
M A R C H 1 9 9 5

WRL
Research Report 95/1

Drip: A Schematic
Drawing Interpreter

Ramsey W. Haddad

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://www.research.digital.com/wrl/home.html.

Drip: A Schematic Drawing Interpreter

Ramsey W. Haddad

March, 1995

Abstract

This paper presents a design capture system in which schematics are translated
into a procedural netlist specification language. The circuit designer draws
schematics with a standard structured graphics editor that knows nothing about
netlists or schematics. The translator program analyzes the structured graphics
output file and translates it into a procedural netlist specification.

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

ii

Table of Contents
1. Introduction 1
2. Basics 2

2.1. Simple Example 2
2.2. Structured Graphics 3

3. Generating Procedures 4
3.1. Frames and Evaluation 4
3.2. 2D Ordering 5

4. Drawing Interpretation 7
4.1. Icons 8

5. Analysis of Non-Evaluation Objects 9
5.1. Binding Text to Objects 9
5.2. Wires 10
5.3. Wire Subscripting 11

6. Error Reporting 11
7. Experiences 12
Acknowledgements 12
References 12

iii

iv

List of Figures
Figure 1: Code Generated for "CELL: orN" 2
Figure 2: 2D ordering of objects 5
Figure 3: Incomparable Rectangles 6
Figure 4: "conforming" icons 8
Figure 5: Sample "non-conforming" icons 9
Figure 6: Code Generated by "Icon" Region Procedure for Figure 4 9
Figure 7: Junctions and Connectors 10
Figure 8: Wire Subscripting 11

v

vi

1. Introduction

In the history of design capture systems [5], many of them are limited to being either entirely
text-based or entirely schematic-based. This is very limiting in that there is no single best choice
between these two methods. Typically, some portions of a design are best represented as text
and others are best represented as schematics. For example, the low-level unique cells of a
design crafted by circuit designers are usually best represented as a schematic. A quick test of
this is to show a circuit designer the text-based equivalent design of such a cell and ask what it
does. Her first step will be to translate the design into a schematic - only then can she can easily
determine the function. This suggests that the schematic was the correct representation in the
first place. On the other hand, cells such as control equations are more concise and easily
modifiable in a textual representation. A good system must allow the designer to mix between
text-based and schematic-based representations on a cell by cell basis.

Another important aspect of many designs is the frequent need to reuse an already existing
cell, but with a few small changes. A poor CAD system would require the designer to copy an
existing cell, rename it and modify it for the new use. When this happens often enough, the
process becomes tedious and updating modifications becomes very difficult. Thus, a good sys-
tem must allow the designer to specify cells in a parameterized manner [7], so that the CAD
system can generate many variations from one basic design.

Once the parameterization of cells is allowed, the question arises as to how powerful a
description language should be allowed to describe the parameterization. Anything short of a
full programming language is awkwardly restrictive. Once the parameterization has the power
of a full programming language, the designer is not only designing a circuit, but is also writing a
computer program.

Combining all these ideas results in a system similar to one developed at Xerox PARC [1, 2].
With their schematic editor, parameterized cells are designed using the full power of a program-
ming language. One drawback of such a system, however, is that it involved a fairly tight cou-
pling of the graphics editor to the design capture system and used a large number of explicit but
non-visible bindings between text and objects that could lead to frequently misleading
schematics.

In the layout generation system [8] developed for our microprocessor design projects [4], we
modify this approach. A design is represented by a set of procedures. When compiled and
executed, they build an annotated hierarchical netlist as internal data structures. To augment this
text-based approach, designers can use schematics as a graphical procedure language. The
designer creates these schematics with a standard structured graphics editor. The drawing trans-
lator drip analyzes the schematics created with the graphics editor to generate the equivalent
textual description. This approach is similar to that taken by WireC [6] and its predecessor,
WireLisp [3, 10]. Drip has a more general evaluation mechanism than WireC, and uses a very
different understanding of order of evaluation for objects, including an intuitive 2D ordering.
This enables us to, for example, allow multiple procedure definitions in one schematic file and to
separate the locations of the declaration of an icon and the definition of the procedure cor-
responding to that icon.

1

Drip: A Schematic Drawing Interpreter

The mechanics and design issues surrounding the drawing translator are the focus of this
paper. We will mention aspects of the overall layout generation system that drip is a part of only
as necessary; another paper [8] describes this overall system more completely.

2. Basics

2.1. Simple Example

a b
LS

Res
r1

r0

Inputs:
L1(n) i;

Gnd

CELL: orN(int n, Power *p)

in

ISrc

c

i[k]

e

Npnb
c

bNpn

e

c
Vr1

o

Publics:
signal Gnd,Vee1,Vcs,Vr1;

Outputs:
L1() o;

GndInternals:
L2() c;

c

:for (int k=0; k<n; k++)

Layout:"Leaf"

(p)

(p)

(p)

(p)

(p)

 1 Cell* orN (int n, Power *p) {
 2 char key[500]; // the cell cache key
 3 sprintf(key,"orN_%s_%s",ToString(n),ToString(p));
 4 CACHECELL;
 5 LOCAL(GenW0, bit());
 6 INPUT(i, L1(n));
 7 INPUT(Gnd, signal);
 8 INPUT(Vee1, signal);
 9 INPUT(Vcs, signal);
10 INPUT(Vr1, signal);
11 OUTPUT(o, L1());
12 LOCAL(c, L2());
13 {
14 for (int k=0; k<n; k++)
15 {instance = cell->AddInstance(Npn(p));
16 instance->SetBinding("b",i(k),"c",Gnd,"e",c);}
17 }
18 {instance = cell->AddInstance(Res(p));
19 instance->SetBinding("r0",Gnd,"r1",GenW0);}
20 {instance = cell->AddInstance(LS(p));
21 instance->SetBinding("a",GenW0,"b",o);}
22 {instance = cell->AddInstance(ISrc(p));
23 instance->SetBinding("in",c);}
24 {instance = cell->AddInstance(Npn(p));
25 instance->SetBinding("b",Vr1,"c",GenW0,"e",c);}
26 SetLayoutKey(cell,"Leaf");
27 ENDCELL

Figure 1: Code Generated for "CELL: orN"

Figure 1 shows a sample schematic and the code generated when drip analyzes it. The result-
ing procedure orN generates and returns the netlist for an n-way OR gate.

