

yacc 11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1.01 1.05 1.05 11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1.01 1.00 1.00

+ means runtime address table required; add 1.0

* means original code required; add 1.0

- means runtime error in unmodified program

= means run too short for resolution of system clock

Figure 3. Ratio of time and space with overhead
code but not instrumentation code

increase in runtime is 2%, and the runtime even decreased slightly in several cases.
The overhead is so small partly because the register allocation is integrated more
closely with the instrumenter, but mostly because the Titan has 64 registers, so that tak-
ing a few away is less important than it is on the 32-register MIPS architecture.

10. Conclusions

A late code modification system that compromises between the integrated
approach of Mahler and the conservative stand-alone approach of pixie is possible. We
have prototypes of two such systems, nixie and epoxie, that require different amounts of
compile-time information to be preserved. The overhead of these systems is usually
quite small. Because nixie and epoxie correct the symbol table information -- some-
thing pixie could do but does not -- the resulting modified file can be run under the

13
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debugger to the same extent as the original. This may not matter for an instrumenting
transformation (except to make it easier to debug the instrumentation process), but it is
likely to be important if we use nixie or epoxie for optimizing transformations.

Nixie and epoxie work by understanding enough about the code in a program that
they can assign meanings to all the jumps in a program, allowing the entire control
structure to be determined. This should mean that we can do global analysis of that
structure. Understanding the global control structure may let us look at using these
tools for low-level global optimizations, such as interprocedure register allocation and
pipeline scheduling. In any case we should be able to do instrumentation less
intrusively.
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