Most of the wires are declared in the schematic and hence also in the generated C++ proce-
dure. The code that is generated from the declarations of "Inputs" (line 6), "Publics" (lines 7-10),
"Outputs" (line 11), and "Internals" (line 12) is easily identifiable. One wire, connecting the
bottom of the resistor to the npn transistor, is drawn but not declared in the schematic. Hence,
drip assigns it a generated name and declares the wire (line 5).

For each of the 5 icons in the schematic drip generates a call to the appropriate netlist genera-
tion procedure for that subcell (lines 15, 18, 20, 22 and 24). It passes the parameter "p" to these
subcell generators. drip generates code to bind the external wires of the sub-cells to the ap-
propriate wires in the current cell (lines 16, 19, 21, 23 and 25).

But a number of issues raised in this simple example are not so clear: How does drip decide in
what order to generate the different pieces of code? How does drip know what procedures to
call to generate sub-cells? How does drip know which wires to bind to which terminals? What
tradeoffs are made in answering these questions?

There are a number of philosophies that guided the design of the drawing interpreter.

2

Drip: A Schematic Drawing Interpreter

• The graphic editors should not have to know any of the semantics of the drawing
translator or the underlying language.

• The drawings should have no "hidden information": a human should be able to un-
derstand the drawing completely by looking at a paper copy.

• The drawing translator should be robust. That is, it should be fairly insensitive to
minor changes to the drawing; two drawings that look the same to the naked eye
should not have different interpretations.

• The drawing translator should be able to translate drawings from a number of
graphics editors.

• The drawing translator should be strict: if some graphical situation is ambiguous,
forbid it. This helps ensure the readability of the final graphic language.

• The drawing translator should behave in accord with people’s intuition and expec-
tations.

We only break these guidelines when useability or strong traditions demand.

2.2. Structured Graphics

One goal is for the schematic translator drip to be as independent of the drawing program as
possible. As a first step, drip is an entirely separate program from our drawing program -- the
generic idraw variant of Unidraw [9]. The only way that the two programs can communicate is
through files. The schematic translator reads the output files of the drawing program, much as a
compiler reads files written by a text editor.

To force independence, another goal is that the schematic translator be easily retargetable to
other drawing programs. Drip ensures this by parsing all input files into an intermediate
representation and performing all other operations on this intermediate representation. This
representation is a structured graphics world with a very small set of primitive objects (lines,
circles, rectangles, and text) and the ability to group primitives together into a single object. All
other graphic primitives that may be present in the input file are regarded as ornamental and are
filtered out in the process of translating into the intermediate representation. Any graphics editor
whose output can be easily parsed into this representation can be used for schematic generation.

This simple structured graphics world prevents any strong coupling between the editor and the
translator. It also removes a lot of hidden hints that a translator might otherwise be able to
utilize. The only hidden hint is the grouping of objects. Hence, grouping is limited to a very
narrow function, delimiting icons, which is discussed in Section 4.1. That the translator has to
start with so little information helps to ensure that the resulting graphical language is visually
intuitive.

3

Drip: A Schematic Drawing Interpreter

3. Generating Procedures

From the outset, we must accept that the goal is to generate computer procedures. It is not the
purpose of the schematic system to fool the designer into thinking that she is not really writing a
C++ procedure. Rather, the visual layout assists the designer in efficiently specifying the proce-
dure correctly. Also, the schematic provides a single representation of the design, so that all later
modifications only need to be made in one place. But, ultimately, what is specified must be a
complete and correct procedure. The role of the drawing translator is to provide a schematic
world that allows the designer to be concise and yet precise, and to allow easily understood
graphical drawings that can be fairly dense. These goals drive the overall architecture of the
translation process.

3.1. Frames and Evaluation

The first concept that must be understood is that of a frame. Every rectangle that is not
grouped within an icon is called a frame. Frames partition the page into different regions. Each
region is allowed to have its own region interpretation procedure. One reason for creating dif-
ferent regions with frames is precisely that the designer wants different regions to have different
interpretation procedures. A second use of frames is to group the objects of a region together
into a single programming language "statement". A third use of frames is to control the order of
interpretation of objects.

Frames partition the page into a hierarchical tree based on inclusion. To ensure this, there is a
simple rule: given a frame and any other object, the sides of the frame may not intersect the sides
of the bounding box of the object. With this rule, the answer as to whether or not an object is
inside a given frame is always well-defined. For each object, drip can easily determine the min-
imal frame in which it lies, and build a tree of objects with that frame as its parent. At the
topmost level of the tree, is a root frame which encloses the entire page.

Some objects in a frame are text strings of the form "keyword: contents". These text strings
perform two different roles depending on the keyword. If the keyword is the name of a region
interpretation procedure (e.g. "cell"), then the text string is simultaneously declaring the region
procedure to be used for evaluating the contents of its minimally enclosing frame, and the text
string is passing arguments to that region procedure. There are two domain-independent region
procedures:

• The "comment" procedure is the simplest. Everything inside the frame is treated as
a comment; there is no C++ output generated. Its contents are not evaluated.

• The "sub" procedure is the default for the root frame. Its purpose is to ensure that
we properly iterate through and evaluate all its children, which may only be text
procedures and sub-frames. They are evaluated in the 2D order described in Section
3.2.

If, on the other hand, the keyword is the name of a text interpretation procedure (e.g. "Inputs",
"Layout"), then the "contents" are being passed to the specified text procedure for translation into
generated code. There are three domain independent text procedures.

• The text procedure "code" passes its "contents" straight through to the final C++
program. As a short-cut, text beginning with a colon is equivalent to text beginning
with a "code" keyword.

4

Drip: A Schematic Drawing Interpreter

• The text procedure "include" takes a comma separated list of file names. These
schematic files are read and translated into C++ code in order by drip. For 2D or-
dering purposes (see Section 3.2), the code is generated as if the schematic files fit
in a frame at the same position and size as the text string that contains the "include"
keyword.

• The text procedure "comm" generates C++ comments that contain its text ar-
guments.

Text procedures, icons, and sub-frames are directly evaluated and generate code. These are
called evaluation objects. All other objects in a frame are analyzed only in order to attach
parameters and properties on the evaluation objects before their evaluation.

3.2. 2D Ordering

Since our graphical representation is really a poorly disguised C++ program, the order in
which we generate lines of the program is very important. This section how we order all the
objects within a frame for evaluation.

In standard programming languages, the program itself is usually specified as ASCII text.
Since these text files are one-dimensional, the order of evaluation is easy: from the beginning to
the end of the file. In a graphical language, the user has more degrees of freedom in placing the
language constructs. Thus it is less obvious in what order to evaluate the constructs. The first
temptation is to sort by the upper-left corners of the bounding boxes of the objects, using the
Y-coordinate as the most significant key and the X-coordinate as the least significant key. This is
not entirely satisfactory. It is not as robust as we would like. Nor does it always order objects in
the order we’d like.

R1 R2

R3 R4

R5

R6

R7

R8 R9 R10

R11 R12 R13 R14

Figure 2: 2D ordering of objects

We needed to come up with a better 2D ordering. Our resulting ordering system is easy to
explain, robust and closely follows our intuitive reading order. This ordering works very well

5

Drip: A Schematic Drawing Interpreter

for non-overlapping rectangles. When sorting evaluation objects, we use the bounding boxes of
the graphical element. An example showing the ordering we use is shown in Figure 2.

At the core of this ordering are these three rules:

Case 1
When two rectangles can be be separated by a vertical line and their projections onto that
line intersect, we order them left to right. Example: in Figure 2, R1 precedes R5.

Case 2
When two rectangles can be be separated by a horizontal line and their projections onto
that line intersect, we order them top to bottom. Example: in Figure 2, R8 precedes R12.

Case 3
When one rectangle is completely above and to the left of the other rectangle, we order
them left to right (or top to bottom, since that is equivalent). Example: in Figure 2, R4
precedes R13.

But, what about R2 vs R3? These are considered incomparable and so we leave them un-
ordered for now.

The final ordering is found by the following procedure:
repeat until done:

if only one rectangle has no rectangles that precede it then
schedule that rectangle

else
of all the rectangles that have no rectangles that precede them,
schedule the one that has the highest upper-left corner

Figure 3: Incomparable Rectangles

If we are in the else clause, then the rectangles that have no rectangles that precede them must
be stretched out diagonally as shown in Figure 3. In this case, the algorithm picks the uppermost
one - which is the same as the rightmost one.

We can see why we didn’t add a fourth ordering rule to decide on the incomparable rectangles
by looking carefully at Figure 2. Assume that we had said

Case 4
When one rectangle is completely above and to the right of the other rectangle, we order
them from top to bottom. Example: in Figure 2, R2 precedes R3.

6

Drip: A Schematic Drawing Interpreter

Looking at Figure 2, the rules would now say that rectangle R6 before rectangle R4 - yielding
a circular order given the previous rules.

Or, similarly, assume we had instead chosen the rule

Case 4
When one rectangle is completely above and to the right of the other rectangle, we order
them from left to right. Example: in Figure 2, R3 precedes R6.

Looking at Figure 2, the rules would now say that rectangle R11 before rectangle R4 - yield-
ing a circular order given the previous rules.

So we cannot add a fourth rule to give us a total ordering without leading to a circular order-
ing.

4. Drawing Interpretation

There is nothing in this evaluation procedure that is specific to the application of schematic
capture. It can be used as the basis for graphical programming environments in a number of
areas. It is the details of the region and text procedures that define the domain. With a different
set of region and text procedures, this graphical programming environment could be retargeted
for other uses. Since this paper is mainly concerned with the domain of schematic capture, we
now examine some of our domain-specific interpretation procedures.

Some interpretation procedures work on a string of text of the form "key: text", as mnetions
previously. Here, the key defines how the text is to interpreted for code generation. The domain-
specific text procedures "inputs", "outputs", "publics", "internals" are all used to declare the
wires of a cell. The procedures "layout" and "model" generate code to annotate the netlist for
later CAD system functions; "layout" specifies what method should be used to generate layout of
a cell, and "model" specifies how a cell should be modeled by the simulator. These functions
were used frequently enough to warrant a text procedure, rather than forcing the designer to
write out the C++ equivalents.

The more interesting interpretation procedures work on the contents of regions. We settled on
a simple collection of region procedures: "basic", "block", "cell", "plain", and "icon". We have
mentioned that region procedures can be explicitly declared. When there is no label with a
specific declaration, a frame’s region procedure is inherited from that of its parent frame.

• The "basic" procedure does our basic schematic evaluation with no extras. It first
analyzes all non-evaluation objects in the region: wires, connectors, wire labels, icon
parameters. It binds wire names to wires and procedure arguments to icons. It
propagates wire names along complex wires and attaches them to icon connectors.
Any unlabeled children frames inherit a "block" label. Finally, all children that are
evaluation objects are evaluated in the 2D order described in Section 3.2.

• The "block" procedure is just like the "basic" procedure, except that the code it
generates is turned into a single C++ "statement" by enclosing it all with {}.

• The "cell" procedure is used at the top level of a netlist generation procedure defini-
tion. It first causes the generation of a C++ procedure preamble, then it behaves like
the "basic" procedure, and finally it generates a procedure postamble.

7

Drip: A Schematic Drawing Interpreter

• The "plain" procedure is just like the "cell" procedure, except that it causes a less
specialized procedure preamble and postamble to be generated.

• The "icon" procedures generates a C++ forward declaration for a the netlist genera-
tion procedure which is produced by a "cell" procedure.

4.1. Icons

An icon is a grouping of objects which defines the interface to a cell in the netlist. Icons are
used in two circumstances. In "cell" regions, an icon represents an instance of a subcell, bound to
wires in the current cell at its connectors. In "icon" regions, the identical graphical object
generates a declaration for the netlist procedure defined by a "cell". Following the program anal-
ogy, "icon" regions are often collected in a drawing which is the graphical equivalent of a C++
".h" file, defining the procedural interfaces to a collection of cell generators.

A well-formed icon should consist of n circles, n+1 pieces of text, and any number of other
non-circle, non-text objects. The circles are icons connectors, to which wires can be attached.
Each connector must be labeled by the name of an external wire of the cell represented by the
icon. The text binding procedure described in Section 5.1 will be used to bind n of the text
objects to the n circles. The remaining unbound text is taken to be the name of the icon. Some
conforming icons are shown in Figure 4.

ICON:d12L3()

d1
2L

3s d

ICON:sSlave()

i o_

sSlave
o

ICON:Reg(int size=1,char* ctl="yd")

i o

si
Reg

so

Figure 4: "conforming" icons

Unaltered, this scheme imposes some limitations on icons that many users find unacceptable.
There are some tricks to get around them that don’t conform to our guiding philosophies:

• Some common icons are well known, as are the meaning of their connectors, e.g. the
npn transistors in Figure 5. Requiring a name would cause clutter that is annoying
to many designers. The solution in this case is to set the color of the text to "white",
thus making it invisible. Unless the icon is very standard, this practice is strongly
discouraged.

• Sometimes we need circles that are not connectors in our icon, e.g. the ISrc in
Figure 5. These circles must not be bound to text. In this case, the extra circles
should be hidden within a sub-group of the icon’s group. The icon interpreter and
text binder do not search within subgroups of the icon.

• Sometimes we need text that is not a connector or icon label in our icon, e.g. the "+"
and "-" in the VSrc in Figure 5. Just as with circles, these are hidden from the
interpreter in sub-groups of the icon’s group.

By the time that the "basic" region procedure attempts to evaluate an icon, drip will already
have bound wirenames to the wires in the region and propagated them all the way to the icon
connectors, as described in Section 5. So for each icon connector, we know the name in the

8

Drip: A Schematic Drawing Interpreter

ICON: ISrcICON: Npn

in

ISrce

Npnb
c

ICON: VSrc

bNpn

e

c vp

vm
VSrc

+

-

Figure 5: Sample "non-conforming" icons

current cell of the wire that is attached to it. From the text binding of the icon contents, we know
the name of the wire that the connector represents in the cell generated by the procedure that the
icon invokes. Finally, since we bind these two wires by name, we can generate the code shown
in Figure 1, lines 16, 19, 21, 23 and 25. Note that the code generated by a single icon is always
enclosed with {} and is thus a single C++ statement.

1 Cell* sSlave ();
2 Cell* Reg (int size=1,char* ctl="yd");
3 Cell* d12L3 ();

Figure 6: Code Generated by "Icon" Region Procedure for Figure 4

In Figures 4 and 5 we see the use of the "icon" region procedure. This region procedure has
two tasks. First, it generates a forward reference to the corresponding netlist generation proce-
dure. The code emitted is a declaration of the procedure with its arguments, including any
default arguments. This code will typically appear in a ".h" file. The code generated by this
region procedure for Figure 4 is shown in Figure 6. Second, The "icon" frame procedure
analyzes any icons contained in it to make sure that they are well-formed and that the name of
the icon is the same as the netlist procedure that is named in the "Icon:" declaration. If the
designer wants to copy and paste an icon for use in the current design, an "icon" frame procedure
that has already successfully passed through drip is a very safe place from which to copy the
icon.

5. Analysis of Non-Evaluation Objects

During the execution of the "basic" region procedure, the first task is to analyze the non-
evaluation objects. These are: lines, which represent wires; circles, which represent wire con-
nectors; and text which is not of the "keyword: contents" form. The role of a particular text
object is easily determined from its syntax. Text enclosed in parenthesis represents an argument
to be passed to an icon. Text beginning with a "." or a "[" is used for wire subscripting, which
will be discussed in Section 5.3. Text that is a normal identifier, or a normal identifier with
subscripting, is a wire name.

5.1. Binding Text to Objects

The main work in analyzing non-evaluation objects is determining to what objects the non-
evaluation text should be attached. Binding text to objects is necessary for several different
tasks. For the analysis phase of "basic" we need to be able to bind labels to wires and bind
arguments to icons. For icon analysis we need to bind labels to icon connectors. Given three
different uses, we choose to use the same algorithm for all three. This makes it easier for the
designer to understand the translator behavior.

9

Drip: A Schematic Drawing Interpreter

We do not allow the drawings to have hidden information, so drip must base its binding deci-
sions only on the positions of the text in relation to the other objects. The algorithm is
straightforward. The binding subroutine will be given a collection of text and a collection of
relevant objects to bind the text to. For each piece of text it finds the closest relevant object. If
no other text has the same closest object, then the object and the text are bound. When multiple
pieces of text have the same closest object, this is usually reported as an error. (We allow one
exception: in the case of a wire that has the identical label repeated multiple times, we don’t flag
an error.) The distance from text to an object is computed as follows: replace the text with the
line that results from underlining the text and replace the object with a rectangular bounding box,
then find the manhattan distance from the line to the box.

One drawback of such a simple method is that it doesn’t bind text to second closest objects in
cases that are intuitive to humans. More complicated algorithms were experimented with. They
led to sufficient unpredictability at the user level, that they caused more harm than good. The
great advantage of our method is that a user looking at the printed copy can easily understand
exactly what text is bound to what object.

5.2. Wires

e

Npnb
c

e

Npnb
c

a b
EF

Res
r1

r0

Inputs:
L2(2) l;
L1() a,b,d;

Layout: "Leaf"

Gnd

cell: sMux2()

in

ISrc

a

l[0]

e

Npnb
c

bNpn

e

c

e

Npnb
c

Vr1 b

l[1]

bNpn

e

c

e

Npnb
c

Vr1 d

Vr2

e

Npnb
c

bNpn

e

c
Vr1

Publics:
signal Gnd,Vee1,Vcs,Vr1,Vr2;

Outputs:
L1() o;

Gnd

comment: T and L junctions
Wires that meet at T and L junctions
 are connected together.

o

irP
ip

e
rd

K
ill

ra
P

ip
e

al
uK

ill
am

M
w

P
ip

e
m

em
W

bK
ill

ra
S

rc
S

el
W

ra
T

ar
S

el
W

si

rr
s

rr
t

rr
w

rr
sI rr
tI

rr
w

I

w
eI

w
e

w
cl

k

B
yp

as
s

mwL
wbK
amL
memK
raL
aluK
irL

si so

rdK

rr
sI

rr
tI

rr
w

I
by

pT
by

pSrr
s

rr
t

rr
w

w
eI

w
e

w
cl

k

dc
A

cc
es

s

o

D
el

ay
M

em
raL
aluK
irL

si so

rdK

memK
amL

so

comment: connectors

cell: fragment()

Connectors can also be used outside
of icons. Wires that have + junctions
are not considered connected. With
a connector at the + junction, the
wires are considered connected.

Figure 7: Junctions and Connectors

When binding labels to wires, the binding algorithm attaches each label to a single line or
circle. However, the translator needs to understand that the label applies to the entire conduction
path. A conduction path consist of many lines and circles that are connected together. The rules
we use for connectivity analysis are straightforward (see Figure 7).

1. Two wires that meet at a T-junction or an L-junction are connected at that junction.

2. Two wires that meet at a "+"-junction are not-connected.

3. If a wire intersects a circular connector, they are connected.

4. Transitivity: if A is connected to B and B is connected to C, A is connected to C.

10

Drip: A Schematic Drawing Interpreter

5.3. Wire Subscripting

Inputs:
bits(5) s;
signal inv;

bshls

d0

d1

d2

sel

Outputs:
bits(32) sa;

sa

cell: bshdec

Internals:
bits(4) xx, yy;
bits(2) zz;
bits(5) out, out_;

deccomp
sa

inv

out

out_

out

out_

[0,2]

[2,2]

[4]

[0,2]

[2,2]

[4]

b a
F

use
b a

F
use

xx

yy

zz

[0]

[1]

s

inv
dl24

ds

s_

dl24

ds

s_

Model: "bshdec"

Publics:
signal Gnd,Vee1,Vcs,Vr1,Vr2;

comment: subwires
This cell shows how wires can be broken down into subwires.
zz[a,b] means the b bits of the wire zz that start with bit a.

Figure 8: Wire Subscripting

In our CAD system, a wire may be an array or complicated structure of sub-wires. In a
schematic we may want to tear a wire into sub-wires. An example is shown in Figure 8. Now
we will have a set of connected lines, some of which represent a collection of nets, some of
which represent a subset of them. Which line represents what nets? For a connected set of
conductors that use subscripting, some basic rules must hold:

• The conductors must form a tree.

• There may be exactly one non-subscript label on any of the conductors.

• Each conductor is allowed at most one label, whether it is a subscript label or a
non-subscript label.

Given these rules, we can choose the non-subscript labeled conductor as the root of the tree.
The label on any conductor is the concatenation of all the labels along the path from the root of
the tree to the conductor, inclusive.

This algorithm is intuitive, robust and works for multiple levels of subscripting.

6. Error Reporting

The main objection that designers have after the above system is explained to them, is that the
decoupling of editor and interpreter makes it harder to deal with schematic errors found by the
interpreter.

Since our decoupling is in part modeled on the separation of text editor and compiler that
programmers are very used to, we similarly mimic the error reporting mechanisms of emacs.
When programming with emacs, the compiler reports errors in such a format that the program-
mer can use emacs to single-step through the lines in the code that have errors.

Similarly, whenever drip encounters an error, it writes an entry into an error file. This entry
contains an error message, a source schematic file name, and descriptions of polygons with
which to highlight the error region of the schematic.

11

Drip: A Schematic Drawing Interpreter

Since out editor did not have the ability to handle error files, we had to customize it. We
added commands to load an error file, and single step through the errors. The editor pulls up the
schematic with the error, overlays the highlighting polygons, and pops up a window with the
error message. The designer can fix the error and then step to the next one.

7. Experiences

This system was successfully used at our laboratory for a period of four years, encompassing
two microprocessor projects, BIPS0 [4] and BIPS1. Each design used over one hundred
schematically specified netlist generation procedures.

Another bonus effect of the separation between the schematics and the generated C++ code
that is provided by the interpreter was that the frequent changes to the CAD system libraries and
their interfaces usually only required modifications to drip’s interpretation procedures, rather
than to every schematic.

Acknowledgements
drip descended from moog. moog was a drawing interpreter written by Mike Nielsen and

Jeremy Dion for use with the artemis graphics editor. Under the guidance of Jeremy Dion,
Kamal Chaudhary wrote a preliminary drawing interpreter moo, that would be more graphics
editor independent. Ramsey Haddad extended moo. Ramsey Haddad and Louis Monier rewrote
it, creating drip.

drip was further improved by incorporating ideas from a number of users: Mary Jo Doherty,
Alan Eustace, Norm Jouppi, Jim Keller, Suresh Menon, Silvio Turrini. Jeremy Dion and Louis
Monier made numerous helpful suggestions on the paper.

References
[1] R. Barth, B. Serlet, P. Sindhu. Parameterized Schematics. In 25th Design Automation Conference, pages 243-249.
Sydney, June, 1988.

[2] R. Barth, L. Monier, B. Serlet. Patchwork: Layout From Schematic Annotations. In 25th Design Automation
Conference, pages 250-255. Sydney, June, 1988.

[3] C. Ebeling, Z. Wu. WireLisp: Combining Graphics and Procedures in a Circuit Specification Language. In Proceedings
of the ICCAD, pages 322-325. IEEE, 1989.

[4] N.P. Jouppi, P. Boyle, J. Dion, M.J. Doherty, A. Eustace, R.W. Haddad, R. Mayo, S. Menon, L.M. Monier, D. Stark,
S. Turrini, J.L. Yang, W.R. Hamburgen, J.S. Fitch, R. Kao. A 300-MHz 115-W 32-b Bipolar ECL Microprocessor.

IEEE Journal of Solid-State Circuits 28(11), November, 1993.

[5] R. Mayo. Mocha chip: A system for the graphical design of VLSI module generators. In Proceedings of the ICCAD,
pages 74-77. IEEE, 1986.

[6] L. McMurchie, C. Ebeling. WireC Tutorial and Reference Manual. Technical Report 94-09-09, University of
Washington, Department of Computer Science and Engineering, September, 1994.

[7] L. Monier. Layout Generation Through Parameterized Schematics. In 7th Australian Microelectronics Conference,
pages 157-164. Sydney, May, 1988.

[8] L. Monier, J. Dion. Recursive Layout Generation. WRL Research Report (95/2), 1995.

12

Drip: A Schematic Drawing Interpreter

[9] J. Vlissides, M. Linton. Unidraw: A Framework for Building Domain-Specific Graphical Editors . ACM Transactions
on Information Systems 8(3):237--268, July, 1990.

[10] Z. Wu, C. Ebeling. Drawing Wirelisp. Technical Report 89-12-03, University of Washington, Department of Computer
Science and Engineering, December, 1989.

13

Drip: A Schematic Drawing Interpreter

14

Drip: A Schematic Drawing Interpreter

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘The USENET Cookbook: an Experiment in

Michael J. K. Nielsen. Electronic Publication.’’

WRL Research Report 86/1, September 1986. Brian K. Reid.

WRL Research Report 87/7, December 1987.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘MultiTitan: Four Architecture Papers.’’

WRL Research Report 86/3, October 1986. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

ael J. K. Nielsen.
‘‘Optimal Finned Heat Sinks.’’ WRL Research Report 87/8, April 1988.
William R. Hamburgen.

WRL Research Report 86/4, October 1986. ‘‘Fast Printed Circuit Board Routing.’’

Jeremy Dion.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/1, March 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 87/1, August 1987. Roots.’’

Joel F. Bartlett.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/2, February 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘The Experimental Literature of The Internet: An

J. Accetta. Annotated Bibliography.’’

WRL Research Report 87/2, November 1987. Jeffrey C. Mogul.

WRL Research Report 88/3, August 1988.
‘‘Fragmentation Considered Harmful.’’

Christopher A. Kent, Jeffrey C. Mogul. ‘‘Measured Capacity of an Ethernet: Myths and

WRL Research Report 87/3, December 1987. Reality.’’

David R. Boggs, Jeffrey C. Mogul, Christopher
‘‘Cache Coherence in Distributed Systems.’’ A. Kent.
Christopher A. Kent. WRL Research Report 88/4, September 1988.
WRL Research Report 87/4, December 1987.

‘‘Visa Protocols for Controlling Inter-Organizational
‘‘Register Windows vs. Register Allocation.’’ Datagram Flow: Extended Description.’’
David W. Wall. Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
WRL Research Report 87/5, December 1987. Kamaljit Anand.

WRL Research Report 88/5, December 1988.
‘‘Editing Graphical Objects Using Procedural

Representations.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
Paul J. Asente. Joel F. Bartlett.
WRL Research Report 87/6, November 1987. WRL Research Report 89/1, January 1989.

15

Drip: A Schematic Drawing Interpreter

‘‘Optimal Group Distribution in Carry-Skip Ad- ‘‘The Distribution of Instruction-Level and Machine

ders.’’ Parallelism and Its Effect on Performance.’’

Silvio Turrini. Norman P. Jouppi.

WRL Research Report 89/2, February 1989. WRL Research Report 89/13, July 1989.

‘‘Precise Robotic Paste Dot Dispensing.’’ ‘‘Long Address Traces from RISC Machines:

William R. Hamburgen. Generation and Analysis.’’

WRL Research Report 89/3, February 1989. Anita Borg, R.E.Kessler, Georgia Lazana, and David

W. Wall.
‘‘Simple and Flexible Datagram Access Controls for WRL Research Report 89/14, September 1989.

Unix-based Gateways.’’

Jeffrey C. Mogul. ‘‘Link-Time Code Modification.’’

WRL Research Report 89/4, March 1989. David W. Wall.

WRL Research Report 89/17, September 1989.
‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ ‘‘Noise Issues in the ECL Circuit Family.’’

V. Srinivasan and Jeffrey C. Mogul. Jeffrey Y.F. Tang and J. Leon Yang.

WRL Research Report 89/5, May 1989. WRL Research Report 90/1, January 1990.

‘‘Available Instruction-Level Parallelism for Super- ‘‘Efficient Generation of Test Patterns Using

scalar and Superpipelined Machines.’’ Boolean Satisfiablilty.’’

Norman P. Jouppi and David W. Wall. Tracy Larrabee.

WRL Research Report 89/7, July 1989. WRL Research Report 90/2, February 1990.

‘‘A Unified Vector/Scalar Floating-Point Architec- ‘‘Two Papers on Test Pattern Generation.’’

ture.’’ Tracy Larrabee.

Norman P. Jouppi, Jonathan Bertoni, and David WRL Research Report 90/3, March 1990.

W. Wall.
‘‘Virtual Memory vs. The File System.’’WRL Research Report 89/8, July 1989.
Michael N. Nelson.

‘‘Architectural and Organizational Tradeoffs in the WRL Research Report 90/4, March 1990.

Design of the MultiTitan CPU.’’
‘‘Efficient Use of Workstations for Passive Monitor-Norman P. Jouppi.

ing of Local Area Networks.’’WRL Research Report 89/9, July 1989.
Jeffrey C. Mogul.

‘‘Integration and Packaging Plateaus of Processor WRL Research Report 90/5, July 1990.

Performance.’’
‘‘A One-Dimensional Thermal Model for the VAXNorman P. Jouppi.

9000 Multi Chip Units.’’WRL Research Report 89/10, July 1989.
John S. Fitch.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces- WRL Research Report 90/6, July 1990.

sor with High Ratio of Sustained to Peak Perfor-
‘‘1990 DECWRL/Livermore Magic Release.’’mance.’’
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,Norman P. Jouppi and Jeffrey Y. F. Tang.

Don Stark, Gordon T. Hamachi.WRL Research Report 89/11, July 1989.
WRL Research Report 90/7, September 1990.

16

Drip: A Schematic Drawing Interpreter

‘‘Pool Boiling Enhancement Techniques for Water at ‘‘Interleaved Fin Thermal Connectors for Multichip

Low Pressure.’’ Modules.’’

Wade R. McGillis, John S. Fitch, William William R. Hamburgen.

R. Hamburgen, Van P. Carey. WRL Research Report 91/9, August 1991.

WRL Research Report 90/9, December 1990.
‘‘Experience with a Software-defined Machine Ar-

‘‘Writing Fast X Servers for Dumb Color Frame Buf- chitecture.’’

fers.’’ David W. Wall.

Joel McCormack. WRL Research Report 91/10, August 1991.

WRL Research Report 91/1, February 1991.
‘‘Network Locality at the Scale of Processes.’’

‘‘A Simulation Based Study of TLB Performance.’’ Jeffrey C. Mogul.

J. Bradley Chen, Anita Borg, Norman P. Jouppi. WRL Research Report 91/11, November 1991.

WRL Research Report 91/2, November 1991.
‘‘Cache Write Policies and Performance.’’

‘‘Analysis of Power Supply Networks in VLSI Cir- Norman P. Jouppi.

cuits.’’ WRL Research Report 91/12, December 1991.

Don Stark.
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’WRL Research Report 91/3, April 1991.
William R. Hamburgen, John S. Fitch.

‘‘TurboChannel T1 Adapter.’’ WRL Research Report 92/1, March 1992.

David Boggs.
‘‘Observing TCP Dynamics in Real Networks.’’WRL Research Report 91/4, April 1991.
Jeffrey C. Mogul.

‘‘Procedure Merging with Instruction Caches.’’ WRL Research Report 92/2, April 1992.

Scott McFarling.
‘‘Systems for Late Code Modification.’’WRL Research Report 91/5, March 1991.
David W. Wall.

‘‘Don’t Fidget with Widgets, Draw!.’’ WRL Research Report 92/3, May 1992.

Joel Bartlett.
‘‘Piecewise Linear Models for Switch-Level Simula-WRL Research Report 91/6, May 1991.

tion.’’

‘‘Pool Boiling on Small Heat Dissipating Elements in Russell Kao.

Water at Subatmospheric Pressure.’’ WRL Research Report 92/5, September 1992.

Wade R. McGillis, John S. Fitch, William
‘‘A Practical System for Intermodule Code Optimiza-R. Hamburgen, Van P. Carey.

tion at Link-Time.’’WRL Research Report 91/7, June 1991.
Amitabh Srivastava and David W. Wall.

‘‘Incremental, Generational Mostly-Copying Gar- WRL Research Report 92/6, December 1992.
bage Collection in Uncooperative Environ-

‘‘A Smart Frame Buffer.’’ments.’’
Joel McCormack & Bob McNamara.G. May Yip.
WRL Research Report 93/1, January 1993.WRL Research Report 91/8, June 1991.

‘‘Recovery in Spritely NFS.’’
Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993.

17

Drip: A Schematic Drawing Interpreter

‘‘Tradeoffs in Two-Level On-Chip Caching.’’ ‘‘Complexity/Performance Tradeoffs with Non-

Norman P. Jouppi & Steven J.E. Wilton. Blocking Loads.’’

WRL Research Report 93/3, October 1993. Keith I. Farkas, Norman P. Jouppi.

WRL Research Report 94/3, March 1994.
‘‘Unreachable Procedures in Object-oriented

Programing.’’ ‘‘A Better Update Policy.’’

Amitabh Srivastava. Jeffrey C. Mogul.

WRL Research Report 93/4, August 1993. WRL Research Report 94/4, April 1994.

‘‘An Enhanced Access and Cycle Time Model for ‘‘Boolean Matching for Full-Custom ECL Gates.’’

On-Chip Caches.’’ Robert N. Mayo, Herve Touati.

Steven J.E. Wilton and Norman P. Jouppi. WRL Research Report 94/5, April 1994.

WRL Research Report 93/5, July 1994.
‘‘Software Methods for System Address Tracing:

‘‘Limits of Instruction-Level Parallelism.’’ Implementation and Validation.’’

David W. Wall. J. Bradley Chen, David W. Wall, and Anita Borg.

WRL Research Report 93/6, November 1993. WRL Research Report 94/6, September 1994.

‘‘Fluoroelastomer Pressure Pad Design for ‘‘Performance Implications of Multiple Pointer

Microelectronic Applications.’’ Sizes.’’

Alberto Makino, William R. Hamburgen, John Jeffrey C. Mogul, Joel F. Bartlett, Robert N. Mayo,

S. Fitch. and Amitabh Srivastava.

WRL Research Report 93/7, November 1993. WRL Research Report 94/7, December 1994.

‘‘A 300MHz 115W 32b Bipolar ECL Microproces- ‘‘How Useful Are Non-blocking Loads, Stream Buf-

sor.’’ fers, and Speculative Execution in Multiple Issue

Norman P. Jouppi, Patrick Boyle, Jeremy Dion, Mary Processors?.’’

Jo Doherty, Alan Eustace, Ramsey Haddad, Keith I. Farkas, Norman P. Jouppi, and Paul Chow.

Robert Mayo, Suresh Menon, Louis Monier, Don WRL Research Report 94/8, December 1994.

Stark, Silvio Turrini, Leon Yang, John Fitch, Wil-
‘‘Recursive Layout Generation.’’liam Hamburgen, Russell Kao, and Richard Swan.
Louis M. Monier, Jeremy Dion.WRL Research Report 93/8, December 1993.
WRL Research Report 95/2, March 1995.

‘‘Link-Time Optimization of Address Calculation on
‘‘Contour: A Tile-based Gridless Router.’’a 64-bit Architecture.’’
Jeremy Dion, Louis M. Monier.Amitabh Srivastava, David W. Wall.
WRL Research Report 95/3, March 1995.WRL Research Report 94/1, February 1994.

‘‘The Case for Persistent-Connection HTTP.’’‘‘ATOM: A System for Building Customized
Jeffrey C. Mogul.Program Analysis Tools.’’
WRL Research Report 95/4, May 1995.Amitabh Srivastava, Alan Eustace.

WRL Research Report 94/2, March 1994.
‘‘Network Behavior of a Busy Web Server and its

Clients.’’

Jeffrey C. Mogul.
WRL Research Report 95/5, June 1995.

18

Drip: A Schematic Drawing Interpreter

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

Brian K. Reid and Christopher A. Kent. sures’’

WRL Technical Note TN-4, September 1988. Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.
‘‘TCP/IP PrintServer: Server Architecture and Im- WRL Technical Note TN-23, January 1992.

plementation.’’

Christopher A. Kent. ‘‘A Comparison of Acoustic and Infrared Inspection

WRL Technical Note TN-7, November 1988. Techniques for Die Attach’’

John S. Fitch.
‘‘Smart Code, Stupid Memory: A Fast X Server for a WRL Technical Note TN-24, January 1992.

Dumb Color Frame Buffer.’’

Joel McCormack. ‘‘TurboChannel Versatec Adapter’’

WRL Technical Note TN-9, September 1989. David Boggs.

WRL Technical Note TN-26, January 1992.
‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’ ‘‘A Recovery Protocol For Spritely NFS’’

John Ousterhout. Jeffrey C. Mogul.

WRL Technical Note TN-11, October 1989. WRL Technical Note TN-27, April 1992.

‘‘Mostly-Copying Garbage Collection Picks Up ‘‘Electrical Evaluation Of The BIPS-0 Package’’

Generations and C++.’’ Patrick D. Boyle.

Joel F. Bartlett. WRL Technical Note TN-29, July 1992.

WRL Technical Note TN-12, October 1989.
‘‘Transparent Controls for Interactive Graphics’’

‘‘The Effect of Context Switches on Cache Perfor- Joel F. Bartlett.

mance.’’ WRL Technical Note TN-30, July 1992.

Jeffrey C. Mogul and Anita Borg.
‘‘Design Tools for BIPS-0’’WRL Technical Note TN-16, December 1990.
Jeremy Dion & Louis Monier.

‘‘MTOOL: A Method For Detecting Memory Bot- WRL Technical Note TN-32, December 1992.
tlenecks.’’

‘‘Link-Time Optimization of Address Calculation onAaron Goldberg and John Hennessy.
a 64-Bit Architecture’’WRL Technical Note TN-17, December 1990.

Amitabh Srivastava and David W. Wall.

‘‘Predicting Program Behavior Using Real or Es- WRL Technical Note TN-35, June 1993.

timated Profiles.’’
‘‘Combining Branch Predictors’’David W. Wall.
Scott McFarling.WRL Technical Note TN-18, December 1990.
WRL Technical Note TN-36, June 1993.

‘‘Cache Replacement with Dynamic Exclusion’’
‘‘Boolean Matching for Full-Custom ECL Gates’’Scott McFarling.
Robert N. Mayo and Herve Touati.WRL Technical Note TN-22, November 1991.
WRL Technical Note TN-37, June 1993.

19

Drip: A Schematic Drawing Interpreter

‘‘Ramonamap - An Example of Graphical Group-

ware’’

Joel F. Bartlett.

WRL Technical Note TN-43, December 1994.

‘‘Circuit and Process Directions for Low-Voltage

Swing Submicron BiCMOS’’

Norman P. Jouppi, Suresh Menon, and Stefanos

Sidiropoulos.

WRL Technical Note TN-45, March 1994.

‘‘Experience with a Wireless World Wide Web

Client’’

Joel F. Bartlett.

WRL Technical Note TN-46, March 1995.

‘‘I/O Component Characterization for I/O Cache

Designs’’

Kathy J. Richardson.

WRL Technical Note TN-47, April 1995.

‘‘Attribute caches’’

Kathy J. Richardson, Michael J. Flynn.

WRL Technical Note TN-48, April 1995.

‘‘Operating Systems Support for Busy Internet Ser-

vers’’

Jeffrey C. Mogul.

WRL Technical Note TN-49, May 1995.

20

